queue.h revision 15138
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)queue.h	8.5 (Berkeley) 8/20/94
34 * $Id: queue.h,v 1.8 1996/03/31 03:21:45 gibbs Exp $
35 */
36
37#ifndef _SYS_QUEUE_H_
38#define	_SYS_QUEUE_H_
39
40/*
41 * This file defines five types of data structures: singly-linked lists,
42 * slingly-linked tail queues, lists, tail queues, and circular queues.
43 *
44 * A singly-linked list is headed by a single forward pointer. The elements
45 * are singly linked for minimum space and pointer manipulation overhead at
46 * the expense of O(n) removal for arbitrary elements. New elements can be
47 * added to the list after an existing element or at the head of the list.
48 * Elements being removed from the head of the list should use the explicit
49 * macro for this purpose for optimum efficiency. A singly-linked list may
50 * only be traversed in the forward direction.  Singly-linked lists are ideal
51 * for applications with large datasets and few or no removals or for
52 * implementing a LIFO queue.
53 *
54 * A singly-linked tail queue is headed by a pair of pointers, one to the
55 * head of the list and the other to the tail of the list. The elements are
56 * singly linked for minimum space and pointer manipulation overhead at the
57 * expense of O(n) removal for arbitrary elements. New elements can be added
58 * to the list after an existing element, at the head of the list, or at the
59 * end of the list. Elements being removed from the head of the tail queue
60 * should use the explicit macro for this purpose for optimum efficiency.
61 * A singly-linked tail queue may only be traversed in the forward direction.
62 * Singly-linked tail queues are ideal for applications with large datasets
63 * and few or no removals or for implementing a FIFO queue.
64 *
65 * A list is headed by a single forward pointer (or an array of forward
66 * pointers for a hash table header). The elements are doubly linked
67 * so that an arbitrary element can be removed without a need to
68 * traverse the list. New elements can be added to the list before
69 * or after an existing element or at the head of the list. A list
70 * may only be traversed in the forward direction.
71 *
72 * A tail queue is headed by a pair of pointers, one to the head of the
73 * list and the other to the tail of the list. The elements are doubly
74 * linked so that an arbitrary element can be removed without a need to
75 * traverse the list. New elements can be added to the list before or
76 * after an existing element, at the head of the list, or at the end of
77 * the list. A tail queue may only be traversed in the forward direction.
78 *
79 * A circle queue is headed by a pair of pointers, one to the head of the
80 * list and the other to the tail of the list. The elements are doubly
81 * linked so that an arbitrary element can be removed without a need to
82 * traverse the list. New elements can be added to the list before or after
83 * an existing element, at the head of the list, or at the end of the list.
84 * A circle queue may be traversed in either direction, but has a more
85 * complex end of list detection.
86 *
87 * For details on the use of these macros, see the queue(3) manual page.
88 */
89
90/*
91 * Singly-linked List definitions.
92 */
93#define SLIST_HEAD(name, type)						\
94struct name {								\
95	struct type *slh_first;	/* first element */			\
96}
97
98#define SLIST_ENTRY(type)						\
99struct {								\
100	struct type *sle_next;	/* next element */			\
101}
102
103/*
104 * Singly-linked List functions.
105 */
106#define SLIST_INIT(head) {						\
107	(head)->slh_first = NULL;					\
108}
109
110#define SLIST_INSERT_AFTER(slistelm, elm, field) {			\
111	(elm)->field.sle_next = (slistelm)->field.sle_next;		\
112	(slistelm)->field.sle_next = (elm);				\
113}
114
115#define SLIST_INSERT_HEAD(head, elm, field) {				\
116	(elm)->field.sle_next = (head)->slh_first;			\
117	(head)->slh_first = (elm);					\
118}
119
120#define SLIST_REMOVE_HEAD(head, field) {				\
121	(head)->slh_first = (head)->slh_first->field.sle_next;		\
122}
123
124#define SLIST_REMOVE(head, elm, type, field) {				\
125	if ((head)->slh_first == (elm)) {				\
126		SLIST_REMOVE_HEAD((head), field);			\
127	}								\
128	else {								\
129		struct type *curelm = (head)->slh_first;		\
130		while( curelm->field.sle_next != (elm) )		\
131			curelm = curelm->field.sle_next;		\
132		curelm->field.sle_next =				\
133		    curelm->field.sle_next->field.sle_next;		\
134	}								\
135}
136
137/*
138 * Singly-linked Tail queue definitions.
139 */
140#define STAILQ_HEAD(name, type)						\
141struct name {								\
142	struct type *stqh_first;/* first element */			\
143	struct type **stqh_last;/* addr of last next element */		\
144}
145
146#define STAILQ_ENTRY(type)						\
147struct {								\
148	struct type *stqe_next;	/* next element */			\
149}
150
151/*
152 * Singly-linked Tail queue functions.
153 */
154#define	STAILQ_INIT(head) {						\
155	(head)->stqh_first = NULL;					\
156	(head)->stqh_last = &(head)->stqh_first;			\
157}
158
159#define STAILQ_INSERT_HEAD(head, elm, field) {				\
160	if (((elm)->field.stqe_next = (head)->stqh_first) == NULL)	\
161		(head)->stqh_last = &(elm)->field.stqe_next;		\
162	(head)->stqh_first = (elm);					\
163}
164
165#define STAILQ_INSERT_TAIL(head, elm, field) {				\
166	(elm)->field.stqe_next = NULL;					\
167	*(head)->stqh_last = (elm);					\
168	(head)->stqh_last = &(elm)->field.stqe_next;			\
169}
170
171#define STAILQ_INSERT_AFTER(head, tqelm, elm, field) {			\
172	if (((elm)->field.stqe_next = (tqelm)->field.stqe_next) == NULL)\
173		(head)->stqh_last = &(elm)->field.stqe_next;		\
174	(tqelm)->field.stqe_next = (elm);				\
175}
176
177#define STAILQ_REMOVE_HEAD(head, field) {				\
178	if (((head)->stqh_first =					\
179	     (head)->stqh_first->field.stqe_next) == NULL)		\
180		(head)->stqh_last = &(head)->stqh_first;		\
181}
182
183#define STAILQ_REMOVE(head, elm, type, field) {				\
184	if ((head)->stqh_first == (elm)) {				\
185		STAILQ_REMOVE_HEAD(head, field);			\
186	}								\
187	else {								\
188		struct type *curelm = (head)->stqh_first;		\
189		while( curelm->field.stqe_next != (elm) )		\
190			curelm = curelm->field.stqe_next;		\
191		if((curelm->field.stqe_next =				\
192		    curelm->field.stqe_next->field.stqe_next) == NULL)	\
193			(head)->stqh_last = &(curelm)->field.stqe_next;	\
194	}								\
195}
196
197/*
198 * List definitions.
199 */
200#define LIST_HEAD(name, type)						\
201struct name {								\
202	struct type *lh_first;	/* first element */			\
203}
204
205#define LIST_ENTRY(type)						\
206struct {								\
207	struct type *le_next;	/* next element */			\
208	struct type **le_prev;	/* address of previous next element */	\
209}
210
211/*
212 * List functions.
213 */
214#define	LIST_INIT(head) {						\
215	(head)->lh_first = NULL;					\
216}
217
218#define LIST_INSERT_AFTER(listelm, elm, field) {			\
219	if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)	\
220		(listelm)->field.le_next->field.le_prev =		\
221		    &(elm)->field.le_next;				\
222	(listelm)->field.le_next = (elm);				\
223	(elm)->field.le_prev = &(listelm)->field.le_next;		\
224}
225
226#define LIST_INSERT_BEFORE(listelm, elm, field) {			\
227	(elm)->field.le_prev = (listelm)->field.le_prev;		\
228	(elm)->field.le_next = (listelm);				\
229	*(listelm)->field.le_prev = (elm);				\
230	(listelm)->field.le_prev = &(elm)->field.le_next;		\
231}
232
233#define LIST_INSERT_HEAD(head, elm, field) {				\
234	if (((elm)->field.le_next = (head)->lh_first) != NULL)		\
235		(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
236	(head)->lh_first = (elm);					\
237	(elm)->field.le_prev = &(head)->lh_first;			\
238}
239
240#define LIST_REMOVE(elm, field) {					\
241	if ((elm)->field.le_next != NULL)				\
242		(elm)->field.le_next->field.le_prev = 			\
243		    (elm)->field.le_prev;				\
244	*(elm)->field.le_prev = (elm)->field.le_next;			\
245}
246
247/*
248 * Tail queue definitions.
249 */
250#define TAILQ_HEAD(name, type)						\
251struct name {								\
252	struct type *tqh_first;	/* first element */			\
253	struct type **tqh_last;	/* addr of last next element */		\
254}
255
256#define TAILQ_ENTRY(type)						\
257struct {								\
258	struct type *tqe_next;	/* next element */			\
259	struct type **tqe_prev;	/* address of previous next element */	\
260}
261
262/*
263 * Tail queue functions.
264 */
265#define	TAILQ_EMPTY(head) ((head)->tqh_first == NULL)
266
267#define	TAILQ_FIRST(head) ((head)->tqh_first)
268
269#define	TAILQ_LAST(head) ((head)->tqh_last)
270
271#define	TAILQ_NEXT(elm, field) ((elm)->field.teq_next)
272
273#define	TAILQ_INIT(head) {						\
274	(head)->tqh_first = NULL;					\
275	(head)->tqh_last = &(head)->tqh_first;				\
276}
277
278#define TAILQ_INSERT_HEAD(head, elm, field) {				\
279	if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)	\
280		(head)->tqh_first->field.tqe_prev =			\
281		    &(elm)->field.tqe_next;				\
282	else								\
283		(head)->tqh_last = &(elm)->field.tqe_next;		\
284	(head)->tqh_first = (elm);					\
285	(elm)->field.tqe_prev = &(head)->tqh_first;			\
286}
287
288#define TAILQ_INSERT_TAIL(head, elm, field) {				\
289	(elm)->field.tqe_next = NULL;					\
290	(elm)->field.tqe_prev = (head)->tqh_last;			\
291	*(head)->tqh_last = (elm);					\
292	(head)->tqh_last = &(elm)->field.tqe_next;			\
293}
294
295#define TAILQ_INSERT_AFTER(head, listelm, elm, field) {			\
296	if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
297		(elm)->field.tqe_next->field.tqe_prev = 		\
298		    &(elm)->field.tqe_next;				\
299	else								\
300		(head)->tqh_last = &(elm)->field.tqe_next;		\
301	(listelm)->field.tqe_next = (elm);				\
302	(elm)->field.tqe_prev = &(listelm)->field.tqe_next;		\
303}
304
305#define TAILQ_INSERT_BEFORE(listelm, elm, field) {			\
306	(elm)->field.tqe_prev = (listelm)->field.tqe_prev;		\
307	(elm)->field.tqe_next = (listelm);				\
308	*(listelm)->field.tqe_prev = (elm);				\
309	(listelm)->field.tqe_prev = &(elm)->field.tqe_next;		\
310}
311
312#define TAILQ_REMOVE(head, elm, field) {				\
313	if (((elm)->field.tqe_next) != NULL)				\
314		(elm)->field.tqe_next->field.tqe_prev = 		\
315		    (elm)->field.tqe_prev;				\
316	else								\
317		(head)->tqh_last = (elm)->field.tqe_prev;		\
318	*(elm)->field.tqe_prev = (elm)->field.tqe_next;			\
319}
320
321/*
322 * Circular queue definitions.
323 */
324#define CIRCLEQ_HEAD(name, type)					\
325struct name {								\
326	struct type *cqh_first;		/* first element */		\
327	struct type *cqh_last;		/* last element */		\
328}
329
330#define CIRCLEQ_ENTRY(type)						\
331struct {								\
332	struct type *cqe_next;		/* next element */		\
333	struct type *cqe_prev;		/* previous element */		\
334}
335
336/*
337 * Circular queue functions.
338 */
339#define	CIRCLEQ_INIT(head) {						\
340	(head)->cqh_first = (void *)(head);				\
341	(head)->cqh_last = (void *)(head);				\
342}
343
344#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) {		\
345	(elm)->field.cqe_next = (listelm)->field.cqe_next;		\
346	(elm)->field.cqe_prev = (listelm);				\
347	if ((listelm)->field.cqe_next == (void *)(head))		\
348		(head)->cqh_last = (elm);				\
349	else								\
350		(listelm)->field.cqe_next->field.cqe_prev = (elm);	\
351	(listelm)->field.cqe_next = (elm);				\
352}
353
354#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) {		\
355	(elm)->field.cqe_next = (listelm);				\
356	(elm)->field.cqe_prev = (listelm)->field.cqe_prev;		\
357	if ((listelm)->field.cqe_prev == (void *)(head))		\
358		(head)->cqh_first = (elm);				\
359	else								\
360		(listelm)->field.cqe_prev->field.cqe_next = (elm);	\
361	(listelm)->field.cqe_prev = (elm);				\
362}
363
364#define CIRCLEQ_INSERT_HEAD(head, elm, field) {				\
365	(elm)->field.cqe_next = (head)->cqh_first;			\
366	(elm)->field.cqe_prev = (void *)(head);				\
367	if ((head)->cqh_last == (void *)(head))				\
368		(head)->cqh_last = (elm);				\
369	else								\
370		(head)->cqh_first->field.cqe_prev = (elm);		\
371	(head)->cqh_first = (elm);					\
372}
373
374#define CIRCLEQ_INSERT_TAIL(head, elm, field) {				\
375	(elm)->field.cqe_next = (void *)(head);				\
376	(elm)->field.cqe_prev = (head)->cqh_last;			\
377	if ((head)->cqh_first == (void *)(head))			\
378		(head)->cqh_first = (elm);				\
379	else								\
380		(head)->cqh_last->field.cqe_next = (elm);		\
381	(head)->cqh_last = (elm);					\
382}
383
384#define	CIRCLEQ_REMOVE(head, elm, field) {				\
385	if ((elm)->field.cqe_next == (void *)(head))			\
386		(head)->cqh_last = (elm)->field.cqe_prev;		\
387	else								\
388		(elm)->field.cqe_next->field.cqe_prev =			\
389		    (elm)->field.cqe_prev;				\
390	if ((elm)->field.cqe_prev == (void *)(head))			\
391		(head)->cqh_first = (elm)->field.cqe_next;		\
392	else								\
393		(elm)->field.cqe_prev->field.cqe_next =			\
394		    (elm)->field.cqe_next;				\
395}
396
397#ifdef KERNEL
398
399/*
400 * XXX insque() and remque() are an old way of handling certain queues.
401 * They bogusly assumes that all queue heads look alike.
402 */
403
404struct quehead {
405	struct quehead *qh_link;
406	struct quehead *qh_rlink;
407};
408
409#ifdef	__GNUC__
410
411static __inline void
412insque(void *a, void *b)
413{
414	struct quehead *element = a, *head = b;
415
416	element->qh_link = head->qh_link;
417	element->qh_rlink = head;
418	head->qh_link = element;
419	element->qh_link->qh_rlink = element;
420}
421
422static __inline void
423remque(void *a)
424{
425	struct quehead *element = a;
426
427	element->qh_link->qh_rlink = element->qh_rlink;
428	element->qh_rlink->qh_link = element->qh_link;
429	element->qh_rlink = 0;
430}
431
432#else /* !__GNUC__ */
433
434void	insque __P((void *a, void *b));
435void	remque __P((void *a));
436
437#endif /* __GNUC__ */
438
439#endif /* KERNEL */
440
441#endif /* !_SYS_QUEUE_H_ */
442