ffs_alloc.c revision 12405
1178476Sjb/*
2178476Sjb * Copyright (c) 1982, 1986, 1989, 1993
3178476Sjb *	The Regents of the University of California.  All rights reserved.
4178476Sjb *
5178476Sjb * Redistribution and use in source and binary forms, with or without
6178476Sjb * modification, are permitted provided that the following conditions
7178476Sjb * are met:
8178476Sjb * 1. Redistributions of source code must retain the above copyright
9178476Sjb *    notice, this list of conditions and the following disclaimer.
10178476Sjb * 2. Redistributions in binary form must reproduce the above copyright
11178476Sjb *    notice, this list of conditions and the following disclaimer in the
12178476Sjb *    documentation and/or other materials provided with the distribution.
13178476Sjb * 3. All advertising materials mentioning features or use of this software
14178476Sjb *    must display the following acknowledgement:
15178476Sjb *	This product includes software developed by the University of
16178476Sjb *	California, Berkeley and its contributors.
17178476Sjb * 4. Neither the name of the University nor the names of its contributors
18178476Sjb *    may be used to endorse or promote products derived from this software
19178476Sjb *    without specific prior written permission.
20178476Sjb *
21178476Sjb * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22178476Sjb * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23178476Sjb * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24178476Sjb * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25178476Sjb * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26178476Sjb * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27178476Sjb * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28178476Sjb * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29178476Sjb * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30178476Sjb * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31178476Sjb * SUCH DAMAGE.
32178476Sjb *
33178476Sjb *	@(#)ffs_alloc.c	8.8 (Berkeley) 2/21/94
34178476Sjb * $Id: ffs_alloc.c,v 1.18 1995/11/14 09:40:04 phk Exp $
35178476Sjb */
36178476Sjb
37178476Sjb#include <sys/param.h>
38178476Sjb#include <sys/systm.h>
39178476Sjb#include <sys/buf.h>
40178476Sjb#include <sys/proc.h>
41178476Sjb#include <sys/vnode.h>
42178476Sjb#include <sys/mount.h>
43178476Sjb#include <sys/kernel.h>
44278007Smarkj#include <sys/syslog.h>
45178476Sjb
46178476Sjb#include <vm/vm.h>
47178476Sjb
48178476Sjb#include <ufs/ufs/quota.h>
49178476Sjb#include <ufs/ufs/inode.h>
50178476Sjb#include <ufs/ufs/ufs_extern.h>		/* YF - needed for ufs_getlbns() */
51178476Sjb
52178476Sjb#include <ufs/ffs/fs.h>
53178476Sjb#include <ufs/ffs/ffs_extern.h>
54178476Sjb
55178476Sjbextern u_long nextgennumber;
56178476Sjb
57178476Sjbstatic daddr_t	ffs_alloccg __P((struct inode *, int, daddr_t, int));
58178476Sjbstatic daddr_t	ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t));
59178476Sjbstatic daddr_t	ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
60178476Sjbstatic ino_t	ffs_dirpref __P((struct fs *));
61178476Sjbstatic daddr_t	ffs_fragextend __P((struct inode *, int, long, int, int));
62178476Sjbstatic void	ffs_fserr __P((struct fs *, u_int, char *));
63178476Sjbstatic u_long	ffs_hashalloc
64178476Sjb		    __P((struct inode *, int, long, int, u_long (*)()));
65178476Sjbstatic ino_t	ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
66178476Sjbstatic daddr_t	ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int));
67178476Sjb
68178476Sjbvoid		ffs_clusteracct	__P((struct fs *, struct cg *, daddr_t, int));
69178476Sjb
70178476Sjb/*
71178476Sjb * Allocate a block in the file system.
72278007Smarkj *
73178476Sjb * The size of the requested block is given, which must be some
74178476Sjb * multiple of fs_fsize and <= fs_bsize.
75178476Sjb * A preference may be optionally specified. If a preference is given
76178476Sjb * the following hierarchy is used to allocate a block:
77178476Sjb *   1) allocate the requested block.
78178476Sjb *   2) allocate a rotationally optimal block in the same cylinder.
79178476Sjb *   3) allocate a block in the same cylinder group.
80178476Sjb *   4) quadradically rehash into other cylinder groups, until an
81178476Sjb *      available block is located.
82178476Sjb * If no block preference is given the following heirarchy is used
83178476Sjb * to allocate a block:
84178476Sjb *   1) allocate a block in the cylinder group that contains the
85278007Smarkj *      inode for the file.
86178476Sjb *   2) quadradically rehash into other cylinder groups, until an
87 *      available block is located.
88 */
89int
90ffs_alloc(ip, lbn, bpref, size, cred, bnp)
91	register struct inode *ip;
92	daddr_t lbn, bpref;
93	int size;
94	struct ucred *cred;
95	daddr_t *bnp;
96{
97	register struct fs *fs;
98	daddr_t bno;
99	int cg;
100#ifdef QUOTA
101	int error;
102#endif
103
104
105	*bnp = 0;
106	fs = ip->i_fs;
107#ifdef DIAGNOSTIC
108	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
109		printf("dev = 0x%lx, bsize = %ld, size = %d, fs = %s\n",
110		    (u_long)ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
111		panic("ffs_alloc: bad size");
112	}
113	if (cred == NOCRED)
114		panic("ffs_alloc: missing credential");
115#endif /* DIAGNOSTIC */
116	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
117		goto nospace;
118	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
119		goto nospace;
120#ifdef QUOTA
121	error = chkdq(ip, (long)btodb(size), cred, 0);
122	if (error)
123		return (error);
124#endif
125	if (bpref >= fs->fs_size)
126		bpref = 0;
127	if (bpref == 0)
128		cg = ino_to_cg(fs, ip->i_number);
129	else
130		cg = dtog(fs, bpref);
131	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
132	    (u_long (*)())ffs_alloccg);
133	if (bno > 0) {
134		ip->i_blocks += btodb(size);
135		ip->i_flag |= IN_CHANGE | IN_UPDATE;
136		*bnp = bno;
137		return (0);
138	}
139#ifdef QUOTA
140	/*
141	 * Restore user's disk quota because allocation failed.
142	 */
143	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
144#endif
145nospace:
146	ffs_fserr(fs, cred->cr_uid, "file system full");
147	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
148	return (ENOSPC);
149}
150
151/*
152 * Reallocate a fragment to a bigger size
153 *
154 * The number and size of the old block is given, and a preference
155 * and new size is also specified. The allocator attempts to extend
156 * the original block. Failing that, the regular block allocator is
157 * invoked to get an appropriate block.
158 */
159int
160ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
161	register struct inode *ip;
162	daddr_t lbprev;
163	daddr_t bpref;
164	int osize, nsize;
165	struct ucred *cred;
166	struct buf **bpp;
167{
168	register struct fs *fs;
169	struct buf *bp;
170	int cg, request, error;
171	daddr_t bprev, bno;
172
173	*bpp = 0;
174	fs = ip->i_fs;
175#ifdef DIAGNOSTIC
176	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
177	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
178		printf(
179		    "dev = 0x%lx, bsize = %ld, osize = %d, "
180		    "nsize = %d, fs = %s\n",
181		    (u_long)ip->i_dev, fs->fs_bsize, osize,
182		    nsize, fs->fs_fsmnt);
183		panic("ffs_realloccg: bad size");
184	}
185	if (cred == NOCRED)
186		panic("ffs_realloccg: missing credential");
187#endif /* DIAGNOSTIC */
188	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
189		goto nospace;
190	if ((bprev = ip->i_db[lbprev]) == 0) {
191		printf("dev = 0x%lx, bsize = %ld, bprev = %ld, fs = %s\n",
192		    (u_long) ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
193		panic("ffs_realloccg: bad bprev");
194	}
195	/*
196	 * Allocate the extra space in the buffer.
197	 */
198	error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp);
199	if (error) {
200		brelse(bp);
201		return (error);
202	}
203
204	if( bp->b_blkno == bp->b_lblkno) {
205		if( lbprev >= NDADDR)
206			panic("ffs_realloccg: lbprev out of range");
207		bp->b_blkno = fsbtodb(fs, bprev);
208	}
209
210#ifdef QUOTA
211	error = chkdq(ip, (long)btodb(nsize - osize), cred, 0);
212	if (error) {
213		brelse(bp);
214		return (error);
215	}
216#endif
217	/*
218	 * Check for extension in the existing location.
219	 */
220	cg = dtog(fs, bprev);
221	bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize);
222	if (bno) {
223		if (bp->b_blkno != fsbtodb(fs, bno))
224			panic("bad blockno");
225		ip->i_blocks += btodb(nsize - osize);
226		ip->i_flag |= IN_CHANGE | IN_UPDATE;
227		allocbuf(bp, nsize);
228		bp->b_flags |= B_DONE;
229		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
230		*bpp = bp;
231		return (0);
232	}
233	/*
234	 * Allocate a new disk location.
235	 */
236	if (bpref >= fs->fs_size)
237		bpref = 0;
238	switch ((int)fs->fs_optim) {
239	case FS_OPTSPACE:
240		/*
241		 * Allocate an exact sized fragment. Although this makes
242		 * best use of space, we will waste time relocating it if
243		 * the file continues to grow. If the fragmentation is
244		 * less than half of the minimum free reserve, we choose
245		 * to begin optimizing for time.
246		 */
247		request = nsize;
248		if (fs->fs_minfree <= 5 ||
249		    fs->fs_cstotal.cs_nffree >
250		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
251			break;
252		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
253			fs->fs_fsmnt);
254		fs->fs_optim = FS_OPTTIME;
255		break;
256	case FS_OPTTIME:
257		/*
258		 * At this point we have discovered a file that is trying to
259		 * grow a small fragment to a larger fragment. To save time,
260		 * we allocate a full sized block, then free the unused portion.
261		 * If the file continues to grow, the `ffs_fragextend' call
262		 * above will be able to grow it in place without further
263		 * copying. If aberrant programs cause disk fragmentation to
264		 * grow within 2% of the free reserve, we choose to begin
265		 * optimizing for space.
266		 */
267		request = fs->fs_bsize;
268		if (fs->fs_cstotal.cs_nffree <
269		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
270			break;
271		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
272			fs->fs_fsmnt);
273		fs->fs_optim = FS_OPTSPACE;
274		break;
275	default:
276		printf("dev = 0x%lx, optim = %ld, fs = %s\n",
277		    (u_long)ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
278		panic("ffs_realloccg: bad optim");
279		/* NOTREACHED */
280	}
281	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
282	    (u_long (*)())ffs_alloccg);
283	if (bno > 0) {
284		bp->b_blkno = fsbtodb(fs, bno);
285		ffs_blkfree(ip, bprev, (long)osize);
286		if (nsize < request)
287			ffs_blkfree(ip, bno + numfrags(fs, nsize),
288			    (long)(request - nsize));
289		ip->i_blocks += btodb(nsize - osize);
290		ip->i_flag |= IN_CHANGE | IN_UPDATE;
291		allocbuf(bp, nsize);
292		bp->b_flags |= B_DONE;
293		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
294		*bpp = bp;
295		return (0);
296	}
297#ifdef QUOTA
298	/*
299	 * Restore user's disk quota because allocation failed.
300	 */
301	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
302#endif
303	brelse(bp);
304nospace:
305	/*
306	 * no space available
307	 */
308	ffs_fserr(fs, cred->cr_uid, "file system full");
309	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
310	return (ENOSPC);
311}
312
313/*
314 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
315 *
316 * The vnode and an array of buffer pointers for a range of sequential
317 * logical blocks to be made contiguous is given. The allocator attempts
318 * to find a range of sequential blocks starting as close as possible to
319 * an fs_rotdelay offset from the end of the allocation for the logical
320 * block immediately preceeding the current range. If successful, the
321 * physical block numbers in the buffer pointers and in the inode are
322 * changed to reflect the new allocation. If unsuccessful, the allocation
323 * is left unchanged. The success in doing the reallocation is returned.
324 * Note that the error return is not reflected back to the user. Rather
325 * the previous block allocation will be used.
326 */
327#include <sys/sysctl.h>
328int doasyncfree = 1;
329#ifdef DEBUG
330SYSCTL_INT(_debug, 14, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
331#endif
332int
333ffs_reallocblks(ap)
334	struct vop_reallocblks_args /* {
335		struct vnode *a_vp;
336		struct cluster_save *a_buflist;
337	} */ *ap;
338{
339#if 1
340	return (ENOSPC);
341#else
342	struct fs *fs;
343	struct inode *ip;
344	struct vnode *vp;
345	struct buf *sbp, *ebp;
346	daddr_t *bap, *sbap, *ebap = 0;
347	struct cluster_save *buflist;
348	daddr_t start_lbn, end_lbn, soff, newblk, blkno;
349	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
350	int i, len, start_lvl, end_lvl, pref, ssize;
351	struct timeval tv;
352
353	vp = ap->a_vp;
354	ip = VTOI(vp);
355	fs = ip->i_fs;
356	if (fs->fs_contigsumsize <= 0)
357		return (ENOSPC);
358	buflist = ap->a_buflist;
359	len = buflist->bs_nchildren;
360	start_lbn = buflist->bs_children[0]->b_lblkno;
361	end_lbn = start_lbn + len - 1;
362#ifdef DIAGNOSTIC
363	for (i = 1; i < len; i++)
364		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
365			panic("ffs_reallocblks: non-cluster");
366#endif
367	/*
368	 * If the latest allocation is in a new cylinder group, assume that
369	 * the filesystem has decided to move and do not force it back to
370	 * the previous cylinder group.
371	 */
372	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
373	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
374		return (ENOSPC);
375	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
376	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
377		return (ENOSPC);
378	/*
379	 * Get the starting offset and block map for the first block.
380	 */
381	if (start_lvl == 0) {
382		sbap = &ip->i_db[0];
383		soff = start_lbn;
384	} else {
385		idp = &start_ap[start_lvl - 1];
386		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
387			brelse(sbp);
388			return (ENOSPC);
389		}
390		sbap = (daddr_t *)sbp->b_data;
391		soff = idp->in_off;
392	}
393	/*
394	 * Find the preferred location for the cluster.
395	 */
396	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
397	/*
398	 * If the block range spans two block maps, get the second map.
399	 */
400	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
401		ssize = len;
402	} else {
403#ifdef DIAGNOSTIC
404		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
405			panic("ffs_reallocblk: start == end");
406#endif
407		ssize = len - (idp->in_off + 1);
408		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
409			goto fail;
410		ebap = (daddr_t *)ebp->b_data;
411	}
412	/*
413	 * Search the block map looking for an allocation of the desired size.
414	 */
415	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
416	    len, (u_long (*)())ffs_clusteralloc)) == 0)
417		goto fail;
418	/*
419	 * We have found a new contiguous block.
420	 *
421	 * First we have to replace the old block pointers with the new
422	 * block pointers in the inode and indirect blocks associated
423	 * with the file.
424	 */
425	blkno = newblk;
426	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
427		if (i == ssize)
428			bap = ebap;
429#ifdef DIAGNOSTIC
430		if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap))
431			panic("ffs_reallocblks: alloc mismatch");
432#endif
433		*bap++ = blkno;
434	}
435	/*
436	 * Next we must write out the modified inode and indirect blocks.
437	 * For strict correctness, the writes should be synchronous since
438	 * the old block values may have been written to disk. In practise
439	 * they are almost never written, but if we are concerned about
440	 * strict correctness, the `doasyncfree' flag should be set to zero.
441	 *
442	 * The test on `doasyncfree' should be changed to test a flag
443	 * that shows whether the associated buffers and inodes have
444	 * been written. The flag should be set when the cluster is
445	 * started and cleared whenever the buffer or inode is flushed.
446	 * We can then check below to see if it is set, and do the
447	 * synchronous write only when it has been cleared.
448	 */
449	if (sbap != &ip->i_db[0]) {
450		if (doasyncfree)
451			bdwrite(sbp);
452		else
453			bwrite(sbp);
454	} else {
455		ip->i_flag |= IN_CHANGE | IN_UPDATE;
456		if (!doasyncfree) {
457			tv = time;
458			VOP_UPDATE(vp, &tv, &tv, 1);
459		}
460	}
461	if (ssize < len)
462		if (doasyncfree)
463			bdwrite(ebp);
464		else
465			bwrite(ebp);
466	/*
467	 * Last, free the old blocks and assign the new blocks to the buffers.
468	 */
469	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
470		ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
471		    fs->fs_bsize);
472		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
473	}
474	return (0);
475
476fail:
477	if (ssize < len)
478		brelse(ebp);
479	if (sbap != &ip->i_db[0])
480		brelse(sbp);
481	return (ENOSPC);
482#endif
483}
484
485/*
486 * Allocate an inode in the file system.
487 *
488 * If allocating a directory, use ffs_dirpref to select the inode.
489 * If allocating in a directory, the following hierarchy is followed:
490 *   1) allocate the preferred inode.
491 *   2) allocate an inode in the same cylinder group.
492 *   3) quadradically rehash into other cylinder groups, until an
493 *      available inode is located.
494 * If no inode preference is given the following heirarchy is used
495 * to allocate an inode:
496 *   1) allocate an inode in cylinder group 0.
497 *   2) quadradically rehash into other cylinder groups, until an
498 *      available inode is located.
499 */
500int
501ffs_valloc(ap)
502	struct vop_valloc_args /* {
503		struct vnode *a_pvp;
504		int a_mode;
505		struct ucred *a_cred;
506		struct vnode **a_vpp;
507	} */ *ap;
508{
509	register struct vnode *pvp = ap->a_pvp;
510	register struct inode *pip;
511	register struct fs *fs;
512	register struct inode *ip;
513	mode_t mode = ap->a_mode;
514	ino_t ino, ipref;
515	int cg, error;
516
517	*ap->a_vpp = NULL;
518	pip = VTOI(pvp);
519	fs = pip->i_fs;
520	if (fs->fs_cstotal.cs_nifree == 0)
521		goto noinodes;
522
523	if ((mode & IFMT) == IFDIR)
524		ipref = ffs_dirpref(fs);
525	else
526		ipref = pip->i_number;
527	if (ipref >= fs->fs_ncg * fs->fs_ipg)
528		ipref = 0;
529	cg = ino_to_cg(fs, ipref);
530	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
531	if (ino == 0)
532		goto noinodes;
533	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
534	if (error) {
535		VOP_VFREE(pvp, ino, mode);
536		return (error);
537	}
538	ip = VTOI(*ap->a_vpp);
539	if (ip->i_mode) {
540		printf("mode = 0%o, inum = %ld, fs = %s\n",
541		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
542		panic("ffs_valloc: dup alloc");
543	}
544	if (ip->i_blocks) {				/* XXX */
545		printf("free inode %s/%ld had %ld blocks\n",
546		    fs->fs_fsmnt, ino, ip->i_blocks);
547		ip->i_blocks = 0;
548	}
549	ip->i_flags = 0;
550	/*
551	 * Set up a new generation number for this inode.
552	 */
553	if (++nextgennumber < (u_long)time.tv_sec)
554		nextgennumber = time.tv_sec;
555	ip->i_gen = nextgennumber;
556	return (0);
557noinodes:
558	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
559	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
560	return (ENOSPC);
561}
562
563/*
564 * Find a cylinder to place a directory.
565 *
566 * The policy implemented by this algorithm is to select from
567 * among those cylinder groups with above the average number of
568 * free inodes, the one with the smallest number of directories.
569 */
570static ino_t
571ffs_dirpref(fs)
572	register struct fs *fs;
573{
574	int cg, minndir, mincg, avgifree;
575
576	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
577	minndir = fs->fs_ipg;
578	mincg = 0;
579	for (cg = 0; cg < fs->fs_ncg; cg++)
580		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
581		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
582			mincg = cg;
583			minndir = fs->fs_cs(fs, cg).cs_ndir;
584		}
585	return ((ino_t)(fs->fs_ipg * mincg));
586}
587
588/*
589 * Select the desired position for the next block in a file.  The file is
590 * logically divided into sections. The first section is composed of the
591 * direct blocks. Each additional section contains fs_maxbpg blocks.
592 *
593 * If no blocks have been allocated in the first section, the policy is to
594 * request a block in the same cylinder group as the inode that describes
595 * the file. If no blocks have been allocated in any other section, the
596 * policy is to place the section in a cylinder group with a greater than
597 * average number of free blocks.  An appropriate cylinder group is found
598 * by using a rotor that sweeps the cylinder groups. When a new group of
599 * blocks is needed, the sweep begins in the cylinder group following the
600 * cylinder group from which the previous allocation was made. The sweep
601 * continues until a cylinder group with greater than the average number
602 * of free blocks is found. If the allocation is for the first block in an
603 * indirect block, the information on the previous allocation is unavailable;
604 * here a best guess is made based upon the logical block number being
605 * allocated.
606 *
607 * If a section is already partially allocated, the policy is to
608 * contiguously allocate fs_maxcontig blocks.  The end of one of these
609 * contiguous blocks and the beginning of the next is physically separated
610 * so that the disk head will be in transit between them for at least
611 * fs_rotdelay milliseconds.  This is to allow time for the processor to
612 * schedule another I/O transfer.
613 */
614daddr_t
615ffs_blkpref(ip, lbn, indx, bap)
616	struct inode *ip;
617	daddr_t lbn;
618	int indx;
619	daddr_t *bap;
620{
621	register struct fs *fs;
622	register int cg;
623	int avgbfree, startcg;
624	daddr_t nextblk;
625
626	fs = ip->i_fs;
627	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
628		if (lbn < NDADDR) {
629			cg = ino_to_cg(fs, ip->i_number);
630			return (fs->fs_fpg * cg + fs->fs_frag);
631		}
632		/*
633		 * Find a cylinder with greater than average number of
634		 * unused data blocks.
635		 */
636		if (indx == 0 || bap[indx - 1] == 0)
637			startcg =
638			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
639		else
640			startcg = dtog(fs, bap[indx - 1]) + 1;
641		startcg %= fs->fs_ncg;
642		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
643		for (cg = startcg; cg < fs->fs_ncg; cg++)
644			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
645				fs->fs_cgrotor = cg;
646				return (fs->fs_fpg * cg + fs->fs_frag);
647			}
648		for (cg = 0; cg <= startcg; cg++)
649			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
650				fs->fs_cgrotor = cg;
651				return (fs->fs_fpg * cg + fs->fs_frag);
652			}
653		return (NULL);
654	}
655	/*
656	 * One or more previous blocks have been laid out. If less
657	 * than fs_maxcontig previous blocks are contiguous, the
658	 * next block is requested contiguously, otherwise it is
659	 * requested rotationally delayed by fs_rotdelay milliseconds.
660	 */
661	nextblk = bap[indx - 1] + fs->fs_frag;
662	if (fs->fs_rotdelay == 0 || indx < fs->fs_maxcontig ||
663	    bap[indx - fs->fs_maxcontig] +
664	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
665		return (nextblk);
666	/*
667	 * Here we convert ms of delay to frags as:
668	 * (frags) = (ms) * (rev/sec) * (sect/rev) /
669	 *	((sect/frag) * (ms/sec))
670	 * then round up to the next block.
671	 */
672	nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
673	    (NSPF(fs) * 1000), fs->fs_frag);
674	return (nextblk);
675}
676
677/*
678 * Implement the cylinder overflow algorithm.
679 *
680 * The policy implemented by this algorithm is:
681 *   1) allocate the block in its requested cylinder group.
682 *   2) quadradically rehash on the cylinder group number.
683 *   3) brute force search for a free block.
684 */
685/*VARARGS5*/
686static u_long
687ffs_hashalloc(ip, cg, pref, size, allocator)
688	struct inode *ip;
689	int cg;
690	long pref;
691	int size;	/* size for data blocks, mode for inodes */
692	u_long (*allocator)();
693{
694	register struct fs *fs;
695	long result;
696	int i, icg = cg;
697
698	fs = ip->i_fs;
699	/*
700	 * 1: preferred cylinder group
701	 */
702	result = (*allocator)(ip, cg, pref, size);
703	if (result)
704		return (result);
705	/*
706	 * 2: quadratic rehash
707	 */
708	for (i = 1; i < fs->fs_ncg; i *= 2) {
709		cg += i;
710		if (cg >= fs->fs_ncg)
711			cg -= fs->fs_ncg;
712		result = (*allocator)(ip, cg, 0, size);
713		if (result)
714			return (result);
715	}
716	/*
717	 * 3: brute force search
718	 * Note that we start at i == 2, since 0 was checked initially,
719	 * and 1 is always checked in the quadratic rehash.
720	 */
721	cg = (icg + 2) % fs->fs_ncg;
722	for (i = 2; i < fs->fs_ncg; i++) {
723		result = (*allocator)(ip, cg, 0, size);
724		if (result)
725			return (result);
726		cg++;
727		if (cg == fs->fs_ncg)
728			cg = 0;
729	}
730	return (NULL);
731}
732
733/*
734 * Determine whether a fragment can be extended.
735 *
736 * Check to see if the necessary fragments are available, and
737 * if they are, allocate them.
738 */
739static daddr_t
740ffs_fragextend(ip, cg, bprev, osize, nsize)
741	struct inode *ip;
742	int cg;
743	long bprev;
744	int osize, nsize;
745{
746	register struct fs *fs;
747	register struct cg *cgp;
748	struct buf *bp;
749	long bno;
750	int frags, bbase;
751	int i, error;
752
753	fs = ip->i_fs;
754	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
755		return (NULL);
756	frags = numfrags(fs, nsize);
757	bbase = fragnum(fs, bprev);
758	if (bbase > fragnum(fs, (bprev + frags - 1))) {
759		/* cannot extend across a block boundary */
760		return (NULL);
761	}
762	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
763		(int)fs->fs_cgsize, NOCRED, &bp);
764	if (error) {
765		brelse(bp);
766		return (NULL);
767	}
768	cgp = (struct cg *)bp->b_data;
769	if (!cg_chkmagic(cgp)) {
770		brelse(bp);
771		return (NULL);
772	}
773	cgp->cg_time = time.tv_sec;
774	bno = dtogd(fs, bprev);
775	for (i = numfrags(fs, osize); i < frags; i++)
776		if (isclr(cg_blksfree(cgp), bno + i)) {
777			brelse(bp);
778			return (NULL);
779		}
780	/*
781	 * the current fragment can be extended
782	 * deduct the count on fragment being extended into
783	 * increase the count on the remaining fragment (if any)
784	 * allocate the extended piece
785	 */
786	for (i = frags; i < fs->fs_frag - bbase; i++)
787		if (isclr(cg_blksfree(cgp), bno + i))
788			break;
789	cgp->cg_frsum[i - numfrags(fs, osize)]--;
790	if (i != frags)
791		cgp->cg_frsum[i - frags]++;
792	for (i = numfrags(fs, osize); i < frags; i++) {
793		clrbit(cg_blksfree(cgp), bno + i);
794		cgp->cg_cs.cs_nffree--;
795		fs->fs_cstotal.cs_nffree--;
796		fs->fs_cs(fs, cg).cs_nffree--;
797	}
798	fs->fs_fmod = 1;
799	bdwrite(bp);
800	return (bprev);
801}
802
803/*
804 * Determine whether a block can be allocated.
805 *
806 * Check to see if a block of the appropriate size is available,
807 * and if it is, allocate it.
808 */
809static daddr_t
810ffs_alloccg(ip, cg, bpref, size)
811	struct inode *ip;
812	int cg;
813	daddr_t bpref;
814	int size;
815{
816	register struct fs *fs;
817	register struct cg *cgp;
818	struct buf *bp;
819	register int i;
820	int error, bno, frags, allocsiz;
821
822	fs = ip->i_fs;
823	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
824		return (NULL);
825	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
826		(int)fs->fs_cgsize, NOCRED, &bp);
827	if (error) {
828		brelse(bp);
829		return (NULL);
830	}
831	cgp = (struct cg *)bp->b_data;
832	if (!cg_chkmagic(cgp) ||
833	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
834		brelse(bp);
835		return (NULL);
836	}
837	cgp->cg_time = time.tv_sec;
838	if (size == fs->fs_bsize) {
839		bno = ffs_alloccgblk(fs, cgp, bpref);
840		bdwrite(bp);
841		return (bno);
842	}
843	/*
844	 * check to see if any fragments are already available
845	 * allocsiz is the size which will be allocated, hacking
846	 * it down to a smaller size if necessary
847	 */
848	frags = numfrags(fs, size);
849	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
850		if (cgp->cg_frsum[allocsiz] != 0)
851			break;
852	if (allocsiz == fs->fs_frag) {
853		/*
854		 * no fragments were available, so a block will be
855		 * allocated, and hacked up
856		 */
857		if (cgp->cg_cs.cs_nbfree == 0) {
858			brelse(bp);
859			return (NULL);
860		}
861		bno = ffs_alloccgblk(fs, cgp, bpref);
862		bpref = dtogd(fs, bno);
863		for (i = frags; i < fs->fs_frag; i++)
864			setbit(cg_blksfree(cgp), bpref + i);
865		i = fs->fs_frag - frags;
866		cgp->cg_cs.cs_nffree += i;
867		fs->fs_cstotal.cs_nffree += i;
868		fs->fs_cs(fs, cg).cs_nffree += i;
869		fs->fs_fmod = 1;
870		cgp->cg_frsum[i]++;
871		bdwrite(bp);
872		return (bno);
873	}
874	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
875	if (bno < 0) {
876		brelse(bp);
877		return (NULL);
878	}
879	for (i = 0; i < frags; i++)
880		clrbit(cg_blksfree(cgp), bno + i);
881	cgp->cg_cs.cs_nffree -= frags;
882	fs->fs_cstotal.cs_nffree -= frags;
883	fs->fs_cs(fs, cg).cs_nffree -= frags;
884	fs->fs_fmod = 1;
885	cgp->cg_frsum[allocsiz]--;
886	if (frags != allocsiz)
887		cgp->cg_frsum[allocsiz - frags]++;
888	bdwrite(bp);
889	return (cg * fs->fs_fpg + bno);
890}
891
892/*
893 * Allocate a block in a cylinder group.
894 *
895 * This algorithm implements the following policy:
896 *   1) allocate the requested block.
897 *   2) allocate a rotationally optimal block in the same cylinder.
898 *   3) allocate the next available block on the block rotor for the
899 *      specified cylinder group.
900 * Note that this routine only allocates fs_bsize blocks; these
901 * blocks may be fragmented by the routine that allocates them.
902 */
903static daddr_t
904ffs_alloccgblk(fs, cgp, bpref)
905	register struct fs *fs;
906	register struct cg *cgp;
907	daddr_t bpref;
908{
909	daddr_t bno, blkno;
910	int cylno, pos, delta;
911	short *cylbp;
912	register int i;
913
914	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
915		bpref = cgp->cg_rotor;
916		goto norot;
917	}
918	bpref = blknum(fs, bpref);
919	bpref = dtogd(fs, bpref);
920	/*
921	 * if the requested block is available, use it
922	 */
923	if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
924		bno = bpref;
925		goto gotit;
926	}
927	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
928		/*
929		 * Block layout information is not available.
930		 * Leaving bpref unchanged means we take the
931		 * next available free block following the one
932		 * we just allocated. Hopefully this will at
933		 * least hit a track cache on drives of unknown
934		 * geometry (e.g. SCSI).
935		 */
936		goto norot;
937	}
938	/*
939	 * check for a block available on the same cylinder
940	 */
941	cylno = cbtocylno(fs, bpref);
942	if (cg_blktot(cgp)[cylno] == 0)
943		goto norot;
944	/*
945	 * check the summary information to see if a block is
946	 * available in the requested cylinder starting at the
947	 * requested rotational position and proceeding around.
948	 */
949	cylbp = cg_blks(fs, cgp, cylno);
950	pos = cbtorpos(fs, bpref);
951	for (i = pos; i < fs->fs_nrpos; i++)
952		if (cylbp[i] > 0)
953			break;
954	if (i == fs->fs_nrpos)
955		for (i = 0; i < pos; i++)
956			if (cylbp[i] > 0)
957				break;
958	if (cylbp[i] > 0) {
959		/*
960		 * found a rotational position, now find the actual
961		 * block. A panic if none is actually there.
962		 */
963		pos = cylno % fs->fs_cpc;
964		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
965		if (fs_postbl(fs, pos)[i] == -1) {
966			printf("pos = %d, i = %d, fs = %s\n",
967			    pos, i, fs->fs_fsmnt);
968			panic("ffs_alloccgblk: cyl groups corrupted");
969		}
970		for (i = fs_postbl(fs, pos)[i];; ) {
971			if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
972				bno = blkstofrags(fs, (bno + i));
973				goto gotit;
974			}
975			delta = fs_rotbl(fs)[i];
976			if (delta <= 0 ||
977			    delta + i > fragstoblks(fs, fs->fs_fpg))
978				break;
979			i += delta;
980		}
981		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
982		panic("ffs_alloccgblk: can't find blk in cyl");
983	}
984norot:
985	/*
986	 * no blocks in the requested cylinder, so take next
987	 * available one in this cylinder group.
988	 */
989	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
990	if (bno < 0)
991		return (NULL);
992	cgp->cg_rotor = bno;
993gotit:
994	blkno = fragstoblks(fs, bno);
995	ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
996	ffs_clusteracct(fs, cgp, blkno, -1);
997	cgp->cg_cs.cs_nbfree--;
998	fs->fs_cstotal.cs_nbfree--;
999	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1000	cylno = cbtocylno(fs, bno);
1001	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1002	cg_blktot(cgp)[cylno]--;
1003	fs->fs_fmod = 1;
1004	return (cgp->cg_cgx * fs->fs_fpg + bno);
1005}
1006
1007/*
1008 * Determine whether a cluster can be allocated.
1009 *
1010 * We do not currently check for optimal rotational layout if there
1011 * are multiple choices in the same cylinder group. Instead we just
1012 * take the first one that we find following bpref.
1013 */
1014static daddr_t
1015ffs_clusteralloc(ip, cg, bpref, len)
1016	struct inode *ip;
1017	int cg;
1018	daddr_t bpref;
1019	int len;
1020{
1021	register struct fs *fs;
1022	register struct cg *cgp;
1023	struct buf *bp;
1024	int i, run, bno, bit, map;
1025	u_char *mapp;
1026
1027	fs = ip->i_fs;
1028	if (fs->fs_cs(fs, cg).cs_nbfree < len)
1029		return (NULL);
1030	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1031	    NOCRED, &bp))
1032		goto fail;
1033	cgp = (struct cg *)bp->b_data;
1034	if (!cg_chkmagic(cgp))
1035		goto fail;
1036	/*
1037	 * Check to see if a cluster of the needed size (or bigger) is
1038	 * available in this cylinder group.
1039	 */
1040	for (i = len; i <= fs->fs_contigsumsize; i++)
1041		if (cg_clustersum(cgp)[i] > 0)
1042			break;
1043	if (i > fs->fs_contigsumsize)
1044		goto fail;
1045	/*
1046	 * Search the cluster map to find a big enough cluster.
1047	 * We take the first one that we find, even if it is larger
1048	 * than we need as we prefer to get one close to the previous
1049	 * block allocation. We do not search before the current
1050	 * preference point as we do not want to allocate a block
1051	 * that is allocated before the previous one (as we will
1052	 * then have to wait for another pass of the elevator
1053	 * algorithm before it will be read). We prefer to fail and
1054	 * be recalled to try an allocation in the next cylinder group.
1055	 */
1056	if (dtog(fs, bpref) != cg)
1057		bpref = 0;
1058	else
1059		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1060	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1061	map = *mapp++;
1062	bit = 1 << (bpref % NBBY);
1063	for (run = 0, i = bpref; i < cgp->cg_nclusterblks; i++) {
1064		if ((map & bit) == 0) {
1065			run = 0;
1066		} else {
1067			run++;
1068			if (run == len)
1069				break;
1070		}
1071		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1072			bit <<= 1;
1073		} else {
1074			map = *mapp++;
1075			bit = 1;
1076		}
1077	}
1078	if (i == cgp->cg_nclusterblks)
1079		goto fail;
1080	/*
1081	 * Allocate the cluster that we have found.
1082	 */
1083	bno = cg * fs->fs_fpg + blkstofrags(fs, i - run + 1);
1084	len = blkstofrags(fs, len);
1085	for (i = 0; i < len; i += fs->fs_frag)
1086		if (ffs_alloccgblk(fs, cgp, bno + i) != bno + i)
1087			panic("ffs_clusteralloc: lost block");
1088	bdwrite(bp);
1089	return (bno);
1090
1091fail:
1092	brelse(bp);
1093	return (0);
1094}
1095
1096/*
1097 * Determine whether an inode can be allocated.
1098 *
1099 * Check to see if an inode is available, and if it is,
1100 * allocate it using the following policy:
1101 *   1) allocate the requested inode.
1102 *   2) allocate the next available inode after the requested
1103 *      inode in the specified cylinder group.
1104 */
1105static ino_t
1106ffs_nodealloccg(ip, cg, ipref, mode)
1107	struct inode *ip;
1108	int cg;
1109	daddr_t ipref;
1110	int mode;
1111{
1112	register struct fs *fs;
1113	register struct cg *cgp;
1114	struct buf *bp;
1115	int error, start, len, loc, map, i;
1116
1117	fs = ip->i_fs;
1118	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1119		return (NULL);
1120	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1121		(int)fs->fs_cgsize, NOCRED, &bp);
1122	if (error) {
1123		brelse(bp);
1124		return (NULL);
1125	}
1126	cgp = (struct cg *)bp->b_data;
1127	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1128		brelse(bp);
1129		return (NULL);
1130	}
1131	cgp->cg_time = time.tv_sec;
1132	if (ipref) {
1133		ipref %= fs->fs_ipg;
1134		if (isclr(cg_inosused(cgp), ipref))
1135			goto gotit;
1136	}
1137	start = cgp->cg_irotor / NBBY;
1138	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1139	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
1140	if (loc == 0) {
1141		len = start + 1;
1142		start = 0;
1143		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
1144		if (loc == 0) {
1145			printf("cg = %d, irotor = %ld, fs = %s\n",
1146			    cg, cgp->cg_irotor, fs->fs_fsmnt);
1147			panic("ffs_nodealloccg: map corrupted");
1148			/* NOTREACHED */
1149		}
1150	}
1151	i = start + len - loc;
1152	map = cg_inosused(cgp)[i];
1153	ipref = i * NBBY;
1154	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1155		if ((map & i) == 0) {
1156			cgp->cg_irotor = ipref;
1157			goto gotit;
1158		}
1159	}
1160	printf("fs = %s\n", fs->fs_fsmnt);
1161	panic("ffs_nodealloccg: block not in map");
1162	/* NOTREACHED */
1163gotit:
1164	setbit(cg_inosused(cgp), ipref);
1165	cgp->cg_cs.cs_nifree--;
1166	fs->fs_cstotal.cs_nifree--;
1167	fs->fs_cs(fs, cg).cs_nifree--;
1168	fs->fs_fmod = 1;
1169	if ((mode & IFMT) == IFDIR) {
1170		cgp->cg_cs.cs_ndir++;
1171		fs->fs_cstotal.cs_ndir++;
1172		fs->fs_cs(fs, cg).cs_ndir++;
1173	}
1174	bdwrite(bp);
1175	return (cg * fs->fs_ipg + ipref);
1176}
1177
1178/*
1179 * Free a block or fragment.
1180 *
1181 * The specified block or fragment is placed back in the
1182 * free map. If a fragment is deallocated, a possible
1183 * block reassembly is checked.
1184 */
1185void
1186ffs_blkfree(ip, bno, size)
1187	register struct inode *ip;
1188	daddr_t bno;
1189	long size;
1190{
1191	register struct fs *fs;
1192	register struct cg *cgp;
1193	struct buf *bp;
1194	daddr_t blkno;
1195	int i, error, cg, blk, frags, bbase;
1196
1197	fs = ip->i_fs;
1198	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1199		printf("dev = 0x%lx, bsize = %ld, size = %ld, fs = %s\n",
1200		    (u_long)ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1201		panic("blkfree: bad size");
1202	}
1203	cg = dtog(fs, bno);
1204	if ((u_int)bno >= fs->fs_size) {
1205		printf("bad block %ld, ino %ld\n", bno, ip->i_number);
1206		ffs_fserr(fs, ip->i_uid, "bad block");
1207		return;
1208	}
1209	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1210		(int)fs->fs_cgsize, NOCRED, &bp);
1211	if (error) {
1212		brelse(bp);
1213		return;
1214	}
1215	cgp = (struct cg *)bp->b_data;
1216	if (!cg_chkmagic(cgp)) {
1217		brelse(bp);
1218		return;
1219	}
1220	cgp->cg_time = time.tv_sec;
1221	bno = dtogd(fs, bno);
1222	if (size == fs->fs_bsize) {
1223		blkno = fragstoblks(fs, bno);
1224		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1225			printf("dev = 0x%lx, block = %ld, fs = %s\n",
1226			    (u_long) ip->i_dev, bno, fs->fs_fsmnt);
1227			panic("blkfree: freeing free block");
1228		}
1229		ffs_setblock(fs, cg_blksfree(cgp), blkno);
1230		ffs_clusteracct(fs, cgp, blkno, 1);
1231		cgp->cg_cs.cs_nbfree++;
1232		fs->fs_cstotal.cs_nbfree++;
1233		fs->fs_cs(fs, cg).cs_nbfree++;
1234		i = cbtocylno(fs, bno);
1235		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1236		cg_blktot(cgp)[i]++;
1237	} else {
1238		bbase = bno - fragnum(fs, bno);
1239		/*
1240		 * decrement the counts associated with the old frags
1241		 */
1242		blk = blkmap(fs, cg_blksfree(cgp), bbase);
1243		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1244		/*
1245		 * deallocate the fragment
1246		 */
1247		frags = numfrags(fs, size);
1248		for (i = 0; i < frags; i++) {
1249			if (isset(cg_blksfree(cgp), bno + i)) {
1250				printf("dev = 0x%lx, block = %ld, fs = %s\n",
1251				    (u_long) ip->i_dev, bno + i, fs->fs_fsmnt);
1252				panic("blkfree: freeing free frag");
1253			}
1254			setbit(cg_blksfree(cgp), bno + i);
1255		}
1256		cgp->cg_cs.cs_nffree += i;
1257		fs->fs_cstotal.cs_nffree += i;
1258		fs->fs_cs(fs, cg).cs_nffree += i;
1259		/*
1260		 * add back in counts associated with the new frags
1261		 */
1262		blk = blkmap(fs, cg_blksfree(cgp), bbase);
1263		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1264		/*
1265		 * if a complete block has been reassembled, account for it
1266		 */
1267		blkno = fragstoblks(fs, bbase);
1268		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1269			cgp->cg_cs.cs_nffree -= fs->fs_frag;
1270			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1271			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1272			ffs_clusteracct(fs, cgp, blkno, 1);
1273			cgp->cg_cs.cs_nbfree++;
1274			fs->fs_cstotal.cs_nbfree++;
1275			fs->fs_cs(fs, cg).cs_nbfree++;
1276			i = cbtocylno(fs, bbase);
1277			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1278			cg_blktot(cgp)[i]++;
1279		}
1280	}
1281	fs->fs_fmod = 1;
1282	bdwrite(bp);
1283}
1284
1285/*
1286 * Free an inode.
1287 *
1288 * The specified inode is placed back in the free map.
1289 */
1290int
1291ffs_vfree(ap)
1292	struct vop_vfree_args /* {
1293		struct vnode *a_pvp;
1294		ino_t a_ino;
1295		int a_mode;
1296	} */ *ap;
1297{
1298	register struct fs *fs;
1299	register struct cg *cgp;
1300	register struct inode *pip;
1301	ino_t ino = ap->a_ino;
1302	struct buf *bp;
1303	int error, cg;
1304
1305	pip = VTOI(ap->a_pvp);
1306	fs = pip->i_fs;
1307	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1308		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s",
1309		    pip->i_dev, ino, fs->fs_fsmnt);
1310	cg = ino_to_cg(fs, ino);
1311	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1312		(int)fs->fs_cgsize, NOCRED, &bp);
1313	if (error) {
1314		brelse(bp);
1315		return (0);
1316	}
1317	cgp = (struct cg *)bp->b_data;
1318	if (!cg_chkmagic(cgp)) {
1319		brelse(bp);
1320		return (0);
1321	}
1322	cgp->cg_time = time.tv_sec;
1323	ino %= fs->fs_ipg;
1324	if (isclr(cg_inosused(cgp), ino)) {
1325		printf("dev = 0x%lx, ino = %ld, fs = %s\n",
1326		    (u_long)pip->i_dev, ino, fs->fs_fsmnt);
1327		if (fs->fs_ronly == 0)
1328			panic("ifree: freeing free inode");
1329	}
1330	clrbit(cg_inosused(cgp), ino);
1331	if (ino < cgp->cg_irotor)
1332		cgp->cg_irotor = ino;
1333	cgp->cg_cs.cs_nifree++;
1334	fs->fs_cstotal.cs_nifree++;
1335	fs->fs_cs(fs, cg).cs_nifree++;
1336	if ((ap->a_mode & IFMT) == IFDIR) {
1337		cgp->cg_cs.cs_ndir--;
1338		fs->fs_cstotal.cs_ndir--;
1339		fs->fs_cs(fs, cg).cs_ndir--;
1340	}
1341	fs->fs_fmod = 1;
1342	bdwrite(bp);
1343	return (0);
1344}
1345
1346/*
1347 * Find a block of the specified size in the specified cylinder group.
1348 *
1349 * It is a panic if a request is made to find a block if none are
1350 * available.
1351 */
1352static daddr_t
1353ffs_mapsearch(fs, cgp, bpref, allocsiz)
1354	register struct fs *fs;
1355	register struct cg *cgp;
1356	daddr_t bpref;
1357	int allocsiz;
1358{
1359	daddr_t bno;
1360	int start, len, loc, i;
1361	int blk, field, subfield, pos;
1362
1363	/*
1364	 * find the fragment by searching through the free block
1365	 * map for an appropriate bit pattern
1366	 */
1367	if (bpref)
1368		start = dtogd(fs, bpref) / NBBY;
1369	else
1370		start = cgp->cg_frotor / NBBY;
1371	len = howmany(fs->fs_fpg, NBBY) - start;
1372	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
1373		(u_char *)fragtbl[fs->fs_frag],
1374		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1375	if (loc == 0) {
1376		len = start + 1;
1377		start = 0;
1378		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
1379			(u_char *)fragtbl[fs->fs_frag],
1380			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1381		if (loc == 0) {
1382			printf("start = %d, len = %d, fs = %s\n",
1383			    start, len, fs->fs_fsmnt);
1384			panic("ffs_alloccg: map corrupted");
1385			/* NOTREACHED */
1386		}
1387	}
1388	bno = (start + len - loc) * NBBY;
1389	cgp->cg_frotor = bno;
1390	/*
1391	 * found the byte in the map
1392	 * sift through the bits to find the selected frag
1393	 */
1394	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1395		blk = blkmap(fs, cg_blksfree(cgp), bno);
1396		blk <<= 1;
1397		field = around[allocsiz];
1398		subfield = inside[allocsiz];
1399		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1400			if ((blk & field) == subfield)
1401				return (bno + pos);
1402			field <<= 1;
1403			subfield <<= 1;
1404		}
1405	}
1406	printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
1407	panic("ffs_alloccg: block not in map");
1408	return (-1);
1409}
1410
1411/*
1412 * Update the cluster map because of an allocation or free.
1413 *
1414 * Cnt == 1 means free; cnt == -1 means allocating.
1415 */
1416void
1417ffs_clusteracct(fs, cgp, blkno, cnt)
1418	struct fs *fs;
1419	struct cg *cgp;
1420	daddr_t blkno;
1421	int cnt;
1422{
1423	long *sump;
1424	u_char *freemapp, *mapp;
1425	int i, start, end, forw, back, map, bit;
1426
1427	if (fs->fs_contigsumsize <= 0)
1428		return;
1429	freemapp = cg_clustersfree(cgp);
1430	sump = cg_clustersum(cgp);
1431	/*
1432	 * Allocate or clear the actual block.
1433	 */
1434	if (cnt > 0)
1435		setbit(freemapp, blkno);
1436	else
1437		clrbit(freemapp, blkno);
1438	/*
1439	 * Find the size of the cluster going forward.
1440	 */
1441	start = blkno + 1;
1442	end = start + fs->fs_contigsumsize;
1443	if (end >= cgp->cg_nclusterblks)
1444		end = cgp->cg_nclusterblks;
1445	mapp = &freemapp[start / NBBY];
1446	map = *mapp++;
1447	bit = 1 << (start % NBBY);
1448	for (i = start; i < end; i++) {
1449		if ((map & bit) == 0)
1450			break;
1451		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1452			bit <<= 1;
1453		} else {
1454			map = *mapp++;
1455			bit = 1;
1456		}
1457	}
1458	forw = i - start;
1459	/*
1460	 * Find the size of the cluster going backward.
1461	 */
1462	start = blkno - 1;
1463	end = start - fs->fs_contigsumsize;
1464	if (end < 0)
1465		end = -1;
1466	mapp = &freemapp[start / NBBY];
1467	map = *mapp--;
1468	bit = 1 << (start % NBBY);
1469	for (i = start; i > end; i--) {
1470		if ((map & bit) == 0)
1471			break;
1472		if ((i & (NBBY - 1)) != 0) {
1473			bit >>= 1;
1474		} else {
1475			map = *mapp--;
1476			bit = 1 << (NBBY - 1);
1477		}
1478	}
1479	back = start - i;
1480	/*
1481	 * Account for old cluster and the possibly new forward and
1482	 * back clusters.
1483	 */
1484	i = back + forw + 1;
1485	if (i > fs->fs_contigsumsize)
1486		i = fs->fs_contigsumsize;
1487	sump[i] += cnt;
1488	if (back > 0)
1489		sump[back] -= cnt;
1490	if (forw > 0)
1491		sump[forw] -= cnt;
1492}
1493
1494/*
1495 * Fserr prints the name of a file system with an error diagnostic.
1496 *
1497 * The form of the error message is:
1498 *	fs: error message
1499 */
1500static void
1501ffs_fserr(fs, uid, cp)
1502	struct fs *fs;
1503	u_int uid;
1504	char *cp;
1505{
1506
1507	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1508}
1509