if_rl.c revision 207554
1/*-
2 * Copyright (c) 1997, 1998
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/pci/if_rl.c 207554 2010-05-03 07:32:50Z sobomax $");
35
36/*
37 * RealTek 8129/8139 PCI NIC driver
38 *
39 * Supports several extremely cheap PCI 10/100 adapters based on
40 * the RealTek chipset. Datasheets can be obtained from
41 * www.realtek.com.tw.
42 *
43 * Written by Bill Paul <wpaul@ctr.columbia.edu>
44 * Electrical Engineering Department
45 * Columbia University, New York City
46 */
47/*
48 * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
49 * probably the worst PCI ethernet controller ever made, with the possible
50 * exception of the FEAST chip made by SMC. The 8139 supports bus-master
51 * DMA, but it has a terrible interface that nullifies any performance
52 * gains that bus-master DMA usually offers.
53 *
54 * For transmission, the chip offers a series of four TX descriptor
55 * registers. Each transmit frame must be in a contiguous buffer, aligned
56 * on a longword (32-bit) boundary. This means we almost always have to
57 * do mbuf copies in order to transmit a frame, except in the unlikely
58 * case where a) the packet fits into a single mbuf, and b) the packet
59 * is 32-bit aligned within the mbuf's data area. The presence of only
60 * four descriptor registers means that we can never have more than four
61 * packets queued for transmission at any one time.
62 *
63 * Reception is not much better. The driver has to allocate a single large
64 * buffer area (up to 64K in size) into which the chip will DMA received
65 * frames. Because we don't know where within this region received packets
66 * will begin or end, we have no choice but to copy data from the buffer
67 * area into mbufs in order to pass the packets up to the higher protocol
68 * levels.
69 *
70 * It's impossible given this rotten design to really achieve decent
71 * performance at 100Mbps, unless you happen to have a 400Mhz PII or
72 * some equally overmuscled CPU to drive it.
73 *
74 * On the bright side, the 8139 does have a built-in PHY, although
75 * rather than using an MDIO serial interface like most other NICs, the
76 * PHY registers are directly accessible through the 8139's register
77 * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
78 * filter.
79 *
80 * The 8129 chip is an older version of the 8139 that uses an external PHY
81 * chip. The 8129 has a serial MDIO interface for accessing the MII where
82 * the 8139 lets you directly access the on-board PHY registers. We need
83 * to select which interface to use depending on the chip type.
84 */
85
86#ifdef HAVE_KERNEL_OPTION_HEADERS
87#include "opt_device_polling.h"
88#endif
89
90#include <sys/param.h>
91#include <sys/endian.h>
92#include <sys/systm.h>
93#include <sys/sockio.h>
94#include <sys/mbuf.h>
95#include <sys/malloc.h>
96#include <sys/kernel.h>
97#include <sys/module.h>
98#include <sys/socket.h>
99#include <sys/sysctl.h>
100
101#include <net/if.h>
102#include <net/if_arp.h>
103#include <net/ethernet.h>
104#include <net/if_dl.h>
105#include <net/if_media.h>
106#include <net/if_types.h>
107
108#include <net/bpf.h>
109
110#include <machine/bus.h>
111#include <machine/resource.h>
112#include <sys/bus.h>
113#include <sys/rman.h>
114
115#include <dev/mii/mii.h>
116#include <dev/mii/miivar.h>
117
118#include <dev/pci/pcireg.h>
119#include <dev/pci/pcivar.h>
120
121MODULE_DEPEND(rl, pci, 1, 1, 1);
122MODULE_DEPEND(rl, ether, 1, 1, 1);
123MODULE_DEPEND(rl, miibus, 1, 1, 1);
124
125/* "device miibus" required.  See GENERIC if you get errors here. */
126#include "miibus_if.h"
127
128/*
129 * Default to using PIO access for this driver. On SMP systems,
130 * there appear to be problems with memory mapped mode: it looks like
131 * doing too many memory mapped access back to back in rapid succession
132 * can hang the bus. I'm inclined to blame this on crummy design/construction
133 * on the part of RealTek. Memory mapped mode does appear to work on
134 * uniprocessor systems though.
135 */
136#define RL_USEIOSPACE
137
138#include <pci/if_rlreg.h>
139
140/*
141 * Various supported device vendors/types and their names.
142 */
143static struct rl_type rl_devs[] = {
144	{ RT_VENDORID, RT_DEVICEID_8129, RL_8129,
145		"RealTek 8129 10/100BaseTX" },
146	{ RT_VENDORID, RT_DEVICEID_8139, RL_8139,
147		"RealTek 8139 10/100BaseTX" },
148	{ RT_VENDORID, RT_DEVICEID_8139D, RL_8139,
149		"RealTek 8139 10/100BaseTX" },
150	{ RT_VENDORID, RT_DEVICEID_8138, RL_8139,
151		"RealTek 8139 10/100BaseTX CardBus" },
152	{ RT_VENDORID, RT_DEVICEID_8100, RL_8139,
153		"RealTek 8100 10/100BaseTX" },
154	{ ACCTON_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
155		"Accton MPX 5030/5038 10/100BaseTX" },
156	{ DELTA_VENDORID, DELTA_DEVICEID_8139, RL_8139,
157		"Delta Electronics 8139 10/100BaseTX" },
158	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_8139, RL_8139,
159		"Addtron Technology 8139 10/100BaseTX" },
160	{ DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS, RL_8139,
161		"D-Link DFE-530TX+ 10/100BaseTX" },
162	{ DLINK_VENDORID, DLINK_DEVICEID_690TXD, RL_8139,
163		"D-Link DFE-690TXD 10/100BaseTX" },
164	{ NORTEL_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
165		"Nortel Networks 10/100BaseTX" },
166	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD, RL_8139,
167		"Corega FEther CB-TXD" },
168	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD, RL_8139,
169		"Corega FEtherII CB-TXD" },
170	{ PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF, RL_8139,
171		"Peppercon AG ROL-F" },
172	{ PLANEX_VENDORID, PLANEX_DEVICEID_FNW3603TX, RL_8139,
173		"Planex FNW-3603-TX" },
174	{ PLANEX_VENDORID, PLANEX_DEVICEID_FNW3800TX, RL_8139,
175		"Planex FNW-3800-TX" },
176	{ CP_VENDORID, RT_DEVICEID_8139, RL_8139,
177		"Compaq HNE-300" },
178	{ LEVEL1_VENDORID, LEVEL1_DEVICEID_FPC0106TX, RL_8139,
179		"LevelOne FPC-0106TX" },
180	{ EDIMAX_VENDORID, EDIMAX_DEVICEID_EP4103DL, RL_8139,
181		"Edimax EP-4103DL CardBus" }
182};
183
184static int rl_attach(device_t);
185static int rl_detach(device_t);
186static void rl_dmamap_cb(void *, bus_dma_segment_t *, int, int);
187static int rl_dma_alloc(struct rl_softc *);
188static void rl_dma_free(struct rl_softc *);
189static void rl_eeprom_putbyte(struct rl_softc *, int);
190static void rl_eeprom_getword(struct rl_softc *, int, uint16_t *);
191static int rl_encap(struct rl_softc *, struct mbuf **);
192static int rl_list_tx_init(struct rl_softc *);
193static int rl_list_rx_init(struct rl_softc *);
194static int rl_ifmedia_upd(struct ifnet *);
195static void rl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
196static int rl_ioctl(struct ifnet *, u_long, caddr_t);
197static void rl_intr(void *);
198static void rl_init(void *);
199static void rl_init_locked(struct rl_softc *sc);
200static void rl_mii_send(struct rl_softc *, uint32_t, int);
201static void rl_mii_sync(struct rl_softc *);
202static int rl_mii_readreg(struct rl_softc *, struct rl_mii_frame *);
203static int rl_mii_writereg(struct rl_softc *, struct rl_mii_frame *);
204static int rl_miibus_readreg(device_t, int, int);
205static void rl_miibus_statchg(device_t);
206static int rl_miibus_writereg(device_t, int, int, int);
207#ifdef DEVICE_POLLING
208static int rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
209static int rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count);
210#endif
211static int rl_probe(device_t);
212static void rl_read_eeprom(struct rl_softc *, uint8_t *, int, int, int);
213static void rl_reset(struct rl_softc *);
214static int rl_resume(device_t);
215static int rl_rxeof(struct rl_softc *);
216static void rl_setmulti(struct rl_softc *);
217static int rl_shutdown(device_t);
218static void rl_start(struct ifnet *);
219static void rl_start_locked(struct ifnet *);
220static void rl_stop(struct rl_softc *);
221static int rl_suspend(device_t);
222static void rl_tick(void *);
223static void rl_txeof(struct rl_softc *);
224static void rl_watchdog(struct rl_softc *);
225
226#ifdef RL_USEIOSPACE
227#define RL_RES			SYS_RES_IOPORT
228#define RL_RID			RL_PCI_LOIO
229#else
230#define RL_RES			SYS_RES_MEMORY
231#define RL_RID			RL_PCI_LOMEM
232#endif
233
234static device_method_t rl_methods[] = {
235	/* Device interface */
236	DEVMETHOD(device_probe,		rl_probe),
237	DEVMETHOD(device_attach,	rl_attach),
238	DEVMETHOD(device_detach,	rl_detach),
239	DEVMETHOD(device_suspend,	rl_suspend),
240	DEVMETHOD(device_resume,	rl_resume),
241	DEVMETHOD(device_shutdown,	rl_shutdown),
242
243	/* bus interface */
244	DEVMETHOD(bus_print_child,	bus_generic_print_child),
245	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
246
247	/* MII interface */
248	DEVMETHOD(miibus_readreg,	rl_miibus_readreg),
249	DEVMETHOD(miibus_writereg,	rl_miibus_writereg),
250	DEVMETHOD(miibus_statchg,	rl_miibus_statchg),
251
252	{ 0, 0 }
253};
254
255static driver_t rl_driver = {
256	"rl",
257	rl_methods,
258	sizeof(struct rl_softc)
259};
260
261static devclass_t rl_devclass;
262
263DRIVER_MODULE(rl, pci, rl_driver, rl_devclass, 0, 0);
264DRIVER_MODULE(rl, cardbus, rl_driver, rl_devclass, 0, 0);
265DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, 0, 0);
266
267#define EE_SET(x)					\
268	CSR_WRITE_1(sc, RL_EECMD,			\
269		CSR_READ_1(sc, RL_EECMD) | x)
270
271#define EE_CLR(x)					\
272	CSR_WRITE_1(sc, RL_EECMD,			\
273		CSR_READ_1(sc, RL_EECMD) & ~x)
274
275/*
276 * Send a read command and address to the EEPROM, check for ACK.
277 */
278static void
279rl_eeprom_putbyte(struct rl_softc *sc, int addr)
280{
281	register int		d, i;
282
283	d = addr | sc->rl_eecmd_read;
284
285	/*
286	 * Feed in each bit and strobe the clock.
287	 */
288	for (i = 0x400; i; i >>= 1) {
289		if (d & i) {
290			EE_SET(RL_EE_DATAIN);
291		} else {
292			EE_CLR(RL_EE_DATAIN);
293		}
294		DELAY(100);
295		EE_SET(RL_EE_CLK);
296		DELAY(150);
297		EE_CLR(RL_EE_CLK);
298		DELAY(100);
299	}
300}
301
302/*
303 * Read a word of data stored in the EEPROM at address 'addr.'
304 */
305static void
306rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest)
307{
308	register int		i;
309	uint16_t		word = 0;
310
311	/* Enter EEPROM access mode. */
312	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
313
314	/*
315	 * Send address of word we want to read.
316	 */
317	rl_eeprom_putbyte(sc, addr);
318
319	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
320
321	/*
322	 * Start reading bits from EEPROM.
323	 */
324	for (i = 0x8000; i; i >>= 1) {
325		EE_SET(RL_EE_CLK);
326		DELAY(100);
327		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
328			word |= i;
329		EE_CLR(RL_EE_CLK);
330		DELAY(100);
331	}
332
333	/* Turn off EEPROM access mode. */
334	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
335
336	*dest = word;
337}
338
339/*
340 * Read a sequence of words from the EEPROM.
341 */
342static void
343rl_read_eeprom(struct rl_softc *sc, uint8_t *dest, int off, int cnt, int swap)
344{
345	int			i;
346	uint16_t		word = 0, *ptr;
347
348	for (i = 0; i < cnt; i++) {
349		rl_eeprom_getword(sc, off + i, &word);
350		ptr = (uint16_t *)(dest + (i * 2));
351		if (swap)
352			*ptr = ntohs(word);
353		else
354			*ptr = word;
355	}
356}
357
358/*
359 * MII access routines are provided for the 8129, which
360 * doesn't have a built-in PHY. For the 8139, we fake things
361 * up by diverting rl_phy_readreg()/rl_phy_writereg() to the
362 * direct access PHY registers.
363 */
364#define MII_SET(x)					\
365	CSR_WRITE_1(sc, RL_MII,				\
366		CSR_READ_1(sc, RL_MII) | (x))
367
368#define MII_CLR(x)					\
369	CSR_WRITE_1(sc, RL_MII,				\
370		CSR_READ_1(sc, RL_MII) & ~(x))
371
372/*
373 * Sync the PHYs by setting data bit and strobing the clock 32 times.
374 */
375static void
376rl_mii_sync(struct rl_softc *sc)
377{
378	register int		i;
379
380	MII_SET(RL_MII_DIR|RL_MII_DATAOUT);
381
382	for (i = 0; i < 32; i++) {
383		MII_SET(RL_MII_CLK);
384		DELAY(1);
385		MII_CLR(RL_MII_CLK);
386		DELAY(1);
387	}
388}
389
390/*
391 * Clock a series of bits through the MII.
392 */
393static void
394rl_mii_send(struct rl_softc *sc, uint32_t bits, int cnt)
395{
396	int			i;
397
398	MII_CLR(RL_MII_CLK);
399
400	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
401		if (bits & i) {
402			MII_SET(RL_MII_DATAOUT);
403		} else {
404			MII_CLR(RL_MII_DATAOUT);
405		}
406		DELAY(1);
407		MII_CLR(RL_MII_CLK);
408		DELAY(1);
409		MII_SET(RL_MII_CLK);
410	}
411}
412
413/*
414 * Read an PHY register through the MII.
415 */
416static int
417rl_mii_readreg(struct rl_softc *sc, struct rl_mii_frame *frame)
418{
419	int			i, ack;
420
421	/* Set up frame for RX. */
422	frame->mii_stdelim = RL_MII_STARTDELIM;
423	frame->mii_opcode = RL_MII_READOP;
424	frame->mii_turnaround = 0;
425	frame->mii_data = 0;
426
427	CSR_WRITE_2(sc, RL_MII, 0);
428
429	/* Turn on data xmit. */
430	MII_SET(RL_MII_DIR);
431
432	rl_mii_sync(sc);
433
434	/* Send command/address info. */
435	rl_mii_send(sc, frame->mii_stdelim, 2);
436	rl_mii_send(sc, frame->mii_opcode, 2);
437	rl_mii_send(sc, frame->mii_phyaddr, 5);
438	rl_mii_send(sc, frame->mii_regaddr, 5);
439
440	/* Idle bit */
441	MII_CLR((RL_MII_CLK|RL_MII_DATAOUT));
442	DELAY(1);
443	MII_SET(RL_MII_CLK);
444	DELAY(1);
445
446	/* Turn off xmit. */
447	MII_CLR(RL_MII_DIR);
448
449	/* Check for ack */
450	MII_CLR(RL_MII_CLK);
451	DELAY(1);
452	ack = CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN;
453	MII_SET(RL_MII_CLK);
454	DELAY(1);
455
456	/*
457	 * Now try reading data bits. If the ack failed, we still
458	 * need to clock through 16 cycles to keep the PHY(s) in sync.
459	 */
460	if (ack) {
461		for(i = 0; i < 16; i++) {
462			MII_CLR(RL_MII_CLK);
463			DELAY(1);
464			MII_SET(RL_MII_CLK);
465			DELAY(1);
466		}
467		goto fail;
468	}
469
470	for (i = 0x8000; i; i >>= 1) {
471		MII_CLR(RL_MII_CLK);
472		DELAY(1);
473		if (!ack) {
474			if (CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN)
475				frame->mii_data |= i;
476			DELAY(1);
477		}
478		MII_SET(RL_MII_CLK);
479		DELAY(1);
480	}
481
482fail:
483	MII_CLR(RL_MII_CLK);
484	DELAY(1);
485	MII_SET(RL_MII_CLK);
486	DELAY(1);
487
488	return (ack ? 1 : 0);
489}
490
491/*
492 * Write to a PHY register through the MII.
493 */
494static int
495rl_mii_writereg(struct rl_softc *sc, struct rl_mii_frame *frame)
496{
497
498	/* Set up frame for TX. */
499	frame->mii_stdelim = RL_MII_STARTDELIM;
500	frame->mii_opcode = RL_MII_WRITEOP;
501	frame->mii_turnaround = RL_MII_TURNAROUND;
502
503	/* Turn on data output. */
504	MII_SET(RL_MII_DIR);
505
506	rl_mii_sync(sc);
507
508	rl_mii_send(sc, frame->mii_stdelim, 2);
509	rl_mii_send(sc, frame->mii_opcode, 2);
510	rl_mii_send(sc, frame->mii_phyaddr, 5);
511	rl_mii_send(sc, frame->mii_regaddr, 5);
512	rl_mii_send(sc, frame->mii_turnaround, 2);
513	rl_mii_send(sc, frame->mii_data, 16);
514
515	/* Idle bit. */
516	MII_SET(RL_MII_CLK);
517	DELAY(1);
518	MII_CLR(RL_MII_CLK);
519	DELAY(1);
520
521	/* Turn off xmit. */
522	MII_CLR(RL_MII_DIR);
523
524	return (0);
525}
526
527static int
528rl_miibus_readreg(device_t dev, int phy, int reg)
529{
530	struct rl_softc		*sc;
531	struct rl_mii_frame	frame;
532	uint16_t		rval = 0;
533	uint16_t		rl8139_reg = 0;
534
535	sc = device_get_softc(dev);
536
537	if (sc->rl_type == RL_8139) {
538		/* Pretend the internal PHY is only at address 0 */
539		if (phy) {
540			return (0);
541		}
542		switch (reg) {
543		case MII_BMCR:
544			rl8139_reg = RL_BMCR;
545			break;
546		case MII_BMSR:
547			rl8139_reg = RL_BMSR;
548			break;
549		case MII_ANAR:
550			rl8139_reg = RL_ANAR;
551			break;
552		case MII_ANER:
553			rl8139_reg = RL_ANER;
554			break;
555		case MII_ANLPAR:
556			rl8139_reg = RL_LPAR;
557			break;
558		case MII_PHYIDR1:
559		case MII_PHYIDR2:
560			return (0);
561		/*
562		 * Allow the rlphy driver to read the media status
563		 * register. If we have a link partner which does not
564		 * support NWAY, this is the register which will tell
565		 * us the results of parallel detection.
566		 */
567		case RL_MEDIASTAT:
568			rval = CSR_READ_1(sc, RL_MEDIASTAT);
569			return (rval);
570		default:
571			device_printf(sc->rl_dev, "bad phy register\n");
572			return (0);
573		}
574		rval = CSR_READ_2(sc, rl8139_reg);
575		return (rval);
576	}
577
578	bzero((char *)&frame, sizeof(frame));
579	frame.mii_phyaddr = phy;
580	frame.mii_regaddr = reg;
581	rl_mii_readreg(sc, &frame);
582
583	return (frame.mii_data);
584}
585
586static int
587rl_miibus_writereg(device_t dev, int phy, int reg, int data)
588{
589	struct rl_softc		*sc;
590	struct rl_mii_frame	frame;
591	uint16_t		rl8139_reg = 0;
592
593	sc = device_get_softc(dev);
594
595	if (sc->rl_type == RL_8139) {
596		/* Pretend the internal PHY is only at address 0 */
597		if (phy) {
598			return (0);
599		}
600		switch (reg) {
601		case MII_BMCR:
602			rl8139_reg = RL_BMCR;
603			break;
604		case MII_BMSR:
605			rl8139_reg = RL_BMSR;
606			break;
607		case MII_ANAR:
608			rl8139_reg = RL_ANAR;
609			break;
610		case MII_ANER:
611			rl8139_reg = RL_ANER;
612			break;
613		case MII_ANLPAR:
614			rl8139_reg = RL_LPAR;
615			break;
616		case MII_PHYIDR1:
617		case MII_PHYIDR2:
618			return (0);
619			break;
620		default:
621			device_printf(sc->rl_dev, "bad phy register\n");
622			return (0);
623		}
624		CSR_WRITE_2(sc, rl8139_reg, data);
625		return (0);
626	}
627
628	bzero((char *)&frame, sizeof(frame));
629	frame.mii_phyaddr = phy;
630	frame.mii_regaddr = reg;
631	frame.mii_data = data;
632	rl_mii_writereg(sc, &frame);
633
634	return (0);
635}
636
637static void
638rl_miibus_statchg(device_t dev)
639{
640	struct rl_softc		*sc;
641	struct ifnet		*ifp;
642	struct mii_data		*mii;
643
644	sc = device_get_softc(dev);
645	mii = device_get_softc(sc->rl_miibus);
646	ifp = sc->rl_ifp;
647	if (mii == NULL || ifp == NULL ||
648	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
649		return;
650
651	sc->rl_flags &= ~RL_FLAG_LINK;
652	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
653	    (IFM_ACTIVE | IFM_AVALID)) {
654		switch (IFM_SUBTYPE(mii->mii_media_active)) {
655		case IFM_10_T:
656		case IFM_100_TX:
657			sc->rl_flags |= RL_FLAG_LINK;
658			break;
659		default:
660			break;
661		}
662	}
663	/*
664	 * RealTek controllers do not provide any interface to
665	 * Tx/Rx MACs for resolved speed, duplex and flow-control
666	 * parameters.
667	 */
668}
669
670/*
671 * Program the 64-bit multicast hash filter.
672 */
673static void
674rl_setmulti(struct rl_softc *sc)
675{
676	struct ifnet		*ifp = sc->rl_ifp;
677	int			h = 0;
678	uint32_t		hashes[2] = { 0, 0 };
679	struct ifmultiaddr	*ifma;
680	uint32_t		rxfilt;
681	int			mcnt = 0;
682
683	RL_LOCK_ASSERT(sc);
684
685	rxfilt = CSR_READ_4(sc, RL_RXCFG);
686
687	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
688		rxfilt |= RL_RXCFG_RX_MULTI;
689		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
690		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
691		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
692		return;
693	}
694
695	/* first, zot all the existing hash bits */
696	CSR_WRITE_4(sc, RL_MAR0, 0);
697	CSR_WRITE_4(sc, RL_MAR4, 0);
698
699	/* now program new ones */
700	if_maddr_rlock(ifp);
701	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
702		if (ifma->ifma_addr->sa_family != AF_LINK)
703			continue;
704		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
705		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
706		if (h < 32)
707			hashes[0] |= (1 << h);
708		else
709			hashes[1] |= (1 << (h - 32));
710		mcnt++;
711	}
712	if_maddr_runlock(ifp);
713
714	if (mcnt)
715		rxfilt |= RL_RXCFG_RX_MULTI;
716	else
717		rxfilt &= ~RL_RXCFG_RX_MULTI;
718
719	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
720	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
721	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
722}
723
724static void
725rl_reset(struct rl_softc *sc)
726{
727	register int		i;
728
729	RL_LOCK_ASSERT(sc);
730
731	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
732
733	for (i = 0; i < RL_TIMEOUT; i++) {
734		DELAY(10);
735		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
736			break;
737	}
738	if (i == RL_TIMEOUT)
739		device_printf(sc->rl_dev, "reset never completed!\n");
740}
741
742/*
743 * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
744 * IDs against our list and return a device name if we find a match.
745 */
746static int
747rl_probe(device_t dev)
748{
749	struct rl_type		*t;
750	uint16_t		devid, revid, vendor;
751	int			i;
752
753	vendor = pci_get_vendor(dev);
754	devid = pci_get_device(dev);
755	revid = pci_get_revid(dev);
756
757	if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
758		if (revid == 0x20) {
759			/* 8139C+, let re(4) take care of this device. */
760			return (ENXIO);
761		}
762	}
763	t = rl_devs;
764	for (i = 0; i < sizeof(rl_devs) / sizeof(rl_devs[0]); i++, t++) {
765		if (vendor == t->rl_vid && devid == t->rl_did) {
766			device_set_desc(dev, t->rl_name);
767			return (BUS_PROBE_DEFAULT);
768		}
769	}
770
771	return (ENXIO);
772}
773
774struct rl_dmamap_arg {
775	bus_addr_t	rl_busaddr;
776};
777
778static void
779rl_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
780{
781	struct rl_dmamap_arg	*ctx;
782
783	if (error != 0)
784		return;
785
786	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
787
788        ctx = (struct rl_dmamap_arg *)arg;
789        ctx->rl_busaddr = segs[0].ds_addr;
790}
791
792/*
793 * Attach the interface. Allocate softc structures, do ifmedia
794 * setup and ethernet/BPF attach.
795 */
796static int
797rl_attach(device_t dev)
798{
799	uint8_t			eaddr[ETHER_ADDR_LEN];
800	uint16_t		as[3];
801	struct ifnet		*ifp;
802	struct rl_softc		*sc;
803	struct rl_type		*t;
804	struct sysctl_ctx_list	*ctx;
805	struct sysctl_oid_list	*children;
806	int			error = 0, i, rid;
807	int			unit;
808	uint16_t		rl_did = 0;
809	char			tn[32];
810
811	sc = device_get_softc(dev);
812	unit = device_get_unit(dev);
813	sc->rl_dev = dev;
814
815	sc->rl_twister_enable = 0;
816	snprintf(tn, sizeof(tn), "dev.rl.%d.twister_enable", unit);
817	TUNABLE_INT_FETCH(tn, &sc->rl_twister_enable);
818	ctx = device_get_sysctl_ctx(sc->rl_dev);
819	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
820	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "twister_enable", CTLFLAG_RD,
821	   &sc->rl_twister_enable, 0, "");
822
823	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
824	    MTX_DEF);
825	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
826
827	pci_enable_busmaster(dev);
828
829	/* Map control/status registers. */
830	rid = RL_RID;
831	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid, RF_ACTIVE);
832
833	if (sc->rl_res == NULL) {
834		device_printf(dev, "couldn't map ports/memory\n");
835		error = ENXIO;
836		goto fail;
837	}
838
839#ifdef notdef
840	/*
841	 * Detect the Realtek 8139B. For some reason, this chip is very
842	 * unstable when left to autoselect the media
843	 * The best workaround is to set the device to the required
844	 * media type or to set it to the 10 Meg speed.
845	 */
846	if ((rman_get_end(sc->rl_res) - rman_get_start(sc->rl_res)) == 0xFF)
847		device_printf(dev,
848"Realtek 8139B detected. Warning, this may be unstable in autoselect mode\n");
849#endif
850
851	sc->rl_btag = rman_get_bustag(sc->rl_res);
852	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
853
854	/* Allocate interrupt */
855	rid = 0;
856	sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
857	    RF_SHAREABLE | RF_ACTIVE);
858
859	if (sc->rl_irq[0] == NULL) {
860		device_printf(dev, "couldn't map interrupt\n");
861		error = ENXIO;
862		goto fail;
863	}
864
865	/*
866	 * Reset the adapter. Only take the lock here as it's needed in
867	 * order to call rl_reset().
868	 */
869	RL_LOCK(sc);
870	rl_reset(sc);
871	RL_UNLOCK(sc);
872
873	sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
874	rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0);
875	if (rl_did != 0x8129)
876		sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
877
878	/*
879	 * Get station address from the EEPROM.
880	 */
881	rl_read_eeprom(sc, (uint8_t *)as, RL_EE_EADDR, 3, 0);
882	for (i = 0; i < 3; i++) {
883		eaddr[(i * 2) + 0] = as[i] & 0xff;
884		eaddr[(i * 2) + 1] = as[i] >> 8;
885	}
886
887	/*
888	 * Now read the exact device type from the EEPROM to find
889	 * out if it's an 8129 or 8139.
890	 */
891	rl_read_eeprom(sc, (uint8_t *)&rl_did, RL_EE_PCI_DID, 1, 0);
892
893	t = rl_devs;
894	sc->rl_type = 0;
895	while(t->rl_name != NULL) {
896		if (rl_did == t->rl_did) {
897			sc->rl_type = t->rl_basetype;
898			break;
899		}
900		t++;
901	}
902
903	if (sc->rl_type == 0) {
904		device_printf(dev, "unknown device ID: %x assuming 8139\n",
905		    rl_did);
906		sc->rl_type = RL_8139;
907		/*
908		 * Read RL_IDR register to get ethernet address as accessing
909		 * EEPROM may not extract correct address.
910		 */
911		for (i = 0; i < ETHER_ADDR_LEN; i++)
912			eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
913	}
914
915	if ((error = rl_dma_alloc(sc)) != 0)
916		goto fail;
917
918	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
919	if (ifp == NULL) {
920		device_printf(dev, "can not if_alloc()\n");
921		error = ENOSPC;
922		goto fail;
923	}
924
925	/* Do MII setup */
926	if (mii_phy_probe(dev, &sc->rl_miibus,
927	    rl_ifmedia_upd, rl_ifmedia_sts)) {
928		device_printf(dev, "MII without any phy!\n");
929		error = ENXIO;
930		goto fail;
931	}
932
933	ifp->if_softc = sc;
934	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
935	ifp->if_mtu = ETHERMTU;
936	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
937	ifp->if_ioctl = rl_ioctl;
938	ifp->if_start = rl_start;
939	ifp->if_init = rl_init;
940	ifp->if_capabilities = IFCAP_VLAN_MTU;
941	ifp->if_capenable = ifp->if_capabilities;
942#ifdef DEVICE_POLLING
943	ifp->if_capabilities |= IFCAP_POLLING;
944#endif
945	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
946	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
947	IFQ_SET_READY(&ifp->if_snd);
948
949	/*
950	 * Call MI attach routine.
951	 */
952	ether_ifattach(ifp, eaddr);
953
954	/* Hook interrupt last to avoid having to lock softc */
955	error = bus_setup_intr(dev, sc->rl_irq[0], INTR_TYPE_NET | INTR_MPSAFE,
956	    NULL, rl_intr, sc, &sc->rl_intrhand[0]);
957	if (error) {
958		device_printf(sc->rl_dev, "couldn't set up irq\n");
959		ether_ifdetach(ifp);
960	}
961
962fail:
963	if (error)
964		rl_detach(dev);
965
966	return (error);
967}
968
969/*
970 * Shutdown hardware and free up resources. This can be called any
971 * time after the mutex has been initialized. It is called in both
972 * the error case in attach and the normal detach case so it needs
973 * to be careful about only freeing resources that have actually been
974 * allocated.
975 */
976static int
977rl_detach(device_t dev)
978{
979	struct rl_softc		*sc;
980	struct ifnet		*ifp;
981
982	sc = device_get_softc(dev);
983	ifp = sc->rl_ifp;
984
985	KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
986
987#ifdef DEVICE_POLLING
988	if (ifp->if_capenable & IFCAP_POLLING)
989		ether_poll_deregister(ifp);
990#endif
991	/* These should only be active if attach succeeded */
992	if (device_is_attached(dev)) {
993		RL_LOCK(sc);
994		rl_stop(sc);
995		RL_UNLOCK(sc);
996		callout_drain(&sc->rl_stat_callout);
997		ether_ifdetach(ifp);
998	}
999#if 0
1000	sc->suspended = 1;
1001#endif
1002	if (sc->rl_miibus)
1003		device_delete_child(dev, sc->rl_miibus);
1004	bus_generic_detach(dev);
1005
1006	if (sc->rl_intrhand[0])
1007		bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
1008	if (sc->rl_irq[0])
1009		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq[0]);
1010	if (sc->rl_res)
1011		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1012
1013	if (ifp)
1014		if_free(ifp);
1015
1016	rl_dma_free(sc);
1017
1018	mtx_destroy(&sc->rl_mtx);
1019
1020	return (0);
1021}
1022
1023static int
1024rl_dma_alloc(struct rl_softc *sc)
1025{
1026	struct rl_dmamap_arg	ctx;
1027	int			error, i;
1028
1029	/*
1030	 * Allocate the parent bus DMA tag appropriate for PCI.
1031	 */
1032	error = bus_dma_tag_create(bus_get_dma_tag(sc->rl_dev),	/* parent */
1033	    1, 0,			/* alignment, boundary */
1034	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1035	    BUS_SPACE_MAXADDR,		/* highaddr */
1036	    NULL, NULL,			/* filter, filterarg */
1037	    BUS_SPACE_MAXSIZE_32BIT, 0,	/* maxsize, nsegments */
1038	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1039	    0,				/* flags */
1040	    NULL, NULL,			/* lockfunc, lockarg */
1041	    &sc->rl_parent_tag);
1042	if (error) {
1043                device_printf(sc->rl_dev,
1044		    "failed to create parent DMA tag.\n");
1045		goto fail;
1046	}
1047	/* Create DMA tag for Rx memory block. */
1048	error = bus_dma_tag_create(sc->rl_parent_tag,	/* parent */
1049	    RL_RX_8139_BUF_ALIGN, 0,	/* alignment, boundary */
1050	    BUS_SPACE_MAXADDR,		/* lowaddr */
1051	    BUS_SPACE_MAXADDR,		/* highaddr */
1052	    NULL, NULL,			/* filter, filterarg */
1053	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, 1,	/* maxsize,nsegments */
1054	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ,	/* maxsegsize */
1055	    0,				/* flags */
1056	    NULL, NULL,			/* lockfunc, lockarg */
1057	    &sc->rl_cdata.rl_rx_tag);
1058	if (error) {
1059                device_printf(sc->rl_dev,
1060		    "failed to create Rx memory block DMA tag.\n");
1061		goto fail;
1062	}
1063	/* Create DMA tag for Tx buffer. */
1064	error = bus_dma_tag_create(sc->rl_parent_tag,	/* parent */
1065	    RL_TX_8139_BUF_ALIGN, 0,	/* alignment, boundary */
1066	    BUS_SPACE_MAXADDR,		/* lowaddr */
1067	    BUS_SPACE_MAXADDR,		/* highaddr */
1068	    NULL, NULL,			/* filter, filterarg */
1069	    MCLBYTES, 1,		/* maxsize, nsegments */
1070	    MCLBYTES,			/* maxsegsize */
1071	    0,				/* flags */
1072	    NULL, NULL,			/* lockfunc, lockarg */
1073	    &sc->rl_cdata.rl_tx_tag);
1074	if (error) {
1075                device_printf(sc->rl_dev, "failed to create Tx DMA tag.\n");
1076		goto fail;
1077	}
1078
1079	/*
1080	 * Allocate DMA'able memory and load DMA map for Rx memory block.
1081	 */
1082	error = bus_dmamem_alloc(sc->rl_cdata.rl_rx_tag,
1083	    (void **)&sc->rl_cdata.rl_rx_buf, BUS_DMA_WAITOK |
1084	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->rl_cdata.rl_rx_dmamap);
1085	if (error != 0) {
1086		device_printf(sc->rl_dev,
1087		    "failed to allocate Rx DMA memory block.\n");
1088		goto fail;
1089	}
1090	ctx.rl_busaddr = 0;
1091	error = bus_dmamap_load(sc->rl_cdata.rl_rx_tag,
1092	    sc->rl_cdata.rl_rx_dmamap, sc->rl_cdata.rl_rx_buf,
1093	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, rl_dmamap_cb, &ctx,
1094	    BUS_DMA_NOWAIT);
1095	if (error != 0 || ctx.rl_busaddr == 0) {
1096		device_printf(sc->rl_dev,
1097		    "could not load Rx DMA memory block.\n");
1098		goto fail;
1099	}
1100	sc->rl_cdata.rl_rx_buf_paddr = ctx.rl_busaddr;
1101
1102	/* Create DMA maps for Tx buffers. */
1103	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1104		sc->rl_cdata.rl_tx_chain[i] = NULL;
1105		sc->rl_cdata.rl_tx_dmamap[i] = NULL;
1106		error = bus_dmamap_create(sc->rl_cdata.rl_tx_tag, 0,
1107		    &sc->rl_cdata.rl_tx_dmamap[i]);
1108		if (error != 0) {
1109			device_printf(sc->rl_dev,
1110			    "could not create Tx dmamap.\n");
1111			goto fail;
1112		}
1113	}
1114
1115	/* Leave a few bytes before the start of the RX ring buffer. */
1116	sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
1117	sc->rl_cdata.rl_rx_buf += RL_RX_8139_BUF_RESERVE;
1118
1119fail:
1120	return (error);
1121}
1122
1123static void
1124rl_dma_free(struct rl_softc *sc)
1125{
1126	int			i;
1127
1128	/* Rx memory block. */
1129	if (sc->rl_cdata.rl_rx_tag != NULL) {
1130		if (sc->rl_cdata.rl_rx_dmamap != NULL)
1131			bus_dmamap_unload(sc->rl_cdata.rl_rx_tag,
1132			    sc->rl_cdata.rl_rx_dmamap);
1133		if (sc->rl_cdata.rl_rx_dmamap != NULL &&
1134		    sc->rl_cdata.rl_rx_buf_ptr != NULL)
1135			bus_dmamem_free(sc->rl_cdata.rl_rx_tag,
1136			    sc->rl_cdata.rl_rx_buf_ptr,
1137			    sc->rl_cdata.rl_rx_dmamap);
1138		sc->rl_cdata.rl_rx_buf_ptr = NULL;
1139		sc->rl_cdata.rl_rx_buf = NULL;
1140		sc->rl_cdata.rl_rx_dmamap = NULL;
1141		bus_dma_tag_destroy(sc->rl_cdata.rl_rx_tag);
1142		sc->rl_cdata.rl_tx_tag = NULL;
1143	}
1144
1145	/* Tx buffers. */
1146	if (sc->rl_cdata.rl_tx_tag != NULL) {
1147		for (i = 0; i < RL_TX_LIST_CNT; i++) {
1148			if (sc->rl_cdata.rl_tx_dmamap[i] != NULL) {
1149				bus_dmamap_destroy(
1150				    sc->rl_cdata.rl_tx_tag,
1151				    sc->rl_cdata.rl_tx_dmamap[i]);
1152				sc->rl_cdata.rl_tx_dmamap[i] = NULL;
1153			}
1154		}
1155		bus_dma_tag_destroy(sc->rl_cdata.rl_tx_tag);
1156		sc->rl_cdata.rl_tx_tag = NULL;
1157	}
1158
1159	if (sc->rl_parent_tag != NULL) {
1160		bus_dma_tag_destroy(sc->rl_parent_tag);
1161		sc->rl_parent_tag = NULL;
1162	}
1163}
1164
1165/*
1166 * Initialize the transmit descriptors.
1167 */
1168static int
1169rl_list_tx_init(struct rl_softc *sc)
1170{
1171	struct rl_chain_data	*cd;
1172	int			i;
1173
1174	RL_LOCK_ASSERT(sc);
1175
1176	cd = &sc->rl_cdata;
1177	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1178		cd->rl_tx_chain[i] = NULL;
1179		CSR_WRITE_4(sc,
1180		    RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000);
1181	}
1182
1183	sc->rl_cdata.cur_tx = 0;
1184	sc->rl_cdata.last_tx = 0;
1185
1186	return (0);
1187}
1188
1189static int
1190rl_list_rx_init(struct rl_softc *sc)
1191{
1192
1193	RL_LOCK_ASSERT(sc);
1194
1195	bzero(sc->rl_cdata.rl_rx_buf_ptr,
1196	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ);
1197	bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, sc->rl_cdata.rl_rx_dmamap,
1198	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1199
1200	return (0);
1201}
1202
1203/*
1204 * A frame has been uploaded: pass the resulting mbuf chain up to
1205 * the higher level protocols.
1206 *
1207 * You know there's something wrong with a PCI bus-master chip design
1208 * when you have to use m_devget().
1209 *
1210 * The receive operation is badly documented in the datasheet, so I'll
1211 * attempt to document it here. The driver provides a buffer area and
1212 * places its base address in the RX buffer start address register.
1213 * The chip then begins copying frames into the RX buffer. Each frame
1214 * is preceded by a 32-bit RX status word which specifies the length
1215 * of the frame and certain other status bits. Each frame (starting with
1216 * the status word) is also 32-bit aligned. The frame length is in the
1217 * first 16 bits of the status word; the lower 15 bits correspond with
1218 * the 'rx status register' mentioned in the datasheet.
1219 *
1220 * Note: to make the Alpha happy, the frame payload needs to be aligned
1221 * on a 32-bit boundary. To achieve this, we pass RL_ETHER_ALIGN (2 bytes)
1222 * as the offset argument to m_devget().
1223 */
1224static int
1225rl_rxeof(struct rl_softc *sc)
1226{
1227	struct mbuf		*m;
1228	struct ifnet		*ifp = sc->rl_ifp;
1229	uint8_t			*rxbufpos;
1230	int			total_len = 0;
1231	int			wrap = 0;
1232	int			rx_npkts = 0;
1233	uint32_t		rxstat;
1234	uint16_t		cur_rx;
1235	uint16_t		limit;
1236	uint16_t		max_bytes, rx_bytes = 0;
1237
1238	RL_LOCK_ASSERT(sc);
1239
1240	bus_dmamap_sync(sc->rl_cdata.rl_rx_tag, sc->rl_cdata.rl_rx_dmamap,
1241	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1242
1243	cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
1244
1245	/* Do not try to read past this point. */
1246	limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
1247
1248	if (limit < cur_rx)
1249		max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
1250	else
1251		max_bytes = limit - cur_rx;
1252
1253	while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
1254#ifdef DEVICE_POLLING
1255		if (ifp->if_capenable & IFCAP_POLLING) {
1256			if (sc->rxcycles <= 0)
1257				break;
1258			sc->rxcycles--;
1259		}
1260#endif
1261		rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
1262		rxstat = le32toh(*(uint32_t *)rxbufpos);
1263
1264		/*
1265		 * Here's a totally undocumented fact for you. When the
1266		 * RealTek chip is in the process of copying a packet into
1267		 * RAM for you, the length will be 0xfff0. If you spot a
1268		 * packet header with this value, you need to stop. The
1269		 * datasheet makes absolutely no mention of this and
1270		 * RealTek should be shot for this.
1271		 */
1272		total_len = rxstat >> 16;
1273		if (total_len == RL_RXSTAT_UNFINISHED)
1274			break;
1275
1276		if (!(rxstat & RL_RXSTAT_RXOK) ||
1277		    total_len < ETHER_MIN_LEN ||
1278		    total_len > ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN) {
1279			ifp->if_ierrors++;
1280			rl_init_locked(sc);
1281			return (rx_npkts);
1282		}
1283
1284		/* No errors; receive the packet. */
1285		rx_bytes += total_len + 4;
1286
1287		/*
1288		 * XXX The RealTek chip includes the CRC with every
1289		 * received frame, and there's no way to turn this
1290		 * behavior off (at least, I can't find anything in
1291		 * the manual that explains how to do it) so we have
1292		 * to trim off the CRC manually.
1293		 */
1294		total_len -= ETHER_CRC_LEN;
1295
1296		/*
1297		 * Avoid trying to read more bytes than we know
1298		 * the chip has prepared for us.
1299		 */
1300		if (rx_bytes > max_bytes)
1301			break;
1302
1303		rxbufpos = sc->rl_cdata.rl_rx_buf +
1304			((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN);
1305		if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
1306			rxbufpos = sc->rl_cdata.rl_rx_buf;
1307
1308		wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
1309		if (total_len > wrap) {
1310			m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
1311			    NULL);
1312			if (m != NULL)
1313				m_copyback(m, wrap, total_len - wrap,
1314					sc->rl_cdata.rl_rx_buf);
1315			cur_rx = (total_len - wrap + ETHER_CRC_LEN);
1316		} else {
1317			m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
1318			    NULL);
1319			cur_rx += total_len + 4 + ETHER_CRC_LEN;
1320		}
1321
1322		/* Round up to 32-bit boundary. */
1323		cur_rx = (cur_rx + 3) & ~3;
1324		CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
1325
1326		if (m == NULL) {
1327			ifp->if_iqdrops++;
1328			continue;
1329		}
1330
1331		ifp->if_ipackets++;
1332		RL_UNLOCK(sc);
1333		(*ifp->if_input)(ifp, m);
1334		RL_LOCK(sc);
1335		rx_npkts++;
1336	}
1337
1338	/* No need to sync Rx memory block as we didn't modify it. */
1339	return (rx_npkts);
1340}
1341
1342/*
1343 * A frame was downloaded to the chip. It's safe for us to clean up
1344 * the list buffers.
1345 */
1346static void
1347rl_txeof(struct rl_softc *sc)
1348{
1349	struct ifnet		*ifp = sc->rl_ifp;
1350	uint32_t		txstat;
1351
1352	RL_LOCK_ASSERT(sc);
1353
1354	/*
1355	 * Go through our tx list and free mbufs for those
1356	 * frames that have been uploaded.
1357	 */
1358	do {
1359		if (RL_LAST_TXMBUF(sc) == NULL)
1360			break;
1361		txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
1362		if (!(txstat & (RL_TXSTAT_TX_OK|
1363		    RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT)))
1364			break;
1365
1366		ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24;
1367
1368		bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc),
1369		    BUS_DMASYNC_POSTWRITE);
1370		bus_dmamap_unload(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc));
1371		m_freem(RL_LAST_TXMBUF(sc));
1372		RL_LAST_TXMBUF(sc) = NULL;
1373		/*
1374		 * If there was a transmit underrun, bump the TX threshold.
1375		 * Make sure not to overflow the 63 * 32byte we can address
1376		 * with the 6 available bit.
1377		 */
1378		if ((txstat & RL_TXSTAT_TX_UNDERRUN) &&
1379		    (sc->rl_txthresh < 2016))
1380			sc->rl_txthresh += 32;
1381		if (txstat & RL_TXSTAT_TX_OK)
1382			ifp->if_opackets++;
1383		else {
1384			int			oldthresh;
1385			ifp->if_oerrors++;
1386			if ((txstat & RL_TXSTAT_TXABRT) ||
1387			    (txstat & RL_TXSTAT_OUTOFWIN))
1388				CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1389			oldthresh = sc->rl_txthresh;
1390			/* error recovery */
1391			rl_init_locked(sc);
1392			/* restore original threshold */
1393			sc->rl_txthresh = oldthresh;
1394			return;
1395		}
1396		RL_INC(sc->rl_cdata.last_tx);
1397		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1398	} while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
1399
1400	if (RL_LAST_TXMBUF(sc) == NULL)
1401		sc->rl_watchdog_timer = 0;
1402}
1403
1404static void
1405rl_twister_update(struct rl_softc *sc)
1406{
1407	uint16_t linktest;
1408	/*
1409	 * Table provided by RealTek (Kinston <shangh@realtek.com.tw>) for
1410	 * Linux driver.  Values undocumented otherwise.
1411	 */
1412	static const uint32_t param[4][4] = {
1413		{0xcb39de43, 0xcb39ce43, 0xfb38de03, 0xcb38de43},
1414		{0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
1415		{0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
1416		{0xbb39de43, 0xbb39ce43, 0xbb39ce83, 0xbb39ce83}
1417	};
1418
1419	/*
1420	 * Tune the so-called twister registers of the RTL8139.  These
1421	 * are used to compensate for impedance mismatches.  The
1422	 * method for tuning these registers is undocumented and the
1423	 * following procedure is collected from public sources.
1424	 */
1425	switch (sc->rl_twister)
1426	{
1427	case CHK_LINK:
1428		/*
1429		 * If we have a sufficient link, then we can proceed in
1430		 * the state machine to the next stage.  If not, then
1431		 * disable further tuning after writing sane defaults.
1432		 */
1433		if (CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_LINK_OK) {
1434			CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_OFF_CMD);
1435			sc->rl_twister = FIND_ROW;
1436		} else {
1437			CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_CMD);
1438			CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST);
1439			CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF);
1440			CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF);
1441			sc->rl_twister = DONE;
1442		}
1443		break;
1444	case FIND_ROW:
1445		/*
1446		 * Read how long it took to see the echo to find the tuning
1447		 * row to use.
1448		 */
1449		linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS;
1450		if (linktest == RL_CSCFG_ROW3)
1451			sc->rl_twist_row = 3;
1452		else if (linktest == RL_CSCFG_ROW2)
1453			sc->rl_twist_row = 2;
1454		else if (linktest == RL_CSCFG_ROW1)
1455			sc->rl_twist_row = 1;
1456		else
1457			sc->rl_twist_row = 0;
1458		sc->rl_twist_col = 0;
1459		sc->rl_twister = SET_PARAM;
1460		break;
1461	case SET_PARAM:
1462		if (sc->rl_twist_col == 0)
1463			CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET);
1464		CSR_WRITE_4(sc, RL_PARA7C,
1465		    param[sc->rl_twist_row][sc->rl_twist_col]);
1466		if (++sc->rl_twist_col == 4) {
1467			if (sc->rl_twist_row == 3)
1468				sc->rl_twister = RECHK_LONG;
1469			else
1470				sc->rl_twister = DONE;
1471		}
1472		break;
1473	case RECHK_LONG:
1474		/*
1475		 * For long cables, we have to double check to make sure we
1476		 * don't mistune.
1477		 */
1478		linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS;
1479		if (linktest == RL_CSCFG_ROW3)
1480			sc->rl_twister = DONE;
1481		else {
1482			CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_RETUNE);
1483			sc->rl_twister = RETUNE;
1484		}
1485		break;
1486	case RETUNE:
1487		/* Retune for a shorter cable (try column 2) */
1488		CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST);
1489		CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF);
1490		CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF);
1491		CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET);
1492		sc->rl_twist_row--;
1493		sc->rl_twist_col = 0;
1494		sc->rl_twister = SET_PARAM;
1495		break;
1496
1497	case DONE:
1498		break;
1499	}
1500
1501}
1502
1503static void
1504rl_tick(void *xsc)
1505{
1506	struct rl_softc		*sc = xsc;
1507	struct mii_data		*mii;
1508	int ticks;
1509
1510	RL_LOCK_ASSERT(sc);
1511	/*
1512	 * If we're doing the twister cable calibration, then we need to defer
1513	 * watchdog timeouts.  This is a no-op in normal operations, but
1514	 * can falsely trigger when the cable calibration takes a while and
1515	 * there was traffic ready to go when rl was started.
1516	 *
1517	 * We don't defer mii_tick since that updates the mii status, which
1518	 * helps the twister process, at least according to similar patches
1519	 * for the Linux driver I found online while doing the fixes.  Worst
1520	 * case is a few extra mii reads during calibration.
1521	 */
1522	mii = device_get_softc(sc->rl_miibus);
1523	mii_tick(mii);
1524	if ((sc->rl_flags & RL_FLAG_LINK) == 0)
1525		rl_miibus_statchg(sc->rl_dev);
1526	if (sc->rl_twister_enable) {
1527		if (sc->rl_twister == DONE)
1528			rl_watchdog(sc);
1529		else
1530			rl_twister_update(sc);
1531		if (sc->rl_twister == DONE)
1532			ticks = hz;
1533		else
1534			ticks = hz / 10;
1535	} else {
1536		rl_watchdog(sc);
1537		ticks = hz;
1538	}
1539
1540	callout_reset(&sc->rl_stat_callout, ticks, rl_tick, sc);
1541}
1542
1543#ifdef DEVICE_POLLING
1544static int
1545rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1546{
1547	struct rl_softc *sc = ifp->if_softc;
1548	int rx_npkts = 0;
1549
1550	RL_LOCK(sc);
1551	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1552		rx_npkts = rl_poll_locked(ifp, cmd, count);
1553	RL_UNLOCK(sc);
1554	return (rx_npkts);
1555}
1556
1557static int
1558rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1559{
1560	struct rl_softc *sc = ifp->if_softc;
1561	int rx_npkts;
1562
1563	RL_LOCK_ASSERT(sc);
1564
1565	sc->rxcycles = count;
1566	rx_npkts = rl_rxeof(sc);
1567	rl_txeof(sc);
1568
1569	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1570		rl_start_locked(ifp);
1571
1572	if (cmd == POLL_AND_CHECK_STATUS) {
1573		uint16_t	status;
1574
1575		/* We should also check the status register. */
1576		status = CSR_READ_2(sc, RL_ISR);
1577		if (status == 0xffff)
1578			return (rx_npkts);
1579		if (status != 0)
1580			CSR_WRITE_2(sc, RL_ISR, status);
1581
1582		/* XXX We should check behaviour on receiver stalls. */
1583
1584		if (status & RL_ISR_SYSTEM_ERR)
1585			rl_init_locked(sc);
1586	}
1587	return (rx_npkts);
1588}
1589#endif /* DEVICE_POLLING */
1590
1591static void
1592rl_intr(void *arg)
1593{
1594	struct rl_softc		*sc = arg;
1595	struct ifnet		*ifp = sc->rl_ifp;
1596	uint16_t		status;
1597
1598	RL_LOCK(sc);
1599
1600	if (sc->suspended)
1601		goto done_locked;
1602
1603#ifdef DEVICE_POLLING
1604	if  (ifp->if_capenable & IFCAP_POLLING)
1605		goto done_locked;
1606#endif
1607
1608	for (;;) {
1609		status = CSR_READ_2(sc, RL_ISR);
1610		/* If the card has gone away, the read returns 0xffff. */
1611		if (status == 0xffff)
1612			break;
1613		if (status != 0)
1614			CSR_WRITE_2(sc, RL_ISR, status);
1615		if ((status & RL_INTRS) == 0)
1616			break;
1617		if (status & RL_ISR_RX_OK)
1618			rl_rxeof(sc);
1619		if (status & RL_ISR_RX_ERR)
1620			rl_rxeof(sc);
1621		if ((status & RL_ISR_TX_OK) || (status & RL_ISR_TX_ERR))
1622			rl_txeof(sc);
1623		if (status & RL_ISR_SYSTEM_ERR)
1624			rl_init_locked(sc);
1625	}
1626
1627	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1628		rl_start_locked(ifp);
1629
1630done_locked:
1631	RL_UNLOCK(sc);
1632}
1633
1634/*
1635 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1636 * pointers to the fragment pointers.
1637 */
1638static int
1639rl_encap(struct rl_softc *sc, struct mbuf **m_head)
1640{
1641	struct mbuf		*m;
1642	bus_dma_segment_t	txsegs[1];
1643	int			error, nsegs, padlen;
1644
1645	RL_LOCK_ASSERT(sc);
1646
1647	m = *m_head;
1648	padlen = 0;
1649	/*
1650	 * Hardware doesn't auto-pad, so we have to make sure
1651	 * pad short frames out to the minimum frame length.
1652	 */
1653	if (m->m_pkthdr.len < RL_MIN_FRAMELEN)
1654		padlen = RL_MIN_FRAMELEN - m->m_pkthdr.len;
1655	/*
1656	 * The RealTek is brain damaged and wants longword-aligned
1657	 * TX buffers, plus we can only have one fragment buffer
1658	 * per packet. We have to copy pretty much all the time.
1659	 */
1660	if (m->m_next != NULL || (mtod(m, uintptr_t) & 3) != 0 ||
1661	    (padlen > 0 && M_TRAILINGSPACE(m) < padlen)) {
1662		m = m_defrag(*m_head, M_DONTWAIT);
1663		if (m == NULL) {
1664			m_freem(*m_head);
1665			*m_head = NULL;
1666			return (ENOMEM);
1667		}
1668	}
1669	*m_head = m;
1670
1671	if (padlen > 0) {
1672		/*
1673		 * Make security-conscious people happy: zero out the
1674		 * bytes in the pad area, since we don't know what
1675		 * this mbuf cluster buffer's previous user might
1676		 * have left in it.
1677		 */
1678		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1679		m->m_pkthdr.len += padlen;
1680		m->m_len = m->m_pkthdr.len;
1681	}
1682
1683	error = bus_dmamap_load_mbuf_sg(sc->rl_cdata.rl_tx_tag,
1684	    RL_CUR_DMAMAP(sc), m, txsegs, &nsegs, 0);
1685	if (error != 0)
1686		return (error);
1687	if (nsegs == 0) {
1688		m_freem(*m_head);
1689		*m_head = NULL;
1690		return (EIO);
1691	}
1692
1693	RL_CUR_TXMBUF(sc) = m;
1694	bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_CUR_DMAMAP(sc),
1695	    BUS_DMASYNC_PREWRITE);
1696	CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), RL_ADDR_LO(txsegs[0].ds_addr));
1697
1698	return (0);
1699}
1700
1701/*
1702 * Main transmit routine.
1703 */
1704static void
1705rl_start(struct ifnet *ifp)
1706{
1707	struct rl_softc		*sc = ifp->if_softc;
1708
1709	RL_LOCK(sc);
1710	rl_start_locked(ifp);
1711	RL_UNLOCK(sc);
1712}
1713
1714static void
1715rl_start_locked(struct ifnet *ifp)
1716{
1717	struct rl_softc		*sc = ifp->if_softc;
1718	struct mbuf		*m_head = NULL;
1719
1720	RL_LOCK_ASSERT(sc);
1721
1722	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1723	    IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
1724		return;
1725
1726	while (RL_CUR_TXMBUF(sc) == NULL) {
1727
1728		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1729
1730		if (m_head == NULL)
1731			break;
1732
1733		if (rl_encap(sc, &m_head)) {
1734			if (m_head == NULL)
1735				break;
1736			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1737			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1738			break;
1739		}
1740
1741		/* Pass a copy of this mbuf chain to the bpf subsystem. */
1742		BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
1743
1744		/* Transmit the frame. */
1745		CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
1746		    RL_TXTHRESH(sc->rl_txthresh) |
1747		    RL_CUR_TXMBUF(sc)->m_pkthdr.len);
1748
1749		RL_INC(sc->rl_cdata.cur_tx);
1750
1751		/* Set a timeout in case the chip goes out to lunch. */
1752		sc->rl_watchdog_timer = 5;
1753	}
1754
1755	/*
1756	 * We broke out of the loop because all our TX slots are
1757	 * full. Mark the NIC as busy until it drains some of the
1758	 * packets from the queue.
1759	 */
1760	if (RL_CUR_TXMBUF(sc) != NULL)
1761		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1762}
1763
1764static void
1765rl_init(void *xsc)
1766{
1767	struct rl_softc		*sc = xsc;
1768
1769	RL_LOCK(sc);
1770	rl_init_locked(sc);
1771	RL_UNLOCK(sc);
1772}
1773
1774static void
1775rl_init_locked(struct rl_softc *sc)
1776{
1777	struct ifnet		*ifp = sc->rl_ifp;
1778	struct mii_data		*mii;
1779	uint32_t		rxcfg = 0;
1780	uint32_t		eaddr[2];
1781
1782	RL_LOCK_ASSERT(sc);
1783
1784	mii = device_get_softc(sc->rl_miibus);
1785
1786	/*
1787	 * Cancel pending I/O and free all RX/TX buffers.
1788	 */
1789	rl_stop(sc);
1790
1791	rl_reset(sc);
1792	if (sc->rl_twister_enable) {
1793		/*
1794		 * Reset twister register tuning state.  The twister
1795		 * registers and their tuning are undocumented, but
1796		 * are necessary to cope with bad links.  rl_twister =
1797		 * DONE here will disable this entirely.
1798		 */
1799		sc->rl_twister = CHK_LINK;
1800	}
1801
1802	/*
1803	 * Init our MAC address.  Even though the chipset
1804	 * documentation doesn't mention it, we need to enter "Config
1805	 * register write enable" mode to modify the ID registers.
1806	 */
1807	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
1808	bzero(eaddr, sizeof(eaddr));
1809	bcopy(IF_LLADDR(sc->rl_ifp), eaddr, ETHER_ADDR_LEN);
1810	CSR_WRITE_STREAM_4(sc, RL_IDR0, eaddr[0]);
1811	CSR_WRITE_STREAM_4(sc, RL_IDR4, eaddr[1]);
1812	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1813
1814	/* Init the RX memory block pointer register. */
1815	CSR_WRITE_4(sc, RL_RXADDR, sc->rl_cdata.rl_rx_buf_paddr +
1816	    RL_RX_8139_BUF_RESERVE);
1817	/* Init TX descriptors. */
1818	rl_list_tx_init(sc);
1819	/* Init Rx memory block. */
1820	rl_list_rx_init(sc);
1821
1822	/*
1823	 * Enable transmit and receive.
1824	 */
1825	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1826
1827	/*
1828	 * Set the initial TX and RX configuration.
1829	 */
1830	CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1831	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
1832
1833	/* Set the individual bit to receive frames for this host only. */
1834	rxcfg = CSR_READ_4(sc, RL_RXCFG);
1835	rxcfg |= RL_RXCFG_RX_INDIV;
1836
1837	/* If we want promiscuous mode, set the allframes bit. */
1838	if (ifp->if_flags & IFF_PROMISC) {
1839		rxcfg |= RL_RXCFG_RX_ALLPHYS;
1840		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1841	} else {
1842		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
1843		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1844	}
1845
1846	/* Set capture broadcast bit to capture broadcast frames. */
1847	if (ifp->if_flags & IFF_BROADCAST) {
1848		rxcfg |= RL_RXCFG_RX_BROAD;
1849		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1850	} else {
1851		rxcfg &= ~RL_RXCFG_RX_BROAD;
1852		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1853	}
1854
1855	/* Program the multicast filter, if necessary. */
1856	rl_setmulti(sc);
1857
1858#ifdef DEVICE_POLLING
1859	/* Disable interrupts if we are polling. */
1860	if (ifp->if_capenable & IFCAP_POLLING)
1861		CSR_WRITE_2(sc, RL_IMR, 0);
1862	else
1863#endif
1864	/* Enable interrupts. */
1865	CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1866
1867	/* Set initial TX threshold */
1868	sc->rl_txthresh = RL_TX_THRESH_INIT;
1869
1870	/* Start RX/TX process. */
1871	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
1872
1873	/* Enable receiver and transmitter. */
1874	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1875
1876	sc->rl_flags &= ~RL_FLAG_LINK;
1877	mii_mediachg(mii);
1878
1879	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
1880
1881	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1882	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1883
1884	callout_reset(&sc->rl_stat_callout, hz, rl_tick, sc);
1885}
1886
1887/*
1888 * Set media options.
1889 */
1890static int
1891rl_ifmedia_upd(struct ifnet *ifp)
1892{
1893	struct rl_softc		*sc = ifp->if_softc;
1894	struct mii_data		*mii;
1895
1896	mii = device_get_softc(sc->rl_miibus);
1897
1898	RL_LOCK(sc);
1899	mii_mediachg(mii);
1900	RL_UNLOCK(sc);
1901
1902	return (0);
1903}
1904
1905/*
1906 * Report current media status.
1907 */
1908static void
1909rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1910{
1911	struct rl_softc		*sc = ifp->if_softc;
1912	struct mii_data		*mii;
1913
1914	mii = device_get_softc(sc->rl_miibus);
1915
1916	RL_LOCK(sc);
1917	mii_pollstat(mii);
1918	RL_UNLOCK(sc);
1919	ifmr->ifm_active = mii->mii_media_active;
1920	ifmr->ifm_status = mii->mii_media_status;
1921}
1922
1923static int
1924rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1925{
1926	struct ifreq		*ifr = (struct ifreq *)data;
1927	struct mii_data		*mii;
1928	struct rl_softc		*sc = ifp->if_softc;
1929	int			error = 0;
1930
1931	switch (command) {
1932	case SIOCSIFFLAGS:
1933		RL_LOCK(sc);
1934		if (ifp->if_flags & IFF_UP) {
1935			rl_init_locked(sc);
1936		} else {
1937			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1938				rl_stop(sc);
1939		}
1940		RL_UNLOCK(sc);
1941		error = 0;
1942		break;
1943	case SIOCADDMULTI:
1944	case SIOCDELMULTI:
1945		RL_LOCK(sc);
1946		rl_setmulti(sc);
1947		RL_UNLOCK(sc);
1948		error = 0;
1949		break;
1950	case SIOCGIFMEDIA:
1951	case SIOCSIFMEDIA:
1952		mii = device_get_softc(sc->rl_miibus);
1953		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1954		break;
1955	case SIOCSIFCAP:
1956#ifdef DEVICE_POLLING
1957		if (ifr->ifr_reqcap & IFCAP_POLLING &&
1958		    !(ifp->if_capenable & IFCAP_POLLING)) {
1959			error = ether_poll_register(rl_poll, ifp);
1960			if (error)
1961				return(error);
1962			RL_LOCK(sc);
1963			/* Disable interrupts */
1964			CSR_WRITE_2(sc, RL_IMR, 0x0000);
1965			ifp->if_capenable |= IFCAP_POLLING;
1966			RL_UNLOCK(sc);
1967			return (error);
1968
1969		}
1970		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
1971		    ifp->if_capenable & IFCAP_POLLING) {
1972			error = ether_poll_deregister(ifp);
1973			/* Enable interrupts. */
1974			RL_LOCK(sc);
1975			CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1976			ifp->if_capenable &= ~IFCAP_POLLING;
1977			RL_UNLOCK(sc);
1978			return (error);
1979		}
1980#endif /* DEVICE_POLLING */
1981		break;
1982	default:
1983		error = ether_ioctl(ifp, command, data);
1984		break;
1985	}
1986
1987	return (error);
1988}
1989
1990static void
1991rl_watchdog(struct rl_softc *sc)
1992{
1993
1994	RL_LOCK_ASSERT(sc);
1995
1996	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer >0)
1997		return;
1998
1999	device_printf(sc->rl_dev, "watchdog timeout\n");
2000	sc->rl_ifp->if_oerrors++;
2001
2002	rl_txeof(sc);
2003	rl_rxeof(sc);
2004	rl_init_locked(sc);
2005}
2006
2007/*
2008 * Stop the adapter and free any mbufs allocated to the
2009 * RX and TX lists.
2010 */
2011static void
2012rl_stop(struct rl_softc *sc)
2013{
2014	register int		i;
2015	struct ifnet		*ifp = sc->rl_ifp;
2016
2017	RL_LOCK_ASSERT(sc);
2018
2019	sc->rl_watchdog_timer = 0;
2020	callout_stop(&sc->rl_stat_callout);
2021	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2022	sc->rl_flags &= ~RL_FLAG_LINK;
2023
2024	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2025	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2026	for (i = 0; i < RL_TIMEOUT; i++) {
2027		DELAY(10);
2028		if ((CSR_READ_1(sc, RL_COMMAND) &
2029		    (RL_CMD_RX_ENB | RL_CMD_TX_ENB)) == 0)
2030			break;
2031	}
2032	if (i == RL_TIMEOUT)
2033		device_printf(sc->rl_dev, "Unable to stop Tx/Rx MAC\n");
2034
2035	/*
2036	 * Free the TX list buffers.
2037	 */
2038	for (i = 0; i < RL_TX_LIST_CNT; i++) {
2039		if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
2040			if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
2041				bus_dmamap_sync(sc->rl_cdata.rl_tx_tag,
2042				    sc->rl_cdata.rl_tx_dmamap[i],
2043				    BUS_DMASYNC_POSTWRITE);
2044				bus_dmamap_unload(sc->rl_cdata.rl_tx_tag,
2045				    sc->rl_cdata.rl_tx_dmamap[i]);
2046				m_freem(sc->rl_cdata.rl_tx_chain[i]);
2047				sc->rl_cdata.rl_tx_chain[i] = NULL;
2048			}
2049			CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
2050			    0x0000000);
2051		}
2052	}
2053}
2054
2055/*
2056 * Device suspend routine.  Stop the interface and save some PCI
2057 * settings in case the BIOS doesn't restore them properly on
2058 * resume.
2059 */
2060static int
2061rl_suspend(device_t dev)
2062{
2063	struct rl_softc		*sc;
2064
2065	sc = device_get_softc(dev);
2066
2067	RL_LOCK(sc);
2068	rl_stop(sc);
2069	sc->suspended = 1;
2070	RL_UNLOCK(sc);
2071
2072	return (0);
2073}
2074
2075/*
2076 * Device resume routine.  Restore some PCI settings in case the BIOS
2077 * doesn't, re-enable busmastering, and restart the interface if
2078 * appropriate.
2079 */
2080static int
2081rl_resume(device_t dev)
2082{
2083	struct rl_softc		*sc;
2084	struct ifnet		*ifp;
2085
2086	sc = device_get_softc(dev);
2087	ifp = sc->rl_ifp;
2088
2089	RL_LOCK(sc);
2090
2091	/* reinitialize interface if necessary */
2092	if (ifp->if_flags & IFF_UP)
2093		rl_init_locked(sc);
2094
2095	sc->suspended = 0;
2096
2097	RL_UNLOCK(sc);
2098
2099	return (0);
2100}
2101
2102/*
2103 * Stop all chip I/O so that the kernel's probe routines don't
2104 * get confused by errant DMAs when rebooting.
2105 */
2106static int
2107rl_shutdown(device_t dev)
2108{
2109	struct rl_softc		*sc;
2110
2111	sc = device_get_softc(dev);
2112
2113	RL_LOCK(sc);
2114	rl_stop(sc);
2115	RL_UNLOCK(sc);
2116
2117	return (0);
2118}
2119