pcrtc.c revision 36254
1/*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * William Jolitz and Don Ahn.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
37 *	$Id: clock.c,v 1.53 1998/05/04 07:47:24 kato Exp $
38 */
39
40/*
41 * Routines to handle clock hardware.
42 */
43
44/*
45 * inittodr, settodr and support routines written
46 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
47 *
48 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
49 */
50
51/*
52 * modified for PC98 by Kakefuda
53 */
54
55#include "opt_clock.h"
56#include "apm.h"
57
58#include <sys/param.h>
59#include <sys/systm.h>
60#include <sys/time.h>
61#include <sys/kernel.h>
62#ifndef SMP
63#include <sys/lock.h>
64#endif
65#include <sys/sysctl.h>
66
67#include <machine/clock.h>
68#ifdef CLK_CALIBRATION_LOOP
69#include <machine/cons.h>
70#endif
71#include <machine/cputypes.h>
72#include <machine/frame.h>
73#include <machine/ipl.h>
74#include <machine/limits.h>
75#include <machine/md_var.h>
76#if NAPM > 0
77#include <machine/apm_bios.h>
78#include <i386/apm/apm_setup.h>
79#endif
80#ifdef APIC_IO
81#include <machine/segments.h>
82#endif
83#if defined(SMP) || defined(APIC_IO)
84#include <machine/smp.h>
85#endif /* SMP || APIC_IO */
86#include <machine/specialreg.h>
87
88#include <i386/isa/icu.h>
89#ifdef PC98
90#include <pc98/pc98/pc98.h>
91#include <pc98/pc98/pc98_machdep.h>
92#include <i386/isa/isa_device.h>
93#else
94#include <i386/isa/isa.h>
95#include <i386/isa/rtc.h>
96#endif
97#include <i386/isa/timerreg.h>
98
99#include <sys/interrupt.h>
100
101#ifdef SMP
102#define disable_intr()	CLOCK_DISABLE_INTR()
103#define enable_intr()	CLOCK_ENABLE_INTR()
104
105#ifdef APIC_IO
106#include <i386/isa/intr_machdep.h>
107/* The interrupt triggered by the 8254 (timer) chip */
108int apic_8254_intr;
109static u_long read_intr_count __P((int vec));
110static void setup_8254_mixed_mode __P((void));
111#endif
112#endif /* SMP */
113
114/*
115 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
116 * can use a simple formula for leap years.
117 */
118#define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
119#define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
120
121#define	TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
122
123/*
124 * Time in timer cycles that it takes for microtime() to disable interrupts
125 * and latch the count.  microtime() currently uses "cli; outb ..." so it
126 * normally takes less than 2 timer cycles.  Add a few for cache misses.
127 * Add a few more to allow for latency in bogus calls to microtime() with
128 * interrupts already disabled.
129 */
130#define	TIMER0_LATCH_COUNT	20
131
132/*
133 * Maximum frequency that we are willing to allow for timer0.  Must be
134 * low enough to guarantee that the timer interrupt handler returns
135 * before the next timer interrupt.
136 */
137#define	TIMER0_MAX_FREQ		20000
138
139int	adjkerntz;		/* local offset	from GMT in seconds */
140int	disable_rtc_set;	/* disable resettodr() if != 0 */
141u_int	idelayed;
142int	statclock_disable;
143u_int	stat_imask = SWI_CLOCK_MASK;
144#ifndef TIMER_FREQ
145#ifdef PC98
146#define	TIMER_FREQ	2457600;
147#else /* IBM-PC */
148#define	TIMER_FREQ	1193182;
149#endif /* PC98 */
150#endif
151u_int	timer_freq = TIMER_FREQ;
152int	timer0_max_count;
153u_int	tsc_freq;
154int	wall_cmos_clock;	/* wall	CMOS clock assumed if != 0 */
155
156static	int	beeping = 0;
157static	u_int	clk_imask = HWI_MASK | SWI_MASK;
158static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
159static	u_int	hardclock_max_count;
160static	u_int32_t i8254_lastcount;
161static	u_int32_t i8254_offset;
162static	int	i8254_ticked;
163/*
164 * XXX new_function and timer_func should not handle clockframes, but
165 * timer_func currently needs to hold hardclock to handle the
166 * timer0_state == 0 case.  We should use register_intr()/unregister_intr()
167 * to switch between clkintr() and a slightly different timerintr().
168 */
169static	void	(*new_function) __P((struct clockframe *frame));
170static	u_int	new_rate;
171#ifndef PC98
172static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
173static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
174#endif
175static	u_int	timer0_prescaler_count;
176
177/* Values for timerX_state: */
178#define	RELEASED	0
179#define	RELEASE_PENDING	1
180#define	ACQUIRED	2
181#define	ACQUIRE_PENDING	3
182
183static	u_char	timer0_state;
184#ifdef	PC98
185static 	u_char	timer1_state;
186#endif
187static	u_char	timer2_state;
188static	void	(*timer_func) __P((struct clockframe *frame)) = hardclock;
189#ifdef PC98
190static void rtc_serialcombit __P((int));
191static void rtc_serialcom __P((int));
192static int rtc_inb __P((void));
193static void rtc_outb __P((int));
194#endif
195static	u_int	tsc_present;
196
197static	unsigned i8254_get_timecount __P((void));
198static	unsigned tsc_get_timecount __P((void));
199static	void	set_timer_freq(u_int freq, int intr_freq);
200
201static struct timecounter tsc_timecounter[3] = {
202	tsc_get_timecount,	/* get_timecount */
203 	~0u,			/* counter_mask */
204	0,			/* frequency */
205	 "TSC"			/* name */
206};
207
208SYSCTL_OPAQUE(_debug, OID_AUTO, tsc_timecounter, CTLFLAG_RD,
209	tsc_timecounter, sizeof(tsc_timecounter), "S,timecounter", "");
210
211static struct timecounter i8254_timecounter[3] = {
212	i8254_get_timecount,	/* get_timecount */
213	~0u,			/* counter_mask */
214	0,			/* frequency */
215	"i8254"			/* name */
216};
217
218SYSCTL_OPAQUE(_debug, OID_AUTO, i8254_timecounter, CTLFLAG_RD,
219	i8254_timecounter, sizeof(i8254_timecounter), "S,timecounter", "");
220
221static void
222clkintr(struct clockframe frame)
223{
224	if (!i8254_ticked)
225		i8254_offset += timer0_max_count;
226	else
227		i8254_ticked = 0;
228	i8254_lastcount = 0;
229	timer_func(&frame);
230	switch (timer0_state) {
231
232	case RELEASED:
233		setdelayed();
234		break;
235
236	case ACQUIRED:
237		if ((timer0_prescaler_count += timer0_max_count)
238		    >= hardclock_max_count) {
239			timer0_prescaler_count -= hardclock_max_count;
240			hardclock(&frame);
241			setdelayed();
242		}
243		break;
244
245	case ACQUIRE_PENDING:
246		setdelayed();
247		timer0_max_count = TIMER_DIV(new_rate);
248		disable_intr();
249		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
250		outb(TIMER_CNTR0, timer0_max_count & 0xff);
251		outb(TIMER_CNTR0, timer0_max_count >> 8);
252		enable_intr();
253		timer0_prescaler_count = 0;
254		timer_func = new_function;
255		timer0_state = ACQUIRED;
256		break;
257
258	case RELEASE_PENDING:
259		if ((timer0_prescaler_count += timer0_max_count)
260		    >= hardclock_max_count) {
261			timer0_prescaler_count -= hardclock_max_count;
262#ifdef FIXME
263			/*
264			 * XXX: This magic doesn't work, but It shouldn't be
265			 * needed now anyway since we will not be able to
266			 * aquire the i8254 if it is used for timecounting.
267			 */
268			/*
269			 * See microtime.s for this magic.
270			 */
271#ifdef PC98
272			if (pc98_machine_type & M_8M) {
273				/* PC98_8M */
274				time.tv_usec += (16411 * timer0_prescaler_count) >> 15;
275			} else {
276				time.tv_usec += (6667 * timer0_prescaler_count) >> 14;
277			}
278#else /* IBM-PC */
279			time.tv_usec += (27465 * timer0_prescaler_count) >> 15;
280#endif
281			if (time.tv_usec >= 1000000)
282				time.tv_usec -= 1000000;
283#endif
284			hardclock(&frame);
285			setdelayed();
286			timer0_max_count = hardclock_max_count;
287			disable_intr();
288			outb(TIMER_MODE,
289			     TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
290			outb(TIMER_CNTR0, timer0_max_count & 0xff);
291			outb(TIMER_CNTR0, timer0_max_count >> 8);
292			enable_intr();
293			timer0_prescaler_count = 0;
294			timer_func = hardclock;
295			timer0_state = RELEASED;
296		}
297		break;
298	}
299}
300
301/*
302 * The acquire and release functions must be called at ipl >= splclock().
303 */
304int
305acquire_timer0(int rate, void (*function) __P((struct clockframe *frame)))
306{
307	static int old_rate;
308
309	if (rate <= 0 || rate > TIMER0_MAX_FREQ)
310		return (-1);
311	if (strcmp(timecounter->name, "i8254") == 0)
312		return (-1);
313	switch (timer0_state) {
314
315	case RELEASED:
316		timer0_state = ACQUIRE_PENDING;
317		break;
318
319	case RELEASE_PENDING:
320		if (rate != old_rate)
321			return (-1);
322		/*
323		 * The timer has been released recently, but is being
324		 * re-acquired before the release completed.  In this
325		 * case, we simply reclaim it as if it had not been
326		 * released at all.
327		 */
328		timer0_state = ACQUIRED;
329		break;
330
331	default:
332		return (-1);	/* busy */
333	}
334	new_function = function;
335	old_rate = new_rate = rate;
336	return (0);
337}
338
339#ifdef PC98
340int
341acquire_timer1(int mode)
342{
343
344	if (timer1_state != RELEASED)
345		return (-1);
346	timer1_state = ACQUIRED;
347
348	/*
349	 * This access to the timer registers is as atomic as possible
350	 * because it is a single instruction.  We could do better if we
351	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
352	 * and this is probably good enough for timer2, so we aren't as
353	 * careful with it as with timer0.
354	 */
355	outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
356
357	return (0);
358}
359#endif
360
361int
362acquire_timer2(int mode)
363{
364
365	if (timer2_state != RELEASED)
366		return (-1);
367	timer2_state = ACQUIRED;
368
369	/*
370	 * This access to the timer registers is as atomic as possible
371	 * because it is a single instruction.  We could do better if we
372	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
373	 * and this is probably good enough for timer2, so we aren't as
374	 * careful with it as with timer0.
375	 */
376	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
377
378	return (0);
379}
380
381int
382release_timer0()
383{
384	switch (timer0_state) {
385
386	case ACQUIRED:
387		timer0_state = RELEASE_PENDING;
388		break;
389
390	case ACQUIRE_PENDING:
391		/* Nothing happened yet, release quickly. */
392		timer0_state = RELEASED;
393		break;
394
395	default:
396		return (-1);
397	}
398	return (0);
399}
400
401#ifdef PC98
402int
403release_timer1()
404{
405
406	if (timer1_state != ACQUIRED)
407		return (-1);
408	timer1_state = RELEASED;
409	outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
410	return (0);
411}
412#endif
413
414int
415release_timer2()
416{
417
418	if (timer2_state != ACQUIRED)
419		return (-1);
420	timer2_state = RELEASED;
421	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
422	return (0);
423}
424
425#ifndef PC98
426/*
427 * This routine receives statistical clock interrupts from the RTC.
428 * As explained above, these occur at 128 interrupts per second.
429 * When profiling, we receive interrupts at a rate of 1024 Hz.
430 *
431 * This does not actually add as much overhead as it sounds, because
432 * when the statistical clock is active, the hardclock driver no longer
433 * needs to keep (inaccurate) statistics on its own.  This decouples
434 * statistics gathering from scheduling interrupts.
435 *
436 * The RTC chip requires that we read status register C (RTC_INTR)
437 * to acknowledge an interrupt, before it will generate the next one.
438 * Under high interrupt load, rtcintr() can be indefinitely delayed and
439 * the clock can tick immediately after the read from RTC_INTR.  In this
440 * case, the mc146818A interrupt signal will not drop for long enough
441 * to register with the 8259 PIC.  If an interrupt is missed, the stat
442 * clock will halt, considerably degrading system performance.  This is
443 * why we use 'while' rather than a more straightforward 'if' below.
444 * Stat clock ticks can still be lost, causing minor loss of accuracy
445 * in the statistics, but the stat clock will no longer stop.
446 */
447static void
448rtcintr(struct clockframe frame)
449{
450	while (rtcin(RTC_INTR) & RTCIR_PERIOD)
451		statclock(&frame);
452}
453
454#include "opt_ddb.h"
455#ifdef DDB
456#include <ddb/ddb.h>
457
458DB_SHOW_COMMAND(rtc, rtc)
459{
460	printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
461	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
462	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
463	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
464}
465#endif /* DDB */
466#endif /* for PC98 */
467
468static int
469getit(void)
470{
471	u_long ef;
472	int high, low;
473
474	ef = read_eflags();
475	disable_intr();
476
477	/* Select timer0 and latch counter value. */
478	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
479
480	low = inb(TIMER_CNTR0);
481	high = inb(TIMER_CNTR0);
482
483	CLOCK_UNLOCK();
484	write_eflags(ef);
485	return ((high << 8) | low);
486}
487
488/*
489 * Wait "n" microseconds.
490 * Relies on timer 1 counting down from (timer_freq / hz)
491 * Note: timer had better have been programmed before this is first used!
492 */
493void
494DELAY(int n)
495{
496	int delta, prev_tick, tick, ticks_left;
497
498#ifdef DELAYDEBUG
499	int getit_calls = 1;
500	int n1;
501	static int state = 0;
502
503	if (state == 0) {
504		state = 1;
505		for (n1 = 1; n1 <= 10000000; n1 *= 10)
506			DELAY(n1);
507		state = 2;
508	}
509	if (state == 1)
510		printf("DELAY(%d)...", n);
511#endif
512	/*
513	 * Guard against the timer being uninitialized if we are called
514	 * early for console i/o.
515	 */
516	if (timer0_max_count == 0)
517		set_timer_freq(timer_freq, hz);
518
519	/*
520	 * Read the counter first, so that the rest of the setup overhead is
521	 * counted.  Guess the initial overhead is 20 usec (on most systems it
522	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
523	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
524	 * multiplications and divisions to scale the count take a while).
525	 */
526	prev_tick = getit();
527	n -= 0;			/* XXX actually guess no initial overhead */
528	/*
529	 * Calculate (n * (timer_freq / 1e6)) without using floating point
530	 * and without any avoidable overflows.
531	 */
532	if (n <= 0)
533		ticks_left = 0;
534	else if (n < 256)
535		/*
536		 * Use fixed point to avoid a slow division by 1000000.
537		 * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
538		 * 2^15 is the first power of 2 that gives exact results
539		 * for n between 0 and 256.
540		 */
541		ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
542	else
543		/*
544		 * Don't bother using fixed point, although gcc-2.7.2
545		 * generates particularly poor code for the long long
546		 * division, since even the slow way will complete long
547		 * before the delay is up (unless we're interrupted).
548		 */
549		ticks_left = ((u_int)n * (long long)timer_freq + 999999)
550			     / 1000000;
551
552	while (ticks_left > 0) {
553		tick = getit();
554#ifdef DELAYDEBUG
555		++getit_calls;
556#endif
557		delta = prev_tick - tick;
558		prev_tick = tick;
559		if (delta < 0) {
560			delta += timer0_max_count;
561			/*
562			 * Guard against timer0_max_count being wrong.
563			 * This shouldn't happen in normal operation,
564			 * but it may happen if set_timer_freq() is
565			 * traced.
566			 */
567			if (delta < 0)
568				delta = 0;
569		}
570		ticks_left -= delta;
571	}
572#ifdef DELAYDEBUG
573	if (state == 1)
574		printf(" %d calls to getit() at %d usec each\n",
575		       getit_calls, (n + 5) / getit_calls);
576#endif
577}
578
579static void
580sysbeepstop(void *chan)
581{
582#ifdef PC98	/* PC98 */
583	outb(IO_PPI, inb(IO_PPI)|0x08);	/* disable counter1 output to speaker */
584	release_timer1();
585#else
586	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
587	release_timer2();
588#endif
589	beeping = 0;
590}
591
592int
593sysbeep(int pitch, int period)
594{
595	int x = splclock();
596
597#ifdef PC98
598	if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
599		if (!beeping) {
600			/* Something else owns it. */
601			splx(x);
602			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
603		}
604	disable_intr();
605	outb(0x3fdb, pitch);
606	outb(0x3fdb, (pitch>>8));
607	enable_intr();
608	if (!beeping) {
609		/* enable counter1 output to speaker */
610		outb(IO_PPI, (inb(IO_PPI) & 0xf7));
611		beeping = period;
612		timeout(sysbeepstop, (void *)NULL, period);
613	}
614#else
615	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
616		if (!beeping) {
617			/* Something else owns it. */
618			splx(x);
619			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
620		}
621	disable_intr();
622	outb(TIMER_CNTR2, pitch);
623	outb(TIMER_CNTR2, (pitch>>8));
624	enable_intr();
625	if (!beeping) {
626		/* enable counter2 output to speaker */
627		outb(IO_PPI, inb(IO_PPI) | 3);
628		beeping = period;
629		timeout(sysbeepstop, (void *)NULL, period);
630	}
631#endif
632	splx(x);
633	return (0);
634}
635
636#ifndef PC98
637/*
638 * RTC support routines
639 */
640
641int
642rtcin(reg)
643	int reg;
644{
645	u_char val;
646
647	outb(IO_RTC, reg);
648	inb(0x84);
649	val = inb(IO_RTC + 1);
650	inb(0x84);
651	return (val);
652}
653
654static __inline void
655writertc(u_char reg, u_char val)
656{
657	inb(0x84);
658	outb(IO_RTC, reg);
659	inb(0x84);
660	outb(IO_RTC + 1, val);
661	inb(0x84);		/* XXX work around wrong order in rtcin() */
662}
663
664static __inline int
665readrtc(int port)
666{
667	return(bcd2bin(rtcin(port)));
668}
669#endif
670
671#ifdef PC98
672unsigned int delaycount;
673#define FIRST_GUESS	0x2000
674static void findcpuspeed(void)
675{
676	int i;
677	int remainder;
678
679	/* Put counter in count down mode */
680	outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
681	outb(TIMER_CNTR0, 0xff);
682	outb(TIMER_CNTR0, 0xff);
683	for (i = FIRST_GUESS; i; i--)
684		;
685	remainder = getit();
686	delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
687}
688#endif
689
690#ifndef PC98
691static u_int
692calibrate_clocks(void)
693{
694	u_int count, prev_count, tot_count;
695	int sec, start_sec, timeout;
696
697	if (bootverbose)
698	        printf("Calibrating clock(s) ... ");
699	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
700		goto fail;
701	timeout = 100000000;
702
703	/* Read the mc146818A seconds counter. */
704	for (;;) {
705		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
706			sec = rtcin(RTC_SEC);
707			break;
708		}
709		if (--timeout == 0)
710			goto fail;
711	}
712
713	/* Wait for the mC146818A seconds counter to change. */
714	start_sec = sec;
715	for (;;) {
716		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
717			sec = rtcin(RTC_SEC);
718			if (sec != start_sec)
719				break;
720		}
721		if (--timeout == 0)
722			goto fail;
723	}
724
725	/* Start keeping track of the i8254 counter. */
726	prev_count = getit();
727	if (prev_count == 0 || prev_count > timer0_max_count)
728		goto fail;
729	tot_count = 0;
730
731	if (tsc_present)
732		wrmsr(0x10, 0LL);	/* XXX 0x10 is the MSR for the TSC */
733
734	/*
735	 * Wait for the mc146818A seconds counter to change.  Read the i8254
736	 * counter for each iteration since this is convenient and only
737	 * costs a few usec of inaccuracy. The timing of the final reads
738	 * of the counters almost matches the timing of the initial reads,
739	 * so the main cause of inaccuracy is the varying latency from
740	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
741	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
742	 * maximum inaccuracy from this cause is < 10 usec on 486's.
743	 */
744	start_sec = sec;
745	for (;;) {
746		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
747			sec = rtcin(RTC_SEC);
748		count = getit();
749		if (count == 0 || count > timer0_max_count)
750			goto fail;
751		if (count > prev_count)
752			tot_count += prev_count - (count - timer0_max_count);
753		else
754			tot_count += prev_count - count;
755		prev_count = count;
756		if (sec != start_sec)
757			break;
758		if (--timeout == 0)
759			goto fail;
760	}
761
762	/*
763	 * Read the cpu cycle counter.  The timing considerations are
764	 * similar to those for the i8254 clock.
765	 */
766	if (tsc_present)
767		tsc_freq = rdtsc();
768
769	if (bootverbose) {
770		if (tsc_present)
771		        printf("TSC clock: %u Hz, ", tsc_freq);
772	        printf("i8254 clock: %u Hz\n", tot_count);
773	}
774	return (tot_count);
775
776fail:
777	if (bootverbose)
778	        printf("failed, using default i8254 clock of %u Hz\n",
779		       timer_freq);
780	return (timer_freq);
781}
782#endif	/* !PC98 */
783
784static void
785set_timer_freq(u_int freq, int intr_freq)
786{
787	u_long ef;
788	int new_timer0_max_count;
789
790	ef = read_eflags();
791	disable_intr();
792	timer_freq = freq;
793	new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
794	if (new_timer0_max_count != timer0_max_count) {
795		timer0_max_count = new_timer0_max_count;
796		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
797		outb(TIMER_CNTR0, timer0_max_count & 0xff);
798		outb(TIMER_CNTR0, timer0_max_count >> 8);
799	}
800	CLOCK_UNLOCK();
801	write_eflags(ef);
802}
803
804/*
805 * Initialize 8254 timer 0 early so that it can be used in DELAY().
806 * XXX initialization of other timers is unintentionally left blank.
807 */
808void
809startrtclock()
810{
811	u_int delta, freq;
812
813#ifdef PC98
814	findcpuspeed();
815	if (pc98_machine_type & M_8M)
816		timer_freq = 1996800L; /* 1.9968 MHz */
817	else
818		timer_freq = 2457600L; /* 2.4576 MHz */
819#endif /* PC98 */
820
821	if (cpu_feature & CPUID_TSC)
822		tsc_present = 1;
823	else
824		tsc_present = 0;
825
826#ifndef PC98
827	writertc(RTC_STATUSA, rtc_statusa);
828	writertc(RTC_STATUSB, RTCSB_24HR);
829#endif
830
831#ifndef PC98
832	set_timer_freq(timer_freq, hz);
833	freq = calibrate_clocks();
834#ifdef CLK_CALIBRATION_LOOP
835	if (bootverbose) {
836		printf(
837		"Press a key on the console to abort clock calibration\n");
838		while (cncheckc() == -1)
839			calibrate_clocks();
840	}
841#endif
842
843	/*
844	 * Use the calibrated i8254 frequency if it seems reasonable.
845	 * Otherwise use the default, and don't use the calibrated i586
846	 * frequency.
847	 */
848	delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
849	if (delta < timer_freq / 100) {
850#ifndef CLK_USE_I8254_CALIBRATION
851		if (bootverbose)
852			printf(
853"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
854		freq = timer_freq;
855#endif
856		timer_freq = freq;
857	} else {
858		if (bootverbose)
859			printf(
860		    "%d Hz differs from default of %d Hz by more than 1%%\n",
861			       freq, timer_freq);
862		tsc_freq = 0;
863	}
864#endif
865
866	set_timer_freq(timer_freq, hz);
867	i8254_timecounter[0].frequency = timer_freq;
868	init_timecounter(i8254_timecounter);
869
870#ifndef CLK_USE_TSC_CALIBRATION
871	if (tsc_freq != 0) {
872		if (bootverbose)
873			printf(
874"CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
875		tsc_freq = 0;
876	}
877#endif
878	if (tsc_present && tsc_freq == 0) {
879		/*
880		 * Calibration of the i586 clock relative to the mc146818A
881		 * clock failed.  Do a less accurate calibration relative
882		 * to the i8254 clock.
883		 */
884		wrmsr(0x10, 0LL);	/* XXX */
885		DELAY(1000000);
886		tsc_freq = rdtsc();
887#ifdef CLK_USE_TSC_CALIBRATION
888		if (bootverbose)
889			printf("TSC clock: %u Hz (Method B)\n", tsc_freq);
890#endif
891	}
892
893#if !defined(SMP)
894	/*
895	 * We can not use the TSC in SMP mode, until we figure out a
896	 * cheap (impossible), reliable and precise (yeah right!)  way
897	 * to synchronize the TSCs of all the CPUs.
898	 * Curse Intel for leaving the counter out of the I/O APIC.
899	 */
900
901#if NAPM > 0
902	/*
903	 * We can not use the TSC if we found an APM bios.  Too many
904	 * of them lie about their ability&intention to fiddle the CPU
905	 * clock for us to rely on this.  Precise timekeeping on an
906	 * APM'ed machine is at best a fools pursuit anyway, since
907	 * any and all of the time spent in various SMM code can't
908	 * be reliably accounted for.  Reading the RTC is your only
909	 * source of reliable time info.  The i8254 looses too of course
910	 * but we need to have some kind of time...
911	 */
912	if (apm_version != APMINI_CANTFIND)
913		return;
914#endif /* NAPM > 0 */
915
916	if (tsc_present && tsc_freq != 0) {
917		tsc_timecounter[0].frequency = tsc_freq;
918		init_timecounter(tsc_timecounter);
919	}
920
921#endif /* !defined(SMP) */
922}
923
924#ifdef PC98
925static void
926rtc_serialcombit(int i)
927{
928	outb(IO_RTC, ((i&0x01)<<5)|0x07);
929	DELAY(1);
930	outb(IO_RTC, ((i&0x01)<<5)|0x17);
931	DELAY(1);
932	outb(IO_RTC, ((i&0x01)<<5)|0x07);
933	DELAY(1);
934}
935
936static void
937rtc_serialcom(int i)
938{
939	rtc_serialcombit(i&0x01);
940	rtc_serialcombit((i&0x02)>>1);
941	rtc_serialcombit((i&0x04)>>2);
942	rtc_serialcombit((i&0x08)>>3);
943	outb(IO_RTC, 0x07);
944	DELAY(1);
945	outb(IO_RTC, 0x0f);
946	DELAY(1);
947	outb(IO_RTC, 0x07);
948 	DELAY(1);
949}
950
951static void
952rtc_outb(int val)
953{
954	int s;
955	int sa = 0;
956
957	for (s=0;s<8;s++) {
958	    sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
959	    outb(IO_RTC, sa);		/* set DI & CLK 0 */
960	    DELAY(1);
961	    outb(IO_RTC, sa | 0x10);	/* CLK 1 */
962	    DELAY(1);
963	}
964	outb(IO_RTC, sa & 0xef);	/* CLK 0 */
965}
966
967static int
968rtc_inb(void)
969{
970	int s;
971	int sa = 0;
972
973	for (s=0;s<8;s++) {
974	    sa |= ((inb(0x33) & 0x01) << s);
975	    outb(IO_RTC, 0x17);	/* CLK 1 */
976	    DELAY(1);
977	    outb(IO_RTC, 0x07);	/* CLK 0 */
978	    DELAY(2);
979	}
980	return sa;
981}
982#endif /* PC-98 */
983
984/*
985 * Initialize the time of day register,	based on the time base which is, e.g.
986 * from	a filesystem.
987 */
988void
989inittodr(time_t base)
990{
991	unsigned long	sec, days;
992	int		yd;
993	int		year, month;
994	int		y, m, s;
995	struct timespec ts;
996#ifdef PC98
997	int		second, min, hour;
998#endif
999
1000	if (base) {
1001		s = splclock();
1002		ts.tv_sec = base;
1003		ts.tv_nsec = 0;
1004		set_timecounter(&ts);
1005		splx(s);
1006	}
1007
1008#ifdef PC98
1009	rtc_serialcom(0x03);	/* Time Read */
1010	rtc_serialcom(0x01);	/* Register shift command. */
1011	DELAY(20);
1012
1013	second = bcd2bin(rtc_inb() & 0xff);	/* sec */
1014	min = bcd2bin(rtc_inb() & 0xff);	/* min */
1015	hour = bcd2bin(rtc_inb() & 0xff);	/* hour */
1016	days = bcd2bin(rtc_inb() & 0xff) - 1;	/* date */
1017
1018	month = (rtc_inb() >> 4) & 0x0f;	/* month */
1019	for (m = 1; m <	month; m++)
1020		days +=	daysinmonth[m-1];
1021	year = bcd2bin(rtc_inb() & 0xff) + 1900;	/* year */
1022	/* 2000 year problem */
1023	if (year < 1995)
1024		year += 100;
1025	if (year < 1970)
1026		goto wrong_time;
1027	for (y = 1970; y < year; y++)
1028		days +=	DAYSPERYEAR + LEAPYEAR(y);
1029	if ((month > 2)	&& LEAPYEAR(year))
1030		days ++;
1031	sec = ((( days * 24 +
1032		  hour) * 60 +
1033		  min) * 60 +
1034		  second);
1035	/* sec now contains the	number of seconds, since Jan 1 1970,
1036	   in the local	time zone */
1037#else	/* IBM-PC */
1038	/* Look	if we have a RTC present and the time is valid */
1039	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
1040		goto wrong_time;
1041
1042	/* wait	for time update	to complete */
1043	/* If RTCSA_TUP	is zero, we have at least 244us	before next update */
1044	while (rtcin(RTC_STATUSA) & RTCSA_TUP);
1045
1046	days = 0;
1047#ifdef USE_RTC_CENTURY
1048	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY)	* 100;
1049#else
1050	year = readrtc(RTC_YEAR) + 1900;
1051	if (year < 1970)
1052		year += 100;
1053#endif
1054	if (year < 1970)
1055		goto wrong_time;
1056	month =	readrtc(RTC_MONTH);
1057	for (m = 1; m <	month; m++)
1058		days +=	daysinmonth[m-1];
1059	if ((month > 2)	&& LEAPYEAR(year))
1060		days ++;
1061	days +=	readrtc(RTC_DAY) - 1;
1062	yd = days;
1063	for (y = 1970; y < year; y++)
1064		days +=	DAYSPERYEAR + LEAPYEAR(y);
1065	sec = ((( days * 24 +
1066		  readrtc(RTC_HRS)) * 60 +
1067		  readrtc(RTC_MIN)) * 60 +
1068		  readrtc(RTC_SEC));
1069	/* sec now contains the	number of seconds, since Jan 1 1970,
1070	   in the local	time zone */
1071#endif
1072
1073	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1074
1075	y = time_second - sec;
1076	if (y <= -2 || y >= 2) {
1077		/* badly off, adjust it */
1078		s = splclock();
1079		ts.tv_sec = sec;
1080		ts.tv_nsec = 0;
1081		set_timecounter(&ts);
1082		splx(s);
1083	}
1084	return;
1085
1086wrong_time:
1087	printf("Invalid	time in	real time clock.\n");
1088	printf("Check and reset	the date immediately!\n");
1089}
1090
1091/*
1092 * Write system	time back to RTC
1093 */
1094void
1095resettodr()
1096{
1097	unsigned long	tm;
1098	int		y, m, s;
1099#ifdef PC98
1100	int		wd;
1101#endif
1102
1103	if (disable_rtc_set)
1104		return;
1105
1106	s = splclock();
1107	tm = time_second;
1108	splx(s);
1109
1110#ifdef PC98
1111	rtc_serialcom(0x01);	/* Register shift command. */
1112
1113	/* Calculate local time	to put in RTC */
1114
1115	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1116
1117	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1118	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1119	rtc_outb(bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1120
1121	/* We have now the days	since 01-01-1970 in tm */
1122	wd = (tm+4)%7;
1123	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1124	     tm >= m;
1125	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1126	     tm -= m;
1127
1128	/* Now we have the years in y and the day-of-the-year in tm */
1129	for (m = 0; ; m++) {
1130		int ml;
1131
1132		ml = daysinmonth[m];
1133		if (m == 1 && LEAPYEAR(y))
1134			ml++;
1135		if (tm < ml)
1136			break;
1137		tm -= ml;
1138	}
1139
1140	m++;
1141	rtc_outb(bin2bcd(tm+1));		/* Write back Day     */
1142	rtc_outb((m << 4) | wd);		/* Write back Month & Weekday  */
1143	rtc_outb(bin2bcd(y%100));		/* Write back Year    */
1144
1145	rtc_serialcom(0x02);	/* Time set & Counter hold command. */
1146	rtc_serialcom(0x00);	/* Register hold command. */
1147#else
1148	/* Disable RTC updates and interrupts. */
1149	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
1150
1151	/* Calculate local time	to put in RTC */
1152
1153	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1154
1155	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1156	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1157	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1158
1159	/* We have now the days	since 01-01-1970 in tm */
1160	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
1161	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1162	     tm >= m;
1163	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1164	     tm -= m;
1165
1166	/* Now we have the years in y and the day-of-the-year in tm */
1167	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
1168#ifdef USE_RTC_CENTURY
1169	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
1170#endif
1171	for (m = 0; ; m++) {
1172		int ml;
1173
1174		ml = daysinmonth[m];
1175		if (m == 1 && LEAPYEAR(y))
1176			ml++;
1177		if (tm < ml)
1178			break;
1179		tm -= ml;
1180	}
1181
1182	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1183	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1184
1185	/* Reenable RTC updates and interrupts. */
1186	writertc(RTC_STATUSB, rtc_statusb);
1187#endif
1188}
1189
1190
1191/*
1192 * Start both clocks running.
1193 */
1194void
1195cpu_initclocks()
1196{
1197#ifdef APIC_IO
1198	int apic_8254_trial;
1199#endif /* APIC_IO */
1200#ifndef PC98
1201	int diag;
1202
1203	if (statclock_disable) {
1204		/*
1205		 * The stat interrupt mask is different without the
1206		 * statistics clock.  Also, don't set the interrupt
1207		 * flag which would normally cause the RTC to generate
1208		 * interrupts.
1209		 */
1210		stat_imask = HWI_MASK | SWI_MASK;
1211		rtc_statusb = RTCSB_24HR;
1212	} else {
1213	        /* Setting stathz to nonzero early helps avoid races. */
1214		stathz = RTC_NOPROFRATE;
1215		profhz = RTC_PROFRATE;
1216        }
1217#endif
1218
1219	/* Finish initializing 8253 timer 0. */
1220#ifdef APIC_IO
1221
1222	apic_8254_intr = isa_apic_pin(0);
1223	apic_8254_trial = 0;
1224	if (apic_8254_intr >= 0 ) {
1225		if (apic_int_type(0, 0) == 3)
1226			apic_8254_trial = 1;
1227	} else {
1228		/* look for ExtInt on pin 0 */
1229		if (apic_int_type(0, 0) == 3) {
1230			apic_8254_intr = 0;
1231			setup_8254_mixed_mode();
1232		} else
1233			panic("APIC_IO: Cannot route 8254 interrupt to CPU");
1234	}
1235
1236	register_intr(/* irq */ apic_8254_intr, /* XXX id */ 0, /* flags */ 0,
1237		      /* XXX */ (inthand2_t *)clkintr, &clk_imask,
1238		      /* unit */ 0);
1239	INTREN(1 << apic_8254_intr);
1240
1241#else /* APIC_IO */
1242
1243	register_intr(/* irq */ 0, /* XXX id */ 0, /* flags */ 0,
1244		      /* XXX */ (inthand2_t *)clkintr, &clk_imask,
1245		      /* unit */ 0);
1246	INTREN(IRQ0);
1247
1248#endif /* APIC_IO */
1249
1250#ifndef PC98
1251	/* Initialize RTC. */
1252	writertc(RTC_STATUSA, rtc_statusa);
1253	writertc(RTC_STATUSB, RTCSB_24HR);
1254
1255	/* Don't bother enabling the statistics clock. */
1256	if (statclock_disable)
1257		return;
1258	diag = rtcin(RTC_DIAG);
1259	if (diag != 0)
1260		printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1261
1262#ifdef APIC_IO
1263	if (isa_apic_pin(8) != 8)
1264		panic("APIC RTC != 8");
1265#endif /* APIC_IO */
1266
1267	register_intr(/* irq */ 8, /* XXX id */ 1, /* flags */ 0,
1268		      /* XXX */ (inthand2_t *)rtcintr, &stat_imask,
1269		      /* unit */ 0);
1270
1271#ifdef APIC_IO
1272	INTREN(APIC_IRQ8);
1273#else
1274	INTREN(IRQ8);
1275#endif /* APIC_IO */
1276
1277	writertc(RTC_STATUSB, rtc_statusb);
1278#endif /* !PC98 */
1279
1280#ifdef APIC_IO
1281	if (apic_8254_trial) {
1282
1283		printf("APIC_IO: Testing 8254 interrupt delivery\n");
1284		while (read_intr_count(8) < 6)
1285			;	/* nothing */
1286		if (read_intr_count(apic_8254_intr) < 3) {
1287			/*
1288			 * The MP table is broken.
1289			 * The 8254 was not connected to the specified pin
1290			 * on the IO APIC.
1291			 * Workaround: Limited variant of mixed mode.
1292			 */
1293			INTRDIS(1 << apic_8254_intr);
1294			unregister_intr(apic_8254_intr,
1295					/* XXX */ (inthand2_t *) clkintr);
1296			printf("APIC_IO: Broken MP table detected: "
1297			       "8254 is not connected to IO APIC int pin %d\n",
1298			       apic_8254_intr);
1299
1300			apic_8254_intr = 0;
1301			setup_8254_mixed_mode();
1302			register_intr(/* irq */ apic_8254_intr, /* XXX id */ 0, /* flags */ 0,
1303				      /* XXX */ (inthand2_t *)clkintr, &clk_imask,
1304				      /* unit */ 0);
1305			INTREN(1 << apic_8254_intr);
1306		}
1307
1308	}
1309	if (apic_8254_intr)
1310		printf("APIC_IO: routing 8254 via pin %d\n",apic_8254_intr);
1311	else
1312		printf("APIC_IO: routing 8254 via 8259 on pin 0\n");
1313#endif
1314
1315}
1316
1317#ifdef APIC_IO
1318static u_long
1319read_intr_count(int vec)
1320{
1321	u_long *up;
1322	up = intr_countp[vec];
1323	if (up)
1324		return *up;
1325	return 0UL;
1326}
1327
1328static void
1329setup_8254_mixed_mode()
1330{
1331	/*
1332	 * Allow 8254 timer to INTerrupt 8259:
1333	 *  re-initialize master 8259:
1334	 *   reset; prog 4 bytes, single ICU, edge triggered
1335	 */
1336	outb(IO_ICU1, 0x13);
1337#ifdef PC98
1338	outb(IO_ICU1 + 2, NRSVIDT);	/* start vector (unused) */
1339	outb(IO_ICU1 + 2, 0x00);	/* ignore slave */
1340	outb(IO_ICU1 + 2, 0x03);	/* auto EOI, 8086 */
1341	outb(IO_ICU1 + 2, 0xfe);	/* unmask INT0 */
1342#else
1343	outb(IO_ICU1 + 1, NRSVIDT);	/* start vector (unused) */
1344	outb(IO_ICU1 + 1, 0x00);	/* ignore slave */
1345	outb(IO_ICU1 + 1, 0x03);	/* auto EOI, 8086 */
1346	outb(IO_ICU1 + 1, 0xfe);	/* unmask INT0 */
1347#endif
1348	/* program IO APIC for type 3 INT on INT0 */
1349	if (ext_int_setup(0, 0) < 0)
1350		panic("8254 redirect via APIC pin0 impossible!");
1351}
1352#endif
1353
1354void
1355setstatclockrate(int newhz)
1356{
1357#ifndef PC98
1358	if (newhz == RTC_PROFRATE)
1359		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1360	else
1361		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1362	writertc(RTC_STATUSA, rtc_statusa);
1363#endif
1364}
1365
1366static int
1367sysctl_machdep_i8254_freq SYSCTL_HANDLER_ARGS
1368{
1369	int error;
1370	u_int freq;
1371
1372	/*
1373	 * Use `i8254' instead of `timer' in external names because `timer'
1374	 * is is too generic.  Should use it everywhere.
1375	 */
1376	freq = timer_freq;
1377	error = sysctl_handle_opaque(oidp, &freq, sizeof freq, req);
1378	if (error == 0 && req->newptr != NULL) {
1379		if (timer0_state != RELEASED)
1380			return (EBUSY);	/* too much trouble to handle */
1381		set_timer_freq(freq, hz);
1382		i8254_timecounter[0].frequency = freq;
1383	}
1384	return (error);
1385}
1386
1387SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1388	    0, sizeof(u_int), sysctl_machdep_i8254_freq, "I", "");
1389
1390static int
1391sysctl_machdep_tsc_freq SYSCTL_HANDLER_ARGS
1392{
1393	int error;
1394	u_int freq;
1395
1396	if (!tsc_present)
1397		return (EOPNOTSUPP);
1398	freq = tsc_freq;
1399	error = sysctl_handle_opaque(oidp, &freq, sizeof freq, req);
1400	if (error == 0 && req->newptr != NULL) {
1401		tsc_freq = freq;
1402		tsc_timecounter[0].frequency = tsc_freq;
1403	}
1404	return (error);
1405}
1406
1407SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_INT | CTLFLAG_RW,
1408	    0, sizeof(u_int), sysctl_machdep_tsc_freq, "I", "");
1409
1410static u_int
1411i8254_get_timecount(void)
1412{
1413	u_int count;
1414	u_long ef;
1415	u_int high, low;
1416
1417	ef = read_eflags();
1418	disable_intr();
1419
1420	/* Select timer0 and latch counter value. */
1421	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
1422
1423	low = inb(TIMER_CNTR0);
1424	high = inb(TIMER_CNTR0);
1425
1426	count = hardclock_max_count - ((high << 8) | low);
1427	if (count < i8254_lastcount) {
1428		i8254_ticked = 1;
1429		i8254_offset += hardclock_max_count;
1430	}
1431
1432	i8254_lastcount = count;
1433	count += i8254_offset;
1434	CLOCK_UNLOCK();
1435	write_eflags(ef);
1436	return (count);
1437}
1438
1439static u_int
1440tsc_get_timecount(void)
1441{
1442	return (rdtsc());
1443}
1444