1/*-
2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * Some hw specific parts of this pmap were derived or influenced
27 * by NetBSD's ibm4xx pmap module. More generic code is shared with
28 * a few other pmap modules from the FreeBSD tree.
29 */
30
31 /*
32  * VM layout notes:
33  *
34  * Kernel and user threads run within one common virtual address space
35  * defined by AS=0.
36  *
37  * Virtual address space layout:
38  * -----------------------------
39  * 0x0000_0000 - 0xafff_ffff	: user process
40  * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41  * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42  *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43  * 0xc100_0000 - 0xfeef_ffff	: KVA
44  *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45  *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46  *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47  *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48  * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49  */
50
51#include <sys/cdefs.h>
52__FBSDID("$FreeBSD$");
53
54#include <sys/types.h>
55#include <sys/param.h>
56#include <sys/malloc.h>
57#include <sys/ktr.h>
58#include <sys/proc.h>
59#include <sys/user.h>
60#include <sys/queue.h>
61#include <sys/systm.h>
62#include <sys/kernel.h>
63#include <sys/linker.h>
64#include <sys/msgbuf.h>
65#include <sys/lock.h>
66#include <sys/mutex.h>
67#include <sys/sched.h>
68#include <sys/smp.h>
69#include <sys/vmmeter.h>
70
71#include <vm/vm.h>
72#include <vm/vm_page.h>
73#include <vm/vm_kern.h>
74#include <vm/vm_pageout.h>
75#include <vm/vm_extern.h>
76#include <vm/vm_object.h>
77#include <vm/vm_param.h>
78#include <vm/vm_map.h>
79#include <vm/vm_pager.h>
80#include <vm/uma.h>
81
82#include <machine/cpu.h>
83#include <machine/pcb.h>
84#include <machine/platform.h>
85
86#include <machine/tlb.h>
87#include <machine/spr.h>
88#include <machine/vmparam.h>
89#include <machine/md_var.h>
90#include <machine/mmuvar.h>
91#include <machine/pmap.h>
92#include <machine/pte.h>
93
94#include "mmu_if.h"
95
96#ifdef  DEBUG
97#define debugf(fmt, args...) printf(fmt, ##args)
98#else
99#define debugf(fmt, args...)
100#endif
101
102#define TODO			panic("%s: not implemented", __func__);
103
104#include "opt_sched.h"
105#ifndef SCHED_4BSD
106#error "e500 only works with SCHED_4BSD which uses a global scheduler lock."
107#endif
108extern struct mtx sched_lock;
109
110extern int dumpsys_minidump;
111
112extern unsigned char _etext[];
113extern unsigned char _end[];
114
115extern uint32_t *bootinfo;
116
117#ifdef SMP
118extern uint32_t kernload_ap;
119#endif
120
121vm_paddr_t kernload;
122vm_offset_t kernstart;
123vm_size_t kernsize;
124
125/* Message buffer and tables. */
126static vm_offset_t data_start;
127static vm_size_t data_end;
128
129/* Phys/avail memory regions. */
130static struct mem_region *availmem_regions;
131static int availmem_regions_sz;
132static struct mem_region *physmem_regions;
133static int physmem_regions_sz;
134
135/* Reserved KVA space and mutex for mmu_booke_zero_page. */
136static vm_offset_t zero_page_va;
137static struct mtx zero_page_mutex;
138
139static struct mtx tlbivax_mutex;
140
141/*
142 * Reserved KVA space for mmu_booke_zero_page_idle. This is used
143 * by idle thred only, no lock required.
144 */
145static vm_offset_t zero_page_idle_va;
146
147/* Reserved KVA space and mutex for mmu_booke_copy_page. */
148static vm_offset_t copy_page_src_va;
149static vm_offset_t copy_page_dst_va;
150static struct mtx copy_page_mutex;
151
152/**************************************************************************/
153/* PMAP */
154/**************************************************************************/
155
156static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
157    vm_prot_t, boolean_t);
158
159unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
160unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
161
162/*
163 * If user pmap is processed with mmu_booke_remove and the resident count
164 * drops to 0, there are no more pages to remove, so we need not continue.
165 */
166#define PMAP_REMOVE_DONE(pmap) \
167	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
168
169extern void tid_flush(tlbtid_t);
170
171/**************************************************************************/
172/* TLB and TID handling */
173/**************************************************************************/
174
175/* Translation ID busy table */
176static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
177
178/*
179 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
180 * core revisions and should be read from h/w registers during early config.
181 */
182uint32_t tlb0_entries;
183uint32_t tlb0_ways;
184uint32_t tlb0_entries_per_way;
185
186#define TLB0_ENTRIES		(tlb0_entries)
187#define TLB0_WAYS		(tlb0_ways)
188#define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
189
190#define TLB1_ENTRIES 16
191
192/* In-ram copy of the TLB1 */
193static tlb_entry_t tlb1[TLB1_ENTRIES];
194
195/* Next free entry in the TLB1 */
196static unsigned int tlb1_idx;
197
198static tlbtid_t tid_alloc(struct pmap *);
199
200static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
201
202static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
203static void tlb1_write_entry(unsigned int);
204static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
205static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
206
207static vm_size_t tsize2size(unsigned int);
208static unsigned int size2tsize(vm_size_t);
209static unsigned int ilog2(unsigned int);
210
211static void set_mas4_defaults(void);
212
213static inline void tlb0_flush_entry(vm_offset_t);
214static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
215
216/**************************************************************************/
217/* Page table management */
218/**************************************************************************/
219
220/* Data for the pv entry allocation mechanism */
221static uma_zone_t pvzone;
222static struct vm_object pvzone_obj;
223static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
224
225#define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
226
227#ifndef PMAP_SHPGPERPROC
228#define PMAP_SHPGPERPROC	200
229#endif
230
231static void ptbl_init(void);
232static struct ptbl_buf *ptbl_buf_alloc(void);
233static void ptbl_buf_free(struct ptbl_buf *);
234static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
235
236static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
237static void ptbl_free(mmu_t, pmap_t, unsigned int);
238static void ptbl_hold(mmu_t, pmap_t, unsigned int);
239static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
240
241static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
242static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
243static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
244static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
245
246static pv_entry_t pv_alloc(void);
247static void pv_free(pv_entry_t);
248static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
249static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
250
251/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
252#define PTBL_BUFS		(128 * 16)
253
254struct ptbl_buf {
255	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
256	vm_offset_t kva;		/* va of mapping */
257};
258
259/* ptbl free list and a lock used for access synchronization. */
260static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
261static struct mtx ptbl_buf_freelist_lock;
262
263/* Base address of kva space allocated fot ptbl bufs. */
264static vm_offset_t ptbl_buf_pool_vabase;
265
266/* Pointer to ptbl_buf structures. */
267static struct ptbl_buf *ptbl_bufs;
268
269void pmap_bootstrap_ap(volatile uint32_t *);
270
271/*
272 * Kernel MMU interface
273 */
274static void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
275static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
276static void		mmu_booke_clear_reference(mmu_t, vm_page_t);
277static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
278    vm_size_t, vm_offset_t);
279static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
280static void		mmu_booke_copy_pages(mmu_t, vm_page_t *,
281    vm_offset_t, vm_page_t *, vm_offset_t, int);
282static void		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
283    vm_prot_t, boolean_t);
284static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
285    vm_page_t, vm_prot_t);
286static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
287    vm_prot_t);
288static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
289static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
290    vm_prot_t);
291static void		mmu_booke_init(mmu_t);
292static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
293static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
294static boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
295static boolean_t	mmu_booke_ts_referenced(mmu_t, vm_page_t);
296static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t,
297    int);
298static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
299    vm_paddr_t *);
300static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
301    vm_object_t, vm_pindex_t, vm_size_t);
302static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
303static void		mmu_booke_page_init(mmu_t, vm_page_t);
304static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
305static void		mmu_booke_pinit(mmu_t, pmap_t);
306static void		mmu_booke_pinit0(mmu_t, pmap_t);
307static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
308    vm_prot_t);
309static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
310static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
311static void		mmu_booke_release(mmu_t, pmap_t);
312static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
313static void		mmu_booke_remove_all(mmu_t, vm_page_t);
314static void		mmu_booke_remove_write(mmu_t, vm_page_t);
315static void		mmu_booke_zero_page(mmu_t, vm_page_t);
316static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
317static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
318static void		mmu_booke_activate(mmu_t, struct thread *);
319static void		mmu_booke_deactivate(mmu_t, struct thread *);
320static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
321static void		*mmu_booke_mapdev(mmu_t, vm_offset_t, vm_size_t);
322static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
323static vm_offset_t	mmu_booke_kextract(mmu_t, vm_offset_t);
324static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_offset_t);
325static void		mmu_booke_kremove(mmu_t, vm_offset_t);
326static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
327static void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
328    vm_size_t);
329static vm_offset_t	mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
330    vm_size_t, vm_size_t *);
331static void		mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
332    vm_size_t, vm_offset_t);
333static struct pmap_md	*mmu_booke_scan_md(mmu_t, struct pmap_md *);
334
335static mmu_method_t mmu_booke_methods[] = {
336	/* pmap dispatcher interface */
337	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
338	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
339	MMUMETHOD(mmu_clear_reference,	mmu_booke_clear_reference),
340	MMUMETHOD(mmu_copy,		mmu_booke_copy),
341	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
342	MMUMETHOD(mmu_copy_pages,	mmu_booke_copy_pages),
343	MMUMETHOD(mmu_enter,		mmu_booke_enter),
344	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
345	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
346	MMUMETHOD(mmu_extract,		mmu_booke_extract),
347	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
348	MMUMETHOD(mmu_init,		mmu_booke_init),
349	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
350	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
351	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
352	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
353	MMUMETHOD(mmu_map,		mmu_booke_map),
354	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
355	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
356	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
357	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
358	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
359	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
360	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
361	MMUMETHOD(mmu_protect,		mmu_booke_protect),
362	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
363	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
364	MMUMETHOD(mmu_release,		mmu_booke_release),
365	MMUMETHOD(mmu_remove,		mmu_booke_remove),
366	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
367	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
368	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
369	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
370	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
371	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
372	MMUMETHOD(mmu_activate,		mmu_booke_activate),
373	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
374
375	/* Internal interfaces */
376	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
377	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
378	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
379	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
380	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
381/*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
382	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
383
384	/* dumpsys() support */
385	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
386	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
387	MMUMETHOD(mmu_scan_md,		mmu_booke_scan_md),
388
389	{ 0, 0 }
390};
391
392MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
393
394static inline void
395tlb_miss_lock(void)
396{
397#ifdef SMP
398	struct pcpu *pc;
399
400	if (!smp_started)
401		return;
402
403	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
404		if (pc != pcpup) {
405
406			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
407			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
408
409			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
410			    ("tlb_miss_lock: tried to lock self"));
411
412			tlb_lock(pc->pc_booke_tlb_lock);
413
414			CTR1(KTR_PMAP, "%s: locked", __func__);
415		}
416	}
417#endif
418}
419
420static inline void
421tlb_miss_unlock(void)
422{
423#ifdef SMP
424	struct pcpu *pc;
425
426	if (!smp_started)
427		return;
428
429	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
430		if (pc != pcpup) {
431			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
432			    __func__, pc->pc_cpuid);
433
434			tlb_unlock(pc->pc_booke_tlb_lock);
435
436			CTR1(KTR_PMAP, "%s: unlocked", __func__);
437		}
438	}
439#endif
440}
441
442/* Return number of entries in TLB0. */
443static __inline void
444tlb0_get_tlbconf(void)
445{
446	uint32_t tlb0_cfg;
447
448	tlb0_cfg = mfspr(SPR_TLB0CFG);
449	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
450	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
451	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
452}
453
454/* Initialize pool of kva ptbl buffers. */
455static void
456ptbl_init(void)
457{
458	int i;
459
460	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
461	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
462	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
463	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
464
465	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
466	TAILQ_INIT(&ptbl_buf_freelist);
467
468	for (i = 0; i < PTBL_BUFS; i++) {
469		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
470		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
471	}
472}
473
474/* Get a ptbl_buf from the freelist. */
475static struct ptbl_buf *
476ptbl_buf_alloc(void)
477{
478	struct ptbl_buf *buf;
479
480	mtx_lock(&ptbl_buf_freelist_lock);
481	buf = TAILQ_FIRST(&ptbl_buf_freelist);
482	if (buf != NULL)
483		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
484	mtx_unlock(&ptbl_buf_freelist_lock);
485
486	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
487
488	return (buf);
489}
490
491/* Return ptbl buff to free pool. */
492static void
493ptbl_buf_free(struct ptbl_buf *buf)
494{
495
496	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
497
498	mtx_lock(&ptbl_buf_freelist_lock);
499	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
500	mtx_unlock(&ptbl_buf_freelist_lock);
501}
502
503/*
504 * Search the list of allocated ptbl bufs and find on list of allocated ptbls
505 */
506static void
507ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
508{
509	struct ptbl_buf *pbuf;
510
511	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
512
513	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
514
515	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
516		if (pbuf->kva == (vm_offset_t)ptbl) {
517			/* Remove from pmap ptbl buf list. */
518			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
519
520			/* Free corresponding ptbl buf. */
521			ptbl_buf_free(pbuf);
522			break;
523		}
524}
525
526/* Allocate page table. */
527static pte_t *
528ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
529{
530	vm_page_t mtbl[PTBL_PAGES];
531	vm_page_t m;
532	struct ptbl_buf *pbuf;
533	unsigned int pidx;
534	pte_t *ptbl;
535	int i;
536
537	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
538	    (pmap == kernel_pmap), pdir_idx);
539
540	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
541	    ("ptbl_alloc: invalid pdir_idx"));
542	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
543	    ("pte_alloc: valid ptbl entry exists!"));
544
545	pbuf = ptbl_buf_alloc();
546	if (pbuf == NULL)
547		panic("pte_alloc: couldn't alloc kernel virtual memory");
548
549	ptbl = (pte_t *)pbuf->kva;
550
551	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
552
553	/* Allocate ptbl pages, this will sleep! */
554	for (i = 0; i < PTBL_PAGES; i++) {
555		pidx = (PTBL_PAGES * pdir_idx) + i;
556		while ((m = vm_page_alloc(NULL, pidx,
557		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
558
559			PMAP_UNLOCK(pmap);
560			vm_page_unlock_queues();
561			VM_WAIT;
562			vm_page_lock_queues();
563			PMAP_LOCK(pmap);
564		}
565		mtbl[i] = m;
566	}
567
568	/* Map allocated pages into kernel_pmap. */
569	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
570
571	/* Zero whole ptbl. */
572	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
573
574	/* Add pbuf to the pmap ptbl bufs list. */
575	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
576
577	return (ptbl);
578}
579
580/* Free ptbl pages and invalidate pdir entry. */
581static void
582ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
583{
584	pte_t *ptbl;
585	vm_paddr_t pa;
586	vm_offset_t va;
587	vm_page_t m;
588	int i;
589
590	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
591	    (pmap == kernel_pmap), pdir_idx);
592
593	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
594	    ("ptbl_free: invalid pdir_idx"));
595
596	ptbl = pmap->pm_pdir[pdir_idx];
597
598	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
599
600	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
601
602	/*
603	 * Invalidate the pdir entry as soon as possible, so that other CPUs
604	 * don't attempt to look up the page tables we are releasing.
605	 */
606	mtx_lock_spin(&tlbivax_mutex);
607	tlb_miss_lock();
608
609	pmap->pm_pdir[pdir_idx] = NULL;
610
611	tlb_miss_unlock();
612	mtx_unlock_spin(&tlbivax_mutex);
613
614	for (i = 0; i < PTBL_PAGES; i++) {
615		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
616		pa = pte_vatopa(mmu, kernel_pmap, va);
617		m = PHYS_TO_VM_PAGE(pa);
618		vm_page_free_zero(m);
619		atomic_subtract_int(&cnt.v_wire_count, 1);
620		mmu_booke_kremove(mmu, va);
621	}
622
623	ptbl_free_pmap_ptbl(pmap, ptbl);
624}
625
626/*
627 * Decrement ptbl pages hold count and attempt to free ptbl pages.
628 * Called when removing pte entry from ptbl.
629 *
630 * Return 1 if ptbl pages were freed.
631 */
632static int
633ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
634{
635	pte_t *ptbl;
636	vm_paddr_t pa;
637	vm_page_t m;
638	int i;
639
640	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
641	    (pmap == kernel_pmap), pdir_idx);
642
643	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
644	    ("ptbl_unhold: invalid pdir_idx"));
645	KASSERT((pmap != kernel_pmap),
646	    ("ptbl_unhold: unholding kernel ptbl!"));
647
648	ptbl = pmap->pm_pdir[pdir_idx];
649
650	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
651	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
652	    ("ptbl_unhold: non kva ptbl"));
653
654	/* decrement hold count */
655	for (i = 0; i < PTBL_PAGES; i++) {
656		pa = pte_vatopa(mmu, kernel_pmap,
657		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
658		m = PHYS_TO_VM_PAGE(pa);
659		m->wire_count--;
660	}
661
662	/*
663	 * Free ptbl pages if there are no pte etries in this ptbl.
664	 * wire_count has the same value for all ptbl pages, so check the last
665	 * page.
666	 */
667	if (m->wire_count == 0) {
668		ptbl_free(mmu, pmap, pdir_idx);
669
670		//debugf("ptbl_unhold: e (freed ptbl)\n");
671		return (1);
672	}
673
674	return (0);
675}
676
677/*
678 * Increment hold count for ptbl pages. This routine is used when a new pte
679 * entry is being inserted into the ptbl.
680 */
681static void
682ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
683{
684	vm_paddr_t pa;
685	pte_t *ptbl;
686	vm_page_t m;
687	int i;
688
689	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
690	    pdir_idx);
691
692	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
693	    ("ptbl_hold: invalid pdir_idx"));
694	KASSERT((pmap != kernel_pmap),
695	    ("ptbl_hold: holding kernel ptbl!"));
696
697	ptbl = pmap->pm_pdir[pdir_idx];
698
699	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
700
701	for (i = 0; i < PTBL_PAGES; i++) {
702		pa = pte_vatopa(mmu, kernel_pmap,
703		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
704		m = PHYS_TO_VM_PAGE(pa);
705		m->wire_count++;
706	}
707}
708
709/* Allocate pv_entry structure. */
710pv_entry_t
711pv_alloc(void)
712{
713	pv_entry_t pv;
714
715	pv_entry_count++;
716	if (pv_entry_count > pv_entry_high_water)
717		pagedaemon_wakeup();
718	pv = uma_zalloc(pvzone, M_NOWAIT);
719
720	return (pv);
721}
722
723/* Free pv_entry structure. */
724static __inline void
725pv_free(pv_entry_t pve)
726{
727
728	pv_entry_count--;
729	uma_zfree(pvzone, pve);
730}
731
732
733/* Allocate and initialize pv_entry structure. */
734static void
735pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
736{
737	pv_entry_t pve;
738
739	//int su = (pmap == kernel_pmap);
740	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
741	//	(u_int32_t)pmap, va, (u_int32_t)m);
742
743	pve = pv_alloc();
744	if (pve == NULL)
745		panic("pv_insert: no pv entries!");
746
747	pve->pv_pmap = pmap;
748	pve->pv_va = va;
749
750	/* add to pv_list */
751	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
752	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
753
754	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
755
756	//debugf("pv_insert: e\n");
757}
758
759/* Destroy pv entry. */
760static void
761pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
762{
763	pv_entry_t pve;
764
765	//int su = (pmap == kernel_pmap);
766	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
767
768	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
769	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
770
771	/* find pv entry */
772	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
773		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
774			/* remove from pv_list */
775			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
776			if (TAILQ_EMPTY(&m->md.pv_list))
777				vm_page_aflag_clear(m, PGA_WRITEABLE);
778
779			/* free pv entry struct */
780			pv_free(pve);
781			break;
782		}
783	}
784
785	//debugf("pv_remove: e\n");
786}
787
788/*
789 * Clean pte entry, try to free page table page if requested.
790 *
791 * Return 1 if ptbl pages were freed, otherwise return 0.
792 */
793static int
794pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
795{
796	unsigned int pdir_idx = PDIR_IDX(va);
797	unsigned int ptbl_idx = PTBL_IDX(va);
798	vm_page_t m;
799	pte_t *ptbl;
800	pte_t *pte;
801
802	//int su = (pmap == kernel_pmap);
803	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
804	//		su, (u_int32_t)pmap, va, flags);
805
806	ptbl = pmap->pm_pdir[pdir_idx];
807	KASSERT(ptbl, ("pte_remove: null ptbl"));
808
809	pte = &ptbl[ptbl_idx];
810
811	if (pte == NULL || !PTE_ISVALID(pte))
812		return (0);
813
814	if (PTE_ISWIRED(pte))
815		pmap->pm_stats.wired_count--;
816
817	/* Handle managed entry. */
818	if (PTE_ISMANAGED(pte)) {
819		/* Get vm_page_t for mapped pte. */
820		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
821
822		if (PTE_ISMODIFIED(pte))
823			vm_page_dirty(m);
824
825		if (PTE_ISREFERENCED(pte))
826			vm_page_aflag_set(m, PGA_REFERENCED);
827
828		pv_remove(pmap, va, m);
829	}
830
831	mtx_lock_spin(&tlbivax_mutex);
832	tlb_miss_lock();
833
834	tlb0_flush_entry(va);
835	pte->flags = 0;
836	pte->rpn = 0;
837
838	tlb_miss_unlock();
839	mtx_unlock_spin(&tlbivax_mutex);
840
841	pmap->pm_stats.resident_count--;
842
843	if (flags & PTBL_UNHOLD) {
844		//debugf("pte_remove: e (unhold)\n");
845		return (ptbl_unhold(mmu, pmap, pdir_idx));
846	}
847
848	//debugf("pte_remove: e\n");
849	return (0);
850}
851
852/*
853 * Insert PTE for a given page and virtual address.
854 */
855static void
856pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
857{
858	unsigned int pdir_idx = PDIR_IDX(va);
859	unsigned int ptbl_idx = PTBL_IDX(va);
860	pte_t *ptbl, *pte;
861
862	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
863	    pmap == kernel_pmap, pmap, va);
864
865	/* Get the page table pointer. */
866	ptbl = pmap->pm_pdir[pdir_idx];
867
868	if (ptbl == NULL) {
869		/* Allocate page table pages. */
870		ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
871	} else {
872		/*
873		 * Check if there is valid mapping for requested
874		 * va, if there is, remove it.
875		 */
876		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
877		if (PTE_ISVALID(pte)) {
878			pte_remove(mmu, pmap, va, PTBL_HOLD);
879		} else {
880			/*
881			 * pte is not used, increment hold count
882			 * for ptbl pages.
883			 */
884			if (pmap != kernel_pmap)
885				ptbl_hold(mmu, pmap, pdir_idx);
886		}
887	}
888
889	/*
890	 * Insert pv_entry into pv_list for mapped page if part of managed
891	 * memory.
892	 */
893	if ((m->oflags & VPO_UNMANAGED) == 0) {
894		flags |= PTE_MANAGED;
895
896		/* Create and insert pv entry. */
897		pv_insert(pmap, va, m);
898	}
899
900	pmap->pm_stats.resident_count++;
901
902	mtx_lock_spin(&tlbivax_mutex);
903	tlb_miss_lock();
904
905	tlb0_flush_entry(va);
906	if (pmap->pm_pdir[pdir_idx] == NULL) {
907		/*
908		 * If we just allocated a new page table, hook it in
909		 * the pdir.
910		 */
911		pmap->pm_pdir[pdir_idx] = ptbl;
912	}
913	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
914	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
915	pte->flags |= (PTE_VALID | flags);
916
917	tlb_miss_unlock();
918	mtx_unlock_spin(&tlbivax_mutex);
919}
920
921/* Return the pa for the given pmap/va. */
922static vm_paddr_t
923pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
924{
925	vm_paddr_t pa = 0;
926	pte_t *pte;
927
928	pte = pte_find(mmu, pmap, va);
929	if ((pte != NULL) && PTE_ISVALID(pte))
930		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
931	return (pa);
932}
933
934/* Get a pointer to a PTE in a page table. */
935static pte_t *
936pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
937{
938	unsigned int pdir_idx = PDIR_IDX(va);
939	unsigned int ptbl_idx = PTBL_IDX(va);
940
941	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
942
943	if (pmap->pm_pdir[pdir_idx])
944		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
945
946	return (NULL);
947}
948
949/**************************************************************************/
950/* PMAP related */
951/**************************************************************************/
952
953/*
954 * This is called during booke_init, before the system is really initialized.
955 */
956static void
957mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
958{
959	vm_offset_t phys_kernelend;
960	struct mem_region *mp, *mp1;
961	int cnt, i, j;
962	u_int s, e, sz;
963	u_int phys_avail_count;
964	vm_size_t physsz, hwphyssz, kstack0_sz;
965	vm_offset_t kernel_pdir, kstack0, va;
966	vm_paddr_t kstack0_phys;
967	void *dpcpu;
968	pte_t *pte;
969
970	debugf("mmu_booke_bootstrap: entered\n");
971
972#ifdef SMP
973	kernload_ap = kernload;
974#endif
975
976
977	/* Initialize invalidation mutex */
978	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
979
980	/* Read TLB0 size and associativity. */
981	tlb0_get_tlbconf();
982
983	/*
984	 * Align kernel start and end address (kernel image).
985	 * Note that kernel end does not necessarily relate to kernsize.
986	 * kernsize is the size of the kernel that is actually mapped.
987	 */
988	kernstart = trunc_page(start);
989	data_start = round_page(kernelend);
990	data_end = data_start;
991
992	/*
993	 * Addresses of preloaded modules (like file systems) use
994	 * physical addresses. Make sure we relocate those into
995	 * virtual addresses.
996	 */
997	preload_addr_relocate = kernstart - kernload;
998
999	/* Allocate the dynamic per-cpu area. */
1000	dpcpu = (void *)data_end;
1001	data_end += DPCPU_SIZE;
1002
1003	/* Allocate space for the message buffer. */
1004	msgbufp = (struct msgbuf *)data_end;
1005	data_end += msgbufsize;
1006	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
1007	    data_end);
1008
1009	data_end = round_page(data_end);
1010
1011	/* Allocate space for ptbl_bufs. */
1012	ptbl_bufs = (struct ptbl_buf *)data_end;
1013	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1014	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1015	    data_end);
1016
1017	data_end = round_page(data_end);
1018
1019	/* Allocate PTE tables for kernel KVA. */
1020	kernel_pdir = data_end;
1021	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1022	    PDIR_SIZE - 1) / PDIR_SIZE;
1023	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1024	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1025	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1026
1027	debugf(" data_end: 0x%08x\n", data_end);
1028	if (data_end - kernstart > kernsize) {
1029		kernsize += tlb1_mapin_region(kernstart + kernsize,
1030		    kernload + kernsize, (data_end - kernstart) - kernsize);
1031	}
1032	data_end = kernstart + kernsize;
1033	debugf(" updated data_end: 0x%08x\n", data_end);
1034
1035	/*
1036	 * Clear the structures - note we can only do it safely after the
1037	 * possible additional TLB1 translations are in place (above) so that
1038	 * all range up to the currently calculated 'data_end' is covered.
1039	 */
1040	dpcpu_init(dpcpu, 0);
1041	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1042	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1043
1044	/*******************************************************/
1045	/* Set the start and end of kva. */
1046	/*******************************************************/
1047	virtual_avail = round_page(data_end);
1048	virtual_end = VM_MAX_KERNEL_ADDRESS;
1049
1050	/* Allocate KVA space for page zero/copy operations. */
1051	zero_page_va = virtual_avail;
1052	virtual_avail += PAGE_SIZE;
1053	zero_page_idle_va = virtual_avail;
1054	virtual_avail += PAGE_SIZE;
1055	copy_page_src_va = virtual_avail;
1056	virtual_avail += PAGE_SIZE;
1057	copy_page_dst_va = virtual_avail;
1058	virtual_avail += PAGE_SIZE;
1059	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1060	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1061	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1062	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1063
1064	/* Initialize page zero/copy mutexes. */
1065	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1066	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1067
1068	/* Allocate KVA space for ptbl bufs. */
1069	ptbl_buf_pool_vabase = virtual_avail;
1070	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1071	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1072	    ptbl_buf_pool_vabase, virtual_avail);
1073
1074	/* Calculate corresponding physical addresses for the kernel region. */
1075	phys_kernelend = kernload + kernsize;
1076	debugf("kernel image and allocated data:\n");
1077	debugf(" kernload    = 0x%08x\n", kernload);
1078	debugf(" kernstart   = 0x%08x\n", kernstart);
1079	debugf(" kernsize    = 0x%08x\n", kernsize);
1080
1081	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1082		panic("mmu_booke_bootstrap: phys_avail too small");
1083
1084	/*
1085	 * Remove kernel physical address range from avail regions list. Page
1086	 * align all regions.  Non-page aligned memory isn't very interesting
1087	 * to us.  Also, sort the entries for ascending addresses.
1088	 */
1089
1090	/* Retrieve phys/avail mem regions */
1091	mem_regions(&physmem_regions, &physmem_regions_sz,
1092	    &availmem_regions, &availmem_regions_sz);
1093	sz = 0;
1094	cnt = availmem_regions_sz;
1095	debugf("processing avail regions:\n");
1096	for (mp = availmem_regions; mp->mr_size; mp++) {
1097		s = mp->mr_start;
1098		e = mp->mr_start + mp->mr_size;
1099		debugf(" %08x-%08x -> ", s, e);
1100		/* Check whether this region holds all of the kernel. */
1101		if (s < kernload && e > phys_kernelend) {
1102			availmem_regions[cnt].mr_start = phys_kernelend;
1103			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1104			e = kernload;
1105		}
1106		/* Look whether this regions starts within the kernel. */
1107		if (s >= kernload && s < phys_kernelend) {
1108			if (e <= phys_kernelend)
1109				goto empty;
1110			s = phys_kernelend;
1111		}
1112		/* Now look whether this region ends within the kernel. */
1113		if (e > kernload && e <= phys_kernelend) {
1114			if (s >= kernload)
1115				goto empty;
1116			e = kernload;
1117		}
1118		/* Now page align the start and size of the region. */
1119		s = round_page(s);
1120		e = trunc_page(e);
1121		if (e < s)
1122			e = s;
1123		sz = e - s;
1124		debugf("%08x-%08x = %x\n", s, e, sz);
1125
1126		/* Check whether some memory is left here. */
1127		if (sz == 0) {
1128		empty:
1129			memmove(mp, mp + 1,
1130			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1131			cnt--;
1132			mp--;
1133			continue;
1134		}
1135
1136		/* Do an insertion sort. */
1137		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1138			if (s < mp1->mr_start)
1139				break;
1140		if (mp1 < mp) {
1141			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1142			mp1->mr_start = s;
1143			mp1->mr_size = sz;
1144		} else {
1145			mp->mr_start = s;
1146			mp->mr_size = sz;
1147		}
1148	}
1149	availmem_regions_sz = cnt;
1150
1151	/*******************************************************/
1152	/* Steal physical memory for kernel stack from the end */
1153	/* of the first avail region                           */
1154	/*******************************************************/
1155	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1156	kstack0_phys = availmem_regions[0].mr_start +
1157	    availmem_regions[0].mr_size;
1158	kstack0_phys -= kstack0_sz;
1159	availmem_regions[0].mr_size -= kstack0_sz;
1160
1161	/*******************************************************/
1162	/* Fill in phys_avail table, based on availmem_regions */
1163	/*******************************************************/
1164	phys_avail_count = 0;
1165	physsz = 0;
1166	hwphyssz = 0;
1167	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1168
1169	debugf("fill in phys_avail:\n");
1170	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1171
1172		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1173		    availmem_regions[i].mr_start,
1174		    availmem_regions[i].mr_start +
1175		        availmem_regions[i].mr_size,
1176		    availmem_regions[i].mr_size);
1177
1178		if (hwphyssz != 0 &&
1179		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1180			debugf(" hw.physmem adjust\n");
1181			if (physsz < hwphyssz) {
1182				phys_avail[j] = availmem_regions[i].mr_start;
1183				phys_avail[j + 1] =
1184				    availmem_regions[i].mr_start +
1185				    hwphyssz - physsz;
1186				physsz = hwphyssz;
1187				phys_avail_count++;
1188			}
1189			break;
1190		}
1191
1192		phys_avail[j] = availmem_regions[i].mr_start;
1193		phys_avail[j + 1] = availmem_regions[i].mr_start +
1194		    availmem_regions[i].mr_size;
1195		phys_avail_count++;
1196		physsz += availmem_regions[i].mr_size;
1197	}
1198	physmem = btoc(physsz);
1199
1200	/* Calculate the last available physical address. */
1201	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1202		;
1203	Maxmem = powerpc_btop(phys_avail[i + 1]);
1204
1205	debugf("Maxmem = 0x%08lx\n", Maxmem);
1206	debugf("phys_avail_count = %d\n", phys_avail_count);
1207	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1208	    physmem);
1209
1210	/*******************************************************/
1211	/* Initialize (statically allocated) kernel pmap. */
1212	/*******************************************************/
1213	PMAP_LOCK_INIT(kernel_pmap);
1214	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1215
1216	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1217	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1218	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1219	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1220
1221	/* Initialize kernel pdir */
1222	for (i = 0; i < kernel_ptbls; i++)
1223		kernel_pmap->pm_pdir[kptbl_min + i] =
1224		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1225
1226	for (i = 0; i < MAXCPU; i++) {
1227		kernel_pmap->pm_tid[i] = TID_KERNEL;
1228
1229		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1230		tidbusy[i][0] = kernel_pmap;
1231	}
1232
1233	/*
1234	 * Fill in PTEs covering kernel code and data. They are not required
1235	 * for address translation, as this area is covered by static TLB1
1236	 * entries, but for pte_vatopa() to work correctly with kernel area
1237	 * addresses.
1238	 */
1239	for (va = KERNBASE; va < data_end; va += PAGE_SIZE) {
1240		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1241		pte->rpn = kernload + (va - KERNBASE);
1242		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1243		    PTE_VALID;
1244	}
1245	/* Mark kernel_pmap active on all CPUs */
1246	CPU_FILL(&kernel_pmap->pm_active);
1247
1248	/*******************************************************/
1249	/* Final setup */
1250	/*******************************************************/
1251
1252	/* Enter kstack0 into kernel map, provide guard page */
1253	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1254	thread0.td_kstack = kstack0;
1255	thread0.td_kstack_pages = KSTACK_PAGES;
1256
1257	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1258	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1259	    kstack0_phys, kstack0_phys + kstack0_sz);
1260	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1261
1262	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1263	for (i = 0; i < KSTACK_PAGES; i++) {
1264		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1265		kstack0 += PAGE_SIZE;
1266		kstack0_phys += PAGE_SIZE;
1267	}
1268
1269	debugf("virtual_avail = %08x\n", virtual_avail);
1270	debugf("virtual_end   = %08x\n", virtual_end);
1271
1272	debugf("mmu_booke_bootstrap: exit\n");
1273}
1274
1275void
1276pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1277{
1278	int i;
1279
1280	/*
1281	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1282	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1283	 * these values directly to (re)program AP's TLB1 hardware.
1284	 */
1285	for (i = 0; i < tlb1_idx; i ++) {
1286		/* Skip invalid entries */
1287		if (!(tlb1[i].mas1 & MAS1_VALID))
1288			continue;
1289
1290		tlb1_write_entry(i);
1291	}
1292
1293	set_mas4_defaults();
1294}
1295
1296/*
1297 * Get the physical page address for the given pmap/virtual address.
1298 */
1299static vm_paddr_t
1300mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1301{
1302	vm_paddr_t pa;
1303
1304	PMAP_LOCK(pmap);
1305	pa = pte_vatopa(mmu, pmap, va);
1306	PMAP_UNLOCK(pmap);
1307
1308	return (pa);
1309}
1310
1311/*
1312 * Extract the physical page address associated with the given
1313 * kernel virtual address.
1314 */
1315static vm_paddr_t
1316mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1317{
1318
1319	return (pte_vatopa(mmu, kernel_pmap, va));
1320}
1321
1322/*
1323 * Initialize the pmap module.
1324 * Called by vm_init, to initialize any structures that the pmap
1325 * system needs to map virtual memory.
1326 */
1327static void
1328mmu_booke_init(mmu_t mmu)
1329{
1330	int shpgperproc = PMAP_SHPGPERPROC;
1331
1332	/*
1333	 * Initialize the address space (zone) for the pv entries.  Set a
1334	 * high water mark so that the system can recover from excessive
1335	 * numbers of pv entries.
1336	 */
1337	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1338	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1339
1340	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1341	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1342
1343	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1344	pv_entry_high_water = 9 * (pv_entry_max / 10);
1345
1346	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
1347
1348	/* Pre-fill pvzone with initial number of pv entries. */
1349	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1350
1351	/* Initialize ptbl allocation. */
1352	ptbl_init();
1353}
1354
1355/*
1356 * Map a list of wired pages into kernel virtual address space.  This is
1357 * intended for temporary mappings which do not need page modification or
1358 * references recorded.  Existing mappings in the region are overwritten.
1359 */
1360static void
1361mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1362{
1363	vm_offset_t va;
1364
1365	va = sva;
1366	while (count-- > 0) {
1367		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1368		va += PAGE_SIZE;
1369		m++;
1370	}
1371}
1372
1373/*
1374 * Remove page mappings from kernel virtual address space.  Intended for
1375 * temporary mappings entered by mmu_booke_qenter.
1376 */
1377static void
1378mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1379{
1380	vm_offset_t va;
1381
1382	va = sva;
1383	while (count-- > 0) {
1384		mmu_booke_kremove(mmu, va);
1385		va += PAGE_SIZE;
1386	}
1387}
1388
1389/*
1390 * Map a wired page into kernel virtual address space.
1391 */
1392static void
1393mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1394{
1395	unsigned int pdir_idx = PDIR_IDX(va);
1396	unsigned int ptbl_idx = PTBL_IDX(va);
1397	uint32_t flags;
1398	pte_t *pte;
1399
1400	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1401	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1402
1403	flags = 0;
1404	flags |= (PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID);
1405	flags |= PTE_M;
1406
1407	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1408
1409	mtx_lock_spin(&tlbivax_mutex);
1410	tlb_miss_lock();
1411
1412	if (PTE_ISVALID(pte)) {
1413
1414		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1415
1416		/* Flush entry from TLB0 */
1417		tlb0_flush_entry(va);
1418	}
1419
1420	pte->rpn = pa & ~PTE_PA_MASK;
1421	pte->flags = flags;
1422
1423	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1424	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1425	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1426
1427	/* Flush the real memory from the instruction cache. */
1428	if ((flags & (PTE_I | PTE_G)) == 0) {
1429		__syncicache((void *)va, PAGE_SIZE);
1430	}
1431
1432	tlb_miss_unlock();
1433	mtx_unlock_spin(&tlbivax_mutex);
1434}
1435
1436/*
1437 * Remove a page from kernel page table.
1438 */
1439static void
1440mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1441{
1442	unsigned int pdir_idx = PDIR_IDX(va);
1443	unsigned int ptbl_idx = PTBL_IDX(va);
1444	pte_t *pte;
1445
1446//	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1447
1448	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1449	    (va <= VM_MAX_KERNEL_ADDRESS)),
1450	    ("mmu_booke_kremove: invalid va"));
1451
1452	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1453
1454	if (!PTE_ISVALID(pte)) {
1455
1456		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1457
1458		return;
1459	}
1460
1461	mtx_lock_spin(&tlbivax_mutex);
1462	tlb_miss_lock();
1463
1464	/* Invalidate entry in TLB0, update PTE. */
1465	tlb0_flush_entry(va);
1466	pte->flags = 0;
1467	pte->rpn = 0;
1468
1469	tlb_miss_unlock();
1470	mtx_unlock_spin(&tlbivax_mutex);
1471}
1472
1473/*
1474 * Initialize pmap associated with process 0.
1475 */
1476static void
1477mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1478{
1479
1480	mmu_booke_pinit(mmu, pmap);
1481	PCPU_SET(curpmap, pmap);
1482}
1483
1484/*
1485 * Initialize a preallocated and zeroed pmap structure,
1486 * such as one in a vmspace structure.
1487 */
1488static void
1489mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1490{
1491	int i;
1492
1493	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1494	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1495
1496	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1497
1498	PMAP_LOCK_INIT(pmap);
1499	for (i = 0; i < MAXCPU; i++)
1500		pmap->pm_tid[i] = TID_NONE;
1501	CPU_ZERO(&kernel_pmap->pm_active);
1502	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1503	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1504	TAILQ_INIT(&pmap->pm_ptbl_list);
1505}
1506
1507/*
1508 * Release any resources held by the given physical map.
1509 * Called when a pmap initialized by mmu_booke_pinit is being released.
1510 * Should only be called if the map contains no valid mappings.
1511 */
1512static void
1513mmu_booke_release(mmu_t mmu, pmap_t pmap)
1514{
1515
1516	KASSERT(pmap->pm_stats.resident_count == 0,
1517	    ("pmap_release: pmap resident count %ld != 0",
1518	    pmap->pm_stats.resident_count));
1519
1520	PMAP_LOCK_DESTROY(pmap);
1521}
1522
1523/*
1524 * Insert the given physical page at the specified virtual address in the
1525 * target physical map with the protection requested. If specified the page
1526 * will be wired down.
1527 */
1528static void
1529mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1530    vm_prot_t prot, boolean_t wired)
1531{
1532
1533	vm_page_lock_queues();
1534	PMAP_LOCK(pmap);
1535	mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1536	vm_page_unlock_queues();
1537	PMAP_UNLOCK(pmap);
1538}
1539
1540static void
1541mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1542    vm_prot_t prot, boolean_t wired)
1543{
1544	pte_t *pte;
1545	vm_paddr_t pa;
1546	uint32_t flags;
1547	int su, sync;
1548
1549	pa = VM_PAGE_TO_PHYS(m);
1550	su = (pmap == kernel_pmap);
1551	sync = 0;
1552
1553	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1554	//		"pa=0x%08x prot=0x%08x wired=%d)\n",
1555	//		(u_int32_t)pmap, su, pmap->pm_tid,
1556	//		(u_int32_t)m, va, pa, prot, wired);
1557
1558	if (su) {
1559		KASSERT(((va >= virtual_avail) &&
1560		    (va <= VM_MAX_KERNEL_ADDRESS)),
1561		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1562	} else {
1563		KASSERT((va <= VM_MAXUSER_ADDRESS),
1564		    ("mmu_booke_enter_locked: user pmap, non user va"));
1565	}
1566	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 ||
1567	    VM_OBJECT_LOCKED(m->object),
1568	    ("mmu_booke_enter_locked: page %p is not busy", m));
1569
1570	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1571
1572	/*
1573	 * If there is an existing mapping, and the physical address has not
1574	 * changed, must be protection or wiring change.
1575	 */
1576	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1577	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1578
1579		/*
1580		 * Before actually updating pte->flags we calculate and
1581		 * prepare its new value in a helper var.
1582		 */
1583		flags = pte->flags;
1584		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1585
1586		/* Wiring change, just update stats. */
1587		if (wired) {
1588			if (!PTE_ISWIRED(pte)) {
1589				flags |= PTE_WIRED;
1590				pmap->pm_stats.wired_count++;
1591			}
1592		} else {
1593			if (PTE_ISWIRED(pte)) {
1594				flags &= ~PTE_WIRED;
1595				pmap->pm_stats.wired_count--;
1596			}
1597		}
1598
1599		if (prot & VM_PROT_WRITE) {
1600			/* Add write permissions. */
1601			flags |= PTE_SW;
1602			if (!su)
1603				flags |= PTE_UW;
1604
1605			if ((flags & PTE_MANAGED) != 0)
1606				vm_page_aflag_set(m, PGA_WRITEABLE);
1607		} else {
1608			/* Handle modified pages, sense modify status. */
1609
1610			/*
1611			 * The PTE_MODIFIED flag could be set by underlying
1612			 * TLB misses since we last read it (above), possibly
1613			 * other CPUs could update it so we check in the PTE
1614			 * directly rather than rely on that saved local flags
1615			 * copy.
1616			 */
1617			if (PTE_ISMODIFIED(pte))
1618				vm_page_dirty(m);
1619		}
1620
1621		if (prot & VM_PROT_EXECUTE) {
1622			flags |= PTE_SX;
1623			if (!su)
1624				flags |= PTE_UX;
1625
1626			/*
1627			 * Check existing flags for execute permissions: if we
1628			 * are turning execute permissions on, icache should
1629			 * be flushed.
1630			 */
1631			if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
1632				sync++;
1633		}
1634
1635		flags &= ~PTE_REFERENCED;
1636
1637		/*
1638		 * The new flags value is all calculated -- only now actually
1639		 * update the PTE.
1640		 */
1641		mtx_lock_spin(&tlbivax_mutex);
1642		tlb_miss_lock();
1643
1644		tlb0_flush_entry(va);
1645		pte->flags = flags;
1646
1647		tlb_miss_unlock();
1648		mtx_unlock_spin(&tlbivax_mutex);
1649
1650	} else {
1651		/*
1652		 * If there is an existing mapping, but it's for a different
1653		 * physical address, pte_enter() will delete the old mapping.
1654		 */
1655		//if ((pte != NULL) && PTE_ISVALID(pte))
1656		//	debugf("mmu_booke_enter_locked: replace\n");
1657		//else
1658		//	debugf("mmu_booke_enter_locked: new\n");
1659
1660		/* Now set up the flags and install the new mapping. */
1661		flags = (PTE_SR | PTE_VALID);
1662		flags |= PTE_M;
1663
1664		if (!su)
1665			flags |= PTE_UR;
1666
1667		if (prot & VM_PROT_WRITE) {
1668			flags |= PTE_SW;
1669			if (!su)
1670				flags |= PTE_UW;
1671
1672			if ((m->oflags & VPO_UNMANAGED) == 0)
1673				vm_page_aflag_set(m, PGA_WRITEABLE);
1674		}
1675
1676		if (prot & VM_PROT_EXECUTE) {
1677			flags |= PTE_SX;
1678			if (!su)
1679				flags |= PTE_UX;
1680		}
1681
1682		/* If its wired update stats. */
1683		if (wired) {
1684			pmap->pm_stats.wired_count++;
1685			flags |= PTE_WIRED;
1686		}
1687
1688		pte_enter(mmu, pmap, m, va, flags);
1689
1690		/* Flush the real memory from the instruction cache. */
1691		if (prot & VM_PROT_EXECUTE)
1692			sync++;
1693	}
1694
1695	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1696		__syncicache((void *)va, PAGE_SIZE);
1697		sync = 0;
1698	}
1699}
1700
1701/*
1702 * Maps a sequence of resident pages belonging to the same object.
1703 * The sequence begins with the given page m_start.  This page is
1704 * mapped at the given virtual address start.  Each subsequent page is
1705 * mapped at a virtual address that is offset from start by the same
1706 * amount as the page is offset from m_start within the object.  The
1707 * last page in the sequence is the page with the largest offset from
1708 * m_start that can be mapped at a virtual address less than the given
1709 * virtual address end.  Not every virtual page between start and end
1710 * is mapped; only those for which a resident page exists with the
1711 * corresponding offset from m_start are mapped.
1712 */
1713static void
1714mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1715    vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1716{
1717	vm_page_t m;
1718	vm_pindex_t diff, psize;
1719
1720	psize = atop(end - start);
1721	m = m_start;
1722	vm_page_lock_queues();
1723	PMAP_LOCK(pmap);
1724	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1725		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1726		    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1727		m = TAILQ_NEXT(m, listq);
1728	}
1729	vm_page_unlock_queues();
1730	PMAP_UNLOCK(pmap);
1731}
1732
1733static void
1734mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1735    vm_prot_t prot)
1736{
1737
1738	vm_page_lock_queues();
1739	PMAP_LOCK(pmap);
1740	mmu_booke_enter_locked(mmu, pmap, va, m,
1741	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1742	vm_page_unlock_queues();
1743	PMAP_UNLOCK(pmap);
1744}
1745
1746/*
1747 * Remove the given range of addresses from the specified map.
1748 *
1749 * It is assumed that the start and end are properly rounded to the page size.
1750 */
1751static void
1752mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1753{
1754	pte_t *pte;
1755	uint8_t hold_flag;
1756
1757	int su = (pmap == kernel_pmap);
1758
1759	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1760	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1761
1762	if (su) {
1763		KASSERT(((va >= virtual_avail) &&
1764		    (va <= VM_MAX_KERNEL_ADDRESS)),
1765		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1766	} else {
1767		KASSERT((va <= VM_MAXUSER_ADDRESS),
1768		    ("mmu_booke_remove: user pmap, non user va"));
1769	}
1770
1771	if (PMAP_REMOVE_DONE(pmap)) {
1772		//debugf("mmu_booke_remove: e (empty)\n");
1773		return;
1774	}
1775
1776	hold_flag = PTBL_HOLD_FLAG(pmap);
1777	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1778
1779	vm_page_lock_queues();
1780	PMAP_LOCK(pmap);
1781	for (; va < endva; va += PAGE_SIZE) {
1782		pte = pte_find(mmu, pmap, va);
1783		if ((pte != NULL) && PTE_ISVALID(pte))
1784			pte_remove(mmu, pmap, va, hold_flag);
1785	}
1786	PMAP_UNLOCK(pmap);
1787	vm_page_unlock_queues();
1788
1789	//debugf("mmu_booke_remove: e\n");
1790}
1791
1792/*
1793 * Remove physical page from all pmaps in which it resides.
1794 */
1795static void
1796mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1797{
1798	pv_entry_t pv, pvn;
1799	uint8_t hold_flag;
1800
1801	vm_page_lock_queues();
1802	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1803		pvn = TAILQ_NEXT(pv, pv_link);
1804
1805		PMAP_LOCK(pv->pv_pmap);
1806		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1807		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1808		PMAP_UNLOCK(pv->pv_pmap);
1809	}
1810	vm_page_aflag_clear(m, PGA_WRITEABLE);
1811	vm_page_unlock_queues();
1812}
1813
1814/*
1815 * Map a range of physical addresses into kernel virtual address space.
1816 */
1817static vm_offset_t
1818mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1819    vm_offset_t pa_end, int prot)
1820{
1821	vm_offset_t sva = *virt;
1822	vm_offset_t va = sva;
1823
1824	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1825	//		sva, pa_start, pa_end);
1826
1827	while (pa_start < pa_end) {
1828		mmu_booke_kenter(mmu, va, pa_start);
1829		va += PAGE_SIZE;
1830		pa_start += PAGE_SIZE;
1831	}
1832	*virt = va;
1833
1834	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1835	return (sva);
1836}
1837
1838/*
1839 * The pmap must be activated before it's address space can be accessed in any
1840 * way.
1841 */
1842static void
1843mmu_booke_activate(mmu_t mmu, struct thread *td)
1844{
1845	pmap_t pmap;
1846	u_int cpuid;
1847
1848	pmap = &td->td_proc->p_vmspace->vm_pmap;
1849
1850	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1851	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1852
1853	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1854
1855	mtx_lock_spin(&sched_lock);
1856
1857	cpuid = PCPU_GET(cpuid);
1858	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1859	PCPU_SET(curpmap, pmap);
1860
1861	if (pmap->pm_tid[cpuid] == TID_NONE)
1862		tid_alloc(pmap);
1863
1864	/* Load PID0 register with pmap tid value. */
1865	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1866	__asm __volatile("isync");
1867
1868	mtx_unlock_spin(&sched_lock);
1869
1870	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1871	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1872}
1873
1874/*
1875 * Deactivate the specified process's address space.
1876 */
1877static void
1878mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1879{
1880	pmap_t pmap;
1881
1882	pmap = &td->td_proc->p_vmspace->vm_pmap;
1883
1884	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1885	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1886
1887	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1888	PCPU_SET(curpmap, NULL);
1889}
1890
1891/*
1892 * Copy the range specified by src_addr/len
1893 * from the source map to the range dst_addr/len
1894 * in the destination map.
1895 *
1896 * This routine is only advisory and need not do anything.
1897 */
1898static void
1899mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1900    vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1901{
1902
1903}
1904
1905/*
1906 * Set the physical protection on the specified range of this map as requested.
1907 */
1908static void
1909mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1910    vm_prot_t prot)
1911{
1912	vm_offset_t va;
1913	vm_page_t m;
1914	pte_t *pte;
1915
1916	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1917		mmu_booke_remove(mmu, pmap, sva, eva);
1918		return;
1919	}
1920
1921	if (prot & VM_PROT_WRITE)
1922		return;
1923
1924	PMAP_LOCK(pmap);
1925	for (va = sva; va < eva; va += PAGE_SIZE) {
1926		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1927			if (PTE_ISVALID(pte)) {
1928				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1929
1930				mtx_lock_spin(&tlbivax_mutex);
1931				tlb_miss_lock();
1932
1933				/* Handle modified pages. */
1934				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1935					vm_page_dirty(m);
1936
1937				tlb0_flush_entry(va);
1938				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1939
1940				tlb_miss_unlock();
1941				mtx_unlock_spin(&tlbivax_mutex);
1942			}
1943		}
1944	}
1945	PMAP_UNLOCK(pmap);
1946}
1947
1948/*
1949 * Clear the write and modified bits in each of the given page's mappings.
1950 */
1951static void
1952mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
1953{
1954	pv_entry_t pv;
1955	pte_t *pte;
1956
1957	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1958	    ("mmu_booke_remove_write: page %p is not managed", m));
1959
1960	/*
1961	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
1962	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
1963	 * is clear, no page table entries need updating.
1964	 */
1965	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1966	if ((m->oflags & VPO_BUSY) == 0 &&
1967	    (m->aflags & PGA_WRITEABLE) == 0)
1968		return;
1969	vm_page_lock_queues();
1970	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1971		PMAP_LOCK(pv->pv_pmap);
1972		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
1973			if (PTE_ISVALID(pte)) {
1974				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1975
1976				mtx_lock_spin(&tlbivax_mutex);
1977				tlb_miss_lock();
1978
1979				/* Handle modified pages. */
1980				if (PTE_ISMODIFIED(pte))
1981					vm_page_dirty(m);
1982
1983				/* Flush mapping from TLB0. */
1984				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1985
1986				tlb_miss_unlock();
1987				mtx_unlock_spin(&tlbivax_mutex);
1988			}
1989		}
1990		PMAP_UNLOCK(pv->pv_pmap);
1991	}
1992	vm_page_aflag_clear(m, PGA_WRITEABLE);
1993	vm_page_unlock_queues();
1994}
1995
1996static void
1997mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
1998{
1999	pte_t *pte;
2000	pmap_t pmap;
2001	vm_page_t m;
2002	vm_offset_t addr;
2003	vm_paddr_t pa;
2004	int active, valid;
2005
2006	va = trunc_page(va);
2007	sz = round_page(sz);
2008
2009	vm_page_lock_queues();
2010	pmap = PCPU_GET(curpmap);
2011	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2012	while (sz > 0) {
2013		PMAP_LOCK(pm);
2014		pte = pte_find(mmu, pm, va);
2015		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2016		if (valid)
2017			pa = PTE_PA(pte);
2018		PMAP_UNLOCK(pm);
2019		if (valid) {
2020			if (!active) {
2021				/* Create a mapping in the active pmap. */
2022				addr = 0;
2023				m = PHYS_TO_VM_PAGE(pa);
2024				PMAP_LOCK(pmap);
2025				pte_enter(mmu, pmap, m, addr,
2026				    PTE_SR | PTE_VALID | PTE_UR);
2027				__syncicache((void *)addr, PAGE_SIZE);
2028				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2029				PMAP_UNLOCK(pmap);
2030			} else
2031				__syncicache((void *)va, PAGE_SIZE);
2032		}
2033		va += PAGE_SIZE;
2034		sz -= PAGE_SIZE;
2035	}
2036	vm_page_unlock_queues();
2037}
2038
2039/*
2040 * Atomically extract and hold the physical page with the given
2041 * pmap and virtual address pair if that mapping permits the given
2042 * protection.
2043 */
2044static vm_page_t
2045mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2046    vm_prot_t prot)
2047{
2048	pte_t *pte;
2049	vm_page_t m;
2050	uint32_t pte_wbit;
2051	vm_paddr_t pa;
2052
2053	m = NULL;
2054	pa = 0;
2055	PMAP_LOCK(pmap);
2056retry:
2057	pte = pte_find(mmu, pmap, va);
2058	if ((pte != NULL) && PTE_ISVALID(pte)) {
2059		if (pmap == kernel_pmap)
2060			pte_wbit = PTE_SW;
2061		else
2062			pte_wbit = PTE_UW;
2063
2064		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2065			if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2066				goto retry;
2067			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2068			vm_page_hold(m);
2069		}
2070	}
2071
2072	PA_UNLOCK_COND(pa);
2073	PMAP_UNLOCK(pmap);
2074	return (m);
2075}
2076
2077/*
2078 * Initialize a vm_page's machine-dependent fields.
2079 */
2080static void
2081mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2082{
2083
2084	TAILQ_INIT(&m->md.pv_list);
2085}
2086
2087/*
2088 * mmu_booke_zero_page_area zeros the specified hardware page by
2089 * mapping it into virtual memory and using bzero to clear
2090 * its contents.
2091 *
2092 * off and size must reside within a single page.
2093 */
2094static void
2095mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2096{
2097	vm_offset_t va;
2098
2099	/* XXX KASSERT off and size are within a single page? */
2100
2101	mtx_lock(&zero_page_mutex);
2102	va = zero_page_va;
2103
2104	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2105	bzero((caddr_t)va + off, size);
2106	mmu_booke_kremove(mmu, va);
2107
2108	mtx_unlock(&zero_page_mutex);
2109}
2110
2111/*
2112 * mmu_booke_zero_page zeros the specified hardware page.
2113 */
2114static void
2115mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2116{
2117
2118	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2119}
2120
2121/*
2122 * mmu_booke_copy_page copies the specified (machine independent) page by
2123 * mapping the page into virtual memory and using memcopy to copy the page,
2124 * one machine dependent page at a time.
2125 */
2126static void
2127mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2128{
2129	vm_offset_t sva, dva;
2130
2131	sva = copy_page_src_va;
2132	dva = copy_page_dst_va;
2133
2134	mtx_lock(&copy_page_mutex);
2135	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2136	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2137	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2138	mmu_booke_kremove(mmu, dva);
2139	mmu_booke_kremove(mmu, sva);
2140	mtx_unlock(&copy_page_mutex);
2141}
2142
2143static inline void
2144mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
2145    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
2146{
2147	void *a_cp, *b_cp;
2148	vm_offset_t a_pg_offset, b_pg_offset;
2149	int cnt;
2150
2151	mtx_lock(&copy_page_mutex);
2152	while (xfersize > 0) {
2153		a_pg_offset = a_offset & PAGE_MASK;
2154		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2155		mmu_booke_kenter(mmu, copy_page_src_va,
2156		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
2157		a_cp = (char *)copy_page_src_va + a_pg_offset;
2158		b_pg_offset = b_offset & PAGE_MASK;
2159		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2160		mmu_booke_kenter(mmu, copy_page_dst_va,
2161		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
2162		b_cp = (char *)copy_page_dst_va + b_pg_offset;
2163		bcopy(a_cp, b_cp, cnt);
2164		mmu_booke_kremove(mmu, copy_page_dst_va);
2165		mmu_booke_kremove(mmu, copy_page_src_va);
2166		a_offset += cnt;
2167		b_offset += cnt;
2168		xfersize -= cnt;
2169	}
2170	mtx_unlock(&copy_page_mutex);
2171}
2172
2173/*
2174 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2175 * into virtual memory and using bzero to clear its contents. This is intended
2176 * to be called from the vm_pagezero process only and outside of Giant. No
2177 * lock is required.
2178 */
2179static void
2180mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2181{
2182	vm_offset_t va;
2183
2184	va = zero_page_idle_va;
2185	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2186	bzero((caddr_t)va, PAGE_SIZE);
2187	mmu_booke_kremove(mmu, va);
2188}
2189
2190/*
2191 * Return whether or not the specified physical page was modified
2192 * in any of physical maps.
2193 */
2194static boolean_t
2195mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2196{
2197	pte_t *pte;
2198	pv_entry_t pv;
2199	boolean_t rv;
2200
2201	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2202	    ("mmu_booke_is_modified: page %p is not managed", m));
2203	rv = FALSE;
2204
2205	/*
2206	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
2207	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2208	 * is clear, no PTEs can be modified.
2209	 */
2210	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2211	if ((m->oflags & VPO_BUSY) == 0 &&
2212	    (m->aflags & PGA_WRITEABLE) == 0)
2213		return (rv);
2214	vm_page_lock_queues();
2215	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2216		PMAP_LOCK(pv->pv_pmap);
2217		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2218		    PTE_ISVALID(pte)) {
2219			if (PTE_ISMODIFIED(pte))
2220				rv = TRUE;
2221		}
2222		PMAP_UNLOCK(pv->pv_pmap);
2223		if (rv)
2224			break;
2225	}
2226	vm_page_unlock_queues();
2227	return (rv);
2228}
2229
2230/*
2231 * Return whether or not the specified virtual address is eligible
2232 * for prefault.
2233 */
2234static boolean_t
2235mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2236{
2237
2238	return (FALSE);
2239}
2240
2241/*
2242 * Return whether or not the specified physical page was referenced
2243 * in any physical maps.
2244 */
2245static boolean_t
2246mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2247{
2248	pte_t *pte;
2249	pv_entry_t pv;
2250	boolean_t rv;
2251
2252	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2253	    ("mmu_booke_is_referenced: page %p is not managed", m));
2254	rv = FALSE;
2255	vm_page_lock_queues();
2256	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2257		PMAP_LOCK(pv->pv_pmap);
2258		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2259		    PTE_ISVALID(pte)) {
2260			if (PTE_ISREFERENCED(pte))
2261				rv = TRUE;
2262		}
2263		PMAP_UNLOCK(pv->pv_pmap);
2264		if (rv)
2265			break;
2266	}
2267	vm_page_unlock_queues();
2268	return (rv);
2269}
2270
2271/*
2272 * Clear the modify bits on the specified physical page.
2273 */
2274static void
2275mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2276{
2277	pte_t *pte;
2278	pv_entry_t pv;
2279
2280	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2281	    ("mmu_booke_clear_modify: page %p is not managed", m));
2282	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2283	KASSERT((m->oflags & VPO_BUSY) == 0,
2284	    ("mmu_booke_clear_modify: page %p is busy", m));
2285
2286	/*
2287	 * If the page is not PG_AWRITEABLE, then no PTEs can be modified.
2288	 * If the object containing the page is locked and the page is not
2289	 * VPO_BUSY, then PG_AWRITEABLE cannot be concurrently set.
2290	 */
2291	if ((m->aflags & PGA_WRITEABLE) == 0)
2292		return;
2293	vm_page_lock_queues();
2294	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2295		PMAP_LOCK(pv->pv_pmap);
2296		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2297		    PTE_ISVALID(pte)) {
2298			mtx_lock_spin(&tlbivax_mutex);
2299			tlb_miss_lock();
2300
2301			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2302				tlb0_flush_entry(pv->pv_va);
2303				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2304				    PTE_REFERENCED);
2305			}
2306
2307			tlb_miss_unlock();
2308			mtx_unlock_spin(&tlbivax_mutex);
2309		}
2310		PMAP_UNLOCK(pv->pv_pmap);
2311	}
2312	vm_page_unlock_queues();
2313}
2314
2315/*
2316 * Return a count of reference bits for a page, clearing those bits.
2317 * It is not necessary for every reference bit to be cleared, but it
2318 * is necessary that 0 only be returned when there are truly no
2319 * reference bits set.
2320 *
2321 * XXX: The exact number of bits to check and clear is a matter that
2322 * should be tested and standardized at some point in the future for
2323 * optimal aging of shared pages.
2324 */
2325static int
2326mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2327{
2328	pte_t *pte;
2329	pv_entry_t pv;
2330	int count;
2331
2332	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2333	    ("mmu_booke_ts_referenced: page %p is not managed", m));
2334	count = 0;
2335	vm_page_lock_queues();
2336	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2337		PMAP_LOCK(pv->pv_pmap);
2338		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2339		    PTE_ISVALID(pte)) {
2340			if (PTE_ISREFERENCED(pte)) {
2341				mtx_lock_spin(&tlbivax_mutex);
2342				tlb_miss_lock();
2343
2344				tlb0_flush_entry(pv->pv_va);
2345				pte->flags &= ~PTE_REFERENCED;
2346
2347				tlb_miss_unlock();
2348				mtx_unlock_spin(&tlbivax_mutex);
2349
2350				if (++count > 4) {
2351					PMAP_UNLOCK(pv->pv_pmap);
2352					break;
2353				}
2354			}
2355		}
2356		PMAP_UNLOCK(pv->pv_pmap);
2357	}
2358	vm_page_unlock_queues();
2359	return (count);
2360}
2361
2362/*
2363 * Clear the reference bit on the specified physical page.
2364 */
2365static void
2366mmu_booke_clear_reference(mmu_t mmu, vm_page_t m)
2367{
2368	pte_t *pte;
2369	pv_entry_t pv;
2370
2371	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2372	    ("mmu_booke_clear_reference: page %p is not managed", m));
2373	vm_page_lock_queues();
2374	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2375		PMAP_LOCK(pv->pv_pmap);
2376		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2377		    PTE_ISVALID(pte)) {
2378			if (PTE_ISREFERENCED(pte)) {
2379				mtx_lock_spin(&tlbivax_mutex);
2380				tlb_miss_lock();
2381
2382				tlb0_flush_entry(pv->pv_va);
2383				pte->flags &= ~PTE_REFERENCED;
2384
2385				tlb_miss_unlock();
2386				mtx_unlock_spin(&tlbivax_mutex);
2387			}
2388		}
2389		PMAP_UNLOCK(pv->pv_pmap);
2390	}
2391	vm_page_unlock_queues();
2392}
2393
2394/*
2395 * Change wiring attribute for a map/virtual-address pair.
2396 */
2397static void
2398mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2399{
2400	pte_t *pte;
2401
2402	PMAP_LOCK(pmap);
2403	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2404		if (wired) {
2405			if (!PTE_ISWIRED(pte)) {
2406				pte->flags |= PTE_WIRED;
2407				pmap->pm_stats.wired_count++;
2408			}
2409		} else {
2410			if (PTE_ISWIRED(pte)) {
2411				pte->flags &= ~PTE_WIRED;
2412				pmap->pm_stats.wired_count--;
2413			}
2414		}
2415	}
2416	PMAP_UNLOCK(pmap);
2417}
2418
2419/*
2420 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2421 * page.  This count may be changed upwards or downwards in the future; it is
2422 * only necessary that true be returned for a small subset of pmaps for proper
2423 * page aging.
2424 */
2425static boolean_t
2426mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2427{
2428	pv_entry_t pv;
2429	int loops;
2430	boolean_t rv;
2431
2432	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2433	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
2434	loops = 0;
2435	rv = FALSE;
2436	vm_page_lock_queues();
2437	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2438		if (pv->pv_pmap == pmap) {
2439			rv = TRUE;
2440			break;
2441		}
2442		if (++loops >= 16)
2443			break;
2444	}
2445	vm_page_unlock_queues();
2446	return (rv);
2447}
2448
2449/*
2450 * Return the number of managed mappings to the given physical page that are
2451 * wired.
2452 */
2453static int
2454mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2455{
2456	pv_entry_t pv;
2457	pte_t *pte;
2458	int count = 0;
2459
2460	if ((m->oflags & VPO_UNMANAGED) != 0)
2461		return (count);
2462	vm_page_lock_queues();
2463	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2464		PMAP_LOCK(pv->pv_pmap);
2465		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2466			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2467				count++;
2468		PMAP_UNLOCK(pv->pv_pmap);
2469	}
2470	vm_page_unlock_queues();
2471	return (count);
2472}
2473
2474static int
2475mmu_booke_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2476{
2477	int i;
2478	vm_offset_t va;
2479
2480	/*
2481	 * This currently does not work for entries that
2482	 * overlap TLB1 entries.
2483	 */
2484	for (i = 0; i < tlb1_idx; i ++) {
2485		if (tlb1_iomapped(i, pa, size, &va) == 0)
2486			return (0);
2487	}
2488
2489	return (EFAULT);
2490}
2491
2492vm_offset_t
2493mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2494    vm_size_t *sz)
2495{
2496	vm_paddr_t pa, ppa;
2497	vm_offset_t va;
2498	vm_size_t gran;
2499
2500	/* Raw physical memory dumps don't have a virtual address. */
2501	if (md->md_vaddr == ~0UL) {
2502		/* We always map a 256MB page at 256M. */
2503		gran = 256 * 1024 * 1024;
2504		pa = md->md_paddr + ofs;
2505		ppa = pa & ~(gran - 1);
2506		ofs = pa - ppa;
2507		va = gran;
2508		tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2509		if (*sz > (gran - ofs))
2510			*sz = gran - ofs;
2511		return (va + ofs);
2512	}
2513
2514	/* Minidumps are based on virtual memory addresses. */
2515	va = md->md_vaddr + ofs;
2516	if (va >= kernstart + kernsize) {
2517		gran = PAGE_SIZE - (va & PAGE_MASK);
2518		if (*sz > gran)
2519			*sz = gran;
2520	}
2521	return (va);
2522}
2523
2524void
2525mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2526    vm_offset_t va)
2527{
2528
2529	/* Raw physical memory dumps don't have a virtual address. */
2530	if (md->md_vaddr == ~0UL) {
2531		tlb1_idx--;
2532		tlb1[tlb1_idx].mas1 = 0;
2533		tlb1[tlb1_idx].mas2 = 0;
2534		tlb1[tlb1_idx].mas3 = 0;
2535		tlb1_write_entry(tlb1_idx);
2536		return;
2537	}
2538
2539	/* Minidumps are based on virtual memory addresses. */
2540	/* Nothing to do... */
2541}
2542
2543struct pmap_md *
2544mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2545{
2546	static struct pmap_md md;
2547	pte_t *pte;
2548	vm_offset_t va;
2549
2550	if (dumpsys_minidump) {
2551		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2552		if (prev == NULL) {
2553			/* 1st: kernel .data and .bss. */
2554			md.md_index = 1;
2555			md.md_vaddr = trunc_page((uintptr_t)_etext);
2556			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2557			return (&md);
2558		}
2559		switch (prev->md_index) {
2560		case 1:
2561			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2562			md.md_index = 2;
2563			md.md_vaddr = data_start;
2564			md.md_size = data_end - data_start;
2565			break;
2566		case 2:
2567			/* 3rd: kernel VM. */
2568			va = prev->md_vaddr + prev->md_size;
2569			/* Find start of next chunk (from va). */
2570			while (va < virtual_end) {
2571				/* Don't dump the buffer cache. */
2572				if (va >= kmi.buffer_sva &&
2573				    va < kmi.buffer_eva) {
2574					va = kmi.buffer_eva;
2575					continue;
2576				}
2577				pte = pte_find(mmu, kernel_pmap, va);
2578				if (pte != NULL && PTE_ISVALID(pte))
2579					break;
2580				va += PAGE_SIZE;
2581			}
2582			if (va < virtual_end) {
2583				md.md_vaddr = va;
2584				va += PAGE_SIZE;
2585				/* Find last page in chunk. */
2586				while (va < virtual_end) {
2587					/* Don't run into the buffer cache. */
2588					if (va == kmi.buffer_sva)
2589						break;
2590					pte = pte_find(mmu, kernel_pmap, va);
2591					if (pte == NULL || !PTE_ISVALID(pte))
2592						break;
2593					va += PAGE_SIZE;
2594				}
2595				md.md_size = va - md.md_vaddr;
2596				break;
2597			}
2598			md.md_index = 3;
2599			/* FALLTHROUGH */
2600		default:
2601			return (NULL);
2602		}
2603	} else { /* minidumps */
2604		mem_regions(&physmem_regions, &physmem_regions_sz,
2605		    &availmem_regions, &availmem_regions_sz);
2606
2607		if (prev == NULL) {
2608			/* first physical chunk. */
2609			md.md_paddr = physmem_regions[0].mr_start;
2610			md.md_size = physmem_regions[0].mr_size;
2611			md.md_vaddr = ~0UL;
2612			md.md_index = 1;
2613		} else if (md.md_index < physmem_regions_sz) {
2614			md.md_paddr = physmem_regions[md.md_index].mr_start;
2615			md.md_size = physmem_regions[md.md_index].mr_size;
2616			md.md_vaddr = ~0UL;
2617			md.md_index++;
2618		} else {
2619			/* There's no next physical chunk. */
2620			return (NULL);
2621		}
2622	}
2623
2624	return (&md);
2625}
2626
2627/*
2628 * Map a set of physical memory pages into the kernel virtual address space.
2629 * Return a pointer to where it is mapped. This routine is intended to be used
2630 * for mapping device memory, NOT real memory.
2631 */
2632static void *
2633mmu_booke_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2634{
2635	void *res;
2636	uintptr_t va;
2637	vm_size_t sz;
2638
2639	va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa);
2640	res = (void *)va;
2641
2642	do {
2643		sz = 1 << (ilog2(size) & ~1);
2644		if (bootverbose)
2645			printf("Wiring VA=%x to PA=%x (size=%x), "
2646			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2647		tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO);
2648		size -= sz;
2649		pa += sz;
2650		va += sz;
2651	} while (size > 0);
2652
2653	return (res);
2654}
2655
2656/*
2657 * 'Unmap' a range mapped by mmu_booke_mapdev().
2658 */
2659static void
2660mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2661{
2662	vm_offset_t base, offset;
2663
2664	/*
2665	 * Unmap only if this is inside kernel virtual space.
2666	 */
2667	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2668		base = trunc_page(va);
2669		offset = va & PAGE_MASK;
2670		size = roundup(offset + size, PAGE_SIZE);
2671		kmem_free(kernel_map, base, size);
2672	}
2673}
2674
2675/*
2676 * mmu_booke_object_init_pt preloads the ptes for a given object into the
2677 * specified pmap. This eliminates the blast of soft faults on process startup
2678 * and immediately after an mmap.
2679 */
2680static void
2681mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2682    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2683{
2684
2685	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2686	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2687	    ("mmu_booke_object_init_pt: non-device object"));
2688}
2689
2690/*
2691 * Perform the pmap work for mincore.
2692 */
2693static int
2694mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2695    vm_paddr_t *locked_pa)
2696{
2697
2698	TODO;
2699	return (0);
2700}
2701
2702/**************************************************************************/
2703/* TID handling */
2704/**************************************************************************/
2705
2706/*
2707 * Allocate a TID. If necessary, steal one from someone else.
2708 * The new TID is flushed from the TLB before returning.
2709 */
2710static tlbtid_t
2711tid_alloc(pmap_t pmap)
2712{
2713	tlbtid_t tid;
2714	int thiscpu;
2715
2716	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2717
2718	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2719
2720	thiscpu = PCPU_GET(cpuid);
2721
2722	tid = PCPU_GET(tid_next);
2723	if (tid > TID_MAX)
2724		tid = TID_MIN;
2725	PCPU_SET(tid_next, tid + 1);
2726
2727	/* If we are stealing TID then clear the relevant pmap's field */
2728	if (tidbusy[thiscpu][tid] != NULL) {
2729
2730		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2731
2732		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2733
2734		/* Flush all entries from TLB0 matching this TID. */
2735		tid_flush(tid);
2736	}
2737
2738	tidbusy[thiscpu][tid] = pmap;
2739	pmap->pm_tid[thiscpu] = tid;
2740	__asm __volatile("msync; isync");
2741
2742	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2743	    PCPU_GET(tid_next));
2744
2745	return (tid);
2746}
2747
2748/**************************************************************************/
2749/* TLB0 handling */
2750/**************************************************************************/
2751
2752static void
2753tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2754    uint32_t mas7)
2755{
2756	int as;
2757	char desc[3];
2758	tlbtid_t tid;
2759	vm_size_t size;
2760	unsigned int tsize;
2761
2762	desc[2] = '\0';
2763	if (mas1 & MAS1_VALID)
2764		desc[0] = 'V';
2765	else
2766		desc[0] = ' ';
2767
2768	if (mas1 & MAS1_IPROT)
2769		desc[1] = 'P';
2770	else
2771		desc[1] = ' ';
2772
2773	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2774	tid = MAS1_GETTID(mas1);
2775
2776	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2777	size = 0;
2778	if (tsize)
2779		size = tsize2size(tsize);
2780
2781	debugf("%3d: (%s) [AS=%d] "
2782	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2783	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2784	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2785}
2786
2787/* Convert TLB0 va and way number to tlb0[] table index. */
2788static inline unsigned int
2789tlb0_tableidx(vm_offset_t va, unsigned int way)
2790{
2791	unsigned int idx;
2792
2793	idx = (way * TLB0_ENTRIES_PER_WAY);
2794	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2795	return (idx);
2796}
2797
2798/*
2799 * Invalidate TLB0 entry.
2800 */
2801static inline void
2802tlb0_flush_entry(vm_offset_t va)
2803{
2804
2805	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2806
2807	mtx_assert(&tlbivax_mutex, MA_OWNED);
2808
2809	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2810	__asm __volatile("isync; msync");
2811	__asm __volatile("tlbsync; msync");
2812
2813	CTR1(KTR_PMAP, "%s: e", __func__);
2814}
2815
2816/* Print out contents of the MAS registers for each TLB0 entry */
2817void
2818tlb0_print_tlbentries(void)
2819{
2820	uint32_t mas0, mas1, mas2, mas3, mas7;
2821	int entryidx, way, idx;
2822
2823	debugf("TLB0 entries:\n");
2824	for (way = 0; way < TLB0_WAYS; way ++)
2825		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2826
2827			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2828			mtspr(SPR_MAS0, mas0);
2829			__asm __volatile("isync");
2830
2831			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2832			mtspr(SPR_MAS2, mas2);
2833
2834			__asm __volatile("isync; tlbre");
2835
2836			mas1 = mfspr(SPR_MAS1);
2837			mas2 = mfspr(SPR_MAS2);
2838			mas3 = mfspr(SPR_MAS3);
2839			mas7 = mfspr(SPR_MAS7);
2840
2841			idx = tlb0_tableidx(mas2, way);
2842			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2843		}
2844}
2845
2846/**************************************************************************/
2847/* TLB1 handling */
2848/**************************************************************************/
2849
2850/*
2851 * TLB1 mapping notes:
2852 *
2853 * TLB1[0]	CCSRBAR
2854 * TLB1[1]	Kernel text and data.
2855 * TLB1[2-15]	Additional kernel text and data mappings (if required), PCI
2856 *		windows, other devices mappings.
2857 */
2858
2859/*
2860 * Write given entry to TLB1 hardware.
2861 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2862 */
2863static void
2864tlb1_write_entry(unsigned int idx)
2865{
2866	uint32_t mas0, mas7;
2867
2868	//debugf("tlb1_write_entry: s\n");
2869
2870	/* Clear high order RPN bits */
2871	mas7 = 0;
2872
2873	/* Select entry */
2874	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2875	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2876
2877	mtspr(SPR_MAS0, mas0);
2878	__asm __volatile("isync");
2879	mtspr(SPR_MAS1, tlb1[idx].mas1);
2880	__asm __volatile("isync");
2881	mtspr(SPR_MAS2, tlb1[idx].mas2);
2882	__asm __volatile("isync");
2883	mtspr(SPR_MAS3, tlb1[idx].mas3);
2884	__asm __volatile("isync");
2885	mtspr(SPR_MAS7, mas7);
2886	__asm __volatile("isync; tlbwe; isync; msync");
2887
2888	//debugf("tlb1_write_entry: e\n");
2889}
2890
2891/*
2892 * Return the largest uint value log such that 2^log <= num.
2893 */
2894static unsigned int
2895ilog2(unsigned int num)
2896{
2897	int lz;
2898
2899	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2900	return (31 - lz);
2901}
2902
2903/*
2904 * Convert TLB TSIZE value to mapped region size.
2905 */
2906static vm_size_t
2907tsize2size(unsigned int tsize)
2908{
2909
2910	/*
2911	 * size = 4^tsize KB
2912	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2913	 */
2914
2915	return ((1 << (2 * tsize)) * 1024);
2916}
2917
2918/*
2919 * Convert region size (must be power of 4) to TLB TSIZE value.
2920 */
2921static unsigned int
2922size2tsize(vm_size_t size)
2923{
2924
2925	return (ilog2(size) / 2 - 5);
2926}
2927
2928/*
2929 * Register permanent kernel mapping in TLB1.
2930 *
2931 * Entries are created starting from index 0 (current free entry is
2932 * kept in tlb1_idx) and are not supposed to be invalidated.
2933 */
2934static int
2935tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2936    uint32_t flags)
2937{
2938	uint32_t ts, tid;
2939	int tsize;
2940
2941	if (tlb1_idx >= TLB1_ENTRIES) {
2942		printf("tlb1_set_entry: TLB1 full!\n");
2943		return (-1);
2944	}
2945
2946	/* Convert size to TSIZE */
2947	tsize = size2tsize(size);
2948
2949	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2950	/* XXX TS is hard coded to 0 for now as we only use single address space */
2951	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2952
2953	/* XXX LOCK tlb1[] */
2954
2955	tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2956	tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2957	tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags;
2958
2959	/* Set supervisor RWX permission bits */
2960	tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2961
2962	tlb1_write_entry(tlb1_idx++);
2963
2964	/* XXX UNLOCK tlb1[] */
2965
2966	/*
2967	 * XXX in general TLB1 updates should be propagated between CPUs,
2968	 * since current design assumes to have the same TLB1 set-up on all
2969	 * cores.
2970	 */
2971	return (0);
2972}
2973
2974/*
2975 * Map in contiguous RAM region into the TLB1 using maximum of
2976 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
2977 *
2978 * If necessary round up last entry size and return total size
2979 * used by all allocated entries.
2980 */
2981vm_size_t
2982tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
2983{
2984	vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
2985	vm_size_t mapped, pgsz, base, mask;
2986	int idx, nents;
2987
2988	/* Round up to the next 1M */
2989	size = (size + (1 << 20) - 1) & ~((1 << 20) - 1);
2990
2991	mapped = 0;
2992	idx = 0;
2993	base = va;
2994	pgsz = 64*1024*1024;
2995	while (mapped < size) {
2996		while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
2997			while (pgsz > (size - mapped))
2998				pgsz >>= 2;
2999			pgs[idx++] = pgsz;
3000			mapped += pgsz;
3001		}
3002
3003		/* We under-map. Correct for this. */
3004		if (mapped < size) {
3005			while (pgs[idx - 1] == pgsz) {
3006				idx--;
3007				mapped -= pgsz;
3008			}
3009			/* XXX We may increase beyond out starting point. */
3010			pgsz <<= 2;
3011			pgs[idx++] = pgsz;
3012			mapped += pgsz;
3013		}
3014	}
3015
3016	nents = idx;
3017	mask = pgs[0] - 1;
3018	/* Align address to the boundary */
3019	if (va & mask) {
3020		va = (va + mask) & ~mask;
3021		pa = (pa + mask) & ~mask;
3022	}
3023
3024	for (idx = 0; idx < nents; idx++) {
3025		pgsz = pgs[idx];
3026		debugf("%u: %x -> %x, size=%x\n", idx, pa, va, pgsz);
3027		tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_MEM);
3028		pa += pgsz;
3029		va += pgsz;
3030	}
3031
3032	mapped = (va - base);
3033	debugf("mapped size 0x%08x (wasted space 0x%08x)\n",
3034	    mapped, mapped - size);
3035	return (mapped);
3036}
3037
3038/*
3039 * TLB1 initialization routine, to be called after the very first
3040 * assembler level setup done in locore.S.
3041 */
3042void
3043tlb1_init(vm_offset_t ccsrbar)
3044{
3045	uint32_t mas0, mas1, mas3;
3046	uint32_t tsz;
3047	u_int i;
3048
3049	if (bootinfo != NULL && bootinfo[0] != 1) {
3050		tlb1_idx = *((uint16_t *)(bootinfo + 8));
3051	} else
3052		tlb1_idx = 1;
3053
3054	/* The first entry/entries are used to map the kernel. */
3055	for (i = 0; i < tlb1_idx; i++) {
3056		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3057		mtspr(SPR_MAS0, mas0);
3058		__asm __volatile("isync; tlbre");
3059
3060		mas1 = mfspr(SPR_MAS1);
3061		if ((mas1 & MAS1_VALID) == 0)
3062			continue;
3063
3064		mas3 = mfspr(SPR_MAS3);
3065
3066		tlb1[i].mas1 = mas1;
3067		tlb1[i].mas2 = mfspr(SPR_MAS2);
3068		tlb1[i].mas3 = mas3;
3069
3070		if (i == 0)
3071			kernload = mas3 & MAS3_RPN;
3072
3073		tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3074		kernsize += (tsz > 0) ? tsize2size(tsz) : 0;
3075	}
3076
3077	/* Map in CCSRBAR. */
3078	tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO);
3079
3080	/* Setup TLB miss defaults */
3081	set_mas4_defaults();
3082}
3083
3084/*
3085 * Setup MAS4 defaults.
3086 * These values are loaded to MAS0-2 on a TLB miss.
3087 */
3088static void
3089set_mas4_defaults(void)
3090{
3091	uint32_t mas4;
3092
3093	/* Defaults: TLB0, PID0, TSIZED=4K */
3094	mas4 = MAS4_TLBSELD0;
3095	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3096#ifdef SMP
3097	mas4 |= MAS4_MD;
3098#endif
3099	mtspr(SPR_MAS4, mas4);
3100	__asm __volatile("isync");
3101}
3102
3103/*
3104 * Print out contents of the MAS registers for each TLB1 entry
3105 */
3106void
3107tlb1_print_tlbentries(void)
3108{
3109	uint32_t mas0, mas1, mas2, mas3, mas7;
3110	int i;
3111
3112	debugf("TLB1 entries:\n");
3113	for (i = 0; i < TLB1_ENTRIES; i++) {
3114
3115		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3116		mtspr(SPR_MAS0, mas0);
3117
3118		__asm __volatile("isync; tlbre");
3119
3120		mas1 = mfspr(SPR_MAS1);
3121		mas2 = mfspr(SPR_MAS2);
3122		mas3 = mfspr(SPR_MAS3);
3123		mas7 = mfspr(SPR_MAS7);
3124
3125		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3126	}
3127}
3128
3129/*
3130 * Print out contents of the in-ram tlb1 table.
3131 */
3132void
3133tlb1_print_entries(void)
3134{
3135	int i;
3136
3137	debugf("tlb1[] table entries:\n");
3138	for (i = 0; i < TLB1_ENTRIES; i++)
3139		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3140}
3141
3142/*
3143 * Return 0 if the physical IO range is encompassed by one of the
3144 * the TLB1 entries, otherwise return related error code.
3145 */
3146static int
3147tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3148{
3149	uint32_t prot;
3150	vm_paddr_t pa_start;
3151	vm_paddr_t pa_end;
3152	unsigned int entry_tsize;
3153	vm_size_t entry_size;
3154
3155	*va = (vm_offset_t)NULL;
3156
3157	/* Skip invalid entries */
3158	if (!(tlb1[i].mas1 & MAS1_VALID))
3159		return (EINVAL);
3160
3161	/*
3162	 * The entry must be cache-inhibited, guarded, and r/w
3163	 * so it can function as an i/o page
3164	 */
3165	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3166	if (prot != (MAS2_I | MAS2_G))
3167		return (EPERM);
3168
3169	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3170	if (prot != (MAS3_SR | MAS3_SW))
3171		return (EPERM);
3172
3173	/* The address should be within the entry range. */
3174	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3175	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3176
3177	entry_size = tsize2size(entry_tsize);
3178	pa_start = tlb1[i].mas3 & MAS3_RPN;
3179	pa_end = pa_start + entry_size - 1;
3180
3181	if ((pa < pa_start) || ((pa + size) > pa_end))
3182		return (ERANGE);
3183
3184	/* Return virtual address of this mapping. */
3185	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3186	return (0);
3187}
3188