pcrtc.c revision 110296
1/*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * William Jolitz and Don Ahn.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
37 * $FreeBSD: head/sys/pc98/cbus/pcrtc.c 110296 2003-02-03 17:53:15Z jake $
38 */
39
40/*
41 * Routines to handle clock hardware.
42 */
43
44/*
45 * inittodr, settodr and support routines written
46 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
47 *
48 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
49 */
50
51/*
52 * modified for PC98 by Kakefuda
53 */
54
55#include "opt_clock.h"
56#include "opt_isa.h"
57#include "opt_mca.h"
58
59#include <sys/param.h>
60#include <sys/stdint.h>
61#include <sys/systm.h>
62#include <sys/bus.h>
63#include <sys/lock.h>
64#include <sys/mutex.h>
65#include <sys/proc.h>
66#include <sys/time.h>
67#include <sys/timetc.h>
68#include <sys/kernel.h>
69#include <sys/sysctl.h>
70#include <sys/cons.h>
71#include <sys/power.h>
72
73#include <machine/clock.h>
74#include <machine/cputypes.h>
75#include <machine/frame.h>
76#include <machine/limits.h>
77#include <machine/md_var.h>
78#include <machine/psl.h>
79#ifdef APIC_IO
80#include <machine/segments.h>
81#endif
82#if defined(SMP) || defined(APIC_IO)
83#include <machine/smp.h>
84#endif /* SMP || APIC_IO */
85#include <machine/specialreg.h>
86
87#include <i386/isa/icu.h>
88#ifdef PC98
89#include <pc98/pc98/pc98.h>
90#include <pc98/pc98/pc98_machdep.h>
91#include <i386/isa/isa_device.h>
92#else
93#include <i386/isa/isa.h>
94#include <isa/rtc.h>
95#endif
96#ifdef DEV_ISA
97#include <isa/isavar.h>
98#endif
99#include <i386/isa/timerreg.h>
100
101#include <i386/isa/intr_machdep.h>
102
103#ifdef DEV_MCA
104#include <i386/isa/mca_machdep.h>
105#endif
106
107#ifdef APIC_IO
108#include <i386/isa/intr_machdep.h>
109/* The interrupt triggered by the 8254 (timer) chip */
110int apic_8254_intr;
111static u_long read_intr_count(int vec);
112static void setup_8254_mixed_mode(void);
113#endif
114
115/*
116 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
117 * can use a simple formula for leap years.
118 */
119#define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
120#define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
121
122#define	TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
123
124/*
125 * Time in timer cycles that it takes for microtime() to disable interrupts
126 * and latch the count.  microtime() currently uses "cli; outb ..." so it
127 * normally takes less than 2 timer cycles.  Add a few for cache misses.
128 * Add a few more to allow for latency in bogus calls to microtime() with
129 * interrupts already disabled.
130 */
131#define	TIMER0_LATCH_COUNT	20
132
133/*
134 * Maximum frequency that we are willing to allow for timer0.  Must be
135 * low enough to guarantee that the timer interrupt handler returns
136 * before the next timer interrupt.
137 */
138#define	TIMER0_MAX_FREQ		20000
139
140int	adjkerntz;		/* local offset from GMT in seconds */
141int	clkintr_pending;
142int	disable_rtc_set;	/* disable resettodr() if != 0 */
143int	pscnt = 1;
144int	psdiv = 1;
145int	statclock_disable;
146#ifndef TIMER_FREQ
147#ifdef PC98
148#define TIMER_FREQ   2457600
149#else /* IBM-PC */
150#define TIMER_FREQ   1193182
151#endif /* PC98 */
152#endif
153u_int	timer_freq = TIMER_FREQ;
154int	timer0_max_count;
155uint64_t	tsc_freq;
156int	tsc_is_broken;
157u_int	tsc_present;
158int	wall_cmos_clock;	/* wall CMOS clock assumed if != 0 */
159struct mtx clock_lock;
160
161static	int	beeping = 0;
162static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
163static	u_int	hardclock_max_count;
164static	u_int32_t i8254_lastcount;
165static	u_int32_t i8254_offset;
166static	int	i8254_ticked;
167/*
168 * XXX new_function and timer_func should not handle clockframes, but
169 * timer_func currently needs to hold hardclock to handle the
170 * timer0_state == 0 case.  We should use inthand_add()/inthand_remove()
171 * to switch between clkintr() and a slightly different timerintr().
172 */
173static	void	(*new_function)(struct clockframe *frame);
174static	u_int	new_rate;
175#ifndef PC98
176static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
177static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
178#endif
179static	u_int	timer0_prescaler_count;
180
181/* Values for timerX_state: */
182#define	RELEASED	0
183#define	RELEASE_PENDING	1
184#define	ACQUIRED	2
185#define	ACQUIRE_PENDING	3
186
187static	u_char	timer0_state;
188#ifdef	PC98
189static 	u_char	timer1_state;
190#endif
191static	u_char	timer2_state;
192static	void	(*timer_func)(struct clockframe *frame) = hardclock;
193#ifdef PC98
194static void rtc_serialcombit(int);
195static void rtc_serialcom(int);
196static int rtc_inb(void);
197static void rtc_outb(int);
198#endif
199
200static	unsigned i8254_get_timecount(struct timecounter *tc);
201static	unsigned tsc_get_timecount(struct timecounter *tc);
202static	void	set_timer_freq(u_int freq, int intr_freq);
203
204static struct timecounter tsc_timecounter = {
205	tsc_get_timecount,	/* get_timecount */
206	0,			/* no poll_pps */
207 	~0u,			/* counter_mask */
208	0,			/* frequency */
209	 "TSC"			/* name */
210};
211
212static struct timecounter i8254_timecounter = {
213	i8254_get_timecount,	/* get_timecount */
214	0,			/* no poll_pps */
215	~0u,			/* counter_mask */
216	0,			/* frequency */
217	"i8254"			/* name */
218};
219
220static void
221clkintr(struct clockframe frame)
222{
223
224	if (timecounter->tc_get_timecount == i8254_get_timecount) {
225		mtx_lock_spin(&clock_lock);
226		if (i8254_ticked)
227			i8254_ticked = 0;
228		else {
229			i8254_offset += timer0_max_count;
230			i8254_lastcount = 0;
231		}
232		clkintr_pending = 0;
233		mtx_unlock_spin(&clock_lock);
234	}
235	timer_func(&frame);
236#ifdef SMP
237	if (timer_func == hardclock)
238		forward_hardclock();
239#endif
240	switch (timer0_state) {
241
242	case RELEASED:
243		break;
244
245	case ACQUIRED:
246		if ((timer0_prescaler_count += timer0_max_count)
247		    >= hardclock_max_count) {
248			timer0_prescaler_count -= hardclock_max_count;
249			hardclock(&frame);
250#ifdef SMP
251			forward_hardclock();
252#endif
253		}
254		break;
255
256	case ACQUIRE_PENDING:
257		mtx_lock_spin(&clock_lock);
258		i8254_offset = i8254_get_timecount(NULL);
259		i8254_lastcount = 0;
260		timer0_max_count = TIMER_DIV(new_rate);
261		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
262		outb(TIMER_CNTR0, timer0_max_count & 0xff);
263		outb(TIMER_CNTR0, timer0_max_count >> 8);
264		mtx_unlock_spin(&clock_lock);
265		timer_func = new_function;
266		timer0_state = ACQUIRED;
267		break;
268
269	case RELEASE_PENDING:
270		if ((timer0_prescaler_count += timer0_max_count)
271		    >= hardclock_max_count) {
272			mtx_lock_spin(&clock_lock);
273			i8254_offset = i8254_get_timecount(NULL);
274			i8254_lastcount = 0;
275			timer0_max_count = hardclock_max_count;
276			outb(TIMER_MODE,
277			     TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
278			outb(TIMER_CNTR0, timer0_max_count & 0xff);
279			outb(TIMER_CNTR0, timer0_max_count >> 8);
280			mtx_unlock_spin(&clock_lock);
281			timer0_prescaler_count = 0;
282			timer_func = hardclock;
283			timer0_state = RELEASED;
284			hardclock(&frame);
285#ifdef SMP
286			forward_hardclock();
287#endif
288		}
289		break;
290	}
291#ifdef DEV_MCA
292	/* Reset clock interrupt by asserting bit 7 of port 0x61 */
293	if (MCA_system)
294		outb(0x61, inb(0x61) | 0x80);
295#endif
296}
297
298/*
299 * The acquire and release functions must be called at ipl >= splclock().
300 */
301int
302acquire_timer0(int rate, void (*function)(struct clockframe *frame))
303{
304	static int old_rate;
305
306	if (rate <= 0 || rate > TIMER0_MAX_FREQ)
307		return (-1);
308	switch (timer0_state) {
309
310	case RELEASED:
311		timer0_state = ACQUIRE_PENDING;
312		break;
313
314	case RELEASE_PENDING:
315		if (rate != old_rate)
316			return (-1);
317		/*
318		 * The timer has been released recently, but is being
319		 * re-acquired before the release completed.  In this
320		 * case, we simply reclaim it as if it had not been
321		 * released at all.
322		 */
323		timer0_state = ACQUIRED;
324		break;
325
326	default:
327		return (-1);	/* busy */
328	}
329	new_function = function;
330	old_rate = new_rate = rate;
331	return (0);
332}
333
334#ifdef PC98
335int
336acquire_timer1(int mode)
337{
338
339	if (timer1_state != RELEASED)
340		return (-1);
341	timer1_state = ACQUIRED;
342
343	/*
344	 * This access to the timer registers is as atomic as possible
345	 * because it is a single instruction.  We could do better if we
346	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
347	 * and this is probably good enough for timer2, so we aren't as
348	 * careful with it as with timer0.
349	 */
350	outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
351
352	return (0);
353}
354#endif
355
356int
357acquire_timer2(int mode)
358{
359
360	if (timer2_state != RELEASED)
361		return (-1);
362	timer2_state = ACQUIRED;
363
364	/*
365	 * This access to the timer registers is as atomic as possible
366	 * because it is a single instruction.  We could do better if we
367	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
368	 * and this is probably good enough for timer2, so we aren't as
369	 * careful with it as with timer0.
370	 */
371	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
372
373	return (0);
374}
375
376int
377release_timer0()
378{
379	switch (timer0_state) {
380
381	case ACQUIRED:
382		timer0_state = RELEASE_PENDING;
383		break;
384
385	case ACQUIRE_PENDING:
386		/* Nothing happened yet, release quickly. */
387		timer0_state = RELEASED;
388		break;
389
390	default:
391		return (-1);
392	}
393	return (0);
394}
395
396#ifdef PC98
397int
398release_timer1()
399{
400
401	if (timer1_state != ACQUIRED)
402		return (-1);
403	timer1_state = RELEASED;
404	outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
405	return (0);
406}
407#endif
408
409int
410release_timer2()
411{
412
413	if (timer2_state != ACQUIRED)
414		return (-1);
415	timer2_state = RELEASED;
416	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
417	return (0);
418}
419
420#ifndef PC98
421/*
422 * This routine receives statistical clock interrupts from the RTC.
423 * As explained above, these occur at 128 interrupts per second.
424 * When profiling, we receive interrupts at a rate of 1024 Hz.
425 *
426 * This does not actually add as much overhead as it sounds, because
427 * when the statistical clock is active, the hardclock driver no longer
428 * needs to keep (inaccurate) statistics on its own.  This decouples
429 * statistics gathering from scheduling interrupts.
430 *
431 * The RTC chip requires that we read status register C (RTC_INTR)
432 * to acknowledge an interrupt, before it will generate the next one.
433 * Under high interrupt load, rtcintr() can be indefinitely delayed and
434 * the clock can tick immediately after the read from RTC_INTR.  In this
435 * case, the mc146818A interrupt signal will not drop for long enough
436 * to register with the 8259 PIC.  If an interrupt is missed, the stat
437 * clock will halt, considerably degrading system performance.  This is
438 * why we use 'while' rather than a more straightforward 'if' below.
439 * Stat clock ticks can still be lost, causing minor loss of accuracy
440 * in the statistics, but the stat clock will no longer stop.
441 */
442static void
443rtcintr(struct clockframe frame)
444{
445	while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
446		if (profprocs != 0) {
447			if (--pscnt == 0)
448				pscnt = psdiv;
449			profclock(&frame);
450		}
451		if (pscnt == psdiv)
452			statclock(&frame);
453#ifdef SMP
454		forward_statclock();
455#endif
456	}
457}
458
459#include "opt_ddb.h"
460#ifdef DDB
461#include <ddb/ddb.h>
462
463DB_SHOW_COMMAND(rtc, rtc)
464{
465	printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
466	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
467	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
468	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
469}
470#endif /* DDB */
471#endif /* for PC98 */
472
473static int
474getit(void)
475{
476	int high, low;
477
478	mtx_lock_spin(&clock_lock);
479
480	/* Select timer0 and latch counter value. */
481	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
482
483	low = inb(TIMER_CNTR0);
484	high = inb(TIMER_CNTR0);
485
486	mtx_unlock_spin(&clock_lock);
487	return ((high << 8) | low);
488}
489
490/*
491 * Wait "n" microseconds.
492 * Relies on timer 1 counting down from (timer_freq / hz)
493 * Note: timer had better have been programmed before this is first used!
494 */
495void
496DELAY(int n)
497{
498	int delta, prev_tick, tick, ticks_left;
499
500#ifdef DELAYDEBUG
501	int getit_calls = 1;
502	int n1;
503	static int state = 0;
504
505	if (state == 0) {
506		state = 1;
507		for (n1 = 1; n1 <= 10000000; n1 *= 10)
508			DELAY(n1);
509		state = 2;
510	}
511	if (state == 1)
512		printf("DELAY(%d)...", n);
513#endif
514	/*
515	 * Guard against the timer being uninitialized if we are called
516	 * early for console i/o.
517	 */
518	if (timer0_max_count == 0)
519		set_timer_freq(timer_freq, hz);
520
521	/*
522	 * Read the counter first, so that the rest of the setup overhead is
523	 * counted.  Guess the initial overhead is 20 usec (on most systems it
524	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
525	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
526	 * multiplications and divisions to scale the count take a while).
527	 */
528	prev_tick = getit();
529	n -= 0;			/* XXX actually guess no initial overhead */
530	/*
531	 * Calculate (n * (timer_freq / 1e6)) without using floating point
532	 * and without any avoidable overflows.
533	 */
534	if (n <= 0)
535		ticks_left = 0;
536	else if (n < 256)
537		/*
538		 * Use fixed point to avoid a slow division by 1000000.
539		 * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
540		 * 2^15 is the first power of 2 that gives exact results
541		 * for n between 0 and 256.
542		 */
543		ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
544	else
545		/*
546		 * Don't bother using fixed point, although gcc-2.7.2
547		 * generates particularly poor code for the long long
548		 * division, since even the slow way will complete long
549		 * before the delay is up (unless we're interrupted).
550		 */
551		ticks_left = ((u_int)n * (long long)timer_freq + 999999)
552			     / 1000000;
553
554	while (ticks_left > 0) {
555		tick = getit();
556#ifdef DELAYDEBUG
557		++getit_calls;
558#endif
559		delta = prev_tick - tick;
560		prev_tick = tick;
561		if (delta < 0) {
562			delta += timer0_max_count;
563			/*
564			 * Guard against timer0_max_count being wrong.
565			 * This shouldn't happen in normal operation,
566			 * but it may happen if set_timer_freq() is
567			 * traced.
568			 */
569			if (delta < 0)
570				delta = 0;
571		}
572		ticks_left -= delta;
573	}
574#ifdef DELAYDEBUG
575	if (state == 1)
576		printf(" %d calls to getit() at %d usec each\n",
577		       getit_calls, (n + 5) / getit_calls);
578#endif
579}
580
581static void
582sysbeepstop(void *chan)
583{
584#ifdef PC98	/* PC98 */
585	outb(IO_PPI, inb(IO_PPI)|0x08);	/* disable counter1 output to speaker */
586	release_timer1();
587#else
588	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
589	release_timer2();
590#endif
591	beeping = 0;
592}
593
594int
595sysbeep(int pitch, int period)
596{
597	int x = splclock();
598
599#ifdef PC98
600	if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
601		if (!beeping) {
602			/* Something else owns it. */
603			splx(x);
604			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
605		}
606	disable_intr();
607	outb(0x3fdb, pitch);
608	outb(0x3fdb, (pitch>>8));
609	enable_intr();
610	if (!beeping) {
611		/* enable counter1 output to speaker */
612		outb(IO_PPI, (inb(IO_PPI) & 0xf7));
613		beeping = period;
614		timeout(sysbeepstop, (void *)NULL, period);
615	}
616#else
617	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
618		if (!beeping) {
619			/* Something else owns it. */
620			splx(x);
621			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
622		}
623	mtx_lock_spin(&clock_lock);
624	outb(TIMER_CNTR2, pitch);
625	outb(TIMER_CNTR2, (pitch>>8));
626	mtx_unlock_spin(&clock_lock);
627	if (!beeping) {
628		/* enable counter2 output to speaker */
629		outb(IO_PPI, inb(IO_PPI) | 3);
630		beeping = period;
631		timeout(sysbeepstop, (void *)NULL, period);
632	}
633#endif
634	splx(x);
635	return (0);
636}
637
638#ifndef PC98
639/*
640 * RTC support routines
641 */
642
643int
644rtcin(reg)
645	int reg;
646{
647	int s;
648	u_char val;
649
650	s = splhigh();
651	outb(IO_RTC, reg);
652	inb(0x84);
653	val = inb(IO_RTC + 1);
654	inb(0x84);
655	splx(s);
656	return (val);
657}
658
659static __inline void
660writertc(u_char reg, u_char val)
661{
662	int s;
663
664	s = splhigh();
665	inb(0x84);
666	outb(IO_RTC, reg);
667	inb(0x84);
668	outb(IO_RTC + 1, val);
669	inb(0x84);		/* XXX work around wrong order in rtcin() */
670	splx(s);
671}
672
673static __inline int
674readrtc(int port)
675{
676	return(bcd2bin(rtcin(port)));
677}
678#endif
679
680#ifdef PC98
681unsigned int delaycount;
682#define FIRST_GUESS	0x2000
683static void findcpuspeed(void)
684{
685	int i;
686	int remainder;
687
688	/* Put counter in count down mode */
689	outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
690	outb(TIMER_CNTR0, 0xff);
691	outb(TIMER_CNTR0, 0xff);
692	for (i = FIRST_GUESS; i; i--)
693		;
694	remainder = getit();
695	delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
696}
697#endif
698
699#ifdef PC98
700static u_int
701calibrate_clocks(void)
702{
703	int	timeout;
704	u_int	count, prev_count, tot_count;
705	u_short	sec, start_sec;
706
707	if (bootverbose)
708	        printf("Calibrating clock(s) ... ");
709	/* Check ARTIC. */
710	if (!(PC98_SYSTEM_PARAMETER(0x458) & 0x80) &&
711	    !(PC98_SYSTEM_PARAMETER(0x45b) & 0x04))
712		goto fail;
713	timeout = 100000000;
714
715	/* Read the ARTIC. */
716	sec = inw(0x5e);
717
718	/* Wait for the ARTIC to changes. */
719	start_sec = sec;
720	for (;;) {
721		sec = inw(0x5e);
722		if (sec != start_sec)
723			break;
724		if (--timeout == 0)
725			goto fail;
726	}
727	prev_count = getit();
728	if (prev_count == 0 || prev_count > timer0_max_count)
729		goto fail;
730	tot_count = 0;
731
732	if (tsc_present)
733		wrmsr(0x10, 0LL);	/* XXX 0x10 is the MSR for the TSC */
734	start_sec = sec;
735	for (;;) {
736		sec = inw(0x5e);
737		count = getit();
738		if (count == 0 || count > timer0_max_count)
739			goto fail;
740		if (count > prev_count)
741			tot_count += prev_count - (count - timer0_max_count);
742		else
743			tot_count += prev_count - count;
744		prev_count = count;
745		if ((sec == start_sec + 1200) ||
746		    (sec < start_sec &&
747		        (u_int)sec + 0x10000 == (u_int)start_sec + 1200))
748			break;
749		if (--timeout == 0)
750			goto fail;
751	}
752	/*
753	 * Read the cpu cycle counter.  The timing considerations are
754	 * similar to those for the i8254 clock.
755	 */
756	if (tsc_present)
757		tsc_freq = rdtsc();
758
759	if (bootverbose) {
760		if (tsc_present)
761		        printf("TSC clock: %ju Hz, ", (intmax_t)tsc_freq);
762	        printf("i8254 clock: %u Hz\n", tot_count);
763	}
764	return (tot_count);
765
766fail:
767	if (bootverbose)
768	        printf("failed, using default i8254 clock of %u Hz\n",
769		       timer_freq);
770	return (timer_freq);
771}
772#else
773static u_int
774calibrate_clocks(void)
775{
776	u_int64_t old_tsc;
777	u_int count, prev_count, tot_count;
778	int sec, start_sec, timeout;
779
780	if (bootverbose)
781	        printf("Calibrating clock(s) ... ");
782	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
783		goto fail;
784	timeout = 100000000;
785
786	/* Read the mc146818A seconds counter. */
787	for (;;) {
788		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
789			sec = rtcin(RTC_SEC);
790			break;
791		}
792		if (--timeout == 0)
793			goto fail;
794	}
795
796	/* Wait for the mC146818A seconds counter to change. */
797	start_sec = sec;
798	for (;;) {
799		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
800			sec = rtcin(RTC_SEC);
801			if (sec != start_sec)
802				break;
803		}
804		if (--timeout == 0)
805			goto fail;
806	}
807
808	/* Start keeping track of the i8254 counter. */
809	prev_count = getit();
810	if (prev_count == 0 || prev_count > timer0_max_count)
811		goto fail;
812	tot_count = 0;
813
814	if (tsc_present)
815		old_tsc = rdtsc();
816	else
817		old_tsc = 0;		/* shut up gcc */
818
819	/*
820	 * Wait for the mc146818A seconds counter to change.  Read the i8254
821	 * counter for each iteration since this is convenient and only
822	 * costs a few usec of inaccuracy. The timing of the final reads
823	 * of the counters almost matches the timing of the initial reads,
824	 * so the main cause of inaccuracy is the varying latency from
825	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
826	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
827	 * maximum inaccuracy from this cause is < 10 usec on 486's.
828	 */
829	start_sec = sec;
830	for (;;) {
831		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
832			sec = rtcin(RTC_SEC);
833		count = getit();
834		if (count == 0 || count > timer0_max_count)
835			goto fail;
836		if (count > prev_count)
837			tot_count += prev_count - (count - timer0_max_count);
838		else
839			tot_count += prev_count - count;
840		prev_count = count;
841		if (sec != start_sec)
842			break;
843		if (--timeout == 0)
844			goto fail;
845	}
846
847	/*
848	 * Read the cpu cycle counter.  The timing considerations are
849	 * similar to those for the i8254 clock.
850	 */
851	if (tsc_present)
852		tsc_freq = rdtsc() - old_tsc;
853
854	if (bootverbose) {
855		if (tsc_present)
856		        printf("TSC clock: %ju Hz, ", (intmax_t)tsc_freq);
857	        printf("i8254 clock: %u Hz\n", tot_count);
858	}
859	return (tot_count);
860
861fail:
862	if (bootverbose)
863	        printf("failed, using default i8254 clock of %u Hz\n",
864		       timer_freq);
865	return (timer_freq);
866}
867#endif	/* !PC98 */
868
869static void
870set_timer_freq(u_int freq, int intr_freq)
871{
872	int new_timer0_max_count;
873
874	mtx_lock_spin(&clock_lock);
875	timer_freq = freq;
876	new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
877	if (new_timer0_max_count != timer0_max_count) {
878		timer0_max_count = new_timer0_max_count;
879		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
880		outb(TIMER_CNTR0, timer0_max_count & 0xff);
881		outb(TIMER_CNTR0, timer0_max_count >> 8);
882	}
883	mtx_unlock_spin(&clock_lock);
884}
885
886static void
887i8254_restore(void)
888{
889
890	mtx_lock_spin(&clock_lock);
891	outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
892	outb(TIMER_CNTR0, timer0_max_count & 0xff);
893	outb(TIMER_CNTR0, timer0_max_count >> 8);
894	mtx_unlock_spin(&clock_lock);
895}
896
897#ifndef PC98
898static void
899rtc_restore(void)
900{
901
902	/* Restore all of the RTC's "status" (actually, control) registers. */
903	/* XXX locking is needed for RTC access. */
904	writertc(RTC_STATUSB, RTCSB_24HR);
905	writertc(RTC_STATUSA, rtc_statusa);
906	writertc(RTC_STATUSB, rtc_statusb);
907}
908#endif
909
910/*
911 * Restore all the timers non-atomically (XXX: should be atomically).
912 *
913 * This function is called from pmtimer_resume() to restore all the timers.
914 * This should not be necessary, but there are broken laptops that do not
915 * restore all the timers on resume.
916 */
917void
918timer_restore(void)
919{
920
921	i8254_restore();		/* restore timer_freq and hz */
922#ifndef PC98
923	rtc_restore();			/* reenable RTC interrupts */
924#endif
925}
926
927/*
928 * Initialize 8254 timer 0 early so that it can be used in DELAY().
929 * XXX initialization of other timers is unintentionally left blank.
930 */
931void
932startrtclock()
933{
934	u_int delta, freq;
935
936#ifdef PC98
937	findcpuspeed();
938	if (pc98_machine_type & M_8M)
939		timer_freq = 1996800L; /* 1.9968 MHz */
940	else
941		timer_freq = 2457600L; /* 2.4576 MHz */
942#endif /* PC98 */
943
944	if (cpu_feature & CPUID_TSC)
945		tsc_present = 1;
946	else
947		tsc_present = 0;
948
949#ifndef PC98
950	writertc(RTC_STATUSA, rtc_statusa);
951	writertc(RTC_STATUSB, RTCSB_24HR);
952#endif
953
954	set_timer_freq(timer_freq, hz);
955	freq = calibrate_clocks();
956#ifdef CLK_CALIBRATION_LOOP
957	if (bootverbose) {
958		printf(
959		"Press a key on the console to abort clock calibration\n");
960		while (cncheckc() == -1)
961			calibrate_clocks();
962	}
963#endif
964
965	/*
966	 * Use the calibrated i8254 frequency if it seems reasonable.
967	 * Otherwise use the default, and don't use the calibrated i586
968	 * frequency.
969	 */
970	delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
971	if (delta < timer_freq / 100) {
972#ifndef CLK_USE_I8254_CALIBRATION
973		if (bootverbose)
974			printf(
975"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
976		freq = timer_freq;
977#endif
978		timer_freq = freq;
979	} else {
980		if (bootverbose)
981			printf(
982		    "%d Hz differs from default of %d Hz by more than 1%%\n",
983			       freq, timer_freq);
984		tsc_freq = 0;
985	}
986
987	set_timer_freq(timer_freq, hz);
988	i8254_timecounter.tc_frequency = timer_freq;
989	tc_init(&i8254_timecounter);
990
991#ifndef CLK_USE_TSC_CALIBRATION
992	if (tsc_freq != 0) {
993		if (bootverbose)
994			printf(
995"CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
996		tsc_freq = 0;
997	}
998#endif
999	if (tsc_present && tsc_freq == 0) {
1000		/*
1001		 * Calibration of the i586 clock relative to the mc146818A
1002		 * clock failed.  Do a less accurate calibration relative
1003		 * to the i8254 clock.
1004		 */
1005		u_int64_t old_tsc = rdtsc();
1006
1007		DELAY(1000000);
1008		tsc_freq = rdtsc() - old_tsc;
1009#ifdef CLK_USE_TSC_CALIBRATION
1010		if (bootverbose)
1011			printf("TSC clock: %ju Hz (Method B)\n",
1012			    (intmax_t)tsc_freq);
1013#endif
1014	}
1015
1016#if !defined(SMP)
1017	/*
1018	 * We can not use the TSC in SMP mode, until we figure out a
1019	 * cheap (impossible), reliable and precise (yeah right!)  way
1020	 * to synchronize the TSCs of all the CPUs.
1021	 * Curse Intel for leaving the counter out of the I/O APIC.
1022	 */
1023
1024	/*
1025	 * We can not use the TSC if we support APM. Precise timekeeping
1026	 * on an APM'ed machine is at best a fools pursuit, since
1027	 * any and all of the time spent in various SMM code can't
1028	 * be reliably accounted for.  Reading the RTC is your only
1029	 * source of reliable time info.  The i8254 looses too of course
1030	 * but we need to have some kind of time...
1031	 * We don't know at this point whether APM is going to be used
1032	 * or not, nor when it might be activated.  Play it safe.
1033	 */
1034	if (power_pm_get_type() == POWER_PM_TYPE_APM) {
1035		if (bootverbose)
1036			printf("TSC initialization skipped: APM enabled.\n");
1037		return;
1038	}
1039
1040	if (tsc_present && tsc_freq != 0 && !tsc_is_broken) {
1041		tsc_timecounter.tc_frequency = tsc_freq;
1042		tc_init(&tsc_timecounter);
1043	}
1044
1045#endif /* !defined(SMP) */
1046}
1047
1048#ifdef PC98
1049static void
1050rtc_serialcombit(int i)
1051{
1052	outb(IO_RTC, ((i&0x01)<<5)|0x07);
1053	DELAY(1);
1054	outb(IO_RTC, ((i&0x01)<<5)|0x17);
1055	DELAY(1);
1056	outb(IO_RTC, ((i&0x01)<<5)|0x07);
1057	DELAY(1);
1058}
1059
1060static void
1061rtc_serialcom(int i)
1062{
1063	rtc_serialcombit(i&0x01);
1064	rtc_serialcombit((i&0x02)>>1);
1065	rtc_serialcombit((i&0x04)>>2);
1066	rtc_serialcombit((i&0x08)>>3);
1067	outb(IO_RTC, 0x07);
1068	DELAY(1);
1069	outb(IO_RTC, 0x0f);
1070	DELAY(1);
1071	outb(IO_RTC, 0x07);
1072 	DELAY(1);
1073}
1074
1075static void
1076rtc_outb(int val)
1077{
1078	int s;
1079	int sa = 0;
1080
1081	for (s=0;s<8;s++) {
1082	    sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
1083	    outb(IO_RTC, sa);		/* set DI & CLK 0 */
1084	    DELAY(1);
1085	    outb(IO_RTC, sa | 0x10);	/* CLK 1 */
1086	    DELAY(1);
1087	}
1088	outb(IO_RTC, sa & 0xef);	/* CLK 0 */
1089}
1090
1091static int
1092rtc_inb(void)
1093{
1094	int s;
1095	int sa = 0;
1096
1097	for (s=0;s<8;s++) {
1098	    sa |= ((inb(0x33) & 0x01) << s);
1099	    outb(IO_RTC, 0x17);	/* CLK 1 */
1100	    DELAY(1);
1101	    outb(IO_RTC, 0x07);	/* CLK 0 */
1102	    DELAY(2);
1103	}
1104	return sa;
1105}
1106#endif /* PC-98 */
1107
1108/*
1109 * Initialize the time of day register, based on the time base which is, e.g.
1110 * from a filesystem.
1111 */
1112void
1113inittodr(time_t base)
1114{
1115	unsigned long	sec, days;
1116	int		year, month;
1117	int		y, m, s;
1118	struct timespec ts;
1119#ifdef PC98
1120	int		second, min, hour;
1121#endif
1122
1123	if (base) {
1124		s = splclock();
1125		ts.tv_sec = base;
1126		ts.tv_nsec = 0;
1127		tc_setclock(&ts);
1128		splx(s);
1129	}
1130
1131#ifdef PC98
1132	rtc_serialcom(0x03);	/* Time Read */
1133	rtc_serialcom(0x01);	/* Register shift command. */
1134	DELAY(20);
1135
1136	second = bcd2bin(rtc_inb() & 0xff);	/* sec */
1137	min = bcd2bin(rtc_inb() & 0xff);	/* min */
1138	hour = bcd2bin(rtc_inb() & 0xff);	/* hour */
1139	days = bcd2bin(rtc_inb() & 0xff) - 1;	/* date */
1140
1141	month = (rtc_inb() >> 4) & 0x0f;	/* month */
1142	for (m = 1; m <	month; m++)
1143		days +=	daysinmonth[m-1];
1144	year = bcd2bin(rtc_inb() & 0xff) + 1900;	/* year */
1145	/* 2000 year problem */
1146	if (year < 1995)
1147		year += 100;
1148	if (year < 1970)
1149		goto wrong_time;
1150	for (y = 1970; y < year; y++)
1151		days +=	DAYSPERYEAR + LEAPYEAR(y);
1152	if ((month > 2)	&& LEAPYEAR(year))
1153		days ++;
1154	sec = ((( days * 24 +
1155		  hour) * 60 +
1156		  min) * 60 +
1157		  second);
1158	/* sec now contains the	number of seconds, since Jan 1 1970,
1159	   in the local	time zone */
1160
1161	s = splhigh();
1162#else	/* IBM-PC */
1163	/* Look if we have a RTC present and the time is valid */
1164	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
1165		goto wrong_time;
1166
1167	/* wait for time update to complete */
1168	/* If RTCSA_TUP is zero, we have at least 244us before next update */
1169	s = splhigh();
1170	while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
1171		splx(s);
1172		s = splhigh();
1173	}
1174
1175	days = 0;
1176#ifdef USE_RTC_CENTURY
1177	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
1178#else
1179	year = readrtc(RTC_YEAR) + 1900;
1180	if (year < 1970)
1181		year += 100;
1182#endif
1183	if (year < 1970) {
1184		splx(s);
1185		goto wrong_time;
1186	}
1187	month = readrtc(RTC_MONTH);
1188	for (m = 1; m < month; m++)
1189		days += daysinmonth[m-1];
1190	if ((month > 2) && LEAPYEAR(year))
1191		days ++;
1192	days += readrtc(RTC_DAY) - 1;
1193	for (y = 1970; y < year; y++)
1194		days += DAYSPERYEAR + LEAPYEAR(y);
1195	sec = ((( days * 24 +
1196		  readrtc(RTC_HRS)) * 60 +
1197		  readrtc(RTC_MIN)) * 60 +
1198		  readrtc(RTC_SEC));
1199	/* sec now contains the number of seconds, since Jan 1 1970,
1200	   in the local time zone */
1201#endif
1202
1203	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1204
1205	y = time_second - sec;
1206	if (y <= -2 || y >= 2) {
1207		/* badly off, adjust it */
1208		ts.tv_sec = sec;
1209		ts.tv_nsec = 0;
1210		tc_setclock(&ts);
1211	}
1212	splx(s);
1213	return;
1214
1215wrong_time:
1216	printf("Invalid time in real time clock.\n");
1217	printf("Check and reset the date immediately!\n");
1218}
1219
1220/*
1221 * Write system time back to RTC
1222 */
1223void
1224resettodr()
1225{
1226	unsigned long	tm;
1227	int		y, m, s;
1228#ifdef PC98
1229	int		wd;
1230#endif
1231
1232	if (disable_rtc_set)
1233		return;
1234
1235	s = splclock();
1236	tm = time_second;
1237	splx(s);
1238
1239#ifdef PC98
1240	rtc_serialcom(0x01);	/* Register shift command. */
1241
1242	/* Calculate local time	to put in RTC */
1243
1244	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1245
1246	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1247	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1248	rtc_outb(bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1249
1250	/* We have now the days	since 01-01-1970 in tm */
1251	wd = (tm+4)%7;
1252	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1253	     tm >= m;
1254	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1255	     tm -= m;
1256
1257	/* Now we have the years in y and the day-of-the-year in tm */
1258	for (m = 0; ; m++) {
1259		int ml;
1260
1261		ml = daysinmonth[m];
1262		if (m == 1 && LEAPYEAR(y))
1263			ml++;
1264		if (tm < ml)
1265			break;
1266		tm -= ml;
1267	}
1268
1269	m++;
1270	rtc_outb(bin2bcd(tm+1));		/* Write back Day     */
1271	rtc_outb((m << 4) | wd);		/* Write back Month & Weekday  */
1272	rtc_outb(bin2bcd(y%100));		/* Write back Year    */
1273
1274	rtc_serialcom(0x02);	/* Time set & Counter hold command. */
1275	rtc_serialcom(0x00);	/* Register hold command. */
1276#else
1277	/* Disable RTC updates and interrupts. */
1278	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
1279
1280	/* Calculate local time to put in RTC */
1281
1282	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1283
1284	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1285	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1286	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1287
1288	/* We have now the days since 01-01-1970 in tm */
1289	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
1290	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1291	     tm >= m;
1292	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1293	     tm -= m;
1294
1295	/* Now we have the years in y and the day-of-the-year in tm */
1296	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
1297#ifdef USE_RTC_CENTURY
1298	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
1299#endif
1300	for (m = 0; ; m++) {
1301		int ml;
1302
1303		ml = daysinmonth[m];
1304		if (m == 1 && LEAPYEAR(y))
1305			ml++;
1306		if (tm < ml)
1307			break;
1308		tm -= ml;
1309	}
1310
1311	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1312	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1313
1314	/* Reenable RTC updates and interrupts. */
1315	writertc(RTC_STATUSB, rtc_statusb);
1316#endif /* PC98 */
1317}
1318
1319
1320/*
1321 * Start both clocks running.
1322 */
1323void
1324cpu_initclocks()
1325{
1326#ifndef PC98
1327	int diag;
1328#endif
1329#ifdef APIC_IO
1330	int apic_8254_trial;
1331	void *clkdesc;
1332#endif /* APIC_IO */
1333	register_t crit;
1334
1335#ifndef PC98
1336	if (statclock_disable) {
1337		/*
1338		 * The stat interrupt mask is different without the
1339		 * statistics clock.  Also, don't set the interrupt
1340		 * flag which would normally cause the RTC to generate
1341		 * interrupts.
1342		 */
1343		rtc_statusb = RTCSB_24HR;
1344	} else {
1345	        /* Setting stathz to nonzero early helps avoid races. */
1346		stathz = RTC_NOPROFRATE;
1347		profhz = RTC_PROFRATE;
1348        }
1349#endif
1350
1351	/* Finish initializing 8253 timer 0. */
1352#ifdef APIC_IO
1353
1354	apic_8254_intr = isa_apic_irq(0);
1355	apic_8254_trial = 0;
1356	if (apic_8254_intr >= 0 ) {
1357		if (apic_int_type(0, 0) == 3)
1358			apic_8254_trial = 1;
1359	} else {
1360		/* look for ExtInt on pin 0 */
1361		if (apic_int_type(0, 0) == 3) {
1362			apic_8254_intr = apic_irq(0, 0);
1363			setup_8254_mixed_mode();
1364		} else
1365			panic("APIC_IO: Cannot route 8254 interrupt to CPU");
1366	}
1367
1368	inthand_add("clk", apic_8254_intr, (driver_intr_t *)clkintr, NULL,
1369	    INTR_TYPE_CLK | INTR_FAST, &clkdesc);
1370	crit = intr_disable();
1371	mtx_lock_spin(&icu_lock);
1372	INTREN(1 << apic_8254_intr);
1373	mtx_unlock_spin(&icu_lock);
1374	intr_restore(crit);
1375
1376#else /* APIC_IO */
1377
1378	/*
1379	 * XXX Check the priority of this interrupt handler.  I
1380	 * couldn't find anything suitable in the BSD/OS code (grog,
1381	 * 19 July 2000).
1382	 */
1383	inthand_add("clk", 0, (driver_intr_t *)clkintr, NULL,
1384	    INTR_TYPE_CLK | INTR_FAST, NULL);
1385	crit = intr_disable();
1386	mtx_lock_spin(&icu_lock);
1387	INTREN(IRQ0);
1388	mtx_unlock_spin(&icu_lock);
1389	intr_restore(crit);
1390
1391#endif /* APIC_IO */
1392
1393#ifndef PC98
1394	/* Initialize RTC. */
1395	writertc(RTC_STATUSA, rtc_statusa);
1396	writertc(RTC_STATUSB, RTCSB_24HR);
1397
1398	/* Don't bother enabling the statistics clock. */
1399	if (statclock_disable)
1400		return;
1401	diag = rtcin(RTC_DIAG);
1402	if (diag != 0)
1403		printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1404#endif /* !PC98 */
1405
1406#ifndef PC98
1407#ifdef APIC_IO
1408	if (isa_apic_irq(8) != 8)
1409		panic("APIC RTC != 8");
1410#endif /* APIC_IO */
1411
1412	inthand_add("rtc", 8, (driver_intr_t *)rtcintr, NULL,
1413	    INTR_TYPE_CLK | INTR_FAST, NULL);
1414
1415	crit = intr_disable();
1416	mtx_lock_spin(&icu_lock);
1417#ifdef APIC_IO
1418	INTREN(APIC_IRQ8);
1419#else
1420	INTREN(IRQ8);
1421#endif /* APIC_IO */
1422	mtx_unlock_spin(&icu_lock);
1423	intr_restore(crit);
1424
1425	writertc(RTC_STATUSB, rtc_statusb);
1426#endif /* PC98 */
1427
1428#ifdef APIC_IO
1429	if (apic_8254_trial) {
1430
1431		printf("APIC_IO: Testing 8254 interrupt delivery\n");
1432		while (read_intr_count(8) < 6)
1433			;	/* nothing */
1434		if (read_intr_count(apic_8254_intr) < 3) {
1435			/*
1436			 * The MP table is broken.
1437			 * The 8254 was not connected to the specified pin
1438			 * on the IO APIC.
1439			 * Workaround: Limited variant of mixed mode.
1440			 */
1441
1442			crit = intr_disable();
1443			mtx_lock_spin(&icu_lock);
1444			INTRDIS(1 << apic_8254_intr);
1445			mtx_unlock_spin(&icu_lock);
1446			intr_restore(crit);
1447			inthand_remove(clkdesc);
1448			printf("APIC_IO: Broken MP table detected: "
1449			       "8254 is not connected to "
1450			       "IOAPIC #%d intpin %d\n",
1451			       int_to_apicintpin[apic_8254_intr].ioapic,
1452			       int_to_apicintpin[apic_8254_intr].int_pin);
1453			/*
1454			 * Revoke current ISA IRQ 0 assignment and
1455			 * configure a fallback interrupt routing from
1456			 * the 8254 Timer via the 8259 PIC to the
1457			 * an ExtInt interrupt line on IOAPIC #0 intpin 0.
1458			 * We reuse the low level interrupt handler number.
1459			 */
1460			if (apic_irq(0, 0) < 0) {
1461				revoke_apic_irq(apic_8254_intr);
1462				assign_apic_irq(0, 0, apic_8254_intr);
1463			}
1464			apic_8254_intr = apic_irq(0, 0);
1465			setup_8254_mixed_mode();
1466			inthand_add("clk", apic_8254_intr,
1467				    (driver_intr_t *)clkintr, NULL,
1468				    INTR_TYPE_CLK | INTR_FAST, NULL);
1469			crit = intr_disable();
1470			mtx_lock_spin(&icu_lock);
1471			INTREN(1 << apic_8254_intr);
1472			mtx_unlock_spin(&icu_lock);
1473			intr_restore(crit);
1474		}
1475
1476	}
1477	if (apic_int_type(0, 0) != 3 ||
1478	    int_to_apicintpin[apic_8254_intr].ioapic != 0 ||
1479	    int_to_apicintpin[apic_8254_intr].int_pin != 0)
1480		printf("APIC_IO: routing 8254 via IOAPIC #%d intpin %d\n",
1481		       int_to_apicintpin[apic_8254_intr].ioapic,
1482		       int_to_apicintpin[apic_8254_intr].int_pin);
1483	else
1484		printf("APIC_IO: "
1485		       "routing 8254 via 8259 and IOAPIC #0 intpin 0\n");
1486#endif
1487
1488}
1489
1490#ifdef APIC_IO
1491static u_long
1492read_intr_count(int vec)
1493{
1494	u_long *up;
1495	up = intr_countp[vec];
1496	if (up)
1497		return *up;
1498	return 0UL;
1499}
1500
1501static void
1502setup_8254_mixed_mode()
1503{
1504	/*
1505	 * Allow 8254 timer to INTerrupt 8259:
1506	 *  re-initialize master 8259:
1507	 *   reset; prog 4 bytes, single ICU, edge triggered
1508	 */
1509	outb(IO_ICU1, 0x13);
1510#ifdef PC98
1511	outb(IO_ICU1 + 2, NRSVIDT);	/* start vector (unused) */
1512	outb(IO_ICU1 + 2, 0x00);	/* ignore slave */
1513	outb(IO_ICU1 + 2, 0x03);	/* auto EOI, 8086 */
1514	outb(IO_ICU1 + 2, 0xfe);	/* unmask INT0 */
1515#else
1516	outb(IO_ICU1 + 1, NRSVIDT);	/* start vector (unused) */
1517	outb(IO_ICU1 + 1, 0x00);	/* ignore slave */
1518	outb(IO_ICU1 + 1, 0x03);	/* auto EOI, 8086 */
1519	outb(IO_ICU1 + 1, 0xfe);	/* unmask INT0 */
1520#endif
1521
1522	/* program IO APIC for type 3 INT on INT0 */
1523	if (ext_int_setup(0, 0) < 0)
1524		panic("8254 redirect via APIC pin0 impossible!");
1525}
1526#endif
1527
1528void
1529cpu_startprofclock(void)
1530{
1531#ifndef PC98
1532	if (newhz == RTC_PROFRATE)
1533		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1534	else
1535		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1536	writertc(RTC_STATUSA, rtc_statusa);
1537#endif
1538}
1539
1540void
1541cpu_stopprofclock(void)
1542{
1543}
1544
1545static int
1546sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
1547{
1548	int error;
1549	u_int freq;
1550
1551	/*
1552	 * Use `i8254' instead of `timer' in external names because `timer'
1553	 * is is too generic.  Should use it everywhere.
1554	 */
1555	freq = timer_freq;
1556	error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1557	if (error == 0 && req->newptr != NULL) {
1558		if (timer0_state != RELEASED)
1559			return (EBUSY);	/* too much trouble to handle */
1560		set_timer_freq(freq, hz);
1561		i8254_timecounter.tc_frequency = freq;
1562	}
1563	return (error);
1564}
1565
1566SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1567    0, sizeof(u_int), sysctl_machdep_i8254_freq, "IU", "");
1568
1569static int
1570sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
1571{
1572	int error;
1573	uint64_t freq;
1574
1575	if (tsc_timecounter.tc_frequency == 0)
1576		return (EOPNOTSUPP);
1577	freq = tsc_freq;
1578	error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1579	if (error == 0 && req->newptr != NULL) {
1580		tsc_freq = freq;
1581		tsc_timecounter.tc_frequency = tsc_freq;
1582	}
1583	return (error);
1584}
1585
1586SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_QUAD | CTLFLAG_RW,
1587    0, sizeof(u_int), sysctl_machdep_tsc_freq, "IU", "");
1588
1589static unsigned
1590i8254_get_timecount(struct timecounter *tc)
1591{
1592	u_int count;
1593	u_int high, low;
1594	u_int eflags;
1595
1596	eflags = read_eflags();
1597	mtx_lock_spin(&clock_lock);
1598
1599	/* Select timer0 and latch counter value. */
1600	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
1601
1602	low = inb(TIMER_CNTR0);
1603	high = inb(TIMER_CNTR0);
1604	count = timer0_max_count - ((high << 8) | low);
1605	if (count < i8254_lastcount ||
1606	    (!i8254_ticked && (clkintr_pending ||
1607	    ((count < 20 || (!(eflags & PSL_I) && count < timer0_max_count / 2u)) &&
1608#ifdef APIC_IO
1609#define	lapic_irr1	((volatile u_int *)&lapic)[0x210 / 4]	/* XXX XXX */
1610	    /* XXX this assumes that apic_8254_intr is < 24. */
1611	    (lapic_irr1 & (1 << apic_8254_intr))))
1612#else
1613	    (inb(IO_ICU1) & 1)))
1614#endif
1615	    )) {
1616		i8254_ticked = 1;
1617		i8254_offset += timer0_max_count;
1618	}
1619	i8254_lastcount = count;
1620	count += i8254_offset;
1621	mtx_unlock_spin(&clock_lock);
1622	return (count);
1623}
1624
1625static unsigned
1626tsc_get_timecount(struct timecounter *tc)
1627{
1628	return (rdtsc());
1629}
1630
1631#ifdef DEV_ISA
1632/*
1633 * Attach to the ISA PnP descriptors for the timer and realtime clock.
1634 */
1635static struct isa_pnp_id attimer_ids[] = {
1636	{ 0x0001d041 /* PNP0100 */, "AT timer" },
1637	{ 0x000bd041 /* PNP0B00 */, "AT realtime clock" },
1638	{ 0 }
1639};
1640
1641static int
1642attimer_probe(device_t dev)
1643{
1644	int result;
1645
1646	if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids)) <= 0)
1647		device_quiet(dev);
1648	return(result);
1649}
1650
1651static int
1652attimer_attach(device_t dev)
1653{
1654	return(0);
1655}
1656
1657static device_method_t attimer_methods[] = {
1658	/* Device interface */
1659	DEVMETHOD(device_probe,		attimer_probe),
1660	DEVMETHOD(device_attach,	attimer_attach),
1661	DEVMETHOD(device_detach,	bus_generic_detach),
1662	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1663	DEVMETHOD(device_suspend,	bus_generic_suspend),	/* XXX stop statclock? */
1664	DEVMETHOD(device_resume,	bus_generic_resume),	/* XXX restart statclock? */
1665	{ 0, 0 }
1666};
1667
1668static driver_t attimer_driver = {
1669	"attimer",
1670	attimer_methods,
1671	1,		/* no softc */
1672};
1673
1674static devclass_t attimer_devclass;
1675
1676DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
1677#ifndef PC98
1678DRIVER_MODULE(attimer, acpi, attimer_driver, attimer_devclass, 0, 0);
1679#endif
1680#endif /* DEV_ISA */
1681