pmap.c revision 222070
1/*-
2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * Some hw specific parts of this pmap were derived or influenced
27 * by NetBSD's ibm4xx pmap module. More generic code is shared with
28 * a few other pmap modules from the FreeBSD tree.
29 */
30
31 /*
32  * VM layout notes:
33  *
34  * Kernel and user threads run within one common virtual address space
35  * defined by AS=0.
36  *
37  * Virtual address space layout:
38  * -----------------------------
39  * 0x0000_0000 - 0xafff_ffff	: user process
40  * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41  * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42  *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43  * 0xc100_0000 - 0xfeef_ffff	: KVA
44  *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45  *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46  *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47  *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48  * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49  */
50
51#include <sys/cdefs.h>
52__FBSDID("$FreeBSD: head/sys/powerpc/booke/pmap.c 222070 2011-05-18 16:50:13Z attilio $");
53
54#include <sys/types.h>
55#include <sys/param.h>
56#include <sys/malloc.h>
57#include <sys/ktr.h>
58#include <sys/proc.h>
59#include <sys/user.h>
60#include <sys/queue.h>
61#include <sys/systm.h>
62#include <sys/kernel.h>
63#include <sys/msgbuf.h>
64#include <sys/lock.h>
65#include <sys/mutex.h>
66#include <sys/smp.h>
67#include <sys/vmmeter.h>
68
69#include <vm/vm.h>
70#include <vm/vm_page.h>
71#include <vm/vm_kern.h>
72#include <vm/vm_pageout.h>
73#include <vm/vm_extern.h>
74#include <vm/vm_object.h>
75#include <vm/vm_param.h>
76#include <vm/vm_map.h>
77#include <vm/vm_pager.h>
78#include <vm/uma.h>
79
80#include <machine/cpu.h>
81#include <machine/pcb.h>
82#include <machine/platform.h>
83
84#include <machine/tlb.h>
85#include <machine/spr.h>
86#include <machine/vmparam.h>
87#include <machine/md_var.h>
88#include <machine/mmuvar.h>
89#include <machine/pmap.h>
90#include <machine/pte.h>
91
92#include "mmu_if.h"
93
94#define DEBUG
95#undef DEBUG
96
97#ifdef  DEBUG
98#define debugf(fmt, args...) printf(fmt, ##args)
99#else
100#define debugf(fmt, args...)
101#endif
102
103#define TODO			panic("%s: not implemented", __func__);
104
105#include "opt_sched.h"
106#ifndef SCHED_4BSD
107#error "e500 only works with SCHED_4BSD which uses a global scheduler lock."
108#endif
109extern struct mtx sched_lock;
110
111extern int dumpsys_minidump;
112
113extern unsigned char _etext[];
114extern unsigned char _end[];
115
116/* Kernel physical load address. */
117extern uint32_t kernload;
118vm_offset_t kernstart;
119vm_size_t kernsize;
120
121/* Message buffer and tables. */
122static vm_offset_t data_start;
123static vm_size_t data_end;
124
125/* Phys/avail memory regions. */
126static struct mem_region *availmem_regions;
127static int availmem_regions_sz;
128static struct mem_region *physmem_regions;
129static int physmem_regions_sz;
130
131/* Reserved KVA space and mutex for mmu_booke_zero_page. */
132static vm_offset_t zero_page_va;
133static struct mtx zero_page_mutex;
134
135static struct mtx tlbivax_mutex;
136
137/*
138 * Reserved KVA space for mmu_booke_zero_page_idle. This is used
139 * by idle thred only, no lock required.
140 */
141static vm_offset_t zero_page_idle_va;
142
143/* Reserved KVA space and mutex for mmu_booke_copy_page. */
144static vm_offset_t copy_page_src_va;
145static vm_offset_t copy_page_dst_va;
146static struct mtx copy_page_mutex;
147
148/**************************************************************************/
149/* PMAP */
150/**************************************************************************/
151
152static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
153    vm_prot_t, boolean_t);
154
155unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
156unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
157
158/*
159 * If user pmap is processed with mmu_booke_remove and the resident count
160 * drops to 0, there are no more pages to remove, so we need not continue.
161 */
162#define PMAP_REMOVE_DONE(pmap) \
163	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
164
165extern void tid_flush(tlbtid_t);
166
167/**************************************************************************/
168/* TLB and TID handling */
169/**************************************************************************/
170
171/* Translation ID busy table */
172static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
173
174/*
175 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
176 * core revisions and should be read from h/w registers during early config.
177 */
178uint32_t tlb0_entries;
179uint32_t tlb0_ways;
180uint32_t tlb0_entries_per_way;
181
182#define TLB0_ENTRIES		(tlb0_entries)
183#define TLB0_WAYS		(tlb0_ways)
184#define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
185
186#define TLB1_ENTRIES 16
187
188/* In-ram copy of the TLB1 */
189static tlb_entry_t tlb1[TLB1_ENTRIES];
190
191/* Next free entry in the TLB1 */
192static unsigned int tlb1_idx;
193
194static tlbtid_t tid_alloc(struct pmap *);
195
196static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
197
198static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
199static void tlb1_write_entry(unsigned int);
200static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
201static vm_size_t tlb1_mapin_region(vm_offset_t, vm_offset_t, vm_size_t);
202
203static vm_size_t tsize2size(unsigned int);
204static unsigned int size2tsize(vm_size_t);
205static unsigned int ilog2(unsigned int);
206
207static void set_mas4_defaults(void);
208
209static inline void tlb0_flush_entry(vm_offset_t);
210static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
211
212/**************************************************************************/
213/* Page table management */
214/**************************************************************************/
215
216/* Data for the pv entry allocation mechanism */
217static uma_zone_t pvzone;
218static struct vm_object pvzone_obj;
219static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
220
221#define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
222
223#ifndef PMAP_SHPGPERPROC
224#define PMAP_SHPGPERPROC	200
225#endif
226
227static void ptbl_init(void);
228static struct ptbl_buf *ptbl_buf_alloc(void);
229static void ptbl_buf_free(struct ptbl_buf *);
230static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
231
232static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
233static void ptbl_free(mmu_t, pmap_t, unsigned int);
234static void ptbl_hold(mmu_t, pmap_t, unsigned int);
235static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
236
237static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
238static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
239static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
240static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
241
242static pv_entry_t pv_alloc(void);
243static void pv_free(pv_entry_t);
244static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
245static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
246
247/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
248#define PTBL_BUFS		(128 * 16)
249
250struct ptbl_buf {
251	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
252	vm_offset_t kva;		/* va of mapping */
253};
254
255/* ptbl free list and a lock used for access synchronization. */
256static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
257static struct mtx ptbl_buf_freelist_lock;
258
259/* Base address of kva space allocated fot ptbl bufs. */
260static vm_offset_t ptbl_buf_pool_vabase;
261
262/* Pointer to ptbl_buf structures. */
263static struct ptbl_buf *ptbl_bufs;
264
265void pmap_bootstrap_ap(volatile uint32_t *);
266
267/*
268 * Kernel MMU interface
269 */
270static void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
271static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
272static void		mmu_booke_clear_reference(mmu_t, vm_page_t);
273static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
274    vm_size_t, vm_offset_t);
275static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
276static void		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
277    vm_prot_t, boolean_t);
278static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
279    vm_page_t, vm_prot_t);
280static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
281    vm_prot_t);
282static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
283static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
284    vm_prot_t);
285static void		mmu_booke_init(mmu_t);
286static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
287static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
288static boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
289static boolean_t	mmu_booke_ts_referenced(mmu_t, vm_page_t);
290static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t,
291    int);
292static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
293    vm_paddr_t *);
294static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
295    vm_object_t, vm_pindex_t, vm_size_t);
296static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
297static void		mmu_booke_page_init(mmu_t, vm_page_t);
298static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
299static void		mmu_booke_pinit(mmu_t, pmap_t);
300static void		mmu_booke_pinit0(mmu_t, pmap_t);
301static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
302    vm_prot_t);
303static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
304static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
305static void		mmu_booke_release(mmu_t, pmap_t);
306static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
307static void		mmu_booke_remove_all(mmu_t, vm_page_t);
308static void		mmu_booke_remove_write(mmu_t, vm_page_t);
309static void		mmu_booke_zero_page(mmu_t, vm_page_t);
310static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
311static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
312static void		mmu_booke_activate(mmu_t, struct thread *);
313static void		mmu_booke_deactivate(mmu_t, struct thread *);
314static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
315static void		*mmu_booke_mapdev(mmu_t, vm_offset_t, vm_size_t);
316static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
317static vm_offset_t	mmu_booke_kextract(mmu_t, vm_offset_t);
318static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_offset_t);
319static void		mmu_booke_kremove(mmu_t, vm_offset_t);
320static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
321static void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
322    vm_size_t);
323static vm_offset_t	mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
324    vm_size_t, vm_size_t *);
325static void		mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
326    vm_size_t, vm_offset_t);
327static struct pmap_md	*mmu_booke_scan_md(mmu_t, struct pmap_md *);
328
329static mmu_method_t mmu_booke_methods[] = {
330	/* pmap dispatcher interface */
331	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
332	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
333	MMUMETHOD(mmu_clear_reference,	mmu_booke_clear_reference),
334	MMUMETHOD(mmu_copy,		mmu_booke_copy),
335	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
336	MMUMETHOD(mmu_enter,		mmu_booke_enter),
337	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
338	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
339	MMUMETHOD(mmu_extract,		mmu_booke_extract),
340	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
341	MMUMETHOD(mmu_init,		mmu_booke_init),
342	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
343	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
344	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
345	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
346	MMUMETHOD(mmu_map,		mmu_booke_map),
347	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
348	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
349	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
350	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
351	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
352	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
353	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
354	MMUMETHOD(mmu_protect,		mmu_booke_protect),
355	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
356	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
357	MMUMETHOD(mmu_release,		mmu_booke_release),
358	MMUMETHOD(mmu_remove,		mmu_booke_remove),
359	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
360	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
361	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
362	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
363	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
364	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
365	MMUMETHOD(mmu_activate,		mmu_booke_activate),
366	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
367
368	/* Internal interfaces */
369	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
370	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
371	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
372	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
373	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
374/*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
375	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
376
377	/* dumpsys() support */
378	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
379	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
380	MMUMETHOD(mmu_scan_md,		mmu_booke_scan_md),
381
382	{ 0, 0 }
383};
384
385MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
386
387static inline void
388tlb_miss_lock(void)
389{
390#ifdef SMP
391	struct pcpu *pc;
392
393	if (!smp_started)
394		return;
395
396	SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
397		if (pc != pcpup) {
398
399			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
400			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
401
402			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
403			    ("tlb_miss_lock: tried to lock self"));
404
405			tlb_lock(pc->pc_booke_tlb_lock);
406
407			CTR1(KTR_PMAP, "%s: locked", __func__);
408		}
409	}
410#endif
411}
412
413static inline void
414tlb_miss_unlock(void)
415{
416#ifdef SMP
417	struct pcpu *pc;
418
419	if (!smp_started)
420		return;
421
422	SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
423		if (pc != pcpup) {
424			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
425			    __func__, pc->pc_cpuid);
426
427			tlb_unlock(pc->pc_booke_tlb_lock);
428
429			CTR1(KTR_PMAP, "%s: unlocked", __func__);
430		}
431	}
432#endif
433}
434
435/* Return number of entries in TLB0. */
436static __inline void
437tlb0_get_tlbconf(void)
438{
439	uint32_t tlb0_cfg;
440
441	tlb0_cfg = mfspr(SPR_TLB0CFG);
442	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
443	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
444	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
445}
446
447/* Initialize pool of kva ptbl buffers. */
448static void
449ptbl_init(void)
450{
451	int i;
452
453	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
454	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
455	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
456	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
457
458	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
459	TAILQ_INIT(&ptbl_buf_freelist);
460
461	for (i = 0; i < PTBL_BUFS; i++) {
462		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
463		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
464	}
465}
466
467/* Get a ptbl_buf from the freelist. */
468static struct ptbl_buf *
469ptbl_buf_alloc(void)
470{
471	struct ptbl_buf *buf;
472
473	mtx_lock(&ptbl_buf_freelist_lock);
474	buf = TAILQ_FIRST(&ptbl_buf_freelist);
475	if (buf != NULL)
476		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
477	mtx_unlock(&ptbl_buf_freelist_lock);
478
479	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
480
481	return (buf);
482}
483
484/* Return ptbl buff to free pool. */
485static void
486ptbl_buf_free(struct ptbl_buf *buf)
487{
488
489	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
490
491	mtx_lock(&ptbl_buf_freelist_lock);
492	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
493	mtx_unlock(&ptbl_buf_freelist_lock);
494}
495
496/*
497 * Search the list of allocated ptbl bufs and find on list of allocated ptbls
498 */
499static void
500ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
501{
502	struct ptbl_buf *pbuf;
503
504	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
505
506	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
507
508	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
509		if (pbuf->kva == (vm_offset_t)ptbl) {
510			/* Remove from pmap ptbl buf list. */
511			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
512
513			/* Free corresponding ptbl buf. */
514			ptbl_buf_free(pbuf);
515			break;
516		}
517}
518
519/* Allocate page table. */
520static pte_t *
521ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
522{
523	vm_page_t mtbl[PTBL_PAGES];
524	vm_page_t m;
525	struct ptbl_buf *pbuf;
526	unsigned int pidx;
527	pte_t *ptbl;
528	int i;
529
530	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
531	    (pmap == kernel_pmap), pdir_idx);
532
533	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
534	    ("ptbl_alloc: invalid pdir_idx"));
535	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
536	    ("pte_alloc: valid ptbl entry exists!"));
537
538	pbuf = ptbl_buf_alloc();
539	if (pbuf == NULL)
540		panic("pte_alloc: couldn't alloc kernel virtual memory");
541
542	ptbl = (pte_t *)pbuf->kva;
543
544	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
545
546	/* Allocate ptbl pages, this will sleep! */
547	for (i = 0; i < PTBL_PAGES; i++) {
548		pidx = (PTBL_PAGES * pdir_idx) + i;
549		while ((m = vm_page_alloc(NULL, pidx,
550		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
551
552			PMAP_UNLOCK(pmap);
553			vm_page_unlock_queues();
554			VM_WAIT;
555			vm_page_lock_queues();
556			PMAP_LOCK(pmap);
557		}
558		mtbl[i] = m;
559	}
560
561	/* Map allocated pages into kernel_pmap. */
562	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
563
564	/* Zero whole ptbl. */
565	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
566
567	/* Add pbuf to the pmap ptbl bufs list. */
568	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
569
570	return (ptbl);
571}
572
573/* Free ptbl pages and invalidate pdir entry. */
574static void
575ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
576{
577	pte_t *ptbl;
578	vm_paddr_t pa;
579	vm_offset_t va;
580	vm_page_t m;
581	int i;
582
583	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
584	    (pmap == kernel_pmap), pdir_idx);
585
586	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
587	    ("ptbl_free: invalid pdir_idx"));
588
589	ptbl = pmap->pm_pdir[pdir_idx];
590
591	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
592
593	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
594
595	/*
596	 * Invalidate the pdir entry as soon as possible, so that other CPUs
597	 * don't attempt to look up the page tables we are releasing.
598	 */
599	mtx_lock_spin(&tlbivax_mutex);
600	tlb_miss_lock();
601
602	pmap->pm_pdir[pdir_idx] = NULL;
603
604	tlb_miss_unlock();
605	mtx_unlock_spin(&tlbivax_mutex);
606
607	for (i = 0; i < PTBL_PAGES; i++) {
608		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
609		pa = pte_vatopa(mmu, kernel_pmap, va);
610		m = PHYS_TO_VM_PAGE(pa);
611		vm_page_free_zero(m);
612		atomic_subtract_int(&cnt.v_wire_count, 1);
613		mmu_booke_kremove(mmu, va);
614	}
615
616	ptbl_free_pmap_ptbl(pmap, ptbl);
617}
618
619/*
620 * Decrement ptbl pages hold count and attempt to free ptbl pages.
621 * Called when removing pte entry from ptbl.
622 *
623 * Return 1 if ptbl pages were freed.
624 */
625static int
626ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
627{
628	pte_t *ptbl;
629	vm_paddr_t pa;
630	vm_page_t m;
631	int i;
632
633	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
634	    (pmap == kernel_pmap), pdir_idx);
635
636	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
637	    ("ptbl_unhold: invalid pdir_idx"));
638	KASSERT((pmap != kernel_pmap),
639	    ("ptbl_unhold: unholding kernel ptbl!"));
640
641	ptbl = pmap->pm_pdir[pdir_idx];
642
643	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
644	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
645	    ("ptbl_unhold: non kva ptbl"));
646
647	/* decrement hold count */
648	for (i = 0; i < PTBL_PAGES; i++) {
649		pa = pte_vatopa(mmu, kernel_pmap,
650		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
651		m = PHYS_TO_VM_PAGE(pa);
652		m->wire_count--;
653	}
654
655	/*
656	 * Free ptbl pages if there are no pte etries in this ptbl.
657	 * wire_count has the same value for all ptbl pages, so check the last
658	 * page.
659	 */
660	if (m->wire_count == 0) {
661		ptbl_free(mmu, pmap, pdir_idx);
662
663		//debugf("ptbl_unhold: e (freed ptbl)\n");
664		return (1);
665	}
666
667	return (0);
668}
669
670/*
671 * Increment hold count for ptbl pages. This routine is used when a new pte
672 * entry is being inserted into the ptbl.
673 */
674static void
675ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
676{
677	vm_paddr_t pa;
678	pte_t *ptbl;
679	vm_page_t m;
680	int i;
681
682	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
683	    pdir_idx);
684
685	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
686	    ("ptbl_hold: invalid pdir_idx"));
687	KASSERT((pmap != kernel_pmap),
688	    ("ptbl_hold: holding kernel ptbl!"));
689
690	ptbl = pmap->pm_pdir[pdir_idx];
691
692	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
693
694	for (i = 0; i < PTBL_PAGES; i++) {
695		pa = pte_vatopa(mmu, kernel_pmap,
696		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
697		m = PHYS_TO_VM_PAGE(pa);
698		m->wire_count++;
699	}
700}
701
702/* Allocate pv_entry structure. */
703pv_entry_t
704pv_alloc(void)
705{
706	pv_entry_t pv;
707
708	pv_entry_count++;
709	if (pv_entry_count > pv_entry_high_water)
710		pagedaemon_wakeup();
711	pv = uma_zalloc(pvzone, M_NOWAIT);
712
713	return (pv);
714}
715
716/* Free pv_entry structure. */
717static __inline void
718pv_free(pv_entry_t pve)
719{
720
721	pv_entry_count--;
722	uma_zfree(pvzone, pve);
723}
724
725
726/* Allocate and initialize pv_entry structure. */
727static void
728pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
729{
730	pv_entry_t pve;
731
732	//int su = (pmap == kernel_pmap);
733	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
734	//	(u_int32_t)pmap, va, (u_int32_t)m);
735
736	pve = pv_alloc();
737	if (pve == NULL)
738		panic("pv_insert: no pv entries!");
739
740	pve->pv_pmap = pmap;
741	pve->pv_va = va;
742
743	/* add to pv_list */
744	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
745	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
746
747	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
748
749	//debugf("pv_insert: e\n");
750}
751
752/* Destroy pv entry. */
753static void
754pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
755{
756	pv_entry_t pve;
757
758	//int su = (pmap == kernel_pmap);
759	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
760
761	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
762	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
763
764	/* find pv entry */
765	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
766		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
767			/* remove from pv_list */
768			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
769			if (TAILQ_EMPTY(&m->md.pv_list))
770				vm_page_flag_clear(m, PG_WRITEABLE);
771
772			/* free pv entry struct */
773			pv_free(pve);
774			break;
775		}
776	}
777
778	//debugf("pv_remove: e\n");
779}
780
781/*
782 * Clean pte entry, try to free page table page if requested.
783 *
784 * Return 1 if ptbl pages were freed, otherwise return 0.
785 */
786static int
787pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
788{
789	unsigned int pdir_idx = PDIR_IDX(va);
790	unsigned int ptbl_idx = PTBL_IDX(va);
791	vm_page_t m;
792	pte_t *ptbl;
793	pte_t *pte;
794
795	//int su = (pmap == kernel_pmap);
796	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
797	//		su, (u_int32_t)pmap, va, flags);
798
799	ptbl = pmap->pm_pdir[pdir_idx];
800	KASSERT(ptbl, ("pte_remove: null ptbl"));
801
802	pte = &ptbl[ptbl_idx];
803
804	if (pte == NULL || !PTE_ISVALID(pte))
805		return (0);
806
807	if (PTE_ISWIRED(pte))
808		pmap->pm_stats.wired_count--;
809
810	/* Handle managed entry. */
811	if (PTE_ISMANAGED(pte)) {
812		/* Get vm_page_t for mapped pte. */
813		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
814
815		if (PTE_ISMODIFIED(pte))
816			vm_page_dirty(m);
817
818		if (PTE_ISREFERENCED(pte))
819			vm_page_flag_set(m, PG_REFERENCED);
820
821		pv_remove(pmap, va, m);
822	}
823
824	mtx_lock_spin(&tlbivax_mutex);
825	tlb_miss_lock();
826
827	tlb0_flush_entry(va);
828	pte->flags = 0;
829	pte->rpn = 0;
830
831	tlb_miss_unlock();
832	mtx_unlock_spin(&tlbivax_mutex);
833
834	pmap->pm_stats.resident_count--;
835
836	if (flags & PTBL_UNHOLD) {
837		//debugf("pte_remove: e (unhold)\n");
838		return (ptbl_unhold(mmu, pmap, pdir_idx));
839	}
840
841	//debugf("pte_remove: e\n");
842	return (0);
843}
844
845/*
846 * Insert PTE for a given page and virtual address.
847 */
848static void
849pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
850{
851	unsigned int pdir_idx = PDIR_IDX(va);
852	unsigned int ptbl_idx = PTBL_IDX(va);
853	pte_t *ptbl, *pte;
854
855	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
856	    pmap == kernel_pmap, pmap, va);
857
858	/* Get the page table pointer. */
859	ptbl = pmap->pm_pdir[pdir_idx];
860
861	if (ptbl == NULL) {
862		/* Allocate page table pages. */
863		ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
864	} else {
865		/*
866		 * Check if there is valid mapping for requested
867		 * va, if there is, remove it.
868		 */
869		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
870		if (PTE_ISVALID(pte)) {
871			pte_remove(mmu, pmap, va, PTBL_HOLD);
872		} else {
873			/*
874			 * pte is not used, increment hold count
875			 * for ptbl pages.
876			 */
877			if (pmap != kernel_pmap)
878				ptbl_hold(mmu, pmap, pdir_idx);
879		}
880	}
881
882	/*
883	 * Insert pv_entry into pv_list for mapped page if part of managed
884	 * memory.
885	 */
886        if ((m->flags & PG_FICTITIOUS) == 0) {
887		if ((m->flags & PG_UNMANAGED) == 0) {
888			flags |= PTE_MANAGED;
889
890			/* Create and insert pv entry. */
891			pv_insert(pmap, va, m);
892		}
893	}
894
895	pmap->pm_stats.resident_count++;
896
897	mtx_lock_spin(&tlbivax_mutex);
898	tlb_miss_lock();
899
900	tlb0_flush_entry(va);
901	if (pmap->pm_pdir[pdir_idx] == NULL) {
902		/*
903		 * If we just allocated a new page table, hook it in
904		 * the pdir.
905		 */
906		pmap->pm_pdir[pdir_idx] = ptbl;
907	}
908	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
909	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
910	pte->flags |= (PTE_VALID | flags);
911
912	tlb_miss_unlock();
913	mtx_unlock_spin(&tlbivax_mutex);
914}
915
916/* Return the pa for the given pmap/va. */
917static vm_paddr_t
918pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
919{
920	vm_paddr_t pa = 0;
921	pte_t *pte;
922
923	pte = pte_find(mmu, pmap, va);
924	if ((pte != NULL) && PTE_ISVALID(pte))
925		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
926	return (pa);
927}
928
929/* Get a pointer to a PTE in a page table. */
930static pte_t *
931pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
932{
933	unsigned int pdir_idx = PDIR_IDX(va);
934	unsigned int ptbl_idx = PTBL_IDX(va);
935
936	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
937
938	if (pmap->pm_pdir[pdir_idx])
939		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
940
941	return (NULL);
942}
943
944/**************************************************************************/
945/* PMAP related */
946/**************************************************************************/
947
948/*
949 * This is called during e500_init, before the system is really initialized.
950 */
951static void
952mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
953{
954	vm_offset_t phys_kernelend;
955	struct mem_region *mp, *mp1;
956	int cnt, i, j;
957	u_int s, e, sz;
958	u_int phys_avail_count;
959	vm_size_t physsz, hwphyssz, kstack0_sz;
960	vm_offset_t kernel_pdir, kstack0, va;
961	vm_paddr_t kstack0_phys;
962	void *dpcpu;
963	pte_t *pte;
964
965	debugf("mmu_booke_bootstrap: entered\n");
966
967	/* Initialize invalidation mutex */
968	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
969
970	/* Read TLB0 size and associativity. */
971	tlb0_get_tlbconf();
972
973	/* Align kernel start and end address (kernel image). */
974	kernstart = trunc_page(start);
975	data_start = round_page(kernelend);
976	kernsize = data_start - kernstart;
977
978	data_end = data_start;
979
980	/* Allocate space for the message buffer. */
981	msgbufp = (struct msgbuf *)data_end;
982	data_end += msgbufsize;
983	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
984	    data_end);
985
986	data_end = round_page(data_end);
987
988	/* Allocate the dynamic per-cpu area. */
989	dpcpu = (void *)data_end;
990	data_end += DPCPU_SIZE;
991	dpcpu_init(dpcpu, 0);
992
993	/* Allocate space for ptbl_bufs. */
994	ptbl_bufs = (struct ptbl_buf *)data_end;
995	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
996	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
997	    data_end);
998
999	data_end = round_page(data_end);
1000
1001	/* Allocate PTE tables for kernel KVA. */
1002	kernel_pdir = data_end;
1003	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1004	    PDIR_SIZE - 1) / PDIR_SIZE;
1005	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1006	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1007	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1008
1009	debugf(" data_end: 0x%08x\n", data_end);
1010	if (data_end - kernstart > 0x1000000) {
1011		data_end = (data_end + 0x3fffff) & ~0x3fffff;
1012		tlb1_mapin_region(kernstart + 0x1000000,
1013		    kernload + 0x1000000, data_end - kernstart - 0x1000000);
1014	} else
1015		data_end = (data_end + 0xffffff) & ~0xffffff;
1016
1017	debugf(" updated data_end: 0x%08x\n", data_end);
1018
1019	kernsize += data_end - data_start;
1020
1021	/*
1022	 * Clear the structures - note we can only do it safely after the
1023	 * possible additional TLB1 translations are in place (above) so that
1024	 * all range up to the currently calculated 'data_end' is covered.
1025	 */
1026	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1027	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1028
1029	/*******************************************************/
1030	/* Set the start and end of kva. */
1031	/*******************************************************/
1032	virtual_avail = round_page(data_end);
1033	virtual_end = VM_MAX_KERNEL_ADDRESS;
1034
1035	/* Allocate KVA space for page zero/copy operations. */
1036	zero_page_va = virtual_avail;
1037	virtual_avail += PAGE_SIZE;
1038	zero_page_idle_va = virtual_avail;
1039	virtual_avail += PAGE_SIZE;
1040	copy_page_src_va = virtual_avail;
1041	virtual_avail += PAGE_SIZE;
1042	copy_page_dst_va = virtual_avail;
1043	virtual_avail += PAGE_SIZE;
1044	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1045	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1046	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1047	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1048
1049	/* Initialize page zero/copy mutexes. */
1050	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1051	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1052
1053	/* Allocate KVA space for ptbl bufs. */
1054	ptbl_buf_pool_vabase = virtual_avail;
1055	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1056	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1057	    ptbl_buf_pool_vabase, virtual_avail);
1058
1059	/* Calculate corresponding physical addresses for the kernel region. */
1060	phys_kernelend = kernload + kernsize;
1061	debugf("kernel image and allocated data:\n");
1062	debugf(" kernload    = 0x%08x\n", kernload);
1063	debugf(" kernstart   = 0x%08x\n", kernstart);
1064	debugf(" kernsize    = 0x%08x\n", kernsize);
1065
1066	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1067		panic("mmu_booke_bootstrap: phys_avail too small");
1068
1069	/*
1070	 * Remove kernel physical address range from avail regions list. Page
1071	 * align all regions.  Non-page aligned memory isn't very interesting
1072	 * to us.  Also, sort the entries for ascending addresses.
1073	 */
1074
1075	/* Retrieve phys/avail mem regions */
1076	mem_regions(&physmem_regions, &physmem_regions_sz,
1077	    &availmem_regions, &availmem_regions_sz);
1078	sz = 0;
1079	cnt = availmem_regions_sz;
1080	debugf("processing avail regions:\n");
1081	for (mp = availmem_regions; mp->mr_size; mp++) {
1082		s = mp->mr_start;
1083		e = mp->mr_start + mp->mr_size;
1084		debugf(" %08x-%08x -> ", s, e);
1085		/* Check whether this region holds all of the kernel. */
1086		if (s < kernload && e > phys_kernelend) {
1087			availmem_regions[cnt].mr_start = phys_kernelend;
1088			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1089			e = kernload;
1090		}
1091		/* Look whether this regions starts within the kernel. */
1092		if (s >= kernload && s < phys_kernelend) {
1093			if (e <= phys_kernelend)
1094				goto empty;
1095			s = phys_kernelend;
1096		}
1097		/* Now look whether this region ends within the kernel. */
1098		if (e > kernload && e <= phys_kernelend) {
1099			if (s >= kernload)
1100				goto empty;
1101			e = kernload;
1102		}
1103		/* Now page align the start and size of the region. */
1104		s = round_page(s);
1105		e = trunc_page(e);
1106		if (e < s)
1107			e = s;
1108		sz = e - s;
1109		debugf("%08x-%08x = %x\n", s, e, sz);
1110
1111		/* Check whether some memory is left here. */
1112		if (sz == 0) {
1113		empty:
1114			memmove(mp, mp + 1,
1115			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1116			cnt--;
1117			mp--;
1118			continue;
1119		}
1120
1121		/* Do an insertion sort. */
1122		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1123			if (s < mp1->mr_start)
1124				break;
1125		if (mp1 < mp) {
1126			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1127			mp1->mr_start = s;
1128			mp1->mr_size = sz;
1129		} else {
1130			mp->mr_start = s;
1131			mp->mr_size = sz;
1132		}
1133	}
1134	availmem_regions_sz = cnt;
1135
1136	/*******************************************************/
1137	/* Steal physical memory for kernel stack from the end */
1138	/* of the first avail region                           */
1139	/*******************************************************/
1140	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1141	kstack0_phys = availmem_regions[0].mr_start +
1142	    availmem_regions[0].mr_size;
1143	kstack0_phys -= kstack0_sz;
1144	availmem_regions[0].mr_size -= kstack0_sz;
1145
1146	/*******************************************************/
1147	/* Fill in phys_avail table, based on availmem_regions */
1148	/*******************************************************/
1149	phys_avail_count = 0;
1150	physsz = 0;
1151	hwphyssz = 0;
1152	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1153
1154	debugf("fill in phys_avail:\n");
1155	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1156
1157		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1158		    availmem_regions[i].mr_start,
1159		    availmem_regions[i].mr_start +
1160		        availmem_regions[i].mr_size,
1161		    availmem_regions[i].mr_size);
1162
1163		if (hwphyssz != 0 &&
1164		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1165			debugf(" hw.physmem adjust\n");
1166			if (physsz < hwphyssz) {
1167				phys_avail[j] = availmem_regions[i].mr_start;
1168				phys_avail[j + 1] =
1169				    availmem_regions[i].mr_start +
1170				    hwphyssz - physsz;
1171				physsz = hwphyssz;
1172				phys_avail_count++;
1173			}
1174			break;
1175		}
1176
1177		phys_avail[j] = availmem_regions[i].mr_start;
1178		phys_avail[j + 1] = availmem_regions[i].mr_start +
1179		    availmem_regions[i].mr_size;
1180		phys_avail_count++;
1181		physsz += availmem_regions[i].mr_size;
1182	}
1183	physmem = btoc(physsz);
1184
1185	/* Calculate the last available physical address. */
1186	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1187		;
1188	Maxmem = powerpc_btop(phys_avail[i + 1]);
1189
1190	debugf("Maxmem = 0x%08lx\n", Maxmem);
1191	debugf("phys_avail_count = %d\n", phys_avail_count);
1192	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1193	    physmem);
1194
1195	/*******************************************************/
1196	/* Initialize (statically allocated) kernel pmap. */
1197	/*******************************************************/
1198	PMAP_LOCK_INIT(kernel_pmap);
1199	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1200
1201	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1202	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1203	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1204	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1205
1206	/* Initialize kernel pdir */
1207	for (i = 0; i < kernel_ptbls; i++)
1208		kernel_pmap->pm_pdir[kptbl_min + i] =
1209		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1210
1211	for (i = 0; i < MAXCPU; i++) {
1212		kernel_pmap->pm_tid[i] = TID_KERNEL;
1213
1214		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1215		tidbusy[i][0] = kernel_pmap;
1216	}
1217
1218	/*
1219	 * Fill in PTEs covering kernel code and data. They are not required
1220	 * for address translation, as this area is covered by static TLB1
1221	 * entries, but for pte_vatopa() to work correctly with kernel area
1222	 * addresses.
1223	 */
1224	for (va = KERNBASE; va < data_end; va += PAGE_SIZE) {
1225		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1226		pte->rpn = kernload + (va - KERNBASE);
1227		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1228		    PTE_VALID;
1229	}
1230	/* Mark kernel_pmap active on all CPUs */
1231	kernel_pmap->pm_active = ~0;
1232
1233	/*******************************************************/
1234	/* Final setup */
1235	/*******************************************************/
1236
1237	/* Enter kstack0 into kernel map, provide guard page */
1238	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1239	thread0.td_kstack = kstack0;
1240	thread0.td_kstack_pages = KSTACK_PAGES;
1241
1242	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1243	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1244	    kstack0_phys, kstack0_phys + kstack0_sz);
1245	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1246
1247	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1248	for (i = 0; i < KSTACK_PAGES; i++) {
1249		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1250		kstack0 += PAGE_SIZE;
1251		kstack0_phys += PAGE_SIZE;
1252	}
1253
1254	debugf("virtual_avail = %08x\n", virtual_avail);
1255	debugf("virtual_end   = %08x\n", virtual_end);
1256
1257	debugf("mmu_booke_bootstrap: exit\n");
1258}
1259
1260void
1261pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1262{
1263	int i;
1264
1265	/*
1266	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1267	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1268	 * these values directly to (re)program AP's TLB1 hardware.
1269	 */
1270	for (i = 0; i < tlb1_idx; i ++) {
1271		/* Skip invalid entries */
1272		if (!(tlb1[i].mas1 & MAS1_VALID))
1273			continue;
1274
1275		tlb1_write_entry(i);
1276	}
1277
1278	set_mas4_defaults();
1279}
1280
1281/*
1282 * Get the physical page address for the given pmap/virtual address.
1283 */
1284static vm_paddr_t
1285mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1286{
1287	vm_paddr_t pa;
1288
1289	PMAP_LOCK(pmap);
1290	pa = pte_vatopa(mmu, pmap, va);
1291	PMAP_UNLOCK(pmap);
1292
1293	return (pa);
1294}
1295
1296/*
1297 * Extract the physical page address associated with the given
1298 * kernel virtual address.
1299 */
1300static vm_paddr_t
1301mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1302{
1303
1304	return (pte_vatopa(mmu, kernel_pmap, va));
1305}
1306
1307/*
1308 * Initialize the pmap module.
1309 * Called by vm_init, to initialize any structures that the pmap
1310 * system needs to map virtual memory.
1311 */
1312static void
1313mmu_booke_init(mmu_t mmu)
1314{
1315	int shpgperproc = PMAP_SHPGPERPROC;
1316
1317	/*
1318	 * Initialize the address space (zone) for the pv entries.  Set a
1319	 * high water mark so that the system can recover from excessive
1320	 * numbers of pv entries.
1321	 */
1322	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1323	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1324
1325	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1326	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1327
1328	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1329	pv_entry_high_water = 9 * (pv_entry_max / 10);
1330
1331	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
1332
1333	/* Pre-fill pvzone with initial number of pv entries. */
1334	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1335
1336	/* Initialize ptbl allocation. */
1337	ptbl_init();
1338}
1339
1340/*
1341 * Map a list of wired pages into kernel virtual address space.  This is
1342 * intended for temporary mappings which do not need page modification or
1343 * references recorded.  Existing mappings in the region are overwritten.
1344 */
1345static void
1346mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1347{
1348	vm_offset_t va;
1349
1350	va = sva;
1351	while (count-- > 0) {
1352		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1353		va += PAGE_SIZE;
1354		m++;
1355	}
1356}
1357
1358/*
1359 * Remove page mappings from kernel virtual address space.  Intended for
1360 * temporary mappings entered by mmu_booke_qenter.
1361 */
1362static void
1363mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1364{
1365	vm_offset_t va;
1366
1367	va = sva;
1368	while (count-- > 0) {
1369		mmu_booke_kremove(mmu, va);
1370		va += PAGE_SIZE;
1371	}
1372}
1373
1374/*
1375 * Map a wired page into kernel virtual address space.
1376 */
1377static void
1378mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1379{
1380	unsigned int pdir_idx = PDIR_IDX(va);
1381	unsigned int ptbl_idx = PTBL_IDX(va);
1382	uint32_t flags;
1383	pte_t *pte;
1384
1385	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1386	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1387
1388	flags = 0;
1389	flags |= (PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID);
1390	flags |= PTE_M;
1391
1392	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1393
1394	mtx_lock_spin(&tlbivax_mutex);
1395	tlb_miss_lock();
1396
1397	if (PTE_ISVALID(pte)) {
1398
1399		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1400
1401		/* Flush entry from TLB0 */
1402		tlb0_flush_entry(va);
1403	}
1404
1405	pte->rpn = pa & ~PTE_PA_MASK;
1406	pte->flags = flags;
1407
1408	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1409	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1410	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1411
1412	/* Flush the real memory from the instruction cache. */
1413	if ((flags & (PTE_I | PTE_G)) == 0) {
1414		__syncicache((void *)va, PAGE_SIZE);
1415	}
1416
1417	tlb_miss_unlock();
1418	mtx_unlock_spin(&tlbivax_mutex);
1419}
1420
1421/*
1422 * Remove a page from kernel page table.
1423 */
1424static void
1425mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1426{
1427	unsigned int pdir_idx = PDIR_IDX(va);
1428	unsigned int ptbl_idx = PTBL_IDX(va);
1429	pte_t *pte;
1430
1431//	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1432
1433	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1434	    (va <= VM_MAX_KERNEL_ADDRESS)),
1435	    ("mmu_booke_kremove: invalid va"));
1436
1437	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1438
1439	if (!PTE_ISVALID(pte)) {
1440
1441		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1442
1443		return;
1444	}
1445
1446	mtx_lock_spin(&tlbivax_mutex);
1447	tlb_miss_lock();
1448
1449	/* Invalidate entry in TLB0, update PTE. */
1450	tlb0_flush_entry(va);
1451	pte->flags = 0;
1452	pte->rpn = 0;
1453
1454	tlb_miss_unlock();
1455	mtx_unlock_spin(&tlbivax_mutex);
1456}
1457
1458/*
1459 * Initialize pmap associated with process 0.
1460 */
1461static void
1462mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1463{
1464
1465	mmu_booke_pinit(mmu, pmap);
1466	PCPU_SET(curpmap, pmap);
1467}
1468
1469/*
1470 * Initialize a preallocated and zeroed pmap structure,
1471 * such as one in a vmspace structure.
1472 */
1473static void
1474mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1475{
1476	int i;
1477
1478	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1479	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1480
1481	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1482
1483	PMAP_LOCK_INIT(pmap);
1484	for (i = 0; i < MAXCPU; i++)
1485		pmap->pm_tid[i] = TID_NONE;
1486	pmap->pm_active = 0;
1487	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1488	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1489	TAILQ_INIT(&pmap->pm_ptbl_list);
1490}
1491
1492/*
1493 * Release any resources held by the given physical map.
1494 * Called when a pmap initialized by mmu_booke_pinit is being released.
1495 * Should only be called if the map contains no valid mappings.
1496 */
1497static void
1498mmu_booke_release(mmu_t mmu, pmap_t pmap)
1499{
1500
1501	KASSERT(pmap->pm_stats.resident_count == 0,
1502	    ("pmap_release: pmap resident count %ld != 0",
1503	    pmap->pm_stats.resident_count));
1504
1505	PMAP_LOCK_DESTROY(pmap);
1506}
1507
1508/*
1509 * Insert the given physical page at the specified virtual address in the
1510 * target physical map with the protection requested. If specified the page
1511 * will be wired down.
1512 */
1513static void
1514mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1515    vm_prot_t prot, boolean_t wired)
1516{
1517
1518	vm_page_lock_queues();
1519	PMAP_LOCK(pmap);
1520	mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1521	vm_page_unlock_queues();
1522	PMAP_UNLOCK(pmap);
1523}
1524
1525static void
1526mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1527    vm_prot_t prot, boolean_t wired)
1528{
1529	pte_t *pte;
1530	vm_paddr_t pa;
1531	uint32_t flags;
1532	int su, sync;
1533
1534	pa = VM_PAGE_TO_PHYS(m);
1535	su = (pmap == kernel_pmap);
1536	sync = 0;
1537
1538	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1539	//		"pa=0x%08x prot=0x%08x wired=%d)\n",
1540	//		(u_int32_t)pmap, su, pmap->pm_tid,
1541	//		(u_int32_t)m, va, pa, prot, wired);
1542
1543	if (su) {
1544		KASSERT(((va >= virtual_avail) &&
1545		    (va <= VM_MAX_KERNEL_ADDRESS)),
1546		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1547	} else {
1548		KASSERT((va <= VM_MAXUSER_ADDRESS),
1549		    ("mmu_booke_enter_locked: user pmap, non user va"));
1550	}
1551	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1552	    (m->oflags & VPO_BUSY) != 0 || VM_OBJECT_LOCKED(m->object),
1553	    ("mmu_booke_enter_locked: page %p is not busy", m));
1554
1555	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1556
1557	/*
1558	 * If there is an existing mapping, and the physical address has not
1559	 * changed, must be protection or wiring change.
1560	 */
1561	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1562	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1563
1564		/*
1565		 * Before actually updating pte->flags we calculate and
1566		 * prepare its new value in a helper var.
1567		 */
1568		flags = pte->flags;
1569		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1570
1571		/* Wiring change, just update stats. */
1572		if (wired) {
1573			if (!PTE_ISWIRED(pte)) {
1574				flags |= PTE_WIRED;
1575				pmap->pm_stats.wired_count++;
1576			}
1577		} else {
1578			if (PTE_ISWIRED(pte)) {
1579				flags &= ~PTE_WIRED;
1580				pmap->pm_stats.wired_count--;
1581			}
1582		}
1583
1584		if (prot & VM_PROT_WRITE) {
1585			/* Add write permissions. */
1586			flags |= PTE_SW;
1587			if (!su)
1588				flags |= PTE_UW;
1589
1590			if ((flags & PTE_MANAGED) != 0)
1591				vm_page_flag_set(m, PG_WRITEABLE);
1592		} else {
1593			/* Handle modified pages, sense modify status. */
1594
1595			/*
1596			 * The PTE_MODIFIED flag could be set by underlying
1597			 * TLB misses since we last read it (above), possibly
1598			 * other CPUs could update it so we check in the PTE
1599			 * directly rather than rely on that saved local flags
1600			 * copy.
1601			 */
1602			if (PTE_ISMODIFIED(pte))
1603				vm_page_dirty(m);
1604		}
1605
1606		if (prot & VM_PROT_EXECUTE) {
1607			flags |= PTE_SX;
1608			if (!su)
1609				flags |= PTE_UX;
1610
1611			/*
1612			 * Check existing flags for execute permissions: if we
1613			 * are turning execute permissions on, icache should
1614			 * be flushed.
1615			 */
1616			if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
1617				sync++;
1618		}
1619
1620		flags &= ~PTE_REFERENCED;
1621
1622		/*
1623		 * The new flags value is all calculated -- only now actually
1624		 * update the PTE.
1625		 */
1626		mtx_lock_spin(&tlbivax_mutex);
1627		tlb_miss_lock();
1628
1629		tlb0_flush_entry(va);
1630		pte->flags = flags;
1631
1632		tlb_miss_unlock();
1633		mtx_unlock_spin(&tlbivax_mutex);
1634
1635	} else {
1636		/*
1637		 * If there is an existing mapping, but it's for a different
1638		 * physical address, pte_enter() will delete the old mapping.
1639		 */
1640		//if ((pte != NULL) && PTE_ISVALID(pte))
1641		//	debugf("mmu_booke_enter_locked: replace\n");
1642		//else
1643		//	debugf("mmu_booke_enter_locked: new\n");
1644
1645		/* Now set up the flags and install the new mapping. */
1646		flags = (PTE_SR | PTE_VALID);
1647		flags |= PTE_M;
1648
1649		if (!su)
1650			flags |= PTE_UR;
1651
1652		if (prot & VM_PROT_WRITE) {
1653			flags |= PTE_SW;
1654			if (!su)
1655				flags |= PTE_UW;
1656
1657			if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
1658				vm_page_flag_set(m, PG_WRITEABLE);
1659		}
1660
1661		if (prot & VM_PROT_EXECUTE) {
1662			flags |= PTE_SX;
1663			if (!su)
1664				flags |= PTE_UX;
1665		}
1666
1667		/* If its wired update stats. */
1668		if (wired) {
1669			pmap->pm_stats.wired_count++;
1670			flags |= PTE_WIRED;
1671		}
1672
1673		pte_enter(mmu, pmap, m, va, flags);
1674
1675		/* Flush the real memory from the instruction cache. */
1676		if (prot & VM_PROT_EXECUTE)
1677			sync++;
1678	}
1679
1680	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1681		__syncicache((void *)va, PAGE_SIZE);
1682		sync = 0;
1683	}
1684}
1685
1686/*
1687 * Maps a sequence of resident pages belonging to the same object.
1688 * The sequence begins with the given page m_start.  This page is
1689 * mapped at the given virtual address start.  Each subsequent page is
1690 * mapped at a virtual address that is offset from start by the same
1691 * amount as the page is offset from m_start within the object.  The
1692 * last page in the sequence is the page with the largest offset from
1693 * m_start that can be mapped at a virtual address less than the given
1694 * virtual address end.  Not every virtual page between start and end
1695 * is mapped; only those for which a resident page exists with the
1696 * corresponding offset from m_start are mapped.
1697 */
1698static void
1699mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1700    vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1701{
1702	vm_page_t m;
1703	vm_pindex_t diff, psize;
1704
1705	psize = atop(end - start);
1706	m = m_start;
1707	vm_page_lock_queues();
1708	PMAP_LOCK(pmap);
1709	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1710		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1711		    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1712		m = TAILQ_NEXT(m, listq);
1713	}
1714	vm_page_unlock_queues();
1715	PMAP_UNLOCK(pmap);
1716}
1717
1718static void
1719mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1720    vm_prot_t prot)
1721{
1722
1723	vm_page_lock_queues();
1724	PMAP_LOCK(pmap);
1725	mmu_booke_enter_locked(mmu, pmap, va, m,
1726	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1727	vm_page_unlock_queues();
1728	PMAP_UNLOCK(pmap);
1729}
1730
1731/*
1732 * Remove the given range of addresses from the specified map.
1733 *
1734 * It is assumed that the start and end are properly rounded to the page size.
1735 */
1736static void
1737mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1738{
1739	pte_t *pte;
1740	uint8_t hold_flag;
1741
1742	int su = (pmap == kernel_pmap);
1743
1744	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1745	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1746
1747	if (su) {
1748		KASSERT(((va >= virtual_avail) &&
1749		    (va <= VM_MAX_KERNEL_ADDRESS)),
1750		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1751	} else {
1752		KASSERT((va <= VM_MAXUSER_ADDRESS),
1753		    ("mmu_booke_remove: user pmap, non user va"));
1754	}
1755
1756	if (PMAP_REMOVE_DONE(pmap)) {
1757		//debugf("mmu_booke_remove: e (empty)\n");
1758		return;
1759	}
1760
1761	hold_flag = PTBL_HOLD_FLAG(pmap);
1762	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1763
1764	vm_page_lock_queues();
1765	PMAP_LOCK(pmap);
1766	for (; va < endva; va += PAGE_SIZE) {
1767		pte = pte_find(mmu, pmap, va);
1768		if ((pte != NULL) && PTE_ISVALID(pte))
1769			pte_remove(mmu, pmap, va, hold_flag);
1770	}
1771	PMAP_UNLOCK(pmap);
1772	vm_page_unlock_queues();
1773
1774	//debugf("mmu_booke_remove: e\n");
1775}
1776
1777/*
1778 * Remove physical page from all pmaps in which it resides.
1779 */
1780static void
1781mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1782{
1783	pv_entry_t pv, pvn;
1784	uint8_t hold_flag;
1785
1786	vm_page_lock_queues();
1787	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1788		pvn = TAILQ_NEXT(pv, pv_link);
1789
1790		PMAP_LOCK(pv->pv_pmap);
1791		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1792		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1793		PMAP_UNLOCK(pv->pv_pmap);
1794	}
1795	vm_page_flag_clear(m, PG_WRITEABLE);
1796	vm_page_unlock_queues();
1797}
1798
1799/*
1800 * Map a range of physical addresses into kernel virtual address space.
1801 */
1802static vm_offset_t
1803mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1804    vm_offset_t pa_end, int prot)
1805{
1806	vm_offset_t sva = *virt;
1807	vm_offset_t va = sva;
1808
1809	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1810	//		sva, pa_start, pa_end);
1811
1812	while (pa_start < pa_end) {
1813		mmu_booke_kenter(mmu, va, pa_start);
1814		va += PAGE_SIZE;
1815		pa_start += PAGE_SIZE;
1816	}
1817	*virt = va;
1818
1819	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1820	return (sva);
1821}
1822
1823/*
1824 * The pmap must be activated before it's address space can be accessed in any
1825 * way.
1826 */
1827static void
1828mmu_booke_activate(mmu_t mmu, struct thread *td)
1829{
1830	pmap_t pmap;
1831
1832	pmap = &td->td_proc->p_vmspace->vm_pmap;
1833
1834	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1835	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1836
1837	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1838
1839	mtx_lock_spin(&sched_lock);
1840
1841	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
1842	PCPU_SET(curpmap, pmap);
1843
1844	if (pmap->pm_tid[PCPU_GET(cpuid)] == TID_NONE)
1845		tid_alloc(pmap);
1846
1847	/* Load PID0 register with pmap tid value. */
1848	mtspr(SPR_PID0, pmap->pm_tid[PCPU_GET(cpuid)]);
1849	__asm __volatile("isync");
1850
1851	mtx_unlock_spin(&sched_lock);
1852
1853	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1854	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1855}
1856
1857/*
1858 * Deactivate the specified process's address space.
1859 */
1860static void
1861mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1862{
1863	pmap_t pmap;
1864
1865	pmap = &td->td_proc->p_vmspace->vm_pmap;
1866
1867	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1868	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1869
1870	atomic_clear_int(&pmap->pm_active, PCPU_GET(cpumask));
1871	PCPU_SET(curpmap, NULL);
1872}
1873
1874/*
1875 * Copy the range specified by src_addr/len
1876 * from the source map to the range dst_addr/len
1877 * in the destination map.
1878 *
1879 * This routine is only advisory and need not do anything.
1880 */
1881static void
1882mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1883    vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1884{
1885
1886}
1887
1888/*
1889 * Set the physical protection on the specified range of this map as requested.
1890 */
1891static void
1892mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1893    vm_prot_t prot)
1894{
1895	vm_offset_t va;
1896	vm_page_t m;
1897	pte_t *pte;
1898
1899	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1900		mmu_booke_remove(mmu, pmap, sva, eva);
1901		return;
1902	}
1903
1904	if (prot & VM_PROT_WRITE)
1905		return;
1906
1907	vm_page_lock_queues();
1908	PMAP_LOCK(pmap);
1909	for (va = sva; va < eva; va += PAGE_SIZE) {
1910		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1911			if (PTE_ISVALID(pte)) {
1912				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1913
1914				mtx_lock_spin(&tlbivax_mutex);
1915				tlb_miss_lock();
1916
1917				/* Handle modified pages. */
1918				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1919					vm_page_dirty(m);
1920
1921				tlb0_flush_entry(va);
1922				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1923
1924				tlb_miss_unlock();
1925				mtx_unlock_spin(&tlbivax_mutex);
1926			}
1927		}
1928	}
1929	PMAP_UNLOCK(pmap);
1930	vm_page_unlock_queues();
1931}
1932
1933/*
1934 * Clear the write and modified bits in each of the given page's mappings.
1935 */
1936static void
1937mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
1938{
1939	pv_entry_t pv;
1940	pte_t *pte;
1941
1942	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1943	    ("mmu_booke_remove_write: page %p is not managed", m));
1944
1945	/*
1946	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
1947	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
1948	 * is clear, no page table entries need updating.
1949	 */
1950	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1951	if ((m->oflags & VPO_BUSY) == 0 &&
1952	    (m->flags & PG_WRITEABLE) == 0)
1953		return;
1954	vm_page_lock_queues();
1955	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1956		PMAP_LOCK(pv->pv_pmap);
1957		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
1958			if (PTE_ISVALID(pte)) {
1959				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1960
1961				mtx_lock_spin(&tlbivax_mutex);
1962				tlb_miss_lock();
1963
1964				/* Handle modified pages. */
1965				if (PTE_ISMODIFIED(pte))
1966					vm_page_dirty(m);
1967
1968				/* Flush mapping from TLB0. */
1969				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1970
1971				tlb_miss_unlock();
1972				mtx_unlock_spin(&tlbivax_mutex);
1973			}
1974		}
1975		PMAP_UNLOCK(pv->pv_pmap);
1976	}
1977	vm_page_flag_clear(m, PG_WRITEABLE);
1978	vm_page_unlock_queues();
1979}
1980
1981static void
1982mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
1983{
1984	pte_t *pte;
1985	pmap_t pmap;
1986	vm_page_t m;
1987	vm_offset_t addr;
1988	vm_paddr_t pa;
1989	int active, valid;
1990
1991	va = trunc_page(va);
1992	sz = round_page(sz);
1993
1994	vm_page_lock_queues();
1995	pmap = PCPU_GET(curpmap);
1996	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
1997	while (sz > 0) {
1998		PMAP_LOCK(pm);
1999		pte = pte_find(mmu, pm, va);
2000		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2001		if (valid)
2002			pa = PTE_PA(pte);
2003		PMAP_UNLOCK(pm);
2004		if (valid) {
2005			if (!active) {
2006				/* Create a mapping in the active pmap. */
2007				addr = 0;
2008				m = PHYS_TO_VM_PAGE(pa);
2009				PMAP_LOCK(pmap);
2010				pte_enter(mmu, pmap, m, addr,
2011				    PTE_SR | PTE_VALID | PTE_UR);
2012				__syncicache((void *)addr, PAGE_SIZE);
2013				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2014				PMAP_UNLOCK(pmap);
2015			} else
2016				__syncicache((void *)va, PAGE_SIZE);
2017		}
2018		va += PAGE_SIZE;
2019		sz -= PAGE_SIZE;
2020	}
2021	vm_page_unlock_queues();
2022}
2023
2024/*
2025 * Atomically extract and hold the physical page with the given
2026 * pmap and virtual address pair if that mapping permits the given
2027 * protection.
2028 */
2029static vm_page_t
2030mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2031    vm_prot_t prot)
2032{
2033	pte_t *pte;
2034	vm_page_t m;
2035	uint32_t pte_wbit;
2036	vm_paddr_t pa;
2037
2038	m = NULL;
2039	pa = 0;
2040	PMAP_LOCK(pmap);
2041retry:
2042	pte = pte_find(mmu, pmap, va);
2043	if ((pte != NULL) && PTE_ISVALID(pte)) {
2044		if (pmap == kernel_pmap)
2045			pte_wbit = PTE_SW;
2046		else
2047			pte_wbit = PTE_UW;
2048
2049		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2050			if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2051				goto retry;
2052			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2053			vm_page_hold(m);
2054		}
2055	}
2056
2057	PA_UNLOCK_COND(pa);
2058	PMAP_UNLOCK(pmap);
2059	return (m);
2060}
2061
2062/*
2063 * Initialize a vm_page's machine-dependent fields.
2064 */
2065static void
2066mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2067{
2068
2069	TAILQ_INIT(&m->md.pv_list);
2070}
2071
2072/*
2073 * mmu_booke_zero_page_area zeros the specified hardware page by
2074 * mapping it into virtual memory and using bzero to clear
2075 * its contents.
2076 *
2077 * off and size must reside within a single page.
2078 */
2079static void
2080mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2081{
2082	vm_offset_t va;
2083
2084	/* XXX KASSERT off and size are within a single page? */
2085
2086	mtx_lock(&zero_page_mutex);
2087	va = zero_page_va;
2088
2089	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2090	bzero((caddr_t)va + off, size);
2091	mmu_booke_kremove(mmu, va);
2092
2093	mtx_unlock(&zero_page_mutex);
2094}
2095
2096/*
2097 * mmu_booke_zero_page zeros the specified hardware page.
2098 */
2099static void
2100mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2101{
2102
2103	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2104}
2105
2106/*
2107 * mmu_booke_copy_page copies the specified (machine independent) page by
2108 * mapping the page into virtual memory and using memcopy to copy the page,
2109 * one machine dependent page at a time.
2110 */
2111static void
2112mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2113{
2114	vm_offset_t sva, dva;
2115
2116	sva = copy_page_src_va;
2117	dva = copy_page_dst_va;
2118
2119	mtx_lock(&copy_page_mutex);
2120	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2121	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2122	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2123	mmu_booke_kremove(mmu, dva);
2124	mmu_booke_kremove(mmu, sva);
2125	mtx_unlock(&copy_page_mutex);
2126}
2127
2128/*
2129 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2130 * into virtual memory and using bzero to clear its contents. This is intended
2131 * to be called from the vm_pagezero process only and outside of Giant. No
2132 * lock is required.
2133 */
2134static void
2135mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2136{
2137	vm_offset_t va;
2138
2139	va = zero_page_idle_va;
2140	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2141	bzero((caddr_t)va, PAGE_SIZE);
2142	mmu_booke_kremove(mmu, va);
2143}
2144
2145/*
2146 * Return whether or not the specified physical page was modified
2147 * in any of physical maps.
2148 */
2149static boolean_t
2150mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2151{
2152	pte_t *pte;
2153	pv_entry_t pv;
2154	boolean_t rv;
2155
2156	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2157	    ("mmu_booke_is_modified: page %p is not managed", m));
2158	rv = FALSE;
2159
2160	/*
2161	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
2162	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
2163	 * is clear, no PTEs can be modified.
2164	 */
2165	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2166	if ((m->oflags & VPO_BUSY) == 0 &&
2167	    (m->flags & PG_WRITEABLE) == 0)
2168		return (rv);
2169	vm_page_lock_queues();
2170	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2171		PMAP_LOCK(pv->pv_pmap);
2172		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2173		    PTE_ISVALID(pte)) {
2174			if (PTE_ISMODIFIED(pte))
2175				rv = TRUE;
2176		}
2177		PMAP_UNLOCK(pv->pv_pmap);
2178		if (rv)
2179			break;
2180	}
2181	vm_page_unlock_queues();
2182	return (rv);
2183}
2184
2185/*
2186 * Return whether or not the specified virtual address is eligible
2187 * for prefault.
2188 */
2189static boolean_t
2190mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2191{
2192
2193	return (FALSE);
2194}
2195
2196/*
2197 * Return whether or not the specified physical page was referenced
2198 * in any physical maps.
2199 */
2200static boolean_t
2201mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2202{
2203	pte_t *pte;
2204	pv_entry_t pv;
2205	boolean_t rv;
2206
2207	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2208	    ("mmu_booke_is_referenced: page %p is not managed", m));
2209	rv = FALSE;
2210	vm_page_lock_queues();
2211	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2212		PMAP_LOCK(pv->pv_pmap);
2213		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2214		    PTE_ISVALID(pte)) {
2215			if (PTE_ISREFERENCED(pte))
2216				rv = TRUE;
2217		}
2218		PMAP_UNLOCK(pv->pv_pmap);
2219		if (rv)
2220			break;
2221	}
2222	vm_page_unlock_queues();
2223	return (rv);
2224}
2225
2226/*
2227 * Clear the modify bits on the specified physical page.
2228 */
2229static void
2230mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2231{
2232	pte_t *pte;
2233	pv_entry_t pv;
2234
2235	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2236	    ("mmu_booke_clear_modify: page %p is not managed", m));
2237	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2238	KASSERT((m->oflags & VPO_BUSY) == 0,
2239	    ("mmu_booke_clear_modify: page %p is busy", m));
2240
2241	/*
2242	 * If the page is not PG_WRITEABLE, then no PTEs can be modified.
2243	 * If the object containing the page is locked and the page is not
2244	 * VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
2245	 */
2246	if ((m->flags & PG_WRITEABLE) == 0)
2247		return;
2248	vm_page_lock_queues();
2249	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2250		PMAP_LOCK(pv->pv_pmap);
2251		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2252		    PTE_ISVALID(pte)) {
2253			mtx_lock_spin(&tlbivax_mutex);
2254			tlb_miss_lock();
2255
2256			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2257				tlb0_flush_entry(pv->pv_va);
2258				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2259				    PTE_REFERENCED);
2260			}
2261
2262			tlb_miss_unlock();
2263			mtx_unlock_spin(&tlbivax_mutex);
2264		}
2265		PMAP_UNLOCK(pv->pv_pmap);
2266	}
2267	vm_page_unlock_queues();
2268}
2269
2270/*
2271 * Return a count of reference bits for a page, clearing those bits.
2272 * It is not necessary for every reference bit to be cleared, but it
2273 * is necessary that 0 only be returned when there are truly no
2274 * reference bits set.
2275 *
2276 * XXX: The exact number of bits to check and clear is a matter that
2277 * should be tested and standardized at some point in the future for
2278 * optimal aging of shared pages.
2279 */
2280static int
2281mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2282{
2283	pte_t *pte;
2284	pv_entry_t pv;
2285	int count;
2286
2287	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2288	    ("mmu_booke_ts_referenced: page %p is not managed", m));
2289	count = 0;
2290	vm_page_lock_queues();
2291	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2292		PMAP_LOCK(pv->pv_pmap);
2293		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2294		    PTE_ISVALID(pte)) {
2295			if (PTE_ISREFERENCED(pte)) {
2296				mtx_lock_spin(&tlbivax_mutex);
2297				tlb_miss_lock();
2298
2299				tlb0_flush_entry(pv->pv_va);
2300				pte->flags &= ~PTE_REFERENCED;
2301
2302				tlb_miss_unlock();
2303				mtx_unlock_spin(&tlbivax_mutex);
2304
2305				if (++count > 4) {
2306					PMAP_UNLOCK(pv->pv_pmap);
2307					break;
2308				}
2309			}
2310		}
2311		PMAP_UNLOCK(pv->pv_pmap);
2312	}
2313	vm_page_unlock_queues();
2314	return (count);
2315}
2316
2317/*
2318 * Clear the reference bit on the specified physical page.
2319 */
2320static void
2321mmu_booke_clear_reference(mmu_t mmu, vm_page_t m)
2322{
2323	pte_t *pte;
2324	pv_entry_t pv;
2325
2326	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2327	    ("mmu_booke_clear_reference: page %p is not managed", m));
2328	vm_page_lock_queues();
2329	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2330		PMAP_LOCK(pv->pv_pmap);
2331		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2332		    PTE_ISVALID(pte)) {
2333			if (PTE_ISREFERENCED(pte)) {
2334				mtx_lock_spin(&tlbivax_mutex);
2335				tlb_miss_lock();
2336
2337				tlb0_flush_entry(pv->pv_va);
2338				pte->flags &= ~PTE_REFERENCED;
2339
2340				tlb_miss_unlock();
2341				mtx_unlock_spin(&tlbivax_mutex);
2342			}
2343		}
2344		PMAP_UNLOCK(pv->pv_pmap);
2345	}
2346	vm_page_unlock_queues();
2347}
2348
2349/*
2350 * Change wiring attribute for a map/virtual-address pair.
2351 */
2352static void
2353mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2354{
2355	pte_t *pte;
2356
2357	PMAP_LOCK(pmap);
2358	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2359		if (wired) {
2360			if (!PTE_ISWIRED(pte)) {
2361				pte->flags |= PTE_WIRED;
2362				pmap->pm_stats.wired_count++;
2363			}
2364		} else {
2365			if (PTE_ISWIRED(pte)) {
2366				pte->flags &= ~PTE_WIRED;
2367				pmap->pm_stats.wired_count--;
2368			}
2369		}
2370	}
2371	PMAP_UNLOCK(pmap);
2372}
2373
2374/*
2375 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2376 * page.  This count may be changed upwards or downwards in the future; it is
2377 * only necessary that true be returned for a small subset of pmaps for proper
2378 * page aging.
2379 */
2380static boolean_t
2381mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2382{
2383	pv_entry_t pv;
2384	int loops;
2385	boolean_t rv;
2386
2387	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2388	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
2389	loops = 0;
2390	rv = FALSE;
2391	vm_page_lock_queues();
2392	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2393		if (pv->pv_pmap == pmap) {
2394			rv = TRUE;
2395			break;
2396		}
2397		if (++loops >= 16)
2398			break;
2399	}
2400	vm_page_unlock_queues();
2401	return (rv);
2402}
2403
2404/*
2405 * Return the number of managed mappings to the given physical page that are
2406 * wired.
2407 */
2408static int
2409mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2410{
2411	pv_entry_t pv;
2412	pte_t *pte;
2413	int count = 0;
2414
2415	if ((m->flags & PG_FICTITIOUS) != 0)
2416		return (count);
2417	vm_page_lock_queues();
2418	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2419		PMAP_LOCK(pv->pv_pmap);
2420		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2421			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2422				count++;
2423		PMAP_UNLOCK(pv->pv_pmap);
2424	}
2425	vm_page_unlock_queues();
2426	return (count);
2427}
2428
2429static int
2430mmu_booke_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2431{
2432	int i;
2433	vm_offset_t va;
2434
2435	/*
2436	 * This currently does not work for entries that
2437	 * overlap TLB1 entries.
2438	 */
2439	for (i = 0; i < tlb1_idx; i ++) {
2440		if (tlb1_iomapped(i, pa, size, &va) == 0)
2441			return (0);
2442	}
2443
2444	return (EFAULT);
2445}
2446
2447vm_offset_t
2448mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2449    vm_size_t *sz)
2450{
2451	vm_paddr_t pa, ppa;
2452	vm_offset_t va;
2453	vm_size_t gran;
2454
2455	/* Raw physical memory dumps don't have a virtual address. */
2456	if (md->md_vaddr == ~0UL) {
2457		/* We always map a 256MB page at 256M. */
2458		gran = 256 * 1024 * 1024;
2459		pa = md->md_paddr + ofs;
2460		ppa = pa & ~(gran - 1);
2461		ofs = pa - ppa;
2462		va = gran;
2463		tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2464		if (*sz > (gran - ofs))
2465			*sz = gran - ofs;
2466		return (va + ofs);
2467	}
2468
2469	/* Minidumps are based on virtual memory addresses. */
2470	va = md->md_vaddr + ofs;
2471	if (va >= kernstart + kernsize) {
2472		gran = PAGE_SIZE - (va & PAGE_MASK);
2473		if (*sz > gran)
2474			*sz = gran;
2475	}
2476	return (va);
2477}
2478
2479void
2480mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2481    vm_offset_t va)
2482{
2483
2484	/* Raw physical memory dumps don't have a virtual address. */
2485	if (md->md_vaddr == ~0UL) {
2486		tlb1_idx--;
2487		tlb1[tlb1_idx].mas1 = 0;
2488		tlb1[tlb1_idx].mas2 = 0;
2489		tlb1[tlb1_idx].mas3 = 0;
2490		tlb1_write_entry(tlb1_idx);
2491		return;
2492	}
2493
2494	/* Minidumps are based on virtual memory addresses. */
2495	/* Nothing to do... */
2496}
2497
2498struct pmap_md *
2499mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2500{
2501	static struct pmap_md md;
2502	pte_t *pte;
2503	vm_offset_t va;
2504
2505	if (dumpsys_minidump) {
2506		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2507		if (prev == NULL) {
2508			/* 1st: kernel .data and .bss. */
2509			md.md_index = 1;
2510			md.md_vaddr = trunc_page((uintptr_t)_etext);
2511			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2512			return (&md);
2513		}
2514		switch (prev->md_index) {
2515		case 1:
2516			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2517			md.md_index = 2;
2518			md.md_vaddr = data_start;
2519			md.md_size = data_end - data_start;
2520			break;
2521		case 2:
2522			/* 3rd: kernel VM. */
2523			va = prev->md_vaddr + prev->md_size;
2524			/* Find start of next chunk (from va). */
2525			while (va < virtual_end) {
2526				/* Don't dump the buffer cache. */
2527				if (va >= kmi.buffer_sva &&
2528				    va < kmi.buffer_eva) {
2529					va = kmi.buffer_eva;
2530					continue;
2531				}
2532				pte = pte_find(mmu, kernel_pmap, va);
2533				if (pte != NULL && PTE_ISVALID(pte))
2534					break;
2535				va += PAGE_SIZE;
2536			}
2537			if (va < virtual_end) {
2538				md.md_vaddr = va;
2539				va += PAGE_SIZE;
2540				/* Find last page in chunk. */
2541				while (va < virtual_end) {
2542					/* Don't run into the buffer cache. */
2543					if (va == kmi.buffer_sva)
2544						break;
2545					pte = pte_find(mmu, kernel_pmap, va);
2546					if (pte == NULL || !PTE_ISVALID(pte))
2547						break;
2548					va += PAGE_SIZE;
2549				}
2550				md.md_size = va - md.md_vaddr;
2551				break;
2552			}
2553			md.md_index = 3;
2554			/* FALLTHROUGH */
2555		default:
2556			return (NULL);
2557		}
2558	} else { /* minidumps */
2559		mem_regions(&physmem_regions, &physmem_regions_sz,
2560		    &availmem_regions, &availmem_regions_sz);
2561
2562		if (prev == NULL) {
2563			/* first physical chunk. */
2564			md.md_paddr = physmem_regions[0].mr_start;
2565			md.md_size = physmem_regions[0].mr_size;
2566			md.md_vaddr = ~0UL;
2567			md.md_index = 1;
2568		} else if (md.md_index < physmem_regions_sz) {
2569			md.md_paddr = physmem_regions[md.md_index].mr_start;
2570			md.md_size = physmem_regions[md.md_index].mr_size;
2571			md.md_vaddr = ~0UL;
2572			md.md_index++;
2573		} else {
2574			/* There's no next physical chunk. */
2575			return (NULL);
2576		}
2577	}
2578
2579	return (&md);
2580}
2581
2582/*
2583 * Map a set of physical memory pages into the kernel virtual address space.
2584 * Return a pointer to where it is mapped. This routine is intended to be used
2585 * for mapping device memory, NOT real memory.
2586 */
2587static void *
2588mmu_booke_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2589{
2590	void *res;
2591	uintptr_t va;
2592	vm_size_t sz;
2593
2594	va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa);
2595	res = (void *)va;
2596
2597	do {
2598		sz = 1 << (ilog2(size) & ~1);
2599		if (bootverbose)
2600			printf("Wiring VA=%x to PA=%x (size=%x), "
2601			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2602		tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO);
2603		size -= sz;
2604		pa += sz;
2605		va += sz;
2606	} while (size > 0);
2607
2608	return (res);
2609}
2610
2611/*
2612 * 'Unmap' a range mapped by mmu_booke_mapdev().
2613 */
2614static void
2615mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2616{
2617	vm_offset_t base, offset;
2618
2619	/*
2620	 * Unmap only if this is inside kernel virtual space.
2621	 */
2622	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2623		base = trunc_page(va);
2624		offset = va & PAGE_MASK;
2625		size = roundup(offset + size, PAGE_SIZE);
2626		kmem_free(kernel_map, base, size);
2627	}
2628}
2629
2630/*
2631 * mmu_booke_object_init_pt preloads the ptes for a given object into the
2632 * specified pmap. This eliminates the blast of soft faults on process startup
2633 * and immediately after an mmap.
2634 */
2635static void
2636mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2637    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2638{
2639
2640	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2641	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2642	    ("mmu_booke_object_init_pt: non-device object"));
2643}
2644
2645/*
2646 * Perform the pmap work for mincore.
2647 */
2648static int
2649mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2650    vm_paddr_t *locked_pa)
2651{
2652
2653	TODO;
2654	return (0);
2655}
2656
2657/**************************************************************************/
2658/* TID handling */
2659/**************************************************************************/
2660
2661/*
2662 * Allocate a TID. If necessary, steal one from someone else.
2663 * The new TID is flushed from the TLB before returning.
2664 */
2665static tlbtid_t
2666tid_alloc(pmap_t pmap)
2667{
2668	tlbtid_t tid;
2669	int thiscpu;
2670
2671	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2672
2673	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2674
2675	thiscpu = PCPU_GET(cpuid);
2676
2677	tid = PCPU_GET(tid_next);
2678	if (tid > TID_MAX)
2679		tid = TID_MIN;
2680	PCPU_SET(tid_next, tid + 1);
2681
2682	/* If we are stealing TID then clear the relevant pmap's field */
2683	if (tidbusy[thiscpu][tid] != NULL) {
2684
2685		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2686
2687		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2688
2689		/* Flush all entries from TLB0 matching this TID. */
2690		tid_flush(tid);
2691	}
2692
2693	tidbusy[thiscpu][tid] = pmap;
2694	pmap->pm_tid[thiscpu] = tid;
2695	__asm __volatile("msync; isync");
2696
2697	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2698	    PCPU_GET(tid_next));
2699
2700	return (tid);
2701}
2702
2703/**************************************************************************/
2704/* TLB0 handling */
2705/**************************************************************************/
2706
2707static void
2708tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2709    uint32_t mas7)
2710{
2711	int as;
2712	char desc[3];
2713	tlbtid_t tid;
2714	vm_size_t size;
2715	unsigned int tsize;
2716
2717	desc[2] = '\0';
2718	if (mas1 & MAS1_VALID)
2719		desc[0] = 'V';
2720	else
2721		desc[0] = ' ';
2722
2723	if (mas1 & MAS1_IPROT)
2724		desc[1] = 'P';
2725	else
2726		desc[1] = ' ';
2727
2728	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2729	tid = MAS1_GETTID(mas1);
2730
2731	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2732	size = 0;
2733	if (tsize)
2734		size = tsize2size(tsize);
2735
2736	debugf("%3d: (%s) [AS=%d] "
2737	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2738	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2739	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2740}
2741
2742/* Convert TLB0 va and way number to tlb0[] table index. */
2743static inline unsigned int
2744tlb0_tableidx(vm_offset_t va, unsigned int way)
2745{
2746	unsigned int idx;
2747
2748	idx = (way * TLB0_ENTRIES_PER_WAY);
2749	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2750	return (idx);
2751}
2752
2753/*
2754 * Invalidate TLB0 entry.
2755 */
2756static inline void
2757tlb0_flush_entry(vm_offset_t va)
2758{
2759
2760	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2761
2762	mtx_assert(&tlbivax_mutex, MA_OWNED);
2763
2764	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2765	__asm __volatile("isync; msync");
2766	__asm __volatile("tlbsync; msync");
2767
2768	CTR1(KTR_PMAP, "%s: e", __func__);
2769}
2770
2771/* Print out contents of the MAS registers for each TLB0 entry */
2772void
2773tlb0_print_tlbentries(void)
2774{
2775	uint32_t mas0, mas1, mas2, mas3, mas7;
2776	int entryidx, way, idx;
2777
2778	debugf("TLB0 entries:\n");
2779	for (way = 0; way < TLB0_WAYS; way ++)
2780		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2781
2782			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2783			mtspr(SPR_MAS0, mas0);
2784			__asm __volatile("isync");
2785
2786			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2787			mtspr(SPR_MAS2, mas2);
2788
2789			__asm __volatile("isync; tlbre");
2790
2791			mas1 = mfspr(SPR_MAS1);
2792			mas2 = mfspr(SPR_MAS2);
2793			mas3 = mfspr(SPR_MAS3);
2794			mas7 = mfspr(SPR_MAS7);
2795
2796			idx = tlb0_tableidx(mas2, way);
2797			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2798		}
2799}
2800
2801/**************************************************************************/
2802/* TLB1 handling */
2803/**************************************************************************/
2804
2805/*
2806 * TLB1 mapping notes:
2807 *
2808 * TLB1[0]	CCSRBAR
2809 * TLB1[1]	Kernel text and data.
2810 * TLB1[2-15]	Additional kernel text and data mappings (if required), PCI
2811 *		windows, other devices mappings.
2812 */
2813
2814/*
2815 * Write given entry to TLB1 hardware.
2816 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2817 */
2818static void
2819tlb1_write_entry(unsigned int idx)
2820{
2821	uint32_t mas0, mas7;
2822
2823	//debugf("tlb1_write_entry: s\n");
2824
2825	/* Clear high order RPN bits */
2826	mas7 = 0;
2827
2828	/* Select entry */
2829	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2830	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2831
2832	mtspr(SPR_MAS0, mas0);
2833	__asm __volatile("isync");
2834	mtspr(SPR_MAS1, tlb1[idx].mas1);
2835	__asm __volatile("isync");
2836	mtspr(SPR_MAS2, tlb1[idx].mas2);
2837	__asm __volatile("isync");
2838	mtspr(SPR_MAS3, tlb1[idx].mas3);
2839	__asm __volatile("isync");
2840	mtspr(SPR_MAS7, mas7);
2841	__asm __volatile("isync; tlbwe; isync; msync");
2842
2843	//debugf("tlb1_write_entry: e\n");
2844}
2845
2846/*
2847 * Return the largest uint value log such that 2^log <= num.
2848 */
2849static unsigned int
2850ilog2(unsigned int num)
2851{
2852	int lz;
2853
2854	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2855	return (31 - lz);
2856}
2857
2858/*
2859 * Convert TLB TSIZE value to mapped region size.
2860 */
2861static vm_size_t
2862tsize2size(unsigned int tsize)
2863{
2864
2865	/*
2866	 * size = 4^tsize KB
2867	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2868	 */
2869
2870	return ((1 << (2 * tsize)) * 1024);
2871}
2872
2873/*
2874 * Convert region size (must be power of 4) to TLB TSIZE value.
2875 */
2876static unsigned int
2877size2tsize(vm_size_t size)
2878{
2879
2880	return (ilog2(size) / 2 - 5);
2881}
2882
2883/*
2884 * Register permanent kernel mapping in TLB1.
2885 *
2886 * Entries are created starting from index 0 (current free entry is
2887 * kept in tlb1_idx) and are not supposed to be invalidated.
2888 */
2889static int
2890tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2891    uint32_t flags)
2892{
2893	uint32_t ts, tid;
2894	int tsize;
2895
2896	if (tlb1_idx >= TLB1_ENTRIES) {
2897		printf("tlb1_set_entry: TLB1 full!\n");
2898		return (-1);
2899	}
2900
2901	/* Convert size to TSIZE */
2902	tsize = size2tsize(size);
2903
2904	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2905	/* XXX TS is hard coded to 0 for now as we only use single address space */
2906	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2907
2908	/* XXX LOCK tlb1[] */
2909
2910	tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2911	tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2912	tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags;
2913
2914	/* Set supervisor RWX permission bits */
2915	tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2916
2917	tlb1_write_entry(tlb1_idx++);
2918
2919	/* XXX UNLOCK tlb1[] */
2920
2921	/*
2922	 * XXX in general TLB1 updates should be propagated between CPUs,
2923	 * since current design assumes to have the same TLB1 set-up on all
2924	 * cores.
2925	 */
2926	return (0);
2927}
2928
2929static int
2930tlb1_entry_size_cmp(const void *a, const void *b)
2931{
2932	const vm_size_t *sza;
2933	const vm_size_t *szb;
2934
2935	sza = a;
2936	szb = b;
2937	if (*sza > *szb)
2938		return (-1);
2939	else if (*sza < *szb)
2940		return (1);
2941	else
2942		return (0);
2943}
2944
2945/*
2946 * Map in contiguous RAM region into the TLB1 using maximum of
2947 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
2948 *
2949 * If necessary round up last entry size and return total size
2950 * used by all allocated entries.
2951 */
2952vm_size_t
2953tlb1_mapin_region(vm_offset_t va, vm_offset_t pa, vm_size_t size)
2954{
2955	vm_size_t entry_size[KERNEL_REGION_MAX_TLB_ENTRIES];
2956	vm_size_t mapped_size, sz, esz;
2957	unsigned int log;
2958	int i;
2959
2960	CTR4(KTR_PMAP, "%s: region size = 0x%08x va = 0x%08x pa = 0x%08x",
2961	    __func__, size, va, pa);
2962
2963	mapped_size = 0;
2964	sz = size;
2965	memset(entry_size, 0, sizeof(entry_size));
2966
2967	/* Calculate entry sizes. */
2968	for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES && sz > 0; i++) {
2969
2970		/* Largest region that is power of 4 and fits within size */
2971		log = ilog2(sz) / 2;
2972		esz = 1 << (2 * log);
2973
2974		/* If this is last entry cover remaining size. */
2975		if (i ==  KERNEL_REGION_MAX_TLB_ENTRIES - 1) {
2976			while (esz < sz)
2977				esz = esz << 2;
2978		}
2979
2980		entry_size[i] = esz;
2981		mapped_size += esz;
2982		if (esz < sz)
2983			sz -= esz;
2984		else
2985			sz = 0;
2986	}
2987
2988	/* Sort entry sizes, required to get proper entry address alignment. */
2989	qsort(entry_size, KERNEL_REGION_MAX_TLB_ENTRIES,
2990	    sizeof(vm_size_t), tlb1_entry_size_cmp);
2991
2992	/* Load TLB1 entries. */
2993	for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES; i++) {
2994		esz = entry_size[i];
2995		if (!esz)
2996			break;
2997
2998		CTR5(KTR_PMAP, "%s: entry %d: sz  = 0x%08x (va = 0x%08x "
2999		    "pa = 0x%08x)", __func__, tlb1_idx, esz, va, pa);
3000
3001		tlb1_set_entry(va, pa, esz, _TLB_ENTRY_MEM);
3002
3003		va += esz;
3004		pa += esz;
3005	}
3006
3007	CTR3(KTR_PMAP, "%s: mapped size 0x%08x (wasted space 0x%08x)",
3008	    __func__, mapped_size, mapped_size - size);
3009
3010	return (mapped_size);
3011}
3012
3013/*
3014 * TLB1 initialization routine, to be called after the very first
3015 * assembler level setup done in locore.S.
3016 */
3017void
3018tlb1_init(vm_offset_t ccsrbar)
3019{
3020	uint32_t mas0;
3021
3022	/* TLB1[1] is used to map the kernel. Save that entry. */
3023	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(1);
3024	mtspr(SPR_MAS0, mas0);
3025	__asm __volatile("isync; tlbre");
3026
3027	tlb1[1].mas1 = mfspr(SPR_MAS1);
3028	tlb1[1].mas2 = mfspr(SPR_MAS2);
3029	tlb1[1].mas3 = mfspr(SPR_MAS3);
3030
3031	/* Map in CCSRBAR in TLB1[0] */
3032	tlb1_idx = 0;
3033	tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO);
3034	/*
3035	 * Set the next available TLB1 entry index. Note TLB[1] is reserved
3036	 * for initial mapping of kernel text+data, which was set early in
3037	 * locore, we need to skip this [busy] entry.
3038	 */
3039	tlb1_idx = 2;
3040
3041	/* Setup TLB miss defaults */
3042	set_mas4_defaults();
3043}
3044
3045/*
3046 * Setup MAS4 defaults.
3047 * These values are loaded to MAS0-2 on a TLB miss.
3048 */
3049static void
3050set_mas4_defaults(void)
3051{
3052	uint32_t mas4;
3053
3054	/* Defaults: TLB0, PID0, TSIZED=4K */
3055	mas4 = MAS4_TLBSELD0;
3056	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3057#ifdef SMP
3058	mas4 |= MAS4_MD;
3059#endif
3060	mtspr(SPR_MAS4, mas4);
3061	__asm __volatile("isync");
3062}
3063
3064/*
3065 * Print out contents of the MAS registers for each TLB1 entry
3066 */
3067void
3068tlb1_print_tlbentries(void)
3069{
3070	uint32_t mas0, mas1, mas2, mas3, mas7;
3071	int i;
3072
3073	debugf("TLB1 entries:\n");
3074	for (i = 0; i < TLB1_ENTRIES; i++) {
3075
3076		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3077		mtspr(SPR_MAS0, mas0);
3078
3079		__asm __volatile("isync; tlbre");
3080
3081		mas1 = mfspr(SPR_MAS1);
3082		mas2 = mfspr(SPR_MAS2);
3083		mas3 = mfspr(SPR_MAS3);
3084		mas7 = mfspr(SPR_MAS7);
3085
3086		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3087	}
3088}
3089
3090/*
3091 * Print out contents of the in-ram tlb1 table.
3092 */
3093void
3094tlb1_print_entries(void)
3095{
3096	int i;
3097
3098	debugf("tlb1[] table entries:\n");
3099	for (i = 0; i < TLB1_ENTRIES; i++)
3100		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3101}
3102
3103/*
3104 * Return 0 if the physical IO range is encompassed by one of the
3105 * the TLB1 entries, otherwise return related error code.
3106 */
3107static int
3108tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3109{
3110	uint32_t prot;
3111	vm_paddr_t pa_start;
3112	vm_paddr_t pa_end;
3113	unsigned int entry_tsize;
3114	vm_size_t entry_size;
3115
3116	*va = (vm_offset_t)NULL;
3117
3118	/* Skip invalid entries */
3119	if (!(tlb1[i].mas1 & MAS1_VALID))
3120		return (EINVAL);
3121
3122	/*
3123	 * The entry must be cache-inhibited, guarded, and r/w
3124	 * so it can function as an i/o page
3125	 */
3126	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3127	if (prot != (MAS2_I | MAS2_G))
3128		return (EPERM);
3129
3130	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3131	if (prot != (MAS3_SR | MAS3_SW))
3132		return (EPERM);
3133
3134	/* The address should be within the entry range. */
3135	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3136	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3137
3138	entry_size = tsize2size(entry_tsize);
3139	pa_start = tlb1[i].mas3 & MAS3_RPN;
3140	pa_end = pa_start + entry_size - 1;
3141
3142	if ((pa < pa_start) || ((pa + size) > pa_end))
3143		return (ERANGE);
3144
3145	/* Return virtual address of this mapping. */
3146	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3147	return (0);
3148}
3149