pcrtc.c revision 32852
1/*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * William Jolitz and Don Ahn.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
37 *	$Id: clock.c,v 1.39 1997/12/29 16:15:57 kato Exp $
38 */
39
40/*
41 * Routines to handle clock hardware.
42 */
43
44/*
45 * inittodr, settodr and support routines written
46 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
47 *
48 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
49 */
50
51/*
52 * modified for PC98 by Kakefuda
53 */
54
55#include "opt_clock.h"
56
57#include <sys/param.h>
58#include <sys/systm.h>
59#include <sys/time.h>
60#include <sys/kernel.h>
61#ifndef SMP
62#include <sys/lock.h>
63#endif
64#include <sys/sysctl.h>
65
66#include <machine/clock.h>
67#ifdef CLK_CALIBRATION_LOOP
68#include <machine/cons.h>
69#endif
70#include <machine/cputypes.h>
71#include <machine/frame.h>
72#include <machine/ipl.h>
73#include <machine/limits.h>
74#include <machine/md_var.h>
75#ifdef APIC_IO
76#include <machine/segments.h>
77#endif
78#if defined(SMP) || defined(APIC_IO)
79#include <machine/smp.h>
80#endif /* SMP || APIC_IO */
81#include <machine/specialreg.h>
82
83#include <i386/isa/icu.h>
84#ifdef PC98
85#include <pc98/pc98/pc98.h>
86#include <pc98/pc98/pc98_machdep.h>
87#include <i386/isa/isa_device.h>
88#else
89#include <i386/isa/isa.h>
90#include <i386/isa/rtc.h>
91#endif
92#include <i386/isa/timerreg.h>
93
94#include <sys/interrupt.h>
95
96#ifdef SMP
97#define disable_intr()	CLOCK_DISABLE_INTR()
98#define enable_intr()	CLOCK_ENABLE_INTR()
99#endif /* SMP */
100
101/*
102 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
103 * can use a simple formula for leap years.
104 */
105#define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
106#define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
107
108#define	TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
109
110/*
111 * Time in timer cycles that it takes for microtime() to disable interrupts
112 * and latch the count.  microtime() currently uses "cli; outb ..." so it
113 * normally takes less than 2 timer cycles.  Add a few for cache misses.
114 * Add a few more to allow for latency in bogus calls to microtime() with
115 * interrupts already disabled.
116 */
117#define	TIMER0_LATCH_COUNT	20
118
119/*
120 * Maximum frequency that we are willing to allow for timer0.  Must be
121 * low enough to guarantee that the timer interrupt handler returns
122 * before the next timer interrupt.  Must result in a lower TIMER_DIV
123 * value than TIMER0_LATCH_COUNT so that we don't have to worry about
124 * underflow in the calculation of timer0_overflow_threshold.
125 */
126#define	TIMER0_MAX_FREQ		20000
127
128int	adjkerntz;		/* local offset	from GMT in seconds */
129int	disable_rtc_set;	/* disable resettodr() if != 0 */
130u_int	idelayed;
131int	statclock_disable;
132u_int	stat_imask = SWI_CLOCK_MASK;
133#ifdef TIMER_FREQ
134u_int	timer_freq = TIMER_FREQ;
135#else
136#ifdef PC98
137#ifndef AUTO_CLOCK
138#ifndef PC98_8M
139u_int	timer_freq = 2457600;
140#else	/* !PC98_8M */
141u_int	timer_freq = 1996800;
142#endif	/* PC98_8M */
143#else	/* AUTO_CLOCK */
144u_int	timer_freq = 2457600;
145#endif	/* AUTO_CLOCK */
146#else /* IBM-PC */
147u_int	timer_freq = 1193182;
148#endif /* PC98 */
149#endif
150int	timer0_max_count;
151u_int	timer0_overflow_threshold;
152u_int	timer0_prescaler_count;
153u_int	tsc_bias;
154u_int	tsc_comultiplier;
155u_int	tsc_freq;
156u_int	tsc_multiplier;
157u_int	tsc_present;
158int	wall_cmos_clock;	/* wall	CMOS clock assumed if != 0 */
159
160static	int	beeping = 0;
161static	u_int	clk_imask = HWI_MASK | SWI_MASK;
162static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
163static	u_int	hardclock_max_count;
164/*
165 * XXX new_function and timer_func should not handle clockframes, but
166 * timer_func currently needs to hold hardclock to handle the
167 * timer0_state == 0 case.  We should use register_intr()/unregister_intr()
168 * to switch between clkintr() and a slightly different timerintr().
169 */
170static	void	(*new_function) __P((struct clockframe *frame));
171static	u_int	new_rate;
172#ifndef PC98
173static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
174static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
175#endif
176
177/* Values for timerX_state: */
178#define	RELEASED	0
179#define	RELEASE_PENDING	1
180#define	ACQUIRED	2
181#define	ACQUIRE_PENDING	3
182
183static	u_char	timer0_state;
184#ifdef	PC98
185static 	u_char	timer1_state;
186#endif
187static	u_char	timer2_state;
188static	void	(*timer_func) __P((struct clockframe *frame)) = hardclock;
189#ifdef PC98
190static void rtc_serialcombit __P((int));
191static void rtc_serialcom __P((int));
192static int rtc_inb __P((void));
193static void rtc_outb __P((int));
194#endif
195
196static	void	set_tsc_freq(u_int tsc_count, u_int i8254_freq);
197static	void	set_timer_freq(u_int freq, int intr_freq);
198
199static void
200clkintr(struct clockframe frame)
201{
202	timer_func(&frame);
203	switch (timer0_state) {
204
205	case RELEASED:
206		setdelayed();
207		break;
208
209	case ACQUIRED:
210		if ((timer0_prescaler_count += timer0_max_count)
211		    >= hardclock_max_count) {
212			hardclock(&frame);
213			setdelayed();
214			timer0_prescaler_count -= hardclock_max_count;
215		}
216		break;
217
218	case ACQUIRE_PENDING:
219		setdelayed();
220		timer0_max_count = TIMER_DIV(new_rate);
221		timer0_overflow_threshold =
222			timer0_max_count - TIMER0_LATCH_COUNT;
223		disable_intr();
224		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
225		outb(TIMER_CNTR0, timer0_max_count & 0xff);
226		outb(TIMER_CNTR0, timer0_max_count >> 8);
227		enable_intr();
228		timer0_prescaler_count = 0;
229		timer_func = new_function;
230		timer0_state = ACQUIRED;
231		break;
232
233	case RELEASE_PENDING:
234		if ((timer0_prescaler_count += timer0_max_count)
235		    >= hardclock_max_count) {
236			hardclock(&frame);
237			setdelayed();
238			timer0_max_count = hardclock_max_count;
239			timer0_overflow_threshold =
240				timer0_max_count - TIMER0_LATCH_COUNT;
241			disable_intr();
242			outb(TIMER_MODE,
243			     TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
244			outb(TIMER_CNTR0, timer0_max_count & 0xff);
245			outb(TIMER_CNTR0, timer0_max_count >> 8);
246			enable_intr();
247			/*
248			 * See microtime.s for this magic.
249			 */
250#ifdef PC98
251#ifndef AUTO_CLOCK
252#ifndef PC98_8M
253			time.tv_usec += (6667 *
254				(timer0_prescaler_count - hardclock_max_count))
255				>> 14;
256#else /* PC98_8M */
257			time.tv_usec += (16411 *
258				(timer0_prescaler_count - hardclock_max_count))
259				>> 15;
260#endif /* PC98_8M */
261#else /* AUTO_CLOCK */
262			if (pc98_machine_type & M_8M) {
263				/* PC98_8M */
264				time.tv_usec += (16411 *
265					(timer0_prescaler_count -
266					 hardclock_max_count)) >> 15;
267			} else {
268				time.tv_usec += (6667 *
269					(timer0_prescaler_count -
270					 hardclock_max_count)) >> 14;
271			}
272#endif /* AUTO_CLOCK */
273#else /* IBM-PC */
274			time.tv_usec += (27465 *
275				(timer0_prescaler_count - hardclock_max_count))
276				>> 15;
277#endif /* PC98 */
278			if (time.tv_usec >= 1000000)
279				time.tv_usec -= 1000000;
280			timer0_prescaler_count = 0;
281			timer_func = hardclock;
282			timer0_state = RELEASED;
283		}
284		break;
285	}
286}
287
288/*
289 * The acquire and release functions must be called at ipl >= splclock().
290 */
291int
292acquire_timer0(int rate, void (*function) __P((struct clockframe *frame)))
293{
294	static int old_rate;
295
296	if (rate <= 0 || rate > TIMER0_MAX_FREQ)
297		return (-1);
298	switch (timer0_state) {
299
300	case RELEASED:
301		timer0_state = ACQUIRE_PENDING;
302		break;
303
304	case RELEASE_PENDING:
305		if (rate != old_rate)
306			return (-1);
307		/*
308		 * The timer has been released recently, but is being
309		 * re-acquired before the release completed.  In this
310		 * case, we simply reclaim it as if it had not been
311		 * released at all.
312		 */
313		timer0_state = ACQUIRED;
314		break;
315
316	default:
317		return (-1);	/* busy */
318	}
319	new_function = function;
320	old_rate = new_rate = rate;
321	return (0);
322}
323
324#ifdef PC98
325int
326acquire_timer1(int mode)
327{
328
329	if (timer1_state != RELEASED)
330		return (-1);
331	timer1_state = ACQUIRED;
332
333	/*
334	 * This access to the timer registers is as atomic as possible
335	 * because it is a single instruction.  We could do better if we
336	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
337	 * and this is probably good enough for timer2, so we aren't as
338	 * careful with it as with timer0.
339	 */
340	outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
341
342	return (0);
343}
344#endif
345
346int
347acquire_timer2(int mode)
348{
349
350	if (timer2_state != RELEASED)
351		return (-1);
352	timer2_state = ACQUIRED;
353
354	/*
355	 * This access to the timer registers is as atomic as possible
356	 * because it is a single instruction.  We could do better if we
357	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
358	 * and this is probably good enough for timer2, so we aren't as
359	 * careful with it as with timer0.
360	 */
361	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
362
363	return (0);
364}
365
366int
367release_timer0()
368{
369	switch (timer0_state) {
370
371	case ACQUIRED:
372		timer0_state = RELEASE_PENDING;
373		break;
374
375	case ACQUIRE_PENDING:
376		/* Nothing happened yet, release quickly. */
377		timer0_state = RELEASED;
378		break;
379
380	default:
381		return (-1);
382	}
383	return (0);
384}
385
386#ifdef PC98
387int
388release_timer1()
389{
390
391	if (timer1_state != ACQUIRED)
392		return (-1);
393	timer1_state = RELEASED;
394	outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
395	return (0);
396}
397#endif
398
399int
400release_timer2()
401{
402
403	if (timer2_state != ACQUIRED)
404		return (-1);
405	timer2_state = RELEASED;
406	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
407	return (0);
408}
409
410#ifndef PC98
411/*
412 * This routine receives statistical clock interrupts from the RTC.
413 * As explained above, these occur at 128 interrupts per second.
414 * When profiling, we receive interrupts at a rate of 1024 Hz.
415 *
416 * This does not actually add as much overhead as it sounds, because
417 * when the statistical clock is active, the hardclock driver no longer
418 * needs to keep (inaccurate) statistics on its own.  This decouples
419 * statistics gathering from scheduling interrupts.
420 *
421 * The RTC chip requires that we read status register C (RTC_INTR)
422 * to acknowledge an interrupt, before it will generate the next one.
423 * Under high interrupt load, rtcintr() can be indefinitely delayed and
424 * the clock can tick immediately after the read from RTC_INTR.  In this
425 * case, the mc146818A interrupt signal will not drop for long enough
426 * to register with the 8259 PIC.  If an interrupt is missed, the stat
427 * clock will halt, considerably degrading system performance.  This is
428 * why we use 'while' rather than a more straightforward 'if' below.
429 * Stat clock ticks can still be lost, causing minor loss of accuracy
430 * in the statistics, but the stat clock will no longer stop.
431 */
432static void
433rtcintr(struct clockframe frame)
434{
435	while (rtcin(RTC_INTR) & RTCIR_PERIOD)
436		statclock(&frame);
437}
438
439#include "opt_ddb.h"
440#ifdef DDB
441#include <ddb/ddb.h>
442
443DB_SHOW_COMMAND(rtc, rtc)
444{
445	printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
446	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
447	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
448	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
449}
450#endif /* DDB */
451#endif /* for PC98 */
452
453static int
454getit(void)
455{
456	u_long ef;
457	int high, low;
458
459	ef = read_eflags();
460	disable_intr();
461
462	/* Select timer0 and latch counter value. */
463	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
464
465	low = inb(TIMER_CNTR0);
466	high = inb(TIMER_CNTR0);
467
468	CLOCK_UNLOCK();
469	write_eflags(ef);
470	return ((high << 8) | low);
471}
472
473/*
474 * Wait "n" microseconds.
475 * Relies on timer 1 counting down from (timer_freq / hz)
476 * Note: timer had better have been programmed before this is first used!
477 */
478void
479DELAY(int n)
480{
481	int delta, prev_tick, tick, ticks_left;
482
483#ifdef DELAYDEBUG
484	int getit_calls = 1;
485	int n1;
486	static int state = 0;
487
488	if (state == 0) {
489		state = 1;
490		for (n1 = 1; n1 <= 10000000; n1 *= 10)
491			DELAY(n1);
492		state = 2;
493	}
494	if (state == 1)
495		printf("DELAY(%d)...", n);
496#endif
497	/*
498	 * Guard against the timer being uninitialized if we are called
499	 * early for console i/o.
500	 */
501	if (timer0_max_count == 0)
502		set_timer_freq(timer_freq, hz);
503
504	/*
505	 * Read the counter first, so that the rest of the setup overhead is
506	 * counted.  Guess the initial overhead is 20 usec (on most systems it
507	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
508	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
509	 * multiplications and divisions to scale the count take a while).
510	 */
511	prev_tick = getit();
512	n -= 0;			/* XXX actually guess no initial overhead */
513	/*
514	 * Calculate (n * (timer_freq / 1e6)) without using floating point
515	 * and without any avoidable overflows.
516	 */
517	if (n <= 0)
518		ticks_left = 0;
519	else if (n < 256)
520		/*
521		 * Use fixed point to avoid a slow division by 1000000.
522		 * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
523		 * 2^15 is the first power of 2 that gives exact results
524		 * for n between 0 and 256.
525		 */
526		ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
527	else
528		/*
529		 * Don't bother using fixed point, although gcc-2.7.2
530		 * generates particularly poor code for the long long
531		 * division, since even the slow way will complete long
532		 * before the delay is up (unless we're interrupted).
533		 */
534		ticks_left = ((u_int)n * (long long)timer_freq + 999999)
535			     / 1000000;
536
537	while (ticks_left > 0) {
538		tick = getit();
539#ifdef DELAYDEBUG
540		++getit_calls;
541#endif
542		delta = prev_tick - tick;
543		prev_tick = tick;
544		if (delta < 0) {
545			delta += timer0_max_count;
546			/*
547			 * Guard against timer0_max_count being wrong.
548			 * This shouldn't happen in normal operation,
549			 * but it may happen if set_timer_freq() is
550			 * traced.
551			 */
552			if (delta < 0)
553				delta = 0;
554		}
555		ticks_left -= delta;
556	}
557#ifdef DELAYDEBUG
558	if (state == 1)
559		printf(" %d calls to getit() at %d usec each\n",
560		       getit_calls, (n + 5) / getit_calls);
561#endif
562}
563
564static void
565sysbeepstop(void *chan)
566{
567#ifdef PC98	/* PC98 */
568	outb(IO_PPI, inb(IO_PPI)|0x08);	/* disable counter1 output to speaker */
569	release_timer1();
570#else
571	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
572	release_timer2();
573#endif
574	beeping = 0;
575}
576
577int
578sysbeep(int pitch, int period)
579{
580	int x = splclock();
581
582#ifdef PC98
583	if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
584		if (!beeping) {
585			/* Something else owns it. */
586			splx(x);
587			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
588		}
589	disable_intr();
590	outb(0x3fdb, pitch);
591	outb(0x3fdb, (pitch>>8));
592	enable_intr();
593	if (!beeping) {
594		/* enable counter1 output to speaker */
595		outb(IO_PPI, (inb(IO_PPI) & 0xf7));
596		beeping = period;
597		timeout(sysbeepstop, (void *)NULL, period);
598	}
599#else
600	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
601		if (!beeping) {
602			/* Something else owns it. */
603			splx(x);
604			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
605		}
606	disable_intr();
607	outb(TIMER_CNTR2, pitch);
608	outb(TIMER_CNTR2, (pitch>>8));
609	enable_intr();
610	if (!beeping) {
611		/* enable counter2 output to speaker */
612		outb(IO_PPI, inb(IO_PPI) | 3);
613		beeping = period;
614		timeout(sysbeepstop, (void *)NULL, period);
615	}
616#endif
617	splx(x);
618	return (0);
619}
620
621#ifndef PC98
622/*
623 * RTC support routines
624 */
625
626int
627rtcin(reg)
628	int reg;
629{
630	u_char val;
631
632	outb(IO_RTC, reg);
633	inb(0x84);
634	val = inb(IO_RTC + 1);
635	inb(0x84);
636	return (val);
637}
638
639static __inline void
640writertc(u_char reg, u_char val)
641{
642	outb(IO_RTC, reg);
643	outb(IO_RTC + 1, val);
644}
645
646static __inline int
647readrtc(int port)
648{
649	return(bcd2bin(rtcin(port)));
650}
651#endif
652
653#ifdef PC98
654unsigned int delaycount;
655#define FIRST_GUESS	0x2000
656static void findcpuspeed(void)
657{
658	int i;
659	int remainder;
660
661	/* Put counter in count down mode */
662	outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
663	outb(TIMER_CNTR0, 0xff);
664	outb(TIMER_CNTR0, 0xff);
665	for (i = FIRST_GUESS; i; i--)
666		;
667	remainder = getit();
668	delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
669}
670#endif
671
672#ifndef PC98
673static u_int
674calibrate_clocks(void)
675{
676	u_int count, prev_count, tot_count;
677	int sec, start_sec, timeout;
678
679	if (bootverbose)
680	        printf("Calibrating clock(s) ... ");
681	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
682		goto fail;
683	timeout = 100000000;
684
685	/* Read the mc146818A seconds counter. */
686	for (;;) {
687		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
688			sec = rtcin(RTC_SEC);
689			break;
690		}
691		if (--timeout == 0)
692			goto fail;
693	}
694
695	/* Wait for the mC146818A seconds counter to change. */
696	start_sec = sec;
697	for (;;) {
698		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
699			sec = rtcin(RTC_SEC);
700			if (sec != start_sec)
701				break;
702		}
703		if (--timeout == 0)
704			goto fail;
705	}
706
707	/* Start keeping track of the i8254 counter. */
708	prev_count = getit();
709	if (prev_count == 0 || prev_count > timer0_max_count)
710		goto fail;
711	tot_count = 0;
712
713	if (tsc_present)
714		wrmsr(0x10, 0LL);	/* XXX 0x10 is the MSR for the TSC */
715
716	/*
717	 * Wait for the mc146818A seconds counter to change.  Read the i8254
718	 * counter for each iteration since this is convenient and only
719	 * costs a few usec of inaccuracy. The timing of the final reads
720	 * of the counters almost matches the timing of the initial reads,
721	 * so the main cause of inaccuracy is the varying latency from
722	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
723	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
724	 * maximum inaccuracy from this cause is < 10 usec on 486's.
725	 */
726	start_sec = sec;
727	for (;;) {
728		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
729			sec = rtcin(RTC_SEC);
730		count = getit();
731		if (count == 0 || count > timer0_max_count)
732			goto fail;
733		if (count > prev_count)
734			tot_count += prev_count - (count - timer0_max_count);
735		else
736			tot_count += prev_count - count;
737		prev_count = count;
738		if (sec != start_sec)
739			break;
740		if (--timeout == 0)
741			goto fail;
742	}
743
744	/*
745	 * Read the cpu cycle counter.  The timing considerations are
746	 * similar to those for the i8254 clock.
747	 */
748	if (tsc_present) {
749		set_tsc_freq((u_int)rdtsc(), tot_count);
750		if (bootverbose)
751		        printf("TSC clock: %u Hz, ", tsc_freq);
752	}
753
754	if (bootverbose)
755	        printf("i8254 clock: %u Hz\n", tot_count);
756	return (tot_count);
757
758fail:
759	if (bootverbose)
760	        printf("failed, using default i8254 clock of %u Hz\n",
761		       timer_freq);
762	return (timer_freq);
763}
764#endif	/* !PC98 */
765
766static void
767set_timer_freq(u_int freq, int intr_freq)
768{
769	u_long ef;
770
771	ef = read_eflags();
772	disable_intr();
773	timer_freq = freq;
774	timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
775	timer0_overflow_threshold = timer0_max_count - TIMER0_LATCH_COUNT;
776	outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
777	outb(TIMER_CNTR0, timer0_max_count & 0xff);
778	outb(TIMER_CNTR0, timer0_max_count >> 8);
779	CLOCK_UNLOCK();
780	write_eflags(ef);
781}
782
783/*
784 * Initialize 8253 timer 0 early so that it can be used in DELAY().
785 * XXX initialization of other timers is unintentionally left blank.
786 */
787void
788startrtclock()
789{
790	u_int delta, freq;
791
792#ifdef PC98
793	findcpuspeed();
794#ifndef AUTO_CLOCK
795	if (pc98_machine_type & M_8M) {
796#ifndef	PC98_8M
797		printf("you must reconfig a kernel with \"PC98_8M\" option.\n");
798#endif
799	} else {
800#ifdef	PC98_8M
801		printf("You must reconfig a kernel without \"PC98_8M\" option.\n");
802#endif
803	}
804#else /* AUTO_CLOCK */
805	if (pc98_machine_type & M_8M)
806		timer_freq = 1996800L; /* 1.9968 MHz */
807	else
808		timer_freq = 2457600L; /* 2.4576 MHz */
809#endif /* AUTO_CLOCK */
810#endif /* PC98 */
811
812	if (cpu_feature & CPUID_TSC)
813		tsc_present = 1;
814	else
815		tsc_present = 0;
816
817#ifdef SMP
818	tsc_present = 0;
819#endif
820
821#ifndef PC98
822	writertc(RTC_STATUSA, rtc_statusa);
823	writertc(RTC_STATUSB, RTCSB_24HR);
824#endif
825
826#ifndef PC98
827	set_timer_freq(timer_freq, hz);
828	freq = calibrate_clocks();
829#ifdef CLK_CALIBRATION_LOOP
830	if (bootverbose) {
831		printf(
832		"Press a key on the console to abort clock calibration\n");
833		while (cncheckc() == -1)
834			calibrate_clocks();
835	}
836#endif
837
838	/*
839	 * Use the calibrated i8254 frequency if it seems reasonable.
840	 * Otherwise use the default, and don't use the calibrated i586
841	 * frequency.
842	 */
843	delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
844	if (delta < timer_freq / 100) {
845#ifndef CLK_USE_I8254_CALIBRATION
846		if (bootverbose)
847			printf(
848"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
849		freq = timer_freq;
850#endif
851		timer_freq = freq;
852	} else {
853		if (bootverbose)
854			printf(
855		    "%d Hz differs from default of %d Hz by more than 1%%\n",
856			       freq, timer_freq);
857		tsc_freq = 0;
858	}
859#endif
860
861	set_timer_freq(timer_freq, hz);
862
863#ifndef CLK_USE_TSC_CALIBRATION
864	if (tsc_freq != 0) {
865		if (bootverbose)
866			printf(
867"CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
868		tsc_freq = 0;
869	}
870#endif
871	if (tsc_present && tsc_freq == 0) {
872		/*
873		 * Calibration of the i586 clock relative to the mc146818A
874		 * clock failed.  Do a less accurate calibration relative
875		 * to the i8254 clock.
876		 */
877		wrmsr(0x10, 0LL);	/* XXX */
878		DELAY(1000000);
879		set_tsc_freq((u_int)rdtsc(), timer_freq);
880#ifdef CLK_USE_TSC_CALIBRATION
881		if (bootverbose)
882			printf("TSC clock: %u Hz\n", tsc_freq);
883#endif
884	}
885}
886
887#ifdef PC98
888static void
889rtc_serialcombit(int i)
890{
891	outb(IO_RTC, ((i&0x01)<<5)|0x07);
892	DELAY(1);
893	outb(IO_RTC, ((i&0x01)<<5)|0x17);
894	DELAY(1);
895	outb(IO_RTC, ((i&0x01)<<5)|0x07);
896	DELAY(1);
897}
898
899static void
900rtc_serialcom(int i)
901{
902	rtc_serialcombit(i&0x01);
903	rtc_serialcombit((i&0x02)>>1);
904	rtc_serialcombit((i&0x04)>>2);
905	rtc_serialcombit((i&0x08)>>3);
906	outb(IO_RTC, 0x07);
907	DELAY(1);
908	outb(IO_RTC, 0x0f);
909	DELAY(1);
910	outb(IO_RTC, 0x07);
911 	DELAY(1);
912}
913
914static void
915rtc_outb(int val)
916{
917	int s;
918	int sa = 0;
919
920	for (s=0;s<8;s++) {
921	    sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
922	    outb(IO_RTC, sa);		/* set DI & CLK 0 */
923	    DELAY(1);
924	    outb(IO_RTC, sa | 0x10);	/* CLK 1 */
925	    DELAY(1);
926	}
927	outb(IO_RTC, sa & 0xef);	/* CLK 0 */
928}
929
930static int
931rtc_inb(void)
932{
933	int s;
934	int sa = 0;
935
936	for (s=0;s<8;s++) {
937	    sa |= ((inb(0x33) & 0x01) << s);
938	    outb(IO_RTC, 0x17);	/* CLK 1 */
939	    DELAY(1);
940	    outb(IO_RTC, 0x07);	/* CLK 0 */
941	    DELAY(2);
942	}
943	return sa;
944}
945#endif /* PC-98 */
946
947/*
948 * Initialize the time of day register,	based on the time base which is, e.g.
949 * from	a filesystem.
950 */
951void
952inittodr(time_t base)
953{
954	unsigned long	sec, days;
955	int		yd;
956	int		year, month;
957	int		y, m, s;
958#ifdef PC98
959	int		second, min, hour;
960#endif
961
962	if (base) {
963		s = splclock();
964		time.tv_sec  = base;
965		time.tv_usec = 0;
966		splx(s);
967	}
968
969#ifdef PC98
970	rtc_serialcom(0x03);	/* Time Read */
971	rtc_serialcom(0x01);	/* Register shift command. */
972	DELAY(20);
973
974	second = bcd2bin(rtc_inb() & 0xff);	/* sec */
975	min = bcd2bin(rtc_inb() & 0xff);	/* min */
976	hour = bcd2bin(rtc_inb() & 0xff);	/* hour */
977	days = bcd2bin(rtc_inb() & 0xff) - 1;	/* date */
978
979	month = (rtc_inb() >> 4) & 0x0f;	/* month */
980	for (m = 1; m <	month; m++)
981		days +=	daysinmonth[m-1];
982	year = bcd2bin(rtc_inb() & 0xff) + 1900;	/* year */
983	/* 2000 year problem */
984	if (year < 1995)
985		year += 100;
986	if (year < 1970)
987		goto wrong_time;
988	for (y = 1970; y < year; y++)
989		days +=	DAYSPERYEAR + LEAPYEAR(y);
990	if ((month > 2)	&& LEAPYEAR(year))
991		days ++;
992	sec = ((( days * 24 +
993		  hour) * 60 +
994		  min) * 60 +
995		  second);
996	/* sec now contains the	number of seconds, since Jan 1 1970,
997	   in the local	time zone */
998#else	/* IBM-PC */
999	/* Look	if we have a RTC present and the time is valid */
1000	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
1001		goto wrong_time;
1002
1003	/* wait	for time update	to complete */
1004	/* If RTCSA_TUP	is zero, we have at least 244us	before next update */
1005	while (rtcin(RTC_STATUSA) & RTCSA_TUP);
1006
1007	days = 0;
1008#ifdef USE_RTC_CENTURY
1009	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY)	* 100;
1010#else
1011	year = readrtc(RTC_YEAR) + 1900;
1012	if (year < 1970)
1013		year += 100;
1014#endif
1015	if (year < 1970)
1016		goto wrong_time;
1017	month =	readrtc(RTC_MONTH);
1018	for (m = 1; m <	month; m++)
1019		days +=	daysinmonth[m-1];
1020	if ((month > 2)	&& LEAPYEAR(year))
1021		days ++;
1022	days +=	readrtc(RTC_DAY) - 1;
1023	yd = days;
1024	for (y = 1970; y < year; y++)
1025		days +=	DAYSPERYEAR + LEAPYEAR(y);
1026	sec = ((( days * 24 +
1027		  readrtc(RTC_HRS)) * 60 +
1028		  readrtc(RTC_MIN)) * 60 +
1029		  readrtc(RTC_SEC));
1030	/* sec now contains the	number of seconds, since Jan 1 1970,
1031	   in the local	time zone */
1032#endif
1033
1034	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1035
1036	s = splclock();
1037	time.tv_sec = sec;
1038	splx(s);
1039	return;
1040
1041wrong_time:
1042	printf("Invalid	time in	real time clock.\n");
1043	printf("Check and reset	the date immediately!\n");
1044}
1045
1046/*
1047 * Write system	time back to RTC
1048 */
1049void
1050resettodr()
1051{
1052	unsigned long	tm;
1053	int		y, m, s;
1054#ifdef PC98
1055	int		wd;
1056#endif
1057
1058	if (disable_rtc_set)
1059		return;
1060
1061	s = splclock();
1062	tm = time.tv_sec;
1063	splx(s);
1064
1065#ifdef PC98
1066	rtc_serialcom(0x01);	/* Register shift command. */
1067
1068	/* Calculate local time	to put in RTC */
1069
1070	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1071
1072	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1073	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1074	rtc_outb(bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1075
1076	/* We have now the days	since 01-01-1970 in tm */
1077	wd = (tm+4)%7;
1078	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1079	     tm >= m;
1080	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1081	     tm -= m;
1082
1083	/* Now we have the years in y and the day-of-the-year in tm */
1084	for (m = 0; ; m++) {
1085		int ml;
1086
1087		ml = daysinmonth[m];
1088		if (m == 1 && LEAPYEAR(y))
1089			ml++;
1090		if (tm < ml)
1091			break;
1092		tm -= ml;
1093	}
1094
1095	m++;
1096	rtc_outb(bin2bcd(tm+1));		/* Write back Day     */
1097	rtc_outb((m << 4) | wd);		/* Write back Month & Weekday  */
1098	rtc_outb(bin2bcd(y%100));		/* Write back Year    */
1099
1100	rtc_serialcom(0x02);	/* Time set & Counter hold command. */
1101	rtc_serialcom(0x00);	/* Register hold command. */
1102#else
1103	/* Disable RTC updates and interrupts. */
1104	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
1105
1106	/* Calculate local time	to put in RTC */
1107
1108	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1109
1110	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1111	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1112	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1113
1114	/* We have now the days	since 01-01-1970 in tm */
1115	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
1116	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1117	     tm >= m;
1118	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1119	     tm -= m;
1120
1121	/* Now we have the years in y and the day-of-the-year in tm */
1122	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
1123#ifdef USE_RTC_CENTURY
1124	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
1125#endif
1126	for (m = 0; ; m++) {
1127		int ml;
1128
1129		ml = daysinmonth[m];
1130		if (m == 1 && LEAPYEAR(y))
1131			ml++;
1132		if (tm < ml)
1133			break;
1134		tm -= ml;
1135	}
1136
1137	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1138	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1139
1140	/* Reenable RTC updates and interrupts. */
1141	writertc(RTC_STATUSB, rtc_statusb);
1142#endif
1143}
1144
1145
1146/*
1147 * Start both clocks running.
1148 */
1149void
1150cpu_initclocks()
1151{
1152#ifdef APIC_IO
1153	int x;
1154#endif /* APIC_IO */
1155#ifndef PC98
1156	int diag;
1157
1158	if (statclock_disable) {
1159		/*
1160		 * The stat interrupt mask is different without the
1161		 * statistics clock.  Also, don't set the interrupt
1162		 * flag which would normally cause the RTC to generate
1163		 * interrupts.
1164		 */
1165		stat_imask = HWI_MASK | SWI_MASK;
1166		rtc_statusb = RTCSB_24HR;
1167	} else {
1168	        /* Setting stathz to nonzero early helps avoid races. */
1169		stathz = RTC_NOPROFRATE;
1170		profhz = RTC_PROFRATE;
1171        }
1172#endif
1173
1174	/* Finish initializing 8253 timer 0. */
1175#ifdef APIC_IO
1176
1177	/* 1st look for ExtInt on pin 0 */
1178	if (apic_int_type(0, 0) == 3) {
1179		/*
1180		 * Allow 8254 timer to INTerrupt 8259:
1181		 *  re-initialize master 8259:
1182		 *   reset; prog 4 bytes, single ICU, edge triggered
1183		 */
1184		outb(IO_ICU1, 0x13);
1185		outb(IO_ICU1 + 1, NRSVIDT);	/* start vector (unused) */
1186		outb(IO_ICU1 + 1, 0x00);	/* ignore slave */
1187		outb(IO_ICU1 + 1, 0x03);	/* auto EOI, 8086 */
1188		outb(IO_ICU1 + 1, 0xfe);	/* unmask INT0 */
1189
1190		/* program IO APIC for type 3 INT on INT0 */
1191		if (ext_int_setup(0, 0) < 0)
1192			panic("8254 redirect via APIC pin0 impossible!");
1193
1194		x = 0;
1195		/* XXX if (bootverbose) */
1196			printf("APIC_IO: routing 8254 via 8259 on pin 0\n");
1197	}
1198
1199	/* failing that, look for 8254 on pin 2 */
1200	else if (isa_apic_pin(0) == 2) {
1201		x = 2;
1202		/* XXX if (bootverbose) */
1203			printf("APIC_IO: routing 8254 via pin 2\n");
1204	}
1205
1206	/* better write that 8254 INT discover code... */
1207	else
1208		panic("neither pin 0 or pin 2 works for 8254");
1209
1210	/* setup the vectors */
1211	vec[x] = (u_int)vec8254;
1212	Xintr8254 = (u_int)ivectors[x];
1213	mask8254 = (1 << x);
1214
1215	register_intr(/* irq */ x, /* XXX id */ 0, /* flags */ 0,
1216		      /* XXX */ (inthand2_t *)clkintr, &clk_imask,
1217		      /* unit */ 0);
1218	INTREN(mask8254);
1219
1220#else /* APIC_IO */
1221
1222	register_intr(/* irq */ 0, /* XXX id */ 0, /* flags */ 0,
1223		      /* XXX */ (inthand2_t *)clkintr, &clk_imask,
1224		      /* unit */ 0);
1225	INTREN(IRQ0);
1226
1227#endif /* APIC_IO */
1228
1229	/*
1230	 * Finish setting up anti-jitter measures.
1231	 */
1232	if (tsc_freq != 0)
1233		tsc_bias = rdtsc();
1234
1235#ifndef PC98
1236	/* Initialize RTC. */
1237	writertc(RTC_STATUSA, rtc_statusa);
1238	writertc(RTC_STATUSB, RTCSB_24HR);
1239
1240	/* Don't bother enabling the statistics clock. */
1241	if (statclock_disable)
1242		return;
1243	diag = rtcin(RTC_DIAG);
1244	if (diag != 0)
1245		printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1246
1247#ifdef APIC_IO
1248	if (isa_apic_pin(8) != 8)
1249		panic("APIC RTC != 8");
1250#endif /* APIC_IO */
1251
1252	register_intr(/* irq */ 8, /* XXX id */ 1, /* flags */ 0,
1253		      /* XXX */ (inthand2_t *)rtcintr, &stat_imask,
1254		      /* unit */ 0);
1255
1256#ifdef APIC_IO
1257	INTREN(APIC_IRQ8);
1258#else
1259	INTREN(IRQ8);
1260#endif /* APIC_IO */
1261
1262	writertc(RTC_STATUSB, rtc_statusb);
1263#endif /* !PC98 */
1264}
1265
1266void
1267setstatclockrate(int newhz)
1268{
1269#ifndef PC98
1270	if (newhz == RTC_PROFRATE)
1271		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1272	else
1273		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1274	writertc(RTC_STATUSA, rtc_statusa);
1275#endif
1276}
1277
1278static int
1279sysctl_machdep_i8254_freq SYSCTL_HANDLER_ARGS
1280{
1281	int error;
1282	u_int freq;
1283
1284	/*
1285	 * Use `i8254' instead of `timer' in external names because `timer'
1286	 * is is too generic.  Should use it everywhere.
1287	 */
1288	freq = timer_freq;
1289	error = sysctl_handle_opaque(oidp, &freq, sizeof freq, req);
1290	if (error == 0 && req->newptr != NULL) {
1291		if (timer0_state != 0)
1292			return (EBUSY);	/* too much trouble to handle */
1293		set_timer_freq(freq, hz);
1294		if (tsc_present)
1295			set_tsc_freq(tsc_freq, timer_freq);
1296	}
1297	return (error);
1298}
1299
1300SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1301	    0, sizeof(u_int), sysctl_machdep_i8254_freq, "I", "");
1302
1303static void
1304set_tsc_freq(u_int tsc_count, u_int i8254_freq)
1305{
1306	u_int comultiplier, multiplier;
1307	u_long ef;
1308
1309	if (tsc_count == 0) {
1310		tsc_freq = tsc_count;
1311		return;
1312	}
1313	comultiplier = ((unsigned long long)tsc_count
1314			<< TSC_COMULTIPLIER_SHIFT) / i8254_freq;
1315	multiplier = (1000000LL << TSC_MULTIPLIER_SHIFT) / tsc_count;
1316	ef = read_eflags();
1317	disable_intr();
1318	tsc_freq = tsc_count;
1319	tsc_comultiplier = comultiplier;
1320	tsc_multiplier = multiplier;
1321	CLOCK_UNLOCK();
1322	write_eflags(ef);
1323}
1324
1325static int
1326sysctl_machdep_tsc_freq SYSCTL_HANDLER_ARGS
1327{
1328	int error;
1329	u_int freq;
1330
1331	if (!tsc_present)
1332		return (EOPNOTSUPP);
1333	freq = tsc_freq;
1334	error = sysctl_handle_opaque(oidp, &freq, sizeof freq, req);
1335	if (error == 0 && req->newptr != NULL)
1336		set_tsc_freq(freq, timer_freq);
1337	return (error);
1338}
1339
1340SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_INT | CTLFLAG_RW,
1341	    0, sizeof(u_int), sysctl_machdep_tsc_freq, "I", "");
1342