queue.h revision 29683
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)queue.h	8.5 (Berkeley) 8/20/94
34 * $Id: queue.h,v 1.17 1997/08/25 20:21:54 phk Exp $
35 */
36
37#ifndef _SYS_QUEUE_H_
38#define	_SYS_QUEUE_H_
39
40/*
41 * This file defines five types of data structures: singly-linked lists,
42 * slingly-linked tail queues, lists, tail queues, and circular queues.
43 *
44 * A singly-linked list is headed by a single forward pointer. The elements
45 * are singly linked for minimum space and pointer manipulation overhead at
46 * the expense of O(n) removal for arbitrary elements. New elements can be
47 * added to the list after an existing element or at the head of the list.
48 * Elements being removed from the head of the list should use the explicit
49 * macro for this purpose for optimum efficiency. A singly-linked list may
50 * only be traversed in the forward direction.  Singly-linked lists are ideal
51 * for applications with large datasets and few or no removals or for
52 * implementing a LIFO queue.
53 *
54 * A singly-linked tail queue is headed by a pair of pointers, one to the
55 * head of the list and the other to the tail of the list. The elements are
56 * singly linked for minimum space and pointer manipulation overhead at the
57 * expense of O(n) removal for arbitrary elements. New elements can be added
58 * to the list after an existing element, at the head of the list, or at the
59 * end of the list. Elements being removed from the head of the tail queue
60 * should use the explicit macro for this purpose for optimum efficiency.
61 * A singly-linked tail queue may only be traversed in the forward direction.
62 * Singly-linked tail queues are ideal for applications with large datasets
63 * and few or no removals or for implementing a FIFO queue.
64 *
65 * A list is headed by a single forward pointer (or an array of forward
66 * pointers for a hash table header). The elements are doubly linked
67 * so that an arbitrary element can be removed without a need to
68 * traverse the list. New elements can be added to the list before
69 * or after an existing element or at the head of the list. A list
70 * may only be traversed in the forward direction.
71 *
72 * A tail queue is headed by a pair of pointers, one to the head of the
73 * list and the other to the tail of the list. The elements are doubly
74 * linked so that an arbitrary element can be removed without a need to
75 * traverse the list. New elements can be added to the list before or
76 * after an existing element, at the head of the list, or at the end of
77 * the list. A tail queue may only be traversed in the forward direction.
78 *
79 * A circle queue is headed by a pair of pointers, one to the head of the
80 * list and the other to the tail of the list. The elements are doubly
81 * linked so that an arbitrary element can be removed without a need to
82 * traverse the list. New elements can be added to the list before or after
83 * an existing element, at the head of the list, or at the end of the list.
84 * A circle queue may be traversed in either direction, but has a more
85 * complex end of list detection.
86 *
87 * For details on the use of these macros, see the queue(3) manual page.
88 *
89 *
90 *			SLIST	LIST	STAILQ	TAILQ	CIRCLEQ
91 * _HEAD		+	+	+	+	+
92 * _ENTRY		+	+	+	+	+
93 * _INIT		+	+	+	+	+
94 * _EMPTY		+	+	+	+	+
95 * _FIRST		+	+	-	+	+
96 * _NEXT		+	+	-	+	+
97 * _PREV		-	-	-	+	+
98 * _LAST		-	-	-	+	+
99 * _FOREACH		+	+	-	+	-
100 * _INSERT_HEAD		+	+	+	+	+
101 * _INSERT_BEFORE	-	+	-	+	+
102 * _INSERT_AFTER	+	+	+	+	+
103 * _INSERT_TAIL		-	-	+	+	+
104 * _REMOVE_HEAD		+	-	+	-	-
105 * _REMOVE		+	+	+	+	+
106 *
107 */
108
109/*
110 * Singly-linked List definitions.
111 */
112#define SLIST_HEAD(name, type)						\
113struct name {								\
114	struct type *slh_first;	/* first element */			\
115}
116
117#define SLIST_ENTRY(type)						\
118struct {								\
119	struct type *sle_next;	/* next element */			\
120}
121
122/*
123 * Singly-linked List functions.
124 */
125#define	SLIST_EMPTY(head)	((head)->slh_first == NULL)
126
127#define	SLIST_FIRST(head)	((head)->slh_first)
128
129#define SLIST_FOREACH(var, head, field)					\
130	for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)
131
132#define SLIST_INIT(head) {						\
133	(head)->slh_first = NULL;					\
134}
135
136#define SLIST_INSERT_AFTER(slistelm, elm, field) {			\
137	(elm)->field.sle_next = (slistelm)->field.sle_next;		\
138	(slistelm)->field.sle_next = (elm);				\
139}
140
141#define SLIST_INSERT_HEAD(head, elm, field) {				\
142	(elm)->field.sle_next = (head)->slh_first;			\
143	(head)->slh_first = (elm);					\
144}
145
146#define SLIST_NEXT(elm, field)	((elm)->field.sle_next)
147
148#define SLIST_REMOVE_HEAD(head, field) {				\
149	(head)->slh_first = (head)->slh_first->field.sle_next;		\
150}
151
152#define SLIST_REMOVE(head, elm, type, field) {				\
153	if ((head)->slh_first == (elm)) {				\
154		SLIST_REMOVE_HEAD((head), field);			\
155	}								\
156	else {								\
157		struct type *curelm = (head)->slh_first;		\
158		while( curelm->field.sle_next != (elm) )		\
159			curelm = curelm->field.sle_next;		\
160		curelm->field.sle_next =				\
161		    curelm->field.sle_next->field.sle_next;		\
162	}								\
163}
164
165/*
166 * Singly-linked Tail queue definitions.
167 */
168#define STAILQ_HEAD(name, type)						\
169struct name {								\
170	struct type *stqh_first;/* first element */			\
171	struct type **stqh_last;/* addr of last next element */		\
172}
173
174#define STAILQ_ENTRY(type)						\
175struct {								\
176	struct type *stqe_next;	/* next element */			\
177}
178
179/*
180 * Singly-linked Tail queue functions.
181 */
182#define STAILQ_EMPTY(head) ((head)->stqh_first == NULL)
183
184#define	STAILQ_INIT(head) {						\
185	(head)->stqh_first = NULL;					\
186	(head)->stqh_last = &(head)->stqh_first;			\
187}
188
189#define STAILQ_FIRST(head)	((head)->stqh_first)
190#define STAILQ_LAST(head)	(*(head)->stqh_last)
191
192#define STAILQ_INSERT_HEAD(head, elm, field) {				\
193	if (((elm)->field.stqe_next = (head)->stqh_first) == NULL)	\
194		(head)->stqh_last = &(elm)->field.stqe_next;		\
195	(head)->stqh_first = (elm);					\
196}
197
198#define STAILQ_INSERT_TAIL(head, elm, field) {				\
199	(elm)->field.stqe_next = NULL;					\
200	*(head)->stqh_last = (elm);					\
201	(head)->stqh_last = &(elm)->field.stqe_next;			\
202}
203
204#define STAILQ_INSERT_AFTER(head, tqelm, elm, field) {			\
205	if (((elm)->field.stqe_next = (tqelm)->field.stqe_next) == NULL)\
206		(head)->stqh_last = &(elm)->field.stqe_next;		\
207	(tqelm)->field.stqe_next = (elm);				\
208}
209
210#define STAILQ_NEXT(elm, field)	((elm)->field.stqe_next)
211
212#define STAILQ_REMOVE_HEAD(head, field) {				\
213	if (((head)->stqh_first =					\
214	     (head)->stqh_first->field.stqe_next) == NULL)		\
215		(head)->stqh_last = &(head)->stqh_first;		\
216}
217
218#define STAILQ_REMOVE(head, elm, type, field) {				\
219	if ((head)->stqh_first == (elm)) {				\
220		STAILQ_REMOVE_HEAD(head, field);			\
221	}								\
222	else {								\
223		struct type *curelm = (head)->stqh_first;		\
224		while( curelm->field.stqe_next != (elm) )		\
225			curelm = curelm->field.stqe_next;		\
226		if((curelm->field.stqe_next =				\
227		    curelm->field.stqe_next->field.stqe_next) == NULL)	\
228			(head)->stqh_last = &(curelm)->field.stqe_next;	\
229	}								\
230}
231
232/*
233 * List definitions.
234 */
235#define LIST_HEAD(name, type)						\
236struct name {								\
237	struct type *lh_first;	/* first element */			\
238}
239
240#define LIST_ENTRY(type)						\
241struct {								\
242	struct type *le_next;	/* next element */			\
243	struct type **le_prev;	/* address of previous next element */	\
244}
245
246/*
247 * List functions.
248 */
249
250#define	LIST_EMPTY(head) ((head)->lh_first == NULL)
251
252#define LIST_FIRST(head)	((head)->lh_first)
253
254#define LIST_FOREACH(var, head, field)					\
255	for((var) = (head)->lh_first; (var); (var) = (var)->field.le_next)
256
257#define	LIST_INIT(head) {						\
258	(head)->lh_first = NULL;					\
259}
260
261#define LIST_INSERT_AFTER(listelm, elm, field) {			\
262	if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)	\
263		(listelm)->field.le_next->field.le_prev =		\
264		    &(elm)->field.le_next;				\
265	(listelm)->field.le_next = (elm);				\
266	(elm)->field.le_prev = &(listelm)->field.le_next;		\
267}
268
269#define LIST_INSERT_BEFORE(listelm, elm, field) {			\
270	(elm)->field.le_prev = (listelm)->field.le_prev;		\
271	(elm)->field.le_next = (listelm);				\
272	*(listelm)->field.le_prev = (elm);				\
273	(listelm)->field.le_prev = &(elm)->field.le_next;		\
274}
275
276#define LIST_INSERT_HEAD(head, elm, field) {				\
277	if (((elm)->field.le_next = (head)->lh_first) != NULL)		\
278		(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
279	(head)->lh_first = (elm);					\
280	(elm)->field.le_prev = &(head)->lh_first;			\
281}
282
283#define LIST_NEXT(elm, field)	((elm)->field.le_next)
284
285#define LIST_REMOVE(elm, field) {					\
286	if ((elm)->field.le_next != NULL)				\
287		(elm)->field.le_next->field.le_prev = 			\
288		    (elm)->field.le_prev;				\
289	*(elm)->field.le_prev = (elm)->field.le_next;			\
290}
291
292/*
293 * Tail queue definitions.
294 */
295#define TAILQ_HEAD(name, type)						\
296struct name {								\
297	struct type *tqh_first;	/* first element */			\
298	struct type **tqh_last;	/* addr of last next element */		\
299}
300
301#define TAILQ_HEAD_INITIALIZER(head)					\
302	{ NULL, &(head).tqh_first }
303
304#define TAILQ_ENTRY(type)						\
305struct {								\
306	struct type *tqe_next;	/* next element */			\
307	struct type **tqe_prev;	/* address of previous next element */	\
308}
309
310/*
311 * Tail queue functions.
312 */
313#define	TAILQ_EMPTY(head) ((head)->tqh_first == NULL)
314
315#define TAILQ_FOREACH(var, head, field)					\
316	for (var = TAILQ_FIRST(head); var; var = TAILQ_NEXT(var, field))
317
318#define	TAILQ_FIRST(head) ((head)->tqh_first)
319
320#define	TAILQ_LAST(head) ((head)->tqh_last)
321
322#define	TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
323
324#define TAILQ_PREV(elm, field) ((elm)->field.tqe_prev)
325
326#define	TAILQ_INIT(head) {						\
327	(head)->tqh_first = NULL;					\
328	(head)->tqh_last = &(head)->tqh_first;				\
329}
330
331#define TAILQ_INSERT_HEAD(head, elm, field) {				\
332	if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)	\
333		(head)->tqh_first->field.tqe_prev =			\
334		    &(elm)->field.tqe_next;				\
335	else								\
336		(head)->tqh_last = &(elm)->field.tqe_next;		\
337	(head)->tqh_first = (elm);					\
338	(elm)->field.tqe_prev = &(head)->tqh_first;			\
339}
340
341#define TAILQ_INSERT_TAIL(head, elm, field) {				\
342	(elm)->field.tqe_next = NULL;					\
343	(elm)->field.tqe_prev = (head)->tqh_last;			\
344	*(head)->tqh_last = (elm);					\
345	(head)->tqh_last = &(elm)->field.tqe_next;			\
346}
347
348#define TAILQ_INSERT_AFTER(head, listelm, elm, field) {			\
349	if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
350		(elm)->field.tqe_next->field.tqe_prev = 		\
351		    &(elm)->field.tqe_next;				\
352	else								\
353		(head)->tqh_last = &(elm)->field.tqe_next;		\
354	(listelm)->field.tqe_next = (elm);				\
355	(elm)->field.tqe_prev = &(listelm)->field.tqe_next;		\
356}
357
358#define TAILQ_INSERT_BEFORE(listelm, elm, field) {			\
359	(elm)->field.tqe_prev = (listelm)->field.tqe_prev;		\
360	(elm)->field.tqe_next = (listelm);				\
361	*(listelm)->field.tqe_prev = (elm);				\
362	(listelm)->field.tqe_prev = &(elm)->field.tqe_next;		\
363}
364
365#define TAILQ_REMOVE(head, elm, field) {				\
366	if (((elm)->field.tqe_next) != NULL)				\
367		(elm)->field.tqe_next->field.tqe_prev = 		\
368		    (elm)->field.tqe_prev;				\
369	else								\
370		(head)->tqh_last = (elm)->field.tqe_prev;		\
371	*(elm)->field.tqe_prev = (elm)->field.tqe_next;			\
372}
373
374/*
375 * Circular queue definitions.
376 */
377#define CIRCLEQ_HEAD(name, type)					\
378struct name {								\
379	struct type *cqh_first;		/* first element */		\
380	struct type *cqh_last;		/* last element */		\
381}
382
383#define CIRCLEQ_ENTRY(type)						\
384struct {								\
385	struct type *cqe_next;		/* next element */		\
386	struct type *cqe_prev;		/* previous element */		\
387}
388
389/*
390 * Circular queue functions.
391 */
392#define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (head)->cqh_last)
393
394#define CIRCLEQ_FIRST(head) ((head)->cqh_first)
395
396#define CIRCLEQ_FOREACH(var, head, field)				\
397	for((var) = (head)->cqh_first; (var); (var) = (var)->field.cqe_next)
398
399#define	CIRCLEQ_INIT(head) {						\
400	(head)->cqh_first = (void *)(head);				\
401	(head)->cqh_last = (void *)(head);				\
402}
403
404#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) {		\
405	(elm)->field.cqe_next = (listelm)->field.cqe_next;		\
406	(elm)->field.cqe_prev = (listelm);				\
407	if ((listelm)->field.cqe_next == (void *)(head))		\
408		(head)->cqh_last = (elm);				\
409	else								\
410		(listelm)->field.cqe_next->field.cqe_prev = (elm);	\
411	(listelm)->field.cqe_next = (elm);				\
412}
413
414#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) {		\
415	(elm)->field.cqe_next = (listelm);				\
416	(elm)->field.cqe_prev = (listelm)->field.cqe_prev;		\
417	if ((listelm)->field.cqe_prev == (void *)(head))		\
418		(head)->cqh_first = (elm);				\
419	else								\
420		(listelm)->field.cqe_prev->field.cqe_next = (elm);	\
421	(listelm)->field.cqe_prev = (elm);				\
422}
423
424#define CIRCLEQ_INSERT_HEAD(head, elm, field) {				\
425	(elm)->field.cqe_next = (head)->cqh_first;			\
426	(elm)->field.cqe_prev = (void *)(head);				\
427	if ((head)->cqh_last == (void *)(head))				\
428		(head)->cqh_last = (elm);				\
429	else								\
430		(head)->cqh_first->field.cqe_prev = (elm);		\
431	(head)->cqh_first = (elm);					\
432}
433
434#define CIRCLEQ_INSERT_TAIL(head, elm, field) {				\
435	(elm)->field.cqe_next = (void *)(head);				\
436	(elm)->field.cqe_prev = (head)->cqh_last;			\
437	if ((head)->cqh_first == (void *)(head))			\
438		(head)->cqh_first = (elm);				\
439	else								\
440		(head)->cqh_last->field.cqe_next = (elm);		\
441	(head)->cqh_last = (elm);					\
442}
443
444#define CIRCLEQ_LAST(head) ((head)->cqh_last)
445
446#define CIRCLEQ_NEXT(elm,field) ((elm)->field.cqe_next)
447
448#define CIRCLEQ_PREV(elm,field) ((elm)->field.cqe_prev)
449
450#define	CIRCLEQ_REMOVE(head, elm, field) {				\
451	if ((elm)->field.cqe_next == (void *)(head))			\
452		(head)->cqh_last = (elm)->field.cqe_prev;		\
453	else								\
454		(elm)->field.cqe_next->field.cqe_prev =			\
455		    (elm)->field.cqe_prev;				\
456	if ((elm)->field.cqe_prev == (void *)(head))			\
457		(head)->cqh_first = (elm)->field.cqe_next;		\
458	else								\
459		(elm)->field.cqe_prev->field.cqe_next =			\
460		    (elm)->field.cqe_next;				\
461}
462
463#ifdef KERNEL
464
465/*
466 * XXX insque() and remque() are an old way of handling certain queues.
467 * They bogusly assumes that all queue heads look alike.
468 */
469
470struct quehead {
471	struct quehead *qh_link;
472	struct quehead *qh_rlink;
473};
474
475#ifdef	__GNUC__
476
477static __inline void
478insque(void *a, void *b)
479{
480	struct quehead *element = a, *head = b;
481
482	element->qh_link = head->qh_link;
483	element->qh_rlink = head;
484	head->qh_link = element;
485	element->qh_link->qh_rlink = element;
486}
487
488static __inline void
489remque(void *a)
490{
491	struct quehead *element = a;
492
493	element->qh_link->qh_rlink = element->qh_rlink;
494	element->qh_rlink->qh_link = element->qh_link;
495	element->qh_rlink = 0;
496}
497
498#else /* !__GNUC__ */
499
500void	insque __P((void *a, void *b));
501void	remque __P((void *a));
502
503#endif /* __GNUC__ */
504
505#endif /* KERNEL */
506
507#endif /* !_SYS_QUEUE_H_ */
508