ip_fw2.c revision 234597
1/*-
2 * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: stable/9/sys/netinet/ipfw/ip_fw2.c 234597 2012-04-23 07:15:15Z melifaro $");
28
29/*
30 * The FreeBSD IP packet firewall, main file
31 */
32
33#include "opt_ipfw.h"
34#include "opt_ipdivert.h"
35#include "opt_inet.h"
36#ifndef INET
37#error IPFIREWALL requires INET.
38#endif /* INET */
39#include "opt_inet6.h"
40#include "opt_ipsec.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/condvar.h>
45#include <sys/eventhandler.h>
46#include <sys/malloc.h>
47#include <sys/mbuf.h>
48#include <sys/kernel.h>
49#include <sys/lock.h>
50#include <sys/jail.h>
51#include <sys/module.h>
52#include <sys/priv.h>
53#include <sys/proc.h>
54#include <sys/rwlock.h>
55#include <sys/socket.h>
56#include <sys/socketvar.h>
57#include <sys/sysctl.h>
58#include <sys/syslog.h>
59#include <sys/ucred.h>
60#include <net/ethernet.h> /* for ETHERTYPE_IP */
61#include <net/if.h>
62#include <net/route.h>
63#include <net/pf_mtag.h>
64#include <net/vnet.h>
65
66#include <netinet/in.h>
67#include <netinet/in_var.h>
68#include <netinet/in_pcb.h>
69#include <netinet/ip.h>
70#include <netinet/ip_var.h>
71#include <netinet/ip_icmp.h>
72#include <netinet/ip_fw.h>
73#include <netinet/ipfw/ip_fw_private.h>
74#include <netinet/ip_carp.h>
75#include <netinet/pim.h>
76#include <netinet/tcp_var.h>
77#include <netinet/udp.h>
78#include <netinet/udp_var.h>
79#include <netinet/sctp.h>
80
81#include <netinet/ip6.h>
82#include <netinet/icmp6.h>
83#ifdef INET6
84#include <netinet6/in6_pcb.h>
85#include <netinet6/scope6_var.h>
86#include <netinet6/ip6_var.h>
87#endif
88
89#include <machine/in_cksum.h>	/* XXX for in_cksum */
90
91#ifdef MAC
92#include <security/mac/mac_framework.h>
93#endif
94
95/*
96 * static variables followed by global ones.
97 * All ipfw global variables are here.
98 */
99
100/* ipfw_vnet_ready controls when we are open for business */
101static VNET_DEFINE(int, ipfw_vnet_ready) = 0;
102#define	V_ipfw_vnet_ready	VNET(ipfw_vnet_ready)
103
104static VNET_DEFINE(int, fw_deny_unknown_exthdrs);
105#define	V_fw_deny_unknown_exthdrs	VNET(fw_deny_unknown_exthdrs)
106
107static VNET_DEFINE(int, fw_permit_single_frag6) = 1;
108#define	V_fw_permit_single_frag6	VNET(fw_permit_single_frag6)
109
110#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
111static int default_to_accept = 1;
112#else
113static int default_to_accept;
114#endif
115
116VNET_DEFINE(int, autoinc_step);
117VNET_DEFINE(int, fw_one_pass) = 1;
118
119VNET_DEFINE(unsigned int, fw_tables_max);
120/* Use 128 tables by default */
121static unsigned int default_fw_tables = IPFW_TABLES_DEFAULT;
122
123/*
124 * Each rule belongs to one of 32 different sets (0..31).
125 * The variable set_disable contains one bit per set.
126 * If the bit is set, all rules in the corresponding set
127 * are disabled. Set RESVD_SET(31) is reserved for the default rule
128 * and rules that are not deleted by the flush command,
129 * and CANNOT be disabled.
130 * Rules in set RESVD_SET can only be deleted individually.
131 */
132VNET_DEFINE(u_int32_t, set_disable);
133#define	V_set_disable			VNET(set_disable)
134
135VNET_DEFINE(int, fw_verbose);
136/* counter for ipfw_log(NULL...) */
137VNET_DEFINE(u_int64_t, norule_counter);
138VNET_DEFINE(int, verbose_limit);
139
140/* layer3_chain contains the list of rules for layer 3 */
141VNET_DEFINE(struct ip_fw_chain, layer3_chain);
142
143ipfw_nat_t *ipfw_nat_ptr = NULL;
144struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
145ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
146ipfw_nat_cfg_t *ipfw_nat_del_ptr;
147ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
148ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
149
150#ifdef SYSCTL_NODE
151uint32_t dummy_def = IPFW_DEFAULT_RULE;
152static int sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS);
153
154SYSBEGIN(f3)
155
156SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
157SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
158    CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
159    "Only do a single pass through ipfw when using dummynet(4)");
160SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
161    CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
162    "Rule number auto-increment step");
163SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose,
164    CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
165    "Log matches to ipfw rules");
166SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
167    CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
168    "Set upper limit of matches of ipfw rules logged");
169SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
170    &dummy_def, 0,
171    "The default/max possible rule number.");
172SYSCTL_VNET_PROC(_net_inet_ip_fw, OID_AUTO, tables_max,
173    CTLTYPE_UINT|CTLFLAG_RW, 0, 0, sysctl_ipfw_table_num, "IU",
174    "Maximum number of tables");
175SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
176    &default_to_accept, 0,
177    "Make the default rule accept all packets.");
178TUNABLE_INT("net.inet.ip.fw.default_to_accept", &default_to_accept);
179TUNABLE_INT("net.inet.ip.fw.tables_max", &default_fw_tables);
180SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, static_count,
181    CTLFLAG_RD, &VNET_NAME(layer3_chain.n_rules), 0,
182    "Number of static rules");
183
184#ifdef INET6
185SYSCTL_DECL(_net_inet6_ip6);
186SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
187SYSCTL_VNET_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
188    CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(fw_deny_unknown_exthdrs), 0,
189    "Deny packets with unknown IPv6 Extension Headers");
190SYSCTL_VNET_INT(_net_inet6_ip6_fw, OID_AUTO, permit_single_frag6,
191    CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(fw_permit_single_frag6), 0,
192    "Permit single packet IPv6 fragments");
193#endif /* INET6 */
194
195SYSEND
196
197#endif /* SYSCTL_NODE */
198
199
200/*
201 * Some macros used in the various matching options.
202 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
203 * Other macros just cast void * into the appropriate type
204 */
205#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
206#define	TCP(p)		((struct tcphdr *)(p))
207#define	SCTP(p)		((struct sctphdr *)(p))
208#define	UDP(p)		((struct udphdr *)(p))
209#define	ICMP(p)		((struct icmphdr *)(p))
210#define	ICMP6(p)	((struct icmp6_hdr *)(p))
211
212static __inline int
213icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
214{
215	int type = icmp->icmp_type;
216
217	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
218}
219
220#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
221    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
222
223static int
224is_icmp_query(struct icmphdr *icmp)
225{
226	int type = icmp->icmp_type;
227
228	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
229}
230#undef TT
231
232/*
233 * The following checks use two arrays of 8 or 16 bits to store the
234 * bits that we want set or clear, respectively. They are in the
235 * low and high half of cmd->arg1 or cmd->d[0].
236 *
237 * We scan options and store the bits we find set. We succeed if
238 *
239 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
240 *
241 * The code is sometimes optimized not to store additional variables.
242 */
243
244static int
245flags_match(ipfw_insn *cmd, u_int8_t bits)
246{
247	u_char want_clear;
248	bits = ~bits;
249
250	if ( ((cmd->arg1 & 0xff) & bits) != 0)
251		return 0; /* some bits we want set were clear */
252	want_clear = (cmd->arg1 >> 8) & 0xff;
253	if ( (want_clear & bits) != want_clear)
254		return 0; /* some bits we want clear were set */
255	return 1;
256}
257
258static int
259ipopts_match(struct ip *ip, ipfw_insn *cmd)
260{
261	int optlen, bits = 0;
262	u_char *cp = (u_char *)(ip + 1);
263	int x = (ip->ip_hl << 2) - sizeof (struct ip);
264
265	for (; x > 0; x -= optlen, cp += optlen) {
266		int opt = cp[IPOPT_OPTVAL];
267
268		if (opt == IPOPT_EOL)
269			break;
270		if (opt == IPOPT_NOP)
271			optlen = 1;
272		else {
273			optlen = cp[IPOPT_OLEN];
274			if (optlen <= 0 || optlen > x)
275				return 0; /* invalid or truncated */
276		}
277		switch (opt) {
278
279		default:
280			break;
281
282		case IPOPT_LSRR:
283			bits |= IP_FW_IPOPT_LSRR;
284			break;
285
286		case IPOPT_SSRR:
287			bits |= IP_FW_IPOPT_SSRR;
288			break;
289
290		case IPOPT_RR:
291			bits |= IP_FW_IPOPT_RR;
292			break;
293
294		case IPOPT_TS:
295			bits |= IP_FW_IPOPT_TS;
296			break;
297		}
298	}
299	return (flags_match(cmd, bits));
300}
301
302static int
303tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
304{
305	int optlen, bits = 0;
306	u_char *cp = (u_char *)(tcp + 1);
307	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
308
309	for (; x > 0; x -= optlen, cp += optlen) {
310		int opt = cp[0];
311		if (opt == TCPOPT_EOL)
312			break;
313		if (opt == TCPOPT_NOP)
314			optlen = 1;
315		else {
316			optlen = cp[1];
317			if (optlen <= 0)
318				break;
319		}
320
321		switch (opt) {
322
323		default:
324			break;
325
326		case TCPOPT_MAXSEG:
327			bits |= IP_FW_TCPOPT_MSS;
328			break;
329
330		case TCPOPT_WINDOW:
331			bits |= IP_FW_TCPOPT_WINDOW;
332			break;
333
334		case TCPOPT_SACK_PERMITTED:
335		case TCPOPT_SACK:
336			bits |= IP_FW_TCPOPT_SACK;
337			break;
338
339		case TCPOPT_TIMESTAMP:
340			bits |= IP_FW_TCPOPT_TS;
341			break;
342
343		}
344	}
345	return (flags_match(cmd, bits));
346}
347
348static int
349iface_match(struct ifnet *ifp, ipfw_insn_if *cmd, struct ip_fw_chain *chain, uint32_t *tablearg)
350{
351	if (ifp == NULL)	/* no iface with this packet, match fails */
352		return 0;
353	/* Check by name or by IP address */
354	if (cmd->name[0] != '\0') { /* match by name */
355		if (cmd->name[0] == '\1') /* use tablearg to match */
356			return ipfw_lookup_table_extended(chain, cmd->p.glob,
357				ifp->if_xname, tablearg, IPFW_TABLE_INTERFACE);
358		/* Check name */
359		if (cmd->p.glob) {
360			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
361				return(1);
362		} else {
363			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
364				return(1);
365		}
366	} else {
367#ifdef __FreeBSD__	/* and OSX too ? */
368		struct ifaddr *ia;
369
370		if_addr_rlock(ifp);
371		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
372			if (ia->ifa_addr->sa_family != AF_INET)
373				continue;
374			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
375			    (ia->ifa_addr))->sin_addr.s_addr) {
376				if_addr_runlock(ifp);
377				return(1);	/* match */
378			}
379		}
380		if_addr_runlock(ifp);
381#endif /* __FreeBSD__ */
382	}
383	return(0);	/* no match, fail ... */
384}
385
386/*
387 * The verify_path function checks if a route to the src exists and
388 * if it is reachable via ifp (when provided).
389 *
390 * The 'verrevpath' option checks that the interface that an IP packet
391 * arrives on is the same interface that traffic destined for the
392 * packet's source address would be routed out of.
393 * The 'versrcreach' option just checks that the source address is
394 * reachable via any route (except default) in the routing table.
395 * These two are a measure to block forged packets. This is also
396 * commonly known as "anti-spoofing" or Unicast Reverse Path
397 * Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
398 * is purposely reminiscent of the Cisco IOS command,
399 *
400 *   ip verify unicast reverse-path
401 *   ip verify unicast source reachable-via any
402 *
403 * which implements the same functionality. But note that the syntax
404 * is misleading, and the check may be performed on all IP packets
405 * whether unicast, multicast, or broadcast.
406 */
407static int
408verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
409{
410#ifndef __FreeBSD__
411	return 0;
412#else
413	struct route ro;
414	struct sockaddr_in *dst;
415
416	bzero(&ro, sizeof(ro));
417
418	dst = (struct sockaddr_in *)&(ro.ro_dst);
419	dst->sin_family = AF_INET;
420	dst->sin_len = sizeof(*dst);
421	dst->sin_addr = src;
422	in_rtalloc_ign(&ro, 0, fib);
423
424	if (ro.ro_rt == NULL)
425		return 0;
426
427	/*
428	 * If ifp is provided, check for equality with rtentry.
429	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
430	 * in order to pass packets injected back by if_simloop():
431	 * if useloopback == 1 routing entry (via lo0) for our own address
432	 * may exist, so we need to handle routing assymetry.
433	 */
434	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
435		RTFREE(ro.ro_rt);
436		return 0;
437	}
438
439	/* if no ifp provided, check if rtentry is not default route */
440	if (ifp == NULL &&
441	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
442		RTFREE(ro.ro_rt);
443		return 0;
444	}
445
446	/* or if this is a blackhole/reject route */
447	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
448		RTFREE(ro.ro_rt);
449		return 0;
450	}
451
452	/* found valid route */
453	RTFREE(ro.ro_rt);
454	return 1;
455#endif /* __FreeBSD__ */
456}
457
458#ifdef INET6
459/*
460 * ipv6 specific rules here...
461 */
462static __inline int
463icmp6type_match (int type, ipfw_insn_u32 *cmd)
464{
465	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
466}
467
468static int
469flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
470{
471	int i;
472	for (i=0; i <= cmd->o.arg1; ++i )
473		if (curr_flow == cmd->d[i] )
474			return 1;
475	return 0;
476}
477
478/* support for IP6_*_ME opcodes */
479static int
480search_ip6_addr_net (struct in6_addr * ip6_addr)
481{
482	struct ifnet *mdc;
483	struct ifaddr *mdc2;
484	struct in6_ifaddr *fdm;
485	struct in6_addr copia;
486
487	TAILQ_FOREACH(mdc, &V_ifnet, if_link) {
488		if_addr_rlock(mdc);
489		TAILQ_FOREACH(mdc2, &mdc->if_addrhead, ifa_link) {
490			if (mdc2->ifa_addr->sa_family == AF_INET6) {
491				fdm = (struct in6_ifaddr *)mdc2;
492				copia = fdm->ia_addr.sin6_addr;
493				/* need for leaving scope_id in the sock_addr */
494				in6_clearscope(&copia);
495				if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia)) {
496					if_addr_runlock(mdc);
497					return 1;
498				}
499			}
500		}
501		if_addr_runlock(mdc);
502	}
503	return 0;
504}
505
506static int
507verify_path6(struct in6_addr *src, struct ifnet *ifp, u_int fib)
508{
509	struct route_in6 ro;
510	struct sockaddr_in6 *dst;
511
512	bzero(&ro, sizeof(ro));
513
514	dst = (struct sockaddr_in6 * )&(ro.ro_dst);
515	dst->sin6_family = AF_INET6;
516	dst->sin6_len = sizeof(*dst);
517	dst->sin6_addr = *src;
518
519	in6_rtalloc_ign(&ro, 0, fib);
520	if (ro.ro_rt == NULL)
521		return 0;
522
523	/*
524	 * if ifp is provided, check for equality with rtentry
525	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
526	 * to support the case of sending packets to an address of our own.
527	 * (where the former interface is the first argument of if_simloop()
528	 *  (=ifp), the latter is lo0)
529	 */
530	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
531		RTFREE(ro.ro_rt);
532		return 0;
533	}
534
535	/* if no ifp provided, check if rtentry is not default route */
536	if (ifp == NULL &&
537	    IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
538		RTFREE(ro.ro_rt);
539		return 0;
540	}
541
542	/* or if this is a blackhole/reject route */
543	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
544		RTFREE(ro.ro_rt);
545		return 0;
546	}
547
548	/* found valid route */
549	RTFREE(ro.ro_rt);
550	return 1;
551
552}
553
554static int
555is_icmp6_query(int icmp6_type)
556{
557	if ((icmp6_type <= ICMP6_MAXTYPE) &&
558	    (icmp6_type == ICMP6_ECHO_REQUEST ||
559	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
560	    icmp6_type == ICMP6_WRUREQUEST ||
561	    icmp6_type == ICMP6_FQDN_QUERY ||
562	    icmp6_type == ICMP6_NI_QUERY))
563		return (1);
564
565	return (0);
566}
567
568static void
569send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
570{
571	struct mbuf *m;
572
573	m = args->m;
574	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
575		struct tcphdr *tcp;
576		tcp = (struct tcphdr *)((char *)ip6 + hlen);
577
578		if ((tcp->th_flags & TH_RST) == 0) {
579			struct mbuf *m0;
580			m0 = ipfw_send_pkt(args->m, &(args->f_id),
581			    ntohl(tcp->th_seq), ntohl(tcp->th_ack),
582			    tcp->th_flags | TH_RST);
583			if (m0 != NULL)
584				ip6_output(m0, NULL, NULL, 0, NULL, NULL,
585				    NULL);
586		}
587		FREE_PKT(m);
588	} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
589#if 0
590		/*
591		 * Unlike above, the mbufs need to line up with the ip6 hdr,
592		 * as the contents are read. We need to m_adj() the
593		 * needed amount.
594		 * The mbuf will however be thrown away so we can adjust it.
595		 * Remember we did an m_pullup on it already so we
596		 * can make some assumptions about contiguousness.
597		 */
598		if (args->L3offset)
599			m_adj(m, args->L3offset);
600#endif
601		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
602	} else
603		FREE_PKT(m);
604
605	args->m = NULL;
606}
607
608#endif /* INET6 */
609
610
611/*
612 * sends a reject message, consuming the mbuf passed as an argument.
613 */
614static void
615send_reject(struct ip_fw_args *args, int code, int iplen, struct ip *ip)
616{
617
618#if 0
619	/* XXX When ip is not guaranteed to be at mtod() we will
620	 * need to account for this */
621	 * The mbuf will however be thrown away so we can adjust it.
622	 * Remember we did an m_pullup on it already so we
623	 * can make some assumptions about contiguousness.
624	 */
625	if (args->L3offset)
626		m_adj(m, args->L3offset);
627#endif
628	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
629		/* We need the IP header in host order for icmp_error(). */
630		SET_HOST_IPLEN(ip);
631		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
632	} else if (args->f_id.proto == IPPROTO_TCP) {
633		struct tcphdr *const tcp =
634		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
635		if ( (tcp->th_flags & TH_RST) == 0) {
636			struct mbuf *m;
637			m = ipfw_send_pkt(args->m, &(args->f_id),
638				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
639				tcp->th_flags | TH_RST);
640			if (m != NULL)
641				ip_output(m, NULL, NULL, 0, NULL, NULL);
642		}
643		FREE_PKT(args->m);
644	} else
645		FREE_PKT(args->m);
646	args->m = NULL;
647}
648
649/*
650 * Support for uid/gid/jail lookup. These tests are expensive
651 * (because we may need to look into the list of active sockets)
652 * so we cache the results. ugid_lookupp is 0 if we have not
653 * yet done a lookup, 1 if we succeeded, and -1 if we tried
654 * and failed. The function always returns the match value.
655 * We could actually spare the variable and use *uc, setting
656 * it to '(void *)check_uidgid if we have no info, NULL if
657 * we tried and failed, or any other value if successful.
658 */
659static int
660check_uidgid(ipfw_insn_u32 *insn, struct ip_fw_args *args, int *ugid_lookupp,
661    struct ucred **uc)
662{
663#ifndef __FreeBSD__
664	/* XXX */
665	return cred_check(insn, proto, oif,
666	    dst_ip, dst_port, src_ip, src_port,
667	    (struct bsd_ucred *)uc, ugid_lookupp, ((struct mbuf *)inp)->m_skb);
668#else  /* FreeBSD */
669	struct in_addr src_ip, dst_ip;
670	struct inpcbinfo *pi;
671	struct ipfw_flow_id *id;
672	struct inpcb *pcb, *inp;
673	struct ifnet *oif;
674	int lookupflags;
675	int match;
676
677	id = &args->f_id;
678	inp = args->inp;
679	oif = args->oif;
680
681	/*
682	 * Check to see if the UDP or TCP stack supplied us with
683	 * the PCB. If so, rather then holding a lock and looking
684	 * up the PCB, we can use the one that was supplied.
685	 */
686	if (inp && *ugid_lookupp == 0) {
687		INP_LOCK_ASSERT(inp);
688		if (inp->inp_socket != NULL) {
689			*uc = crhold(inp->inp_cred);
690			*ugid_lookupp = 1;
691		} else
692			*ugid_lookupp = -1;
693	}
694	/*
695	 * If we have already been here and the packet has no
696	 * PCB entry associated with it, then we can safely
697	 * assume that this is a no match.
698	 */
699	if (*ugid_lookupp == -1)
700		return (0);
701	if (id->proto == IPPROTO_TCP) {
702		lookupflags = 0;
703		pi = &V_tcbinfo;
704	} else if (id->proto == IPPROTO_UDP) {
705		lookupflags = INPLOOKUP_WILDCARD;
706		pi = &V_udbinfo;
707	} else
708		return 0;
709	lookupflags |= INPLOOKUP_RLOCKPCB;
710	match = 0;
711	if (*ugid_lookupp == 0) {
712		if (id->addr_type == 6) {
713#ifdef INET6
714			if (oif == NULL)
715				pcb = in6_pcblookup_mbuf(pi,
716				    &id->src_ip6, htons(id->src_port),
717				    &id->dst_ip6, htons(id->dst_port),
718				    lookupflags, oif, args->m);
719			else
720				pcb = in6_pcblookup_mbuf(pi,
721				    &id->dst_ip6, htons(id->dst_port),
722				    &id->src_ip6, htons(id->src_port),
723				    lookupflags, oif, args->m);
724#else
725			*ugid_lookupp = -1;
726			return (0);
727#endif
728		} else {
729			src_ip.s_addr = htonl(id->src_ip);
730			dst_ip.s_addr = htonl(id->dst_ip);
731			if (oif == NULL)
732				pcb = in_pcblookup_mbuf(pi,
733				    src_ip, htons(id->src_port),
734				    dst_ip, htons(id->dst_port),
735				    lookupflags, oif, args->m);
736			else
737				pcb = in_pcblookup_mbuf(pi,
738				    dst_ip, htons(id->dst_port),
739				    src_ip, htons(id->src_port),
740				    lookupflags, oif, args->m);
741		}
742		if (pcb != NULL) {
743			INP_RLOCK_ASSERT(pcb);
744			*uc = crhold(pcb->inp_cred);
745			*ugid_lookupp = 1;
746			INP_RUNLOCK(pcb);
747		}
748		if (*ugid_lookupp == 0) {
749			/*
750			 * We tried and failed, set the variable to -1
751			 * so we will not try again on this packet.
752			 */
753			*ugid_lookupp = -1;
754			return (0);
755		}
756	}
757	if (insn->o.opcode == O_UID)
758		match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
759	else if (insn->o.opcode == O_GID)
760		match = groupmember((gid_t)insn->d[0], *uc);
761	else if (insn->o.opcode == O_JAIL)
762		match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
763	return (match);
764#endif /* __FreeBSD__ */
765}
766
767/*
768 * Helper function to set args with info on the rule after the matching
769 * one. slot is precise, whereas we guess rule_id as they are
770 * assigned sequentially.
771 */
772static inline void
773set_match(struct ip_fw_args *args, int slot,
774	struct ip_fw_chain *chain)
775{
776	args->rule.chain_id = chain->id;
777	args->rule.slot = slot + 1; /* we use 0 as a marker */
778	args->rule.rule_id = 1 + chain->map[slot]->id;
779	args->rule.rulenum = chain->map[slot]->rulenum;
780}
781
782/*
783 * The main check routine for the firewall.
784 *
785 * All arguments are in args so we can modify them and return them
786 * back to the caller.
787 *
788 * Parameters:
789 *
790 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
791 *		Starts with the IP header.
792 *	args->eh (in)	Mac header if present, NULL for layer3 packet.
793 *	args->L3offset	Number of bytes bypassed if we came from L2.
794 *			e.g. often sizeof(eh)  ** NOTYET **
795 *	args->oif	Outgoing interface, NULL if packet is incoming.
796 *		The incoming interface is in the mbuf. (in)
797 *	args->divert_rule (in/out)
798 *		Skip up to the first rule past this rule number;
799 *		upon return, non-zero port number for divert or tee.
800 *
801 *	args->rule	Pointer to the last matching rule (in/out)
802 *	args->next_hop	Socket we are forwarding to (out).
803 *	args->next_hop6	IPv6 next hop we are forwarding to (out).
804 *	args->f_id	Addresses grabbed from the packet (out)
805 * 	args->rule.info	a cookie depending on rule action
806 *
807 * Return value:
808 *
809 *	IP_FW_PASS	the packet must be accepted
810 *	IP_FW_DENY	the packet must be dropped
811 *	IP_FW_DIVERT	divert packet, port in m_tag
812 *	IP_FW_TEE	tee packet, port in m_tag
813 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
814 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
815 *		args->rule contains the matching rule,
816 *		args->rule.info has additional information.
817 *
818 */
819int
820ipfw_chk(struct ip_fw_args *args)
821{
822
823	/*
824	 * Local variables holding state while processing a packet:
825	 *
826	 * IMPORTANT NOTE: to speed up the processing of rules, there
827	 * are some assumption on the values of the variables, which
828	 * are documented here. Should you change them, please check
829	 * the implementation of the various instructions to make sure
830	 * that they still work.
831	 *
832	 * args->eh	The MAC header. It is non-null for a layer2
833	 *	packet, it is NULL for a layer-3 packet.
834	 * **notyet**
835	 * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
836	 *
837	 * m | args->m	Pointer to the mbuf, as received from the caller.
838	 *	It may change if ipfw_chk() does an m_pullup, or if it
839	 *	consumes the packet because it calls send_reject().
840	 *	XXX This has to change, so that ipfw_chk() never modifies
841	 *	or consumes the buffer.
842	 * ip	is the beginning of the ip(4 or 6) header.
843	 *	Calculated by adding the L3offset to the start of data.
844	 *	(Until we start using L3offset, the packet is
845	 *	supposed to start with the ip header).
846	 */
847	struct mbuf *m = args->m;
848	struct ip *ip = mtod(m, struct ip *);
849
850	/*
851	 * For rules which contain uid/gid or jail constraints, cache
852	 * a copy of the users credentials after the pcb lookup has been
853	 * executed. This will speed up the processing of rules with
854	 * these types of constraints, as well as decrease contention
855	 * on pcb related locks.
856	 */
857#ifndef __FreeBSD__
858	struct bsd_ucred ucred_cache;
859#else
860	struct ucred *ucred_cache = NULL;
861#endif
862	int ucred_lookup = 0;
863
864	/*
865	 * oif | args->oif	If NULL, ipfw_chk has been called on the
866	 *	inbound path (ether_input, ip_input).
867	 *	If non-NULL, ipfw_chk has been called on the outbound path
868	 *	(ether_output, ip_output).
869	 */
870	struct ifnet *oif = args->oif;
871
872	int f_pos = 0;		/* index of current rule in the array */
873	int retval = 0;
874
875	/*
876	 * hlen	The length of the IP header.
877	 */
878	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
879
880	/*
881	 * offset	The offset of a fragment. offset != 0 means that
882	 *	we have a fragment at this offset of an IPv4 packet.
883	 *	offset == 0 means that (if this is an IPv4 packet)
884	 *	this is the first or only fragment.
885	 *	For IPv6 offset|ip6f_mf == 0 means there is no Fragment Header
886	 *	or there is a single packet fragement (fragement header added
887	 *	without needed).  We will treat a single packet fragment as if
888	 *	there was no fragment header (or log/block depending on the
889	 *	V_fw_permit_single_frag6 sysctl setting).
890	 */
891	u_short offset = 0;
892	u_short ip6f_mf = 0;
893
894	/*
895	 * Local copies of addresses. They are only valid if we have
896	 * an IP packet.
897	 *
898	 * proto	The protocol. Set to 0 for non-ip packets,
899	 *	or to the protocol read from the packet otherwise.
900	 *	proto != 0 means that we have an IPv4 packet.
901	 *
902	 * src_port, dst_port	port numbers, in HOST format. Only
903	 *	valid for TCP and UDP packets.
904	 *
905	 * src_ip, dst_ip	ip addresses, in NETWORK format.
906	 *	Only valid for IPv4 packets.
907	 */
908	uint8_t proto;
909	uint16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
910	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
911	uint16_t iplen=0;
912	int pktlen;
913	uint16_t	etype = 0;	/* Host order stored ether type */
914
915	/*
916	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
917	 * 	MATCH_NONE when checked and not matched (q = NULL),
918	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
919	 */
920	int dyn_dir = MATCH_UNKNOWN;
921	ipfw_dyn_rule *q = NULL;
922	struct ip_fw_chain *chain = &V_layer3_chain;
923
924	/*
925	 * We store in ulp a pointer to the upper layer protocol header.
926	 * In the ipv4 case this is easy to determine from the header,
927	 * but for ipv6 we might have some additional headers in the middle.
928	 * ulp is NULL if not found.
929	 */
930	void *ulp = NULL;		/* upper layer protocol pointer. */
931
932	/* XXX ipv6 variables */
933	int is_ipv6 = 0;
934	uint8_t	icmp6_type = 0;
935	uint16_t ext_hd = 0;	/* bits vector for extension header filtering */
936	/* end of ipv6 variables */
937
938	int is_ipv4 = 0;
939
940	int done = 0;		/* flag to exit the outer loop */
941
942	if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
943		return (IP_FW_PASS);	/* accept */
944
945	dst_ip.s_addr = 0;		/* make sure it is initialized */
946	src_ip.s_addr = 0;		/* make sure it is initialized */
947	pktlen = m->m_pkthdr.len;
948	args->f_id.fib = M_GETFIB(m); /* note mbuf not altered) */
949	proto = args->f_id.proto = 0;	/* mark f_id invalid */
950		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
951
952/*
953 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
954 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
955 * pointer might become stale after other pullups (but we never use it
956 * this way).
957 */
958#define PULLUP_TO(_len, p, T)	PULLUP_LEN(_len, p, sizeof(T))
959#define PULLUP_LEN(_len, p, T)					\
960do {								\
961	int x = (_len) + T;					\
962	if ((m)->m_len < x) {					\
963		args->m = m = m_pullup(m, x);			\
964		if (m == NULL)					\
965			goto pullup_failed;			\
966	}							\
967	p = (mtod(m, char *) + (_len));				\
968} while (0)
969
970	/*
971	 * if we have an ether header,
972	 */
973	if (args->eh)
974		etype = ntohs(args->eh->ether_type);
975
976	/* Identify IP packets and fill up variables. */
977	if (pktlen >= sizeof(struct ip6_hdr) &&
978	    (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
979		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
980		is_ipv6 = 1;
981		args->f_id.addr_type = 6;
982		hlen = sizeof(struct ip6_hdr);
983		proto = ip6->ip6_nxt;
984
985		/* Search extension headers to find upper layer protocols */
986		while (ulp == NULL && offset == 0) {
987			switch (proto) {
988			case IPPROTO_ICMPV6:
989				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
990				icmp6_type = ICMP6(ulp)->icmp6_type;
991				break;
992
993			case IPPROTO_TCP:
994				PULLUP_TO(hlen, ulp, struct tcphdr);
995				dst_port = TCP(ulp)->th_dport;
996				src_port = TCP(ulp)->th_sport;
997				/* save flags for dynamic rules */
998				args->f_id._flags = TCP(ulp)->th_flags;
999				break;
1000
1001			case IPPROTO_SCTP:
1002				PULLUP_TO(hlen, ulp, struct sctphdr);
1003				src_port = SCTP(ulp)->src_port;
1004				dst_port = SCTP(ulp)->dest_port;
1005				break;
1006
1007			case IPPROTO_UDP:
1008				PULLUP_TO(hlen, ulp, struct udphdr);
1009				dst_port = UDP(ulp)->uh_dport;
1010				src_port = UDP(ulp)->uh_sport;
1011				break;
1012
1013			case IPPROTO_HOPOPTS:	/* RFC 2460 */
1014				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1015				ext_hd |= EXT_HOPOPTS;
1016				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1017				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1018				ulp = NULL;
1019				break;
1020
1021			case IPPROTO_ROUTING:	/* RFC 2460 */
1022				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
1023				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
1024				case 0:
1025					ext_hd |= EXT_RTHDR0;
1026					break;
1027				case 2:
1028					ext_hd |= EXT_RTHDR2;
1029					break;
1030				default:
1031					if (V_fw_verbose)
1032						printf("IPFW2: IPV6 - Unknown "
1033						    "Routing Header type(%d)\n",
1034						    ((struct ip6_rthdr *)
1035						    ulp)->ip6r_type);
1036					if (V_fw_deny_unknown_exthdrs)
1037					    return (IP_FW_DENY);
1038					break;
1039				}
1040				ext_hd |= EXT_ROUTING;
1041				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
1042				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
1043				ulp = NULL;
1044				break;
1045
1046			case IPPROTO_FRAGMENT:	/* RFC 2460 */
1047				PULLUP_TO(hlen, ulp, struct ip6_frag);
1048				ext_hd |= EXT_FRAGMENT;
1049				hlen += sizeof (struct ip6_frag);
1050				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
1051				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
1052					IP6F_OFF_MASK;
1053				ip6f_mf = ((struct ip6_frag *)ulp)->ip6f_offlg &
1054					IP6F_MORE_FRAG;
1055				if (V_fw_permit_single_frag6 == 0 &&
1056				    offset == 0 && ip6f_mf == 0) {
1057					if (V_fw_verbose)
1058						printf("IPFW2: IPV6 - Invalid "
1059						    "Fragment Header\n");
1060					if (V_fw_deny_unknown_exthdrs)
1061					    return (IP_FW_DENY);
1062					break;
1063				}
1064				args->f_id.extra =
1065				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
1066				ulp = NULL;
1067				break;
1068
1069			case IPPROTO_DSTOPTS:	/* RFC 2460 */
1070				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1071				ext_hd |= EXT_DSTOPTS;
1072				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1073				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1074				ulp = NULL;
1075				break;
1076
1077			case IPPROTO_AH:	/* RFC 2402 */
1078				PULLUP_TO(hlen, ulp, struct ip6_ext);
1079				ext_hd |= EXT_AH;
1080				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
1081				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
1082				ulp = NULL;
1083				break;
1084
1085			case IPPROTO_ESP:	/* RFC 2406 */
1086				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
1087				/* Anything past Seq# is variable length and
1088				 * data past this ext. header is encrypted. */
1089				ext_hd |= EXT_ESP;
1090				break;
1091
1092			case IPPROTO_NONE:	/* RFC 2460 */
1093				/*
1094				 * Packet ends here, and IPv6 header has
1095				 * already been pulled up. If ip6e_len!=0
1096				 * then octets must be ignored.
1097				 */
1098				ulp = ip; /* non-NULL to get out of loop. */
1099				break;
1100
1101			case IPPROTO_OSPFIGP:
1102				/* XXX OSPF header check? */
1103				PULLUP_TO(hlen, ulp, struct ip6_ext);
1104				break;
1105
1106			case IPPROTO_PIM:
1107				/* XXX PIM header check? */
1108				PULLUP_TO(hlen, ulp, struct pim);
1109				break;
1110
1111			case IPPROTO_CARP:
1112				PULLUP_TO(hlen, ulp, struct carp_header);
1113				if (((struct carp_header *)ulp)->carp_version !=
1114				    CARP_VERSION)
1115					return (IP_FW_DENY);
1116				if (((struct carp_header *)ulp)->carp_type !=
1117				    CARP_ADVERTISEMENT)
1118					return (IP_FW_DENY);
1119				break;
1120
1121			case IPPROTO_IPV6:	/* RFC 2893 */
1122				PULLUP_TO(hlen, ulp, struct ip6_hdr);
1123				break;
1124
1125			case IPPROTO_IPV4:	/* RFC 2893 */
1126				PULLUP_TO(hlen, ulp, struct ip);
1127				break;
1128
1129			default:
1130				if (V_fw_verbose)
1131					printf("IPFW2: IPV6 - Unknown "
1132					    "Extension Header(%d), ext_hd=%x\n",
1133					     proto, ext_hd);
1134				if (V_fw_deny_unknown_exthdrs)
1135				    return (IP_FW_DENY);
1136				PULLUP_TO(hlen, ulp, struct ip6_ext);
1137				break;
1138			} /*switch */
1139		}
1140		ip = mtod(m, struct ip *);
1141		ip6 = (struct ip6_hdr *)ip;
1142		args->f_id.src_ip6 = ip6->ip6_src;
1143		args->f_id.dst_ip6 = ip6->ip6_dst;
1144		args->f_id.src_ip = 0;
1145		args->f_id.dst_ip = 0;
1146		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
1147	} else if (pktlen >= sizeof(struct ip) &&
1148	    (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
1149	    	is_ipv4 = 1;
1150		hlen = ip->ip_hl << 2;
1151		args->f_id.addr_type = 4;
1152
1153		/*
1154		 * Collect parameters into local variables for faster matching.
1155		 */
1156		proto = ip->ip_p;
1157		src_ip = ip->ip_src;
1158		dst_ip = ip->ip_dst;
1159		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1160		iplen = ntohs(ip->ip_len);
1161		pktlen = iplen < pktlen ? iplen : pktlen;
1162
1163		if (offset == 0) {
1164			switch (proto) {
1165			case IPPROTO_TCP:
1166				PULLUP_TO(hlen, ulp, struct tcphdr);
1167				dst_port = TCP(ulp)->th_dport;
1168				src_port = TCP(ulp)->th_sport;
1169				/* save flags for dynamic rules */
1170				args->f_id._flags = TCP(ulp)->th_flags;
1171				break;
1172
1173			case IPPROTO_SCTP:
1174				PULLUP_TO(hlen, ulp, struct sctphdr);
1175				src_port = SCTP(ulp)->src_port;
1176				dst_port = SCTP(ulp)->dest_port;
1177				break;
1178
1179			case IPPROTO_UDP:
1180				PULLUP_TO(hlen, ulp, struct udphdr);
1181				dst_port = UDP(ulp)->uh_dport;
1182				src_port = UDP(ulp)->uh_sport;
1183				break;
1184
1185			case IPPROTO_ICMP:
1186				PULLUP_TO(hlen, ulp, struct icmphdr);
1187				//args->f_id.flags = ICMP(ulp)->icmp_type;
1188				break;
1189
1190			default:
1191				break;
1192			}
1193		}
1194
1195		ip = mtod(m, struct ip *);
1196		args->f_id.src_ip = ntohl(src_ip.s_addr);
1197		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1198	}
1199#undef PULLUP_TO
1200	if (proto) { /* we may have port numbers, store them */
1201		args->f_id.proto = proto;
1202		args->f_id.src_port = src_port = ntohs(src_port);
1203		args->f_id.dst_port = dst_port = ntohs(dst_port);
1204	}
1205
1206	IPFW_RLOCK(chain);
1207	if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
1208		IPFW_RUNLOCK(chain);
1209		return (IP_FW_PASS);	/* accept */
1210	}
1211	if (args->rule.slot) {
1212		/*
1213		 * Packet has already been tagged as a result of a previous
1214		 * match on rule args->rule aka args->rule_id (PIPE, QUEUE,
1215		 * REASS, NETGRAPH, DIVERT/TEE...)
1216		 * Validate the slot and continue from the next one
1217		 * if still present, otherwise do a lookup.
1218		 */
1219		f_pos = (args->rule.chain_id == chain->id) ?
1220		    args->rule.slot :
1221		    ipfw_find_rule(chain, args->rule.rulenum,
1222			args->rule.rule_id);
1223	} else {
1224		f_pos = 0;
1225	}
1226
1227	/*
1228	 * Now scan the rules, and parse microinstructions for each rule.
1229	 * We have two nested loops and an inner switch. Sometimes we
1230	 * need to break out of one or both loops, or re-enter one of
1231	 * the loops with updated variables. Loop variables are:
1232	 *
1233	 *	f_pos (outer loop) points to the current rule.
1234	 *		On output it points to the matching rule.
1235	 *	done (outer loop) is used as a flag to break the loop.
1236	 *	l (inner loop)	residual length of current rule.
1237	 *		cmd points to the current microinstruction.
1238	 *
1239	 * We break the inner loop by setting l=0 and possibly
1240	 * cmdlen=0 if we don't want to advance cmd.
1241	 * We break the outer loop by setting done=1
1242	 * We can restart the inner loop by setting l>0 and f_pos, f, cmd
1243	 * as needed.
1244	 */
1245	for (; f_pos < chain->n_rules; f_pos++) {
1246		ipfw_insn *cmd;
1247		uint32_t tablearg = 0;
1248		int l, cmdlen, skip_or; /* skip rest of OR block */
1249		struct ip_fw *f;
1250
1251		f = chain->map[f_pos];
1252		if (V_set_disable & (1 << f->set) )
1253			continue;
1254
1255		skip_or = 0;
1256		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1257		    l -= cmdlen, cmd += cmdlen) {
1258			int match;
1259
1260			/*
1261			 * check_body is a jump target used when we find a
1262			 * CHECK_STATE, and need to jump to the body of
1263			 * the target rule.
1264			 */
1265
1266/* check_body: */
1267			cmdlen = F_LEN(cmd);
1268			/*
1269			 * An OR block (insn_1 || .. || insn_n) has the
1270			 * F_OR bit set in all but the last instruction.
1271			 * The first match will set "skip_or", and cause
1272			 * the following instructions to be skipped until
1273			 * past the one with the F_OR bit clear.
1274			 */
1275			if (skip_or) {		/* skip this instruction */
1276				if ((cmd->len & F_OR) == 0)
1277					skip_or = 0;	/* next one is good */
1278				continue;
1279			}
1280			match = 0; /* set to 1 if we succeed */
1281
1282			switch (cmd->opcode) {
1283			/*
1284			 * The first set of opcodes compares the packet's
1285			 * fields with some pattern, setting 'match' if a
1286			 * match is found. At the end of the loop there is
1287			 * logic to deal with F_NOT and F_OR flags associated
1288			 * with the opcode.
1289			 */
1290			case O_NOP:
1291				match = 1;
1292				break;
1293
1294			case O_FORWARD_MAC:
1295				printf("ipfw: opcode %d unimplemented\n",
1296				    cmd->opcode);
1297				break;
1298
1299			case O_GID:
1300			case O_UID:
1301			case O_JAIL:
1302				/*
1303				 * We only check offset == 0 && proto != 0,
1304				 * as this ensures that we have a
1305				 * packet with the ports info.
1306				 */
1307				if (offset != 0)
1308					break;
1309				if (proto == IPPROTO_TCP ||
1310				    proto == IPPROTO_UDP)
1311					match = check_uidgid(
1312						    (ipfw_insn_u32 *)cmd,
1313						    args, &ucred_lookup,
1314#ifdef __FreeBSD__
1315						    &ucred_cache);
1316#else
1317						    (void *)&ucred_cache);
1318#endif
1319				break;
1320
1321			case O_RECV:
1322				match = iface_match(m->m_pkthdr.rcvif,
1323				    (ipfw_insn_if *)cmd, chain, &tablearg);
1324				break;
1325
1326			case O_XMIT:
1327				match = iface_match(oif, (ipfw_insn_if *)cmd,
1328				    chain, &tablearg);
1329				break;
1330
1331			case O_VIA:
1332				match = iface_match(oif ? oif :
1333				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd,
1334				    chain, &tablearg);
1335				break;
1336
1337			case O_MACADDR2:
1338				if (args->eh != NULL) {	/* have MAC header */
1339					u_int32_t *want = (u_int32_t *)
1340						((ipfw_insn_mac *)cmd)->addr;
1341					u_int32_t *mask = (u_int32_t *)
1342						((ipfw_insn_mac *)cmd)->mask;
1343					u_int32_t *hdr = (u_int32_t *)args->eh;
1344
1345					match =
1346					    ( want[0] == (hdr[0] & mask[0]) &&
1347					      want[1] == (hdr[1] & mask[1]) &&
1348					      want[2] == (hdr[2] & mask[2]) );
1349				}
1350				break;
1351
1352			case O_MAC_TYPE:
1353				if (args->eh != NULL) {
1354					u_int16_t *p =
1355					    ((ipfw_insn_u16 *)cmd)->ports;
1356					int i;
1357
1358					for (i = cmdlen - 1; !match && i>0;
1359					    i--, p += 2)
1360						match = (etype >= p[0] &&
1361						    etype <= p[1]);
1362				}
1363				break;
1364
1365			case O_FRAG:
1366				match = (offset != 0);
1367				break;
1368
1369			case O_IN:	/* "out" is "not in" */
1370				match = (oif == NULL);
1371				break;
1372
1373			case O_LAYER2:
1374				match = (args->eh != NULL);
1375				break;
1376
1377			case O_DIVERTED:
1378			    {
1379				/* For diverted packets, args->rule.info
1380				 * contains the divert port (in host format)
1381				 * reason and direction.
1382				 */
1383				uint32_t i = args->rule.info;
1384				match = (i&IPFW_IS_MASK) == IPFW_IS_DIVERT &&
1385				    cmd->arg1 & ((i & IPFW_INFO_IN) ? 1 : 2);
1386			    }
1387				break;
1388
1389			case O_PROTO:
1390				/*
1391				 * We do not allow an arg of 0 so the
1392				 * check of "proto" only suffices.
1393				 */
1394				match = (proto == cmd->arg1);
1395				break;
1396
1397			case O_IP_SRC:
1398				match = is_ipv4 &&
1399				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1400				    src_ip.s_addr);
1401				break;
1402
1403			case O_IP_SRC_LOOKUP:
1404			case O_IP_DST_LOOKUP:
1405				if (is_ipv4) {
1406				    uint32_t key =
1407					(cmd->opcode == O_IP_DST_LOOKUP) ?
1408					    dst_ip.s_addr : src_ip.s_addr;
1409				    uint32_t v = 0;
1410
1411				    if (cmdlen > F_INSN_SIZE(ipfw_insn_u32)) {
1412					/* generic lookup. The key must be
1413					 * in 32bit big-endian format.
1414					 */
1415					v = ((ipfw_insn_u32 *)cmd)->d[1];
1416					if (v == 0)
1417					    key = dst_ip.s_addr;
1418					else if (v == 1)
1419					    key = src_ip.s_addr;
1420					else if (v == 6) /* dscp */
1421					    key = (ip->ip_tos >> 2) & 0x3f;
1422					else if (offset != 0)
1423					    break;
1424					else if (proto != IPPROTO_TCP &&
1425						proto != IPPROTO_UDP)
1426					    break;
1427					else if (v == 2)
1428					    key = htonl(dst_port);
1429					else if (v == 3)
1430					    key = htonl(src_port);
1431					else if (v == 4 || v == 5) {
1432					    check_uidgid(
1433						(ipfw_insn_u32 *)cmd,
1434						args, &ucred_lookup,
1435#ifdef __FreeBSD__
1436						&ucred_cache);
1437					    if (v == 4 /* O_UID */)
1438						key = ucred_cache->cr_uid;
1439					    else if (v == 5 /* O_JAIL */)
1440						key = ucred_cache->cr_prison->pr_id;
1441#else /* !__FreeBSD__ */
1442						(void *)&ucred_cache);
1443					    if (v ==4 /* O_UID */)
1444						key = ucred_cache.uid;
1445					    else if (v == 5 /* O_JAIL */)
1446						key = ucred_cache.xid;
1447#endif /* !__FreeBSD__ */
1448					    key = htonl(key);
1449					} else
1450					    break;
1451				    }
1452				    match = ipfw_lookup_table(chain,
1453					cmd->arg1, key, &v);
1454				    if (!match)
1455					break;
1456				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
1457					match =
1458					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
1459				    else
1460					tablearg = v;
1461				} else if (is_ipv6) {
1462					uint32_t v = 0;
1463					void *pkey = (cmd->opcode == O_IP_DST_LOOKUP) ?
1464						&args->f_id.dst_ip6: &args->f_id.src_ip6;
1465					match = ipfw_lookup_table_extended(chain,
1466							cmd->arg1, pkey, &v,
1467							IPFW_TABLE_CIDR);
1468					if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
1469						match = ((ipfw_insn_u32 *)cmd)->d[0] == v;
1470					if (match)
1471						tablearg = v;
1472				}
1473				break;
1474
1475			case O_IP_SRC_MASK:
1476			case O_IP_DST_MASK:
1477				if (is_ipv4) {
1478				    uint32_t a =
1479					(cmd->opcode == O_IP_DST_MASK) ?
1480					    dst_ip.s_addr : src_ip.s_addr;
1481				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
1482				    int i = cmdlen-1;
1483
1484				    for (; !match && i>0; i-= 2, p+= 2)
1485					match = (p[0] == (a & p[1]));
1486				}
1487				break;
1488
1489			case O_IP_SRC_ME:
1490				if (is_ipv4) {
1491					struct ifnet *tif;
1492
1493					INADDR_TO_IFP(src_ip, tif);
1494					match = (tif != NULL);
1495					break;
1496				}
1497#ifdef INET6
1498				/* FALLTHROUGH */
1499			case O_IP6_SRC_ME:
1500				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
1501#endif
1502				break;
1503
1504			case O_IP_DST_SET:
1505			case O_IP_SRC_SET:
1506				if (is_ipv4) {
1507					u_int32_t *d = (u_int32_t *)(cmd+1);
1508					u_int32_t addr =
1509					    cmd->opcode == O_IP_DST_SET ?
1510						args->f_id.dst_ip :
1511						args->f_id.src_ip;
1512
1513					    if (addr < d[0])
1514						    break;
1515					    addr -= d[0]; /* subtract base */
1516					    match = (addr < cmd->arg1) &&
1517						( d[ 1 + (addr>>5)] &
1518						  (1<<(addr & 0x1f)) );
1519				}
1520				break;
1521
1522			case O_IP_DST:
1523				match = is_ipv4 &&
1524				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1525				    dst_ip.s_addr);
1526				break;
1527
1528			case O_IP_DST_ME:
1529				if (is_ipv4) {
1530					struct ifnet *tif;
1531
1532					INADDR_TO_IFP(dst_ip, tif);
1533					match = (tif != NULL);
1534					break;
1535				}
1536#ifdef INET6
1537				/* FALLTHROUGH */
1538			case O_IP6_DST_ME:
1539				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
1540#endif
1541				break;
1542
1543
1544			case O_IP_SRCPORT:
1545			case O_IP_DSTPORT:
1546				/*
1547				 * offset == 0 && proto != 0 is enough
1548				 * to guarantee that we have a
1549				 * packet with port info.
1550				 */
1551				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
1552				    && offset == 0) {
1553					u_int16_t x =
1554					    (cmd->opcode == O_IP_SRCPORT) ?
1555						src_port : dst_port ;
1556					u_int16_t *p =
1557					    ((ipfw_insn_u16 *)cmd)->ports;
1558					int i;
1559
1560					for (i = cmdlen - 1; !match && i>0;
1561					    i--, p += 2)
1562						match = (x>=p[0] && x<=p[1]);
1563				}
1564				break;
1565
1566			case O_ICMPTYPE:
1567				match = (offset == 0 && proto==IPPROTO_ICMP &&
1568				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
1569				break;
1570
1571#ifdef INET6
1572			case O_ICMP6TYPE:
1573				match = is_ipv6 && offset == 0 &&
1574				    proto==IPPROTO_ICMPV6 &&
1575				    icmp6type_match(
1576					ICMP6(ulp)->icmp6_type,
1577					(ipfw_insn_u32 *)cmd);
1578				break;
1579#endif /* INET6 */
1580
1581			case O_IPOPT:
1582				match = (is_ipv4 &&
1583				    ipopts_match(ip, cmd) );
1584				break;
1585
1586			case O_IPVER:
1587				match = (is_ipv4 &&
1588				    cmd->arg1 == ip->ip_v);
1589				break;
1590
1591			case O_IPID:
1592			case O_IPLEN:
1593			case O_IPTTL:
1594				if (is_ipv4) {	/* only for IP packets */
1595				    uint16_t x;
1596				    uint16_t *p;
1597				    int i;
1598
1599				    if (cmd->opcode == O_IPLEN)
1600					x = iplen;
1601				    else if (cmd->opcode == O_IPTTL)
1602					x = ip->ip_ttl;
1603				    else /* must be IPID */
1604					x = ntohs(ip->ip_id);
1605				    if (cmdlen == 1) {
1606					match = (cmd->arg1 == x);
1607					break;
1608				    }
1609				    /* otherwise we have ranges */
1610				    p = ((ipfw_insn_u16 *)cmd)->ports;
1611				    i = cmdlen - 1;
1612				    for (; !match && i>0; i--, p += 2)
1613					match = (x >= p[0] && x <= p[1]);
1614				}
1615				break;
1616
1617			case O_IPPRECEDENCE:
1618				match = (is_ipv4 &&
1619				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
1620				break;
1621
1622			case O_IPTOS:
1623				match = (is_ipv4 &&
1624				    flags_match(cmd, ip->ip_tos));
1625				break;
1626
1627			case O_TCPDATALEN:
1628				if (proto == IPPROTO_TCP && offset == 0) {
1629				    struct tcphdr *tcp;
1630				    uint16_t x;
1631				    uint16_t *p;
1632				    int i;
1633
1634				    tcp = TCP(ulp);
1635				    x = iplen -
1636					((ip->ip_hl + tcp->th_off) << 2);
1637				    if (cmdlen == 1) {
1638					match = (cmd->arg1 == x);
1639					break;
1640				    }
1641				    /* otherwise we have ranges */
1642				    p = ((ipfw_insn_u16 *)cmd)->ports;
1643				    i = cmdlen - 1;
1644				    for (; !match && i>0; i--, p += 2)
1645					match = (x >= p[0] && x <= p[1]);
1646				}
1647				break;
1648
1649			case O_TCPFLAGS:
1650				match = (proto == IPPROTO_TCP && offset == 0 &&
1651				    flags_match(cmd, TCP(ulp)->th_flags));
1652				break;
1653
1654			case O_TCPOPTS:
1655				PULLUP_LEN(hlen, ulp, (TCP(ulp)->th_off << 2));
1656				match = (proto == IPPROTO_TCP && offset == 0 &&
1657				    tcpopts_match(TCP(ulp), cmd));
1658				break;
1659
1660			case O_TCPSEQ:
1661				match = (proto == IPPROTO_TCP && offset == 0 &&
1662				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1663					TCP(ulp)->th_seq);
1664				break;
1665
1666			case O_TCPACK:
1667				match = (proto == IPPROTO_TCP && offset == 0 &&
1668				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1669					TCP(ulp)->th_ack);
1670				break;
1671
1672			case O_TCPWIN:
1673				if (proto == IPPROTO_TCP && offset == 0) {
1674				    uint16_t x;
1675				    uint16_t *p;
1676				    int i;
1677
1678				    x = ntohs(TCP(ulp)->th_win);
1679				    if (cmdlen == 1) {
1680					match = (cmd->arg1 == x);
1681					break;
1682				    }
1683				    /* Otherwise we have ranges. */
1684				    p = ((ipfw_insn_u16 *)cmd)->ports;
1685				    i = cmdlen - 1;
1686				    for (; !match && i > 0; i--, p += 2)
1687					match = (x >= p[0] && x <= p[1]);
1688				}
1689				break;
1690
1691			case O_ESTAB:
1692				/* reject packets which have SYN only */
1693				/* XXX should i also check for TH_ACK ? */
1694				match = (proto == IPPROTO_TCP && offset == 0 &&
1695				    (TCP(ulp)->th_flags &
1696				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
1697				break;
1698
1699			case O_ALTQ: {
1700				struct pf_mtag *at;
1701				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
1702
1703				match = 1;
1704				at = pf_find_mtag(m);
1705				if (at != NULL && at->qid != 0)
1706					break;
1707				at = pf_get_mtag(m);
1708				if (at == NULL) {
1709					/*
1710					 * Let the packet fall back to the
1711					 * default ALTQ.
1712					 */
1713					break;
1714				}
1715				at->qid = altq->qid;
1716				at->hdr = ip;
1717				break;
1718			}
1719
1720			case O_LOG:
1721				ipfw_log(f, hlen, args, m,
1722				    oif, offset | ip6f_mf, tablearg, ip);
1723				match = 1;
1724				break;
1725
1726			case O_PROB:
1727				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
1728				break;
1729
1730			case O_VERREVPATH:
1731				/* Outgoing packets automatically pass/match */
1732				match = ((oif != NULL) ||
1733				    (m->m_pkthdr.rcvif == NULL) ||
1734				    (
1735#ifdef INET6
1736				    is_ipv6 ?
1737					verify_path6(&(args->f_id.src_ip6),
1738					    m->m_pkthdr.rcvif, args->f_id.fib) :
1739#endif
1740				    verify_path(src_ip, m->m_pkthdr.rcvif,
1741				        args->f_id.fib)));
1742				break;
1743
1744			case O_VERSRCREACH:
1745				/* Outgoing packets automatically pass/match */
1746				match = (hlen > 0 && ((oif != NULL) ||
1747#ifdef INET6
1748				    is_ipv6 ?
1749				        verify_path6(&(args->f_id.src_ip6),
1750				            NULL, args->f_id.fib) :
1751#endif
1752				    verify_path(src_ip, NULL, args->f_id.fib)));
1753				break;
1754
1755			case O_ANTISPOOF:
1756				/* Outgoing packets automatically pass/match */
1757				if (oif == NULL && hlen > 0 &&
1758				    (  (is_ipv4 && in_localaddr(src_ip))
1759#ifdef INET6
1760				    || (is_ipv6 &&
1761				        in6_localaddr(&(args->f_id.src_ip6)))
1762#endif
1763				    ))
1764					match =
1765#ifdef INET6
1766					    is_ipv6 ? verify_path6(
1767					        &(args->f_id.src_ip6),
1768					        m->m_pkthdr.rcvif,
1769						args->f_id.fib) :
1770#endif
1771					    verify_path(src_ip,
1772					    	m->m_pkthdr.rcvif,
1773					        args->f_id.fib);
1774				else
1775					match = 1;
1776				break;
1777
1778			case O_IPSEC:
1779#ifdef IPSEC
1780				match = (m_tag_find(m,
1781				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
1782#endif
1783				/* otherwise no match */
1784				break;
1785
1786#ifdef INET6
1787			case O_IP6_SRC:
1788				match = is_ipv6 &&
1789				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
1790				    &((ipfw_insn_ip6 *)cmd)->addr6);
1791				break;
1792
1793			case O_IP6_DST:
1794				match = is_ipv6 &&
1795				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
1796				    &((ipfw_insn_ip6 *)cmd)->addr6);
1797				break;
1798			case O_IP6_SRC_MASK:
1799			case O_IP6_DST_MASK:
1800				if (is_ipv6) {
1801					int i = cmdlen - 1;
1802					struct in6_addr p;
1803					struct in6_addr *d =
1804					    &((ipfw_insn_ip6 *)cmd)->addr6;
1805
1806					for (; !match && i > 0; d += 2,
1807					    i -= F_INSN_SIZE(struct in6_addr)
1808					    * 2) {
1809						p = (cmd->opcode ==
1810						    O_IP6_SRC_MASK) ?
1811						    args->f_id.src_ip6:
1812						    args->f_id.dst_ip6;
1813						APPLY_MASK(&p, &d[1]);
1814						match =
1815						    IN6_ARE_ADDR_EQUAL(&d[0],
1816						    &p);
1817					}
1818				}
1819				break;
1820
1821			case O_FLOW6ID:
1822				match = is_ipv6 &&
1823				    flow6id_match(args->f_id.flow_id6,
1824				    (ipfw_insn_u32 *) cmd);
1825				break;
1826
1827			case O_EXT_HDR:
1828				match = is_ipv6 &&
1829				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
1830				break;
1831
1832			case O_IP6:
1833				match = is_ipv6;
1834				break;
1835#endif
1836
1837			case O_IP4:
1838				match = is_ipv4;
1839				break;
1840
1841			case O_TAG: {
1842				struct m_tag *mtag;
1843				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
1844				    tablearg : cmd->arg1;
1845
1846				/* Packet is already tagged with this tag? */
1847				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
1848
1849				/* We have `untag' action when F_NOT flag is
1850				 * present. And we must remove this mtag from
1851				 * mbuf and reset `match' to zero (`match' will
1852				 * be inversed later).
1853				 * Otherwise we should allocate new mtag and
1854				 * push it into mbuf.
1855				 */
1856				if (cmd->len & F_NOT) { /* `untag' action */
1857					if (mtag != NULL)
1858						m_tag_delete(m, mtag);
1859					match = 0;
1860				} else {
1861					if (mtag == NULL) {
1862						mtag = m_tag_alloc( MTAG_IPFW,
1863						    tag, 0, M_NOWAIT);
1864						if (mtag != NULL)
1865							m_tag_prepend(m, mtag);
1866					}
1867					match = 1;
1868				}
1869				break;
1870			}
1871
1872			case O_FIB: /* try match the specified fib */
1873				if (args->f_id.fib == cmd->arg1)
1874					match = 1;
1875				break;
1876
1877			case O_SOCKARG:	{
1878				struct inpcb *inp = args->inp;
1879				struct inpcbinfo *pi;
1880
1881				if (is_ipv6) /* XXX can we remove this ? */
1882					break;
1883
1884				if (proto == IPPROTO_TCP)
1885					pi = &V_tcbinfo;
1886				else if (proto == IPPROTO_UDP)
1887					pi = &V_udbinfo;
1888				else
1889					break;
1890
1891				/*
1892				 * XXXRW: so_user_cookie should almost
1893				 * certainly be inp_user_cookie?
1894				 */
1895
1896				/* For incomming packet, lookup up the
1897				inpcb using the src/dest ip/port tuple */
1898				if (inp == NULL) {
1899					inp = in_pcblookup(pi,
1900						src_ip, htons(src_port),
1901						dst_ip, htons(dst_port),
1902						INPLOOKUP_RLOCKPCB, NULL);
1903					if (inp != NULL) {
1904						tablearg =
1905						    inp->inp_socket->so_user_cookie;
1906						if (tablearg)
1907							match = 1;
1908						INP_RUNLOCK(inp);
1909					}
1910				} else {
1911					if (inp->inp_socket) {
1912						tablearg =
1913						    inp->inp_socket->so_user_cookie;
1914						if (tablearg)
1915							match = 1;
1916					}
1917				}
1918				break;
1919			}
1920
1921			case O_TAGGED: {
1922				struct m_tag *mtag;
1923				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
1924				    tablearg : cmd->arg1;
1925
1926				if (cmdlen == 1) {
1927					match = m_tag_locate(m, MTAG_IPFW,
1928					    tag, NULL) != NULL;
1929					break;
1930				}
1931
1932				/* we have ranges */
1933				for (mtag = m_tag_first(m);
1934				    mtag != NULL && !match;
1935				    mtag = m_tag_next(m, mtag)) {
1936					uint16_t *p;
1937					int i;
1938
1939					if (mtag->m_tag_cookie != MTAG_IPFW)
1940						continue;
1941
1942					p = ((ipfw_insn_u16 *)cmd)->ports;
1943					i = cmdlen - 1;
1944					for(; !match && i > 0; i--, p += 2)
1945						match =
1946						    mtag->m_tag_id >= p[0] &&
1947						    mtag->m_tag_id <= p[1];
1948				}
1949				break;
1950			}
1951
1952			/*
1953			 * The second set of opcodes represents 'actions',
1954			 * i.e. the terminal part of a rule once the packet
1955			 * matches all previous patterns.
1956			 * Typically there is only one action for each rule,
1957			 * and the opcode is stored at the end of the rule
1958			 * (but there are exceptions -- see below).
1959			 *
1960			 * In general, here we set retval and terminate the
1961			 * outer loop (would be a 'break 3' in some language,
1962			 * but we need to set l=0, done=1)
1963			 *
1964			 * Exceptions:
1965			 * O_COUNT and O_SKIPTO actions:
1966			 *   instead of terminating, we jump to the next rule
1967			 *   (setting l=0), or to the SKIPTO target (setting
1968			 *   f/f_len, cmd and l as needed), respectively.
1969			 *
1970			 * O_TAG, O_LOG and O_ALTQ action parameters:
1971			 *   perform some action and set match = 1;
1972			 *
1973			 * O_LIMIT and O_KEEP_STATE: these opcodes are
1974			 *   not real 'actions', and are stored right
1975			 *   before the 'action' part of the rule.
1976			 *   These opcodes try to install an entry in the
1977			 *   state tables; if successful, we continue with
1978			 *   the next opcode (match=1; break;), otherwise
1979			 *   the packet must be dropped (set retval,
1980			 *   break loops with l=0, done=1)
1981			 *
1982			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
1983			 *   cause a lookup of the state table, and a jump
1984			 *   to the 'action' part of the parent rule
1985			 *   if an entry is found, or
1986			 *   (CHECK_STATE only) a jump to the next rule if
1987			 *   the entry is not found.
1988			 *   The result of the lookup is cached so that
1989			 *   further instances of these opcodes become NOPs.
1990			 *   The jump to the next rule is done by setting
1991			 *   l=0, cmdlen=0.
1992			 */
1993			case O_LIMIT:
1994			case O_KEEP_STATE:
1995				if (ipfw_install_state(f,
1996				    (ipfw_insn_limit *)cmd, args, tablearg)) {
1997					/* error or limit violation */
1998					retval = IP_FW_DENY;
1999					l = 0;	/* exit inner loop */
2000					done = 1; /* exit outer loop */
2001				}
2002				match = 1;
2003				break;
2004
2005			case O_PROBE_STATE:
2006			case O_CHECK_STATE:
2007				/*
2008				 * dynamic rules are checked at the first
2009				 * keep-state or check-state occurrence,
2010				 * with the result being stored in dyn_dir.
2011				 * The compiler introduces a PROBE_STATE
2012				 * instruction for us when we have a
2013				 * KEEP_STATE (because PROBE_STATE needs
2014				 * to be run first).
2015				 */
2016				if (dyn_dir == MATCH_UNKNOWN &&
2017				    (q = ipfw_lookup_dyn_rule(&args->f_id,
2018				     &dyn_dir, proto == IPPROTO_TCP ?
2019					TCP(ulp) : NULL))
2020					!= NULL) {
2021					/*
2022					 * Found dynamic entry, update stats
2023					 * and jump to the 'action' part of
2024					 * the parent rule by setting
2025					 * f, cmd, l and clearing cmdlen.
2026					 */
2027					q->pcnt++;
2028					q->bcnt += pktlen;
2029					/* XXX we would like to have f_pos
2030					 * readily accessible in the dynamic
2031				         * rule, instead of having to
2032					 * lookup q->rule.
2033					 */
2034					f = q->rule;
2035					f_pos = ipfw_find_rule(chain,
2036						f->rulenum, f->id);
2037					cmd = ACTION_PTR(f);
2038					l = f->cmd_len - f->act_ofs;
2039					ipfw_dyn_unlock();
2040					cmdlen = 0;
2041					match = 1;
2042					break;
2043				}
2044				/*
2045				 * Dynamic entry not found. If CHECK_STATE,
2046				 * skip to next rule, if PROBE_STATE just
2047				 * ignore and continue with next opcode.
2048				 */
2049				if (cmd->opcode == O_CHECK_STATE)
2050					l = 0;	/* exit inner loop */
2051				match = 1;
2052				break;
2053
2054			case O_ACCEPT:
2055				retval = 0;	/* accept */
2056				l = 0;		/* exit inner loop */
2057				done = 1;	/* exit outer loop */
2058				break;
2059
2060			case O_PIPE:
2061			case O_QUEUE:
2062				set_match(args, f_pos, chain);
2063				args->rule.info = (cmd->arg1 == IP_FW_TABLEARG) ?
2064					tablearg : cmd->arg1;
2065				if (cmd->opcode == O_PIPE)
2066					args->rule.info |= IPFW_IS_PIPE;
2067				if (V_fw_one_pass)
2068					args->rule.info |= IPFW_ONEPASS;
2069				retval = IP_FW_DUMMYNET;
2070				l = 0;          /* exit inner loop */
2071				done = 1;       /* exit outer loop */
2072				break;
2073
2074			case O_DIVERT:
2075			case O_TEE:
2076				if (args->eh) /* not on layer 2 */
2077				    break;
2078				/* otherwise this is terminal */
2079				l = 0;		/* exit inner loop */
2080				done = 1;	/* exit outer loop */
2081				retval = (cmd->opcode == O_DIVERT) ?
2082					IP_FW_DIVERT : IP_FW_TEE;
2083				set_match(args, f_pos, chain);
2084				args->rule.info = (cmd->arg1 == IP_FW_TABLEARG) ?
2085				    tablearg : cmd->arg1;
2086				break;
2087
2088			case O_COUNT:
2089				f->pcnt++;	/* update stats */
2090				f->bcnt += pktlen;
2091				f->timestamp = time_uptime;
2092				l = 0;		/* exit inner loop */
2093				break;
2094
2095			case O_SKIPTO:
2096			    f->pcnt++;	/* update stats */
2097			    f->bcnt += pktlen;
2098			    f->timestamp = time_uptime;
2099			    /* If possible use cached f_pos (in f->next_rule),
2100			     * whose version is written in f->next_rule
2101			     * (horrible hacks to avoid changing the ABI).
2102			     */
2103			    if (cmd->arg1 != IP_FW_TABLEARG &&
2104				    (uintptr_t)f->x_next == chain->id) {
2105				f_pos = (uintptr_t)f->next_rule;
2106			    } else {
2107				int i = (cmd->arg1 == IP_FW_TABLEARG) ?
2108					tablearg : cmd->arg1;
2109				/* make sure we do not jump backward */
2110				if (i <= f->rulenum)
2111				    i = f->rulenum + 1;
2112				f_pos = ipfw_find_rule(chain, i, 0);
2113				/* update the cache */
2114				if (cmd->arg1 != IP_FW_TABLEARG) {
2115				    f->next_rule =
2116					(void *)(uintptr_t)f_pos;
2117				    f->x_next =
2118					(void *)(uintptr_t)chain->id;
2119				}
2120			    }
2121			    /*
2122			     * Skip disabled rules, and re-enter
2123			     * the inner loop with the correct
2124			     * f_pos, f, l and cmd.
2125			     * Also clear cmdlen and skip_or
2126			     */
2127			    for (; f_pos < chain->n_rules - 1 &&
2128				    (V_set_disable &
2129				     (1 << chain->map[f_pos]->set));
2130				    f_pos++)
2131				;
2132			    /* Re-enter the inner loop at the skipto rule. */
2133			    f = chain->map[f_pos];
2134			    l = f->cmd_len;
2135			    cmd = f->cmd;
2136			    match = 1;
2137			    cmdlen = 0;
2138			    skip_or = 0;
2139			    continue;
2140			    break;	/* not reached */
2141
2142			case O_CALLRETURN: {
2143				/*
2144				 * Implementation of `subroutine' call/return,
2145				 * in the stack carried in an mbuf tag. This
2146				 * is different from `skipto' in that any call
2147				 * address is possible (`skipto' must prevent
2148				 * backward jumps to avoid endless loops).
2149				 * We have `return' action when F_NOT flag is
2150				 * present. The `m_tag_id' field is used as
2151				 * stack pointer.
2152				 */
2153				struct m_tag *mtag;
2154				uint16_t jmpto, *stack;
2155
2156#define	IS_CALL		((cmd->len & F_NOT) == 0)
2157#define	IS_RETURN	((cmd->len & F_NOT) != 0)
2158				/*
2159				 * Hand-rolled version of m_tag_locate() with
2160				 * wildcard `type'.
2161				 * If not already tagged, allocate new tag.
2162				 */
2163				mtag = m_tag_first(m);
2164				while (mtag != NULL) {
2165					if (mtag->m_tag_cookie ==
2166					    MTAG_IPFW_CALL)
2167						break;
2168					mtag = m_tag_next(m, mtag);
2169				}
2170				if (mtag == NULL && IS_CALL) {
2171					mtag = m_tag_alloc(MTAG_IPFW_CALL, 0,
2172					    IPFW_CALLSTACK_SIZE *
2173					    sizeof(uint16_t), M_NOWAIT);
2174					if (mtag != NULL)
2175						m_tag_prepend(m, mtag);
2176				}
2177
2178				/*
2179				 * On error both `call' and `return' just
2180				 * continue with next rule.
2181				 */
2182				if (IS_RETURN && (mtag == NULL ||
2183				    mtag->m_tag_id == 0)) {
2184					l = 0;		/* exit inner loop */
2185					break;
2186				}
2187				if (IS_CALL && (mtag == NULL ||
2188				    mtag->m_tag_id >= IPFW_CALLSTACK_SIZE)) {
2189					printf("ipfw: call stack error, "
2190					    "go to next rule\n");
2191					l = 0;		/* exit inner loop */
2192					break;
2193				}
2194
2195				f->pcnt++;	/* update stats */
2196				f->bcnt += pktlen;
2197				f->timestamp = time_uptime;
2198				stack = (uint16_t *)(mtag + 1);
2199
2200				/*
2201				 * The `call' action may use cached f_pos
2202				 * (in f->next_rule), whose version is written
2203				 * in f->next_rule.
2204				 * The `return' action, however, doesn't have
2205				 * fixed jump address in cmd->arg1 and can't use
2206				 * cache.
2207				 */
2208				if (IS_CALL) {
2209					stack[mtag->m_tag_id] = f->rulenum;
2210					mtag->m_tag_id++;
2211					if (cmd->arg1 != IP_FW_TABLEARG &&
2212					    (uintptr_t)f->x_next == chain->id) {
2213						f_pos = (uintptr_t)f->next_rule;
2214					} else {
2215						jmpto = (cmd->arg1 ==
2216						    IP_FW_TABLEARG) ? tablearg:
2217						    cmd->arg1;
2218						f_pos = ipfw_find_rule(chain,
2219						    jmpto, 0);
2220						/* update the cache */
2221						if (cmd->arg1 !=
2222						    IP_FW_TABLEARG) {
2223							f->next_rule =
2224							    (void *)(uintptr_t)
2225							    f_pos;
2226							f->x_next =
2227							    (void *)(uintptr_t)
2228							    chain->id;
2229						}
2230					}
2231				} else {	/* `return' action */
2232					mtag->m_tag_id--;
2233					jmpto = stack[mtag->m_tag_id] + 1;
2234					f_pos = ipfw_find_rule(chain, jmpto, 0);
2235				}
2236
2237				/*
2238				 * Skip disabled rules, and re-enter
2239				 * the inner loop with the correct
2240				 * f_pos, f, l and cmd.
2241				 * Also clear cmdlen and skip_or
2242				 */
2243				for (; f_pos < chain->n_rules - 1 &&
2244				    (V_set_disable &
2245				    (1 << chain->map[f_pos]->set)); f_pos++)
2246					;
2247				/* Re-enter the inner loop at the dest rule. */
2248				f = chain->map[f_pos];
2249				l = f->cmd_len;
2250				cmd = f->cmd;
2251				cmdlen = 0;
2252				skip_or = 0;
2253				continue;
2254				break;	/* NOTREACHED */
2255			}
2256#undef IS_CALL
2257#undef IS_RETURN
2258
2259			case O_REJECT:
2260				/*
2261				 * Drop the packet and send a reject notice
2262				 * if the packet is not ICMP (or is an ICMP
2263				 * query), and it is not multicast/broadcast.
2264				 */
2265				if (hlen > 0 && is_ipv4 && offset == 0 &&
2266				    (proto != IPPROTO_ICMP ||
2267				     is_icmp_query(ICMP(ulp))) &&
2268				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2269				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
2270					send_reject(args, cmd->arg1, iplen, ip);
2271					m = args->m;
2272				}
2273				/* FALLTHROUGH */
2274#ifdef INET6
2275			case O_UNREACH6:
2276				if (hlen > 0 && is_ipv6 &&
2277				    ((offset & IP6F_OFF_MASK) == 0) &&
2278				    (proto != IPPROTO_ICMPV6 ||
2279				     (is_icmp6_query(icmp6_type) == 1)) &&
2280				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2281				    !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
2282					send_reject6(
2283					    args, cmd->arg1, hlen,
2284					    (struct ip6_hdr *)ip);
2285					m = args->m;
2286				}
2287				/* FALLTHROUGH */
2288#endif
2289			case O_DENY:
2290				retval = IP_FW_DENY;
2291				l = 0;		/* exit inner loop */
2292				done = 1;	/* exit outer loop */
2293				break;
2294
2295			case O_FORWARD_IP:
2296				if (args->eh)	/* not valid on layer2 pkts */
2297					break;
2298				if (q == NULL || q->rule != f ||
2299				    dyn_dir == MATCH_FORWARD) {
2300				    struct sockaddr_in *sa;
2301				    sa = &(((ipfw_insn_sa *)cmd)->sa);
2302				    if (sa->sin_addr.s_addr == INADDR_ANY) {
2303					bcopy(sa, &args->hopstore,
2304							sizeof(*sa));
2305					args->hopstore.sin_addr.s_addr =
2306						    htonl(tablearg);
2307					args->next_hop = &args->hopstore;
2308				    } else {
2309					args->next_hop = sa;
2310				    }
2311				}
2312				retval = IP_FW_PASS;
2313				l = 0;          /* exit inner loop */
2314				done = 1;       /* exit outer loop */
2315				break;
2316
2317#ifdef INET6
2318			case O_FORWARD_IP6:
2319				if (args->eh)	/* not valid on layer2 pkts */
2320					break;
2321				if (q == NULL || q->rule != f ||
2322				    dyn_dir == MATCH_FORWARD) {
2323					struct sockaddr_in6 *sin6;
2324
2325					sin6 = &(((ipfw_insn_sa6 *)cmd)->sa);
2326					args->next_hop6 = sin6;
2327				}
2328				retval = IP_FW_PASS;
2329				l = 0;		/* exit inner loop */
2330				done = 1;	/* exit outer loop */
2331				break;
2332#endif
2333
2334			case O_NETGRAPH:
2335			case O_NGTEE:
2336				set_match(args, f_pos, chain);
2337				args->rule.info = (cmd->arg1 == IP_FW_TABLEARG) ?
2338					tablearg : cmd->arg1;
2339				if (V_fw_one_pass)
2340					args->rule.info |= IPFW_ONEPASS;
2341				retval = (cmd->opcode == O_NETGRAPH) ?
2342				    IP_FW_NETGRAPH : IP_FW_NGTEE;
2343				l = 0;          /* exit inner loop */
2344				done = 1;       /* exit outer loop */
2345				break;
2346
2347			case O_SETFIB: {
2348				uint32_t fib;
2349
2350				f->pcnt++;	/* update stats */
2351				f->bcnt += pktlen;
2352				f->timestamp = time_uptime;
2353				fib = (cmd->arg1 == IP_FW_TABLEARG) ? tablearg:
2354				    cmd->arg1;
2355				if (fib >= rt_numfibs)
2356					fib = 0;
2357				M_SETFIB(m, fib);
2358				args->f_id.fib = fib;
2359				l = 0;		/* exit inner loop */
2360				break;
2361		        }
2362
2363			case O_NAT:
2364 				if (!IPFW_NAT_LOADED) {
2365				    retval = IP_FW_DENY;
2366				} else {
2367				    struct cfg_nat *t;
2368				    int nat_id;
2369
2370				    set_match(args, f_pos, chain);
2371				    /* Check if this is 'global' nat rule */
2372				    if (cmd->arg1 == 0) {
2373					    retval = ipfw_nat_ptr(args, NULL, m);
2374					    l = 0;
2375					    done = 1;
2376					    break;
2377				    }
2378				    t = ((ipfw_insn_nat *)cmd)->nat;
2379				    if (t == NULL) {
2380					nat_id = (cmd->arg1 == IP_FW_TABLEARG) ?
2381						tablearg : cmd->arg1;
2382					t = (*lookup_nat_ptr)(&chain->nat, nat_id);
2383
2384					if (t == NULL) {
2385					    retval = IP_FW_DENY;
2386					    l = 0;	/* exit inner loop */
2387					    done = 1;	/* exit outer loop */
2388					    break;
2389					}
2390					if (cmd->arg1 != IP_FW_TABLEARG)
2391					    ((ipfw_insn_nat *)cmd)->nat = t;
2392				    }
2393				    retval = ipfw_nat_ptr(args, t, m);
2394				}
2395				l = 0;          /* exit inner loop */
2396				done = 1;       /* exit outer loop */
2397				break;
2398
2399			case O_REASS: {
2400				int ip_off;
2401
2402				f->pcnt++;
2403				f->bcnt += pktlen;
2404				l = 0;	/* in any case exit inner loop */
2405				ip_off = ntohs(ip->ip_off);
2406
2407				/* if not fragmented, go to next rule */
2408				if ((ip_off & (IP_MF | IP_OFFMASK)) == 0)
2409				    break;
2410				/*
2411				 * ip_reass() expects len & off in host
2412				 * byte order.
2413				 */
2414				SET_HOST_IPLEN(ip);
2415
2416				args->m = m = ip_reass(m);
2417
2418				/*
2419				 * do IP header checksum fixup.
2420				 */
2421				if (m == NULL) { /* fragment got swallowed */
2422				    retval = IP_FW_DENY;
2423				} else { /* good, packet complete */
2424				    int hlen;
2425
2426				    ip = mtod(m, struct ip *);
2427				    hlen = ip->ip_hl << 2;
2428				    SET_NET_IPLEN(ip);
2429				    ip->ip_sum = 0;
2430				    if (hlen == sizeof(struct ip))
2431					ip->ip_sum = in_cksum_hdr(ip);
2432				    else
2433					ip->ip_sum = in_cksum(m, hlen);
2434				    retval = IP_FW_REASS;
2435				    set_match(args, f_pos, chain);
2436				}
2437				done = 1;	/* exit outer loop */
2438				break;
2439			}
2440
2441			default:
2442				panic("-- unknown opcode %d\n", cmd->opcode);
2443			} /* end of switch() on opcodes */
2444			/*
2445			 * if we get here with l=0, then match is irrelevant.
2446			 */
2447
2448			if (cmd->len & F_NOT)
2449				match = !match;
2450
2451			if (match) {
2452				if (cmd->len & F_OR)
2453					skip_or = 1;
2454			} else {
2455				if (!(cmd->len & F_OR)) /* not an OR block, */
2456					break;		/* try next rule    */
2457			}
2458
2459		}	/* end of inner loop, scan opcodes */
2460#undef PULLUP_LEN
2461
2462		if (done)
2463			break;
2464
2465/* next_rule:; */	/* try next rule		*/
2466
2467	}		/* end of outer for, scan rules */
2468
2469	if (done) {
2470		struct ip_fw *rule = chain->map[f_pos];
2471		/* Update statistics */
2472		rule->pcnt++;
2473		rule->bcnt += pktlen;
2474		rule->timestamp = time_uptime;
2475	} else {
2476		retval = IP_FW_DENY;
2477		printf("ipfw: ouch!, skip past end of rules, denying packet\n");
2478	}
2479	IPFW_RUNLOCK(chain);
2480#ifdef __FreeBSD__
2481	if (ucred_cache != NULL)
2482		crfree(ucred_cache);
2483#endif
2484	return (retval);
2485
2486pullup_failed:
2487	if (V_fw_verbose)
2488		printf("ipfw: pullup failed\n");
2489	return (IP_FW_DENY);
2490}
2491
2492/*
2493 * Set maximum number of tables that can be used in given VNET ipfw instance.
2494 */
2495#ifdef SYSCTL_NODE
2496static int
2497sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS)
2498{
2499	int error;
2500	unsigned int ntables;
2501
2502	ntables = V_fw_tables_max;
2503
2504	error = sysctl_handle_int(oidp, &ntables, 0, req);
2505	/* Read operation or some error */
2506	if ((error != 0) || (req->newptr == NULL))
2507		return (error);
2508
2509	return (ipfw_resize_tables(&V_layer3_chain, ntables));
2510}
2511#endif
2512/*
2513 * Module and VNET glue
2514 */
2515
2516/*
2517 * Stuff that must be initialised only on boot or module load
2518 */
2519static int
2520ipfw_init(void)
2521{
2522	int error = 0;
2523
2524	ipfw_dyn_attach();
2525	/*
2526 	 * Only print out this stuff the first time around,
2527	 * when called from the sysinit code.
2528	 */
2529	printf("ipfw2 "
2530#ifdef INET6
2531		"(+ipv6) "
2532#endif
2533		"initialized, divert %s, nat %s, "
2534		"rule-based forwarding "
2535#ifdef IPFIREWALL_FORWARD
2536		"enabled, "
2537#else
2538		"disabled, "
2539#endif
2540		"default to %s, logging ",
2541#ifdef IPDIVERT
2542		"enabled",
2543#else
2544		"loadable",
2545#endif
2546#ifdef IPFIREWALL_NAT
2547		"enabled",
2548#else
2549		"loadable",
2550#endif
2551		default_to_accept ? "accept" : "deny");
2552
2553	/*
2554	 * Note: V_xxx variables can be accessed here but the vnet specific
2555	 * initializer may not have been called yet for the VIMAGE case.
2556	 * Tuneables will have been processed. We will print out values for
2557	 * the default vnet.
2558	 * XXX This should all be rationalized AFTER 8.0
2559	 */
2560	if (V_fw_verbose == 0)
2561		printf("disabled\n");
2562	else if (V_verbose_limit == 0)
2563		printf("unlimited\n");
2564	else
2565		printf("limited to %d packets/entry by default\n",
2566		    V_verbose_limit);
2567
2568	/* Check user-supplied table count for validness */
2569	if (default_fw_tables > IPFW_TABLES_MAX)
2570	  default_fw_tables = IPFW_TABLES_MAX;
2571
2572	ipfw_log_bpf(1); /* init */
2573	return (error);
2574}
2575
2576/*
2577 * Called for the removal of the last instance only on module unload.
2578 */
2579static void
2580ipfw_destroy(void)
2581{
2582
2583	ipfw_log_bpf(0); /* uninit */
2584	ipfw_dyn_detach();
2585	printf("IP firewall unloaded\n");
2586}
2587
2588/*
2589 * Stuff that must be initialized for every instance
2590 * (including the first of course).
2591 */
2592static int
2593vnet_ipfw_init(const void *unused)
2594{
2595	int error;
2596	struct ip_fw *rule = NULL;
2597	struct ip_fw_chain *chain;
2598
2599	chain = &V_layer3_chain;
2600
2601	/* First set up some values that are compile time options */
2602	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
2603	V_fw_deny_unknown_exthdrs = 1;
2604#ifdef IPFIREWALL_VERBOSE
2605	V_fw_verbose = 1;
2606#endif
2607#ifdef IPFIREWALL_VERBOSE_LIMIT
2608	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
2609#endif
2610#ifdef IPFIREWALL_NAT
2611	LIST_INIT(&chain->nat);
2612#endif
2613
2614	/* insert the default rule and create the initial map */
2615	chain->n_rules = 1;
2616	chain->static_len = sizeof(struct ip_fw);
2617	chain->map = malloc(sizeof(struct ip_fw *), M_IPFW, M_WAITOK | M_ZERO);
2618	if (chain->map)
2619		rule = malloc(chain->static_len, M_IPFW, M_WAITOK | M_ZERO);
2620
2621	/* Set initial number of tables */
2622	V_fw_tables_max = default_fw_tables;
2623	error = ipfw_init_tables(chain);
2624	if (error) {
2625		printf("ipfw2: setting up tables failed\n");
2626		free(chain->map, M_IPFW);
2627		free(rule, M_IPFW);
2628		return (ENOSPC);
2629	}
2630
2631	/* fill and insert the default rule */
2632	rule->act_ofs = 0;
2633	rule->rulenum = IPFW_DEFAULT_RULE;
2634	rule->cmd_len = 1;
2635	rule->set = RESVD_SET;
2636	rule->cmd[0].len = 1;
2637	rule->cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
2638	chain->rules = chain->default_rule = chain->map[0] = rule;
2639	chain->id = rule->id = 1;
2640
2641	IPFW_LOCK_INIT(chain);
2642	ipfw_dyn_init();
2643
2644	/* First set up some values that are compile time options */
2645	V_ipfw_vnet_ready = 1;		/* Open for business */
2646
2647	/*
2648	 * Hook the sockopt handler, and the layer2 (V_ip_fw_chk_ptr)
2649	 * and pfil hooks for ipv4 and ipv6. Even if the latter two fail
2650	 * we still keep the module alive because the sockopt and
2651	 * layer2 paths are still useful.
2652	 * ipfw[6]_hook return 0 on success, ENOENT on failure,
2653	 * so we can ignore the exact return value and just set a flag.
2654	 *
2655	 * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so
2656	 * changes in the underlying (per-vnet) variables trigger
2657	 * immediate hook()/unhook() calls.
2658	 * In layer2 we have the same behaviour, except that V_ether_ipfw
2659	 * is checked on each packet because there are no pfil hooks.
2660	 */
2661	V_ip_fw_ctl_ptr = ipfw_ctl;
2662	V_ip_fw_chk_ptr = ipfw_chk;
2663	error = ipfw_attach_hooks(1);
2664	return (error);
2665}
2666
2667/*
2668 * Called for the removal of each instance.
2669 */
2670static int
2671vnet_ipfw_uninit(const void *unused)
2672{
2673	struct ip_fw *reap, *rule;
2674	struct ip_fw_chain *chain = &V_layer3_chain;
2675	int i;
2676
2677	V_ipfw_vnet_ready = 0; /* tell new callers to go away */
2678	/*
2679	 * disconnect from ipv4, ipv6, layer2 and sockopt.
2680	 * Then grab, release and grab again the WLOCK so we make
2681	 * sure the update is propagated and nobody will be in.
2682	 */
2683	(void)ipfw_attach_hooks(0 /* detach */);
2684	V_ip_fw_chk_ptr = NULL;
2685	V_ip_fw_ctl_ptr = NULL;
2686	IPFW_UH_WLOCK(chain);
2687	IPFW_UH_WUNLOCK(chain);
2688	IPFW_UH_WLOCK(chain);
2689
2690	IPFW_WLOCK(chain);
2691	ipfw_dyn_uninit(0);	/* run the callout_drain */
2692	IPFW_WUNLOCK(chain);
2693
2694	ipfw_destroy_tables(chain);
2695	reap = NULL;
2696	IPFW_WLOCK(chain);
2697	for (i = 0; i < chain->n_rules; i++) {
2698		rule = chain->map[i];
2699		rule->x_next = reap;
2700		reap = rule;
2701	}
2702	if (chain->map)
2703		free(chain->map, M_IPFW);
2704	IPFW_WUNLOCK(chain);
2705	IPFW_UH_WUNLOCK(chain);
2706	if (reap != NULL)
2707		ipfw_reap_rules(reap);
2708	IPFW_LOCK_DESTROY(chain);
2709	ipfw_dyn_uninit(1);	/* free the remaining parts */
2710	return 0;
2711}
2712
2713/*
2714 * Module event handler.
2715 * In general we have the choice of handling most of these events by the
2716 * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
2717 * use the SYSINIT handlers as they are more capable of expressing the
2718 * flow of control during module and vnet operations, so this is just
2719 * a skeleton. Note there is no SYSINIT equivalent of the module
2720 * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
2721 */
2722static int
2723ipfw_modevent(module_t mod, int type, void *unused)
2724{
2725	int err = 0;
2726
2727	switch (type) {
2728	case MOD_LOAD:
2729		/* Called once at module load or
2730	 	 * system boot if compiled in. */
2731		break;
2732	case MOD_QUIESCE:
2733		/* Called before unload. May veto unloading. */
2734		break;
2735	case MOD_UNLOAD:
2736		/* Called during unload. */
2737		break;
2738	case MOD_SHUTDOWN:
2739		/* Called during system shutdown. */
2740		break;
2741	default:
2742		err = EOPNOTSUPP;
2743		break;
2744	}
2745	return err;
2746}
2747
2748static moduledata_t ipfwmod = {
2749	"ipfw",
2750	ipfw_modevent,
2751	0
2752};
2753
2754/* Define startup order. */
2755#define	IPFW_SI_SUB_FIREWALL	SI_SUB_PROTO_IFATTACHDOMAIN
2756#define	IPFW_MODEVENT_ORDER	(SI_ORDER_ANY - 255) /* On boot slot in here. */
2757#define	IPFW_MODULE_ORDER	(IPFW_MODEVENT_ORDER + 1) /* A little later. */
2758#define	IPFW_VNET_ORDER		(IPFW_MODEVENT_ORDER + 2) /* Later still. */
2759
2760DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
2761MODULE_VERSION(ipfw, 2);
2762/* should declare some dependencies here */
2763
2764/*
2765 * Starting up. Done in order after ipfwmod() has been called.
2766 * VNET_SYSINIT is also called for each existing vnet and each new vnet.
2767 */
2768SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2769	    ipfw_init, NULL);
2770VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2771	    vnet_ipfw_init, NULL);
2772
2773/*
2774 * Closing up shop. These are done in REVERSE ORDER, but still
2775 * after ipfwmod() has been called. Not called on reboot.
2776 * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
2777 * or when the module is unloaded.
2778 */
2779SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2780	    ipfw_destroy, NULL);
2781VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2782	    vnet_ipfw_uninit, NULL);
2783/* end of file */
2784