pcrtc.c revision 21673
1/*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * William Jolitz and Don Ahn.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
37 *	$FreeBSD: head/sys/pc98/cbus/pcrtc.c 21673 1997-01-14 07:20:47Z jkh $
38 */
39
40/*
41 * Routines to handle clock hardware.
42 */
43
44/*
45 * inittodr, settodr and support routines written
46 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
47 *
48 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
49 */
50
51/*
52 * modified for PC98 by Kakefuda
53 */
54
55#include "opt_clock.h"
56#include "opt_cpu.h"
57
58#include <sys/param.h>
59#include <sys/systm.h>
60#include <sys/time.h>
61#include <sys/kernel.h>
62#include <sys/sysctl.h>
63
64#include <machine/clock.h>
65#ifdef CLK_CALIBRATION_LOOP
66#include <machine/cons.h>
67#endif
68#include <machine/cpu.h>
69#include <machine/frame.h>
70
71#include <i386/isa/icu.h>
72#ifdef PC98
73#include <pc98/pc98/pc98.h>
74#include <i386/isa/isa_device.h>
75#else
76#include <i386/isa/isa.h>
77#include <i386/isa/isa_device.h>
78#include <i386/isa/rtc.h>
79#endif
80#include <i386/isa/timerreg.h>
81
82/*
83 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
84 * can use a simple formula for leap years.
85 */
86#define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
87#define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
88
89#define	TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
90
91/*
92 * Time in timer cycles that it takes for microtime() to disable interrupts
93 * and latch the count.  microtime() currently uses "cli; outb ..." so it
94 * normally takes less than 2 timer cycles.  Add a few for cache misses.
95 * Add a few more to allow for latency in bogus calls to microtime() with
96 * interrupts already disabled.
97 */
98#define	TIMER0_LATCH_COUNT	20
99
100/*
101 * Maximum frequency that we are willing to allow for timer0.  Must be
102 * low enough to guarantee that the timer interrupt handler returns
103 * before the next timer interrupt.  Must result in a lower TIMER_DIV
104 * value than TIMER0_LATCH_COUNT so that we don't have to worry about
105 * underflow in the calculation of timer0_overflow_threshold.
106 */
107#define	TIMER0_MAX_FREQ		20000
108
109int	adjkerntz;		/* local offset	from GMT in seconds */
110int	disable_rtc_set;	/* disable resettodr() if != 0 */
111u_int	idelayed;
112#if defined(I586_CPU) || defined(I686_CPU)
113u_int	i586_ctr_bias;
114u_int	i586_ctr_comultiplier;
115u_int	i586_ctr_freq;
116u_int	i586_ctr_multiplier;
117#endif
118int	statclock_disable;
119u_int	stat_imask = SWI_CLOCK_MASK;
120#ifdef TIMER_FREQ
121u_int	timer_freq = TIMER_FREQ;
122#else
123#ifdef PC98
124#ifndef AUTO_CLOCK
125#ifndef PC98_8M
126u_int	timer_freq = 2457600;
127#else	/* !PC98_8M */
128u_int	timer_freq = 1996800;
129#endif	/* PC98_8M */
130#else	/* AUTO_CLOCK */
131u_int	timer_freq = 2457600;
132#endif	/* AUTO_CLOCK */
133#else /* IBM-PC */
134u_int	timer_freq = 1193182;
135#endif /* PC98 */
136#endif
137int	timer0_max_count;
138u_int	timer0_overflow_threshold;
139u_int	timer0_prescaler_count;
140int	wall_cmos_clock;	/* wall	CMOS clock assumed if != 0 */
141
142static	int	beeping = 0;
143static	u_int	clk_imask = HWI_MASK | SWI_MASK;
144static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
145static	u_int	hardclock_max_count;
146/*
147 * XXX new_function and timer_func should not handle clockframes, but
148 * timer_func currently needs to hold hardclock to handle the
149 * timer0_state == 0 case.  We should use register_intr()/unregister_intr()
150 * to switch between clkintr() and a slightly different timerintr().
151 */
152static	void	(*new_function) __P((struct clockframe *frame));
153static	u_int	new_rate;
154#ifndef PC98
155static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
156static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
157#endif
158
159/* Values for timerX_state: */
160#define	RELEASED	0
161#define	RELEASE_PENDING	1
162#define	ACQUIRED	2
163#define	ACQUIRE_PENDING	3
164
165static 	u_char	timer0_state;
166#ifdef	PC98
167static 	u_char	timer1_state;
168#endif
169static	u_char	timer2_state;
170static	void	(*timer_func) __P((struct clockframe *frame)) = hardclock;
171#ifdef PC98
172static void rtc_serialcombit __P((int));
173static void rtc_serialcom __P((int));
174static int rtc_inb __P((void));
175static void rtc_outb __P((int));
176#endif
177
178#if defined(I586_CPU) || defined(I686_CPU)
179static	void	set_i586_ctr_freq(u_int i586_freq, u_int i8254_freq);
180#endif
181
182static void
183clkintr(struct clockframe frame)
184{
185	timer_func(&frame);
186	switch (timer0_state) {
187
188	case RELEASED:
189		setdelayed();
190		break;
191
192	case ACQUIRED:
193		if ((timer0_prescaler_count += timer0_max_count)
194		    >= hardclock_max_count) {
195			hardclock(&frame);
196			setdelayed();
197			timer0_prescaler_count -= hardclock_max_count;
198		}
199		break;
200
201	case ACQUIRE_PENDING:
202		setdelayed();
203		timer0_max_count = TIMER_DIV(new_rate);
204		timer0_overflow_threshold =
205			timer0_max_count - TIMER0_LATCH_COUNT;
206		disable_intr();
207		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
208		outb(TIMER_CNTR0, timer0_max_count & 0xff);
209		outb(TIMER_CNTR0, timer0_max_count >> 8);
210		enable_intr();
211		timer0_prescaler_count = 0;
212		timer_func = new_function;
213		timer0_state = ACQUIRED;
214		break;
215
216	case RELEASE_PENDING:
217		if ((timer0_prescaler_count += timer0_max_count)
218		    >= hardclock_max_count) {
219			hardclock(&frame);
220			setdelayed();
221			timer0_max_count = hardclock_max_count;
222			timer0_overflow_threshold =
223				timer0_max_count - TIMER0_LATCH_COUNT;
224			disable_intr();
225			outb(TIMER_MODE,
226			     TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
227			outb(TIMER_CNTR0, timer0_max_count & 0xff);
228			outb(TIMER_CNTR0, timer0_max_count >> 8);
229			enable_intr();
230			/*
231			 * See microtime.s for this magic.
232			 */
233#ifdef PC98
234#ifndef AUTO_CLOCK
235#ifndef PC98_8M
236			time.tv_usec += (6667 *
237				(timer0_prescaler_count - hardclock_max_count))
238				>> 14;
239#else /* PC98_8M */
240			time.tv_usec += (16411 *
241				(timer0_prescaler_count - hardclock_max_count))
242				>> 15;
243#endif /* PC98_8M */
244#else /* AUTO_CLOCK */
245			if (pc98_machine_type & M_8M) {
246				/* PC98_8M */
247				time.tv_usec += (16411 *
248					(timer0_prescaler_count -
249					 hardclock_max_count)) >> 15;
250			} else {
251				time.tv_usec += (6667 *
252					(timer0_prescaler_count -
253					 hardclock_max_count)) >> 14;
254			}
255#endif /* AUTO_CLOCK */
256#else /* IBM-PC */
257			time.tv_usec += (27465 *
258				(timer0_prescaler_count - hardclock_max_count))
259				>> 15;
260#endif /* PC98 */
261			if (time.tv_usec >= 1000000)
262				time.tv_usec -= 1000000;
263			timer0_prescaler_count = 0;
264			timer_func = hardclock;
265			timer0_state = RELEASED;
266		}
267		break;
268	}
269}
270
271/*
272 * The acquire and release functions must be called at ipl >= splclock().
273 */
274int
275acquire_timer0(int rate, void (*function) __P((struct clockframe *frame)))
276{
277	static int old_rate;
278
279	if (rate <= 0 || rate > TIMER0_MAX_FREQ)
280		return (-1);
281	switch (timer0_state) {
282
283	case RELEASED:
284		timer0_state = ACQUIRE_PENDING;
285		break;
286
287	case RELEASE_PENDING:
288		if (rate != old_rate)
289			return (-1);
290		/*
291		 * The timer has been released recently, but is being
292		 * re-acquired before the release completed.  In this
293		 * case, we simply reclaim it as if it had not been
294		 * released at all.
295		 */
296		timer0_state = ACQUIRED;
297		break;
298
299	default:
300		return (-1);	/* busy */
301	}
302	new_function = function;
303	old_rate = new_rate = rate;
304	return (0);
305}
306
307#ifdef PC98
308int
309acquire_timer1(int mode)
310{
311
312	if (timer1_state != RELEASED)
313		return (-1);
314	timer1_state = ACQUIRED;
315
316	/*
317	 * This access to the timer registers is as atomic as possible
318	 * because it is a single instruction.  We could do better if we
319	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
320	 * and this is probably good enough for timer2, so we aren't as
321	 * careful with it as with timer0.
322	 */
323	outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
324
325	return (0);
326}
327#endif
328
329int
330acquire_timer2(int mode)
331{
332
333	if (timer2_state != RELEASED)
334		return (-1);
335	timer2_state = ACQUIRED;
336
337	/*
338	 * This access to the timer registers is as atomic as possible
339	 * because it is a single instruction.  We could do better if we
340	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
341	 * and this is probably good enough for timer2, so we aren't as
342	 * careful with it as with timer0.
343	 */
344	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
345
346	return (0);
347}
348
349int
350release_timer0()
351{
352	switch (timer0_state) {
353
354	case ACQUIRED:
355		timer0_state = RELEASE_PENDING;
356		break;
357
358	case ACQUIRE_PENDING:
359		/* Nothing happened yet, release quickly. */
360		timer0_state = RELEASED;
361		break;
362
363	default:
364		return (-1);
365	}
366	return (0);
367}
368
369#ifdef PC98
370int
371release_timer1()
372{
373
374	if (timer1_state != ACQUIRED)
375		return (-1);
376	timer1_state = RELEASED;
377	outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
378	return (0);
379}
380#endif
381
382int
383release_timer2()
384{
385
386	if (timer2_state != ACQUIRED)
387		return (-1);
388	timer2_state = RELEASED;
389	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
390	return (0);
391}
392
393#ifndef PC98
394/*
395 * This routine receives statistical clock interrupts from the RTC.
396 * As explained above, these occur at 128 interrupts per second.
397 * When profiling, we receive interrupts at a rate of 1024 Hz.
398 *
399 * This does not actually add as much overhead as it sounds, because
400 * when the statistical clock is active, the hardclock driver no longer
401 * needs to keep (inaccurate) statistics on its own.  This decouples
402 * statistics gathering from scheduling interrupts.
403 *
404 * The RTC chip requires that we read status register C (RTC_INTR)
405 * to acknowledge an interrupt, before it will generate the next one.
406 */
407static void
408rtcintr(struct clockframe frame)
409{
410	u_char stat;
411	stat = rtcin(RTC_INTR);
412	if(stat & RTCIR_PERIOD) {
413		statclock(&frame);
414	}
415}
416
417#include "opt_ddb.h"
418#ifdef DDB
419#include <ddb/ddb.h>
420
421DB_SHOW_COMMAND(rtc, rtc)
422{
423	printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
424	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
425	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
426	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
427}
428#endif /* DDB */
429#endif /* for PC98 */
430
431static int
432getit(void)
433{
434	u_long ef;
435	int high, low;
436
437	ef = read_eflags();
438	disable_intr();
439
440	/* Select timer0 and latch counter value. */
441	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
442
443	low = inb(TIMER_CNTR0);
444	high = inb(TIMER_CNTR0);
445
446	write_eflags(ef);
447	return ((high << 8) | low);
448}
449
450/*
451 * Wait "n" microseconds.
452 * Relies on timer 1 counting down from (timer_freq / hz)
453 * Note: timer had better have been programmed before this is first used!
454 */
455void
456DELAY(int n)
457{
458	int prev_tick, tick, ticks_left, sec, usec;
459
460#ifdef DELAYDEBUG
461	int getit_calls = 1;
462	int n1;
463	static int state = 0;
464
465	if (state == 0) {
466		state = 1;
467		for (n1 = 1; n1 <= 10000000; n1 *= 10)
468			DELAY(n1);
469		state = 2;
470	}
471	if (state == 1)
472		printf("DELAY(%d)...", n);
473#endif
474	/*
475	 * Read the counter first, so that the rest of the setup overhead is
476	 * counted.  Guess the initial overhead is 20 usec (on most systems it
477	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
478	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
479	 * multiplications and divisions to scale the count take a while).
480	 */
481	prev_tick = getit();
482	n -= 20;
483	/*
484	 * Calculate (n * (timer_freq / 1e6)) without using floating point
485	 * and without any avoidable overflows.
486	 */
487	sec = n / 1000000;
488	usec = n - sec * 1000000;
489	ticks_left = sec * timer_freq
490		     + usec * (timer_freq / 1000000)
491		     + usec * ((timer_freq % 1000000) / 1000) / 1000
492		     + usec * (timer_freq % 1000) / 1000000;
493	if (n < 0)
494		ticks_left = 0;	/* XXX timer_freq is unsigned */
495
496	while (ticks_left > 0) {
497		tick = getit();
498#ifdef DELAYDEBUG
499		++getit_calls;
500#endif
501		if (tick > prev_tick)
502			ticks_left -= prev_tick - (tick - timer0_max_count);
503		else
504			ticks_left -= prev_tick - tick;
505		prev_tick = tick;
506	}
507#ifdef DELAYDEBUG
508	if (state == 1)
509		printf(" %d calls to getit() at %d usec each\n",
510		       getit_calls, (n + 5) / getit_calls);
511#endif
512}
513
514static void
515sysbeepstop(void *chan)
516{
517#ifdef PC98	/* PC98 */
518	outb(IO_PPI, inb(IO_PPI)|0x08);	/* disable counter1 output to speaker */
519	release_timer1();
520#else
521	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
522	release_timer2();
523#endif
524	beeping = 0;
525}
526
527int
528sysbeep(int pitch, int period)
529{
530	int x = splclock();
531
532#ifdef PC98
533	if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
534		if (!beeping) {
535			/* Something else owns it. */
536			splx(x);
537			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
538		}
539	disable_intr();
540	outb(0x3fdb, pitch);
541	outb(0x3fdb, (pitch>>8));
542	enable_intr();
543	if (!beeping) {
544		/* enable counter1 output to speaker */
545		outb(IO_PPI, (inb(IO_PPI) & 0xf7));
546		beeping = period;
547		timeout(sysbeepstop, (void *)NULL, period);
548	}
549#else
550	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
551		if (!beeping) {
552			/* Something else owns it. */
553			splx(x);
554			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
555		}
556	disable_intr();
557	outb(TIMER_CNTR2, pitch);
558	outb(TIMER_CNTR2, (pitch>>8));
559	enable_intr();
560	if (!beeping) {
561		/* enable counter2 output to speaker */
562		outb(IO_PPI, inb(IO_PPI) | 3);
563		beeping = period;
564		timeout(sysbeepstop, (void *)NULL, period);
565	}
566#endif
567	splx(x);
568	return (0);
569}
570
571#ifndef PC98
572/*
573 * RTC support routines
574 */
575
576int
577rtcin(reg)
578	int reg;
579{
580	u_char val;
581
582	outb(IO_RTC, reg);
583	inb(0x84);
584	val = inb(IO_RTC + 1);
585	inb(0x84);
586	return (val);
587}
588
589static __inline void
590writertc(u_char reg, u_char val)
591{
592	outb(IO_RTC, reg);
593	outb(IO_RTC + 1, val);
594}
595
596static __inline int
597readrtc(int port)
598{
599	return(bcd2bin(rtcin(port)));
600}
601#endif
602
603#ifdef PC98
604unsigned int delaycount;
605#define FIRST_GUESS	0x2000
606static void findcpuspeed(void)
607{
608	int i;
609	int remainder;
610
611	/* Put counter in count down mode */
612	outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
613	outb(TIMER_CNTR0, 0xff);
614	outb(TIMER_CNTR0, 0xff);
615	for (i = FIRST_GUESS; i; i--)
616		;
617	remainder = getit();
618	delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
619}
620#endif
621
622#ifndef PC98
623static u_int
624calibrate_clocks(void)
625{
626	u_int count, prev_count, tot_count;
627	int sec, start_sec, timeout;
628
629	printf("Calibrating clock(s) relative to mc146818A clock ... ");
630	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
631		goto fail;
632	timeout = 100000000;
633
634	/* Read the mc146818A seconds counter. */
635	for (;;) {
636		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
637			sec = rtcin(RTC_SEC);
638			break;
639		}
640		if (--timeout == 0)
641			goto fail;
642	}
643
644	/* Wait for the mC146818A seconds counter to change. */
645	start_sec = sec;
646	for (;;) {
647		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
648			sec = rtcin(RTC_SEC);
649			if (sec != start_sec)
650				break;
651		}
652		if (--timeout == 0)
653			goto fail;
654	}
655
656	/* Start keeping track of the i8254 counter. */
657	prev_count = getit();
658	if (prev_count == 0 || prev_count > timer0_max_count)
659		goto fail;
660	tot_count = 0;
661
662#if defined(I586_CPU) || defined(I686_CPU)
663	if (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686)
664		wrmsr(0x10, 0LL);	/* XXX 0x10 is the MSR for the TSC */
665#endif
666
667	/*
668	 * Wait for the mc146818A seconds counter to change.  Read the i8254
669	 * counter for each iteration since this is convenient and only
670	 * costs a few usec of inaccuracy. The timing of the final reads
671	 * of the counters almost matches the timing of the initial reads,
672	 * so the main cause of inaccuracy is the varying latency from
673	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
674	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
675	 * maximum inaccuracy from this cause is < 10 usec on 486's.
676	 */
677	start_sec = sec;
678	for (;;) {
679		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
680			sec = rtcin(RTC_SEC);
681		count = getit();
682		if (count == 0 || count > timer0_max_count)
683			goto fail;
684		if (count > prev_count)
685			tot_count += prev_count - (count - timer0_max_count);
686		else
687			tot_count += prev_count - count;
688		prev_count = count;
689		if (sec != start_sec)
690			break;
691		if (--timeout == 0)
692			goto fail;
693	}
694
695#if defined(I586_CPU) || defined(I686_CPU)
696	/*
697	 * Read the cpu cycle counter.  The timing considerations are
698	 * similar to those for the i8254 clock.
699	 */
700	if (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686) {
701		set_i586_ctr_freq((u_int)rdtsc(), tot_count);
702		printf("i586 clock: %u Hz, ", i586_ctr_freq);
703	}
704#endif
705
706	printf("i8254 clock: %u Hz\n", tot_count);
707	return (tot_count);
708
709fail:
710	printf("failed, using default i8254 clock of %u Hz\n", timer_freq);
711	return (timer_freq);
712}
713#endif	/* !PC98 */
714
715static void
716set_timer_freq(u_int freq, int intr_freq)
717{
718	u_long ef;
719
720	ef = read_eflags();
721	disable_intr();
722	timer_freq = freq;
723	timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
724	timer0_overflow_threshold = timer0_max_count - TIMER0_LATCH_COUNT;
725	outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
726	outb(TIMER_CNTR0, timer0_max_count & 0xff);
727	outb(TIMER_CNTR0, timer0_max_count >> 8);
728	write_eflags(ef);
729}
730
731/*
732 * Initialize 8253 timer 0 early so that it can be used in DELAY().
733 * XXX initialization of other timers is unintentionally left blank.
734 */
735void
736startrtclock()
737{
738	u_int delta, freq;
739
740#ifdef PC98
741	findcpuspeed();
742#ifndef AUTO_CLOCK
743	if (pc98_machine_type & M_8M) {
744#ifndef	PC98_8M
745		printf("you must reconfig a kernel with \"PC98_8M\" option.\n");
746#endif
747	} else {
748#ifdef	PC98_8M
749		printf("You must reconfig a kernel without \"PC98_8M\" option.\n");
750#endif
751	}
752#else /* AUTO_CLOCK */
753	if (pc98_machine_type & M_8M)
754		timer_freq = 1996800L; /* 1.9968 MHz */
755	else
756		timer_freq = 2457600L; /* 2.4576 MHz */
757#endif /* AUTO_CLOCK */
758#endif /* PC98 */
759
760#ifndef PC98
761	writertc(RTC_STATUSA, rtc_statusa);
762	writertc(RTC_STATUSB, RTCSB_24HR);
763#endif
764
765#ifndef PC98
766	set_timer_freq(timer_freq, hz);
767	freq = calibrate_clocks();
768#ifdef CLK_CALIBRATION_LOOP
769	if (bootverbose) {
770		printf(
771		"Press a key on the console to abort clock calibration\n");
772		while (cncheckc() == -1)
773			calibrate_clocks();
774	}
775#endif
776
777	/*
778	 * Use the calibrated i8254 frequency if it seems reasonable.
779	 * Otherwise use the default, and don't use the calibrated i586
780	 * frequency.
781	 */
782	delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
783	if (delta < timer_freq / 100) {
784#ifndef CLK_USE_I8254_CALIBRATION
785		if (bootverbose)
786			printf(
787"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
788		freq = timer_freq;
789#endif
790		timer_freq = freq;
791	} else {
792		printf("%d Hz differs from default of %d Hz by more than 1%%\n",
793		       freq, timer_freq);
794#if defined(I586_CPU) || defined(I686_CPU)
795		i586_ctr_freq = 0;
796#endif
797	}
798#endif
799
800	set_timer_freq(timer_freq, hz);
801
802#if defined(I586_CPU) || defined(I686_CPU)
803#ifndef CLK_USE_I586_CALIBRATION
804	if (i586_ctr_freq != 0) {
805		if (bootverbose)
806			printf(
807"CLK_USE_I586_CALIBRATION not specified - using old calibration method\n");
808		i586_ctr_freq = 0;
809	}
810#endif
811	if (i586_ctr_freq == 0 &&
812	    (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686)) {
813		/*
814		 * Calibration of the i586 clock relative to the mc146818A
815		 * clock failed.  Do a less accurate calibration relative
816		 * to the i8254 clock.
817		 */
818		wrmsr(0x10, 0LL);	/* XXX */
819		DELAY(1000000);
820		set_i586_ctr_freq((u_int)rdtsc(), timer_freq);
821#ifdef CLK_USE_I586_CALIBRATION
822		printf("i586 clock: %u Hz\n", i586_ctr_freq);
823#endif
824	}
825#endif
826}
827
828#ifdef PC98
829static void
830rtc_serialcombit(int i)
831{
832	outb(IO_RTC, ((i&0x01)<<5)|0x07);
833	DELAY(1);
834	outb(IO_RTC, ((i&0x01)<<5)|0x17);
835	DELAY(1);
836	outb(IO_RTC, ((i&0x01)<<5)|0x07);
837	DELAY(1);
838}
839
840static void
841rtc_serialcom(int i)
842{
843	rtc_serialcombit(i&0x01);
844	rtc_serialcombit((i&0x02)>>1);
845	rtc_serialcombit((i&0x04)>>2);
846	rtc_serialcombit((i&0x08)>>3);
847	outb(IO_RTC, 0x07);
848	DELAY(1);
849	outb(IO_RTC, 0x0f);
850	DELAY(1);
851	outb(IO_RTC, 0x07);
852 	DELAY(1);
853}
854
855static void
856rtc_outb(int val)
857{
858	int s;
859	int sa = 0;
860
861	for (s=0;s<8;s++) {
862	    sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
863	    outb(IO_RTC, sa);		/* set DI & CLK 0 */
864	    DELAY(1);
865	    outb(IO_RTC, sa | 0x10);	/* CLK 1 */
866	    DELAY(1);
867	}
868	outb(IO_RTC, sa & 0xef);	/* CLK 0 */
869}
870
871static int
872rtc_inb(void)
873{
874	int s;
875	int sa = 0;
876
877	for (s=0;s<8;s++) {
878	    sa |= ((inb(0x33) & 0x01) << s);
879	    outb(IO_RTC, 0x17);	/* CLK 1 */
880	    DELAY(1);
881	    outb(IO_RTC, 0x07);	/* CLK 0 */
882	    DELAY(2);
883	}
884	return sa;
885}
886#endif /* PC-98 */
887
888/*
889 * Initialize the time of day register,	based on the time base which is, e.g.
890 * from	a filesystem.
891 */
892void
893inittodr(time_t base)
894{
895	unsigned long	sec, days;
896	int		yd;
897	int		year, month;
898	int		y, m, s;
899#ifdef PC98
900	int		second, min, hour;
901#endif
902
903	s = splclock();
904	time.tv_sec  = base;
905	time.tv_usec = 0;
906	splx(s);
907
908#ifdef PC98
909	rtc_serialcom(0x03);	/* Time Read */
910	rtc_serialcom(0x01);	/* Register shift command. */
911	DELAY(20);
912
913	second = bcd2bin(rtc_inb() & 0xff);	/* sec */
914	min = bcd2bin(rtc_inb() & 0xff);	/* min */
915	hour = bcd2bin(rtc_inb() & 0xff);	/* hour */
916	days = bcd2bin(rtc_inb() & 0xff) - 1;	/* date */
917
918	month = (rtc_inb() >> 4) & 0x0f;	/* month */
919	for (m = 1; m <	month; m++)
920		days +=	daysinmonth[m-1];
921	year = bcd2bin(rtc_inb() & 0xff) + 1900;	/* year */
922	/* 2000 year problem */
923	if (year < 1995)
924		year += 100;
925	if (year < 1970)
926		goto wrong_time;
927	for (y = 1970; y < year; y++)
928		days +=	DAYSPERYEAR + LEAPYEAR(y);
929	if ((month > 2)	&& LEAPYEAR(year))
930		days ++;
931	sec = ((( days * 24 +
932		  hour) * 60 +
933		  min) * 60 +
934		  second);
935	/* sec now contains the	number of seconds, since Jan 1 1970,
936	   in the local	time zone */
937#else	/* IBM-PC */
938	/* Look	if we have a RTC present and the time is valid */
939	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
940		goto wrong_time;
941
942	/* wait	for time update	to complete */
943	/* If RTCSA_TUP	is zero, we have at least 244us	before next update */
944	while (rtcin(RTC_STATUSA) & RTCSA_TUP);
945
946	days = 0;
947#ifdef USE_RTC_CENTURY
948	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY)	* 100;
949#else
950	year = readrtc(RTC_YEAR) + 1900;
951	if (year < 1970)
952		year += 100;
953#endif
954	if (year < 1970)
955		goto wrong_time;
956	month =	readrtc(RTC_MONTH);
957	for (m = 1; m <	month; m++)
958		days +=	daysinmonth[m-1];
959	if ((month > 2)	&& LEAPYEAR(year))
960		days ++;
961	days +=	readrtc(RTC_DAY) - 1;
962	yd = days;
963	for (y = 1970; y < year; y++)
964		days +=	DAYSPERYEAR + LEAPYEAR(y);
965	sec = ((( days * 24 +
966		  readrtc(RTC_HRS)) * 60 +
967		  readrtc(RTC_MIN)) * 60 +
968		  readrtc(RTC_SEC));
969	/* sec now contains the	number of seconds, since Jan 1 1970,
970	   in the local	time zone */
971#endif
972
973	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
974
975	s = splclock();
976	time.tv_sec = sec;
977	splx(s);
978	return;
979
980wrong_time:
981	printf("Invalid	time in	real time clock.\n");
982	printf("Check and reset	the date immediately!\n");
983}
984
985/*
986 * Write system	time back to RTC
987 */
988void
989resettodr()
990{
991	unsigned long	tm;
992	int		y, m, s;
993#ifdef PC98
994	int		wd;
995#endif
996
997	if (disable_rtc_set)
998		return;
999
1000	s = splclock();
1001	tm = time.tv_sec;
1002	splx(s);
1003
1004#ifdef PC98
1005	rtc_serialcom(0x01);	/* Register shift command. */
1006
1007	/* Calculate local time	to put in RTC */
1008
1009	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1010
1011	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1012	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1013	rtc_outb(bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1014
1015	/* We have now the days	since 01-01-1970 in tm */
1016	wd = (tm+4)%7;
1017	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1018	     tm >= m;
1019	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1020	     tm -= m;
1021
1022	/* Now we have the years in y and the day-of-the-year in tm */
1023	for (m = 0; ; m++) {
1024		int ml;
1025
1026		ml = daysinmonth[m];
1027		if (m == 1 && LEAPYEAR(y))
1028			ml++;
1029		if (tm < ml)
1030			break;
1031		tm -= ml;
1032	}
1033
1034	m++;
1035	rtc_outb(bin2bcd(tm+1));		/* Write back Day     */
1036	rtc_outb((m << 4) | wd);		/* Write back Month & Weekday  */
1037	rtc_outb(bin2bcd(y%100));		/* Write back Year    */
1038
1039	rtc_serialcom(0x02);	/* Time set & Counter hold command. */
1040	rtc_serialcom(0x00);	/* Register hold command. */
1041#else
1042	/* Disable RTC updates and interrupts. */
1043	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
1044
1045	/* Calculate local time	to put in RTC */
1046
1047	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1048
1049	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1050	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1051	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1052
1053	/* We have now the days	since 01-01-1970 in tm */
1054	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
1055	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1056	     tm >= m;
1057	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1058	     tm -= m;
1059
1060	/* Now we have the years in y and the day-of-the-year in tm */
1061	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
1062#ifdef USE_RTC_CENTURY
1063	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
1064#endif
1065	for (m = 0; ; m++) {
1066		int ml;
1067
1068		ml = daysinmonth[m];
1069		if (m == 1 && LEAPYEAR(y))
1070			ml++;
1071		if (tm < ml)
1072			break;
1073		tm -= ml;
1074	}
1075
1076	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1077	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1078
1079	/* Reenable RTC updates and interrupts. */
1080	writertc(RTC_STATUSB, rtc_statusb);
1081#endif
1082}
1083
1084/*
1085 * Start both clocks running.
1086 */
1087void
1088cpu_initclocks()
1089{
1090#ifndef PC98
1091	int diag;
1092
1093	if (statclock_disable) {
1094		/*
1095		 * The stat interrupt mask is different without the
1096		 * statistics clock.  Also, don't set the interrupt
1097		 * flag which would normally cause the RTC to generate
1098		 * interrupts.
1099		 */
1100		stat_imask = HWI_MASK | SWI_MASK;
1101		rtc_statusb = RTCSB_24HR;
1102	} else {
1103	        /* Setting stathz to nonzero early helps avoid races. */
1104		stathz = RTC_NOPROFRATE;
1105		profhz = RTC_PROFRATE;
1106        }
1107#endif
1108
1109	/* Finish initializing 8253 timer 0. */
1110	register_intr(/* irq */ 0, /* XXX id */ 0, /* flags */ 0,
1111		      /* XXX */ (inthand2_t *)clkintr, &clk_imask,
1112		      /* unit */ 0);
1113	INTREN(IRQ0);
1114#if defined(I586_CPU) || defined(I686_CPU)
1115	/*
1116	 * Finish setting up anti-jitter measures.
1117	 */
1118	if (i586_ctr_freq != 0)
1119		i586_ctr_bias = rdtsc();
1120#endif
1121
1122#ifndef PC98
1123	/* Initialize RTC. */
1124	writertc(RTC_STATUSA, rtc_statusa);
1125	writertc(RTC_STATUSB, RTCSB_24HR);
1126
1127	/* Don't bother enabling the statistics clock. */
1128	if (statclock_disable)
1129		return;
1130	diag = rtcin(RTC_DIAG);
1131	if (diag != 0)
1132		printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1133	register_intr(/* irq */ 8, /* XXX id */ 1, /* flags */ 0,
1134		      /* XXX */ (inthand2_t *)rtcintr, &stat_imask,
1135		      /* unit */ 0);
1136	INTREN(IRQ8);
1137	writertc(RTC_STATUSB, rtc_statusb);
1138#endif
1139}
1140
1141void
1142setstatclockrate(int newhz)
1143{
1144#ifndef PC98
1145	if (newhz == RTC_PROFRATE)
1146		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1147	else
1148		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1149	writertc(RTC_STATUSA, rtc_statusa);
1150#endif
1151}
1152
1153static int
1154sysctl_machdep_i8254_freq SYSCTL_HANDLER_ARGS
1155{
1156	int error;
1157	u_int freq;
1158
1159	/*
1160	 * Use `i8254' instead of `timer' in external names because `timer'
1161	 * is is too generic.  Should use it everywhere.
1162	 */
1163	freq = timer_freq;
1164	error = sysctl_handle_opaque(oidp, &freq, sizeof freq, req);
1165	if (error == 0 && req->newptr != NULL) {
1166		if (timer0_state != 0)
1167			return (EBUSY);	/* too much trouble to handle */
1168		set_timer_freq(freq, hz);
1169#if defined(I586_CPU) || defined(I686_CPU)
1170		set_i586_ctr_freq(i586_ctr_freq, timer_freq);
1171#endif
1172	}
1173	return (error);
1174}
1175
1176SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1177	    0, sizeof(u_int), sysctl_machdep_i8254_freq, "I", "");
1178
1179#if defined(I586_CPU) || defined(I686_CPU)
1180static void
1181set_i586_ctr_freq(u_int i586_freq, u_int i8254_freq)
1182{
1183	u_int comultiplier, multiplier;
1184	u_long ef;
1185
1186	if (i586_freq == 0) {
1187		i586_ctr_freq = i586_freq;
1188		return;
1189	}
1190	comultiplier = ((unsigned long long)i586_freq
1191			<< I586_CTR_COMULTIPLIER_SHIFT) / i8254_freq;
1192	multiplier = (1000000LL << I586_CTR_MULTIPLIER_SHIFT) / i586_freq;
1193	ef = read_eflags();
1194	disable_intr();
1195	i586_ctr_freq = i586_freq;
1196	i586_ctr_comultiplier = comultiplier;
1197	i586_ctr_multiplier = multiplier;
1198	write_eflags(ef);
1199}
1200
1201static int
1202sysctl_machdep_i586_freq SYSCTL_HANDLER_ARGS
1203{
1204	int error;
1205	u_int freq;
1206
1207	if (cpu_class != CPUCLASS_586 && cpu_class != CPUCLASS_686)
1208		return (EOPNOTSUPP);
1209	freq = i586_ctr_freq;
1210	error = sysctl_handle_opaque(oidp, &freq, sizeof freq, req);
1211	if (error == 0 && req->newptr != NULL)
1212		set_i586_ctr_freq(freq, timer_freq);
1213	return (error);
1214}
1215
1216SYSCTL_PROC(_machdep, OID_AUTO, i586_freq, CTLTYPE_INT | CTLFLAG_RW,
1217	    0, sizeof(u_int), sysctl_machdep_i586_freq, "I", "");
1218#endif /* defined(I586_CPU) || defined(I686_CPU) */
1219