pmap.c revision 222400
1/*-
2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * Some hw specific parts of this pmap were derived or influenced
27 * by NetBSD's ibm4xx pmap module. More generic code is shared with
28 * a few other pmap modules from the FreeBSD tree.
29 */
30
31 /*
32  * VM layout notes:
33  *
34  * Kernel and user threads run within one common virtual address space
35  * defined by AS=0.
36  *
37  * Virtual address space layout:
38  * -----------------------------
39  * 0x0000_0000 - 0xafff_ffff	: user process
40  * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41  * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42  *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43  * 0xc100_0000 - 0xfeef_ffff	: KVA
44  *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45  *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46  *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47  *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48  * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49  */
50
51#include <sys/cdefs.h>
52__FBSDID("$FreeBSD: head/sys/powerpc/booke/pmap.c 222400 2011-05-28 04:10:44Z marcel $");
53
54#include <sys/types.h>
55#include <sys/param.h>
56#include <sys/malloc.h>
57#include <sys/ktr.h>
58#include <sys/proc.h>
59#include <sys/user.h>
60#include <sys/queue.h>
61#include <sys/systm.h>
62#include <sys/kernel.h>
63#include <sys/msgbuf.h>
64#include <sys/lock.h>
65#include <sys/mutex.h>
66#include <sys/smp.h>
67#include <sys/vmmeter.h>
68
69#include <vm/vm.h>
70#include <vm/vm_page.h>
71#include <vm/vm_kern.h>
72#include <vm/vm_pageout.h>
73#include <vm/vm_extern.h>
74#include <vm/vm_object.h>
75#include <vm/vm_param.h>
76#include <vm/vm_map.h>
77#include <vm/vm_pager.h>
78#include <vm/uma.h>
79
80#include <machine/cpu.h>
81#include <machine/pcb.h>
82#include <machine/platform.h>
83
84#include <machine/tlb.h>
85#include <machine/spr.h>
86#include <machine/vmparam.h>
87#include <machine/md_var.h>
88#include <machine/mmuvar.h>
89#include <machine/pmap.h>
90#include <machine/pte.h>
91
92#include "mmu_if.h"
93
94#ifdef  DEBUG
95#define debugf(fmt, args...) printf(fmt, ##args)
96#else
97#define debugf(fmt, args...)
98#endif
99
100#define TODO			panic("%s: not implemented", __func__);
101
102#include "opt_sched.h"
103#ifndef SCHED_4BSD
104#error "e500 only works with SCHED_4BSD which uses a global scheduler lock."
105#endif
106extern struct mtx sched_lock;
107
108extern int dumpsys_minidump;
109
110extern unsigned char _etext[];
111extern unsigned char _end[];
112
113/* Kernel physical load address. */
114extern uint32_t kernload;
115vm_offset_t kernstart;
116vm_size_t kernsize;
117
118/* Message buffer and tables. */
119static vm_offset_t data_start;
120static vm_size_t data_end;
121
122/* Phys/avail memory regions. */
123static struct mem_region *availmem_regions;
124static int availmem_regions_sz;
125static struct mem_region *physmem_regions;
126static int physmem_regions_sz;
127
128/* Reserved KVA space and mutex for mmu_booke_zero_page. */
129static vm_offset_t zero_page_va;
130static struct mtx zero_page_mutex;
131
132static struct mtx tlbivax_mutex;
133
134/*
135 * Reserved KVA space for mmu_booke_zero_page_idle. This is used
136 * by idle thred only, no lock required.
137 */
138static vm_offset_t zero_page_idle_va;
139
140/* Reserved KVA space and mutex for mmu_booke_copy_page. */
141static vm_offset_t copy_page_src_va;
142static vm_offset_t copy_page_dst_va;
143static struct mtx copy_page_mutex;
144
145/**************************************************************************/
146/* PMAP */
147/**************************************************************************/
148
149static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
150    vm_prot_t, boolean_t);
151
152unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
153unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
154
155/*
156 * If user pmap is processed with mmu_booke_remove and the resident count
157 * drops to 0, there are no more pages to remove, so we need not continue.
158 */
159#define PMAP_REMOVE_DONE(pmap) \
160	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
161
162extern void tid_flush(tlbtid_t);
163
164/**************************************************************************/
165/* TLB and TID handling */
166/**************************************************************************/
167
168/* Translation ID busy table */
169static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
170
171/*
172 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
173 * core revisions and should be read from h/w registers during early config.
174 */
175uint32_t tlb0_entries;
176uint32_t tlb0_ways;
177uint32_t tlb0_entries_per_way;
178
179#define TLB0_ENTRIES		(tlb0_entries)
180#define TLB0_WAYS		(tlb0_ways)
181#define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
182
183#define TLB1_ENTRIES 16
184
185/* In-ram copy of the TLB1 */
186static tlb_entry_t tlb1[TLB1_ENTRIES];
187
188/* Next free entry in the TLB1 */
189static unsigned int tlb1_idx;
190
191static tlbtid_t tid_alloc(struct pmap *);
192
193static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
194
195static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
196static void tlb1_write_entry(unsigned int);
197static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
198static vm_size_t tlb1_mapin_region(vm_offset_t, vm_offset_t, vm_size_t);
199
200static vm_size_t tsize2size(unsigned int);
201static unsigned int size2tsize(vm_size_t);
202static unsigned int ilog2(unsigned int);
203
204static void set_mas4_defaults(void);
205
206static inline void tlb0_flush_entry(vm_offset_t);
207static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
208
209/**************************************************************************/
210/* Page table management */
211/**************************************************************************/
212
213/* Data for the pv entry allocation mechanism */
214static uma_zone_t pvzone;
215static struct vm_object pvzone_obj;
216static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
217
218#define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
219
220#ifndef PMAP_SHPGPERPROC
221#define PMAP_SHPGPERPROC	200
222#endif
223
224static void ptbl_init(void);
225static struct ptbl_buf *ptbl_buf_alloc(void);
226static void ptbl_buf_free(struct ptbl_buf *);
227static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
228
229static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
230static void ptbl_free(mmu_t, pmap_t, unsigned int);
231static void ptbl_hold(mmu_t, pmap_t, unsigned int);
232static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
233
234static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
235static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
236static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
237static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
238
239static pv_entry_t pv_alloc(void);
240static void pv_free(pv_entry_t);
241static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
242static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
243
244/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
245#define PTBL_BUFS		(128 * 16)
246
247struct ptbl_buf {
248	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
249	vm_offset_t kva;		/* va of mapping */
250};
251
252/* ptbl free list and a lock used for access synchronization. */
253static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
254static struct mtx ptbl_buf_freelist_lock;
255
256/* Base address of kva space allocated fot ptbl bufs. */
257static vm_offset_t ptbl_buf_pool_vabase;
258
259/* Pointer to ptbl_buf structures. */
260static struct ptbl_buf *ptbl_bufs;
261
262void pmap_bootstrap_ap(volatile uint32_t *);
263
264/*
265 * Kernel MMU interface
266 */
267static void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
268static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
269static void		mmu_booke_clear_reference(mmu_t, vm_page_t);
270static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
271    vm_size_t, vm_offset_t);
272static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
273static void		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
274    vm_prot_t, boolean_t);
275static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
276    vm_page_t, vm_prot_t);
277static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
278    vm_prot_t);
279static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
280static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
281    vm_prot_t);
282static void		mmu_booke_init(mmu_t);
283static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
284static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
285static boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
286static boolean_t	mmu_booke_ts_referenced(mmu_t, vm_page_t);
287static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t,
288    int);
289static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
290    vm_paddr_t *);
291static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
292    vm_object_t, vm_pindex_t, vm_size_t);
293static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
294static void		mmu_booke_page_init(mmu_t, vm_page_t);
295static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
296static void		mmu_booke_pinit(mmu_t, pmap_t);
297static void		mmu_booke_pinit0(mmu_t, pmap_t);
298static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
299    vm_prot_t);
300static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
301static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
302static void		mmu_booke_release(mmu_t, pmap_t);
303static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
304static void		mmu_booke_remove_all(mmu_t, vm_page_t);
305static void		mmu_booke_remove_write(mmu_t, vm_page_t);
306static void		mmu_booke_zero_page(mmu_t, vm_page_t);
307static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
308static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
309static void		mmu_booke_activate(mmu_t, struct thread *);
310static void		mmu_booke_deactivate(mmu_t, struct thread *);
311static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
312static void		*mmu_booke_mapdev(mmu_t, vm_offset_t, vm_size_t);
313static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
314static vm_offset_t	mmu_booke_kextract(mmu_t, vm_offset_t);
315static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_offset_t);
316static void		mmu_booke_kremove(mmu_t, vm_offset_t);
317static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
318static void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
319    vm_size_t);
320static vm_offset_t	mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
321    vm_size_t, vm_size_t *);
322static void		mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
323    vm_size_t, vm_offset_t);
324static struct pmap_md	*mmu_booke_scan_md(mmu_t, struct pmap_md *);
325
326static mmu_method_t mmu_booke_methods[] = {
327	/* pmap dispatcher interface */
328	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
329	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
330	MMUMETHOD(mmu_clear_reference,	mmu_booke_clear_reference),
331	MMUMETHOD(mmu_copy,		mmu_booke_copy),
332	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
333	MMUMETHOD(mmu_enter,		mmu_booke_enter),
334	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
335	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
336	MMUMETHOD(mmu_extract,		mmu_booke_extract),
337	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
338	MMUMETHOD(mmu_init,		mmu_booke_init),
339	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
340	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
341	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
342	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
343	MMUMETHOD(mmu_map,		mmu_booke_map),
344	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
345	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
346	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
347	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
348	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
349	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
350	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
351	MMUMETHOD(mmu_protect,		mmu_booke_protect),
352	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
353	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
354	MMUMETHOD(mmu_release,		mmu_booke_release),
355	MMUMETHOD(mmu_remove,		mmu_booke_remove),
356	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
357	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
358	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
359	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
360	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
361	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
362	MMUMETHOD(mmu_activate,		mmu_booke_activate),
363	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
364
365	/* Internal interfaces */
366	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
367	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
368	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
369	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
370	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
371/*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
372	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
373
374	/* dumpsys() support */
375	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
376	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
377	MMUMETHOD(mmu_scan_md,		mmu_booke_scan_md),
378
379	{ 0, 0 }
380};
381
382MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
383
384static inline void
385tlb_miss_lock(void)
386{
387#ifdef SMP
388	struct pcpu *pc;
389
390	if (!smp_started)
391		return;
392
393	SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
394		if (pc != pcpup) {
395
396			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
397			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
398
399			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
400			    ("tlb_miss_lock: tried to lock self"));
401
402			tlb_lock(pc->pc_booke_tlb_lock);
403
404			CTR1(KTR_PMAP, "%s: locked", __func__);
405		}
406	}
407#endif
408}
409
410static inline void
411tlb_miss_unlock(void)
412{
413#ifdef SMP
414	struct pcpu *pc;
415
416	if (!smp_started)
417		return;
418
419	SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
420		if (pc != pcpup) {
421			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
422			    __func__, pc->pc_cpuid);
423
424			tlb_unlock(pc->pc_booke_tlb_lock);
425
426			CTR1(KTR_PMAP, "%s: unlocked", __func__);
427		}
428	}
429#endif
430}
431
432/* Return number of entries in TLB0. */
433static __inline void
434tlb0_get_tlbconf(void)
435{
436	uint32_t tlb0_cfg;
437
438	tlb0_cfg = mfspr(SPR_TLB0CFG);
439	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
440	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
441	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
442}
443
444/* Initialize pool of kva ptbl buffers. */
445static void
446ptbl_init(void)
447{
448	int i;
449
450	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
451	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
452	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
453	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
454
455	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
456	TAILQ_INIT(&ptbl_buf_freelist);
457
458	for (i = 0; i < PTBL_BUFS; i++) {
459		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
460		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
461	}
462}
463
464/* Get a ptbl_buf from the freelist. */
465static struct ptbl_buf *
466ptbl_buf_alloc(void)
467{
468	struct ptbl_buf *buf;
469
470	mtx_lock(&ptbl_buf_freelist_lock);
471	buf = TAILQ_FIRST(&ptbl_buf_freelist);
472	if (buf != NULL)
473		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
474	mtx_unlock(&ptbl_buf_freelist_lock);
475
476	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
477
478	return (buf);
479}
480
481/* Return ptbl buff to free pool. */
482static void
483ptbl_buf_free(struct ptbl_buf *buf)
484{
485
486	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
487
488	mtx_lock(&ptbl_buf_freelist_lock);
489	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
490	mtx_unlock(&ptbl_buf_freelist_lock);
491}
492
493/*
494 * Search the list of allocated ptbl bufs and find on list of allocated ptbls
495 */
496static void
497ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
498{
499	struct ptbl_buf *pbuf;
500
501	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
502
503	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
504
505	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
506		if (pbuf->kva == (vm_offset_t)ptbl) {
507			/* Remove from pmap ptbl buf list. */
508			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
509
510			/* Free corresponding ptbl buf. */
511			ptbl_buf_free(pbuf);
512			break;
513		}
514}
515
516/* Allocate page table. */
517static pte_t *
518ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
519{
520	vm_page_t mtbl[PTBL_PAGES];
521	vm_page_t m;
522	struct ptbl_buf *pbuf;
523	unsigned int pidx;
524	pte_t *ptbl;
525	int i;
526
527	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
528	    (pmap == kernel_pmap), pdir_idx);
529
530	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
531	    ("ptbl_alloc: invalid pdir_idx"));
532	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
533	    ("pte_alloc: valid ptbl entry exists!"));
534
535	pbuf = ptbl_buf_alloc();
536	if (pbuf == NULL)
537		panic("pte_alloc: couldn't alloc kernel virtual memory");
538
539	ptbl = (pte_t *)pbuf->kva;
540
541	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
542
543	/* Allocate ptbl pages, this will sleep! */
544	for (i = 0; i < PTBL_PAGES; i++) {
545		pidx = (PTBL_PAGES * pdir_idx) + i;
546		while ((m = vm_page_alloc(NULL, pidx,
547		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
548
549			PMAP_UNLOCK(pmap);
550			vm_page_unlock_queues();
551			VM_WAIT;
552			vm_page_lock_queues();
553			PMAP_LOCK(pmap);
554		}
555		mtbl[i] = m;
556	}
557
558	/* Map allocated pages into kernel_pmap. */
559	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
560
561	/* Zero whole ptbl. */
562	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
563
564	/* Add pbuf to the pmap ptbl bufs list. */
565	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
566
567	return (ptbl);
568}
569
570/* Free ptbl pages and invalidate pdir entry. */
571static void
572ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
573{
574	pte_t *ptbl;
575	vm_paddr_t pa;
576	vm_offset_t va;
577	vm_page_t m;
578	int i;
579
580	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
581	    (pmap == kernel_pmap), pdir_idx);
582
583	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
584	    ("ptbl_free: invalid pdir_idx"));
585
586	ptbl = pmap->pm_pdir[pdir_idx];
587
588	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
589
590	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
591
592	/*
593	 * Invalidate the pdir entry as soon as possible, so that other CPUs
594	 * don't attempt to look up the page tables we are releasing.
595	 */
596	mtx_lock_spin(&tlbivax_mutex);
597	tlb_miss_lock();
598
599	pmap->pm_pdir[pdir_idx] = NULL;
600
601	tlb_miss_unlock();
602	mtx_unlock_spin(&tlbivax_mutex);
603
604	for (i = 0; i < PTBL_PAGES; i++) {
605		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
606		pa = pte_vatopa(mmu, kernel_pmap, va);
607		m = PHYS_TO_VM_PAGE(pa);
608		vm_page_free_zero(m);
609		atomic_subtract_int(&cnt.v_wire_count, 1);
610		mmu_booke_kremove(mmu, va);
611	}
612
613	ptbl_free_pmap_ptbl(pmap, ptbl);
614}
615
616/*
617 * Decrement ptbl pages hold count and attempt to free ptbl pages.
618 * Called when removing pte entry from ptbl.
619 *
620 * Return 1 if ptbl pages were freed.
621 */
622static int
623ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
624{
625	pte_t *ptbl;
626	vm_paddr_t pa;
627	vm_page_t m;
628	int i;
629
630	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
631	    (pmap == kernel_pmap), pdir_idx);
632
633	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
634	    ("ptbl_unhold: invalid pdir_idx"));
635	KASSERT((pmap != kernel_pmap),
636	    ("ptbl_unhold: unholding kernel ptbl!"));
637
638	ptbl = pmap->pm_pdir[pdir_idx];
639
640	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
641	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
642	    ("ptbl_unhold: non kva ptbl"));
643
644	/* decrement hold count */
645	for (i = 0; i < PTBL_PAGES; i++) {
646		pa = pte_vatopa(mmu, kernel_pmap,
647		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
648		m = PHYS_TO_VM_PAGE(pa);
649		m->wire_count--;
650	}
651
652	/*
653	 * Free ptbl pages if there are no pte etries in this ptbl.
654	 * wire_count has the same value for all ptbl pages, so check the last
655	 * page.
656	 */
657	if (m->wire_count == 0) {
658		ptbl_free(mmu, pmap, pdir_idx);
659
660		//debugf("ptbl_unhold: e (freed ptbl)\n");
661		return (1);
662	}
663
664	return (0);
665}
666
667/*
668 * Increment hold count for ptbl pages. This routine is used when a new pte
669 * entry is being inserted into the ptbl.
670 */
671static void
672ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
673{
674	vm_paddr_t pa;
675	pte_t *ptbl;
676	vm_page_t m;
677	int i;
678
679	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
680	    pdir_idx);
681
682	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
683	    ("ptbl_hold: invalid pdir_idx"));
684	KASSERT((pmap != kernel_pmap),
685	    ("ptbl_hold: holding kernel ptbl!"));
686
687	ptbl = pmap->pm_pdir[pdir_idx];
688
689	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
690
691	for (i = 0; i < PTBL_PAGES; i++) {
692		pa = pte_vatopa(mmu, kernel_pmap,
693		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
694		m = PHYS_TO_VM_PAGE(pa);
695		m->wire_count++;
696	}
697}
698
699/* Allocate pv_entry structure. */
700pv_entry_t
701pv_alloc(void)
702{
703	pv_entry_t pv;
704
705	pv_entry_count++;
706	if (pv_entry_count > pv_entry_high_water)
707		pagedaemon_wakeup();
708	pv = uma_zalloc(pvzone, M_NOWAIT);
709
710	return (pv);
711}
712
713/* Free pv_entry structure. */
714static __inline void
715pv_free(pv_entry_t pve)
716{
717
718	pv_entry_count--;
719	uma_zfree(pvzone, pve);
720}
721
722
723/* Allocate and initialize pv_entry structure. */
724static void
725pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
726{
727	pv_entry_t pve;
728
729	//int su = (pmap == kernel_pmap);
730	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
731	//	(u_int32_t)pmap, va, (u_int32_t)m);
732
733	pve = pv_alloc();
734	if (pve == NULL)
735		panic("pv_insert: no pv entries!");
736
737	pve->pv_pmap = pmap;
738	pve->pv_va = va;
739
740	/* add to pv_list */
741	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
742	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
743
744	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
745
746	//debugf("pv_insert: e\n");
747}
748
749/* Destroy pv entry. */
750static void
751pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
752{
753	pv_entry_t pve;
754
755	//int su = (pmap == kernel_pmap);
756	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
757
758	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
759	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
760
761	/* find pv entry */
762	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
763		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
764			/* remove from pv_list */
765			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
766			if (TAILQ_EMPTY(&m->md.pv_list))
767				vm_page_flag_clear(m, PG_WRITEABLE);
768
769			/* free pv entry struct */
770			pv_free(pve);
771			break;
772		}
773	}
774
775	//debugf("pv_remove: e\n");
776}
777
778/*
779 * Clean pte entry, try to free page table page if requested.
780 *
781 * Return 1 if ptbl pages were freed, otherwise return 0.
782 */
783static int
784pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
785{
786	unsigned int pdir_idx = PDIR_IDX(va);
787	unsigned int ptbl_idx = PTBL_IDX(va);
788	vm_page_t m;
789	pte_t *ptbl;
790	pte_t *pte;
791
792	//int su = (pmap == kernel_pmap);
793	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
794	//		su, (u_int32_t)pmap, va, flags);
795
796	ptbl = pmap->pm_pdir[pdir_idx];
797	KASSERT(ptbl, ("pte_remove: null ptbl"));
798
799	pte = &ptbl[ptbl_idx];
800
801	if (pte == NULL || !PTE_ISVALID(pte))
802		return (0);
803
804	if (PTE_ISWIRED(pte))
805		pmap->pm_stats.wired_count--;
806
807	/* Handle managed entry. */
808	if (PTE_ISMANAGED(pte)) {
809		/* Get vm_page_t for mapped pte. */
810		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
811
812		if (PTE_ISMODIFIED(pte))
813			vm_page_dirty(m);
814
815		if (PTE_ISREFERENCED(pte))
816			vm_page_flag_set(m, PG_REFERENCED);
817
818		pv_remove(pmap, va, m);
819	}
820
821	mtx_lock_spin(&tlbivax_mutex);
822	tlb_miss_lock();
823
824	tlb0_flush_entry(va);
825	pte->flags = 0;
826	pte->rpn = 0;
827
828	tlb_miss_unlock();
829	mtx_unlock_spin(&tlbivax_mutex);
830
831	pmap->pm_stats.resident_count--;
832
833	if (flags & PTBL_UNHOLD) {
834		//debugf("pte_remove: e (unhold)\n");
835		return (ptbl_unhold(mmu, pmap, pdir_idx));
836	}
837
838	//debugf("pte_remove: e\n");
839	return (0);
840}
841
842/*
843 * Insert PTE for a given page and virtual address.
844 */
845static void
846pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
847{
848	unsigned int pdir_idx = PDIR_IDX(va);
849	unsigned int ptbl_idx = PTBL_IDX(va);
850	pte_t *ptbl, *pte;
851
852	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
853	    pmap == kernel_pmap, pmap, va);
854
855	/* Get the page table pointer. */
856	ptbl = pmap->pm_pdir[pdir_idx];
857
858	if (ptbl == NULL) {
859		/* Allocate page table pages. */
860		ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
861	} else {
862		/*
863		 * Check if there is valid mapping for requested
864		 * va, if there is, remove it.
865		 */
866		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
867		if (PTE_ISVALID(pte)) {
868			pte_remove(mmu, pmap, va, PTBL_HOLD);
869		} else {
870			/*
871			 * pte is not used, increment hold count
872			 * for ptbl pages.
873			 */
874			if (pmap != kernel_pmap)
875				ptbl_hold(mmu, pmap, pdir_idx);
876		}
877	}
878
879	/*
880	 * Insert pv_entry into pv_list for mapped page if part of managed
881	 * memory.
882	 */
883        if ((m->flags & PG_FICTITIOUS) == 0) {
884		if ((m->flags & PG_UNMANAGED) == 0) {
885			flags |= PTE_MANAGED;
886
887			/* Create and insert pv entry. */
888			pv_insert(pmap, va, m);
889		}
890	}
891
892	pmap->pm_stats.resident_count++;
893
894	mtx_lock_spin(&tlbivax_mutex);
895	tlb_miss_lock();
896
897	tlb0_flush_entry(va);
898	if (pmap->pm_pdir[pdir_idx] == NULL) {
899		/*
900		 * If we just allocated a new page table, hook it in
901		 * the pdir.
902		 */
903		pmap->pm_pdir[pdir_idx] = ptbl;
904	}
905	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
906	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
907	pte->flags |= (PTE_VALID | flags);
908
909	tlb_miss_unlock();
910	mtx_unlock_spin(&tlbivax_mutex);
911}
912
913/* Return the pa for the given pmap/va. */
914static vm_paddr_t
915pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
916{
917	vm_paddr_t pa = 0;
918	pte_t *pte;
919
920	pte = pte_find(mmu, pmap, va);
921	if ((pte != NULL) && PTE_ISVALID(pte))
922		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
923	return (pa);
924}
925
926/* Get a pointer to a PTE in a page table. */
927static pte_t *
928pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
929{
930	unsigned int pdir_idx = PDIR_IDX(va);
931	unsigned int ptbl_idx = PTBL_IDX(va);
932
933	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
934
935	if (pmap->pm_pdir[pdir_idx])
936		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
937
938	return (NULL);
939}
940
941/**************************************************************************/
942/* PMAP related */
943/**************************************************************************/
944
945/*
946 * This is called during booke_init, before the system is really initialized.
947 */
948static void
949mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
950{
951	vm_offset_t phys_kernelend;
952	struct mem_region *mp, *mp1;
953	int cnt, i, j;
954	u_int s, e, sz;
955	u_int phys_avail_count;
956	vm_size_t physsz, hwphyssz, kstack0_sz;
957	vm_offset_t kernel_pdir, kstack0, va;
958	vm_paddr_t kstack0_phys;
959	void *dpcpu;
960	pte_t *pte;
961
962	debugf("mmu_booke_bootstrap: entered\n");
963
964	/* Initialize invalidation mutex */
965	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
966
967	/* Read TLB0 size and associativity. */
968	tlb0_get_tlbconf();
969
970	/* Align kernel start and end address (kernel image). */
971	kernstart = trunc_page(start);
972	data_start = round_page(kernelend);
973	kernsize = data_start - kernstart;
974
975	data_end = data_start;
976
977	/* Allocate space for the message buffer. */
978	msgbufp = (struct msgbuf *)data_end;
979	data_end += msgbufsize;
980	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
981	    data_end);
982
983	data_end = round_page(data_end);
984
985	/* Allocate the dynamic per-cpu area. */
986	dpcpu = (void *)data_end;
987	data_end += DPCPU_SIZE;
988	dpcpu_init(dpcpu, 0);
989
990	/* Allocate space for ptbl_bufs. */
991	ptbl_bufs = (struct ptbl_buf *)data_end;
992	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
993	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
994	    data_end);
995
996	data_end = round_page(data_end);
997
998	/* Allocate PTE tables for kernel KVA. */
999	kernel_pdir = data_end;
1000	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1001	    PDIR_SIZE - 1) / PDIR_SIZE;
1002	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1003	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1004	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1005
1006	debugf(" data_end: 0x%08x\n", data_end);
1007	if (data_end - kernstart > 0x1000000) {
1008		data_end = (data_end + 0x3fffff) & ~0x3fffff;
1009		tlb1_mapin_region(kernstart + 0x1000000,
1010		    kernload + 0x1000000, data_end - kernstart - 0x1000000);
1011	} else
1012		data_end = (data_end + 0xffffff) & ~0xffffff;
1013
1014	debugf(" updated data_end: 0x%08x\n", data_end);
1015
1016	kernsize += data_end - data_start;
1017
1018	/*
1019	 * Clear the structures - note we can only do it safely after the
1020	 * possible additional TLB1 translations are in place (above) so that
1021	 * all range up to the currently calculated 'data_end' is covered.
1022	 */
1023	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1024	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1025
1026	/*******************************************************/
1027	/* Set the start and end of kva. */
1028	/*******************************************************/
1029	virtual_avail = round_page(data_end);
1030	virtual_end = VM_MAX_KERNEL_ADDRESS;
1031
1032	/* Allocate KVA space for page zero/copy operations. */
1033	zero_page_va = virtual_avail;
1034	virtual_avail += PAGE_SIZE;
1035	zero_page_idle_va = virtual_avail;
1036	virtual_avail += PAGE_SIZE;
1037	copy_page_src_va = virtual_avail;
1038	virtual_avail += PAGE_SIZE;
1039	copy_page_dst_va = virtual_avail;
1040	virtual_avail += PAGE_SIZE;
1041	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1042	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1043	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1044	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1045
1046	/* Initialize page zero/copy mutexes. */
1047	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1048	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1049
1050	/* Allocate KVA space for ptbl bufs. */
1051	ptbl_buf_pool_vabase = virtual_avail;
1052	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1053	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1054	    ptbl_buf_pool_vabase, virtual_avail);
1055
1056	/* Calculate corresponding physical addresses for the kernel region. */
1057	phys_kernelend = kernload + kernsize;
1058	debugf("kernel image and allocated data:\n");
1059	debugf(" kernload    = 0x%08x\n", kernload);
1060	debugf(" kernstart   = 0x%08x\n", kernstart);
1061	debugf(" kernsize    = 0x%08x\n", kernsize);
1062
1063	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1064		panic("mmu_booke_bootstrap: phys_avail too small");
1065
1066	/*
1067	 * Remove kernel physical address range from avail regions list. Page
1068	 * align all regions.  Non-page aligned memory isn't very interesting
1069	 * to us.  Also, sort the entries for ascending addresses.
1070	 */
1071
1072	/* Retrieve phys/avail mem regions */
1073	mem_regions(&physmem_regions, &physmem_regions_sz,
1074	    &availmem_regions, &availmem_regions_sz);
1075	sz = 0;
1076	cnt = availmem_regions_sz;
1077	debugf("processing avail regions:\n");
1078	for (mp = availmem_regions; mp->mr_size; mp++) {
1079		s = mp->mr_start;
1080		e = mp->mr_start + mp->mr_size;
1081		debugf(" %08x-%08x -> ", s, e);
1082		/* Check whether this region holds all of the kernel. */
1083		if (s < kernload && e > phys_kernelend) {
1084			availmem_regions[cnt].mr_start = phys_kernelend;
1085			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1086			e = kernload;
1087		}
1088		/* Look whether this regions starts within the kernel. */
1089		if (s >= kernload && s < phys_kernelend) {
1090			if (e <= phys_kernelend)
1091				goto empty;
1092			s = phys_kernelend;
1093		}
1094		/* Now look whether this region ends within the kernel. */
1095		if (e > kernload && e <= phys_kernelend) {
1096			if (s >= kernload)
1097				goto empty;
1098			e = kernload;
1099		}
1100		/* Now page align the start and size of the region. */
1101		s = round_page(s);
1102		e = trunc_page(e);
1103		if (e < s)
1104			e = s;
1105		sz = e - s;
1106		debugf("%08x-%08x = %x\n", s, e, sz);
1107
1108		/* Check whether some memory is left here. */
1109		if (sz == 0) {
1110		empty:
1111			memmove(mp, mp + 1,
1112			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1113			cnt--;
1114			mp--;
1115			continue;
1116		}
1117
1118		/* Do an insertion sort. */
1119		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1120			if (s < mp1->mr_start)
1121				break;
1122		if (mp1 < mp) {
1123			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1124			mp1->mr_start = s;
1125			mp1->mr_size = sz;
1126		} else {
1127			mp->mr_start = s;
1128			mp->mr_size = sz;
1129		}
1130	}
1131	availmem_regions_sz = cnt;
1132
1133	/*******************************************************/
1134	/* Steal physical memory for kernel stack from the end */
1135	/* of the first avail region                           */
1136	/*******************************************************/
1137	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1138	kstack0_phys = availmem_regions[0].mr_start +
1139	    availmem_regions[0].mr_size;
1140	kstack0_phys -= kstack0_sz;
1141	availmem_regions[0].mr_size -= kstack0_sz;
1142
1143	/*******************************************************/
1144	/* Fill in phys_avail table, based on availmem_regions */
1145	/*******************************************************/
1146	phys_avail_count = 0;
1147	physsz = 0;
1148	hwphyssz = 0;
1149	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1150
1151	debugf("fill in phys_avail:\n");
1152	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1153
1154		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1155		    availmem_regions[i].mr_start,
1156		    availmem_regions[i].mr_start +
1157		        availmem_regions[i].mr_size,
1158		    availmem_regions[i].mr_size);
1159
1160		if (hwphyssz != 0 &&
1161		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1162			debugf(" hw.physmem adjust\n");
1163			if (physsz < hwphyssz) {
1164				phys_avail[j] = availmem_regions[i].mr_start;
1165				phys_avail[j + 1] =
1166				    availmem_regions[i].mr_start +
1167				    hwphyssz - physsz;
1168				physsz = hwphyssz;
1169				phys_avail_count++;
1170			}
1171			break;
1172		}
1173
1174		phys_avail[j] = availmem_regions[i].mr_start;
1175		phys_avail[j + 1] = availmem_regions[i].mr_start +
1176		    availmem_regions[i].mr_size;
1177		phys_avail_count++;
1178		physsz += availmem_regions[i].mr_size;
1179	}
1180	physmem = btoc(physsz);
1181
1182	/* Calculate the last available physical address. */
1183	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1184		;
1185	Maxmem = powerpc_btop(phys_avail[i + 1]);
1186
1187	debugf("Maxmem = 0x%08lx\n", Maxmem);
1188	debugf("phys_avail_count = %d\n", phys_avail_count);
1189	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1190	    physmem);
1191
1192	/*******************************************************/
1193	/* Initialize (statically allocated) kernel pmap. */
1194	/*******************************************************/
1195	PMAP_LOCK_INIT(kernel_pmap);
1196	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1197
1198	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1199	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1200	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1201	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1202
1203	/* Initialize kernel pdir */
1204	for (i = 0; i < kernel_ptbls; i++)
1205		kernel_pmap->pm_pdir[kptbl_min + i] =
1206		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1207
1208	for (i = 0; i < MAXCPU; i++) {
1209		kernel_pmap->pm_tid[i] = TID_KERNEL;
1210
1211		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1212		tidbusy[i][0] = kernel_pmap;
1213	}
1214
1215	/*
1216	 * Fill in PTEs covering kernel code and data. They are not required
1217	 * for address translation, as this area is covered by static TLB1
1218	 * entries, but for pte_vatopa() to work correctly with kernel area
1219	 * addresses.
1220	 */
1221	for (va = KERNBASE; va < data_end; va += PAGE_SIZE) {
1222		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1223		pte->rpn = kernload + (va - KERNBASE);
1224		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1225		    PTE_VALID;
1226	}
1227	/* Mark kernel_pmap active on all CPUs */
1228	kernel_pmap->pm_active = ~0;
1229
1230	/*******************************************************/
1231	/* Final setup */
1232	/*******************************************************/
1233
1234	/* Enter kstack0 into kernel map, provide guard page */
1235	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1236	thread0.td_kstack = kstack0;
1237	thread0.td_kstack_pages = KSTACK_PAGES;
1238
1239	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1240	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1241	    kstack0_phys, kstack0_phys + kstack0_sz);
1242	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1243
1244	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1245	for (i = 0; i < KSTACK_PAGES; i++) {
1246		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1247		kstack0 += PAGE_SIZE;
1248		kstack0_phys += PAGE_SIZE;
1249	}
1250
1251	debugf("virtual_avail = %08x\n", virtual_avail);
1252	debugf("virtual_end   = %08x\n", virtual_end);
1253
1254	debugf("mmu_booke_bootstrap: exit\n");
1255}
1256
1257void
1258pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1259{
1260	int i;
1261
1262	/*
1263	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1264	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1265	 * these values directly to (re)program AP's TLB1 hardware.
1266	 */
1267	for (i = 0; i < tlb1_idx; i ++) {
1268		/* Skip invalid entries */
1269		if (!(tlb1[i].mas1 & MAS1_VALID))
1270			continue;
1271
1272		tlb1_write_entry(i);
1273	}
1274
1275	set_mas4_defaults();
1276}
1277
1278/*
1279 * Get the physical page address for the given pmap/virtual address.
1280 */
1281static vm_paddr_t
1282mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1283{
1284	vm_paddr_t pa;
1285
1286	PMAP_LOCK(pmap);
1287	pa = pte_vatopa(mmu, pmap, va);
1288	PMAP_UNLOCK(pmap);
1289
1290	return (pa);
1291}
1292
1293/*
1294 * Extract the physical page address associated with the given
1295 * kernel virtual address.
1296 */
1297static vm_paddr_t
1298mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1299{
1300
1301	return (pte_vatopa(mmu, kernel_pmap, va));
1302}
1303
1304/*
1305 * Initialize the pmap module.
1306 * Called by vm_init, to initialize any structures that the pmap
1307 * system needs to map virtual memory.
1308 */
1309static void
1310mmu_booke_init(mmu_t mmu)
1311{
1312	int shpgperproc = PMAP_SHPGPERPROC;
1313
1314	/*
1315	 * Initialize the address space (zone) for the pv entries.  Set a
1316	 * high water mark so that the system can recover from excessive
1317	 * numbers of pv entries.
1318	 */
1319	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1320	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1321
1322	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1323	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1324
1325	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1326	pv_entry_high_water = 9 * (pv_entry_max / 10);
1327
1328	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
1329
1330	/* Pre-fill pvzone with initial number of pv entries. */
1331	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1332
1333	/* Initialize ptbl allocation. */
1334	ptbl_init();
1335}
1336
1337/*
1338 * Map a list of wired pages into kernel virtual address space.  This is
1339 * intended for temporary mappings which do not need page modification or
1340 * references recorded.  Existing mappings in the region are overwritten.
1341 */
1342static void
1343mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1344{
1345	vm_offset_t va;
1346
1347	va = sva;
1348	while (count-- > 0) {
1349		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1350		va += PAGE_SIZE;
1351		m++;
1352	}
1353}
1354
1355/*
1356 * Remove page mappings from kernel virtual address space.  Intended for
1357 * temporary mappings entered by mmu_booke_qenter.
1358 */
1359static void
1360mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1361{
1362	vm_offset_t va;
1363
1364	va = sva;
1365	while (count-- > 0) {
1366		mmu_booke_kremove(mmu, va);
1367		va += PAGE_SIZE;
1368	}
1369}
1370
1371/*
1372 * Map a wired page into kernel virtual address space.
1373 */
1374static void
1375mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1376{
1377	unsigned int pdir_idx = PDIR_IDX(va);
1378	unsigned int ptbl_idx = PTBL_IDX(va);
1379	uint32_t flags;
1380	pte_t *pte;
1381
1382	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1383	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1384
1385	flags = 0;
1386	flags |= (PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID);
1387	flags |= PTE_M;
1388
1389	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1390
1391	mtx_lock_spin(&tlbivax_mutex);
1392	tlb_miss_lock();
1393
1394	if (PTE_ISVALID(pte)) {
1395
1396		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1397
1398		/* Flush entry from TLB0 */
1399		tlb0_flush_entry(va);
1400	}
1401
1402	pte->rpn = pa & ~PTE_PA_MASK;
1403	pte->flags = flags;
1404
1405	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1406	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1407	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1408
1409	/* Flush the real memory from the instruction cache. */
1410	if ((flags & (PTE_I | PTE_G)) == 0) {
1411		__syncicache((void *)va, PAGE_SIZE);
1412	}
1413
1414	tlb_miss_unlock();
1415	mtx_unlock_spin(&tlbivax_mutex);
1416}
1417
1418/*
1419 * Remove a page from kernel page table.
1420 */
1421static void
1422mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1423{
1424	unsigned int pdir_idx = PDIR_IDX(va);
1425	unsigned int ptbl_idx = PTBL_IDX(va);
1426	pte_t *pte;
1427
1428//	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1429
1430	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1431	    (va <= VM_MAX_KERNEL_ADDRESS)),
1432	    ("mmu_booke_kremove: invalid va"));
1433
1434	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1435
1436	if (!PTE_ISVALID(pte)) {
1437
1438		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1439
1440		return;
1441	}
1442
1443	mtx_lock_spin(&tlbivax_mutex);
1444	tlb_miss_lock();
1445
1446	/* Invalidate entry in TLB0, update PTE. */
1447	tlb0_flush_entry(va);
1448	pte->flags = 0;
1449	pte->rpn = 0;
1450
1451	tlb_miss_unlock();
1452	mtx_unlock_spin(&tlbivax_mutex);
1453}
1454
1455/*
1456 * Initialize pmap associated with process 0.
1457 */
1458static void
1459mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1460{
1461
1462	mmu_booke_pinit(mmu, pmap);
1463	PCPU_SET(curpmap, pmap);
1464}
1465
1466/*
1467 * Initialize a preallocated and zeroed pmap structure,
1468 * such as one in a vmspace structure.
1469 */
1470static void
1471mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1472{
1473	int i;
1474
1475	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1476	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1477
1478	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1479
1480	PMAP_LOCK_INIT(pmap);
1481	for (i = 0; i < MAXCPU; i++)
1482		pmap->pm_tid[i] = TID_NONE;
1483	pmap->pm_active = 0;
1484	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1485	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1486	TAILQ_INIT(&pmap->pm_ptbl_list);
1487}
1488
1489/*
1490 * Release any resources held by the given physical map.
1491 * Called when a pmap initialized by mmu_booke_pinit is being released.
1492 * Should only be called if the map contains no valid mappings.
1493 */
1494static void
1495mmu_booke_release(mmu_t mmu, pmap_t pmap)
1496{
1497
1498	KASSERT(pmap->pm_stats.resident_count == 0,
1499	    ("pmap_release: pmap resident count %ld != 0",
1500	    pmap->pm_stats.resident_count));
1501
1502	PMAP_LOCK_DESTROY(pmap);
1503}
1504
1505/*
1506 * Insert the given physical page at the specified virtual address in the
1507 * target physical map with the protection requested. If specified the page
1508 * will be wired down.
1509 */
1510static void
1511mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1512    vm_prot_t prot, boolean_t wired)
1513{
1514
1515	vm_page_lock_queues();
1516	PMAP_LOCK(pmap);
1517	mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1518	vm_page_unlock_queues();
1519	PMAP_UNLOCK(pmap);
1520}
1521
1522static void
1523mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1524    vm_prot_t prot, boolean_t wired)
1525{
1526	pte_t *pte;
1527	vm_paddr_t pa;
1528	uint32_t flags;
1529	int su, sync;
1530
1531	pa = VM_PAGE_TO_PHYS(m);
1532	su = (pmap == kernel_pmap);
1533	sync = 0;
1534
1535	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1536	//		"pa=0x%08x prot=0x%08x wired=%d)\n",
1537	//		(u_int32_t)pmap, su, pmap->pm_tid,
1538	//		(u_int32_t)m, va, pa, prot, wired);
1539
1540	if (su) {
1541		KASSERT(((va >= virtual_avail) &&
1542		    (va <= VM_MAX_KERNEL_ADDRESS)),
1543		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1544	} else {
1545		KASSERT((va <= VM_MAXUSER_ADDRESS),
1546		    ("mmu_booke_enter_locked: user pmap, non user va"));
1547	}
1548	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1549	    (m->oflags & VPO_BUSY) != 0 || VM_OBJECT_LOCKED(m->object),
1550	    ("mmu_booke_enter_locked: page %p is not busy", m));
1551
1552	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1553
1554	/*
1555	 * If there is an existing mapping, and the physical address has not
1556	 * changed, must be protection or wiring change.
1557	 */
1558	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1559	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1560
1561		/*
1562		 * Before actually updating pte->flags we calculate and
1563		 * prepare its new value in a helper var.
1564		 */
1565		flags = pte->flags;
1566		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1567
1568		/* Wiring change, just update stats. */
1569		if (wired) {
1570			if (!PTE_ISWIRED(pte)) {
1571				flags |= PTE_WIRED;
1572				pmap->pm_stats.wired_count++;
1573			}
1574		} else {
1575			if (PTE_ISWIRED(pte)) {
1576				flags &= ~PTE_WIRED;
1577				pmap->pm_stats.wired_count--;
1578			}
1579		}
1580
1581		if (prot & VM_PROT_WRITE) {
1582			/* Add write permissions. */
1583			flags |= PTE_SW;
1584			if (!su)
1585				flags |= PTE_UW;
1586
1587			if ((flags & PTE_MANAGED) != 0)
1588				vm_page_flag_set(m, PG_WRITEABLE);
1589		} else {
1590			/* Handle modified pages, sense modify status. */
1591
1592			/*
1593			 * The PTE_MODIFIED flag could be set by underlying
1594			 * TLB misses since we last read it (above), possibly
1595			 * other CPUs could update it so we check in the PTE
1596			 * directly rather than rely on that saved local flags
1597			 * copy.
1598			 */
1599			if (PTE_ISMODIFIED(pte))
1600				vm_page_dirty(m);
1601		}
1602
1603		if (prot & VM_PROT_EXECUTE) {
1604			flags |= PTE_SX;
1605			if (!su)
1606				flags |= PTE_UX;
1607
1608			/*
1609			 * Check existing flags for execute permissions: if we
1610			 * are turning execute permissions on, icache should
1611			 * be flushed.
1612			 */
1613			if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
1614				sync++;
1615		}
1616
1617		flags &= ~PTE_REFERENCED;
1618
1619		/*
1620		 * The new flags value is all calculated -- only now actually
1621		 * update the PTE.
1622		 */
1623		mtx_lock_spin(&tlbivax_mutex);
1624		tlb_miss_lock();
1625
1626		tlb0_flush_entry(va);
1627		pte->flags = flags;
1628
1629		tlb_miss_unlock();
1630		mtx_unlock_spin(&tlbivax_mutex);
1631
1632	} else {
1633		/*
1634		 * If there is an existing mapping, but it's for a different
1635		 * physical address, pte_enter() will delete the old mapping.
1636		 */
1637		//if ((pte != NULL) && PTE_ISVALID(pte))
1638		//	debugf("mmu_booke_enter_locked: replace\n");
1639		//else
1640		//	debugf("mmu_booke_enter_locked: new\n");
1641
1642		/* Now set up the flags and install the new mapping. */
1643		flags = (PTE_SR | PTE_VALID);
1644		flags |= PTE_M;
1645
1646		if (!su)
1647			flags |= PTE_UR;
1648
1649		if (prot & VM_PROT_WRITE) {
1650			flags |= PTE_SW;
1651			if (!su)
1652				flags |= PTE_UW;
1653
1654			if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
1655				vm_page_flag_set(m, PG_WRITEABLE);
1656		}
1657
1658		if (prot & VM_PROT_EXECUTE) {
1659			flags |= PTE_SX;
1660			if (!su)
1661				flags |= PTE_UX;
1662		}
1663
1664		/* If its wired update stats. */
1665		if (wired) {
1666			pmap->pm_stats.wired_count++;
1667			flags |= PTE_WIRED;
1668		}
1669
1670		pte_enter(mmu, pmap, m, va, flags);
1671
1672		/* Flush the real memory from the instruction cache. */
1673		if (prot & VM_PROT_EXECUTE)
1674			sync++;
1675	}
1676
1677	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1678		__syncicache((void *)va, PAGE_SIZE);
1679		sync = 0;
1680	}
1681}
1682
1683/*
1684 * Maps a sequence of resident pages belonging to the same object.
1685 * The sequence begins with the given page m_start.  This page is
1686 * mapped at the given virtual address start.  Each subsequent page is
1687 * mapped at a virtual address that is offset from start by the same
1688 * amount as the page is offset from m_start within the object.  The
1689 * last page in the sequence is the page with the largest offset from
1690 * m_start that can be mapped at a virtual address less than the given
1691 * virtual address end.  Not every virtual page between start and end
1692 * is mapped; only those for which a resident page exists with the
1693 * corresponding offset from m_start are mapped.
1694 */
1695static void
1696mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1697    vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1698{
1699	vm_page_t m;
1700	vm_pindex_t diff, psize;
1701
1702	psize = atop(end - start);
1703	m = m_start;
1704	vm_page_lock_queues();
1705	PMAP_LOCK(pmap);
1706	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1707		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1708		    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1709		m = TAILQ_NEXT(m, listq);
1710	}
1711	vm_page_unlock_queues();
1712	PMAP_UNLOCK(pmap);
1713}
1714
1715static void
1716mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1717    vm_prot_t prot)
1718{
1719
1720	vm_page_lock_queues();
1721	PMAP_LOCK(pmap);
1722	mmu_booke_enter_locked(mmu, pmap, va, m,
1723	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1724	vm_page_unlock_queues();
1725	PMAP_UNLOCK(pmap);
1726}
1727
1728/*
1729 * Remove the given range of addresses from the specified map.
1730 *
1731 * It is assumed that the start and end are properly rounded to the page size.
1732 */
1733static void
1734mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1735{
1736	pte_t *pte;
1737	uint8_t hold_flag;
1738
1739	int su = (pmap == kernel_pmap);
1740
1741	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1742	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1743
1744	if (su) {
1745		KASSERT(((va >= virtual_avail) &&
1746		    (va <= VM_MAX_KERNEL_ADDRESS)),
1747		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1748	} else {
1749		KASSERT((va <= VM_MAXUSER_ADDRESS),
1750		    ("mmu_booke_remove: user pmap, non user va"));
1751	}
1752
1753	if (PMAP_REMOVE_DONE(pmap)) {
1754		//debugf("mmu_booke_remove: e (empty)\n");
1755		return;
1756	}
1757
1758	hold_flag = PTBL_HOLD_FLAG(pmap);
1759	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1760
1761	vm_page_lock_queues();
1762	PMAP_LOCK(pmap);
1763	for (; va < endva; va += PAGE_SIZE) {
1764		pte = pte_find(mmu, pmap, va);
1765		if ((pte != NULL) && PTE_ISVALID(pte))
1766			pte_remove(mmu, pmap, va, hold_flag);
1767	}
1768	PMAP_UNLOCK(pmap);
1769	vm_page_unlock_queues();
1770
1771	//debugf("mmu_booke_remove: e\n");
1772}
1773
1774/*
1775 * Remove physical page from all pmaps in which it resides.
1776 */
1777static void
1778mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1779{
1780	pv_entry_t pv, pvn;
1781	uint8_t hold_flag;
1782
1783	vm_page_lock_queues();
1784	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1785		pvn = TAILQ_NEXT(pv, pv_link);
1786
1787		PMAP_LOCK(pv->pv_pmap);
1788		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1789		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1790		PMAP_UNLOCK(pv->pv_pmap);
1791	}
1792	vm_page_flag_clear(m, PG_WRITEABLE);
1793	vm_page_unlock_queues();
1794}
1795
1796/*
1797 * Map a range of physical addresses into kernel virtual address space.
1798 */
1799static vm_offset_t
1800mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1801    vm_offset_t pa_end, int prot)
1802{
1803	vm_offset_t sva = *virt;
1804	vm_offset_t va = sva;
1805
1806	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1807	//		sva, pa_start, pa_end);
1808
1809	while (pa_start < pa_end) {
1810		mmu_booke_kenter(mmu, va, pa_start);
1811		va += PAGE_SIZE;
1812		pa_start += PAGE_SIZE;
1813	}
1814	*virt = va;
1815
1816	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1817	return (sva);
1818}
1819
1820/*
1821 * The pmap must be activated before it's address space can be accessed in any
1822 * way.
1823 */
1824static void
1825mmu_booke_activate(mmu_t mmu, struct thread *td)
1826{
1827	pmap_t pmap;
1828
1829	pmap = &td->td_proc->p_vmspace->vm_pmap;
1830
1831	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1832	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1833
1834	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1835
1836	mtx_lock_spin(&sched_lock);
1837
1838	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
1839	PCPU_SET(curpmap, pmap);
1840
1841	if (pmap->pm_tid[PCPU_GET(cpuid)] == TID_NONE)
1842		tid_alloc(pmap);
1843
1844	/* Load PID0 register with pmap tid value. */
1845	mtspr(SPR_PID0, pmap->pm_tid[PCPU_GET(cpuid)]);
1846	__asm __volatile("isync");
1847
1848	mtx_unlock_spin(&sched_lock);
1849
1850	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1851	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1852}
1853
1854/*
1855 * Deactivate the specified process's address space.
1856 */
1857static void
1858mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1859{
1860	pmap_t pmap;
1861
1862	pmap = &td->td_proc->p_vmspace->vm_pmap;
1863
1864	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1865	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1866
1867	atomic_clear_int(&pmap->pm_active, PCPU_GET(cpumask));
1868	PCPU_SET(curpmap, NULL);
1869}
1870
1871/*
1872 * Copy the range specified by src_addr/len
1873 * from the source map to the range dst_addr/len
1874 * in the destination map.
1875 *
1876 * This routine is only advisory and need not do anything.
1877 */
1878static void
1879mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1880    vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1881{
1882
1883}
1884
1885/*
1886 * Set the physical protection on the specified range of this map as requested.
1887 */
1888static void
1889mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1890    vm_prot_t prot)
1891{
1892	vm_offset_t va;
1893	vm_page_t m;
1894	pte_t *pte;
1895
1896	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1897		mmu_booke_remove(mmu, pmap, sva, eva);
1898		return;
1899	}
1900
1901	if (prot & VM_PROT_WRITE)
1902		return;
1903
1904	vm_page_lock_queues();
1905	PMAP_LOCK(pmap);
1906	for (va = sva; va < eva; va += PAGE_SIZE) {
1907		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1908			if (PTE_ISVALID(pte)) {
1909				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1910
1911				mtx_lock_spin(&tlbivax_mutex);
1912				tlb_miss_lock();
1913
1914				/* Handle modified pages. */
1915				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1916					vm_page_dirty(m);
1917
1918				tlb0_flush_entry(va);
1919				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1920
1921				tlb_miss_unlock();
1922				mtx_unlock_spin(&tlbivax_mutex);
1923			}
1924		}
1925	}
1926	PMAP_UNLOCK(pmap);
1927	vm_page_unlock_queues();
1928}
1929
1930/*
1931 * Clear the write and modified bits in each of the given page's mappings.
1932 */
1933static void
1934mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
1935{
1936	pv_entry_t pv;
1937	pte_t *pte;
1938
1939	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1940	    ("mmu_booke_remove_write: page %p is not managed", m));
1941
1942	/*
1943	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
1944	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
1945	 * is clear, no page table entries need updating.
1946	 */
1947	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1948	if ((m->oflags & VPO_BUSY) == 0 &&
1949	    (m->flags & PG_WRITEABLE) == 0)
1950		return;
1951	vm_page_lock_queues();
1952	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1953		PMAP_LOCK(pv->pv_pmap);
1954		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
1955			if (PTE_ISVALID(pte)) {
1956				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1957
1958				mtx_lock_spin(&tlbivax_mutex);
1959				tlb_miss_lock();
1960
1961				/* Handle modified pages. */
1962				if (PTE_ISMODIFIED(pte))
1963					vm_page_dirty(m);
1964
1965				/* Flush mapping from TLB0. */
1966				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1967
1968				tlb_miss_unlock();
1969				mtx_unlock_spin(&tlbivax_mutex);
1970			}
1971		}
1972		PMAP_UNLOCK(pv->pv_pmap);
1973	}
1974	vm_page_flag_clear(m, PG_WRITEABLE);
1975	vm_page_unlock_queues();
1976}
1977
1978static void
1979mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
1980{
1981	pte_t *pte;
1982	pmap_t pmap;
1983	vm_page_t m;
1984	vm_offset_t addr;
1985	vm_paddr_t pa;
1986	int active, valid;
1987
1988	va = trunc_page(va);
1989	sz = round_page(sz);
1990
1991	vm_page_lock_queues();
1992	pmap = PCPU_GET(curpmap);
1993	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
1994	while (sz > 0) {
1995		PMAP_LOCK(pm);
1996		pte = pte_find(mmu, pm, va);
1997		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
1998		if (valid)
1999			pa = PTE_PA(pte);
2000		PMAP_UNLOCK(pm);
2001		if (valid) {
2002			if (!active) {
2003				/* Create a mapping in the active pmap. */
2004				addr = 0;
2005				m = PHYS_TO_VM_PAGE(pa);
2006				PMAP_LOCK(pmap);
2007				pte_enter(mmu, pmap, m, addr,
2008				    PTE_SR | PTE_VALID | PTE_UR);
2009				__syncicache((void *)addr, PAGE_SIZE);
2010				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2011				PMAP_UNLOCK(pmap);
2012			} else
2013				__syncicache((void *)va, PAGE_SIZE);
2014		}
2015		va += PAGE_SIZE;
2016		sz -= PAGE_SIZE;
2017	}
2018	vm_page_unlock_queues();
2019}
2020
2021/*
2022 * Atomically extract and hold the physical page with the given
2023 * pmap and virtual address pair if that mapping permits the given
2024 * protection.
2025 */
2026static vm_page_t
2027mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2028    vm_prot_t prot)
2029{
2030	pte_t *pte;
2031	vm_page_t m;
2032	uint32_t pte_wbit;
2033	vm_paddr_t pa;
2034
2035	m = NULL;
2036	pa = 0;
2037	PMAP_LOCK(pmap);
2038retry:
2039	pte = pte_find(mmu, pmap, va);
2040	if ((pte != NULL) && PTE_ISVALID(pte)) {
2041		if (pmap == kernel_pmap)
2042			pte_wbit = PTE_SW;
2043		else
2044			pte_wbit = PTE_UW;
2045
2046		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2047			if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2048				goto retry;
2049			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2050			vm_page_hold(m);
2051		}
2052	}
2053
2054	PA_UNLOCK_COND(pa);
2055	PMAP_UNLOCK(pmap);
2056	return (m);
2057}
2058
2059/*
2060 * Initialize a vm_page's machine-dependent fields.
2061 */
2062static void
2063mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2064{
2065
2066	TAILQ_INIT(&m->md.pv_list);
2067}
2068
2069/*
2070 * mmu_booke_zero_page_area zeros the specified hardware page by
2071 * mapping it into virtual memory and using bzero to clear
2072 * its contents.
2073 *
2074 * off and size must reside within a single page.
2075 */
2076static void
2077mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2078{
2079	vm_offset_t va;
2080
2081	/* XXX KASSERT off and size are within a single page? */
2082
2083	mtx_lock(&zero_page_mutex);
2084	va = zero_page_va;
2085
2086	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2087	bzero((caddr_t)va + off, size);
2088	mmu_booke_kremove(mmu, va);
2089
2090	mtx_unlock(&zero_page_mutex);
2091}
2092
2093/*
2094 * mmu_booke_zero_page zeros the specified hardware page.
2095 */
2096static void
2097mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2098{
2099
2100	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2101}
2102
2103/*
2104 * mmu_booke_copy_page copies the specified (machine independent) page by
2105 * mapping the page into virtual memory and using memcopy to copy the page,
2106 * one machine dependent page at a time.
2107 */
2108static void
2109mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2110{
2111	vm_offset_t sva, dva;
2112
2113	sva = copy_page_src_va;
2114	dva = copy_page_dst_va;
2115
2116	mtx_lock(&copy_page_mutex);
2117	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2118	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2119	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2120	mmu_booke_kremove(mmu, dva);
2121	mmu_booke_kremove(mmu, sva);
2122	mtx_unlock(&copy_page_mutex);
2123}
2124
2125/*
2126 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2127 * into virtual memory and using bzero to clear its contents. This is intended
2128 * to be called from the vm_pagezero process only and outside of Giant. No
2129 * lock is required.
2130 */
2131static void
2132mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2133{
2134	vm_offset_t va;
2135
2136	va = zero_page_idle_va;
2137	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2138	bzero((caddr_t)va, PAGE_SIZE);
2139	mmu_booke_kremove(mmu, va);
2140}
2141
2142/*
2143 * Return whether or not the specified physical page was modified
2144 * in any of physical maps.
2145 */
2146static boolean_t
2147mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2148{
2149	pte_t *pte;
2150	pv_entry_t pv;
2151	boolean_t rv;
2152
2153	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2154	    ("mmu_booke_is_modified: page %p is not managed", m));
2155	rv = FALSE;
2156
2157	/*
2158	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
2159	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
2160	 * is clear, no PTEs can be modified.
2161	 */
2162	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2163	if ((m->oflags & VPO_BUSY) == 0 &&
2164	    (m->flags & PG_WRITEABLE) == 0)
2165		return (rv);
2166	vm_page_lock_queues();
2167	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2168		PMAP_LOCK(pv->pv_pmap);
2169		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2170		    PTE_ISVALID(pte)) {
2171			if (PTE_ISMODIFIED(pte))
2172				rv = TRUE;
2173		}
2174		PMAP_UNLOCK(pv->pv_pmap);
2175		if (rv)
2176			break;
2177	}
2178	vm_page_unlock_queues();
2179	return (rv);
2180}
2181
2182/*
2183 * Return whether or not the specified virtual address is eligible
2184 * for prefault.
2185 */
2186static boolean_t
2187mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2188{
2189
2190	return (FALSE);
2191}
2192
2193/*
2194 * Return whether or not the specified physical page was referenced
2195 * in any physical maps.
2196 */
2197static boolean_t
2198mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2199{
2200	pte_t *pte;
2201	pv_entry_t pv;
2202	boolean_t rv;
2203
2204	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2205	    ("mmu_booke_is_referenced: page %p is not managed", m));
2206	rv = FALSE;
2207	vm_page_lock_queues();
2208	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2209		PMAP_LOCK(pv->pv_pmap);
2210		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2211		    PTE_ISVALID(pte)) {
2212			if (PTE_ISREFERENCED(pte))
2213				rv = TRUE;
2214		}
2215		PMAP_UNLOCK(pv->pv_pmap);
2216		if (rv)
2217			break;
2218	}
2219	vm_page_unlock_queues();
2220	return (rv);
2221}
2222
2223/*
2224 * Clear the modify bits on the specified physical page.
2225 */
2226static void
2227mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2228{
2229	pte_t *pte;
2230	pv_entry_t pv;
2231
2232	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2233	    ("mmu_booke_clear_modify: page %p is not managed", m));
2234	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2235	KASSERT((m->oflags & VPO_BUSY) == 0,
2236	    ("mmu_booke_clear_modify: page %p is busy", m));
2237
2238	/*
2239	 * If the page is not PG_WRITEABLE, then no PTEs can be modified.
2240	 * If the object containing the page is locked and the page is not
2241	 * VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
2242	 */
2243	if ((m->flags & PG_WRITEABLE) == 0)
2244		return;
2245	vm_page_lock_queues();
2246	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2247		PMAP_LOCK(pv->pv_pmap);
2248		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2249		    PTE_ISVALID(pte)) {
2250			mtx_lock_spin(&tlbivax_mutex);
2251			tlb_miss_lock();
2252
2253			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2254				tlb0_flush_entry(pv->pv_va);
2255				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2256				    PTE_REFERENCED);
2257			}
2258
2259			tlb_miss_unlock();
2260			mtx_unlock_spin(&tlbivax_mutex);
2261		}
2262		PMAP_UNLOCK(pv->pv_pmap);
2263	}
2264	vm_page_unlock_queues();
2265}
2266
2267/*
2268 * Return a count of reference bits for a page, clearing those bits.
2269 * It is not necessary for every reference bit to be cleared, but it
2270 * is necessary that 0 only be returned when there are truly no
2271 * reference bits set.
2272 *
2273 * XXX: The exact number of bits to check and clear is a matter that
2274 * should be tested and standardized at some point in the future for
2275 * optimal aging of shared pages.
2276 */
2277static int
2278mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2279{
2280	pte_t *pte;
2281	pv_entry_t pv;
2282	int count;
2283
2284	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2285	    ("mmu_booke_ts_referenced: page %p is not managed", m));
2286	count = 0;
2287	vm_page_lock_queues();
2288	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2289		PMAP_LOCK(pv->pv_pmap);
2290		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2291		    PTE_ISVALID(pte)) {
2292			if (PTE_ISREFERENCED(pte)) {
2293				mtx_lock_spin(&tlbivax_mutex);
2294				tlb_miss_lock();
2295
2296				tlb0_flush_entry(pv->pv_va);
2297				pte->flags &= ~PTE_REFERENCED;
2298
2299				tlb_miss_unlock();
2300				mtx_unlock_spin(&tlbivax_mutex);
2301
2302				if (++count > 4) {
2303					PMAP_UNLOCK(pv->pv_pmap);
2304					break;
2305				}
2306			}
2307		}
2308		PMAP_UNLOCK(pv->pv_pmap);
2309	}
2310	vm_page_unlock_queues();
2311	return (count);
2312}
2313
2314/*
2315 * Clear the reference bit on the specified physical page.
2316 */
2317static void
2318mmu_booke_clear_reference(mmu_t mmu, vm_page_t m)
2319{
2320	pte_t *pte;
2321	pv_entry_t pv;
2322
2323	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2324	    ("mmu_booke_clear_reference: page %p is not managed", m));
2325	vm_page_lock_queues();
2326	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2327		PMAP_LOCK(pv->pv_pmap);
2328		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2329		    PTE_ISVALID(pte)) {
2330			if (PTE_ISREFERENCED(pte)) {
2331				mtx_lock_spin(&tlbivax_mutex);
2332				tlb_miss_lock();
2333
2334				tlb0_flush_entry(pv->pv_va);
2335				pte->flags &= ~PTE_REFERENCED;
2336
2337				tlb_miss_unlock();
2338				mtx_unlock_spin(&tlbivax_mutex);
2339			}
2340		}
2341		PMAP_UNLOCK(pv->pv_pmap);
2342	}
2343	vm_page_unlock_queues();
2344}
2345
2346/*
2347 * Change wiring attribute for a map/virtual-address pair.
2348 */
2349static void
2350mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2351{
2352	pte_t *pte;
2353
2354	PMAP_LOCK(pmap);
2355	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2356		if (wired) {
2357			if (!PTE_ISWIRED(pte)) {
2358				pte->flags |= PTE_WIRED;
2359				pmap->pm_stats.wired_count++;
2360			}
2361		} else {
2362			if (PTE_ISWIRED(pte)) {
2363				pte->flags &= ~PTE_WIRED;
2364				pmap->pm_stats.wired_count--;
2365			}
2366		}
2367	}
2368	PMAP_UNLOCK(pmap);
2369}
2370
2371/*
2372 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2373 * page.  This count may be changed upwards or downwards in the future; it is
2374 * only necessary that true be returned for a small subset of pmaps for proper
2375 * page aging.
2376 */
2377static boolean_t
2378mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2379{
2380	pv_entry_t pv;
2381	int loops;
2382	boolean_t rv;
2383
2384	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2385	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
2386	loops = 0;
2387	rv = FALSE;
2388	vm_page_lock_queues();
2389	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2390		if (pv->pv_pmap == pmap) {
2391			rv = TRUE;
2392			break;
2393		}
2394		if (++loops >= 16)
2395			break;
2396	}
2397	vm_page_unlock_queues();
2398	return (rv);
2399}
2400
2401/*
2402 * Return the number of managed mappings to the given physical page that are
2403 * wired.
2404 */
2405static int
2406mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2407{
2408	pv_entry_t pv;
2409	pte_t *pte;
2410	int count = 0;
2411
2412	if ((m->flags & PG_FICTITIOUS) != 0)
2413		return (count);
2414	vm_page_lock_queues();
2415	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2416		PMAP_LOCK(pv->pv_pmap);
2417		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2418			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2419				count++;
2420		PMAP_UNLOCK(pv->pv_pmap);
2421	}
2422	vm_page_unlock_queues();
2423	return (count);
2424}
2425
2426static int
2427mmu_booke_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2428{
2429	int i;
2430	vm_offset_t va;
2431
2432	/*
2433	 * This currently does not work for entries that
2434	 * overlap TLB1 entries.
2435	 */
2436	for (i = 0; i < tlb1_idx; i ++) {
2437		if (tlb1_iomapped(i, pa, size, &va) == 0)
2438			return (0);
2439	}
2440
2441	return (EFAULT);
2442}
2443
2444vm_offset_t
2445mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2446    vm_size_t *sz)
2447{
2448	vm_paddr_t pa, ppa;
2449	vm_offset_t va;
2450	vm_size_t gran;
2451
2452	/* Raw physical memory dumps don't have a virtual address. */
2453	if (md->md_vaddr == ~0UL) {
2454		/* We always map a 256MB page at 256M. */
2455		gran = 256 * 1024 * 1024;
2456		pa = md->md_paddr + ofs;
2457		ppa = pa & ~(gran - 1);
2458		ofs = pa - ppa;
2459		va = gran;
2460		tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2461		if (*sz > (gran - ofs))
2462			*sz = gran - ofs;
2463		return (va + ofs);
2464	}
2465
2466	/* Minidumps are based on virtual memory addresses. */
2467	va = md->md_vaddr + ofs;
2468	if (va >= kernstart + kernsize) {
2469		gran = PAGE_SIZE - (va & PAGE_MASK);
2470		if (*sz > gran)
2471			*sz = gran;
2472	}
2473	return (va);
2474}
2475
2476void
2477mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2478    vm_offset_t va)
2479{
2480
2481	/* Raw physical memory dumps don't have a virtual address. */
2482	if (md->md_vaddr == ~0UL) {
2483		tlb1_idx--;
2484		tlb1[tlb1_idx].mas1 = 0;
2485		tlb1[tlb1_idx].mas2 = 0;
2486		tlb1[tlb1_idx].mas3 = 0;
2487		tlb1_write_entry(tlb1_idx);
2488		return;
2489	}
2490
2491	/* Minidumps are based on virtual memory addresses. */
2492	/* Nothing to do... */
2493}
2494
2495struct pmap_md *
2496mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2497{
2498	static struct pmap_md md;
2499	pte_t *pte;
2500	vm_offset_t va;
2501
2502	if (dumpsys_minidump) {
2503		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2504		if (prev == NULL) {
2505			/* 1st: kernel .data and .bss. */
2506			md.md_index = 1;
2507			md.md_vaddr = trunc_page((uintptr_t)_etext);
2508			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2509			return (&md);
2510		}
2511		switch (prev->md_index) {
2512		case 1:
2513			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2514			md.md_index = 2;
2515			md.md_vaddr = data_start;
2516			md.md_size = data_end - data_start;
2517			break;
2518		case 2:
2519			/* 3rd: kernel VM. */
2520			va = prev->md_vaddr + prev->md_size;
2521			/* Find start of next chunk (from va). */
2522			while (va < virtual_end) {
2523				/* Don't dump the buffer cache. */
2524				if (va >= kmi.buffer_sva &&
2525				    va < kmi.buffer_eva) {
2526					va = kmi.buffer_eva;
2527					continue;
2528				}
2529				pte = pte_find(mmu, kernel_pmap, va);
2530				if (pte != NULL && PTE_ISVALID(pte))
2531					break;
2532				va += PAGE_SIZE;
2533			}
2534			if (va < virtual_end) {
2535				md.md_vaddr = va;
2536				va += PAGE_SIZE;
2537				/* Find last page in chunk. */
2538				while (va < virtual_end) {
2539					/* Don't run into the buffer cache. */
2540					if (va == kmi.buffer_sva)
2541						break;
2542					pte = pte_find(mmu, kernel_pmap, va);
2543					if (pte == NULL || !PTE_ISVALID(pte))
2544						break;
2545					va += PAGE_SIZE;
2546				}
2547				md.md_size = va - md.md_vaddr;
2548				break;
2549			}
2550			md.md_index = 3;
2551			/* FALLTHROUGH */
2552		default:
2553			return (NULL);
2554		}
2555	} else { /* minidumps */
2556		mem_regions(&physmem_regions, &physmem_regions_sz,
2557		    &availmem_regions, &availmem_regions_sz);
2558
2559		if (prev == NULL) {
2560			/* first physical chunk. */
2561			md.md_paddr = physmem_regions[0].mr_start;
2562			md.md_size = physmem_regions[0].mr_size;
2563			md.md_vaddr = ~0UL;
2564			md.md_index = 1;
2565		} else if (md.md_index < physmem_regions_sz) {
2566			md.md_paddr = physmem_regions[md.md_index].mr_start;
2567			md.md_size = physmem_regions[md.md_index].mr_size;
2568			md.md_vaddr = ~0UL;
2569			md.md_index++;
2570		} else {
2571			/* There's no next physical chunk. */
2572			return (NULL);
2573		}
2574	}
2575
2576	return (&md);
2577}
2578
2579/*
2580 * Map a set of physical memory pages into the kernel virtual address space.
2581 * Return a pointer to where it is mapped. This routine is intended to be used
2582 * for mapping device memory, NOT real memory.
2583 */
2584static void *
2585mmu_booke_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2586{
2587	void *res;
2588	uintptr_t va;
2589	vm_size_t sz;
2590
2591	va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa);
2592	res = (void *)va;
2593
2594	do {
2595		sz = 1 << (ilog2(size) & ~1);
2596		if (bootverbose)
2597			printf("Wiring VA=%x to PA=%x (size=%x), "
2598			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2599		tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO);
2600		size -= sz;
2601		pa += sz;
2602		va += sz;
2603	} while (size > 0);
2604
2605	return (res);
2606}
2607
2608/*
2609 * 'Unmap' a range mapped by mmu_booke_mapdev().
2610 */
2611static void
2612mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2613{
2614	vm_offset_t base, offset;
2615
2616	/*
2617	 * Unmap only if this is inside kernel virtual space.
2618	 */
2619	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2620		base = trunc_page(va);
2621		offset = va & PAGE_MASK;
2622		size = roundup(offset + size, PAGE_SIZE);
2623		kmem_free(kernel_map, base, size);
2624	}
2625}
2626
2627/*
2628 * mmu_booke_object_init_pt preloads the ptes for a given object into the
2629 * specified pmap. This eliminates the blast of soft faults on process startup
2630 * and immediately after an mmap.
2631 */
2632static void
2633mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2634    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2635{
2636
2637	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2638	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2639	    ("mmu_booke_object_init_pt: non-device object"));
2640}
2641
2642/*
2643 * Perform the pmap work for mincore.
2644 */
2645static int
2646mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2647    vm_paddr_t *locked_pa)
2648{
2649
2650	TODO;
2651	return (0);
2652}
2653
2654/**************************************************************************/
2655/* TID handling */
2656/**************************************************************************/
2657
2658/*
2659 * Allocate a TID. If necessary, steal one from someone else.
2660 * The new TID is flushed from the TLB before returning.
2661 */
2662static tlbtid_t
2663tid_alloc(pmap_t pmap)
2664{
2665	tlbtid_t tid;
2666	int thiscpu;
2667
2668	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2669
2670	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2671
2672	thiscpu = PCPU_GET(cpuid);
2673
2674	tid = PCPU_GET(tid_next);
2675	if (tid > TID_MAX)
2676		tid = TID_MIN;
2677	PCPU_SET(tid_next, tid + 1);
2678
2679	/* If we are stealing TID then clear the relevant pmap's field */
2680	if (tidbusy[thiscpu][tid] != NULL) {
2681
2682		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2683
2684		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2685
2686		/* Flush all entries from TLB0 matching this TID. */
2687		tid_flush(tid);
2688	}
2689
2690	tidbusy[thiscpu][tid] = pmap;
2691	pmap->pm_tid[thiscpu] = tid;
2692	__asm __volatile("msync; isync");
2693
2694	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2695	    PCPU_GET(tid_next));
2696
2697	return (tid);
2698}
2699
2700/**************************************************************************/
2701/* TLB0 handling */
2702/**************************************************************************/
2703
2704static void
2705tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2706    uint32_t mas7)
2707{
2708	int as;
2709	char desc[3];
2710	tlbtid_t tid;
2711	vm_size_t size;
2712	unsigned int tsize;
2713
2714	desc[2] = '\0';
2715	if (mas1 & MAS1_VALID)
2716		desc[0] = 'V';
2717	else
2718		desc[0] = ' ';
2719
2720	if (mas1 & MAS1_IPROT)
2721		desc[1] = 'P';
2722	else
2723		desc[1] = ' ';
2724
2725	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2726	tid = MAS1_GETTID(mas1);
2727
2728	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2729	size = 0;
2730	if (tsize)
2731		size = tsize2size(tsize);
2732
2733	debugf("%3d: (%s) [AS=%d] "
2734	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2735	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2736	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2737}
2738
2739/* Convert TLB0 va and way number to tlb0[] table index. */
2740static inline unsigned int
2741tlb0_tableidx(vm_offset_t va, unsigned int way)
2742{
2743	unsigned int idx;
2744
2745	idx = (way * TLB0_ENTRIES_PER_WAY);
2746	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2747	return (idx);
2748}
2749
2750/*
2751 * Invalidate TLB0 entry.
2752 */
2753static inline void
2754tlb0_flush_entry(vm_offset_t va)
2755{
2756
2757	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2758
2759	mtx_assert(&tlbivax_mutex, MA_OWNED);
2760
2761	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2762	__asm __volatile("isync; msync");
2763	__asm __volatile("tlbsync; msync");
2764
2765	CTR1(KTR_PMAP, "%s: e", __func__);
2766}
2767
2768/* Print out contents of the MAS registers for each TLB0 entry */
2769void
2770tlb0_print_tlbentries(void)
2771{
2772	uint32_t mas0, mas1, mas2, mas3, mas7;
2773	int entryidx, way, idx;
2774
2775	debugf("TLB0 entries:\n");
2776	for (way = 0; way < TLB0_WAYS; way ++)
2777		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2778
2779			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2780			mtspr(SPR_MAS0, mas0);
2781			__asm __volatile("isync");
2782
2783			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2784			mtspr(SPR_MAS2, mas2);
2785
2786			__asm __volatile("isync; tlbre");
2787
2788			mas1 = mfspr(SPR_MAS1);
2789			mas2 = mfspr(SPR_MAS2);
2790			mas3 = mfspr(SPR_MAS3);
2791			mas7 = mfspr(SPR_MAS7);
2792
2793			idx = tlb0_tableidx(mas2, way);
2794			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2795		}
2796}
2797
2798/**************************************************************************/
2799/* TLB1 handling */
2800/**************************************************************************/
2801
2802/*
2803 * TLB1 mapping notes:
2804 *
2805 * TLB1[0]	CCSRBAR
2806 * TLB1[1]	Kernel text and data.
2807 * TLB1[2-15]	Additional kernel text and data mappings (if required), PCI
2808 *		windows, other devices mappings.
2809 */
2810
2811/*
2812 * Write given entry to TLB1 hardware.
2813 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2814 */
2815static void
2816tlb1_write_entry(unsigned int idx)
2817{
2818	uint32_t mas0, mas7;
2819
2820	//debugf("tlb1_write_entry: s\n");
2821
2822	/* Clear high order RPN bits */
2823	mas7 = 0;
2824
2825	/* Select entry */
2826	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2827	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2828
2829	mtspr(SPR_MAS0, mas0);
2830	__asm __volatile("isync");
2831	mtspr(SPR_MAS1, tlb1[idx].mas1);
2832	__asm __volatile("isync");
2833	mtspr(SPR_MAS2, tlb1[idx].mas2);
2834	__asm __volatile("isync");
2835	mtspr(SPR_MAS3, tlb1[idx].mas3);
2836	__asm __volatile("isync");
2837	mtspr(SPR_MAS7, mas7);
2838	__asm __volatile("isync; tlbwe; isync; msync");
2839
2840	//debugf("tlb1_write_entry: e\n");
2841}
2842
2843/*
2844 * Return the largest uint value log such that 2^log <= num.
2845 */
2846static unsigned int
2847ilog2(unsigned int num)
2848{
2849	int lz;
2850
2851	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2852	return (31 - lz);
2853}
2854
2855/*
2856 * Convert TLB TSIZE value to mapped region size.
2857 */
2858static vm_size_t
2859tsize2size(unsigned int tsize)
2860{
2861
2862	/*
2863	 * size = 4^tsize KB
2864	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2865	 */
2866
2867	return ((1 << (2 * tsize)) * 1024);
2868}
2869
2870/*
2871 * Convert region size (must be power of 4) to TLB TSIZE value.
2872 */
2873static unsigned int
2874size2tsize(vm_size_t size)
2875{
2876
2877	return (ilog2(size) / 2 - 5);
2878}
2879
2880/*
2881 * Register permanent kernel mapping in TLB1.
2882 *
2883 * Entries are created starting from index 0 (current free entry is
2884 * kept in tlb1_idx) and are not supposed to be invalidated.
2885 */
2886static int
2887tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2888    uint32_t flags)
2889{
2890	uint32_t ts, tid;
2891	int tsize;
2892
2893	if (tlb1_idx >= TLB1_ENTRIES) {
2894		printf("tlb1_set_entry: TLB1 full!\n");
2895		return (-1);
2896	}
2897
2898	/* Convert size to TSIZE */
2899	tsize = size2tsize(size);
2900
2901	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2902	/* XXX TS is hard coded to 0 for now as we only use single address space */
2903	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2904
2905	/* XXX LOCK tlb1[] */
2906
2907	tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2908	tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2909	tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags;
2910
2911	/* Set supervisor RWX permission bits */
2912	tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2913
2914	tlb1_write_entry(tlb1_idx++);
2915
2916	/* XXX UNLOCK tlb1[] */
2917
2918	/*
2919	 * XXX in general TLB1 updates should be propagated between CPUs,
2920	 * since current design assumes to have the same TLB1 set-up on all
2921	 * cores.
2922	 */
2923	return (0);
2924}
2925
2926static int
2927tlb1_entry_size_cmp(const void *a, const void *b)
2928{
2929	const vm_size_t *sza;
2930	const vm_size_t *szb;
2931
2932	sza = a;
2933	szb = b;
2934	if (*sza > *szb)
2935		return (-1);
2936	else if (*sza < *szb)
2937		return (1);
2938	else
2939		return (0);
2940}
2941
2942/*
2943 * Map in contiguous RAM region into the TLB1 using maximum of
2944 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
2945 *
2946 * If necessary round up last entry size and return total size
2947 * used by all allocated entries.
2948 */
2949vm_size_t
2950tlb1_mapin_region(vm_offset_t va, vm_offset_t pa, vm_size_t size)
2951{
2952	vm_size_t entry_size[KERNEL_REGION_MAX_TLB_ENTRIES];
2953	vm_size_t mapped_size, sz, esz;
2954	unsigned int log;
2955	int i;
2956
2957	CTR4(KTR_PMAP, "%s: region size = 0x%08x va = 0x%08x pa = 0x%08x",
2958	    __func__, size, va, pa);
2959
2960	mapped_size = 0;
2961	sz = size;
2962	memset(entry_size, 0, sizeof(entry_size));
2963
2964	/* Calculate entry sizes. */
2965	for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES && sz > 0; i++) {
2966
2967		/* Largest region that is power of 4 and fits within size */
2968		log = ilog2(sz) / 2;
2969		esz = 1 << (2 * log);
2970
2971		/* If this is last entry cover remaining size. */
2972		if (i ==  KERNEL_REGION_MAX_TLB_ENTRIES - 1) {
2973			while (esz < sz)
2974				esz = esz << 2;
2975		}
2976
2977		entry_size[i] = esz;
2978		mapped_size += esz;
2979		if (esz < sz)
2980			sz -= esz;
2981		else
2982			sz = 0;
2983	}
2984
2985	/* Sort entry sizes, required to get proper entry address alignment. */
2986	qsort(entry_size, KERNEL_REGION_MAX_TLB_ENTRIES,
2987	    sizeof(vm_size_t), tlb1_entry_size_cmp);
2988
2989	/* Load TLB1 entries. */
2990	for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES; i++) {
2991		esz = entry_size[i];
2992		if (!esz)
2993			break;
2994
2995		CTR5(KTR_PMAP, "%s: entry %d: sz  = 0x%08x (va = 0x%08x "
2996		    "pa = 0x%08x)", __func__, tlb1_idx, esz, va, pa);
2997
2998		tlb1_set_entry(va, pa, esz, _TLB_ENTRY_MEM);
2999
3000		va += esz;
3001		pa += esz;
3002	}
3003
3004	CTR3(KTR_PMAP, "%s: mapped size 0x%08x (wasted space 0x%08x)",
3005	    __func__, mapped_size, mapped_size - size);
3006
3007	return (mapped_size);
3008}
3009
3010/*
3011 * TLB1 initialization routine, to be called after the very first
3012 * assembler level setup done in locore.S.
3013 */
3014void
3015tlb1_init(vm_offset_t ccsrbar)
3016{
3017	uint32_t mas0;
3018
3019	/* TLB1[0] is used to map the kernel. Save that entry. */
3020	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(0);
3021	mtspr(SPR_MAS0, mas0);
3022	__asm __volatile("isync; tlbre");
3023
3024	tlb1[0].mas1 = mfspr(SPR_MAS1);
3025	tlb1[0].mas2 = mfspr(SPR_MAS2);
3026	tlb1[0].mas3 = mfspr(SPR_MAS3);
3027
3028	/* Map in CCSRBAR in TLB1[1] */
3029	tlb1_idx = 1;
3030	tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO);
3031
3032	/* Setup TLB miss defaults */
3033	set_mas4_defaults();
3034}
3035
3036/*
3037 * Setup MAS4 defaults.
3038 * These values are loaded to MAS0-2 on a TLB miss.
3039 */
3040static void
3041set_mas4_defaults(void)
3042{
3043	uint32_t mas4;
3044
3045	/* Defaults: TLB0, PID0, TSIZED=4K */
3046	mas4 = MAS4_TLBSELD0;
3047	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3048#ifdef SMP
3049	mas4 |= MAS4_MD;
3050#endif
3051	mtspr(SPR_MAS4, mas4);
3052	__asm __volatile("isync");
3053}
3054
3055/*
3056 * Print out contents of the MAS registers for each TLB1 entry
3057 */
3058void
3059tlb1_print_tlbentries(void)
3060{
3061	uint32_t mas0, mas1, mas2, mas3, mas7;
3062	int i;
3063
3064	debugf("TLB1 entries:\n");
3065	for (i = 0; i < TLB1_ENTRIES; i++) {
3066
3067		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3068		mtspr(SPR_MAS0, mas0);
3069
3070		__asm __volatile("isync; tlbre");
3071
3072		mas1 = mfspr(SPR_MAS1);
3073		mas2 = mfspr(SPR_MAS2);
3074		mas3 = mfspr(SPR_MAS3);
3075		mas7 = mfspr(SPR_MAS7);
3076
3077		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3078	}
3079}
3080
3081/*
3082 * Print out contents of the in-ram tlb1 table.
3083 */
3084void
3085tlb1_print_entries(void)
3086{
3087	int i;
3088
3089	debugf("tlb1[] table entries:\n");
3090	for (i = 0; i < TLB1_ENTRIES; i++)
3091		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3092}
3093
3094/*
3095 * Return 0 if the physical IO range is encompassed by one of the
3096 * the TLB1 entries, otherwise return related error code.
3097 */
3098static int
3099tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3100{
3101	uint32_t prot;
3102	vm_paddr_t pa_start;
3103	vm_paddr_t pa_end;
3104	unsigned int entry_tsize;
3105	vm_size_t entry_size;
3106
3107	*va = (vm_offset_t)NULL;
3108
3109	/* Skip invalid entries */
3110	if (!(tlb1[i].mas1 & MAS1_VALID))
3111		return (EINVAL);
3112
3113	/*
3114	 * The entry must be cache-inhibited, guarded, and r/w
3115	 * so it can function as an i/o page
3116	 */
3117	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3118	if (prot != (MAS2_I | MAS2_G))
3119		return (EPERM);
3120
3121	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3122	if (prot != (MAS3_SR | MAS3_SW))
3123		return (EPERM);
3124
3125	/* The address should be within the entry range. */
3126	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3127	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3128
3129	entry_size = tsize2size(entry_tsize);
3130	pa_start = tlb1[i].mas3 & MAS3_RPN;
3131	pa_end = pa_start + entry_size - 1;
3132
3133	if ((pa < pa_start) || ((pa + size) > pa_end))
3134		return (ERANGE);
3135
3136	/* Return virtual address of this mapping. */
3137	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3138	return (0);
3139}
3140