queue.h revision 24935
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)queue.h	8.5 (Berkeley) 8/20/94
34 * $Id: queue.h,v 1.13 1997/02/22 09:45:44 peter Exp $
35 */
36
37#ifndef _SYS_QUEUE_H_
38#define	_SYS_QUEUE_H_
39
40/*
41 * This file defines five types of data structures: singly-linked lists,
42 * slingly-linked tail queues, lists, tail queues, and circular queues.
43 *
44 * A singly-linked list is headed by a single forward pointer. The elements
45 * are singly linked for minimum space and pointer manipulation overhead at
46 * the expense of O(n) removal for arbitrary elements. New elements can be
47 * added to the list after an existing element or at the head of the list.
48 * Elements being removed from the head of the list should use the explicit
49 * macro for this purpose for optimum efficiency. A singly-linked list may
50 * only be traversed in the forward direction.  Singly-linked lists are ideal
51 * for applications with large datasets and few or no removals or for
52 * implementing a LIFO queue.
53 *
54 * A singly-linked tail queue is headed by a pair of pointers, one to the
55 * head of the list and the other to the tail of the list. The elements are
56 * singly linked for minimum space and pointer manipulation overhead at the
57 * expense of O(n) removal for arbitrary elements. New elements can be added
58 * to the list after an existing element, at the head of the list, or at the
59 * end of the list. Elements being removed from the head of the tail queue
60 * should use the explicit macro for this purpose for optimum efficiency.
61 * A singly-linked tail queue may only be traversed in the forward direction.
62 * Singly-linked tail queues are ideal for applications with large datasets
63 * and few or no removals or for implementing a FIFO queue.
64 *
65 * A list is headed by a single forward pointer (or an array of forward
66 * pointers for a hash table header). The elements are doubly linked
67 * so that an arbitrary element can be removed without a need to
68 * traverse the list. New elements can be added to the list before
69 * or after an existing element or at the head of the list. A list
70 * may only be traversed in the forward direction.
71 *
72 * A tail queue is headed by a pair of pointers, one to the head of the
73 * list and the other to the tail of the list. The elements are doubly
74 * linked so that an arbitrary element can be removed without a need to
75 * traverse the list. New elements can be added to the list before or
76 * after an existing element, at the head of the list, or at the end of
77 * the list. A tail queue may only be traversed in the forward direction.
78 *
79 * A circle queue is headed by a pair of pointers, one to the head of the
80 * list and the other to the tail of the list. The elements are doubly
81 * linked so that an arbitrary element can be removed without a need to
82 * traverse the list. New elements can be added to the list before or after
83 * an existing element, at the head of the list, or at the end of the list.
84 * A circle queue may be traversed in either direction, but has a more
85 * complex end of list detection.
86 *
87 * For details on the use of these macros, see the queue(3) manual page.
88 */
89
90/*
91 * Singly-linked List definitions.
92 */
93#define SLIST_HEAD(name, type)						\
94struct name {								\
95	struct type *slh_first;	/* first element */			\
96}
97
98#define SLIST_ENTRY(type)						\
99struct {								\
100	struct type *sle_next;	/* next element */			\
101}
102
103/*
104 * Singly-linked List functions.
105 */
106#define	SLIST_EMPTY(head)	((head)->slh_first == NULL)
107
108#define	SLIST_FIRST(head)	((head)->slh_first)
109
110#define SLIST_INIT(head) {						\
111	(head)->slh_first = NULL;					\
112}
113
114#define SLIST_INSERT_AFTER(slistelm, elm, field) {			\
115	(elm)->field.sle_next = (slistelm)->field.sle_next;		\
116	(slistelm)->field.sle_next = (elm);				\
117}
118
119#define SLIST_INSERT_HEAD(head, elm, field) {				\
120	(elm)->field.sle_next = (head)->slh_first;			\
121	(head)->slh_first = (elm);					\
122}
123
124#define SLIST_NEXT(elm, field)	((elm)->field.sle_next)
125
126#define SLIST_REMOVE_HEAD(head, field) {				\
127	(head)->slh_first = (head)->slh_first->field.sle_next;		\
128}
129
130#define SLIST_REMOVE(head, elm, type, field) {				\
131	if ((head)->slh_first == (elm)) {				\
132		SLIST_REMOVE_HEAD((head), field);			\
133	}								\
134	else {								\
135		struct type *curelm = (head)->slh_first;		\
136		while( curelm->field.sle_next != (elm) )		\
137			curelm = curelm->field.sle_next;		\
138		curelm->field.sle_next =				\
139		    curelm->field.sle_next->field.sle_next;		\
140	}								\
141}
142
143/*
144 * Singly-linked Tail queue definitions.
145 */
146#define STAILQ_HEAD(name, type)						\
147struct name {								\
148	struct type *stqh_first;/* first element */			\
149	struct type **stqh_last;/* addr of last next element */		\
150}
151
152#define STAILQ_ENTRY(type)						\
153struct {								\
154	struct type *stqe_next;	/* next element */			\
155}
156
157/*
158 * Singly-linked Tail queue functions.
159 */
160#define	STAILQ_INIT(head) {						\
161	(head)->stqh_first = NULL;					\
162	(head)->stqh_last = &(head)->stqh_first;			\
163}
164
165#define STAILQ_INSERT_HEAD(head, elm, field) {				\
166	if (((elm)->field.stqe_next = (head)->stqh_first) == NULL)	\
167		(head)->stqh_last = &(elm)->field.stqe_next;		\
168	(head)->stqh_first = (elm);					\
169}
170
171#define STAILQ_INSERT_TAIL(head, elm, field) {				\
172	(elm)->field.stqe_next = NULL;					\
173	*(head)->stqh_last = (elm);					\
174	(head)->stqh_last = &(elm)->field.stqe_next;			\
175}
176
177#define STAILQ_INSERT_AFTER(head, tqelm, elm, field) {			\
178	if (((elm)->field.stqe_next = (tqelm)->field.stqe_next) == NULL)\
179		(head)->stqh_last = &(elm)->field.stqe_next;		\
180	(tqelm)->field.stqe_next = (elm);				\
181}
182
183#define STAILQ_REMOVE_HEAD(head, field) {				\
184	if (((head)->stqh_first =					\
185	     (head)->stqh_first->field.stqe_next) == NULL)		\
186		(head)->stqh_last = &(head)->stqh_first;		\
187}
188
189#define STAILQ_REMOVE(head, elm, type, field) {				\
190	if ((head)->stqh_first == (elm)) {				\
191		STAILQ_REMOVE_HEAD(head, field);			\
192	}								\
193	else {								\
194		struct type *curelm = (head)->stqh_first;		\
195		while( curelm->field.stqe_next != (elm) )		\
196			curelm = curelm->field.stqe_next;		\
197		if((curelm->field.stqe_next =				\
198		    curelm->field.stqe_next->field.stqe_next) == NULL)	\
199			(head)->stqh_last = &(curelm)->field.stqe_next;	\
200	}								\
201}
202
203/*
204 * List definitions.
205 */
206#define LIST_HEAD(name, type)						\
207struct name {								\
208	struct type *lh_first;	/* first element */			\
209}
210
211#define LIST_ENTRY(type)						\
212struct {								\
213	struct type *le_next;	/* next element */			\
214	struct type **le_prev;	/* address of previous next element */	\
215}
216
217/*
218 * List functions.
219 */
220#define LIST_FIRST(head)	((head)->lh_first)
221
222#define LIST_FOREACH(var, head, field)					\
223	for((var) = (head)->lh_first; (var); (var) = (var)->field.le_next)
224
225#define	LIST_INIT(head) {						\
226	(head)->lh_first = NULL;					\
227}
228
229#define LIST_INSERT_AFTER(listelm, elm, field) {			\
230	if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)	\
231		(listelm)->field.le_next->field.le_prev =		\
232		    &(elm)->field.le_next;				\
233	(listelm)->field.le_next = (elm);				\
234	(elm)->field.le_prev = &(listelm)->field.le_next;		\
235}
236
237#define LIST_INSERT_BEFORE(listelm, elm, field) {			\
238	(elm)->field.le_prev = (listelm)->field.le_prev;		\
239	(elm)->field.le_next = (listelm);				\
240	*(listelm)->field.le_prev = (elm);				\
241	(listelm)->field.le_prev = &(elm)->field.le_next;		\
242}
243
244#define LIST_INSERT_HEAD(head, elm, field) {				\
245	if (((elm)->field.le_next = (head)->lh_first) != NULL)		\
246		(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
247	(head)->lh_first = (elm);					\
248	(elm)->field.le_prev = &(head)->lh_first;			\
249}
250
251#define LIST_NEXT(elm, field)	((elm)->field.le_next)
252
253#define LIST_REMOVE(elm, field) {					\
254	if ((elm)->field.le_next != NULL)				\
255		(elm)->field.le_next->field.le_prev = 			\
256		    (elm)->field.le_prev;				\
257	*(elm)->field.le_prev = (elm)->field.le_next;			\
258}
259
260/*
261 * Tail queue definitions.
262 */
263#define TAILQ_HEAD(name, type)						\
264struct name {								\
265	struct type *tqh_first;	/* first element */			\
266	struct type **tqh_last;	/* addr of last next element */		\
267}
268
269#define TAILQ_ENTRY(type)						\
270struct {								\
271	struct type *tqe_next;	/* next element */			\
272	struct type **tqe_prev;	/* address of previous next element */	\
273}
274
275/*
276 * Tail queue functions.
277 */
278#define	TAILQ_EMPTY(head) ((head)->tqh_first == NULL)
279
280#define	TAILQ_FIRST(head) ((head)->tqh_first)
281
282#define	TAILQ_LAST(head) ((head)->tqh_last)
283
284#define	TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
285
286#define TAILQ_PREV(elm, field) ((elm)->field.tqe_prev)
287
288#define	TAILQ_INIT(head) {						\
289	(head)->tqh_first = NULL;					\
290	(head)->tqh_last = &(head)->tqh_first;				\
291}
292
293#define TAILQ_INSERT_HEAD(head, elm, field) {				\
294	if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)	\
295		(head)->tqh_first->field.tqe_prev =			\
296		    &(elm)->field.tqe_next;				\
297	else								\
298		(head)->tqh_last = &(elm)->field.tqe_next;		\
299	(head)->tqh_first = (elm);					\
300	(elm)->field.tqe_prev = &(head)->tqh_first;			\
301}
302
303#define TAILQ_INSERT_TAIL(head, elm, field) {				\
304	(elm)->field.tqe_next = NULL;					\
305	(elm)->field.tqe_prev = (head)->tqh_last;			\
306	*(head)->tqh_last = (elm);					\
307	(head)->tqh_last = &(elm)->field.tqe_next;			\
308}
309
310#define TAILQ_INSERT_AFTER(head, listelm, elm, field) {			\
311	if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
312		(elm)->field.tqe_next->field.tqe_prev = 		\
313		    &(elm)->field.tqe_next;				\
314	else								\
315		(head)->tqh_last = &(elm)->field.tqe_next;		\
316	(listelm)->field.tqe_next = (elm);				\
317	(elm)->field.tqe_prev = &(listelm)->field.tqe_next;		\
318}
319
320#define TAILQ_INSERT_BEFORE(listelm, elm, field) {			\
321	(elm)->field.tqe_prev = (listelm)->field.tqe_prev;		\
322	(elm)->field.tqe_next = (listelm);				\
323	*(listelm)->field.tqe_prev = (elm);				\
324	(listelm)->field.tqe_prev = &(elm)->field.tqe_next;		\
325}
326
327#define TAILQ_REMOVE(head, elm, field) {				\
328	if (((elm)->field.tqe_next) != NULL)				\
329		(elm)->field.tqe_next->field.tqe_prev = 		\
330		    (elm)->field.tqe_prev;				\
331	else								\
332		(head)->tqh_last = (elm)->field.tqe_prev;		\
333	*(elm)->field.tqe_prev = (elm)->field.tqe_next;			\
334}
335
336/*
337 * Circular queue definitions.
338 */
339#define CIRCLEQ_HEAD(name, type)					\
340struct name {								\
341	struct type *cqh_first;		/* first element */		\
342	struct type *cqh_last;		/* last element */		\
343}
344
345#define CIRCLEQ_ENTRY(type)						\
346struct {								\
347	struct type *cqe_next;		/* next element */		\
348	struct type *cqe_prev;		/* previous element */		\
349}
350
351/*
352 * Circular queue functions.
353 */
354#define	CIRCLEQ_INIT(head) {						\
355	(head)->cqh_first = (void *)(head);				\
356	(head)->cqh_last = (void *)(head);				\
357}
358
359#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) {		\
360	(elm)->field.cqe_next = (listelm)->field.cqe_next;		\
361	(elm)->field.cqe_prev = (listelm);				\
362	if ((listelm)->field.cqe_next == (void *)(head))		\
363		(head)->cqh_last = (elm);				\
364	else								\
365		(listelm)->field.cqe_next->field.cqe_prev = (elm);	\
366	(listelm)->field.cqe_next = (elm);				\
367}
368
369#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) {		\
370	(elm)->field.cqe_next = (listelm);				\
371	(elm)->field.cqe_prev = (listelm)->field.cqe_prev;		\
372	if ((listelm)->field.cqe_prev == (void *)(head))		\
373		(head)->cqh_first = (elm);				\
374	else								\
375		(listelm)->field.cqe_prev->field.cqe_next = (elm);	\
376	(listelm)->field.cqe_prev = (elm);				\
377}
378
379#define CIRCLEQ_INSERT_HEAD(head, elm, field) {				\
380	(elm)->field.cqe_next = (head)->cqh_first;			\
381	(elm)->field.cqe_prev = (void *)(head);				\
382	if ((head)->cqh_last == (void *)(head))				\
383		(head)->cqh_last = (elm);				\
384	else								\
385		(head)->cqh_first->field.cqe_prev = (elm);		\
386	(head)->cqh_first = (elm);					\
387}
388
389#define CIRCLEQ_INSERT_TAIL(head, elm, field) {				\
390	(elm)->field.cqe_next = (void *)(head);				\
391	(elm)->field.cqe_prev = (head)->cqh_last;			\
392	if ((head)->cqh_first == (void *)(head))			\
393		(head)->cqh_first = (elm);				\
394	else								\
395		(head)->cqh_last->field.cqe_next = (elm);		\
396	(head)->cqh_last = (elm);					\
397}
398
399#define	CIRCLEQ_REMOVE(head, elm, field) {				\
400	if ((elm)->field.cqe_next == (void *)(head))			\
401		(head)->cqh_last = (elm)->field.cqe_prev;		\
402	else								\
403		(elm)->field.cqe_next->field.cqe_prev =			\
404		    (elm)->field.cqe_prev;				\
405	if ((elm)->field.cqe_prev == (void *)(head))			\
406		(head)->cqh_first = (elm)->field.cqe_next;		\
407	else								\
408		(elm)->field.cqe_prev->field.cqe_next =			\
409		    (elm)->field.cqe_next;				\
410}
411
412#ifdef KERNEL
413
414/*
415 * XXX insque() and remque() are an old way of handling certain queues.
416 * They bogusly assumes that all queue heads look alike.
417 */
418
419struct quehead {
420	struct quehead *qh_link;
421	struct quehead *qh_rlink;
422};
423
424#ifdef	__GNUC__
425
426static __inline void
427insque(void *a, void *b)
428{
429	struct quehead *element = a, *head = b;
430
431	element->qh_link = head->qh_link;
432	element->qh_rlink = head;
433	head->qh_link = element;
434	element->qh_link->qh_rlink = element;
435}
436
437static __inline void
438remque(void *a)
439{
440	struct quehead *element = a;
441
442	element->qh_link->qh_rlink = element->qh_rlink;
443	element->qh_rlink->qh_link = element->qh_link;
444	element->qh_rlink = 0;
445}
446
447#else /* !__GNUC__ */
448
449void	insque __P((void *a, void *b));
450void	remque __P((void *a));
451
452#endif /* __GNUC__ */
453
454#endif /* KERNEL */
455
456#endif /* !_SYS_QUEUE_H_ */
457