ip_fw_dynamic.c revision 250760
1/*-
2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: stable/9/sys/netpfil/ipfw/ip_fw_dynamic.c 250760 2013-05-18 05:31:17Z melifaro $");
28
29#define        DEB(x)
30#define        DDB(x) x
31
32/*
33 * Dynamic rule support for ipfw
34 */
35
36#include "opt_ipfw.h"
37#include "opt_inet.h"
38#ifndef INET
39#error IPFIREWALL requires INET.
40#endif /* INET */
41#include "opt_inet6.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#include <sys/kernel.h>
48#include <sys/lock.h>
49#include <sys/socket.h>
50#include <sys/sysctl.h>
51#include <sys/syslog.h>
52#include <net/ethernet.h> /* for ETHERTYPE_IP */
53#include <net/if.h>
54#include <net/vnet.h>
55
56#include <netinet/in.h>
57#include <netinet/ip.h>
58#include <netinet/ip_var.h>	/* ip_defttl */
59#include <netinet/ip_fw.h>
60#include <netinet/tcp_var.h>
61#include <netinet/udp.h>
62
63#include <netinet/ip6.h>	/* IN6_ARE_ADDR_EQUAL */
64#ifdef INET6
65#include <netinet6/in6_var.h>
66#include <netinet6/ip6_var.h>
67#endif
68
69#include <netpfil/ipfw/ip_fw_private.h>
70
71#include <machine/in_cksum.h>	/* XXX for in_cksum */
72
73#ifdef MAC
74#include <security/mac/mac_framework.h>
75#endif
76
77/*
78 * Description of dynamic rules.
79 *
80 * Dynamic rules are stored in lists accessed through a hash table
81 * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
82 * be modified through the sysctl variable dyn_buckets which is
83 * updated when the table becomes empty.
84 *
85 * XXX currently there is only one list, ipfw_dyn.
86 *
87 * When a packet is received, its address fields are first masked
88 * with the mask defined for the rule, then hashed, then matched
89 * against the entries in the corresponding list.
90 * Dynamic rules can be used for different purposes:
91 *  + stateful rules;
92 *  + enforcing limits on the number of sessions;
93 *  + in-kernel NAT (not implemented yet)
94 *
95 * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
96 * measured in seconds and depending on the flags.
97 *
98 * The total number of dynamic rules is equal to UMA zone items count.
99 * The max number of dynamic rules is dyn_max. When we reach
100 * the maximum number of rules we do not create anymore. This is
101 * done to avoid consuming too much memory, but also too much
102 * time when searching on each packet (ideally, we should try instead
103 * to put a limit on the length of the list on each bucket...).
104 *
105 * Each dynamic rule holds a pointer to the parent ipfw rule so
106 * we know what action to perform. Dynamic rules are removed when
107 * the parent rule is deleted. XXX we should make them survive.
108 *
109 * There are some limitations with dynamic rules -- we do not
110 * obey the 'randomized match', and we do not do multiple
111 * passes through the firewall. XXX check the latter!!!
112 */
113
114struct ipfw_dyn_bucket {
115	struct mtx	mtx;		/* Bucket protecting lock */
116	ipfw_dyn_rule	*head;		/* Pointer to first rule */
117};
118
119/*
120 * Static variables followed by global ones
121 */
122static VNET_DEFINE(struct ipfw_dyn_bucket *, ipfw_dyn_v);
123static VNET_DEFINE(u_int32_t, dyn_buckets_max);
124static VNET_DEFINE(u_int32_t, curr_dyn_buckets);
125static VNET_DEFINE(struct callout, ipfw_timeout);
126#define	V_ipfw_dyn_v			VNET(ipfw_dyn_v)
127#define	V_dyn_buckets_max		VNET(dyn_buckets_max)
128#define	V_curr_dyn_buckets		VNET(curr_dyn_buckets)
129#define V_ipfw_timeout                  VNET(ipfw_timeout)
130
131static VNET_DEFINE(uma_zone_t, ipfw_dyn_rule_zone);
132#define	V_ipfw_dyn_rule_zone		VNET(ipfw_dyn_rule_zone)
133
134#define	IPFW_BUCK_LOCK_INIT(b)	\
135	mtx_init(&(b)->mtx, "IPFW dynamic bucket", NULL, MTX_DEF)
136#define	IPFW_BUCK_LOCK_DESTROY(b)	\
137	mtx_destroy(&(b)->mtx)
138#define	IPFW_BUCK_LOCK(i)	mtx_lock(&V_ipfw_dyn_v[(i)].mtx)
139#define	IPFW_BUCK_UNLOCK(i)	mtx_unlock(&V_ipfw_dyn_v[(i)].mtx)
140#define	IPFW_BUCK_ASSERT(i)	mtx_assert(&V_ipfw_dyn_v[(i)].mtx, MA_OWNED)
141
142/*
143 * Timeouts for various events in handing dynamic rules.
144 */
145static VNET_DEFINE(u_int32_t, dyn_ack_lifetime);
146static VNET_DEFINE(u_int32_t, dyn_syn_lifetime);
147static VNET_DEFINE(u_int32_t, dyn_fin_lifetime);
148static VNET_DEFINE(u_int32_t, dyn_rst_lifetime);
149static VNET_DEFINE(u_int32_t, dyn_udp_lifetime);
150static VNET_DEFINE(u_int32_t, dyn_short_lifetime);
151
152#define	V_dyn_ack_lifetime		VNET(dyn_ack_lifetime)
153#define	V_dyn_syn_lifetime		VNET(dyn_syn_lifetime)
154#define	V_dyn_fin_lifetime		VNET(dyn_fin_lifetime)
155#define	V_dyn_rst_lifetime		VNET(dyn_rst_lifetime)
156#define	V_dyn_udp_lifetime		VNET(dyn_udp_lifetime)
157#define	V_dyn_short_lifetime		VNET(dyn_short_lifetime)
158
159/*
160 * Keepalives are sent if dyn_keepalive is set. They are sent every
161 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
162 * seconds of lifetime of a rule.
163 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
164 * than dyn_keepalive_period.
165 */
166
167static VNET_DEFINE(u_int32_t, dyn_keepalive_interval);
168static VNET_DEFINE(u_int32_t, dyn_keepalive_period);
169static VNET_DEFINE(u_int32_t, dyn_keepalive);
170static VNET_DEFINE(time_t, dyn_keepalive_last);
171
172#define	V_dyn_keepalive_interval	VNET(dyn_keepalive_interval)
173#define	V_dyn_keepalive_period		VNET(dyn_keepalive_period)
174#define	V_dyn_keepalive			VNET(dyn_keepalive)
175#define	V_dyn_keepalive_last		VNET(dyn_keepalive_last)
176
177static VNET_DEFINE(u_int32_t, dyn_max);		/* max # of dynamic rules */
178
179#define	DYN_COUNT			uma_zone_get_cur(V_ipfw_dyn_rule_zone)
180#define	V_dyn_max			VNET(dyn_max)
181
182static int last_log;	/* Log ratelimiting */
183
184static void ipfw_dyn_tick(void *vnetx);
185static void check_dyn_rules(struct ip_fw_chain *, struct ip_fw *,
186    int, int, int);
187#ifdef SYSCTL_NODE
188
189static int sysctl_ipfw_dyn_count(SYSCTL_HANDLER_ARGS);
190static int sysctl_ipfw_dyn_max(SYSCTL_HANDLER_ARGS);
191
192SYSBEGIN(f2)
193
194SYSCTL_DECL(_net_inet_ip_fw);
195SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
196    CTLFLAG_RW, &VNET_NAME(dyn_buckets_max), 0,
197    "Max number of dyn. buckets");
198SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
199    CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
200    "Current Number of dyn. buckets");
201SYSCTL_VNET_PROC(_net_inet_ip_fw, OID_AUTO, dyn_count,
202    CTLTYPE_UINT|CTLFLAG_RD, 0, 0, sysctl_ipfw_dyn_count, "IU",
203    "Number of dyn. rules");
204SYSCTL_VNET_PROC(_net_inet_ip_fw, OID_AUTO, dyn_max,
205    CTLTYPE_UINT|CTLFLAG_RW, 0, 0, sysctl_ipfw_dyn_max, "IU",
206    "Max number of dyn. rules");
207SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
208    CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
209    "Lifetime of dyn. rules for acks");
210SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
211    CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
212    "Lifetime of dyn. rules for syn");
213SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
214    CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
215    "Lifetime of dyn. rules for fin");
216SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
217    CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
218    "Lifetime of dyn. rules for rst");
219SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
220    CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
221    "Lifetime of dyn. rules for UDP");
222SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
223    CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
224    "Lifetime of dyn. rules for other situations");
225SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
226    CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
227    "Enable keepalives for dyn. rules");
228
229SYSEND
230
231#endif /* SYSCTL_NODE */
232
233
234static __inline int
235hash_packet6(struct ipfw_flow_id *id)
236{
237	u_int32_t i;
238	i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
239	    (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
240	    (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
241	    (id->src_ip6.__u6_addr.__u6_addr32[3]) ^
242	    (id->dst_port) ^ (id->src_port);
243	return i;
244}
245
246/*
247 * IMPORTANT: the hash function for dynamic rules must be commutative
248 * in source and destination (ip,port), because rules are bidirectional
249 * and we want to find both in the same bucket.
250 */
251static __inline int
252hash_packet(struct ipfw_flow_id *id, int buckets)
253{
254	u_int32_t i;
255
256#ifdef INET6
257	if (IS_IP6_FLOW_ID(id))
258		i = hash_packet6(id);
259	else
260#endif /* INET6 */
261	i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
262	i &= (buckets - 1);
263	return i;
264}
265
266/**
267 * Print customizable flow id description via log(9) facility.
268 */
269static void
270print_dyn_rule_flags(struct ipfw_flow_id *id, int dyn_type, int log_flags,
271    char *prefix, char *postfix)
272{
273	struct in_addr da;
274#ifdef INET6
275	char src[INET6_ADDRSTRLEN], dst[INET6_ADDRSTRLEN];
276#else
277	char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN];
278#endif
279
280#ifdef INET6
281	if (IS_IP6_FLOW_ID(id)) {
282		ip6_sprintf(src, &id->src_ip6);
283		ip6_sprintf(dst, &id->dst_ip6);
284	} else
285#endif
286	{
287		da.s_addr = htonl(id->src_ip);
288		inet_ntop(AF_INET, &da, src, sizeof(src));
289		da.s_addr = htonl(id->dst_ip);
290		inet_ntop(AF_INET, &da, dst, sizeof(dst));
291	}
292	log(log_flags, "ipfw: %s type %d %s %d -> %s %d, %d %s\n",
293	    prefix, dyn_type, src, id->src_port, dst,
294	    id->dst_port, DYN_COUNT, postfix);
295}
296
297#define	print_dyn_rule(id, dtype, prefix, postfix)	\
298	print_dyn_rule_flags(id, dtype, LOG_DEBUG, prefix, postfix)
299
300#define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
301
302/*
303 * Lookup a dynamic rule, locked version.
304 */
305static ipfw_dyn_rule *
306lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int i, int *match_direction,
307    struct tcphdr *tcp)
308{
309	/*
310	 * Stateful ipfw extensions.
311	 * Lookup into dynamic session queue.
312	 */
313#define MATCH_REVERSE	0
314#define MATCH_FORWARD	1
315#define MATCH_NONE	2
316#define MATCH_UNKNOWN	3
317	int dir = MATCH_NONE;
318	ipfw_dyn_rule *prev, *q = NULL;
319
320	IPFW_BUCK_ASSERT(i);
321
322	for (prev = NULL, q = V_ipfw_dyn_v[i].head; q; prev = q, q = q->next) {
323		if (q->dyn_type == O_LIMIT_PARENT && q->count)
324			continue;
325
326		if (pkt->proto != q->id.proto || q->dyn_type == O_LIMIT_PARENT)
327			continue;
328
329		if (IS_IP6_FLOW_ID(pkt)) {
330			if (IN6_ARE_ADDR_EQUAL(&pkt->src_ip6, &q->id.src_ip6) &&
331			    IN6_ARE_ADDR_EQUAL(&pkt->dst_ip6, &q->id.dst_ip6) &&
332			    pkt->src_port == q->id.src_port &&
333			    pkt->dst_port == q->id.dst_port) {
334				dir = MATCH_FORWARD;
335				break;
336			}
337			if (IN6_ARE_ADDR_EQUAL(&pkt->src_ip6, &q->id.dst_ip6) &&
338			    IN6_ARE_ADDR_EQUAL(&pkt->dst_ip6, &q->id.src_ip6) &&
339			    pkt->src_port == q->id.dst_port &&
340			    pkt->dst_port == q->id.src_port) {
341				dir = MATCH_REVERSE;
342				break;
343			}
344		} else {
345			if (pkt->src_ip == q->id.src_ip &&
346			    pkt->dst_ip == q->id.dst_ip &&
347			    pkt->src_port == q->id.src_port &&
348			    pkt->dst_port == q->id.dst_port) {
349				dir = MATCH_FORWARD;
350				break;
351			}
352			if (pkt->src_ip == q->id.dst_ip &&
353			    pkt->dst_ip == q->id.src_ip &&
354			    pkt->src_port == q->id.dst_port &&
355			    pkt->dst_port == q->id.src_port) {
356				dir = MATCH_REVERSE;
357				break;
358			}
359		}
360	}
361	if (q == NULL)
362		goto done;	/* q = NULL, not found */
363
364	if (prev != NULL) {	/* found and not in front */
365		prev->next = q->next;
366		q->next = V_ipfw_dyn_v[i].head;
367		V_ipfw_dyn_v[i].head = q;
368	}
369	if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
370		uint32_t ack;
371		u_char flags = pkt->_flags & (TH_FIN | TH_SYN | TH_RST);
372
373#define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
374#define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
375#define	TCP_FLAGS	(TH_FLAGS | (TH_FLAGS << 8))
376#define	ACK_FWD		0x10000			/* fwd ack seen */
377#define	ACK_REV		0x20000			/* rev ack seen */
378
379		q->state |= (dir == MATCH_FORWARD) ? flags : (flags << 8);
380		switch (q->state & TCP_FLAGS) {
381		case TH_SYN:			/* opening */
382			q->expire = time_uptime + V_dyn_syn_lifetime;
383			break;
384
385		case BOTH_SYN:			/* move to established */
386		case BOTH_SYN | TH_FIN:		/* one side tries to close */
387		case BOTH_SYN | (TH_FIN << 8):
388#define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
389			if (tcp == NULL)
390				break;
391
392			ack = ntohl(tcp->th_ack);
393			if (dir == MATCH_FORWARD) {
394				if (q->ack_fwd == 0 ||
395				    _SEQ_GE(ack, q->ack_fwd)) {
396					q->ack_fwd = ack;
397					q->state |= ACK_FWD;
398				}
399			} else {
400				if (q->ack_rev == 0 ||
401				    _SEQ_GE(ack, q->ack_rev)) {
402					q->ack_rev = ack;
403					q->state |= ACK_REV;
404				}
405			}
406			if ((q->state & (ACK_FWD | ACK_REV)) ==
407			    (ACK_FWD | ACK_REV)) {
408				q->expire = time_uptime + V_dyn_ack_lifetime;
409				q->state &= ~(ACK_FWD | ACK_REV);
410			}
411			break;
412
413		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
414			if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
415				V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
416			q->expire = time_uptime + V_dyn_fin_lifetime;
417			break;
418
419		default:
420#if 0
421			/*
422			 * reset or some invalid combination, but can also
423			 * occur if we use keep-state the wrong way.
424			 */
425			if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
426				printf("invalid state: 0x%x\n", q->state);
427#endif
428			if (V_dyn_rst_lifetime >= V_dyn_keepalive_period)
429				V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
430			q->expire = time_uptime + V_dyn_rst_lifetime;
431			break;
432		}
433	} else if (pkt->proto == IPPROTO_UDP) {
434		q->expire = time_uptime + V_dyn_udp_lifetime;
435	} else {
436		/* other protocols */
437		q->expire = time_uptime + V_dyn_short_lifetime;
438	}
439done:
440	if (match_direction != NULL)
441		*match_direction = dir;
442	return (q);
443}
444
445ipfw_dyn_rule *
446ipfw_lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
447    struct tcphdr *tcp)
448{
449	ipfw_dyn_rule *q;
450	int i;
451
452	i = hash_packet(pkt, V_curr_dyn_buckets);
453
454	IPFW_BUCK_LOCK(i);
455	q = lookup_dyn_rule_locked(pkt, i, match_direction, tcp);
456	if (q == NULL)
457		IPFW_BUCK_UNLOCK(i);
458	/* NB: return table locked when q is not NULL */
459	return q;
460}
461
462/*
463 * Unlock bucket mtx
464 * @p - pointer to dynamic rule
465 */
466void
467ipfw_dyn_unlock(ipfw_dyn_rule *q)
468{
469
470	IPFW_BUCK_UNLOCK(q->bucket);
471}
472
473static int
474resize_dynamic_table(struct ip_fw_chain *chain, int nbuckets)
475{
476	int i, k, nbuckets_old;
477	ipfw_dyn_rule *q;
478	struct ipfw_dyn_bucket *dyn_v, *dyn_v_old;
479
480	/* Check if given number is power of 2 and less than 64k */
481	if ((nbuckets > 65536) || (!powerof2(nbuckets)))
482		return 1;
483
484	CTR3(KTR_NET, "%s: resize dynamic hash: %d -> %d", __func__,
485	    V_curr_dyn_buckets, nbuckets);
486
487	/* Allocate and initialize new hash */
488	dyn_v = malloc(nbuckets * sizeof(ipfw_dyn_rule), M_IPFW,
489	    M_WAITOK | M_ZERO);
490
491	for (i = 0 ; i < nbuckets; i++)
492		IPFW_BUCK_LOCK_INIT(&dyn_v[i]);
493
494	/*
495	 * Call upper half lock, as get_map() do to ease
496	 * read-only access to dynamic rules hash from sysctl
497	 */
498	IPFW_UH_WLOCK(chain);
499
500	/*
501	 * Acquire chain write lock to permit hash access
502	 * for main traffic path without additional locks
503	 */
504	IPFW_WLOCK(chain);
505
506	/* Save old values */
507	nbuckets_old = V_curr_dyn_buckets;
508	dyn_v_old = V_ipfw_dyn_v;
509
510	/* Skip relinking if array is not set up */
511	if (V_ipfw_dyn_v == NULL)
512		V_curr_dyn_buckets = 0;
513
514	/* Re-link all dynamic states */
515	for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
516		while (V_ipfw_dyn_v[i].head != NULL) {
517			/* Remove from current chain */
518			q = V_ipfw_dyn_v[i].head;
519			V_ipfw_dyn_v[i].head = q->next;
520
521			/* Get new hash value */
522			k = hash_packet(&q->id, nbuckets);
523			q->bucket = k;
524			/* Add to the new head */
525			q->next = dyn_v[k].head;
526			dyn_v[k].head = q;
527             }
528	}
529
530	/* Update current pointers/buckets values */
531	V_curr_dyn_buckets = nbuckets;
532	V_ipfw_dyn_v = dyn_v;
533
534	IPFW_WUNLOCK(chain);
535
536	IPFW_UH_WUNLOCK(chain);
537
538	/* Start periodic callout on initial creation */
539	if (dyn_v_old == NULL) {
540        	callout_reset_on(&V_ipfw_timeout, hz, ipfw_dyn_tick, curvnet, 0);
541		return (0);
542	}
543
544	/* Destroy all mutexes */
545	for (i = 0 ; i < nbuckets_old ; i++)
546		IPFW_BUCK_LOCK_DESTROY(&dyn_v_old[i]);
547
548	/* Free old hash */
549	free(dyn_v_old, M_IPFW);
550
551	return 0;
552}
553
554/**
555 * Install state of type 'type' for a dynamic session.
556 * The hash table contains two type of rules:
557 * - regular rules (O_KEEP_STATE)
558 * - rules for sessions with limited number of sess per user
559 *   (O_LIMIT). When they are created, the parent is
560 *   increased by 1, and decreased on delete. In this case,
561 *   the third parameter is the parent rule and not the chain.
562 * - "parent" rules for the above (O_LIMIT_PARENT).
563 */
564static ipfw_dyn_rule *
565add_dyn_rule(struct ipfw_flow_id *id, int i, u_int8_t dyn_type, struct ip_fw *rule)
566{
567	ipfw_dyn_rule *r;
568
569	IPFW_BUCK_ASSERT(i);
570
571	r = uma_zalloc(V_ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
572	if (r == NULL) {
573		if (last_log != time_uptime) {
574			last_log = time_uptime;
575			log(LOG_DEBUG, "ipfw: %s: Cannot allocate rule\n",
576			    __func__);
577		}
578		return NULL;
579	}
580
581	/*
582	 * refcount on parent is already incremented, so
583	 * it is safe to use parent unlocked.
584	 */
585	if (dyn_type == O_LIMIT) {
586		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
587		if ( parent->dyn_type != O_LIMIT_PARENT)
588			panic("invalid parent");
589		r->parent = parent;
590		rule = parent->rule;
591	}
592
593	r->id = *id;
594	r->expire = time_uptime + V_dyn_syn_lifetime;
595	r->rule = rule;
596	r->dyn_type = dyn_type;
597	r->pcnt = r->bcnt = 0;
598	r->count = 0;
599
600	r->bucket = i;
601	r->next = V_ipfw_dyn_v[i].head;
602	V_ipfw_dyn_v[i].head = r;
603	DEB(print_dyn_rule(id, dyn_type, "add dyn entry", "total");)
604	return r;
605}
606
607/**
608 * lookup dynamic parent rule using pkt and rule as search keys.
609 * If the lookup fails, then install one.
610 */
611static ipfw_dyn_rule *
612lookup_dyn_parent(struct ipfw_flow_id *pkt, int *pindex, struct ip_fw *rule)
613{
614	ipfw_dyn_rule *q;
615	int i, is_v6;
616
617	is_v6 = IS_IP6_FLOW_ID(pkt);
618	i = hash_packet( pkt, V_curr_dyn_buckets );
619	*pindex = i;
620	IPFW_BUCK_LOCK(i);
621	for (q = V_ipfw_dyn_v[i].head ; q != NULL ; q=q->next)
622		if (q->dyn_type == O_LIMIT_PARENT &&
623		    rule== q->rule &&
624		    pkt->proto == q->id.proto &&
625		    pkt->src_port == q->id.src_port &&
626		    pkt->dst_port == q->id.dst_port &&
627		    (
628			(is_v6 &&
629			 IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
630				&(q->id.src_ip6)) &&
631			 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
632				&(q->id.dst_ip6))) ||
633			(!is_v6 &&
634			 pkt->src_ip == q->id.src_ip &&
635			 pkt->dst_ip == q->id.dst_ip)
636		    )
637		) {
638			q->expire = time_uptime + V_dyn_short_lifetime;
639			DEB(print_dyn_rule(pkt, q->dyn_type,
640			    "lookup_dyn_parent found", "");)
641			return q;
642		}
643
644	/* Add virtual limiting rule */
645	return add_dyn_rule(pkt, i, O_LIMIT_PARENT, rule);
646}
647
648/**
649 * Install dynamic state for rule type cmd->o.opcode
650 *
651 * Returns 1 (failure) if state is not installed because of errors or because
652 * session limitations are enforced.
653 */
654int
655ipfw_install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
656    struct ip_fw_args *args, uint32_t tablearg)
657{
658	ipfw_dyn_rule *q;
659	int i;
660
661	DEB(print_dyn_rule(&args->f_id, cmd->o.opcode, "install_state", "");)
662
663	i = hash_packet(&args->f_id, V_curr_dyn_buckets);
664
665	IPFW_BUCK_LOCK(i);
666
667	q = lookup_dyn_rule_locked(&args->f_id, i, NULL, NULL);
668
669	if (q != NULL) {	/* should never occur */
670		DEB(
671		if (last_log != time_uptime) {
672			last_log = time_uptime;
673			printf("ipfw: %s: entry already present, done\n",
674			    __func__);
675		})
676		IPFW_BUCK_UNLOCK(i);
677		return (0);
678	}
679
680	/*
681	 * State limiting is done via uma(9) zone limiting.
682	 * Save pointer to newly-installed rule and reject
683	 * packet if add_dyn_rule() returned NULL.
684	 * Note q is currently set to NULL.
685	 */
686
687	switch (cmd->o.opcode) {
688	case O_KEEP_STATE:	/* bidir rule */
689		q = add_dyn_rule(&args->f_id, i, O_KEEP_STATE, rule);
690		break;
691
692	case O_LIMIT: {		/* limit number of sessions */
693		struct ipfw_flow_id id;
694		ipfw_dyn_rule *parent;
695		uint32_t conn_limit;
696		uint16_t limit_mask = cmd->limit_mask;
697		int pindex;
698
699		conn_limit = IP_FW_ARG_TABLEARG(cmd->conn_limit);
700
701		DEB(
702		if (cmd->conn_limit == IP_FW_TABLEARG)
703			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
704			    "(tablearg)\n", __func__, conn_limit);
705		else
706			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
707			    __func__, conn_limit);
708		)
709
710		id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
711		id.proto = args->f_id.proto;
712		id.addr_type = args->f_id.addr_type;
713		id.fib = M_GETFIB(args->m);
714
715		if (IS_IP6_FLOW_ID (&(args->f_id))) {
716			if (limit_mask & DYN_SRC_ADDR)
717				id.src_ip6 = args->f_id.src_ip6;
718			if (limit_mask & DYN_DST_ADDR)
719				id.dst_ip6 = args->f_id.dst_ip6;
720		} else {
721			if (limit_mask & DYN_SRC_ADDR)
722				id.src_ip = args->f_id.src_ip;
723			if (limit_mask & DYN_DST_ADDR)
724				id.dst_ip = args->f_id.dst_ip;
725		}
726		if (limit_mask & DYN_SRC_PORT)
727			id.src_port = args->f_id.src_port;
728		if (limit_mask & DYN_DST_PORT)
729			id.dst_port = args->f_id.dst_port;
730
731		/*
732		 * We have to release lock for previous bucket to
733		 * avoid possible deadlock
734		 */
735		IPFW_BUCK_UNLOCK(i);
736
737		if ((parent = lookup_dyn_parent(&id, &pindex, rule)) == NULL) {
738			printf("ipfw: %s: add parent failed\n", __func__);
739			IPFW_BUCK_UNLOCK(pindex);
740			return (1);
741		}
742
743		if (parent->count >= conn_limit) {
744			if (V_fw_verbose && last_log != time_uptime) {
745				last_log = time_uptime;
746				char sbuf[24];
747				last_log = time_uptime;
748				snprintf(sbuf, sizeof(sbuf),
749				    "%d drop session",
750				    parent->rule->rulenum);
751				print_dyn_rule_flags(&args->f_id,
752				    cmd->o.opcode,
753				    LOG_SECURITY | LOG_DEBUG,
754				    sbuf, "too many entries");
755			}
756			IPFW_BUCK_UNLOCK(pindex);
757			return (1);
758		}
759		/* Increment counter on parent */
760		parent->count++;
761		IPFW_BUCK_UNLOCK(pindex);
762
763		IPFW_BUCK_LOCK(i);
764		q = add_dyn_rule(&args->f_id, i, O_LIMIT, (struct ip_fw *)parent);
765		if (q == NULL) {
766			/* Decrement index and notify caller */
767			IPFW_BUCK_UNLOCK(i);
768			IPFW_BUCK_LOCK(pindex);
769			parent->count--;
770			IPFW_BUCK_UNLOCK(pindex);
771			return (1);
772		}
773		break;
774	}
775	default:
776		printf("ipfw: %s: unknown dynamic rule type %u\n",
777		    __func__, cmd->o.opcode);
778	}
779
780	if (q == NULL) {
781		IPFW_BUCK_UNLOCK(i);
782		return (1);	/* Notify caller about failure */
783	}
784
785	/* XXX just set lifetime */
786	lookup_dyn_rule_locked(&args->f_id, i, NULL, NULL);
787
788	IPFW_BUCK_UNLOCK(i);
789	return (0);
790}
791
792/*
793 * Generate a TCP packet, containing either a RST or a keepalive.
794 * When flags & TH_RST, we are sending a RST packet, because of a
795 * "reset" action matched the packet.
796 * Otherwise we are sending a keepalive, and flags & TH_
797 * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
798 * so that MAC can label the reply appropriately.
799 */
800struct mbuf *
801ipfw_send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
802    u_int32_t ack, int flags)
803{
804	struct mbuf *m = NULL;		/* stupid compiler */
805	int len, dir;
806	struct ip *h = NULL;		/* stupid compiler */
807#ifdef INET6
808	struct ip6_hdr *h6 = NULL;
809#endif
810	struct tcphdr *th = NULL;
811
812	MGETHDR(m, M_DONTWAIT, MT_DATA);
813	if (m == NULL)
814		return (NULL);
815
816	M_SETFIB(m, id->fib);
817#ifdef MAC
818	if (replyto != NULL)
819		mac_netinet_firewall_reply(replyto, m);
820	else
821		mac_netinet_firewall_send(m);
822#else
823	(void)replyto;		/* don't warn about unused arg */
824#endif
825
826	switch (id->addr_type) {
827	case 4:
828		len = sizeof(struct ip) + sizeof(struct tcphdr);
829		break;
830#ifdef INET6
831	case 6:
832		len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
833		break;
834#endif
835	default:
836		/* XXX: log me?!? */
837		FREE_PKT(m);
838		return (NULL);
839	}
840	dir = ((flags & (TH_SYN | TH_RST)) == TH_SYN);
841
842	m->m_data += max_linkhdr;
843	m->m_flags |= M_SKIP_FIREWALL;
844	m->m_pkthdr.len = m->m_len = len;
845	m->m_pkthdr.rcvif = NULL;
846	bzero(m->m_data, len);
847
848	switch (id->addr_type) {
849	case 4:
850		h = mtod(m, struct ip *);
851
852		/* prepare for checksum */
853		h->ip_p = IPPROTO_TCP;
854		h->ip_len = htons(sizeof(struct tcphdr));
855		if (dir) {
856			h->ip_src.s_addr = htonl(id->src_ip);
857			h->ip_dst.s_addr = htonl(id->dst_ip);
858		} else {
859			h->ip_src.s_addr = htonl(id->dst_ip);
860			h->ip_dst.s_addr = htonl(id->src_ip);
861		}
862
863		th = (struct tcphdr *)(h + 1);
864		break;
865#ifdef INET6
866	case 6:
867		h6 = mtod(m, struct ip6_hdr *);
868
869		/* prepare for checksum */
870		h6->ip6_nxt = IPPROTO_TCP;
871		h6->ip6_plen = htons(sizeof(struct tcphdr));
872		if (dir) {
873			h6->ip6_src = id->src_ip6;
874			h6->ip6_dst = id->dst_ip6;
875		} else {
876			h6->ip6_src = id->dst_ip6;
877			h6->ip6_dst = id->src_ip6;
878		}
879
880		th = (struct tcphdr *)(h6 + 1);
881		break;
882#endif
883	}
884
885	if (dir) {
886		th->th_sport = htons(id->src_port);
887		th->th_dport = htons(id->dst_port);
888	} else {
889		th->th_sport = htons(id->dst_port);
890		th->th_dport = htons(id->src_port);
891	}
892	th->th_off = sizeof(struct tcphdr) >> 2;
893
894	if (flags & TH_RST) {
895		if (flags & TH_ACK) {
896			th->th_seq = htonl(ack);
897			th->th_flags = TH_RST;
898		} else {
899			if (flags & TH_SYN)
900				seq++;
901			th->th_ack = htonl(seq);
902			th->th_flags = TH_RST | TH_ACK;
903		}
904	} else {
905		/*
906		 * Keepalive - use caller provided sequence numbers
907		 */
908		th->th_seq = htonl(seq);
909		th->th_ack = htonl(ack);
910		th->th_flags = TH_ACK;
911	}
912
913	switch (id->addr_type) {
914	case 4:
915		th->th_sum = in_cksum(m, len);
916
917		/* finish the ip header */
918		h->ip_v = 4;
919		h->ip_hl = sizeof(*h) >> 2;
920		h->ip_tos = IPTOS_LOWDELAY;
921		h->ip_off = 0;
922		/* ip_len must be in host format for ip_output */
923		h->ip_len = len;
924		h->ip_ttl = V_ip_defttl;
925		h->ip_sum = 0;
926		break;
927#ifdef INET6
928	case 6:
929		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(*h6),
930		    sizeof(struct tcphdr));
931
932		/* finish the ip6 header */
933		h6->ip6_vfc |= IPV6_VERSION;
934		h6->ip6_hlim = IPV6_DEFHLIM;
935		break;
936#endif
937	}
938
939	return (m);
940}
941
942/*
943 * Queue keepalive packets for given dynamic rule
944 */
945static struct mbuf **
946ipfw_dyn_send_ka(struct mbuf **mtailp, ipfw_dyn_rule *q)
947{
948	struct mbuf *m_rev, *m_fwd;
949
950	m_rev = (q->state & ACK_REV) ? NULL :
951	    ipfw_send_pkt(NULL, &(q->id), q->ack_rev - 1, q->ack_fwd, TH_SYN);
952	m_fwd = (q->state & ACK_FWD) ? NULL :
953	    ipfw_send_pkt(NULL, &(q->id), q->ack_fwd - 1, q->ack_rev, 0);
954
955	if (m_rev != NULL) {
956		*mtailp = m_rev;
957		mtailp = &(*mtailp)->m_nextpkt;
958	}
959	if (m_fwd != NULL) {
960		*mtailp = m_fwd;
961		mtailp = &(*mtailp)->m_nextpkt;
962	}
963
964	return (mtailp);
965}
966
967/*
968 * This procedure is used to perform various maintance
969 * on dynamic hash list. Currently it is called every second.
970 */
971static void
972ipfw_dyn_tick(void * vnetx)
973{
974	struct ip_fw_chain *chain;
975	int check_ka = 0;
976#ifdef VIMAGE
977	struct vnet *vp = vnetx;
978#endif
979
980	CURVNET_SET(vp);
981
982	chain = &V_layer3_chain;
983
984	/* Run keepalive checks every keepalive_period iff ka is enabled */
985	if ((V_dyn_keepalive_last + V_dyn_keepalive_period <= time_uptime) &&
986	    (V_dyn_keepalive != 0)) {
987		V_dyn_keepalive_last = time_uptime;
988		check_ka = 1;
989	}
990
991	check_dyn_rules(chain, NULL, RESVD_SET, check_ka, 1);
992
993	callout_reset_on(&V_ipfw_timeout, hz, ipfw_dyn_tick, vnetx, 0);
994
995	CURVNET_RESTORE();
996}
997
998
999/*
1000 * Walk thru all dynamic states doing generic maintance:
1001 * 1) free expired states
1002 * 2) free all states based on deleted rule / set
1003 * 3) send keepalives for states if needed
1004 *
1005 * @chain - pointer to current ipfw rules chain
1006 * @rule - delete all states originated by given rule if != NULL
1007 * @set - delete all states originated by any rule in set @set if != RESVD_SET
1008 * @check_ka - perform checking/sending keepalives
1009 * @timer - indicate call from timer routine.
1010 *
1011 * Timer routine must call this function unlocked to permit
1012 * sending keepalives/resizing table.
1013 *
1014 * Others has to call function with IPFW_UH_WLOCK held.
1015 * Additionally, function assume that dynamic rule/set is
1016 * ALREADY deleted so no new states can be generated by
1017 * 'deleted' rules.
1018 *
1019 * Write lock is needed to ensure that unused parent rules
1020 * are not freed by other instance (see stage 2, 3)
1021 */
1022static void
1023check_dyn_rules(struct ip_fw_chain *chain, struct ip_fw *rule,
1024    int set, int check_ka, int timer)
1025{
1026	struct mbuf *m0, *m, *mnext, **mtailp;
1027	struct ip *h;
1028	int i, dyn_count, new_buckets = 0, max_buckets;
1029	int expired = 0, expired_limits = 0, parents = 0, total = 0;
1030	ipfw_dyn_rule *q, *q_prev, *q_next;
1031	ipfw_dyn_rule *exp_head, **exptailp;
1032	ipfw_dyn_rule *exp_lhead, **expltailp;
1033
1034	KASSERT(V_ipfw_dyn_v != NULL, ("%s: dynamic table not allocated",
1035	    __func__));
1036
1037	/* Avoid possible LOR */
1038	KASSERT(!check_ka || timer, ("%s: keepalive check with lock held",
1039	    __func__));
1040
1041	/*
1042	 * Do not perform any checks if we currently have no dynamic states
1043	 */
1044	if (DYN_COUNT == 0)
1045		return;
1046
1047	/* Expired states */
1048	exp_head = NULL;
1049	exptailp = &exp_head;
1050
1051	/* Expired limit states */
1052	exp_lhead = NULL;
1053	expltailp = &exp_lhead;
1054
1055	/*
1056	 * We make a chain of packets to go out here -- not deferring
1057	 * until after we drop the IPFW dynamic rule lock would result
1058	 * in a lock order reversal with the normal packet input -> ipfw
1059	 * call stack.
1060	 */
1061	m0 = NULL;
1062	mtailp = &m0;
1063
1064	/* Protect from hash resizing */
1065	if (timer != 0)
1066		IPFW_UH_WLOCK(chain);
1067	else
1068		IPFW_UH_WLOCK_ASSERT(chain);
1069
1070#define	NEXT_RULE()	{ q_prev = q; q = q->next ; continue; }
1071
1072	/* Stage 1: perform requested deletion */
1073	for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1074		IPFW_BUCK_LOCK(i);
1075		for (q = V_ipfw_dyn_v[i].head, q_prev = q; q ; ) {
1076			/* account every rule */
1077			total++;
1078
1079			/* Skip parent rules at all */
1080			if (q->dyn_type == O_LIMIT_PARENT) {
1081				parents++;
1082				NEXT_RULE();
1083			}
1084
1085			/*
1086			 * Remove rules which are:
1087			 * 1) expired
1088			 * 2) created by given rule
1089			 * 3) created by any rule in given set
1090			 */
1091			if ((TIME_LEQ(q->expire, time_uptime)) ||
1092			    ((rule != NULL) && (q->rule == rule)) ||
1093			    ((set != RESVD_SET) && (q->rule->set == set))) {
1094				/* Unlink q from current list */
1095				q_next = q->next;
1096				if (q == V_ipfw_dyn_v[i].head)
1097					V_ipfw_dyn_v[i].head = q_next;
1098				else
1099					q_prev->next = q_next;
1100
1101				q->next = NULL;
1102
1103				/* queue q to expire list */
1104				if (q->dyn_type != O_LIMIT) {
1105					*exptailp = q;
1106					exptailp = &(*exptailp)->next;
1107					DEB(print_dyn_rule(&q->id, q->dyn_type,
1108					    "unlink entry", "left");
1109					)
1110				} else {
1111					/* Separate list for limit rules */
1112					*expltailp = q;
1113					expltailp = &(*expltailp)->next;
1114					expired_limits++;
1115					DEB(print_dyn_rule(&q->id, q->dyn_type,
1116					    "unlink limit entry", "left");
1117					)
1118				}
1119
1120				q = q_next;
1121				expired++;
1122				continue;
1123			}
1124
1125			/*
1126			 * Check if we need to send keepalive:
1127			 * we need to ensure if is time to do KA,
1128			 * this is established TCP session, and
1129			 * expire time is within keepalive interval
1130			 */
1131			if ((check_ka != 0) && (q->id.proto == IPPROTO_TCP) &&
1132			    ((q->state & BOTH_SYN) == BOTH_SYN) &&
1133			    (TIME_LEQ(q->expire, time_uptime +
1134			      V_dyn_keepalive_interval)))
1135				mtailp = ipfw_dyn_send_ka(mtailp, q);
1136
1137			NEXT_RULE();
1138		}
1139		IPFW_BUCK_UNLOCK(i);
1140	}
1141
1142	/* Stage 2: decrement counters from O_LIMIT parents */
1143	if (expired_limits != 0) {
1144		/*
1145		 * XXX: Note that deleting set with more than one
1146		 * heavily-used LIMIT rules can result in overwhelming
1147		 * locking due to lack of per-hash value sorting
1148		 *
1149		 * We should probably think about:
1150		 * 1) pre-allocating hash of size, say,
1151		 * MAX(16, V_curr_dyn_buckets / 1024)
1152		 * 2) checking if expired_limits is large enough
1153		 * 3) If yes, init hash (or its part), re-link
1154		 * current list and start decrementing procedure in
1155		 * each bucket separately
1156		 */
1157
1158		/*
1159		 * Small optimization: do not unlock bucket until
1160		 * we see the next item resides in different bucket
1161		 */
1162		if (exp_lhead != NULL) {
1163			i = exp_lhead->parent->bucket;
1164			IPFW_BUCK_LOCK(i);
1165		}
1166		for (q = exp_lhead; q != NULL; q = q->next) {
1167			if (i != q->parent->bucket) {
1168				IPFW_BUCK_UNLOCK(i);
1169				i = q->parent->bucket;
1170				IPFW_BUCK_LOCK(i);
1171			}
1172
1173			/* Decrease parent refcount */
1174			q->parent->count--;
1175		}
1176		if (exp_lhead != NULL)
1177			IPFW_BUCK_UNLOCK(i);
1178	}
1179
1180	/*
1181	 * We protectet ourselves from unused parent deletion
1182	 * (from the timer function) by holding UH write lock.
1183	 */
1184
1185	/* Stage 3: remove unused parent rules */
1186	if ((parents != 0) && (expired != 0)) {
1187		for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1188			IPFW_BUCK_LOCK(i);
1189			for (q = V_ipfw_dyn_v[i].head, q_prev = q ; q ; ) {
1190				if (q->dyn_type != O_LIMIT_PARENT)
1191					NEXT_RULE();
1192
1193				if (q->count != 0)
1194					NEXT_RULE();
1195
1196				/* Parent rule without consumers */
1197
1198				/* Unlink q from current list */
1199				q_next = q->next;
1200				if (q == V_ipfw_dyn_v[i].head)
1201					V_ipfw_dyn_v[i].head = q_next;
1202				else
1203					q_prev->next = q_next;
1204
1205				q->next = NULL;
1206
1207				/* Add to expired list */
1208				*exptailp = q;
1209				exptailp = &(*exptailp)->next;
1210
1211				DEB(print_dyn_rule(&q->id, q->dyn_type,
1212				    "unlink parent entry", "left");
1213				)
1214
1215				expired++;
1216
1217				q = q_next;
1218			}
1219			IPFW_BUCK_UNLOCK(i);
1220		}
1221	}
1222
1223#undef NEXT_RULE
1224
1225	if (timer != 0) {
1226		/*
1227		 * Check if we need to resize hash:
1228		 * if current number of states exceeds number of buckes in hash,
1229		 * grow hash size to the minimum power of 2 which is bigger than
1230		 * current states count. Limit hash size by 64k.
1231		 */
1232		max_buckets = (V_dyn_buckets_max > 65536) ?
1233		    65536 : V_dyn_buckets_max;
1234
1235		dyn_count = DYN_COUNT;
1236
1237		if ((dyn_count > V_curr_dyn_buckets * 2) &&
1238		    (dyn_count < max_buckets)) {
1239			new_buckets = V_curr_dyn_buckets;
1240			while (new_buckets < dyn_count) {
1241				new_buckets *= 2;
1242
1243				if (new_buckets >= max_buckets)
1244					break;
1245			}
1246		}
1247
1248		IPFW_UH_WUNLOCK(chain);
1249	}
1250
1251	/* Finally delete old states ad limits if any */
1252	for (q = exp_head; q != NULL; q = q_next) {
1253		q_next = q->next;
1254		uma_zfree(V_ipfw_dyn_rule_zone, q);
1255	}
1256
1257	for (q = exp_lhead; q != NULL; q = q_next) {
1258		q_next = q->next;
1259		uma_zfree(V_ipfw_dyn_rule_zone, q);
1260	}
1261
1262	/*
1263	 * The rest code MUST be called from timer routine only
1264	 * without holding any locks
1265	 */
1266	if (timer == 0)
1267		return;
1268
1269	/* Send keepalive packets if any */
1270	for (m = m0; m != NULL; m = mnext) {
1271		mnext = m->m_nextpkt;
1272		m->m_nextpkt = NULL;
1273		h = mtod(m, struct ip *);
1274		if (h->ip_v == 4)
1275			ip_output(m, NULL, NULL, 0, NULL, NULL);
1276#ifdef INET6
1277		else
1278			ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1279#endif
1280	}
1281
1282	/* Run table resize without holding any locks */
1283	if (new_buckets != 0)
1284		resize_dynamic_table(chain, new_buckets);
1285}
1286
1287/*
1288 * Deletes all dynamic rules originated by given rule or all rules in
1289 * given set. Specify RESVD_SET to indicate set should not be used.
1290 * @chain - pointer to current ipfw rules chain
1291 * @rule - delete all states originated by given rule if != NULL
1292 * @set - delete all states originated by any rule in set @set if != RESVD_SET
1293 *
1294 * Function has to be called with IPFW_UH_WLOCK held.
1295 * Additionally, function assume that dynamic rule/set is
1296 * ALREADY deleted so no new states can be generated by
1297 * 'deleted' rules.
1298 */
1299void
1300ipfw_expire_dyn_rules(struct ip_fw_chain *chain, struct ip_fw *rule, int set)
1301{
1302
1303	check_dyn_rules(chain, rule, set, 0, 0);
1304}
1305
1306void
1307ipfw_dyn_init(struct ip_fw_chain *chain)
1308{
1309
1310        V_ipfw_dyn_v = NULL;
1311        V_dyn_buckets_max = 256; /* must be power of 2 */
1312        V_curr_dyn_buckets = 256; /* must be power of 2 */
1313
1314        V_dyn_ack_lifetime = 300;
1315        V_dyn_syn_lifetime = 20;
1316        V_dyn_fin_lifetime = 1;
1317        V_dyn_rst_lifetime = 1;
1318        V_dyn_udp_lifetime = 10;
1319        V_dyn_short_lifetime = 5;
1320
1321        V_dyn_keepalive_interval = 20;
1322        V_dyn_keepalive_period = 5;
1323        V_dyn_keepalive = 1;    /* do send keepalives */
1324	V_dyn_keepalive_last = time_uptime;
1325
1326        V_dyn_max = 4096;       /* max # of dynamic rules */
1327
1328	V_ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule",
1329	    sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
1330	    UMA_ALIGN_PTR, 0);
1331
1332	/* Enforce limit on dynamic rules */
1333	uma_zone_set_max(V_ipfw_dyn_rule_zone, V_dyn_max);
1334
1335        callout_init(&V_ipfw_timeout, CALLOUT_MPSAFE);
1336
1337	/*
1338	 * This can potentially be done on first dynamic rule
1339	 * being added to chain.
1340	 */
1341	resize_dynamic_table(chain, V_curr_dyn_buckets);
1342}
1343
1344void
1345ipfw_dyn_uninit(int pass)
1346{
1347	int i;
1348
1349	if (pass == 0) {
1350		callout_drain(&V_ipfw_timeout);
1351		return;
1352	}
1353
1354	if (V_ipfw_dyn_v != NULL) {
1355		/*
1356		 * Skip deleting all dynamic states -
1357		 * uma_zdestroy() does this more efficiently;
1358		 */
1359
1360		/* Destroy all mutexes */
1361		for (i = 0 ; i < V_curr_dyn_buckets ; i++)
1362			IPFW_BUCK_LOCK_DESTROY(&V_ipfw_dyn_v[i]);
1363		free(V_ipfw_dyn_v, M_IPFW);
1364		V_ipfw_dyn_v = NULL;
1365	}
1366
1367        uma_zdestroy(V_ipfw_dyn_rule_zone);
1368}
1369
1370#ifdef SYSCTL_NODE
1371/*
1372 * Get/set maximum number of dynamic states in given VNET instance.
1373 */
1374static int
1375sysctl_ipfw_dyn_max(SYSCTL_HANDLER_ARGS)
1376{
1377	int error;
1378	unsigned int nstates;
1379
1380	nstates = V_dyn_max;
1381
1382	error = sysctl_handle_int(oidp, &nstates, 0, req);
1383	/* Read operation or some error */
1384	if ((error != 0) || (req->newptr == NULL))
1385		return (error);
1386
1387	V_dyn_max = nstates;
1388	uma_zone_set_max(V_ipfw_dyn_rule_zone, V_dyn_max);
1389
1390	return (0);
1391}
1392
1393/*
1394 * Get current number of dynamic states in given VNET instance.
1395 */
1396static int
1397sysctl_ipfw_dyn_count(SYSCTL_HANDLER_ARGS)
1398{
1399	int error;
1400	unsigned int nstates;
1401
1402	nstates = DYN_COUNT;
1403
1404	error = sysctl_handle_int(oidp, &nstates, 0, req);
1405
1406	return (error);
1407}
1408#endif
1409
1410/*
1411 * Returns number of dynamic rules.
1412 */
1413int
1414ipfw_dyn_len(void)
1415{
1416
1417	return (V_ipfw_dyn_v == NULL) ? 0 :
1418		(DYN_COUNT * sizeof(ipfw_dyn_rule));
1419}
1420
1421/*
1422 * Fill given buffer with dynamic states.
1423 * IPFW_UH_RLOCK has to be held while calling.
1424 */
1425void
1426ipfw_get_dynamic(struct ip_fw_chain *chain, char **pbp, const char *ep)
1427{
1428	ipfw_dyn_rule *p, *last = NULL;
1429	char *bp;
1430	int i;
1431
1432	if (V_ipfw_dyn_v == NULL)
1433		return;
1434	bp = *pbp;
1435
1436	IPFW_UH_RLOCK_ASSERT(chain);
1437
1438	for (i = 0 ; i < V_curr_dyn_buckets; i++) {
1439		IPFW_BUCK_LOCK(i);
1440		for (p = V_ipfw_dyn_v[i].head ; p != NULL; p = p->next) {
1441			if (bp + sizeof *p <= ep) {
1442				ipfw_dyn_rule *dst =
1443					(ipfw_dyn_rule *)bp;
1444				bcopy(p, dst, sizeof *p);
1445				bcopy(&(p->rule->rulenum), &(dst->rule),
1446				    sizeof(p->rule->rulenum));
1447				/*
1448				 * store set number into high word of
1449				 * dst->rule pointer.
1450				 */
1451				bcopy(&(p->rule->set),
1452				    (char *)&dst->rule +
1453				    sizeof(p->rule->rulenum),
1454				    sizeof(p->rule->set));
1455				/*
1456				 * store a non-null value in "next".
1457				 * The userland code will interpret a
1458				 * NULL here as a marker
1459				 * for the last dynamic rule.
1460				 */
1461				bcopy(&dst, &dst->next, sizeof(dst));
1462				last = dst;
1463				dst->expire =
1464				    TIME_LEQ(dst->expire, time_uptime) ?
1465					0 : dst->expire - time_uptime ;
1466				bp += sizeof(ipfw_dyn_rule);
1467			}
1468		}
1469		IPFW_BUCK_UNLOCK(i);
1470	}
1471
1472	if (last != NULL) /* mark last dynamic rule */
1473		bzero(&last->next, sizeof(last));
1474	*pbp = bp;
1475}
1476/* end of file */
1477