pmap.c revision 192067
1112694Stegge/*-
2112694Stegge * Copyright (C) 2007-2008 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3112694Stegge * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4112694Stegge * All rights reserved.
5112694Stegge *
6112694Stegge * Redistribution and use in source and binary forms, with or without
7112694Stegge * modification, are permitted provided that the following conditions
8112694Stegge * are met:
9112694Stegge * 1. Redistributions of source code must retain the above copyright
10112694Stegge *    notice, this list of conditions and the following disclaimer.
11112694Stegge * 2. Redistributions in binary form must reproduce the above copyright
12112694Stegge *    notice, this list of conditions and the following disclaimer in the
13112694Stegge *    documentation and/or other materials provided with the distribution.
14112694Stegge *
15112694Stegge * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16112694Stegge * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17112694Stegge * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18112694Stegge * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19112694Stegge * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20112694Stegge * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21112694Stegge * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22112694Stegge * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23112694Stegge * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24112694Stegge * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25112694Stegge *
26112694Stegge * Some hw specific parts of this pmap were derived or influenced
27116192Sobrien * by NetBSD's ibm4xx pmap module. More generic code is shared with
28116192Sobrien * a few other pmap modules from the FreeBSD tree.
29116192Sobrien */
30112694Stegge
31112694Stegge /*
32112694Stegge  * VM layout notes:
33112694Stegge  *
34112694Stegge  * Kernel and user threads run within one common virtual address space
35112694Stegge  * defined by AS=0.
36114216Skan  *
37112694Stegge  * Virtual address space layout:
38112694Stegge  * -----------------------------
39112694Stegge  * 0x0000_0000 - 0xafff_ffff	: user process
40112694Stegge  * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41112694Stegge  * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42112694Stegge  *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43112694Stegge  * 0xc100_0000 - 0xfeef_ffff	: KVA
44112694Stegge  *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45118986Salc  *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46112694Stegge  *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47112694Stegge  *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48118986Salc  * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49119088Salc  */
50112694Stegge
51141522Sphk#include <sys/cdefs.h>
52112694Stegge__FBSDID("$FreeBSD: head/sys/powerpc/booke/pmap.c 192067 2009-05-14 00:34:26Z nwhitehorn $");
53112694Stegge
54112694Stegge#include <sys/types.h>
55112694Stegge#include <sys/param.h>
56112694Stegge#include <sys/malloc.h>
57112694Stegge#include <sys/ktr.h>
58112694Stegge#include <sys/proc.h>
59112694Stegge#include <sys/user.h>
60112694Stegge#include <sys/queue.h>
61112694Stegge#include <sys/systm.h>
62112694Stegge#include <sys/kernel.h>
63112694Stegge#include <sys/msgbuf.h>
64112694Stegge#include <sys/lock.h>
65112694Stegge#include <sys/mutex.h>
66112694Stegge#include <sys/vmmeter.h>
67112694Stegge
68112694Stegge#include <vm/vm.h>
69176559Sattilio#include <vm/vm_page.h>
70112694Stegge#include <vm/vm_kern.h>
71112694Stegge#include <vm/vm_pageout.h>
72112694Stegge#include <vm/vm_extern.h>
73112694Stegge#include <vm/vm_object.h>
74112694Stegge#include <vm/vm_param.h>
75112694Stegge#include <vm/vm_map.h>
76112694Stegge#include <vm/vm_pager.h>
77112694Stegge#include <vm/uma.h>
78112694Stegge
79112694Stegge#include <machine/bootinfo.h>
80112694Stegge#include <machine/cpu.h>
81112694Stegge#include <machine/pcb.h>
82112694Stegge#include <machine/platform.h>
83112694Stegge
84112694Stegge#include <machine/tlb.h>
85112694Stegge#include <machine/spr.h>
86112694Stegge#include <machine/vmparam.h>
87112694Stegge#include <machine/md_var.h>
88112694Stegge#include <machine/mmuvar.h>
89112694Stegge#include <machine/pmap.h>
90112694Stegge#include <machine/pte.h>
91112694Stegge
92112694Stegge#include "mmu_if.h"
93112694Stegge
94112694Stegge#define DEBUG
95112694Stegge#undef DEBUG
96112694Stegge
97112694Stegge#ifdef  DEBUG
98176559Sattilio#define debugf(fmt, args...) printf(fmt, ##args)
99112694Stegge#else
100112694Stegge#define debugf(fmt, args...)
101112694Stegge#endif
102136943Sphk
103156225Stegge#define TODO			panic("%s: not implemented", __func__);
104200770Skib
105112694Stegge#include "opt_sched.h"
106112694Stegge#ifndef SCHED_4BSD
107177493Sjeff#error "e500 only works with SCHED_4BSD which uses a global scheduler lock."
108177493Sjeff#endif
109112694Steggeextern struct mtx sched_lock;
110136943Sphk
111136968Sphkextern int dumpsys_minidump;
112200770Skib
113200770Skibextern unsigned char _etext[];
114112694Steggeextern unsigned char _end[];
115177493Sjeff
116112694Stegge/* Kernel physical load address. */
117156225Steggeextern uint32_t kernload;
118176559Sattiliovm_offset_t kernstart;
119156225Steggevm_size_t kernsize;
120156225Stegge
121156225Stegge/* Message buffer and tables. */
122175294Sattiliostatic vm_offset_t data_start;
123156225Steggestatic vm_size_t data_end;
124175294Sattilio
125176559Sattilio/* Phys/avail memory regions. */
126112694Steggestatic struct mem_region *availmem_regions;
127112694Steggestatic int availmem_regions_sz;
128175294Sattiliostatic struct mem_region *physmem_regions;
129112694Steggestatic int physmem_regions_sz;
130112694Stegge
131112694Stegge/* Reserved KVA space and mutex for mmu_booke_zero_page. */
132112694Steggestatic vm_offset_t zero_page_va;
133158325Steggestatic struct mtx zero_page_mutex;
134158325Stegge
135158325Steggestatic struct mtx tlbivax_mutex;
136158325Stegge
137158325Stegge/*
138175294Sattilio * Reserved KVA space for mmu_booke_zero_page_idle. This is used
139158325Stegge * by idle thred only, no lock required.
140158325Stegge */
141158325Steggestatic vm_offset_t zero_page_idle_va;
142112694Stegge
143200770Skib/* Reserved KVA space and mutex for mmu_booke_copy_page. */
144200770Skibstatic vm_offset_t copy_page_src_va;
145112694Steggestatic vm_offset_t copy_page_dst_va;
146200770Skibstatic struct mtx copy_page_mutex;
147200770Skib
148200770Skib/**************************************************************************/
149177493Sjeff/* PMAP */
150177493Sjeff/**************************************************************************/
151112694Stegge
152112694Steggestatic void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
153177493Sjeff    vm_prot_t, boolean_t);
154136943Sphk
155136943Sphkunsigned int kptbl_min;		/* Index of the first kernel ptbl. */
156136943Sphkunsigned int kernel_ptbls;	/* Number of KVA ptbls. */
157177493Sjeff
158136943Sphkstatic int pagedaemon_waken;
159175294Sattilio
160158325Stegge/*
161136943Sphk * If user pmap is processed with mmu_booke_remove and the resident count
162112694Stegge * drops to 0, there are no more pages to remove, so we need not continue.
163112694Stegge */
164136968Sphk#define PMAP_REMOVE_DONE(pmap) \
165177493Sjeff	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
166141522Sphk
167112694Steggeextern void tlb_lock(uint32_t *);
168175294Sattilioextern void tlb_unlock(uint32_t *);
169158325Steggeextern void tid_flush(tlbtid_t);
170112694Stegge
171112694Stegge/**************************************************************************/
172177493Sjeff/* TLB and TID handling */
173136968Sphk/**************************************************************************/
174112694Stegge
175112694Stegge/* Translation ID busy table */
176177493Sjeffstatic volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
177112694Stegge
178175294Sattilio/*
179156225Stegge * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
180112694Stegge * core revisions and should be read from h/w registers during early config.
181112694Stegge */
182177493Sjeffuint32_t tlb0_entries;
183112694Steggeuint32_t tlb0_ways;
184112694Steggeuint32_t tlb0_entries_per_way;
185112694Stegge
186112694Stegge#define TLB0_ENTRIES		(tlb0_entries)
187112694Stegge#define TLB0_WAYS		(tlb0_ways)
188112694Stegge#define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
189112694Stegge
190112694Stegge#define TLB1_ENTRIES 16
191112694Stegge
192112694Stegge/* In-ram copy of the TLB1 */
193112694Steggestatic tlb_entry_t tlb1[TLB1_ENTRIES];
194112694Stegge
195112694Stegge/* Next free entry in the TLB1 */
196112694Steggestatic unsigned int tlb1_idx;
197112694Stegge
198112694Steggestatic tlbtid_t tid_alloc(struct pmap *);
199112694Stegge
200112694Steggestatic void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
201112694Stegge
202112694Steggestatic int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
203112694Steggestatic void tlb1_write_entry(unsigned int);
204119049Sphkstatic int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
205119049Sphkstatic vm_size_t tlb1_mapin_region(vm_offset_t, vm_offset_t, vm_size_t);
206112694Stegge
207112694Steggestatic vm_size_t tsize2size(unsigned int);
208112694Steggestatic unsigned int size2tsize(vm_size_t);
209119049Sphkstatic unsigned int ilog2(unsigned int);
210119049Sphk
211119049Sphkstatic void set_mas4_defaults(void);
212112694Stegge
213112694Steggestatic inline void tlb0_flush_entry(vm_offset_t);
214112694Steggestatic inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
215112694Stegge
216112694Stegge/**************************************************************************/
217112694Stegge/* Page table management */
218112694Stegge/**************************************************************************/
219122747Sphk
220112694Stegge/* Data for the pv entry allocation mechanism */
221145702Sjeffstatic uma_zone_t pvzone;
222112694Steggestatic struct vm_object pvzone_obj;
223112694Steggestatic int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
224121354Stegge
225121354Stegge#define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
226112694Stegge
227112694Stegge#ifndef PMAP_SHPGPERPROC
228112694Stegge#define PMAP_SHPGPERPROC	200
229112694Stegge#endif
230112694Stegge
231112694Steggestatic void ptbl_init(void);
232119049Sphkstatic struct ptbl_buf *ptbl_buf_alloc(void);
233119049Sphkstatic void ptbl_buf_free(struct ptbl_buf *);
234112694Steggestatic void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
235121354Stegge
236112694Steggestatic pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
237112694Steggestatic void ptbl_free(mmu_t, pmap_t, unsigned int);
238112694Steggestatic void ptbl_hold(mmu_t, pmap_t, unsigned int);
239112694Steggestatic int ptbl_unhold(mmu_t, pmap_t, unsigned int);
240112694Stegge
241112694Steggestatic vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
242112694Steggestatic pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
243112694Steggestatic void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
244112694Steggestatic int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
245112694Stegge
246112694Steggestatic pv_entry_t pv_alloc(void);
247112694Steggestatic void pv_free(pv_entry_t);
248112694Steggestatic void pv_insert(pmap_t, vm_offset_t, vm_page_t);
249112694Steggestatic void pv_remove(pmap_t, vm_offset_t, vm_page_t);
250112694Stegge
251112694Stegge/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
252112694Stegge#define PTBL_BUFS		(128 * 16)
253112694Stegge
254112694Steggestruct ptbl_buf {
255112694Stegge	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
256121354Stegge	vm_offset_t kva;		/* va of mapping */
257121354Stegge};
258112694Stegge
259112694Stegge/* ptbl free list and a lock used for access synchronization. */
260112694Steggestatic TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
261112694Steggestatic struct mtx ptbl_buf_freelist_lock;
262112694Stegge
263112724Stegge/* Base address of kva space allocated fot ptbl bufs. */
264112694Steggestatic vm_offset_t ptbl_buf_pool_vabase;
265112694Stegge
266140051Sphk/* Pointer to ptbl_buf structures. */
267112694Steggestatic struct ptbl_buf *ptbl_bufs;
268112694Stegge
269112694Stegge/*
270112694Stegge * Kernel MMU interface
271112694Stegge */
272112694Steggestatic void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
273112694Steggestatic void		mmu_booke_clear_modify(mmu_t, vm_page_t);
274112694Steggestatic void		mmu_booke_clear_reference(mmu_t, vm_page_t);
275112694Steggestatic void		mmu_booke_copy(pmap_t, pmap_t, vm_offset_t, vm_size_t,
276112694Stegge    vm_offset_t);
277112694Steggestatic void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
278112694Steggestatic void		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
279112694Stegge    vm_prot_t, boolean_t);
280112694Steggestatic void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
281112694Stegge    vm_page_t, vm_prot_t);
282112694Steggestatic void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
283112694Stegge    vm_prot_t);
284112694Steggestatic vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
285112694Steggestatic vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
286112694Stegge    vm_prot_t);
287112694Steggestatic void		mmu_booke_init(mmu_t);
288112694Steggestatic boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
289112694Steggestatic boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
290112694Steggestatic boolean_t	mmu_booke_ts_referenced(mmu_t, vm_page_t);
291112694Steggestatic vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t,
292112694Stegge    int);
293112694Steggestatic int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t);
294112694Steggestatic void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
295112694Stegge    vm_object_t, vm_pindex_t, vm_size_t);
296112694Steggestatic boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
297112694Steggestatic void		mmu_booke_page_init(mmu_t, vm_page_t);
298112694Steggestatic int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
299112694Steggestatic void		mmu_booke_pinit(mmu_t, pmap_t);
300112694Steggestatic void		mmu_booke_pinit0(mmu_t, pmap_t);
301112694Steggestatic void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
302112694Stegge    vm_prot_t);
303112694Steggestatic void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
304112694Steggestatic void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
305112694Steggestatic void		mmu_booke_release(mmu_t, pmap_t);
306112694Steggestatic void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
307112694Steggestatic void		mmu_booke_remove_all(mmu_t, vm_page_t);
308112694Steggestatic void		mmu_booke_remove_write(mmu_t, vm_page_t);
309166506Steggestatic void		mmu_booke_zero_page(mmu_t, vm_page_t);
310112694Steggestatic void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
311112694Steggestatic void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
312112694Steggestatic void		mmu_booke_activate(mmu_t, struct thread *);
313112694Steggestatic void		mmu_booke_deactivate(mmu_t, struct thread *);
314112694Steggestatic void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
315112694Steggestatic void		*mmu_booke_mapdev(mmu_t, vm_offset_t, vm_size_t);
316112694Steggestatic void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
317112694Steggestatic vm_offset_t	mmu_booke_kextract(mmu_t, vm_offset_t);
318112694Steggestatic void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_offset_t);
319112694Steggestatic void		mmu_booke_kremove(mmu_t, vm_offset_t);
320112694Steggestatic boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
321112694Steggestatic boolean_t	mmu_booke_page_executable(mmu_t, vm_page_t);
322112694Steggestatic vm_offset_t	mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
323166506Stegge    vm_size_t, vm_size_t *);
324112694Steggestatic void		mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
325112694Stegge    vm_size_t, vm_offset_t);
326112694Steggestatic struct pmap_md	*mmu_booke_scan_md(mmu_t, struct pmap_md *);
327112694Stegge
328112694Steggestatic mmu_method_t mmu_booke_methods[] = {
329112694Stegge	/* pmap dispatcher interface */
330112694Stegge	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
331112694Stegge	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
332112694Stegge	MMUMETHOD(mmu_clear_reference,	mmu_booke_clear_reference),
333112694Stegge	MMUMETHOD(mmu_copy,		mmu_booke_copy),
334112694Stegge	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
335112694Stegge	MMUMETHOD(mmu_enter,		mmu_booke_enter),
336166506Stegge	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
337112694Stegge	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
338112694Stegge	MMUMETHOD(mmu_extract,		mmu_booke_extract),
339112694Stegge	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
340112694Stegge	MMUMETHOD(mmu_init,		mmu_booke_init),
341112694Stegge	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
342112694Stegge	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
343112694Stegge	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
344112694Stegge	MMUMETHOD(mmu_map,		mmu_booke_map),
345112718Stegge	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
346112694Stegge	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
347112694Stegge	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
348112694Stegge	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
349112694Stegge	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
350112694Stegge	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
351112694Stegge	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
352112694Stegge	MMUMETHOD(mmu_protect,		mmu_booke_protect),
353112694Stegge	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
354112694Stegge	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
355112694Stegge	MMUMETHOD(mmu_release,		mmu_booke_release),
356112694Stegge	MMUMETHOD(mmu_remove,		mmu_booke_remove),
357112694Stegge	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
358112694Stegge	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
359112694Stegge	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
360112694Stegge	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
361112694Stegge	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
362112694Stegge	MMUMETHOD(mmu_activate,		mmu_booke_activate),
363112694Stegge	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
364112694Stegge
365112694Stegge	/* Internal interfaces */
366112694Stegge	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
367112694Stegge	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
368112694Stegge	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
369112694Stegge	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
370112694Stegge	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
371112694Stegge/*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
372112694Stegge	MMUMETHOD(mmu_page_executable,	mmu_booke_page_executable),
373112694Stegge	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
374112694Stegge
375112694Stegge	/* dumpsys() support */
376112694Stegge	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
377112694Stegge	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
378112694Stegge	MMUMETHOD(mmu_scan_md,		mmu_booke_scan_md),
379112694Stegge
380112694Stegge	{ 0, 0 }
381112694Stegge};
382112694Stegge
383112694Steggestatic mmu_def_t booke_mmu = {
384112694Stegge	MMU_TYPE_BOOKE,
385166506Stegge	mmu_booke_methods,
386112694Stegge	0
387112694Stegge};
388112694SteggeMMU_DEF(booke_mmu);
389112694Stegge
390112694Stegge/* Return number of entries in TLB0. */
391112694Steggestatic __inline void
392112694Steggetlb0_get_tlbconf(void)
393112694Stegge{
394112694Stegge	uint32_t tlb0_cfg;
395112694Stegge
396112694Stegge	tlb0_cfg = mfspr(SPR_TLB0CFG);
397112694Stegge	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
398112694Stegge	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
399112694Stegge	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
400166506Stegge}
401112694Stegge
402112694Stegge/* Initialize pool of kva ptbl buffers. */
403112694Steggestatic void
404112694Steggeptbl_init(void)
405112694Stegge{
406112694Stegge	int i;
407112694Stegge
408112694Stegge	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
409112694Stegge	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
410112694Stegge	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
411112694Stegge	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
412112694Stegge
413112694Stegge	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
414112694Stegge	TAILQ_INIT(&ptbl_buf_freelist);
415166506Stegge
416166506Stegge	for (i = 0; i < PTBL_BUFS; i++) {
417112694Stegge		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
418166506Stegge		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
419112694Stegge	}
420112694Stegge}
421112718Stegge
422112694Stegge/* Get a ptbl_buf from the freelist. */
423112694Steggestatic struct ptbl_buf *
424166506Steggeptbl_buf_alloc(void)
425112694Stegge{
426112694Stegge	struct ptbl_buf *buf;
427112694Stegge
428112694Stegge	mtx_lock(&ptbl_buf_freelist_lock);
429112694Stegge	buf = TAILQ_FIRST(&ptbl_buf_freelist);
430112694Stegge	if (buf != NULL)
431112694Stegge		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
432112694Stegge	mtx_unlock(&ptbl_buf_freelist_lock);
433112694Stegge
434112694Stegge	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
435112694Stegge
436112694Stegge	return (buf);
437112694Stegge}
438112694Stegge
439112694Stegge/* Return ptbl buff to free pool. */
440112694Steggestatic void
441112694Steggeptbl_buf_free(struct ptbl_buf *buf)
442112694Stegge{
443112694Stegge
444112694Stegge	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
445112694Stegge
446112694Stegge	mtx_lock(&ptbl_buf_freelist_lock);
447130023Stjr	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
448130023Stjr	mtx_unlock(&ptbl_buf_freelist_lock);
449112694Stegge}
450112694Stegge
451112694Stegge/*
452112694Stegge * Search the list of allocated ptbl bufs and find on list of allocated ptbls
453112694Stegge */
454112694Steggestatic void
455112694Steggeptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
456112694Stegge{
457112694Stegge	struct ptbl_buf *pbuf;
458112694Stegge
459112694Stegge	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
460136966Sphk
461112694Stegge	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
462112694Stegge
463112694Stegge	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
464112694Stegge		if (pbuf->kva == (vm_offset_t)ptbl) {
465176559Sattilio			/* Remove from pmap ptbl buf list. */
466112694Stegge			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
467112694Stegge
468112694Stegge			/* Free corresponding ptbl buf. */
469112694Stegge			ptbl_buf_free(pbuf);
470112694Stegge			break;
471112694Stegge		}
472112694Stegge}
473112694Stegge
474112694Stegge/* Allocate page table. */
475112694Steggestatic pte_t *
476112694Steggeptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
477112694Stegge{
478112694Stegge	vm_page_t mtbl[PTBL_PAGES];
479112694Stegge	vm_page_t m;
480112694Stegge	struct ptbl_buf *pbuf;
481112694Stegge	unsigned int pidx;
482112694Stegge	pte_t *ptbl;
483112694Stegge	int i;
484112694Stegge
485112694Stegge	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
486112694Stegge	    (pmap == kernel_pmap), pdir_idx);
487112694Stegge
488112694Stegge	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
489112694Stegge	    ("ptbl_alloc: invalid pdir_idx"));
490112694Stegge	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
491112694Stegge	    ("pte_alloc: valid ptbl entry exists!"));
492112694Stegge
493112694Stegge	pbuf = ptbl_buf_alloc();
494112694Stegge	if (pbuf == NULL)
495112694Stegge		panic("pte_alloc: couldn't alloc kernel virtual memory");
496112694Stegge
497112694Stegge	ptbl = (pte_t *)pbuf->kva;
498
499	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
500
501	/* Allocate ptbl pages, this will sleep! */
502	for (i = 0; i < PTBL_PAGES; i++) {
503		pidx = (PTBL_PAGES * pdir_idx) + i;
504		while ((m = vm_page_alloc(NULL, pidx,
505		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
506
507			PMAP_UNLOCK(pmap);
508			vm_page_unlock_queues();
509			VM_WAIT;
510			vm_page_lock_queues();
511			PMAP_LOCK(pmap);
512		}
513		mtbl[i] = m;
514	}
515
516	/* Map allocated pages into kernel_pmap. */
517	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
518
519	/* Zero whole ptbl. */
520	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
521
522	/* Add pbuf to the pmap ptbl bufs list. */
523	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
524
525	return (ptbl);
526}
527
528/* Free ptbl pages and invalidate pdir entry. */
529static void
530ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
531{
532	pte_t *ptbl;
533	vm_paddr_t pa;
534	vm_offset_t va;
535	vm_page_t m;
536	int i;
537
538	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
539	    (pmap == kernel_pmap), pdir_idx);
540
541	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
542	    ("ptbl_free: invalid pdir_idx"));
543
544	ptbl = pmap->pm_pdir[pdir_idx];
545
546	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
547
548	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
549
550	/*
551	 * Invalidate the pdir entry as soon as possible, so that other CPUs
552	 * don't attempt to look up the page tables we are releasing.
553	 */
554	mtx_lock_spin(&tlbivax_mutex);
555
556	pmap->pm_pdir[pdir_idx] = NULL;
557
558	mtx_unlock_spin(&tlbivax_mutex);
559
560	for (i = 0; i < PTBL_PAGES; i++) {
561		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
562		pa = pte_vatopa(mmu, kernel_pmap, va);
563		m = PHYS_TO_VM_PAGE(pa);
564		vm_page_free_zero(m);
565		atomic_subtract_int(&cnt.v_wire_count, 1);
566		mmu_booke_kremove(mmu, va);
567	}
568
569	ptbl_free_pmap_ptbl(pmap, ptbl);
570}
571
572/*
573 * Decrement ptbl pages hold count and attempt to free ptbl pages.
574 * Called when removing pte entry from ptbl.
575 *
576 * Return 1 if ptbl pages were freed.
577 */
578static int
579ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
580{
581	pte_t *ptbl;
582	vm_paddr_t pa;
583	vm_page_t m;
584	int i;
585
586	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
587	    (pmap == kernel_pmap), pdir_idx);
588
589	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
590	    ("ptbl_unhold: invalid pdir_idx"));
591	KASSERT((pmap != kernel_pmap),
592	    ("ptbl_unhold: unholding kernel ptbl!"));
593
594	ptbl = pmap->pm_pdir[pdir_idx];
595
596	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
597	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
598	    ("ptbl_unhold: non kva ptbl"));
599
600	/* decrement hold count */
601	for (i = 0; i < PTBL_PAGES; i++) {
602		pa = pte_vatopa(mmu, kernel_pmap,
603		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
604		m = PHYS_TO_VM_PAGE(pa);
605		m->wire_count--;
606	}
607
608	/*
609	 * Free ptbl pages if there are no pte etries in this ptbl.
610	 * wire_count has the same value for all ptbl pages, so check the last
611	 * page.
612	 */
613	if (m->wire_count == 0) {
614		ptbl_free(mmu, pmap, pdir_idx);
615
616		//debugf("ptbl_unhold: e (freed ptbl)\n");
617		return (1);
618	}
619
620	return (0);
621}
622
623/*
624 * Increment hold count for ptbl pages. This routine is used when a new pte
625 * entry is being inserted into the ptbl.
626 */
627static void
628ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
629{
630	vm_paddr_t pa;
631	pte_t *ptbl;
632	vm_page_t m;
633	int i;
634
635	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
636	    pdir_idx);
637
638	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
639	    ("ptbl_hold: invalid pdir_idx"));
640	KASSERT((pmap != kernel_pmap),
641	    ("ptbl_hold: holding kernel ptbl!"));
642
643	ptbl = pmap->pm_pdir[pdir_idx];
644
645	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
646
647	for (i = 0; i < PTBL_PAGES; i++) {
648		pa = pte_vatopa(mmu, kernel_pmap,
649		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
650		m = PHYS_TO_VM_PAGE(pa);
651		m->wire_count++;
652	}
653}
654
655/* Allocate pv_entry structure. */
656pv_entry_t
657pv_alloc(void)
658{
659	pv_entry_t pv;
660
661	pv_entry_count++;
662	if ((pv_entry_count > pv_entry_high_water) &&
663	    (pagedaemon_waken == 0)) {
664		pagedaemon_waken = 1;
665		wakeup(&vm_pages_needed);
666	}
667	pv = uma_zalloc(pvzone, M_NOWAIT);
668
669	return (pv);
670}
671
672/* Free pv_entry structure. */
673static __inline void
674pv_free(pv_entry_t pve)
675{
676
677	pv_entry_count--;
678	uma_zfree(pvzone, pve);
679}
680
681
682/* Allocate and initialize pv_entry structure. */
683static void
684pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
685{
686	pv_entry_t pve;
687
688	//int su = (pmap == kernel_pmap);
689	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
690	//	(u_int32_t)pmap, va, (u_int32_t)m);
691
692	pve = pv_alloc();
693	if (pve == NULL)
694		panic("pv_insert: no pv entries!");
695
696	pve->pv_pmap = pmap;
697	pve->pv_va = va;
698
699	/* add to pv_list */
700	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
701	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
702
703	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
704
705	//debugf("pv_insert: e\n");
706}
707
708/* Destroy pv entry. */
709static void
710pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
711{
712	pv_entry_t pve;
713
714	//int su = (pmap == kernel_pmap);
715	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
716
717	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
718	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
719
720	/* find pv entry */
721	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
722		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
723			/* remove from pv_list */
724			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
725			if (TAILQ_EMPTY(&m->md.pv_list))
726				vm_page_flag_clear(m, PG_WRITEABLE);
727
728			/* free pv entry struct */
729			pv_free(pve);
730			break;
731		}
732	}
733
734	//debugf("pv_remove: e\n");
735}
736
737/*
738 * Clean pte entry, try to free page table page if requested.
739 *
740 * Return 1 if ptbl pages were freed, otherwise return 0.
741 */
742static int
743pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
744{
745	unsigned int pdir_idx = PDIR_IDX(va);
746	unsigned int ptbl_idx = PTBL_IDX(va);
747	vm_page_t m;
748	pte_t *ptbl;
749	pte_t *pte;
750
751	//int su = (pmap == kernel_pmap);
752	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
753	//		su, (u_int32_t)pmap, va, flags);
754
755	ptbl = pmap->pm_pdir[pdir_idx];
756	KASSERT(ptbl, ("pte_remove: null ptbl"));
757
758	pte = &ptbl[ptbl_idx];
759
760	if (pte == NULL || !PTE_ISVALID(pte))
761		return (0);
762
763	if (PTE_ISWIRED(pte))
764		pmap->pm_stats.wired_count--;
765
766	/* Handle managed entry. */
767	if (PTE_ISMANAGED(pte)) {
768		/* Get vm_page_t for mapped pte. */
769		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
770
771		if (PTE_ISMODIFIED(pte))
772			vm_page_dirty(m);
773
774		if (PTE_ISREFERENCED(pte))
775			vm_page_flag_set(m, PG_REFERENCED);
776
777		pv_remove(pmap, va, m);
778	}
779
780	mtx_lock_spin(&tlbivax_mutex);
781
782	tlb0_flush_entry(va);
783	pte->flags = 0;
784	pte->rpn = 0;
785
786	mtx_unlock_spin(&tlbivax_mutex);
787
788	pmap->pm_stats.resident_count--;
789
790	if (flags & PTBL_UNHOLD) {
791		//debugf("pte_remove: e (unhold)\n");
792		return (ptbl_unhold(mmu, pmap, pdir_idx));
793	}
794
795	//debugf("pte_remove: e\n");
796	return (0);
797}
798
799/*
800 * Insert PTE for a given page and virtual address.
801 */
802static void
803pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
804{
805	unsigned int pdir_idx = PDIR_IDX(va);
806	unsigned int ptbl_idx = PTBL_IDX(va);
807	pte_t *ptbl, *pte;
808
809	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
810	    pmap == kernel_pmap, pmap, va);
811
812	/* Get the page table pointer. */
813	ptbl = pmap->pm_pdir[pdir_idx];
814
815	if (ptbl == NULL) {
816		/* Allocate page table pages. */
817		ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
818	} else {
819		/*
820		 * Check if there is valid mapping for requested
821		 * va, if there is, remove it.
822		 */
823		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
824		if (PTE_ISVALID(pte)) {
825			pte_remove(mmu, pmap, va, PTBL_HOLD);
826		} else {
827			/*
828			 * pte is not used, increment hold count
829			 * for ptbl pages.
830			 */
831			if (pmap != kernel_pmap)
832				ptbl_hold(mmu, pmap, pdir_idx);
833		}
834	}
835
836	/*
837	 * Insert pv_entry into pv_list for mapped page if part of managed
838	 * memory.
839	 */
840        if ((m->flags & PG_FICTITIOUS) == 0) {
841		if ((m->flags & PG_UNMANAGED) == 0) {
842			flags |= PTE_MANAGED;
843
844			/* Create and insert pv entry. */
845			pv_insert(pmap, va, m);
846		}
847	}
848
849	pmap->pm_stats.resident_count++;
850
851	mtx_lock_spin(&tlbivax_mutex);
852
853	tlb0_flush_entry(va);
854	if (pmap->pm_pdir[pdir_idx] == NULL) {
855		/*
856		 * If we just allocated a new page table, hook it in
857		 * the pdir.
858		 */
859		pmap->pm_pdir[pdir_idx] = ptbl;
860	}
861	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
862	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
863	pte->flags |= (PTE_VALID | flags);
864
865	mtx_unlock_spin(&tlbivax_mutex);
866}
867
868/* Return the pa for the given pmap/va. */
869static vm_paddr_t
870pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
871{
872	vm_paddr_t pa = 0;
873	pte_t *pte;
874
875	pte = pte_find(mmu, pmap, va);
876	if ((pte != NULL) && PTE_ISVALID(pte))
877		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
878	return (pa);
879}
880
881/* Get a pointer to a PTE in a page table. */
882static pte_t *
883pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
884{
885	unsigned int pdir_idx = PDIR_IDX(va);
886	unsigned int ptbl_idx = PTBL_IDX(va);
887
888	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
889
890	if (pmap->pm_pdir[pdir_idx])
891		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
892
893	return (NULL);
894}
895
896/**************************************************************************/
897/* PMAP related */
898/**************************************************************************/
899
900/*
901 * This is called during e500_init, before the system is really initialized.
902 */
903static void
904mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
905{
906	vm_offset_t phys_kernelend;
907	struct mem_region *mp, *mp1;
908	int cnt, i, j;
909	u_int s, e, sz;
910	u_int phys_avail_count;
911	vm_size_t physsz, hwphyssz, kstack0_sz;
912	vm_offset_t kernel_pdir, kstack0;
913	vm_paddr_t kstack0_phys;
914
915	debugf("mmu_booke_bootstrap: entered\n");
916
917	/* Initialize invalidation mutex */
918	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
919
920	/* Read TLB0 size and associativity. */
921	tlb0_get_tlbconf();
922
923	/* Align kernel start and end address (kernel image). */
924	kernstart = trunc_page(start);
925	data_start = round_page(kernelend);
926	kernsize = data_start - kernstart;
927
928	data_end = data_start;
929
930	/* Allocate space for the message buffer. */
931	msgbufp = (struct msgbuf *)data_end;
932	data_end += MSGBUF_SIZE;
933	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
934	    data_end);
935
936	data_end = round_page(data_end);
937
938	/* Allocate space for ptbl_bufs. */
939	ptbl_bufs = (struct ptbl_buf *)data_end;
940	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
941	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
942	    data_end);
943
944	data_end = round_page(data_end);
945
946	/* Allocate PTE tables for kernel KVA. */
947	kernel_pdir = data_end;
948	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
949	    PDIR_SIZE - 1) / PDIR_SIZE;
950	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
951	debugf(" kernel ptbls: %d\n", kernel_ptbls);
952	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
953
954	debugf(" data_end: 0x%08x\n", data_end);
955	if (data_end - kernstart > 0x1000000) {
956		data_end = (data_end + 0x3fffff) & ~0x3fffff;
957		tlb1_mapin_region(kernstart + 0x1000000,
958		    kernload + 0x1000000, data_end - kernstart - 0x1000000);
959	} else
960		data_end = (data_end + 0xffffff) & ~0xffffff;
961
962	debugf(" updated data_end: 0x%08x\n", data_end);
963
964	kernsize += data_end - data_start;
965
966	/*
967	 * Clear the structures - note we can only do it safely after the
968	 * possible additional TLB1 translations are in place (above) so that
969	 * all range up to the currently calculated 'data_end' is covered.
970	 */
971	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
972	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
973
974	/*******************************************************/
975	/* Set the start and end of kva. */
976	/*******************************************************/
977	virtual_avail = round_page(data_end);
978	virtual_end = VM_MAX_KERNEL_ADDRESS;
979
980	/* Allocate KVA space for page zero/copy operations. */
981	zero_page_va = virtual_avail;
982	virtual_avail += PAGE_SIZE;
983	zero_page_idle_va = virtual_avail;
984	virtual_avail += PAGE_SIZE;
985	copy_page_src_va = virtual_avail;
986	virtual_avail += PAGE_SIZE;
987	copy_page_dst_va = virtual_avail;
988	virtual_avail += PAGE_SIZE;
989	debugf("zero_page_va = 0x%08x\n", zero_page_va);
990	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
991	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
992	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
993
994	/* Initialize page zero/copy mutexes. */
995	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
996	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
997
998	/* Allocate KVA space for ptbl bufs. */
999	ptbl_buf_pool_vabase = virtual_avail;
1000	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1001	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1002	    ptbl_buf_pool_vabase, virtual_avail);
1003
1004	/* Calculate corresponding physical addresses for the kernel region. */
1005	phys_kernelend = kernload + kernsize;
1006	debugf("kernel image and allocated data:\n");
1007	debugf(" kernload    = 0x%08x\n", kernload);
1008	debugf(" kernstart   = 0x%08x\n", kernstart);
1009	debugf(" kernsize    = 0x%08x\n", kernsize);
1010
1011	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1012		panic("mmu_booke_bootstrap: phys_avail too small");
1013
1014	/*
1015	 * Remove kernel physical address range from avail regions list. Page
1016	 * align all regions.  Non-page aligned memory isn't very interesting
1017	 * to us.  Also, sort the entries for ascending addresses.
1018	 */
1019
1020	/* Retrieve phys/avail mem regions */
1021	mem_regions(&physmem_regions, &physmem_regions_sz,
1022	    &availmem_regions, &availmem_regions_sz);
1023	sz = 0;
1024	cnt = availmem_regions_sz;
1025	debugf("processing avail regions:\n");
1026	for (mp = availmem_regions; mp->mr_size; mp++) {
1027		s = mp->mr_start;
1028		e = mp->mr_start + mp->mr_size;
1029		debugf(" %08x-%08x -> ", s, e);
1030		/* Check whether this region holds all of the kernel. */
1031		if (s < kernload && e > phys_kernelend) {
1032			availmem_regions[cnt].mr_start = phys_kernelend;
1033			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1034			e = kernload;
1035		}
1036		/* Look whether this regions starts within the kernel. */
1037		if (s >= kernload && s < phys_kernelend) {
1038			if (e <= phys_kernelend)
1039				goto empty;
1040			s = phys_kernelend;
1041		}
1042		/* Now look whether this region ends within the kernel. */
1043		if (e > kernload && e <= phys_kernelend) {
1044			if (s >= kernload)
1045				goto empty;
1046			e = kernload;
1047		}
1048		/* Now page align the start and size of the region. */
1049		s = round_page(s);
1050		e = trunc_page(e);
1051		if (e < s)
1052			e = s;
1053		sz = e - s;
1054		debugf("%08x-%08x = %x\n", s, e, sz);
1055
1056		/* Check whether some memory is left here. */
1057		if (sz == 0) {
1058		empty:
1059			memmove(mp, mp + 1,
1060			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1061			cnt--;
1062			mp--;
1063			continue;
1064		}
1065
1066		/* Do an insertion sort. */
1067		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1068			if (s < mp1->mr_start)
1069				break;
1070		if (mp1 < mp) {
1071			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1072			mp1->mr_start = s;
1073			mp1->mr_size = sz;
1074		} else {
1075			mp->mr_start = s;
1076			mp->mr_size = sz;
1077		}
1078	}
1079	availmem_regions_sz = cnt;
1080
1081	/*******************************************************/
1082	/* Steal physical memory for kernel stack from the end */
1083	/* of the first avail region                           */
1084	/*******************************************************/
1085	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1086	kstack0_phys = availmem_regions[0].mr_start +
1087	    availmem_regions[0].mr_size;
1088	kstack0_phys -= kstack0_sz;
1089	availmem_regions[0].mr_size -= kstack0_sz;
1090
1091	/*******************************************************/
1092	/* Fill in phys_avail table, based on availmem_regions */
1093	/*******************************************************/
1094	phys_avail_count = 0;
1095	physsz = 0;
1096	hwphyssz = 0;
1097	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1098
1099	debugf("fill in phys_avail:\n");
1100	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1101
1102		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1103		    availmem_regions[i].mr_start,
1104		    availmem_regions[i].mr_start +
1105		        availmem_regions[i].mr_size,
1106		    availmem_regions[i].mr_size);
1107
1108		if (hwphyssz != 0 &&
1109		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1110			debugf(" hw.physmem adjust\n");
1111			if (physsz < hwphyssz) {
1112				phys_avail[j] = availmem_regions[i].mr_start;
1113				phys_avail[j + 1] =
1114				    availmem_regions[i].mr_start +
1115				    hwphyssz - physsz;
1116				physsz = hwphyssz;
1117				phys_avail_count++;
1118			}
1119			break;
1120		}
1121
1122		phys_avail[j] = availmem_regions[i].mr_start;
1123		phys_avail[j + 1] = availmem_regions[i].mr_start +
1124		    availmem_regions[i].mr_size;
1125		phys_avail_count++;
1126		physsz += availmem_regions[i].mr_size;
1127	}
1128	physmem = btoc(physsz);
1129
1130	/* Calculate the last available physical address. */
1131	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1132		;
1133	Maxmem = powerpc_btop(phys_avail[i + 1]);
1134
1135	debugf("Maxmem = 0x%08lx\n", Maxmem);
1136	debugf("phys_avail_count = %d\n", phys_avail_count);
1137	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1138	    physmem);
1139
1140	/*******************************************************/
1141	/* Initialize (statically allocated) kernel pmap. */
1142	/*******************************************************/
1143	PMAP_LOCK_INIT(kernel_pmap);
1144	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1145
1146	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1147	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1148	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1149	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1150
1151	/* Initialize kernel pdir */
1152	for (i = 0; i < kernel_ptbls; i++)
1153		kernel_pmap->pm_pdir[kptbl_min + i] =
1154		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1155
1156	for (i = 0; i < MAXCPU; i++) {
1157		kernel_pmap->pm_tid[i] = TID_KERNEL;
1158
1159		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1160		tidbusy[i][0] = kernel_pmap;
1161	}
1162	/* Mark kernel_pmap active on all CPUs */
1163	kernel_pmap->pm_active = ~0;
1164
1165	/*******************************************************/
1166	/* Final setup */
1167	/*******************************************************/
1168
1169	/* Enter kstack0 into kernel map, provide guard page */
1170	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1171	thread0.td_kstack = kstack0;
1172	thread0.td_kstack_pages = KSTACK_PAGES;
1173
1174	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1175	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1176	    kstack0_phys, kstack0_phys + kstack0_sz);
1177	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1178
1179	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1180	for (i = 0; i < KSTACK_PAGES; i++) {
1181		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1182		kstack0 += PAGE_SIZE;
1183		kstack0_phys += PAGE_SIZE;
1184	}
1185
1186	debugf("virtual_avail = %08x\n", virtual_avail);
1187	debugf("virtual_end   = %08x\n", virtual_end);
1188
1189	debugf("mmu_booke_bootstrap: exit\n");
1190}
1191
1192/*
1193 * Get the physical page address for the given pmap/virtual address.
1194 */
1195static vm_paddr_t
1196mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1197{
1198	vm_paddr_t pa;
1199
1200	PMAP_LOCK(pmap);
1201	pa = pte_vatopa(mmu, pmap, va);
1202	PMAP_UNLOCK(pmap);
1203
1204	return (pa);
1205}
1206
1207/*
1208 * Extract the physical page address associated with the given
1209 * kernel virtual address.
1210 */
1211static vm_paddr_t
1212mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1213{
1214
1215	return (pte_vatopa(mmu, kernel_pmap, va));
1216}
1217
1218/*
1219 * Initialize the pmap module.
1220 * Called by vm_init, to initialize any structures that the pmap
1221 * system needs to map virtual memory.
1222 */
1223static void
1224mmu_booke_init(mmu_t mmu)
1225{
1226	int shpgperproc = PMAP_SHPGPERPROC;
1227
1228	/*
1229	 * Initialize the address space (zone) for the pv entries.  Set a
1230	 * high water mark so that the system can recover from excessive
1231	 * numbers of pv entries.
1232	 */
1233	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1234	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1235
1236	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1237	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1238
1239	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1240	pv_entry_high_water = 9 * (pv_entry_max / 10);
1241
1242	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
1243
1244	/* Pre-fill pvzone with initial number of pv entries. */
1245	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1246
1247	/* Initialize ptbl allocation. */
1248	ptbl_init();
1249}
1250
1251/*
1252 * Map a list of wired pages into kernel virtual address space.  This is
1253 * intended for temporary mappings which do not need page modification or
1254 * references recorded.  Existing mappings in the region are overwritten.
1255 */
1256static void
1257mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1258{
1259	vm_offset_t va;
1260
1261	va = sva;
1262	while (count-- > 0) {
1263		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1264		va += PAGE_SIZE;
1265		m++;
1266	}
1267}
1268
1269/*
1270 * Remove page mappings from kernel virtual address space.  Intended for
1271 * temporary mappings entered by mmu_booke_qenter.
1272 */
1273static void
1274mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1275{
1276	vm_offset_t va;
1277
1278	va = sva;
1279	while (count-- > 0) {
1280		mmu_booke_kremove(mmu, va);
1281		va += PAGE_SIZE;
1282	}
1283}
1284
1285/*
1286 * Map a wired page into kernel virtual address space.
1287 */
1288static void
1289mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1290{
1291	unsigned int pdir_idx = PDIR_IDX(va);
1292	unsigned int ptbl_idx = PTBL_IDX(va);
1293	uint32_t flags;
1294	pte_t *pte;
1295
1296	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1297	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1298
1299	flags = 0;
1300	flags |= (PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID);
1301	flags |= PTE_M;
1302
1303	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1304
1305	mtx_lock_spin(&tlbivax_mutex);
1306
1307	if (PTE_ISVALID(pte)) {
1308
1309		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1310
1311		/* Flush entry from TLB0 */
1312		tlb0_flush_entry(va);
1313	}
1314
1315	pte->rpn = pa & ~PTE_PA_MASK;
1316	pte->flags = flags;
1317
1318	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1319	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1320	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1321
1322	/* Flush the real memory from the instruction cache. */
1323	if ((flags & (PTE_I | PTE_G)) == 0) {
1324		__syncicache((void *)va, PAGE_SIZE);
1325	}
1326
1327	mtx_unlock_spin(&tlbivax_mutex);
1328}
1329
1330/*
1331 * Remove a page from kernel page table.
1332 */
1333static void
1334mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1335{
1336	unsigned int pdir_idx = PDIR_IDX(va);
1337	unsigned int ptbl_idx = PTBL_IDX(va);
1338	pte_t *pte;
1339
1340//	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1341
1342	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1343	    (va <= VM_MAX_KERNEL_ADDRESS)),
1344	    ("mmu_booke_kremove: invalid va"));
1345
1346	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1347
1348	if (!PTE_ISVALID(pte)) {
1349
1350		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1351
1352		return;
1353	}
1354
1355	mtx_lock_spin(&tlbivax_mutex);
1356
1357	/* Invalidate entry in TLB0, update PTE. */
1358	tlb0_flush_entry(va);
1359	pte->flags = 0;
1360	pte->rpn = 0;
1361
1362	mtx_unlock_spin(&tlbivax_mutex);
1363}
1364
1365/*
1366 * Initialize pmap associated with process 0.
1367 */
1368static void
1369mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1370{
1371
1372	mmu_booke_pinit(mmu, pmap);
1373	PCPU_SET(curpmap, pmap);
1374}
1375
1376/*
1377 * Initialize a preallocated and zeroed pmap structure,
1378 * such as one in a vmspace structure.
1379 */
1380static void
1381mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1382{
1383	int i;
1384
1385	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1386	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1387
1388	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1389
1390	PMAP_LOCK_INIT(pmap);
1391	for (i = 0; i < MAXCPU; i++)
1392		pmap->pm_tid[i] = TID_NONE;
1393	pmap->pm_active = 0;
1394	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1395	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1396	TAILQ_INIT(&pmap->pm_ptbl_list);
1397}
1398
1399/*
1400 * Release any resources held by the given physical map.
1401 * Called when a pmap initialized by mmu_booke_pinit is being released.
1402 * Should only be called if the map contains no valid mappings.
1403 */
1404static void
1405mmu_booke_release(mmu_t mmu, pmap_t pmap)
1406{
1407
1408	printf("mmu_booke_release: s\n");
1409
1410	KASSERT(pmap->pm_stats.resident_count == 0,
1411	    ("pmap_release: pmap resident count %ld != 0",
1412	    pmap->pm_stats.resident_count));
1413
1414	PMAP_LOCK_DESTROY(pmap);
1415}
1416
1417/*
1418 * Insert the given physical page at the specified virtual address in the
1419 * target physical map with the protection requested. If specified the page
1420 * will be wired down.
1421 */
1422static void
1423mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1424    vm_prot_t prot, boolean_t wired)
1425{
1426
1427	vm_page_lock_queues();
1428	PMAP_LOCK(pmap);
1429	mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1430	vm_page_unlock_queues();
1431	PMAP_UNLOCK(pmap);
1432}
1433
1434static void
1435mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1436    vm_prot_t prot, boolean_t wired)
1437{
1438	pte_t *pte;
1439	vm_paddr_t pa;
1440	uint32_t flags;
1441	int su, sync;
1442
1443	pa = VM_PAGE_TO_PHYS(m);
1444	su = (pmap == kernel_pmap);
1445	sync = 0;
1446
1447	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1448	//		"pa=0x%08x prot=0x%08x wired=%d)\n",
1449	//		(u_int32_t)pmap, su, pmap->pm_tid,
1450	//		(u_int32_t)m, va, pa, prot, wired);
1451
1452	if (su) {
1453		KASSERT(((va >= virtual_avail) &&
1454		    (va <= VM_MAX_KERNEL_ADDRESS)),
1455		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1456	} else {
1457		KASSERT((va <= VM_MAXUSER_ADDRESS),
1458		    ("mmu_booke_enter_locked: user pmap, non user va"));
1459	}
1460
1461	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1462
1463	/*
1464	 * If there is an existing mapping, and the physical address has not
1465	 * changed, must be protection or wiring change.
1466	 */
1467	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1468	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1469
1470		/*
1471		 * Before actually updating pte->flags we calculate and
1472		 * prepare its new value in a helper var.
1473		 */
1474		flags = pte->flags;
1475		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1476
1477		/* Wiring change, just update stats. */
1478		if (wired) {
1479			if (!PTE_ISWIRED(pte)) {
1480				flags |= PTE_WIRED;
1481				pmap->pm_stats.wired_count++;
1482			}
1483		} else {
1484			if (PTE_ISWIRED(pte)) {
1485				flags &= ~PTE_WIRED;
1486				pmap->pm_stats.wired_count--;
1487			}
1488		}
1489
1490		if (prot & VM_PROT_WRITE) {
1491			/* Add write permissions. */
1492			flags |= PTE_SW;
1493			if (!su)
1494				flags |= PTE_UW;
1495		} else {
1496			/* Handle modified pages, sense modify status. */
1497
1498			/*
1499			 * The PTE_MODIFIED flag could be set by underlying
1500			 * TLB misses since we last read it (above), possibly
1501			 * other CPUs could update it so we check in the PTE
1502			 * directly rather than rely on that saved local flags
1503			 * copy.
1504			 */
1505			if (PTE_ISMODIFIED(pte))
1506				vm_page_dirty(m);
1507		}
1508
1509		if (prot & VM_PROT_EXECUTE) {
1510			flags |= PTE_SX;
1511			if (!su)
1512				flags |= PTE_UX;
1513
1514			/*
1515			 * Check existing flags for execute permissions: if we
1516			 * are turning execute permissions on, icache should
1517			 * be flushed.
1518			 */
1519			if ((flags & (PTE_UX | PTE_SX)) == 0)
1520				sync++;
1521		}
1522
1523		flags &= ~PTE_REFERENCED;
1524
1525		/*
1526		 * The new flags value is all calculated -- only now actually
1527		 * update the PTE.
1528		 */
1529		mtx_lock_spin(&tlbivax_mutex);
1530
1531		tlb0_flush_entry(va);
1532		pte->flags = flags;
1533
1534		mtx_unlock_spin(&tlbivax_mutex);
1535
1536	} else {
1537		/*
1538		 * If there is an existing mapping, but it's for a different
1539		 * physical address, pte_enter() will delete the old mapping.
1540		 */
1541		//if ((pte != NULL) && PTE_ISVALID(pte))
1542		//	debugf("mmu_booke_enter_locked: replace\n");
1543		//else
1544		//	debugf("mmu_booke_enter_locked: new\n");
1545
1546		/* Now set up the flags and install the new mapping. */
1547		flags = (PTE_SR | PTE_VALID);
1548		flags |= PTE_M;
1549
1550		if (!su)
1551			flags |= PTE_UR;
1552
1553		if (prot & VM_PROT_WRITE) {
1554			flags |= PTE_SW;
1555			if (!su)
1556				flags |= PTE_UW;
1557		}
1558
1559		if (prot & VM_PROT_EXECUTE) {
1560			flags |= PTE_SX;
1561			if (!su)
1562				flags |= PTE_UX;
1563		}
1564
1565		/* If its wired update stats. */
1566		if (wired) {
1567			pmap->pm_stats.wired_count++;
1568			flags |= PTE_WIRED;
1569		}
1570
1571		pte_enter(mmu, pmap, m, va, flags);
1572
1573		/* Flush the real memory from the instruction cache. */
1574		if (prot & VM_PROT_EXECUTE)
1575			sync++;
1576	}
1577
1578	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1579		__syncicache((void *)va, PAGE_SIZE);
1580		sync = 0;
1581	}
1582
1583	if (sync) {
1584		/* Create a temporary mapping. */
1585		pmap = PCPU_GET(curpmap);
1586
1587		va = 0;
1588		pte = pte_find(mmu, pmap, va);
1589		KASSERT(pte == NULL, ("%s:%d", __func__, __LINE__));
1590
1591		flags = PTE_SR | PTE_VALID | PTE_UR | PTE_M;
1592
1593		pte_enter(mmu, pmap, m, va, flags);
1594		__syncicache((void *)va, PAGE_SIZE);
1595		pte_remove(mmu, pmap, va, PTBL_UNHOLD);
1596	}
1597}
1598
1599/*
1600 * Maps a sequence of resident pages belonging to the same object.
1601 * The sequence begins with the given page m_start.  This page is
1602 * mapped at the given virtual address start.  Each subsequent page is
1603 * mapped at a virtual address that is offset from start by the same
1604 * amount as the page is offset from m_start within the object.  The
1605 * last page in the sequence is the page with the largest offset from
1606 * m_start that can be mapped at a virtual address less than the given
1607 * virtual address end.  Not every virtual page between start and end
1608 * is mapped; only those for which a resident page exists with the
1609 * corresponding offset from m_start are mapped.
1610 */
1611static void
1612mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1613    vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1614{
1615	vm_page_t m;
1616	vm_pindex_t diff, psize;
1617
1618	psize = atop(end - start);
1619	m = m_start;
1620	PMAP_LOCK(pmap);
1621	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1622		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1623		    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1624		m = TAILQ_NEXT(m, listq);
1625	}
1626	PMAP_UNLOCK(pmap);
1627}
1628
1629static void
1630mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1631    vm_prot_t prot)
1632{
1633
1634	PMAP_LOCK(pmap);
1635	mmu_booke_enter_locked(mmu, pmap, va, m,
1636	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1637	PMAP_UNLOCK(pmap);
1638}
1639
1640/*
1641 * Remove the given range of addresses from the specified map.
1642 *
1643 * It is assumed that the start and end are properly rounded to the page size.
1644 */
1645static void
1646mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1647{
1648	pte_t *pte;
1649	uint8_t hold_flag;
1650
1651	int su = (pmap == kernel_pmap);
1652
1653	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1654	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1655
1656	if (su) {
1657		KASSERT(((va >= virtual_avail) &&
1658		    (va <= VM_MAX_KERNEL_ADDRESS)),
1659		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1660	} else {
1661		KASSERT((va <= VM_MAXUSER_ADDRESS),
1662		    ("mmu_booke_remove: user pmap, non user va"));
1663	}
1664
1665	if (PMAP_REMOVE_DONE(pmap)) {
1666		//debugf("mmu_booke_remove: e (empty)\n");
1667		return;
1668	}
1669
1670	hold_flag = PTBL_HOLD_FLAG(pmap);
1671	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1672
1673	vm_page_lock_queues();
1674	PMAP_LOCK(pmap);
1675	for (; va < endva; va += PAGE_SIZE) {
1676		pte = pte_find(mmu, pmap, va);
1677		if ((pte != NULL) && PTE_ISVALID(pte))
1678			pte_remove(mmu, pmap, va, hold_flag);
1679	}
1680	PMAP_UNLOCK(pmap);
1681	vm_page_unlock_queues();
1682
1683	//debugf("mmu_booke_remove: e\n");
1684}
1685
1686/*
1687 * Remove physical page from all pmaps in which it resides.
1688 */
1689static void
1690mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1691{
1692	pv_entry_t pv, pvn;
1693	uint8_t hold_flag;
1694
1695	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1696
1697	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1698		pvn = TAILQ_NEXT(pv, pv_link);
1699
1700		PMAP_LOCK(pv->pv_pmap);
1701		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1702		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1703		PMAP_UNLOCK(pv->pv_pmap);
1704	}
1705	vm_page_flag_clear(m, PG_WRITEABLE);
1706}
1707
1708/*
1709 * Map a range of physical addresses into kernel virtual address space.
1710 */
1711static vm_offset_t
1712mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1713    vm_offset_t pa_end, int prot)
1714{
1715	vm_offset_t sva = *virt;
1716	vm_offset_t va = sva;
1717
1718	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1719	//		sva, pa_start, pa_end);
1720
1721	while (pa_start < pa_end) {
1722		mmu_booke_kenter(mmu, va, pa_start);
1723		va += PAGE_SIZE;
1724		pa_start += PAGE_SIZE;
1725	}
1726	*virt = va;
1727
1728	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1729	return (sva);
1730}
1731
1732/*
1733 * The pmap must be activated before it's address space can be accessed in any
1734 * way.
1735 */
1736static void
1737mmu_booke_activate(mmu_t mmu, struct thread *td)
1738{
1739	pmap_t pmap;
1740
1741	pmap = &td->td_proc->p_vmspace->vm_pmap;
1742
1743	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1744	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1745
1746	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1747
1748	mtx_lock_spin(&sched_lock);
1749
1750	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
1751	PCPU_SET(curpmap, pmap);
1752
1753	if (pmap->pm_tid[PCPU_GET(cpuid)] == TID_NONE)
1754		tid_alloc(pmap);
1755
1756	/* Load PID0 register with pmap tid value. */
1757	mtspr(SPR_PID0, pmap->pm_tid[PCPU_GET(cpuid)]);
1758	__asm __volatile("isync");
1759
1760	mtx_unlock_spin(&sched_lock);
1761
1762	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1763	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1764}
1765
1766/*
1767 * Deactivate the specified process's address space.
1768 */
1769static void
1770mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1771{
1772	pmap_t pmap;
1773
1774	pmap = &td->td_proc->p_vmspace->vm_pmap;
1775
1776	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1777	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1778
1779	atomic_clear_int(&pmap->pm_active, PCPU_GET(cpumask));
1780	PCPU_SET(curpmap, NULL);
1781}
1782
1783/*
1784 * Copy the range specified by src_addr/len
1785 * from the source map to the range dst_addr/len
1786 * in the destination map.
1787 *
1788 * This routine is only advisory and need not do anything.
1789 */
1790static void
1791mmu_booke_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
1792    vm_size_t len, vm_offset_t src_addr)
1793{
1794
1795}
1796
1797/*
1798 * Set the physical protection on the specified range of this map as requested.
1799 */
1800static void
1801mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1802    vm_prot_t prot)
1803{
1804	vm_offset_t va;
1805	vm_page_t m;
1806	pte_t *pte;
1807
1808	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1809		mmu_booke_remove(mmu, pmap, sva, eva);
1810		return;
1811	}
1812
1813	if (prot & VM_PROT_WRITE)
1814		return;
1815
1816	vm_page_lock_queues();
1817	PMAP_LOCK(pmap);
1818	for (va = sva; va < eva; va += PAGE_SIZE) {
1819		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1820			if (PTE_ISVALID(pte)) {
1821				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1822
1823				mtx_lock_spin(&tlbivax_mutex);
1824
1825				/* Handle modified pages. */
1826				if (PTE_ISMODIFIED(pte))
1827					vm_page_dirty(m);
1828
1829				/* Referenced pages. */
1830				if (PTE_ISREFERENCED(pte))
1831					vm_page_flag_set(m, PG_REFERENCED);
1832
1833				tlb0_flush_entry(va);
1834				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED |
1835				    PTE_REFERENCED);
1836
1837				mtx_unlock_spin(&tlbivax_mutex);
1838			}
1839		}
1840	}
1841	PMAP_UNLOCK(pmap);
1842	vm_page_unlock_queues();
1843}
1844
1845/*
1846 * Clear the write and modified bits in each of the given page's mappings.
1847 */
1848static void
1849mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
1850{
1851	pv_entry_t pv;
1852	pte_t *pte;
1853
1854	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1855	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1856	    (m->flags & PG_WRITEABLE) == 0)
1857		return;
1858
1859	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1860		PMAP_LOCK(pv->pv_pmap);
1861		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
1862			if (PTE_ISVALID(pte)) {
1863				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1864
1865				mtx_lock_spin(&tlbivax_mutex);
1866
1867				/* Handle modified pages. */
1868				if (PTE_ISMODIFIED(pte))
1869					vm_page_dirty(m);
1870
1871				/* Referenced pages. */
1872				if (PTE_ISREFERENCED(pte))
1873					vm_page_flag_set(m, PG_REFERENCED);
1874
1875				/* Flush mapping from TLB0. */
1876				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED |
1877				    PTE_REFERENCED);
1878
1879				mtx_unlock_spin(&tlbivax_mutex);
1880			}
1881		}
1882		PMAP_UNLOCK(pv->pv_pmap);
1883	}
1884	vm_page_flag_clear(m, PG_WRITEABLE);
1885}
1886
1887static boolean_t
1888mmu_booke_page_executable(mmu_t mmu, vm_page_t m)
1889{
1890	pv_entry_t pv;
1891	pte_t *pte;
1892	boolean_t executable;
1893
1894	executable = FALSE;
1895	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1896		PMAP_LOCK(pv->pv_pmap);
1897		pte = pte_find(mmu, pv->pv_pmap, pv->pv_va);
1898		if (pte != NULL && PTE_ISVALID(pte) && (pte->flags & PTE_UX))
1899			executable = TRUE;
1900		PMAP_UNLOCK(pv->pv_pmap);
1901		if (executable)
1902			break;
1903	}
1904
1905	return (executable);
1906}
1907
1908/*
1909 * Atomically extract and hold the physical page with the given
1910 * pmap and virtual address pair if that mapping permits the given
1911 * protection.
1912 */
1913static vm_page_t
1914mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
1915    vm_prot_t prot)
1916{
1917	pte_t *pte;
1918	vm_page_t m;
1919	uint32_t pte_wbit;
1920
1921	m = NULL;
1922	vm_page_lock_queues();
1923	PMAP_LOCK(pmap);
1924
1925	pte = pte_find(mmu, pmap, va);
1926	if ((pte != NULL) && PTE_ISVALID(pte)) {
1927		if (pmap == kernel_pmap)
1928			pte_wbit = PTE_SW;
1929		else
1930			pte_wbit = PTE_UW;
1931
1932		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
1933			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1934			vm_page_hold(m);
1935		}
1936	}
1937
1938	vm_page_unlock_queues();
1939	PMAP_UNLOCK(pmap);
1940	return (m);
1941}
1942
1943/*
1944 * Initialize a vm_page's machine-dependent fields.
1945 */
1946static void
1947mmu_booke_page_init(mmu_t mmu, vm_page_t m)
1948{
1949
1950	TAILQ_INIT(&m->md.pv_list);
1951}
1952
1953/*
1954 * mmu_booke_zero_page_area zeros the specified hardware page by
1955 * mapping it into virtual memory and using bzero to clear
1956 * its contents.
1957 *
1958 * off and size must reside within a single page.
1959 */
1960static void
1961mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1962{
1963	vm_offset_t va;
1964
1965	/* XXX KASSERT off and size are within a single page? */
1966
1967	mtx_lock(&zero_page_mutex);
1968	va = zero_page_va;
1969
1970	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
1971	bzero((caddr_t)va + off, size);
1972	mmu_booke_kremove(mmu, va);
1973
1974	mtx_unlock(&zero_page_mutex);
1975}
1976
1977/*
1978 * mmu_booke_zero_page zeros the specified hardware page.
1979 */
1980static void
1981mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
1982{
1983
1984	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
1985}
1986
1987/*
1988 * mmu_booke_copy_page copies the specified (machine independent) page by
1989 * mapping the page into virtual memory and using memcopy to copy the page,
1990 * one machine dependent page at a time.
1991 */
1992static void
1993mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
1994{
1995	vm_offset_t sva, dva;
1996
1997	sva = copy_page_src_va;
1998	dva = copy_page_dst_va;
1999
2000	mtx_lock(&copy_page_mutex);
2001	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2002	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2003	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2004	mmu_booke_kremove(mmu, dva);
2005	mmu_booke_kremove(mmu, sva);
2006	mtx_unlock(&copy_page_mutex);
2007}
2008
2009/*
2010 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2011 * into virtual memory and using bzero to clear its contents. This is intended
2012 * to be called from the vm_pagezero process only and outside of Giant. No
2013 * lock is required.
2014 */
2015static void
2016mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2017{
2018	vm_offset_t va;
2019
2020	va = zero_page_idle_va;
2021	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2022	bzero((caddr_t)va, PAGE_SIZE);
2023	mmu_booke_kremove(mmu, va);
2024}
2025
2026/*
2027 * Return whether or not the specified physical page was modified
2028 * in any of physical maps.
2029 */
2030static boolean_t
2031mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2032{
2033	pte_t *pte;
2034	pv_entry_t pv;
2035
2036	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2037	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2038		return (FALSE);
2039
2040	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2041		PMAP_LOCK(pv->pv_pmap);
2042		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2043			if (!PTE_ISVALID(pte))
2044				goto make_sure_to_unlock;
2045
2046			if (PTE_ISMODIFIED(pte)) {
2047				PMAP_UNLOCK(pv->pv_pmap);
2048				return (TRUE);
2049			}
2050		}
2051make_sure_to_unlock:
2052		PMAP_UNLOCK(pv->pv_pmap);
2053	}
2054	return (FALSE);
2055}
2056
2057/*
2058 * Return whether or not the specified virtual address is eligible
2059 * for prefault.
2060 */
2061static boolean_t
2062mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2063{
2064
2065	return (FALSE);
2066}
2067
2068/*
2069 * Clear the modify bits on the specified physical page.
2070 */
2071static void
2072mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2073{
2074	pte_t *pte;
2075	pv_entry_t pv;
2076
2077	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2078	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2079		return;
2080
2081	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2082		PMAP_LOCK(pv->pv_pmap);
2083		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2084			if (!PTE_ISVALID(pte))
2085				goto make_sure_to_unlock;
2086
2087			mtx_lock_spin(&tlbivax_mutex);
2088
2089			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2090				tlb0_flush_entry(pv->pv_va);
2091				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2092				    PTE_REFERENCED);
2093			}
2094
2095			mtx_unlock_spin(&tlbivax_mutex);
2096		}
2097make_sure_to_unlock:
2098		PMAP_UNLOCK(pv->pv_pmap);
2099	}
2100}
2101
2102/*
2103 * Return a count of reference bits for a page, clearing those bits.
2104 * It is not necessary for every reference bit to be cleared, but it
2105 * is necessary that 0 only be returned when there are truly no
2106 * reference bits set.
2107 *
2108 * XXX: The exact number of bits to check and clear is a matter that
2109 * should be tested and standardized at some point in the future for
2110 * optimal aging of shared pages.
2111 */
2112static int
2113mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2114{
2115	pte_t *pte;
2116	pv_entry_t pv;
2117	int count;
2118
2119	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2120	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2121		return (0);
2122
2123	count = 0;
2124	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2125		PMAP_LOCK(pv->pv_pmap);
2126		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2127			if (!PTE_ISVALID(pte))
2128				goto make_sure_to_unlock;
2129
2130			if (PTE_ISREFERENCED(pte)) {
2131				mtx_lock_spin(&tlbivax_mutex);
2132
2133				tlb0_flush_entry(pv->pv_va);
2134				pte->flags &= ~PTE_REFERENCED;
2135
2136				mtx_unlock_spin(&tlbivax_mutex);
2137
2138				if (++count > 4) {
2139					PMAP_UNLOCK(pv->pv_pmap);
2140					break;
2141				}
2142			}
2143		}
2144make_sure_to_unlock:
2145		PMAP_UNLOCK(pv->pv_pmap);
2146	}
2147	return (count);
2148}
2149
2150/*
2151 * Clear the reference bit on the specified physical page.
2152 */
2153static void
2154mmu_booke_clear_reference(mmu_t mmu, vm_page_t m)
2155{
2156	pte_t *pte;
2157	pv_entry_t pv;
2158
2159	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2160	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2161		return;
2162
2163	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2164		PMAP_LOCK(pv->pv_pmap);
2165		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2166			if (!PTE_ISVALID(pte))
2167				goto make_sure_to_unlock;
2168
2169			if (PTE_ISREFERENCED(pte)) {
2170				mtx_lock_spin(&tlbivax_mutex);
2171
2172				tlb0_flush_entry(pv->pv_va);
2173				pte->flags &= ~PTE_REFERENCED;
2174
2175				mtx_unlock_spin(&tlbivax_mutex);
2176			}
2177		}
2178make_sure_to_unlock:
2179		PMAP_UNLOCK(pv->pv_pmap);
2180	}
2181}
2182
2183/*
2184 * Change wiring attribute for a map/virtual-address pair.
2185 */
2186static void
2187mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2188{
2189	pte_t *pte;;
2190
2191	PMAP_LOCK(pmap);
2192	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2193		if (wired) {
2194			if (!PTE_ISWIRED(pte)) {
2195				pte->flags |= PTE_WIRED;
2196				pmap->pm_stats.wired_count++;
2197			}
2198		} else {
2199			if (PTE_ISWIRED(pte)) {
2200				pte->flags &= ~PTE_WIRED;
2201				pmap->pm_stats.wired_count--;
2202			}
2203		}
2204	}
2205	PMAP_UNLOCK(pmap);
2206}
2207
2208/*
2209 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2210 * page.  This count may be changed upwards or downwards in the future; it is
2211 * only necessary that true be returned for a small subset of pmaps for proper
2212 * page aging.
2213 */
2214static boolean_t
2215mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2216{
2217	pv_entry_t pv;
2218	int loops;
2219
2220	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2221	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2222		return (FALSE);
2223
2224	loops = 0;
2225	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2226		if (pv->pv_pmap == pmap)
2227			return (TRUE);
2228
2229		if (++loops >= 16)
2230			break;
2231	}
2232	return (FALSE);
2233}
2234
2235/*
2236 * Return the number of managed mappings to the given physical page that are
2237 * wired.
2238 */
2239static int
2240mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2241{
2242	pv_entry_t pv;
2243	pte_t *pte;
2244	int count = 0;
2245
2246	if ((m->flags & PG_FICTITIOUS) != 0)
2247		return (count);
2248	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2249
2250	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2251		PMAP_LOCK(pv->pv_pmap);
2252		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2253			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2254				count++;
2255		PMAP_UNLOCK(pv->pv_pmap);
2256	}
2257
2258	return (count);
2259}
2260
2261static int
2262mmu_booke_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2263{
2264	int i;
2265	vm_offset_t va;
2266
2267	/*
2268	 * This currently does not work for entries that
2269	 * overlap TLB1 entries.
2270	 */
2271	for (i = 0; i < tlb1_idx; i ++) {
2272		if (tlb1_iomapped(i, pa, size, &va) == 0)
2273			return (0);
2274	}
2275
2276	return (EFAULT);
2277}
2278
2279vm_offset_t
2280mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2281    vm_size_t *sz)
2282{
2283	vm_paddr_t pa, ppa;
2284	vm_offset_t va;
2285	vm_size_t gran;
2286
2287	/* Raw physical memory dumps don't have a virtual address. */
2288	if (md->md_vaddr == ~0UL) {
2289		/* We always map a 256MB page at 256M. */
2290		gran = 256 * 1024 * 1024;
2291		pa = md->md_paddr + ofs;
2292		ppa = pa & ~(gran - 1);
2293		ofs = pa - ppa;
2294		va = gran;
2295		tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2296		if (*sz > (gran - ofs))
2297			*sz = gran - ofs;
2298		return (va + ofs);
2299	}
2300
2301	/* Minidumps are based on virtual memory addresses. */
2302	va = md->md_vaddr + ofs;
2303	if (va >= kernstart + kernsize) {
2304		gran = PAGE_SIZE - (va & PAGE_MASK);
2305		if (*sz > gran)
2306			*sz = gran;
2307	}
2308	return (va);
2309}
2310
2311void
2312mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2313    vm_offset_t va)
2314{
2315
2316	/* Raw physical memory dumps don't have a virtual address. */
2317	if (md->md_vaddr == ~0UL) {
2318		tlb1_idx--;
2319		tlb1[tlb1_idx].mas1 = 0;
2320		tlb1[tlb1_idx].mas2 = 0;
2321		tlb1[tlb1_idx].mas3 = 0;
2322		tlb1_write_entry(tlb1_idx);
2323		return;
2324	}
2325
2326	/* Minidumps are based on virtual memory addresses. */
2327	/* Nothing to do... */
2328}
2329
2330struct pmap_md *
2331mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2332{
2333	static struct pmap_md md;
2334	struct bi_mem_region *mr;
2335	pte_t *pte;
2336	vm_offset_t va;
2337
2338	if (dumpsys_minidump) {
2339		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2340		if (prev == NULL) {
2341			/* 1st: kernel .data and .bss. */
2342			md.md_index = 1;
2343			md.md_vaddr = trunc_page((uintptr_t)_etext);
2344			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2345			return (&md);
2346		}
2347		switch (prev->md_index) {
2348		case 1:
2349			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2350			md.md_index = 2;
2351			md.md_vaddr = data_start;
2352			md.md_size = data_end - data_start;
2353			break;
2354		case 2:
2355			/* 3rd: kernel VM. */
2356			va = prev->md_vaddr + prev->md_size;
2357			/* Find start of next chunk (from va). */
2358			while (va < virtual_end) {
2359				/* Don't dump the buffer cache. */
2360				if (va >= kmi.buffer_sva &&
2361				    va < kmi.buffer_eva) {
2362					va = kmi.buffer_eva;
2363					continue;
2364				}
2365				pte = pte_find(mmu, kernel_pmap, va);
2366				if (pte != NULL && PTE_ISVALID(pte))
2367					break;
2368				va += PAGE_SIZE;
2369			}
2370			if (va < virtual_end) {
2371				md.md_vaddr = va;
2372				va += PAGE_SIZE;
2373				/* Find last page in chunk. */
2374				while (va < virtual_end) {
2375					/* Don't run into the buffer cache. */
2376					if (va == kmi.buffer_sva)
2377						break;
2378					pte = pte_find(mmu, kernel_pmap, va);
2379					if (pte == NULL || !PTE_ISVALID(pte))
2380						break;
2381					va += PAGE_SIZE;
2382				}
2383				md.md_size = va - md.md_vaddr;
2384				break;
2385			}
2386			md.md_index = 3;
2387			/* FALLTHROUGH */
2388		default:
2389			return (NULL);
2390		}
2391	} else { /* minidumps */
2392		mr = bootinfo_mr();
2393		if (prev == NULL) {
2394			/* first physical chunk. */
2395			md.md_paddr = mr->mem_base;
2396			md.md_size = mr->mem_size;
2397			md.md_vaddr = ~0UL;
2398			md.md_index = 1;
2399		} else if (md.md_index < bootinfo->bi_mem_reg_no) {
2400			md.md_paddr = mr[md.md_index].mem_base;
2401			md.md_size = mr[md.md_index].mem_size;
2402			md.md_vaddr = ~0UL;
2403			md.md_index++;
2404		} else {
2405			/* There's no next physical chunk. */
2406			return (NULL);
2407		}
2408	}
2409
2410	return (&md);
2411}
2412
2413/*
2414 * Map a set of physical memory pages into the kernel virtual address space.
2415 * Return a pointer to where it is mapped. This routine is intended to be used
2416 * for mapping device memory, NOT real memory.
2417 */
2418static void *
2419mmu_booke_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2420{
2421	void *res;
2422	uintptr_t va;
2423	vm_size_t sz;
2424
2425	va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa);
2426	res = (void *)va;
2427
2428	do {
2429		sz = 1 << (ilog2(size) & ~1);
2430		if (bootverbose)
2431			printf("Wiring VA=%x to PA=%x (size=%x), "
2432			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2433		tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO);
2434		size -= sz;
2435		pa += sz;
2436		va += sz;
2437	} while (size > 0);
2438
2439	return (res);
2440}
2441
2442/*
2443 * 'Unmap' a range mapped by mmu_booke_mapdev().
2444 */
2445static void
2446mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2447{
2448	vm_offset_t base, offset;
2449
2450	/*
2451	 * Unmap only if this is inside kernel virtual space.
2452	 */
2453	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2454		base = trunc_page(va);
2455		offset = va & PAGE_MASK;
2456		size = roundup(offset + size, PAGE_SIZE);
2457		kmem_free(kernel_map, base, size);
2458	}
2459}
2460
2461/*
2462 * mmu_booke_object_init_pt preloads the ptes for a given object into the
2463 * specified pmap. This eliminates the blast of soft faults on process startup
2464 * and immediately after an mmap.
2465 */
2466static void
2467mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2468    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2469{
2470
2471	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2472	KASSERT(object->type == OBJT_DEVICE,
2473	    ("mmu_booke_object_init_pt: non-device object"));
2474}
2475
2476/*
2477 * Perform the pmap work for mincore.
2478 */
2479static int
2480mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2481{
2482
2483	TODO;
2484	return (0);
2485}
2486
2487/**************************************************************************/
2488/* TID handling */
2489/**************************************************************************/
2490
2491/*
2492 * Allocate a TID. If necessary, steal one from someone else.
2493 * The new TID is flushed from the TLB before returning.
2494 */
2495static tlbtid_t
2496tid_alloc(pmap_t pmap)
2497{
2498	tlbtid_t tid;
2499	int thiscpu;
2500
2501	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2502
2503	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2504
2505	thiscpu = PCPU_GET(cpuid);
2506
2507	tid = PCPU_GET(tid_next);
2508	if (tid > TID_MAX)
2509		tid = TID_MIN;
2510	PCPU_SET(tid_next, tid + 1);
2511
2512	/* If we are stealing TID then clear the relevant pmap's field */
2513	if (tidbusy[thiscpu][tid] != NULL) {
2514
2515		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2516
2517		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2518
2519		/* Flush all entries from TLB0 matching this TID. */
2520		tid_flush(tid);
2521	}
2522
2523	tidbusy[thiscpu][tid] = pmap;
2524	pmap->pm_tid[thiscpu] = tid;
2525	__asm __volatile("msync; isync");
2526
2527	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2528	    PCPU_GET(tid_next));
2529
2530	return (tid);
2531}
2532
2533/**************************************************************************/
2534/* TLB0 handling */
2535/**************************************************************************/
2536
2537static void
2538tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2539    uint32_t mas7)
2540{
2541	int as;
2542	char desc[3];
2543	tlbtid_t tid;
2544	vm_size_t size;
2545	unsigned int tsize;
2546
2547	desc[2] = '\0';
2548	if (mas1 & MAS1_VALID)
2549		desc[0] = 'V';
2550	else
2551		desc[0] = ' ';
2552
2553	if (mas1 & MAS1_IPROT)
2554		desc[1] = 'P';
2555	else
2556		desc[1] = ' ';
2557
2558	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2559	tid = MAS1_GETTID(mas1);
2560
2561	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2562	size = 0;
2563	if (tsize)
2564		size = tsize2size(tsize);
2565
2566	debugf("%3d: (%s) [AS=%d] "
2567	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2568	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2569	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2570}
2571
2572/* Convert TLB0 va and way number to tlb0[] table index. */
2573static inline unsigned int
2574tlb0_tableidx(vm_offset_t va, unsigned int way)
2575{
2576	unsigned int idx;
2577
2578	idx = (way * TLB0_ENTRIES_PER_WAY);
2579	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2580	return (idx);
2581}
2582
2583/*
2584 * Invalidate TLB0 entry.
2585 */
2586static inline void
2587tlb0_flush_entry(vm_offset_t va)
2588{
2589
2590	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2591
2592	mtx_assert(&tlbivax_mutex, MA_OWNED);
2593
2594	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2595	__asm __volatile("isync; msync");
2596	__asm __volatile("tlbsync; msync");
2597
2598	CTR1(KTR_PMAP, "%s: e", __func__);
2599}
2600
2601/* Print out contents of the MAS registers for each TLB0 entry */
2602void
2603tlb0_print_tlbentries(void)
2604{
2605	uint32_t mas0, mas1, mas2, mas3, mas7;
2606	int entryidx, way, idx;
2607
2608	debugf("TLB0 entries:\n");
2609	for (way = 0; way < TLB0_WAYS; way ++)
2610		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2611
2612			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2613			mtspr(SPR_MAS0, mas0);
2614			__asm __volatile("isync");
2615
2616			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2617			mtspr(SPR_MAS2, mas2);
2618
2619			__asm __volatile("isync; tlbre");
2620
2621			mas1 = mfspr(SPR_MAS1);
2622			mas2 = mfspr(SPR_MAS2);
2623			mas3 = mfspr(SPR_MAS3);
2624			mas7 = mfspr(SPR_MAS7);
2625
2626			idx = tlb0_tableidx(mas2, way);
2627			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2628		}
2629}
2630
2631/**************************************************************************/
2632/* TLB1 handling */
2633/**************************************************************************/
2634
2635/*
2636 * TLB1 mapping notes:
2637 *
2638 * TLB1[0]	CCSRBAR
2639 * TLB1[1]	Kernel text and data.
2640 * TLB1[2-15]	Additional kernel text and data mappings (if required), PCI
2641 *		windows, other devices mappings.
2642 */
2643
2644/*
2645 * Write given entry to TLB1 hardware.
2646 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2647 */
2648static void
2649tlb1_write_entry(unsigned int idx)
2650{
2651	uint32_t mas0, mas7;
2652
2653	//debugf("tlb1_write_entry: s\n");
2654
2655	/* Clear high order RPN bits */
2656	mas7 = 0;
2657
2658	/* Select entry */
2659	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2660	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2661
2662	mtspr(SPR_MAS0, mas0);
2663	__asm __volatile("isync");
2664	mtspr(SPR_MAS1, tlb1[idx].mas1);
2665	__asm __volatile("isync");
2666	mtspr(SPR_MAS2, tlb1[idx].mas2);
2667	__asm __volatile("isync");
2668	mtspr(SPR_MAS3, tlb1[idx].mas3);
2669	__asm __volatile("isync");
2670	mtspr(SPR_MAS7, mas7);
2671	__asm __volatile("isync; tlbwe; isync; msync");
2672
2673	//debugf("tlb1_write_entry: e\n");;
2674}
2675
2676/*
2677 * Return the largest uint value log such that 2^log <= num.
2678 */
2679static unsigned int
2680ilog2(unsigned int num)
2681{
2682	int lz;
2683
2684	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2685	return (31 - lz);
2686}
2687
2688/*
2689 * Convert TLB TSIZE value to mapped region size.
2690 */
2691static vm_size_t
2692tsize2size(unsigned int tsize)
2693{
2694
2695	/*
2696	 * size = 4^tsize KB
2697	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2698	 */
2699
2700	return ((1 << (2 * tsize)) * 1024);
2701}
2702
2703/*
2704 * Convert region size (must be power of 4) to TLB TSIZE value.
2705 */
2706static unsigned int
2707size2tsize(vm_size_t size)
2708{
2709
2710	return (ilog2(size) / 2 - 5);
2711}
2712
2713/*
2714 * Register permanent kernel mapping in TLB1.
2715 *
2716 * Entries are created starting from index 0 (current free entry is
2717 * kept in tlb1_idx) and are not supposed to be invalidated.
2718 */
2719static int
2720tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2721    uint32_t flags)
2722{
2723	uint32_t ts, tid;
2724	int tsize;
2725
2726	if (tlb1_idx >= TLB1_ENTRIES) {
2727		printf("tlb1_set_entry: TLB1 full!\n");
2728		return (-1);
2729	}
2730
2731	/* Convert size to TSIZE */
2732	tsize = size2tsize(size);
2733
2734	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2735	/* XXX TS is hard coded to 0 for now as we only use single address space */
2736	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2737
2738	/* XXX LOCK tlb1[] */
2739
2740	tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2741	tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2742	tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags;
2743
2744	/* Set supervisor RWX permission bits */
2745	tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2746
2747	tlb1_write_entry(tlb1_idx++);
2748
2749	/* XXX UNLOCK tlb1[] */
2750
2751	/*
2752	 * XXX in general TLB1 updates should be propagated between CPUs,
2753	 * since current design assumes to have the same TLB1 set-up on all
2754	 * cores.
2755	 */
2756	return (0);
2757}
2758
2759static int
2760tlb1_entry_size_cmp(const void *a, const void *b)
2761{
2762	const vm_size_t *sza;
2763	const vm_size_t *szb;
2764
2765	sza = a;
2766	szb = b;
2767	if (*sza > *szb)
2768		return (-1);
2769	else if (*sza < *szb)
2770		return (1);
2771	else
2772		return (0);
2773}
2774
2775/*
2776 * Map in contiguous RAM region into the TLB1 using maximum of
2777 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
2778 *
2779 * If necessary round up last entry size and return total size
2780 * used by all allocated entries.
2781 */
2782vm_size_t
2783tlb1_mapin_region(vm_offset_t va, vm_offset_t pa, vm_size_t size)
2784{
2785	vm_size_t entry_size[KERNEL_REGION_MAX_TLB_ENTRIES];
2786	vm_size_t mapped_size, sz, esz;
2787	unsigned int log;
2788	int i;
2789
2790	CTR4(KTR_PMAP, "%s: region size = 0x%08x va = 0x%08x pa = 0x%08x",
2791	    __func__, size, va, pa);
2792
2793	mapped_size = 0;
2794	sz = size;
2795	memset(entry_size, 0, sizeof(entry_size));
2796
2797	/* Calculate entry sizes. */
2798	for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES && sz > 0; i++) {
2799
2800		/* Largest region that is power of 4 and fits within size */
2801		log = ilog2(sz) / 2;
2802		esz = 1 << (2 * log);
2803
2804		/* If this is last entry cover remaining size. */
2805		if (i ==  KERNEL_REGION_MAX_TLB_ENTRIES - 1) {
2806			while (esz < sz)
2807				esz = esz << 2;
2808		}
2809
2810		entry_size[i] = esz;
2811		mapped_size += esz;
2812		if (esz < sz)
2813			sz -= esz;
2814		else
2815			sz = 0;
2816	}
2817
2818	/* Sort entry sizes, required to get proper entry address alignment. */
2819	qsort(entry_size, KERNEL_REGION_MAX_TLB_ENTRIES,
2820	    sizeof(vm_size_t), tlb1_entry_size_cmp);
2821
2822	/* Load TLB1 entries. */
2823	for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES; i++) {
2824		esz = entry_size[i];
2825		if (!esz)
2826			break;
2827
2828		CTR5(KTR_PMAP, "%s: entry %d: sz  = 0x%08x (va = 0x%08x "
2829		    "pa = 0x%08x)", __func__, tlb1_idx, esz, va, pa);
2830
2831		tlb1_set_entry(va, pa, esz, _TLB_ENTRY_MEM);
2832
2833		va += esz;
2834		pa += esz;
2835	}
2836
2837	CTR3(KTR_PMAP, "%s: mapped size 0x%08x (wasted space 0x%08x)",
2838	    __func__, mapped_size, mapped_size - size);
2839
2840	return (mapped_size);
2841}
2842
2843/*
2844 * TLB1 initialization routine, to be called after the very first
2845 * assembler level setup done in locore.S.
2846 */
2847void
2848tlb1_init(vm_offset_t ccsrbar)
2849{
2850	uint32_t mas0;
2851
2852	/* TLB1[1] is used to map the kernel. Save that entry. */
2853	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(1);
2854	mtspr(SPR_MAS0, mas0);
2855	__asm __volatile("isync; tlbre");
2856
2857	tlb1[1].mas1 = mfspr(SPR_MAS1);
2858	tlb1[1].mas2 = mfspr(SPR_MAS2);
2859	tlb1[1].mas3 = mfspr(SPR_MAS3);
2860
2861	/* Map in CCSRBAR in TLB1[0] */
2862	tlb1_idx = 0;
2863	tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO);
2864	/*
2865	 * Set the next available TLB1 entry index. Note TLB[1] is reserved
2866	 * for initial mapping of kernel text+data, which was set early in
2867	 * locore, we need to skip this [busy] entry.
2868	 */
2869	tlb1_idx = 2;
2870
2871	/* Setup TLB miss defaults */
2872	set_mas4_defaults();
2873}
2874
2875/*
2876 * Setup MAS4 defaults.
2877 * These values are loaded to MAS0-2 on a TLB miss.
2878 */
2879static void
2880set_mas4_defaults(void)
2881{
2882	uint32_t mas4;
2883
2884	/* Defaults: TLB0, PID0, TSIZED=4K */
2885	mas4 = MAS4_TLBSELD0;
2886	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
2887
2888	mtspr(SPR_MAS4, mas4);
2889	__asm __volatile("isync");
2890}
2891
2892/*
2893 * Print out contents of the MAS registers for each TLB1 entry
2894 */
2895void
2896tlb1_print_tlbentries(void)
2897{
2898	uint32_t mas0, mas1, mas2, mas3, mas7;
2899	int i;
2900
2901	debugf("TLB1 entries:\n");
2902	for (i = 0; i < TLB1_ENTRIES; i++) {
2903
2904		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
2905		mtspr(SPR_MAS0, mas0);
2906
2907		__asm __volatile("isync; tlbre");
2908
2909		mas1 = mfspr(SPR_MAS1);
2910		mas2 = mfspr(SPR_MAS2);
2911		mas3 = mfspr(SPR_MAS3);
2912		mas7 = mfspr(SPR_MAS7);
2913
2914		tlb_print_entry(i, mas1, mas2, mas3, mas7);
2915	}
2916}
2917
2918/*
2919 * Print out contents of the in-ram tlb1 table.
2920 */
2921void
2922tlb1_print_entries(void)
2923{
2924	int i;
2925
2926	debugf("tlb1[] table entries:\n");
2927	for (i = 0; i < TLB1_ENTRIES; i++)
2928		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
2929}
2930
2931/*
2932 * Return 0 if the physical IO range is encompassed by one of the
2933 * the TLB1 entries, otherwise return related error code.
2934 */
2935static int
2936tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
2937{
2938	uint32_t prot;
2939	vm_paddr_t pa_start;
2940	vm_paddr_t pa_end;
2941	unsigned int entry_tsize;
2942	vm_size_t entry_size;
2943
2944	*va = (vm_offset_t)NULL;
2945
2946	/* Skip invalid entries */
2947	if (!(tlb1[i].mas1 & MAS1_VALID))
2948		return (EINVAL);
2949
2950	/*
2951	 * The entry must be cache-inhibited, guarded, and r/w
2952	 * so it can function as an i/o page
2953	 */
2954	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
2955	if (prot != (MAS2_I | MAS2_G))
2956		return (EPERM);
2957
2958	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
2959	if (prot != (MAS3_SR | MAS3_SW))
2960		return (EPERM);
2961
2962	/* The address should be within the entry range. */
2963	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2964	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
2965
2966	entry_size = tsize2size(entry_tsize);
2967	pa_start = tlb1[i].mas3 & MAS3_RPN;
2968	pa_end = pa_start + entry_size - 1;
2969
2970	if ((pa < pa_start) || ((pa + size) > pa_end))
2971		return (ERANGE);
2972
2973	/* Return virtual address of this mapping. */
2974	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
2975	return (0);
2976}
2977