ip_fw2.c revision 250760
1/*-
2 * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: stable/9/sys/netpfil/ipfw/ip_fw2.c 250760 2013-05-18 05:31:17Z melifaro $");
28
29/*
30 * The FreeBSD IP packet firewall, main file
31 */
32
33#include "opt_ipfw.h"
34#include "opt_ipdivert.h"
35#include "opt_inet.h"
36#ifndef INET
37#error IPFIREWALL requires INET.
38#endif /* INET */
39#include "opt_inet6.h"
40#include "opt_ipsec.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/condvar.h>
45#include <sys/eventhandler.h>
46#include <sys/malloc.h>
47#include <sys/mbuf.h>
48#include <sys/kernel.h>
49#include <sys/lock.h>
50#include <sys/jail.h>
51#include <sys/module.h>
52#include <sys/priv.h>
53#include <sys/proc.h>
54#include <sys/rwlock.h>
55#include <sys/socket.h>
56#include <sys/socketvar.h>
57#include <sys/sysctl.h>
58#include <sys/syslog.h>
59#include <sys/ucred.h>
60#include <net/ethernet.h> /* for ETHERTYPE_IP */
61#include <net/if.h>
62#include <net/route.h>
63#include <net/pf_mtag.h>
64#include <net/pfil.h>
65#include <net/vnet.h>
66
67#include <netinet/in.h>
68#include <netinet/in_var.h>
69#include <netinet/in_pcb.h>
70#include <netinet/ip.h>
71#include <netinet/ip_var.h>
72#include <netinet/ip_icmp.h>
73#include <netinet/ip_fw.h>
74#include <netinet/ip_carp.h>
75#include <netinet/pim.h>
76#include <netinet/tcp_var.h>
77#include <netinet/udp.h>
78#include <netinet/udp_var.h>
79#include <netinet/sctp.h>
80
81#include <netinet/ip6.h>
82#include <netinet/icmp6.h>
83#ifdef INET6
84#include <netinet6/in6_pcb.h>
85#include <netinet6/scope6_var.h>
86#include <netinet6/ip6_var.h>
87#endif
88
89#include <netpfil/ipfw/ip_fw_private.h>
90
91#include <machine/in_cksum.h>	/* XXX for in_cksum */
92
93#ifdef MAC
94#include <security/mac/mac_framework.h>
95#endif
96
97/*
98 * static variables followed by global ones.
99 * All ipfw global variables are here.
100 */
101
102/* ipfw_vnet_ready controls when we are open for business */
103static VNET_DEFINE(int, ipfw_vnet_ready) = 0;
104#define	V_ipfw_vnet_ready	VNET(ipfw_vnet_ready)
105
106static VNET_DEFINE(int, fw_deny_unknown_exthdrs);
107#define	V_fw_deny_unknown_exthdrs	VNET(fw_deny_unknown_exthdrs)
108
109static VNET_DEFINE(int, fw_permit_single_frag6) = 1;
110#define	V_fw_permit_single_frag6	VNET(fw_permit_single_frag6)
111
112#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
113static int default_to_accept = 1;
114#else
115static int default_to_accept;
116#endif
117
118VNET_DEFINE(int, autoinc_step);
119VNET_DEFINE(int, fw_one_pass) = 1;
120
121VNET_DEFINE(unsigned int, fw_tables_max);
122/* Use 128 tables by default */
123static unsigned int default_fw_tables = IPFW_TABLES_DEFAULT;
124
125/*
126 * Each rule belongs to one of 32 different sets (0..31).
127 * The variable set_disable contains one bit per set.
128 * If the bit is set, all rules in the corresponding set
129 * are disabled. Set RESVD_SET(31) is reserved for the default rule
130 * and rules that are not deleted by the flush command,
131 * and CANNOT be disabled.
132 * Rules in set RESVD_SET can only be deleted individually.
133 */
134VNET_DEFINE(u_int32_t, set_disable);
135#define	V_set_disable			VNET(set_disable)
136
137VNET_DEFINE(int, fw_verbose);
138/* counter for ipfw_log(NULL...) */
139VNET_DEFINE(u_int64_t, norule_counter);
140VNET_DEFINE(int, verbose_limit);
141
142/* layer3_chain contains the list of rules for layer 3 */
143VNET_DEFINE(struct ip_fw_chain, layer3_chain);
144
145ipfw_nat_t *ipfw_nat_ptr = NULL;
146struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
147ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
148ipfw_nat_cfg_t *ipfw_nat_del_ptr;
149ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
150ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
151
152#ifdef SYSCTL_NODE
153uint32_t dummy_def = IPFW_DEFAULT_RULE;
154static int sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS);
155
156SYSBEGIN(f3)
157
158SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
159SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
160    CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
161    "Only do a single pass through ipfw when using dummynet(4)");
162SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
163    CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
164    "Rule number auto-increment step");
165SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose,
166    CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
167    "Log matches to ipfw rules");
168SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
169    CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
170    "Set upper limit of matches of ipfw rules logged");
171SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
172    &dummy_def, 0,
173    "The default/max possible rule number.");
174SYSCTL_VNET_PROC(_net_inet_ip_fw, OID_AUTO, tables_max,
175    CTLTYPE_UINT|CTLFLAG_RW, 0, 0, sysctl_ipfw_table_num, "IU",
176    "Maximum number of tables");
177SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
178    &default_to_accept, 0,
179    "Make the default rule accept all packets.");
180TUNABLE_INT("net.inet.ip.fw.default_to_accept", &default_to_accept);
181TUNABLE_INT("net.inet.ip.fw.tables_max", &default_fw_tables);
182SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, static_count,
183    CTLFLAG_RD, &VNET_NAME(layer3_chain.n_rules), 0,
184    "Number of static rules");
185
186#ifdef INET6
187SYSCTL_DECL(_net_inet6_ip6);
188SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
189SYSCTL_VNET_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
190    CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(fw_deny_unknown_exthdrs), 0,
191    "Deny packets with unknown IPv6 Extension Headers");
192SYSCTL_VNET_INT(_net_inet6_ip6_fw, OID_AUTO, permit_single_frag6,
193    CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(fw_permit_single_frag6), 0,
194    "Permit single packet IPv6 fragments");
195#endif /* INET6 */
196
197SYSEND
198
199#endif /* SYSCTL_NODE */
200
201
202/*
203 * Some macros used in the various matching options.
204 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
205 * Other macros just cast void * into the appropriate type
206 */
207#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
208#define	TCP(p)		((struct tcphdr *)(p))
209#define	SCTP(p)		((struct sctphdr *)(p))
210#define	UDP(p)		((struct udphdr *)(p))
211#define	ICMP(p)		((struct icmphdr *)(p))
212#define	ICMP6(p)	((struct icmp6_hdr *)(p))
213
214static __inline int
215icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
216{
217	int type = icmp->icmp_type;
218
219	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
220}
221
222#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
223    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
224
225static int
226is_icmp_query(struct icmphdr *icmp)
227{
228	int type = icmp->icmp_type;
229
230	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
231}
232#undef TT
233
234/*
235 * The following checks use two arrays of 8 or 16 bits to store the
236 * bits that we want set or clear, respectively. They are in the
237 * low and high half of cmd->arg1 or cmd->d[0].
238 *
239 * We scan options and store the bits we find set. We succeed if
240 *
241 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
242 *
243 * The code is sometimes optimized not to store additional variables.
244 */
245
246static int
247flags_match(ipfw_insn *cmd, u_int8_t bits)
248{
249	u_char want_clear;
250	bits = ~bits;
251
252	if ( ((cmd->arg1 & 0xff) & bits) != 0)
253		return 0; /* some bits we want set were clear */
254	want_clear = (cmd->arg1 >> 8) & 0xff;
255	if ( (want_clear & bits) != want_clear)
256		return 0; /* some bits we want clear were set */
257	return 1;
258}
259
260static int
261ipopts_match(struct ip *ip, ipfw_insn *cmd)
262{
263	int optlen, bits = 0;
264	u_char *cp = (u_char *)(ip + 1);
265	int x = (ip->ip_hl << 2) - sizeof (struct ip);
266
267	for (; x > 0; x -= optlen, cp += optlen) {
268		int opt = cp[IPOPT_OPTVAL];
269
270		if (opt == IPOPT_EOL)
271			break;
272		if (opt == IPOPT_NOP)
273			optlen = 1;
274		else {
275			optlen = cp[IPOPT_OLEN];
276			if (optlen <= 0 || optlen > x)
277				return 0; /* invalid or truncated */
278		}
279		switch (opt) {
280
281		default:
282			break;
283
284		case IPOPT_LSRR:
285			bits |= IP_FW_IPOPT_LSRR;
286			break;
287
288		case IPOPT_SSRR:
289			bits |= IP_FW_IPOPT_SSRR;
290			break;
291
292		case IPOPT_RR:
293			bits |= IP_FW_IPOPT_RR;
294			break;
295
296		case IPOPT_TS:
297			bits |= IP_FW_IPOPT_TS;
298			break;
299		}
300	}
301	return (flags_match(cmd, bits));
302}
303
304static int
305tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
306{
307	int optlen, bits = 0;
308	u_char *cp = (u_char *)(tcp + 1);
309	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
310
311	for (; x > 0; x -= optlen, cp += optlen) {
312		int opt = cp[0];
313		if (opt == TCPOPT_EOL)
314			break;
315		if (opt == TCPOPT_NOP)
316			optlen = 1;
317		else {
318			optlen = cp[1];
319			if (optlen <= 0)
320				break;
321		}
322
323		switch (opt) {
324
325		default:
326			break;
327
328		case TCPOPT_MAXSEG:
329			bits |= IP_FW_TCPOPT_MSS;
330			break;
331
332		case TCPOPT_WINDOW:
333			bits |= IP_FW_TCPOPT_WINDOW;
334			break;
335
336		case TCPOPT_SACK_PERMITTED:
337		case TCPOPT_SACK:
338			bits |= IP_FW_TCPOPT_SACK;
339			break;
340
341		case TCPOPT_TIMESTAMP:
342			bits |= IP_FW_TCPOPT_TS;
343			break;
344
345		}
346	}
347	return (flags_match(cmd, bits));
348}
349
350static int
351iface_match(struct ifnet *ifp, ipfw_insn_if *cmd, struct ip_fw_chain *chain, uint32_t *tablearg)
352{
353	if (ifp == NULL)	/* no iface with this packet, match fails */
354		return 0;
355	/* Check by name or by IP address */
356	if (cmd->name[0] != '\0') { /* match by name */
357		if (cmd->name[0] == '\1') /* use tablearg to match */
358			return ipfw_lookup_table_extended(chain, cmd->p.glob,
359				ifp->if_xname, tablearg, IPFW_TABLE_INTERFACE);
360		/* Check name */
361		if (cmd->p.glob) {
362			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
363				return(1);
364		} else {
365			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
366				return(1);
367		}
368	} else {
369#ifdef __FreeBSD__	/* and OSX too ? */
370		struct ifaddr *ia;
371
372		if_addr_rlock(ifp);
373		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
374			if (ia->ifa_addr->sa_family != AF_INET)
375				continue;
376			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
377			    (ia->ifa_addr))->sin_addr.s_addr) {
378				if_addr_runlock(ifp);
379				return(1);	/* match */
380			}
381		}
382		if_addr_runlock(ifp);
383#endif /* __FreeBSD__ */
384	}
385	return(0);	/* no match, fail ... */
386}
387
388/*
389 * The verify_path function checks if a route to the src exists and
390 * if it is reachable via ifp (when provided).
391 *
392 * The 'verrevpath' option checks that the interface that an IP packet
393 * arrives on is the same interface that traffic destined for the
394 * packet's source address would be routed out of.
395 * The 'versrcreach' option just checks that the source address is
396 * reachable via any route (except default) in the routing table.
397 * These two are a measure to block forged packets. This is also
398 * commonly known as "anti-spoofing" or Unicast Reverse Path
399 * Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
400 * is purposely reminiscent of the Cisco IOS command,
401 *
402 *   ip verify unicast reverse-path
403 *   ip verify unicast source reachable-via any
404 *
405 * which implements the same functionality. But note that the syntax
406 * is misleading, and the check may be performed on all IP packets
407 * whether unicast, multicast, or broadcast.
408 */
409static int
410verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
411{
412#ifndef __FreeBSD__
413	return 0;
414#else
415	struct route ro;
416	struct sockaddr_in *dst;
417
418	bzero(&ro, sizeof(ro));
419
420	dst = (struct sockaddr_in *)&(ro.ro_dst);
421	dst->sin_family = AF_INET;
422	dst->sin_len = sizeof(*dst);
423	dst->sin_addr = src;
424	in_rtalloc_ign(&ro, 0, fib);
425
426	if (ro.ro_rt == NULL)
427		return 0;
428
429	/*
430	 * If ifp is provided, check for equality with rtentry.
431	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
432	 * in order to pass packets injected back by if_simloop():
433	 * if useloopback == 1 routing entry (via lo0) for our own address
434	 * may exist, so we need to handle routing assymetry.
435	 */
436	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
437		RTFREE(ro.ro_rt);
438		return 0;
439	}
440
441	/* if no ifp provided, check if rtentry is not default route */
442	if (ifp == NULL &&
443	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
444		RTFREE(ro.ro_rt);
445		return 0;
446	}
447
448	/* or if this is a blackhole/reject route */
449	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
450		RTFREE(ro.ro_rt);
451		return 0;
452	}
453
454	/* found valid route */
455	RTFREE(ro.ro_rt);
456	return 1;
457#endif /* __FreeBSD__ */
458}
459
460#ifdef INET6
461/*
462 * ipv6 specific rules here...
463 */
464static __inline int
465icmp6type_match (int type, ipfw_insn_u32 *cmd)
466{
467	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
468}
469
470static int
471flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
472{
473	int i;
474	for (i=0; i <= cmd->o.arg1; ++i )
475		if (curr_flow == cmd->d[i] )
476			return 1;
477	return 0;
478}
479
480/* support for IP6_*_ME opcodes */
481static int
482search_ip6_addr_net (struct in6_addr * ip6_addr)
483{
484	struct ifnet *mdc;
485	struct ifaddr *mdc2;
486	struct in6_ifaddr *fdm;
487	struct in6_addr copia;
488
489	TAILQ_FOREACH(mdc, &V_ifnet, if_link) {
490		if_addr_rlock(mdc);
491		TAILQ_FOREACH(mdc2, &mdc->if_addrhead, ifa_link) {
492			if (mdc2->ifa_addr->sa_family == AF_INET6) {
493				fdm = (struct in6_ifaddr *)mdc2;
494				copia = fdm->ia_addr.sin6_addr;
495				/* need for leaving scope_id in the sock_addr */
496				in6_clearscope(&copia);
497				if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia)) {
498					if_addr_runlock(mdc);
499					return 1;
500				}
501			}
502		}
503		if_addr_runlock(mdc);
504	}
505	return 0;
506}
507
508static int
509verify_path6(struct in6_addr *src, struct ifnet *ifp, u_int fib)
510{
511	struct route_in6 ro;
512	struct sockaddr_in6 *dst;
513
514	bzero(&ro, sizeof(ro));
515
516	dst = (struct sockaddr_in6 * )&(ro.ro_dst);
517	dst->sin6_family = AF_INET6;
518	dst->sin6_len = sizeof(*dst);
519	dst->sin6_addr = *src;
520
521	in6_rtalloc_ign(&ro, 0, fib);
522	if (ro.ro_rt == NULL)
523		return 0;
524
525	/*
526	 * if ifp is provided, check for equality with rtentry
527	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
528	 * to support the case of sending packets to an address of our own.
529	 * (where the former interface is the first argument of if_simloop()
530	 *  (=ifp), the latter is lo0)
531	 */
532	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
533		RTFREE(ro.ro_rt);
534		return 0;
535	}
536
537	/* if no ifp provided, check if rtentry is not default route */
538	if (ifp == NULL &&
539	    IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
540		RTFREE(ro.ro_rt);
541		return 0;
542	}
543
544	/* or if this is a blackhole/reject route */
545	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
546		RTFREE(ro.ro_rt);
547		return 0;
548	}
549
550	/* found valid route */
551	RTFREE(ro.ro_rt);
552	return 1;
553
554}
555
556static int
557is_icmp6_query(int icmp6_type)
558{
559	if ((icmp6_type <= ICMP6_MAXTYPE) &&
560	    (icmp6_type == ICMP6_ECHO_REQUEST ||
561	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
562	    icmp6_type == ICMP6_WRUREQUEST ||
563	    icmp6_type == ICMP6_FQDN_QUERY ||
564	    icmp6_type == ICMP6_NI_QUERY))
565		return (1);
566
567	return (0);
568}
569
570static void
571send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
572{
573	struct mbuf *m;
574
575	m = args->m;
576	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
577		struct tcphdr *tcp;
578		tcp = (struct tcphdr *)((char *)ip6 + hlen);
579
580		if ((tcp->th_flags & TH_RST) == 0) {
581			struct mbuf *m0;
582			m0 = ipfw_send_pkt(args->m, &(args->f_id),
583			    ntohl(tcp->th_seq), ntohl(tcp->th_ack),
584			    tcp->th_flags | TH_RST);
585			if (m0 != NULL)
586				ip6_output(m0, NULL, NULL, 0, NULL, NULL,
587				    NULL);
588		}
589		FREE_PKT(m);
590	} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
591#if 0
592		/*
593		 * Unlike above, the mbufs need to line up with the ip6 hdr,
594		 * as the contents are read. We need to m_adj() the
595		 * needed amount.
596		 * The mbuf will however be thrown away so we can adjust it.
597		 * Remember we did an m_pullup on it already so we
598		 * can make some assumptions about contiguousness.
599		 */
600		if (args->L3offset)
601			m_adj(m, args->L3offset);
602#endif
603		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
604	} else
605		FREE_PKT(m);
606
607	args->m = NULL;
608}
609
610#endif /* INET6 */
611
612
613/*
614 * sends a reject message, consuming the mbuf passed as an argument.
615 */
616static void
617send_reject(struct ip_fw_args *args, int code, int iplen, struct ip *ip)
618{
619
620#if 0
621	/* XXX When ip is not guaranteed to be at mtod() we will
622	 * need to account for this */
623	 * The mbuf will however be thrown away so we can adjust it.
624	 * Remember we did an m_pullup on it already so we
625	 * can make some assumptions about contiguousness.
626	 */
627	if (args->L3offset)
628		m_adj(m, args->L3offset);
629#endif
630	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
631		/* We need the IP header in host order for icmp_error(). */
632		SET_HOST_IPLEN(ip);
633		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
634	} else if (args->f_id.proto == IPPROTO_TCP) {
635		struct tcphdr *const tcp =
636		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
637		if ( (tcp->th_flags & TH_RST) == 0) {
638			struct mbuf *m;
639			m = ipfw_send_pkt(args->m, &(args->f_id),
640				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
641				tcp->th_flags | TH_RST);
642			if (m != NULL)
643				ip_output(m, NULL, NULL, 0, NULL, NULL);
644		}
645		FREE_PKT(args->m);
646	} else
647		FREE_PKT(args->m);
648	args->m = NULL;
649}
650
651/*
652 * Support for uid/gid/jail lookup. These tests are expensive
653 * (because we may need to look into the list of active sockets)
654 * so we cache the results. ugid_lookupp is 0 if we have not
655 * yet done a lookup, 1 if we succeeded, and -1 if we tried
656 * and failed. The function always returns the match value.
657 * We could actually spare the variable and use *uc, setting
658 * it to '(void *)check_uidgid if we have no info, NULL if
659 * we tried and failed, or any other value if successful.
660 */
661static int
662check_uidgid(ipfw_insn_u32 *insn, struct ip_fw_args *args, int *ugid_lookupp,
663    struct ucred **uc)
664{
665#ifndef __FreeBSD__
666	/* XXX */
667	return cred_check(insn, proto, oif,
668	    dst_ip, dst_port, src_ip, src_port,
669	    (struct bsd_ucred *)uc, ugid_lookupp, ((struct mbuf *)inp)->m_skb);
670#else  /* FreeBSD */
671	struct in_addr src_ip, dst_ip;
672	struct inpcbinfo *pi;
673	struct ipfw_flow_id *id;
674	struct inpcb *pcb, *inp;
675	struct ifnet *oif;
676	int lookupflags;
677	int match;
678
679	id = &args->f_id;
680	inp = args->inp;
681	oif = args->oif;
682
683	/*
684	 * Check to see if the UDP or TCP stack supplied us with
685	 * the PCB. If so, rather then holding a lock and looking
686	 * up the PCB, we can use the one that was supplied.
687	 */
688	if (inp && *ugid_lookupp == 0) {
689		INP_LOCK_ASSERT(inp);
690		if (inp->inp_socket != NULL) {
691			*uc = crhold(inp->inp_cred);
692			*ugid_lookupp = 1;
693		} else
694			*ugid_lookupp = -1;
695	}
696	/*
697	 * If we have already been here and the packet has no
698	 * PCB entry associated with it, then we can safely
699	 * assume that this is a no match.
700	 */
701	if (*ugid_lookupp == -1)
702		return (0);
703	if (id->proto == IPPROTO_TCP) {
704		lookupflags = 0;
705		pi = &V_tcbinfo;
706	} else if (id->proto == IPPROTO_UDP) {
707		lookupflags = INPLOOKUP_WILDCARD;
708		pi = &V_udbinfo;
709	} else
710		return 0;
711	lookupflags |= INPLOOKUP_RLOCKPCB;
712	match = 0;
713	if (*ugid_lookupp == 0) {
714		if (id->addr_type == 6) {
715#ifdef INET6
716			if (oif == NULL)
717				pcb = in6_pcblookup_mbuf(pi,
718				    &id->src_ip6, htons(id->src_port),
719				    &id->dst_ip6, htons(id->dst_port),
720				    lookupflags, oif, args->m);
721			else
722				pcb = in6_pcblookup_mbuf(pi,
723				    &id->dst_ip6, htons(id->dst_port),
724				    &id->src_ip6, htons(id->src_port),
725				    lookupflags, oif, args->m);
726#else
727			*ugid_lookupp = -1;
728			return (0);
729#endif
730		} else {
731			src_ip.s_addr = htonl(id->src_ip);
732			dst_ip.s_addr = htonl(id->dst_ip);
733			if (oif == NULL)
734				pcb = in_pcblookup_mbuf(pi,
735				    src_ip, htons(id->src_port),
736				    dst_ip, htons(id->dst_port),
737				    lookupflags, oif, args->m);
738			else
739				pcb = in_pcblookup_mbuf(pi,
740				    dst_ip, htons(id->dst_port),
741				    src_ip, htons(id->src_port),
742				    lookupflags, oif, args->m);
743		}
744		if (pcb != NULL) {
745			INP_RLOCK_ASSERT(pcb);
746			*uc = crhold(pcb->inp_cred);
747			*ugid_lookupp = 1;
748			INP_RUNLOCK(pcb);
749		}
750		if (*ugid_lookupp == 0) {
751			/*
752			 * We tried and failed, set the variable to -1
753			 * so we will not try again on this packet.
754			 */
755			*ugid_lookupp = -1;
756			return (0);
757		}
758	}
759	if (insn->o.opcode == O_UID)
760		match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
761	else if (insn->o.opcode == O_GID)
762		match = groupmember((gid_t)insn->d[0], *uc);
763	else if (insn->o.opcode == O_JAIL)
764		match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
765	return (match);
766#endif /* __FreeBSD__ */
767}
768
769/*
770 * Helper function to set args with info on the rule after the matching
771 * one. slot is precise, whereas we guess rule_id as they are
772 * assigned sequentially.
773 */
774static inline void
775set_match(struct ip_fw_args *args, int slot,
776	struct ip_fw_chain *chain)
777{
778	args->rule.chain_id = chain->id;
779	args->rule.slot = slot + 1; /* we use 0 as a marker */
780	args->rule.rule_id = 1 + chain->map[slot]->id;
781	args->rule.rulenum = chain->map[slot]->rulenum;
782}
783
784/*
785 * Helper function to enable cached rule lookups using
786 * x_next and next_rule fields in ipfw rule.
787 */
788static int
789jump_fast(struct ip_fw_chain *chain, struct ip_fw *f, int num,
790    int tablearg, int jump_backwards)
791{
792	int f_pos;
793
794	/* If possible use cached f_pos (in f->next_rule),
795	 * whose version is written in f->next_rule
796	 * (horrible hacks to avoid changing the ABI).
797	 */
798	if (num != IP_FW_TABLEARG && (uintptr_t)f->x_next == chain->id)
799		f_pos = (uintptr_t)f->next_rule;
800	else {
801		int i = IP_FW_ARG_TABLEARG(num);
802		/* make sure we do not jump backward */
803		if (jump_backwards == 0 && i <= f->rulenum)
804			i = f->rulenum + 1;
805		f_pos = ipfw_find_rule(chain, i, 0);
806		/* update the cache */
807		if (num != IP_FW_TABLEARG) {
808			f->next_rule = (void *)(uintptr_t)f_pos;
809			f->x_next = (void *)(uintptr_t)chain->id;
810		}
811	}
812
813	return (f_pos);
814}
815
816/*
817 * The main check routine for the firewall.
818 *
819 * All arguments are in args so we can modify them and return them
820 * back to the caller.
821 *
822 * Parameters:
823 *
824 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
825 *		Starts with the IP header.
826 *	args->eh (in)	Mac header if present, NULL for layer3 packet.
827 *	args->L3offset	Number of bytes bypassed if we came from L2.
828 *			e.g. often sizeof(eh)  ** NOTYET **
829 *	args->oif	Outgoing interface, NULL if packet is incoming.
830 *		The incoming interface is in the mbuf. (in)
831 *	args->divert_rule (in/out)
832 *		Skip up to the first rule past this rule number;
833 *		upon return, non-zero port number for divert or tee.
834 *
835 *	args->rule	Pointer to the last matching rule (in/out)
836 *	args->next_hop	Socket we are forwarding to (out).
837 *	args->next_hop6	IPv6 next hop we are forwarding to (out).
838 *	args->f_id	Addresses grabbed from the packet (out)
839 * 	args->rule.info	a cookie depending on rule action
840 *
841 * Return value:
842 *
843 *	IP_FW_PASS	the packet must be accepted
844 *	IP_FW_DENY	the packet must be dropped
845 *	IP_FW_DIVERT	divert packet, port in m_tag
846 *	IP_FW_TEE	tee packet, port in m_tag
847 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
848 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
849 *		args->rule contains the matching rule,
850 *		args->rule.info has additional information.
851 *
852 */
853int
854ipfw_chk(struct ip_fw_args *args)
855{
856
857	/*
858	 * Local variables holding state while processing a packet:
859	 *
860	 * IMPORTANT NOTE: to speed up the processing of rules, there
861	 * are some assumption on the values of the variables, which
862	 * are documented here. Should you change them, please check
863	 * the implementation of the various instructions to make sure
864	 * that they still work.
865	 *
866	 * args->eh	The MAC header. It is non-null for a layer2
867	 *	packet, it is NULL for a layer-3 packet.
868	 * **notyet**
869	 * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
870	 *
871	 * m | args->m	Pointer to the mbuf, as received from the caller.
872	 *	It may change if ipfw_chk() does an m_pullup, or if it
873	 *	consumes the packet because it calls send_reject().
874	 *	XXX This has to change, so that ipfw_chk() never modifies
875	 *	or consumes the buffer.
876	 * ip	is the beginning of the ip(4 or 6) header.
877	 *	Calculated by adding the L3offset to the start of data.
878	 *	(Until we start using L3offset, the packet is
879	 *	supposed to start with the ip header).
880	 */
881	struct mbuf *m = args->m;
882	struct ip *ip = mtod(m, struct ip *);
883
884	/*
885	 * For rules which contain uid/gid or jail constraints, cache
886	 * a copy of the users credentials after the pcb lookup has been
887	 * executed. This will speed up the processing of rules with
888	 * these types of constraints, as well as decrease contention
889	 * on pcb related locks.
890	 */
891#ifndef __FreeBSD__
892	struct bsd_ucred ucred_cache;
893#else
894	struct ucred *ucred_cache = NULL;
895#endif
896	int ucred_lookup = 0;
897
898	/*
899	 * oif | args->oif	If NULL, ipfw_chk has been called on the
900	 *	inbound path (ether_input, ip_input).
901	 *	If non-NULL, ipfw_chk has been called on the outbound path
902	 *	(ether_output, ip_output).
903	 */
904	struct ifnet *oif = args->oif;
905
906	int f_pos = 0;		/* index of current rule in the array */
907	int retval = 0;
908
909	/*
910	 * hlen	The length of the IP header.
911	 */
912	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
913
914	/*
915	 * offset	The offset of a fragment. offset != 0 means that
916	 *	we have a fragment at this offset of an IPv4 packet.
917	 *	offset == 0 means that (if this is an IPv4 packet)
918	 *	this is the first or only fragment.
919	 *	For IPv6 offset|ip6f_mf == 0 means there is no Fragment Header
920	 *	or there is a single packet fragement (fragement header added
921	 *	without needed).  We will treat a single packet fragment as if
922	 *	there was no fragment header (or log/block depending on the
923	 *	V_fw_permit_single_frag6 sysctl setting).
924	 */
925	u_short offset = 0;
926	u_short ip6f_mf = 0;
927
928	/*
929	 * Local copies of addresses. They are only valid if we have
930	 * an IP packet.
931	 *
932	 * proto	The protocol. Set to 0 for non-ip packets,
933	 *	or to the protocol read from the packet otherwise.
934	 *	proto != 0 means that we have an IPv4 packet.
935	 *
936	 * src_port, dst_port	port numbers, in HOST format. Only
937	 *	valid for TCP and UDP packets.
938	 *
939	 * src_ip, dst_ip	ip addresses, in NETWORK format.
940	 *	Only valid for IPv4 packets.
941	 */
942	uint8_t proto;
943	uint16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
944	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
945	uint16_t iplen=0;
946	int pktlen;
947	uint16_t	etype = 0;	/* Host order stored ether type */
948
949	/*
950	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
951	 * 	MATCH_NONE when checked and not matched (q = NULL),
952	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
953	 */
954	int dyn_dir = MATCH_UNKNOWN;
955	ipfw_dyn_rule *q = NULL;
956	struct ip_fw_chain *chain = &V_layer3_chain;
957
958	/*
959	 * We store in ulp a pointer to the upper layer protocol header.
960	 * In the ipv4 case this is easy to determine from the header,
961	 * but for ipv6 we might have some additional headers in the middle.
962	 * ulp is NULL if not found.
963	 */
964	void *ulp = NULL;		/* upper layer protocol pointer. */
965
966	/* XXX ipv6 variables */
967	int is_ipv6 = 0;
968	uint8_t	icmp6_type = 0;
969	uint16_t ext_hd = 0;	/* bits vector for extension header filtering */
970	/* end of ipv6 variables */
971
972	int is_ipv4 = 0;
973
974	int done = 0;		/* flag to exit the outer loop */
975
976	if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
977		return (IP_FW_PASS);	/* accept */
978
979	dst_ip.s_addr = 0;		/* make sure it is initialized */
980	src_ip.s_addr = 0;		/* make sure it is initialized */
981	pktlen = m->m_pkthdr.len;
982	args->f_id.fib = M_GETFIB(m); /* note mbuf not altered) */
983	proto = args->f_id.proto = 0;	/* mark f_id invalid */
984		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
985
986/*
987 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
988 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
989 * pointer might become stale after other pullups (but we never use it
990 * this way).
991 */
992#define PULLUP_TO(_len, p, T)	PULLUP_LEN(_len, p, sizeof(T))
993#define PULLUP_LEN(_len, p, T)					\
994do {								\
995	int x = (_len) + T;					\
996	if ((m)->m_len < x) {					\
997		args->m = m = m_pullup(m, x);			\
998		if (m == NULL)					\
999			goto pullup_failed;			\
1000	}							\
1001	p = (mtod(m, char *) + (_len));				\
1002} while (0)
1003
1004	/*
1005	 * if we have an ether header,
1006	 */
1007	if (args->eh)
1008		etype = ntohs(args->eh->ether_type);
1009
1010	/* Identify IP packets and fill up variables. */
1011	if (pktlen >= sizeof(struct ip6_hdr) &&
1012	    (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
1013		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
1014		is_ipv6 = 1;
1015		args->f_id.addr_type = 6;
1016		hlen = sizeof(struct ip6_hdr);
1017		proto = ip6->ip6_nxt;
1018
1019		/* Search extension headers to find upper layer protocols */
1020		while (ulp == NULL && offset == 0) {
1021			switch (proto) {
1022			case IPPROTO_ICMPV6:
1023				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
1024				icmp6_type = ICMP6(ulp)->icmp6_type;
1025				break;
1026
1027			case IPPROTO_TCP:
1028				PULLUP_TO(hlen, ulp, struct tcphdr);
1029				dst_port = TCP(ulp)->th_dport;
1030				src_port = TCP(ulp)->th_sport;
1031				/* save flags for dynamic rules */
1032				args->f_id._flags = TCP(ulp)->th_flags;
1033				break;
1034
1035			case IPPROTO_SCTP:
1036				PULLUP_TO(hlen, ulp, struct sctphdr);
1037				src_port = SCTP(ulp)->src_port;
1038				dst_port = SCTP(ulp)->dest_port;
1039				break;
1040
1041			case IPPROTO_UDP:
1042				PULLUP_TO(hlen, ulp, struct udphdr);
1043				dst_port = UDP(ulp)->uh_dport;
1044				src_port = UDP(ulp)->uh_sport;
1045				break;
1046
1047			case IPPROTO_HOPOPTS:	/* RFC 2460 */
1048				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1049				ext_hd |= EXT_HOPOPTS;
1050				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1051				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1052				ulp = NULL;
1053				break;
1054
1055			case IPPROTO_ROUTING:	/* RFC 2460 */
1056				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
1057				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
1058				case 0:
1059					ext_hd |= EXT_RTHDR0;
1060					break;
1061				case 2:
1062					ext_hd |= EXT_RTHDR2;
1063					break;
1064				default:
1065					if (V_fw_verbose)
1066						printf("IPFW2: IPV6 - Unknown "
1067						    "Routing Header type(%d)\n",
1068						    ((struct ip6_rthdr *)
1069						    ulp)->ip6r_type);
1070					if (V_fw_deny_unknown_exthdrs)
1071					    return (IP_FW_DENY);
1072					break;
1073				}
1074				ext_hd |= EXT_ROUTING;
1075				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
1076				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
1077				ulp = NULL;
1078				break;
1079
1080			case IPPROTO_FRAGMENT:	/* RFC 2460 */
1081				PULLUP_TO(hlen, ulp, struct ip6_frag);
1082				ext_hd |= EXT_FRAGMENT;
1083				hlen += sizeof (struct ip6_frag);
1084				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
1085				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
1086					IP6F_OFF_MASK;
1087				ip6f_mf = ((struct ip6_frag *)ulp)->ip6f_offlg &
1088					IP6F_MORE_FRAG;
1089				if (V_fw_permit_single_frag6 == 0 &&
1090				    offset == 0 && ip6f_mf == 0) {
1091					if (V_fw_verbose)
1092						printf("IPFW2: IPV6 - Invalid "
1093						    "Fragment Header\n");
1094					if (V_fw_deny_unknown_exthdrs)
1095					    return (IP_FW_DENY);
1096					break;
1097				}
1098				args->f_id.extra =
1099				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
1100				ulp = NULL;
1101				break;
1102
1103			case IPPROTO_DSTOPTS:	/* RFC 2460 */
1104				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1105				ext_hd |= EXT_DSTOPTS;
1106				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1107				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1108				ulp = NULL;
1109				break;
1110
1111			case IPPROTO_AH:	/* RFC 2402 */
1112				PULLUP_TO(hlen, ulp, struct ip6_ext);
1113				ext_hd |= EXT_AH;
1114				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
1115				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
1116				ulp = NULL;
1117				break;
1118
1119			case IPPROTO_ESP:	/* RFC 2406 */
1120				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
1121				/* Anything past Seq# is variable length and
1122				 * data past this ext. header is encrypted. */
1123				ext_hd |= EXT_ESP;
1124				break;
1125
1126			case IPPROTO_NONE:	/* RFC 2460 */
1127				/*
1128				 * Packet ends here, and IPv6 header has
1129				 * already been pulled up. If ip6e_len!=0
1130				 * then octets must be ignored.
1131				 */
1132				ulp = ip; /* non-NULL to get out of loop. */
1133				break;
1134
1135			case IPPROTO_OSPFIGP:
1136				/* XXX OSPF header check? */
1137				PULLUP_TO(hlen, ulp, struct ip6_ext);
1138				break;
1139
1140			case IPPROTO_PIM:
1141				/* XXX PIM header check? */
1142				PULLUP_TO(hlen, ulp, struct pim);
1143				break;
1144
1145			case IPPROTO_CARP:
1146				PULLUP_TO(hlen, ulp, struct carp_header);
1147				if (((struct carp_header *)ulp)->carp_version !=
1148				    CARP_VERSION)
1149					return (IP_FW_DENY);
1150				if (((struct carp_header *)ulp)->carp_type !=
1151				    CARP_ADVERTISEMENT)
1152					return (IP_FW_DENY);
1153				break;
1154
1155			case IPPROTO_IPV6:	/* RFC 2893 */
1156				PULLUP_TO(hlen, ulp, struct ip6_hdr);
1157				break;
1158
1159			case IPPROTO_IPV4:	/* RFC 2893 */
1160				PULLUP_TO(hlen, ulp, struct ip);
1161				break;
1162
1163			default:
1164				if (V_fw_verbose)
1165					printf("IPFW2: IPV6 - Unknown "
1166					    "Extension Header(%d), ext_hd=%x\n",
1167					     proto, ext_hd);
1168				if (V_fw_deny_unknown_exthdrs)
1169				    return (IP_FW_DENY);
1170				PULLUP_TO(hlen, ulp, struct ip6_ext);
1171				break;
1172			} /*switch */
1173		}
1174		ip = mtod(m, struct ip *);
1175		ip6 = (struct ip6_hdr *)ip;
1176		args->f_id.src_ip6 = ip6->ip6_src;
1177		args->f_id.dst_ip6 = ip6->ip6_dst;
1178		args->f_id.src_ip = 0;
1179		args->f_id.dst_ip = 0;
1180		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
1181	} else if (pktlen >= sizeof(struct ip) &&
1182	    (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
1183	    	is_ipv4 = 1;
1184		hlen = ip->ip_hl << 2;
1185		args->f_id.addr_type = 4;
1186
1187		/*
1188		 * Collect parameters into local variables for faster matching.
1189		 */
1190		proto = ip->ip_p;
1191		src_ip = ip->ip_src;
1192		dst_ip = ip->ip_dst;
1193		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1194		iplen = ntohs(ip->ip_len);
1195		pktlen = iplen < pktlen ? iplen : pktlen;
1196
1197		if (offset == 0) {
1198			switch (proto) {
1199			case IPPROTO_TCP:
1200				PULLUP_TO(hlen, ulp, struct tcphdr);
1201				dst_port = TCP(ulp)->th_dport;
1202				src_port = TCP(ulp)->th_sport;
1203				/* save flags for dynamic rules */
1204				args->f_id._flags = TCP(ulp)->th_flags;
1205				break;
1206
1207			case IPPROTO_SCTP:
1208				PULLUP_TO(hlen, ulp, struct sctphdr);
1209				src_port = SCTP(ulp)->src_port;
1210				dst_port = SCTP(ulp)->dest_port;
1211				break;
1212
1213			case IPPROTO_UDP:
1214				PULLUP_TO(hlen, ulp, struct udphdr);
1215				dst_port = UDP(ulp)->uh_dport;
1216				src_port = UDP(ulp)->uh_sport;
1217				break;
1218
1219			case IPPROTO_ICMP:
1220				PULLUP_TO(hlen, ulp, struct icmphdr);
1221				//args->f_id.flags = ICMP(ulp)->icmp_type;
1222				break;
1223
1224			default:
1225				break;
1226			}
1227		}
1228
1229		ip = mtod(m, struct ip *);
1230		args->f_id.src_ip = ntohl(src_ip.s_addr);
1231		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1232	}
1233#undef PULLUP_TO
1234	if (proto) { /* we may have port numbers, store them */
1235		args->f_id.proto = proto;
1236		args->f_id.src_port = src_port = ntohs(src_port);
1237		args->f_id.dst_port = dst_port = ntohs(dst_port);
1238	}
1239
1240	IPFW_RLOCK(chain);
1241	if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
1242		IPFW_RUNLOCK(chain);
1243		return (IP_FW_PASS);	/* accept */
1244	}
1245	if (args->rule.slot) {
1246		/*
1247		 * Packet has already been tagged as a result of a previous
1248		 * match on rule args->rule aka args->rule_id (PIPE, QUEUE,
1249		 * REASS, NETGRAPH, DIVERT/TEE...)
1250		 * Validate the slot and continue from the next one
1251		 * if still present, otherwise do a lookup.
1252		 */
1253		f_pos = (args->rule.chain_id == chain->id) ?
1254		    args->rule.slot :
1255		    ipfw_find_rule(chain, args->rule.rulenum,
1256			args->rule.rule_id);
1257	} else {
1258		f_pos = 0;
1259	}
1260
1261	/*
1262	 * Now scan the rules, and parse microinstructions for each rule.
1263	 * We have two nested loops and an inner switch. Sometimes we
1264	 * need to break out of one or both loops, or re-enter one of
1265	 * the loops with updated variables. Loop variables are:
1266	 *
1267	 *	f_pos (outer loop) points to the current rule.
1268	 *		On output it points to the matching rule.
1269	 *	done (outer loop) is used as a flag to break the loop.
1270	 *	l (inner loop)	residual length of current rule.
1271	 *		cmd points to the current microinstruction.
1272	 *
1273	 * We break the inner loop by setting l=0 and possibly
1274	 * cmdlen=0 if we don't want to advance cmd.
1275	 * We break the outer loop by setting done=1
1276	 * We can restart the inner loop by setting l>0 and f_pos, f, cmd
1277	 * as needed.
1278	 */
1279	for (; f_pos < chain->n_rules; f_pos++) {
1280		ipfw_insn *cmd;
1281		uint32_t tablearg = 0;
1282		int l, cmdlen, skip_or; /* skip rest of OR block */
1283		struct ip_fw *f;
1284
1285		f = chain->map[f_pos];
1286		if (V_set_disable & (1 << f->set) )
1287			continue;
1288
1289		skip_or = 0;
1290		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1291		    l -= cmdlen, cmd += cmdlen) {
1292			int match;
1293
1294			/*
1295			 * check_body is a jump target used when we find a
1296			 * CHECK_STATE, and need to jump to the body of
1297			 * the target rule.
1298			 */
1299
1300/* check_body: */
1301			cmdlen = F_LEN(cmd);
1302			/*
1303			 * An OR block (insn_1 || .. || insn_n) has the
1304			 * F_OR bit set in all but the last instruction.
1305			 * The first match will set "skip_or", and cause
1306			 * the following instructions to be skipped until
1307			 * past the one with the F_OR bit clear.
1308			 */
1309			if (skip_or) {		/* skip this instruction */
1310				if ((cmd->len & F_OR) == 0)
1311					skip_or = 0;	/* next one is good */
1312				continue;
1313			}
1314			match = 0; /* set to 1 if we succeed */
1315
1316			switch (cmd->opcode) {
1317			/*
1318			 * The first set of opcodes compares the packet's
1319			 * fields with some pattern, setting 'match' if a
1320			 * match is found. At the end of the loop there is
1321			 * logic to deal with F_NOT and F_OR flags associated
1322			 * with the opcode.
1323			 */
1324			case O_NOP:
1325				match = 1;
1326				break;
1327
1328			case O_FORWARD_MAC:
1329				printf("ipfw: opcode %d unimplemented\n",
1330				    cmd->opcode);
1331				break;
1332
1333			case O_GID:
1334			case O_UID:
1335			case O_JAIL:
1336				/*
1337				 * We only check offset == 0 && proto != 0,
1338				 * as this ensures that we have a
1339				 * packet with the ports info.
1340				 */
1341				if (offset != 0)
1342					break;
1343				if (proto == IPPROTO_TCP ||
1344				    proto == IPPROTO_UDP)
1345					match = check_uidgid(
1346						    (ipfw_insn_u32 *)cmd,
1347						    args, &ucred_lookup,
1348#ifdef __FreeBSD__
1349						    &ucred_cache);
1350#else
1351						    (void *)&ucred_cache);
1352#endif
1353				break;
1354
1355			case O_RECV:
1356				match = iface_match(m->m_pkthdr.rcvif,
1357				    (ipfw_insn_if *)cmd, chain, &tablearg);
1358				break;
1359
1360			case O_XMIT:
1361				match = iface_match(oif, (ipfw_insn_if *)cmd,
1362				    chain, &tablearg);
1363				break;
1364
1365			case O_VIA:
1366				match = iface_match(oif ? oif :
1367				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd,
1368				    chain, &tablearg);
1369				break;
1370
1371			case O_MACADDR2:
1372				if (args->eh != NULL) {	/* have MAC header */
1373					u_int32_t *want = (u_int32_t *)
1374						((ipfw_insn_mac *)cmd)->addr;
1375					u_int32_t *mask = (u_int32_t *)
1376						((ipfw_insn_mac *)cmd)->mask;
1377					u_int32_t *hdr = (u_int32_t *)args->eh;
1378
1379					match =
1380					    ( want[0] == (hdr[0] & mask[0]) &&
1381					      want[1] == (hdr[1] & mask[1]) &&
1382					      want[2] == (hdr[2] & mask[2]) );
1383				}
1384				break;
1385
1386			case O_MAC_TYPE:
1387				if (args->eh != NULL) {
1388					u_int16_t *p =
1389					    ((ipfw_insn_u16 *)cmd)->ports;
1390					int i;
1391
1392					for (i = cmdlen - 1; !match && i>0;
1393					    i--, p += 2)
1394						match = (etype >= p[0] &&
1395						    etype <= p[1]);
1396				}
1397				break;
1398
1399			case O_FRAG:
1400				match = (offset != 0);
1401				break;
1402
1403			case O_IN:	/* "out" is "not in" */
1404				match = (oif == NULL);
1405				break;
1406
1407			case O_LAYER2:
1408				match = (args->eh != NULL);
1409				break;
1410
1411			case O_DIVERTED:
1412			    {
1413				/* For diverted packets, args->rule.info
1414				 * contains the divert port (in host format)
1415				 * reason and direction.
1416				 */
1417				uint32_t i = args->rule.info;
1418				match = (i&IPFW_IS_MASK) == IPFW_IS_DIVERT &&
1419				    cmd->arg1 & ((i & IPFW_INFO_IN) ? 1 : 2);
1420			    }
1421				break;
1422
1423			case O_PROTO:
1424				/*
1425				 * We do not allow an arg of 0 so the
1426				 * check of "proto" only suffices.
1427				 */
1428				match = (proto == cmd->arg1);
1429				break;
1430
1431			case O_IP_SRC:
1432				match = is_ipv4 &&
1433				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1434				    src_ip.s_addr);
1435				break;
1436
1437			case O_IP_SRC_LOOKUP:
1438			case O_IP_DST_LOOKUP:
1439				if (is_ipv4) {
1440				    uint32_t key =
1441					(cmd->opcode == O_IP_DST_LOOKUP) ?
1442					    dst_ip.s_addr : src_ip.s_addr;
1443				    uint32_t v = 0;
1444
1445				    if (cmdlen > F_INSN_SIZE(ipfw_insn_u32)) {
1446					/* generic lookup. The key must be
1447					 * in 32bit big-endian format.
1448					 */
1449					v = ((ipfw_insn_u32 *)cmd)->d[1];
1450					if (v == 0)
1451					    key = dst_ip.s_addr;
1452					else if (v == 1)
1453					    key = src_ip.s_addr;
1454					else if (v == 6) /* dscp */
1455					    key = (ip->ip_tos >> 2) & 0x3f;
1456					else if (offset != 0)
1457					    break;
1458					else if (proto != IPPROTO_TCP &&
1459						proto != IPPROTO_UDP)
1460					    break;
1461					else if (v == 2)
1462					    key = htonl(dst_port);
1463					else if (v == 3)
1464					    key = htonl(src_port);
1465					else if (v == 4 || v == 5) {
1466					    check_uidgid(
1467						(ipfw_insn_u32 *)cmd,
1468						args, &ucred_lookup,
1469#ifdef __FreeBSD__
1470						&ucred_cache);
1471					    if (v == 4 /* O_UID */)
1472						key = ucred_cache->cr_uid;
1473					    else if (v == 5 /* O_JAIL */)
1474						key = ucred_cache->cr_prison->pr_id;
1475#else /* !__FreeBSD__ */
1476						(void *)&ucred_cache);
1477					    if (v ==4 /* O_UID */)
1478						key = ucred_cache.uid;
1479					    else if (v == 5 /* O_JAIL */)
1480						key = ucred_cache.xid;
1481#endif /* !__FreeBSD__ */
1482					    key = htonl(key);
1483					} else
1484					    break;
1485				    }
1486				    match = ipfw_lookup_table(chain,
1487					cmd->arg1, key, &v);
1488				    if (!match)
1489					break;
1490				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
1491					match =
1492					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
1493				    else
1494					tablearg = v;
1495				} else if (is_ipv6) {
1496					uint32_t v = 0;
1497					void *pkey = (cmd->opcode == O_IP_DST_LOOKUP) ?
1498						&args->f_id.dst_ip6: &args->f_id.src_ip6;
1499					match = ipfw_lookup_table_extended(chain,
1500							cmd->arg1, pkey, &v,
1501							IPFW_TABLE_CIDR);
1502					if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
1503						match = ((ipfw_insn_u32 *)cmd)->d[0] == v;
1504					if (match)
1505						tablearg = v;
1506				}
1507				break;
1508
1509			case O_IP_SRC_MASK:
1510			case O_IP_DST_MASK:
1511				if (is_ipv4) {
1512				    uint32_t a =
1513					(cmd->opcode == O_IP_DST_MASK) ?
1514					    dst_ip.s_addr : src_ip.s_addr;
1515				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
1516				    int i = cmdlen-1;
1517
1518				    for (; !match && i>0; i-= 2, p+= 2)
1519					match = (p[0] == (a & p[1]));
1520				}
1521				break;
1522
1523			case O_IP_SRC_ME:
1524				if (is_ipv4) {
1525					struct ifnet *tif;
1526
1527					INADDR_TO_IFP(src_ip, tif);
1528					match = (tif != NULL);
1529					break;
1530				}
1531#ifdef INET6
1532				/* FALLTHROUGH */
1533			case O_IP6_SRC_ME:
1534				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
1535#endif
1536				break;
1537
1538			case O_IP_DST_SET:
1539			case O_IP_SRC_SET:
1540				if (is_ipv4) {
1541					u_int32_t *d = (u_int32_t *)(cmd+1);
1542					u_int32_t addr =
1543					    cmd->opcode == O_IP_DST_SET ?
1544						args->f_id.dst_ip :
1545						args->f_id.src_ip;
1546
1547					    if (addr < d[0])
1548						    break;
1549					    addr -= d[0]; /* subtract base */
1550					    match = (addr < cmd->arg1) &&
1551						( d[ 1 + (addr>>5)] &
1552						  (1<<(addr & 0x1f)) );
1553				}
1554				break;
1555
1556			case O_IP_DST:
1557				match = is_ipv4 &&
1558				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1559				    dst_ip.s_addr);
1560				break;
1561
1562			case O_IP_DST_ME:
1563				if (is_ipv4) {
1564					struct ifnet *tif;
1565
1566					INADDR_TO_IFP(dst_ip, tif);
1567					match = (tif != NULL);
1568					break;
1569				}
1570#ifdef INET6
1571				/* FALLTHROUGH */
1572			case O_IP6_DST_ME:
1573				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
1574#endif
1575				break;
1576
1577
1578			case O_IP_SRCPORT:
1579			case O_IP_DSTPORT:
1580				/*
1581				 * offset == 0 && proto != 0 is enough
1582				 * to guarantee that we have a
1583				 * packet with port info.
1584				 */
1585				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
1586				    && offset == 0) {
1587					u_int16_t x =
1588					    (cmd->opcode == O_IP_SRCPORT) ?
1589						src_port : dst_port ;
1590					u_int16_t *p =
1591					    ((ipfw_insn_u16 *)cmd)->ports;
1592					int i;
1593
1594					for (i = cmdlen - 1; !match && i>0;
1595					    i--, p += 2)
1596						match = (x>=p[0] && x<=p[1]);
1597				}
1598				break;
1599
1600			case O_ICMPTYPE:
1601				match = (offset == 0 && proto==IPPROTO_ICMP &&
1602				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
1603				break;
1604
1605#ifdef INET6
1606			case O_ICMP6TYPE:
1607				match = is_ipv6 && offset == 0 &&
1608				    proto==IPPROTO_ICMPV6 &&
1609				    icmp6type_match(
1610					ICMP6(ulp)->icmp6_type,
1611					(ipfw_insn_u32 *)cmd);
1612				break;
1613#endif /* INET6 */
1614
1615			case O_IPOPT:
1616				match = (is_ipv4 &&
1617				    ipopts_match(ip, cmd) );
1618				break;
1619
1620			case O_IPVER:
1621				match = (is_ipv4 &&
1622				    cmd->arg1 == ip->ip_v);
1623				break;
1624
1625			case O_IPID:
1626			case O_IPLEN:
1627			case O_IPTTL:
1628				if (is_ipv4) {	/* only for IP packets */
1629				    uint16_t x;
1630				    uint16_t *p;
1631				    int i;
1632
1633				    if (cmd->opcode == O_IPLEN)
1634					x = iplen;
1635				    else if (cmd->opcode == O_IPTTL)
1636					x = ip->ip_ttl;
1637				    else /* must be IPID */
1638					x = ntohs(ip->ip_id);
1639				    if (cmdlen == 1) {
1640					match = (cmd->arg1 == x);
1641					break;
1642				    }
1643				    /* otherwise we have ranges */
1644				    p = ((ipfw_insn_u16 *)cmd)->ports;
1645				    i = cmdlen - 1;
1646				    for (; !match && i>0; i--, p += 2)
1647					match = (x >= p[0] && x <= p[1]);
1648				}
1649				break;
1650
1651			case O_IPPRECEDENCE:
1652				match = (is_ipv4 &&
1653				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
1654				break;
1655
1656			case O_IPTOS:
1657				match = (is_ipv4 &&
1658				    flags_match(cmd, ip->ip_tos));
1659				break;
1660
1661			case O_TCPDATALEN:
1662				if (proto == IPPROTO_TCP && offset == 0) {
1663				    struct tcphdr *tcp;
1664				    uint16_t x;
1665				    uint16_t *p;
1666				    int i;
1667
1668				    tcp = TCP(ulp);
1669				    x = iplen -
1670					((ip->ip_hl + tcp->th_off) << 2);
1671				    if (cmdlen == 1) {
1672					match = (cmd->arg1 == x);
1673					break;
1674				    }
1675				    /* otherwise we have ranges */
1676				    p = ((ipfw_insn_u16 *)cmd)->ports;
1677				    i = cmdlen - 1;
1678				    for (; !match && i>0; i--, p += 2)
1679					match = (x >= p[0] && x <= p[1]);
1680				}
1681				break;
1682
1683			case O_TCPFLAGS:
1684				match = (proto == IPPROTO_TCP && offset == 0 &&
1685				    flags_match(cmd, TCP(ulp)->th_flags));
1686				break;
1687
1688			case O_TCPOPTS:
1689				PULLUP_LEN(hlen, ulp, (TCP(ulp)->th_off << 2));
1690				match = (proto == IPPROTO_TCP && offset == 0 &&
1691				    tcpopts_match(TCP(ulp), cmd));
1692				break;
1693
1694			case O_TCPSEQ:
1695				match = (proto == IPPROTO_TCP && offset == 0 &&
1696				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1697					TCP(ulp)->th_seq);
1698				break;
1699
1700			case O_TCPACK:
1701				match = (proto == IPPROTO_TCP && offset == 0 &&
1702				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1703					TCP(ulp)->th_ack);
1704				break;
1705
1706			case O_TCPWIN:
1707				if (proto == IPPROTO_TCP && offset == 0) {
1708				    uint16_t x;
1709				    uint16_t *p;
1710				    int i;
1711
1712				    x = ntohs(TCP(ulp)->th_win);
1713				    if (cmdlen == 1) {
1714					match = (cmd->arg1 == x);
1715					break;
1716				    }
1717				    /* Otherwise we have ranges. */
1718				    p = ((ipfw_insn_u16 *)cmd)->ports;
1719				    i = cmdlen - 1;
1720				    for (; !match && i > 0; i--, p += 2)
1721					match = (x >= p[0] && x <= p[1]);
1722				}
1723				break;
1724
1725			case O_ESTAB:
1726				/* reject packets which have SYN only */
1727				/* XXX should i also check for TH_ACK ? */
1728				match = (proto == IPPROTO_TCP && offset == 0 &&
1729				    (TCP(ulp)->th_flags &
1730				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
1731				break;
1732
1733			case O_ALTQ: {
1734				struct pf_mtag *at;
1735				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
1736
1737				match = 1;
1738				at = pf_find_mtag(m);
1739				if (at != NULL && at->qid != 0)
1740					break;
1741				at = pf_get_mtag(m);
1742				if (at == NULL) {
1743					/*
1744					 * Let the packet fall back to the
1745					 * default ALTQ.
1746					 */
1747					break;
1748				}
1749				at->qid = altq->qid;
1750				at->hdr = ip;
1751				break;
1752			}
1753
1754			case O_LOG:
1755				ipfw_log(f, hlen, args, m,
1756				    oif, offset | ip6f_mf, tablearg, ip);
1757				match = 1;
1758				break;
1759
1760			case O_PROB:
1761				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
1762				break;
1763
1764			case O_VERREVPATH:
1765				/* Outgoing packets automatically pass/match */
1766				match = ((oif != NULL) ||
1767				    (m->m_pkthdr.rcvif == NULL) ||
1768				    (
1769#ifdef INET6
1770				    is_ipv6 ?
1771					verify_path6(&(args->f_id.src_ip6),
1772					    m->m_pkthdr.rcvif, args->f_id.fib) :
1773#endif
1774				    verify_path(src_ip, m->m_pkthdr.rcvif,
1775				        args->f_id.fib)));
1776				break;
1777
1778			case O_VERSRCREACH:
1779				/* Outgoing packets automatically pass/match */
1780				match = (hlen > 0 && ((oif != NULL) ||
1781#ifdef INET6
1782				    is_ipv6 ?
1783				        verify_path6(&(args->f_id.src_ip6),
1784				            NULL, args->f_id.fib) :
1785#endif
1786				    verify_path(src_ip, NULL, args->f_id.fib)));
1787				break;
1788
1789			case O_ANTISPOOF:
1790				/* Outgoing packets automatically pass/match */
1791				if (oif == NULL && hlen > 0 &&
1792				    (  (is_ipv4 && in_localaddr(src_ip))
1793#ifdef INET6
1794				    || (is_ipv6 &&
1795				        in6_localaddr(&(args->f_id.src_ip6)))
1796#endif
1797				    ))
1798					match =
1799#ifdef INET6
1800					    is_ipv6 ? verify_path6(
1801					        &(args->f_id.src_ip6),
1802					        m->m_pkthdr.rcvif,
1803						args->f_id.fib) :
1804#endif
1805					    verify_path(src_ip,
1806					    	m->m_pkthdr.rcvif,
1807					        args->f_id.fib);
1808				else
1809					match = 1;
1810				break;
1811
1812			case O_IPSEC:
1813#ifdef IPSEC
1814				match = (m_tag_find(m,
1815				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
1816#endif
1817				/* otherwise no match */
1818				break;
1819
1820#ifdef INET6
1821			case O_IP6_SRC:
1822				match = is_ipv6 &&
1823				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
1824				    &((ipfw_insn_ip6 *)cmd)->addr6);
1825				break;
1826
1827			case O_IP6_DST:
1828				match = is_ipv6 &&
1829				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
1830				    &((ipfw_insn_ip6 *)cmd)->addr6);
1831				break;
1832			case O_IP6_SRC_MASK:
1833			case O_IP6_DST_MASK:
1834				if (is_ipv6) {
1835					int i = cmdlen - 1;
1836					struct in6_addr p;
1837					struct in6_addr *d =
1838					    &((ipfw_insn_ip6 *)cmd)->addr6;
1839
1840					for (; !match && i > 0; d += 2,
1841					    i -= F_INSN_SIZE(struct in6_addr)
1842					    * 2) {
1843						p = (cmd->opcode ==
1844						    O_IP6_SRC_MASK) ?
1845						    args->f_id.src_ip6:
1846						    args->f_id.dst_ip6;
1847						APPLY_MASK(&p, &d[1]);
1848						match =
1849						    IN6_ARE_ADDR_EQUAL(&d[0],
1850						    &p);
1851					}
1852				}
1853				break;
1854
1855			case O_FLOW6ID:
1856				match = is_ipv6 &&
1857				    flow6id_match(args->f_id.flow_id6,
1858				    (ipfw_insn_u32 *) cmd);
1859				break;
1860
1861			case O_EXT_HDR:
1862				match = is_ipv6 &&
1863				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
1864				break;
1865
1866			case O_IP6:
1867				match = is_ipv6;
1868				break;
1869#endif
1870
1871			case O_IP4:
1872				match = is_ipv4;
1873				break;
1874
1875			case O_TAG: {
1876				struct m_tag *mtag;
1877				uint32_t tag = IP_FW_ARG_TABLEARG(cmd->arg1);
1878
1879				/* Packet is already tagged with this tag? */
1880				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
1881
1882				/* We have `untag' action when F_NOT flag is
1883				 * present. And we must remove this mtag from
1884				 * mbuf and reset `match' to zero (`match' will
1885				 * be inversed later).
1886				 * Otherwise we should allocate new mtag and
1887				 * push it into mbuf.
1888				 */
1889				if (cmd->len & F_NOT) { /* `untag' action */
1890					if (mtag != NULL)
1891						m_tag_delete(m, mtag);
1892					match = 0;
1893				} else {
1894					if (mtag == NULL) {
1895						mtag = m_tag_alloc( MTAG_IPFW,
1896						    tag, 0, M_NOWAIT);
1897						if (mtag != NULL)
1898							m_tag_prepend(m, mtag);
1899					}
1900					match = 1;
1901				}
1902				break;
1903			}
1904
1905			case O_FIB: /* try match the specified fib */
1906				if (args->f_id.fib == cmd->arg1)
1907					match = 1;
1908				break;
1909
1910			case O_SOCKARG:	{
1911				struct inpcb *inp = args->inp;
1912				struct inpcbinfo *pi;
1913
1914				if (is_ipv6) /* XXX can we remove this ? */
1915					break;
1916
1917				if (proto == IPPROTO_TCP)
1918					pi = &V_tcbinfo;
1919				else if (proto == IPPROTO_UDP)
1920					pi = &V_udbinfo;
1921				else
1922					break;
1923
1924				/*
1925				 * XXXRW: so_user_cookie should almost
1926				 * certainly be inp_user_cookie?
1927				 */
1928
1929				/* For incomming packet, lookup up the
1930				inpcb using the src/dest ip/port tuple */
1931				if (inp == NULL) {
1932					inp = in_pcblookup(pi,
1933						src_ip, htons(src_port),
1934						dst_ip, htons(dst_port),
1935						INPLOOKUP_RLOCKPCB, NULL);
1936					if (inp != NULL) {
1937						tablearg =
1938						    inp->inp_socket->so_user_cookie;
1939						if (tablearg)
1940							match = 1;
1941						INP_RUNLOCK(inp);
1942					}
1943				} else {
1944					if (inp->inp_socket) {
1945						tablearg =
1946						    inp->inp_socket->so_user_cookie;
1947						if (tablearg)
1948							match = 1;
1949					}
1950				}
1951				break;
1952			}
1953
1954			case O_TAGGED: {
1955				struct m_tag *mtag;
1956				uint32_t tag = IP_FW_ARG_TABLEARG(cmd->arg1);
1957
1958				if (cmdlen == 1) {
1959					match = m_tag_locate(m, MTAG_IPFW,
1960					    tag, NULL) != NULL;
1961					break;
1962				}
1963
1964				/* we have ranges */
1965				for (mtag = m_tag_first(m);
1966				    mtag != NULL && !match;
1967				    mtag = m_tag_next(m, mtag)) {
1968					uint16_t *p;
1969					int i;
1970
1971					if (mtag->m_tag_cookie != MTAG_IPFW)
1972						continue;
1973
1974					p = ((ipfw_insn_u16 *)cmd)->ports;
1975					i = cmdlen - 1;
1976					for(; !match && i > 0; i--, p += 2)
1977						match =
1978						    mtag->m_tag_id >= p[0] &&
1979						    mtag->m_tag_id <= p[1];
1980				}
1981				break;
1982			}
1983
1984			/*
1985			 * The second set of opcodes represents 'actions',
1986			 * i.e. the terminal part of a rule once the packet
1987			 * matches all previous patterns.
1988			 * Typically there is only one action for each rule,
1989			 * and the opcode is stored at the end of the rule
1990			 * (but there are exceptions -- see below).
1991			 *
1992			 * In general, here we set retval and terminate the
1993			 * outer loop (would be a 'break 3' in some language,
1994			 * but we need to set l=0, done=1)
1995			 *
1996			 * Exceptions:
1997			 * O_COUNT and O_SKIPTO actions:
1998			 *   instead of terminating, we jump to the next rule
1999			 *   (setting l=0), or to the SKIPTO target (setting
2000			 *   f/f_len, cmd and l as needed), respectively.
2001			 *
2002			 * O_TAG, O_LOG and O_ALTQ action parameters:
2003			 *   perform some action and set match = 1;
2004			 *
2005			 * O_LIMIT and O_KEEP_STATE: these opcodes are
2006			 *   not real 'actions', and are stored right
2007			 *   before the 'action' part of the rule.
2008			 *   These opcodes try to install an entry in the
2009			 *   state tables; if successful, we continue with
2010			 *   the next opcode (match=1; break;), otherwise
2011			 *   the packet must be dropped (set retval,
2012			 *   break loops with l=0, done=1)
2013			 *
2014			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2015			 *   cause a lookup of the state table, and a jump
2016			 *   to the 'action' part of the parent rule
2017			 *   if an entry is found, or
2018			 *   (CHECK_STATE only) a jump to the next rule if
2019			 *   the entry is not found.
2020			 *   The result of the lookup is cached so that
2021			 *   further instances of these opcodes become NOPs.
2022			 *   The jump to the next rule is done by setting
2023			 *   l=0, cmdlen=0.
2024			 */
2025			case O_LIMIT:
2026			case O_KEEP_STATE:
2027				if (ipfw_install_state(f,
2028				    (ipfw_insn_limit *)cmd, args, tablearg)) {
2029					/* error or limit violation */
2030					retval = IP_FW_DENY;
2031					l = 0;	/* exit inner loop */
2032					done = 1; /* exit outer loop */
2033				}
2034				match = 1;
2035				break;
2036
2037			case O_PROBE_STATE:
2038			case O_CHECK_STATE:
2039				/*
2040				 * dynamic rules are checked at the first
2041				 * keep-state or check-state occurrence,
2042				 * with the result being stored in dyn_dir.
2043				 * The compiler introduces a PROBE_STATE
2044				 * instruction for us when we have a
2045				 * KEEP_STATE (because PROBE_STATE needs
2046				 * to be run first).
2047				 */
2048				if (dyn_dir == MATCH_UNKNOWN &&
2049				    (q = ipfw_lookup_dyn_rule(&args->f_id,
2050				     &dyn_dir, proto == IPPROTO_TCP ?
2051					TCP(ulp) : NULL))
2052					!= NULL) {
2053					/*
2054					 * Found dynamic entry, update stats
2055					 * and jump to the 'action' part of
2056					 * the parent rule by setting
2057					 * f, cmd, l and clearing cmdlen.
2058					 */
2059					q->pcnt++;
2060					q->bcnt += pktlen;
2061					/* XXX we would like to have f_pos
2062					 * readily accessible in the dynamic
2063				         * rule, instead of having to
2064					 * lookup q->rule.
2065					 */
2066					f = q->rule;
2067					f_pos = ipfw_find_rule(chain,
2068						f->rulenum, f->id);
2069					cmd = ACTION_PTR(f);
2070					l = f->cmd_len - f->act_ofs;
2071					ipfw_dyn_unlock(q);
2072					cmdlen = 0;
2073					match = 1;
2074					break;
2075				}
2076				/*
2077				 * Dynamic entry not found. If CHECK_STATE,
2078				 * skip to next rule, if PROBE_STATE just
2079				 * ignore and continue with next opcode.
2080				 */
2081				if (cmd->opcode == O_CHECK_STATE)
2082					l = 0;	/* exit inner loop */
2083				match = 1;
2084				break;
2085
2086			case O_ACCEPT:
2087				retval = 0;	/* accept */
2088				l = 0;		/* exit inner loop */
2089				done = 1;	/* exit outer loop */
2090				break;
2091
2092			case O_PIPE:
2093			case O_QUEUE:
2094				set_match(args, f_pos, chain);
2095				args->rule.info = IP_FW_ARG_TABLEARG(cmd->arg1);
2096				if (cmd->opcode == O_PIPE)
2097					args->rule.info |= IPFW_IS_PIPE;
2098				if (V_fw_one_pass)
2099					args->rule.info |= IPFW_ONEPASS;
2100				retval = IP_FW_DUMMYNET;
2101				l = 0;          /* exit inner loop */
2102				done = 1;       /* exit outer loop */
2103				break;
2104
2105			case O_DIVERT:
2106			case O_TEE:
2107				if (args->eh) /* not on layer 2 */
2108				    break;
2109				/* otherwise this is terminal */
2110				l = 0;		/* exit inner loop */
2111				done = 1;	/* exit outer loop */
2112				retval = (cmd->opcode == O_DIVERT) ?
2113					IP_FW_DIVERT : IP_FW_TEE;
2114				set_match(args, f_pos, chain);
2115				args->rule.info = IP_FW_ARG_TABLEARG(cmd->arg1);
2116				break;
2117
2118			case O_COUNT:
2119				f->pcnt++;	/* update stats */
2120				f->bcnt += pktlen;
2121				f->timestamp = time_uptime;
2122				l = 0;		/* exit inner loop */
2123				break;
2124
2125			case O_SKIPTO:
2126			    f->pcnt++;	/* update stats */
2127			    f->bcnt += pktlen;
2128			    f->timestamp = time_uptime;
2129			    f_pos = jump_fast(chain, f, cmd->arg1, tablearg, 0);
2130			    /*
2131			     * Skip disabled rules, and re-enter
2132			     * the inner loop with the correct
2133			     * f_pos, f, l and cmd.
2134			     * Also clear cmdlen and skip_or
2135			     */
2136			    for (; f_pos < chain->n_rules - 1 &&
2137				    (V_set_disable &
2138				     (1 << chain->map[f_pos]->set));
2139				    f_pos++)
2140				;
2141			    /* Re-enter the inner loop at the skipto rule. */
2142			    f = chain->map[f_pos];
2143			    l = f->cmd_len;
2144			    cmd = f->cmd;
2145			    match = 1;
2146			    cmdlen = 0;
2147			    skip_or = 0;
2148			    continue;
2149			    break;	/* not reached */
2150
2151			case O_CALLRETURN: {
2152				/*
2153				 * Implementation of `subroutine' call/return,
2154				 * in the stack carried in an mbuf tag. This
2155				 * is different from `skipto' in that any call
2156				 * address is possible (`skipto' must prevent
2157				 * backward jumps to avoid endless loops).
2158				 * We have `return' action when F_NOT flag is
2159				 * present. The `m_tag_id' field is used as
2160				 * stack pointer.
2161				 */
2162				struct m_tag *mtag;
2163				uint16_t jmpto, *stack;
2164
2165#define	IS_CALL		((cmd->len & F_NOT) == 0)
2166#define	IS_RETURN	((cmd->len & F_NOT) != 0)
2167				/*
2168				 * Hand-rolled version of m_tag_locate() with
2169				 * wildcard `type'.
2170				 * If not already tagged, allocate new tag.
2171				 */
2172				mtag = m_tag_first(m);
2173				while (mtag != NULL) {
2174					if (mtag->m_tag_cookie ==
2175					    MTAG_IPFW_CALL)
2176						break;
2177					mtag = m_tag_next(m, mtag);
2178				}
2179				if (mtag == NULL && IS_CALL) {
2180					mtag = m_tag_alloc(MTAG_IPFW_CALL, 0,
2181					    IPFW_CALLSTACK_SIZE *
2182					    sizeof(uint16_t), M_NOWAIT);
2183					if (mtag != NULL)
2184						m_tag_prepend(m, mtag);
2185				}
2186
2187				/*
2188				 * On error both `call' and `return' just
2189				 * continue with next rule.
2190				 */
2191				if (IS_RETURN && (mtag == NULL ||
2192				    mtag->m_tag_id == 0)) {
2193					l = 0;		/* exit inner loop */
2194					break;
2195				}
2196				if (IS_CALL && (mtag == NULL ||
2197				    mtag->m_tag_id >= IPFW_CALLSTACK_SIZE)) {
2198					printf("ipfw: call stack error, "
2199					    "go to next rule\n");
2200					l = 0;		/* exit inner loop */
2201					break;
2202				}
2203
2204				f->pcnt++;	/* update stats */
2205				f->bcnt += pktlen;
2206				f->timestamp = time_uptime;
2207				stack = (uint16_t *)(mtag + 1);
2208
2209				/*
2210				 * The `call' action may use cached f_pos
2211				 * (in f->next_rule), whose version is written
2212				 * in f->next_rule.
2213				 * The `return' action, however, doesn't have
2214				 * fixed jump address in cmd->arg1 and can't use
2215				 * cache.
2216				 */
2217				if (IS_CALL) {
2218					stack[mtag->m_tag_id] = f->rulenum;
2219					mtag->m_tag_id++;
2220			    		f_pos = jump_fast(chain, f, cmd->arg1,
2221					    tablearg, 1);
2222				} else {	/* `return' action */
2223					mtag->m_tag_id--;
2224					jmpto = stack[mtag->m_tag_id] + 1;
2225					f_pos = ipfw_find_rule(chain, jmpto, 0);
2226				}
2227
2228				/*
2229				 * Skip disabled rules, and re-enter
2230				 * the inner loop with the correct
2231				 * f_pos, f, l and cmd.
2232				 * Also clear cmdlen and skip_or
2233				 */
2234				for (; f_pos < chain->n_rules - 1 &&
2235				    (V_set_disable &
2236				    (1 << chain->map[f_pos]->set)); f_pos++)
2237					;
2238				/* Re-enter the inner loop at the dest rule. */
2239				f = chain->map[f_pos];
2240				l = f->cmd_len;
2241				cmd = f->cmd;
2242				cmdlen = 0;
2243				skip_or = 0;
2244				continue;
2245				break;	/* NOTREACHED */
2246			}
2247#undef IS_CALL
2248#undef IS_RETURN
2249
2250			case O_REJECT:
2251				/*
2252				 * Drop the packet and send a reject notice
2253				 * if the packet is not ICMP (or is an ICMP
2254				 * query), and it is not multicast/broadcast.
2255				 */
2256				if (hlen > 0 && is_ipv4 && offset == 0 &&
2257				    (proto != IPPROTO_ICMP ||
2258				     is_icmp_query(ICMP(ulp))) &&
2259				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2260				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
2261					send_reject(args, cmd->arg1, iplen, ip);
2262					m = args->m;
2263				}
2264				/* FALLTHROUGH */
2265#ifdef INET6
2266			case O_UNREACH6:
2267				if (hlen > 0 && is_ipv6 &&
2268				    ((offset & IP6F_OFF_MASK) == 0) &&
2269				    (proto != IPPROTO_ICMPV6 ||
2270				     (is_icmp6_query(icmp6_type) == 1)) &&
2271				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2272				    !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
2273					send_reject6(
2274					    args, cmd->arg1, hlen,
2275					    (struct ip6_hdr *)ip);
2276					m = args->m;
2277				}
2278				/* FALLTHROUGH */
2279#endif
2280			case O_DENY:
2281				retval = IP_FW_DENY;
2282				l = 0;		/* exit inner loop */
2283				done = 1;	/* exit outer loop */
2284				break;
2285
2286			case O_FORWARD_IP:
2287				if (args->eh)	/* not valid on layer2 pkts */
2288					break;
2289				if (q == NULL || q->rule != f ||
2290				    dyn_dir == MATCH_FORWARD) {
2291				    struct sockaddr_in *sa;
2292				    sa = &(((ipfw_insn_sa *)cmd)->sa);
2293				    if (sa->sin_addr.s_addr == INADDR_ANY) {
2294					bcopy(sa, &args->hopstore,
2295							sizeof(*sa));
2296					args->hopstore.sin_addr.s_addr =
2297						    htonl(tablearg);
2298					args->next_hop = &args->hopstore;
2299				    } else {
2300					args->next_hop = sa;
2301				    }
2302				}
2303				retval = IP_FW_PASS;
2304				l = 0;          /* exit inner loop */
2305				done = 1;       /* exit outer loop */
2306				break;
2307
2308#ifdef INET6
2309			case O_FORWARD_IP6:
2310				if (args->eh)	/* not valid on layer2 pkts */
2311					break;
2312				if (q == NULL || q->rule != f ||
2313				    dyn_dir == MATCH_FORWARD) {
2314					struct sockaddr_in6 *sin6;
2315
2316					sin6 = &(((ipfw_insn_sa6 *)cmd)->sa);
2317					args->next_hop6 = sin6;
2318				}
2319				retval = IP_FW_PASS;
2320				l = 0;		/* exit inner loop */
2321				done = 1;	/* exit outer loop */
2322				break;
2323#endif
2324
2325			case O_NETGRAPH:
2326			case O_NGTEE:
2327				set_match(args, f_pos, chain);
2328				args->rule.info = IP_FW_ARG_TABLEARG(cmd->arg1);
2329				if (V_fw_one_pass)
2330					args->rule.info |= IPFW_ONEPASS;
2331				retval = (cmd->opcode == O_NETGRAPH) ?
2332				    IP_FW_NETGRAPH : IP_FW_NGTEE;
2333				l = 0;          /* exit inner loop */
2334				done = 1;       /* exit outer loop */
2335				break;
2336
2337			case O_SETFIB: {
2338				uint32_t fib;
2339
2340				f->pcnt++;	/* update stats */
2341				f->bcnt += pktlen;
2342				f->timestamp = time_uptime;
2343				fib = IP_FW_ARG_TABLEARG(cmd->arg1);
2344				if (fib >= rt_numfibs)
2345					fib = 0;
2346				M_SETFIB(m, fib);
2347				args->f_id.fib = fib;
2348				l = 0;		/* exit inner loop */
2349				break;
2350		        }
2351
2352			case O_NAT:
2353 				if (!IPFW_NAT_LOADED) {
2354				    retval = IP_FW_DENY;
2355				} else {
2356				    struct cfg_nat *t;
2357				    int nat_id;
2358
2359				    set_match(args, f_pos, chain);
2360				    /* Check if this is 'global' nat rule */
2361				    if (cmd->arg1 == 0) {
2362					    retval = ipfw_nat_ptr(args, NULL, m);
2363					    l = 0;
2364					    done = 1;
2365					    break;
2366				    }
2367				    t = ((ipfw_insn_nat *)cmd)->nat;
2368				    if (t == NULL) {
2369					nat_id = IP_FW_ARG_TABLEARG(cmd->arg1);
2370					t = (*lookup_nat_ptr)(&chain->nat, nat_id);
2371
2372					if (t == NULL) {
2373					    retval = IP_FW_DENY;
2374					    l = 0;	/* exit inner loop */
2375					    done = 1;	/* exit outer loop */
2376					    break;
2377					}
2378					if (cmd->arg1 != IP_FW_TABLEARG)
2379					    ((ipfw_insn_nat *)cmd)->nat = t;
2380				    }
2381				    retval = ipfw_nat_ptr(args, t, m);
2382				}
2383				l = 0;          /* exit inner loop */
2384				done = 1;       /* exit outer loop */
2385				break;
2386
2387			case O_REASS: {
2388				int ip_off;
2389
2390				f->pcnt++;
2391				f->bcnt += pktlen;
2392				l = 0;	/* in any case exit inner loop */
2393				ip_off = ntohs(ip->ip_off);
2394
2395				/* if not fragmented, go to next rule */
2396				if ((ip_off & (IP_MF | IP_OFFMASK)) == 0)
2397				    break;
2398				/*
2399				 * ip_reass() expects len & off in host
2400				 * byte order.
2401				 */
2402				SET_HOST_IPLEN(ip);
2403
2404				args->m = m = ip_reass(m);
2405
2406				/*
2407				 * do IP header checksum fixup.
2408				 */
2409				if (m == NULL) { /* fragment got swallowed */
2410				    retval = IP_FW_DENY;
2411				} else { /* good, packet complete */
2412				    int hlen;
2413
2414				    ip = mtod(m, struct ip *);
2415				    hlen = ip->ip_hl << 2;
2416				    SET_NET_IPLEN(ip);
2417				    ip->ip_sum = 0;
2418				    if (hlen == sizeof(struct ip))
2419					ip->ip_sum = in_cksum_hdr(ip);
2420				    else
2421					ip->ip_sum = in_cksum(m, hlen);
2422				    retval = IP_FW_REASS;
2423				    set_match(args, f_pos, chain);
2424				}
2425				done = 1;	/* exit outer loop */
2426				break;
2427			}
2428
2429			default:
2430				panic("-- unknown opcode %d\n", cmd->opcode);
2431			} /* end of switch() on opcodes */
2432			/*
2433			 * if we get here with l=0, then match is irrelevant.
2434			 */
2435
2436			if (cmd->len & F_NOT)
2437				match = !match;
2438
2439			if (match) {
2440				if (cmd->len & F_OR)
2441					skip_or = 1;
2442			} else {
2443				if (!(cmd->len & F_OR)) /* not an OR block, */
2444					break;		/* try next rule    */
2445			}
2446
2447		}	/* end of inner loop, scan opcodes */
2448#undef PULLUP_LEN
2449
2450		if (done)
2451			break;
2452
2453/* next_rule:; */	/* try next rule		*/
2454
2455	}		/* end of outer for, scan rules */
2456
2457	if (done) {
2458		struct ip_fw *rule = chain->map[f_pos];
2459		/* Update statistics */
2460		rule->pcnt++;
2461		rule->bcnt += pktlen;
2462		rule->timestamp = time_uptime;
2463	} else {
2464		retval = IP_FW_DENY;
2465		printf("ipfw: ouch!, skip past end of rules, denying packet\n");
2466	}
2467	IPFW_RUNLOCK(chain);
2468#ifdef __FreeBSD__
2469	if (ucred_cache != NULL)
2470		crfree(ucred_cache);
2471#endif
2472	return (retval);
2473
2474pullup_failed:
2475	if (V_fw_verbose)
2476		printf("ipfw: pullup failed\n");
2477	return (IP_FW_DENY);
2478}
2479
2480/*
2481 * Set maximum number of tables that can be used in given VNET ipfw instance.
2482 */
2483#ifdef SYSCTL_NODE
2484static int
2485sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS)
2486{
2487	int error;
2488	unsigned int ntables;
2489
2490	ntables = V_fw_tables_max;
2491
2492	error = sysctl_handle_int(oidp, &ntables, 0, req);
2493	/* Read operation or some error */
2494	if ((error != 0) || (req->newptr == NULL))
2495		return (error);
2496
2497	return (ipfw_resize_tables(&V_layer3_chain, ntables));
2498}
2499#endif
2500/*
2501 * Module and VNET glue
2502 */
2503
2504/*
2505 * Stuff that must be initialised only on boot or module load
2506 */
2507static int
2508ipfw_init(void)
2509{
2510	int error = 0;
2511
2512	/*
2513 	 * Only print out this stuff the first time around,
2514	 * when called from the sysinit code.
2515	 */
2516	printf("ipfw2 "
2517#ifdef INET6
2518		"(+ipv6) "
2519#endif
2520		"initialized, divert %s, nat %s, "
2521		"default to %s, logging ",
2522#ifdef IPDIVERT
2523		"enabled",
2524#else
2525		"loadable",
2526#endif
2527#ifdef IPFIREWALL_NAT
2528		"enabled",
2529#else
2530		"loadable",
2531#endif
2532		default_to_accept ? "accept" : "deny");
2533
2534	/*
2535	 * Note: V_xxx variables can be accessed here but the vnet specific
2536	 * initializer may not have been called yet for the VIMAGE case.
2537	 * Tuneables will have been processed. We will print out values for
2538	 * the default vnet.
2539	 * XXX This should all be rationalized AFTER 8.0
2540	 */
2541	if (V_fw_verbose == 0)
2542		printf("disabled\n");
2543	else if (V_verbose_limit == 0)
2544		printf("unlimited\n");
2545	else
2546		printf("limited to %d packets/entry by default\n",
2547		    V_verbose_limit);
2548
2549	/* Check user-supplied table count for validness */
2550	if (default_fw_tables > IPFW_TABLES_MAX)
2551	  default_fw_tables = IPFW_TABLES_MAX;
2552
2553	ipfw_log_bpf(1); /* init */
2554	return (error);
2555}
2556
2557/*
2558 * Called for the removal of the last instance only on module unload.
2559 */
2560static void
2561ipfw_destroy(void)
2562{
2563
2564	ipfw_log_bpf(0); /* uninit */
2565	printf("IP firewall unloaded\n");
2566}
2567
2568/*
2569 * Stuff that must be initialized for every instance
2570 * (including the first of course).
2571 */
2572static int
2573vnet_ipfw_init(const void *unused)
2574{
2575	int error;
2576	struct ip_fw *rule = NULL;
2577	struct ip_fw_chain *chain;
2578
2579	chain = &V_layer3_chain;
2580
2581	/* First set up some values that are compile time options */
2582	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
2583	V_fw_deny_unknown_exthdrs = 1;
2584#ifdef IPFIREWALL_VERBOSE
2585	V_fw_verbose = 1;
2586#endif
2587#ifdef IPFIREWALL_VERBOSE_LIMIT
2588	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
2589#endif
2590#ifdef IPFIREWALL_NAT
2591	LIST_INIT(&chain->nat);
2592#endif
2593
2594	/* insert the default rule and create the initial map */
2595	chain->n_rules = 1;
2596	chain->static_len = sizeof(struct ip_fw);
2597	chain->map = malloc(sizeof(struct ip_fw *), M_IPFW, M_WAITOK | M_ZERO);
2598	if (chain->map)
2599		rule = malloc(chain->static_len, M_IPFW, M_WAITOK | M_ZERO);
2600
2601	/* Set initial number of tables */
2602	V_fw_tables_max = default_fw_tables;
2603	error = ipfw_init_tables(chain);
2604	if (error) {
2605		printf("ipfw2: setting up tables failed\n");
2606		free(chain->map, M_IPFW);
2607		free(rule, M_IPFW);
2608		return (ENOSPC);
2609	}
2610
2611	/* fill and insert the default rule */
2612	rule->act_ofs = 0;
2613	rule->rulenum = IPFW_DEFAULT_RULE;
2614	rule->cmd_len = 1;
2615	rule->set = RESVD_SET;
2616	rule->cmd[0].len = 1;
2617	rule->cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
2618	chain->rules = chain->default_rule = chain->map[0] = rule;
2619	chain->id = rule->id = 1;
2620
2621	IPFW_LOCK_INIT(chain);
2622	ipfw_dyn_init(chain);
2623
2624	/* First set up some values that are compile time options */
2625	V_ipfw_vnet_ready = 1;		/* Open for business */
2626
2627	/*
2628	 * Hook the sockopt handler, and the layer2 (V_ip_fw_chk_ptr)
2629	 * and pfil hooks for ipv4 and ipv6. Even if the latter two fail
2630	 * we still keep the module alive because the sockopt and
2631	 * layer2 paths are still useful.
2632	 * ipfw[6]_hook return 0 on success, ENOENT on failure,
2633	 * so we can ignore the exact return value and just set a flag.
2634	 *
2635	 * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so
2636	 * changes in the underlying (per-vnet) variables trigger
2637	 * immediate hook()/unhook() calls.
2638	 * In layer2 we have the same behaviour, except that V_ether_ipfw
2639	 * is checked on each packet because there are no pfil hooks.
2640	 */
2641	V_ip_fw_ctl_ptr = ipfw_ctl;
2642	V_ip_fw_chk_ptr = ipfw_chk;
2643	error = ipfw_attach_hooks(1);
2644	return (error);
2645}
2646
2647/*
2648 * Called for the removal of each instance.
2649 */
2650static int
2651vnet_ipfw_uninit(const void *unused)
2652{
2653	struct ip_fw *reap, *rule;
2654	struct ip_fw_chain *chain = &V_layer3_chain;
2655	int i;
2656
2657	V_ipfw_vnet_ready = 0; /* tell new callers to go away */
2658	/*
2659	 * disconnect from ipv4, ipv6, layer2 and sockopt.
2660	 * Then grab, release and grab again the WLOCK so we make
2661	 * sure the update is propagated and nobody will be in.
2662	 */
2663	(void)ipfw_attach_hooks(0 /* detach */);
2664	V_ip_fw_chk_ptr = NULL;
2665	V_ip_fw_ctl_ptr = NULL;
2666	IPFW_UH_WLOCK(chain);
2667	IPFW_UH_WUNLOCK(chain);
2668	IPFW_UH_WLOCK(chain);
2669
2670	IPFW_WLOCK(chain);
2671	ipfw_dyn_uninit(0);	/* run the callout_drain */
2672	IPFW_WUNLOCK(chain);
2673
2674	ipfw_destroy_tables(chain);
2675	reap = NULL;
2676	IPFW_WLOCK(chain);
2677	for (i = 0; i < chain->n_rules; i++) {
2678		rule = chain->map[i];
2679		rule->x_next = reap;
2680		reap = rule;
2681	}
2682	if (chain->map)
2683		free(chain->map, M_IPFW);
2684	IPFW_WUNLOCK(chain);
2685	IPFW_UH_WUNLOCK(chain);
2686	if (reap != NULL)
2687		ipfw_reap_rules(reap);
2688	IPFW_LOCK_DESTROY(chain);
2689	ipfw_dyn_uninit(1);	/* free the remaining parts */
2690	return 0;
2691}
2692
2693/*
2694 * Module event handler.
2695 * In general we have the choice of handling most of these events by the
2696 * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
2697 * use the SYSINIT handlers as they are more capable of expressing the
2698 * flow of control during module and vnet operations, so this is just
2699 * a skeleton. Note there is no SYSINIT equivalent of the module
2700 * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
2701 */
2702static int
2703ipfw_modevent(module_t mod, int type, void *unused)
2704{
2705	int err = 0;
2706
2707	switch (type) {
2708	case MOD_LOAD:
2709		/* Called once at module load or
2710	 	 * system boot if compiled in. */
2711		break;
2712	case MOD_QUIESCE:
2713		/* Called before unload. May veto unloading. */
2714		break;
2715	case MOD_UNLOAD:
2716		/* Called during unload. */
2717		break;
2718	case MOD_SHUTDOWN:
2719		/* Called during system shutdown. */
2720		break;
2721	default:
2722		err = EOPNOTSUPP;
2723		break;
2724	}
2725	return err;
2726}
2727
2728static moduledata_t ipfwmod = {
2729	"ipfw",
2730	ipfw_modevent,
2731	0
2732};
2733
2734/* Define startup order. */
2735#define	IPFW_SI_SUB_FIREWALL	SI_SUB_PROTO_IFATTACHDOMAIN
2736#define	IPFW_MODEVENT_ORDER	(SI_ORDER_ANY - 255) /* On boot slot in here. */
2737#define	IPFW_MODULE_ORDER	(IPFW_MODEVENT_ORDER + 1) /* A little later. */
2738#define	IPFW_VNET_ORDER		(IPFW_MODEVENT_ORDER + 2) /* Later still. */
2739
2740DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
2741MODULE_VERSION(ipfw, 2);
2742/* should declare some dependencies here */
2743
2744/*
2745 * Starting up. Done in order after ipfwmod() has been called.
2746 * VNET_SYSINIT is also called for each existing vnet and each new vnet.
2747 */
2748SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2749	    ipfw_init, NULL);
2750VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2751	    vnet_ipfw_init, NULL);
2752
2753/*
2754 * Closing up shop. These are done in REVERSE ORDER, but still
2755 * after ipfwmod() has been called. Not called on reboot.
2756 * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
2757 * or when the module is unloaded.
2758 */
2759SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2760	    ipfw_destroy, NULL);
2761VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2762	    vnet_ipfw_uninit, NULL);
2763/* end of file */
2764