ip_fw2.c revision 234278
1/*-
2 * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: stable/9/sys/netinet/ipfw/ip_fw2.c 234278 2012-04-14 10:20:34Z glebius $");
28
29/*
30 * The FreeBSD IP packet firewall, main file
31 */
32
33#include "opt_ipfw.h"
34#include "opt_ipdivert.h"
35#include "opt_inet.h"
36#ifndef INET
37#error IPFIREWALL requires INET.
38#endif /* INET */
39#include "opt_inet6.h"
40#include "opt_ipsec.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/condvar.h>
45#include <sys/eventhandler.h>
46#include <sys/malloc.h>
47#include <sys/mbuf.h>
48#include <sys/kernel.h>
49#include <sys/lock.h>
50#include <sys/jail.h>
51#include <sys/module.h>
52#include <sys/priv.h>
53#include <sys/proc.h>
54#include <sys/rwlock.h>
55#include <sys/socket.h>
56#include <sys/socketvar.h>
57#include <sys/sysctl.h>
58#include <sys/syslog.h>
59#include <sys/ucred.h>
60#include <net/ethernet.h> /* for ETHERTYPE_IP */
61#include <net/if.h>
62#include <net/route.h>
63#include <net/pf_mtag.h>
64#include <net/vnet.h>
65
66#include <netinet/in.h>
67#include <netinet/in_var.h>
68#include <netinet/in_pcb.h>
69#include <netinet/ip.h>
70#include <netinet/ip_var.h>
71#include <netinet/ip_icmp.h>
72#include <netinet/ip_fw.h>
73#include <netinet/ipfw/ip_fw_private.h>
74#include <netinet/ip_carp.h>
75#include <netinet/pim.h>
76#include <netinet/tcp_var.h>
77#include <netinet/udp.h>
78#include <netinet/udp_var.h>
79#include <netinet/sctp.h>
80
81#include <netinet/ip6.h>
82#include <netinet/icmp6.h>
83#ifdef INET6
84#include <netinet6/in6_pcb.h>
85#include <netinet6/scope6_var.h>
86#include <netinet6/ip6_var.h>
87#endif
88
89#include <machine/in_cksum.h>	/* XXX for in_cksum */
90
91#ifdef MAC
92#include <security/mac/mac_framework.h>
93#endif
94
95/*
96 * static variables followed by global ones.
97 * All ipfw global variables are here.
98 */
99
100/* ipfw_vnet_ready controls when we are open for business */
101static VNET_DEFINE(int, ipfw_vnet_ready) = 0;
102#define	V_ipfw_vnet_ready	VNET(ipfw_vnet_ready)
103
104static VNET_DEFINE(int, fw_deny_unknown_exthdrs);
105#define	V_fw_deny_unknown_exthdrs	VNET(fw_deny_unknown_exthdrs)
106
107static VNET_DEFINE(int, fw_permit_single_frag6) = 1;
108#define	V_fw_permit_single_frag6	VNET(fw_permit_single_frag6)
109
110#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
111static int default_to_accept = 1;
112#else
113static int default_to_accept;
114#endif
115
116VNET_DEFINE(int, autoinc_step);
117VNET_DEFINE(int, fw_one_pass) = 1;
118
119/*
120 * Each rule belongs to one of 32 different sets (0..31).
121 * The variable set_disable contains one bit per set.
122 * If the bit is set, all rules in the corresponding set
123 * are disabled. Set RESVD_SET(31) is reserved for the default rule
124 * and rules that are not deleted by the flush command,
125 * and CANNOT be disabled.
126 * Rules in set RESVD_SET can only be deleted individually.
127 */
128VNET_DEFINE(u_int32_t, set_disable);
129#define	V_set_disable			VNET(set_disable)
130
131VNET_DEFINE(int, fw_verbose);
132/* counter for ipfw_log(NULL...) */
133VNET_DEFINE(u_int64_t, norule_counter);
134VNET_DEFINE(int, verbose_limit);
135
136/* layer3_chain contains the list of rules for layer 3 */
137VNET_DEFINE(struct ip_fw_chain, layer3_chain);
138
139ipfw_nat_t *ipfw_nat_ptr = NULL;
140struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
141ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
142ipfw_nat_cfg_t *ipfw_nat_del_ptr;
143ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
144ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
145
146#ifdef SYSCTL_NODE
147uint32_t dummy_def = IPFW_DEFAULT_RULE;
148uint32_t dummy_tables_max = IPFW_TABLES_MAX;
149
150SYSBEGIN(f3)
151
152SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
153SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
154    CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
155    "Only do a single pass through ipfw when using dummynet(4)");
156SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
157    CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
158    "Rule number auto-increment step");
159SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose,
160    CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
161    "Log matches to ipfw rules");
162SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
163    CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
164    "Set upper limit of matches of ipfw rules logged");
165SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
166    &dummy_def, 0,
167    "The default/max possible rule number.");
168SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, tables_max, CTLFLAG_RD,
169    &dummy_tables_max, 0,
170    "The maximum number of tables.");
171SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
172    &default_to_accept, 0,
173    "Make the default rule accept all packets.");
174TUNABLE_INT("net.inet.ip.fw.default_to_accept", &default_to_accept);
175SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, static_count,
176    CTLFLAG_RD, &VNET_NAME(layer3_chain.n_rules), 0,
177    "Number of static rules");
178
179#ifdef INET6
180SYSCTL_DECL(_net_inet6_ip6);
181SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
182SYSCTL_VNET_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
183    CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(fw_deny_unknown_exthdrs), 0,
184    "Deny packets with unknown IPv6 Extension Headers");
185SYSCTL_VNET_INT(_net_inet6_ip6_fw, OID_AUTO, permit_single_frag6,
186    CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(fw_permit_single_frag6), 0,
187    "Permit single packet IPv6 fragments");
188#endif /* INET6 */
189
190SYSEND
191
192#endif /* SYSCTL_NODE */
193
194
195/*
196 * Some macros used in the various matching options.
197 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
198 * Other macros just cast void * into the appropriate type
199 */
200#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
201#define	TCP(p)		((struct tcphdr *)(p))
202#define	SCTP(p)		((struct sctphdr *)(p))
203#define	UDP(p)		((struct udphdr *)(p))
204#define	ICMP(p)		((struct icmphdr *)(p))
205#define	ICMP6(p)	((struct icmp6_hdr *)(p))
206
207static __inline int
208icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
209{
210	int type = icmp->icmp_type;
211
212	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
213}
214
215#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
216    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
217
218static int
219is_icmp_query(struct icmphdr *icmp)
220{
221	int type = icmp->icmp_type;
222
223	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
224}
225#undef TT
226
227/*
228 * The following checks use two arrays of 8 or 16 bits to store the
229 * bits that we want set or clear, respectively. They are in the
230 * low and high half of cmd->arg1 or cmd->d[0].
231 *
232 * We scan options and store the bits we find set. We succeed if
233 *
234 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
235 *
236 * The code is sometimes optimized not to store additional variables.
237 */
238
239static int
240flags_match(ipfw_insn *cmd, u_int8_t bits)
241{
242	u_char want_clear;
243	bits = ~bits;
244
245	if ( ((cmd->arg1 & 0xff) & bits) != 0)
246		return 0; /* some bits we want set were clear */
247	want_clear = (cmd->arg1 >> 8) & 0xff;
248	if ( (want_clear & bits) != want_clear)
249		return 0; /* some bits we want clear were set */
250	return 1;
251}
252
253static int
254ipopts_match(struct ip *ip, ipfw_insn *cmd)
255{
256	int optlen, bits = 0;
257	u_char *cp = (u_char *)(ip + 1);
258	int x = (ip->ip_hl << 2) - sizeof (struct ip);
259
260	for (; x > 0; x -= optlen, cp += optlen) {
261		int opt = cp[IPOPT_OPTVAL];
262
263		if (opt == IPOPT_EOL)
264			break;
265		if (opt == IPOPT_NOP)
266			optlen = 1;
267		else {
268			optlen = cp[IPOPT_OLEN];
269			if (optlen <= 0 || optlen > x)
270				return 0; /* invalid or truncated */
271		}
272		switch (opt) {
273
274		default:
275			break;
276
277		case IPOPT_LSRR:
278			bits |= IP_FW_IPOPT_LSRR;
279			break;
280
281		case IPOPT_SSRR:
282			bits |= IP_FW_IPOPT_SSRR;
283			break;
284
285		case IPOPT_RR:
286			bits |= IP_FW_IPOPT_RR;
287			break;
288
289		case IPOPT_TS:
290			bits |= IP_FW_IPOPT_TS;
291			break;
292		}
293	}
294	return (flags_match(cmd, bits));
295}
296
297static int
298tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
299{
300	int optlen, bits = 0;
301	u_char *cp = (u_char *)(tcp + 1);
302	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
303
304	for (; x > 0; x -= optlen, cp += optlen) {
305		int opt = cp[0];
306		if (opt == TCPOPT_EOL)
307			break;
308		if (opt == TCPOPT_NOP)
309			optlen = 1;
310		else {
311			optlen = cp[1];
312			if (optlen <= 0)
313				break;
314		}
315
316		switch (opt) {
317
318		default:
319			break;
320
321		case TCPOPT_MAXSEG:
322			bits |= IP_FW_TCPOPT_MSS;
323			break;
324
325		case TCPOPT_WINDOW:
326			bits |= IP_FW_TCPOPT_WINDOW;
327			break;
328
329		case TCPOPT_SACK_PERMITTED:
330		case TCPOPT_SACK:
331			bits |= IP_FW_TCPOPT_SACK;
332			break;
333
334		case TCPOPT_TIMESTAMP:
335			bits |= IP_FW_TCPOPT_TS;
336			break;
337
338		}
339	}
340	return (flags_match(cmd, bits));
341}
342
343static int
344iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
345{
346	if (ifp == NULL)	/* no iface with this packet, match fails */
347		return 0;
348	/* Check by name or by IP address */
349	if (cmd->name[0] != '\0') { /* match by name */
350		/* Check name */
351		if (cmd->p.glob) {
352			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
353				return(1);
354		} else {
355			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
356				return(1);
357		}
358	} else {
359#ifdef __FreeBSD__	/* and OSX too ? */
360		struct ifaddr *ia;
361
362		if_addr_rlock(ifp);
363		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
364			if (ia->ifa_addr->sa_family != AF_INET)
365				continue;
366			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
367			    (ia->ifa_addr))->sin_addr.s_addr) {
368				if_addr_runlock(ifp);
369				return(1);	/* match */
370			}
371		}
372		if_addr_runlock(ifp);
373#endif /* __FreeBSD__ */
374	}
375	return(0);	/* no match, fail ... */
376}
377
378/*
379 * The verify_path function checks if a route to the src exists and
380 * if it is reachable via ifp (when provided).
381 *
382 * The 'verrevpath' option checks that the interface that an IP packet
383 * arrives on is the same interface that traffic destined for the
384 * packet's source address would be routed out of.
385 * The 'versrcreach' option just checks that the source address is
386 * reachable via any route (except default) in the routing table.
387 * These two are a measure to block forged packets. This is also
388 * commonly known as "anti-spoofing" or Unicast Reverse Path
389 * Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
390 * is purposely reminiscent of the Cisco IOS command,
391 *
392 *   ip verify unicast reverse-path
393 *   ip verify unicast source reachable-via any
394 *
395 * which implements the same functionality. But note that the syntax
396 * is misleading, and the check may be performed on all IP packets
397 * whether unicast, multicast, or broadcast.
398 */
399static int
400verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
401{
402#ifndef __FreeBSD__
403	return 0;
404#else
405	struct route ro;
406	struct sockaddr_in *dst;
407
408	bzero(&ro, sizeof(ro));
409
410	dst = (struct sockaddr_in *)&(ro.ro_dst);
411	dst->sin_family = AF_INET;
412	dst->sin_len = sizeof(*dst);
413	dst->sin_addr = src;
414	in_rtalloc_ign(&ro, 0, fib);
415
416	if (ro.ro_rt == NULL)
417		return 0;
418
419	/*
420	 * If ifp is provided, check for equality with rtentry.
421	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
422	 * in order to pass packets injected back by if_simloop():
423	 * if useloopback == 1 routing entry (via lo0) for our own address
424	 * may exist, so we need to handle routing assymetry.
425	 */
426	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
427		RTFREE(ro.ro_rt);
428		return 0;
429	}
430
431	/* if no ifp provided, check if rtentry is not default route */
432	if (ifp == NULL &&
433	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
434		RTFREE(ro.ro_rt);
435		return 0;
436	}
437
438	/* or if this is a blackhole/reject route */
439	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
440		RTFREE(ro.ro_rt);
441		return 0;
442	}
443
444	/* found valid route */
445	RTFREE(ro.ro_rt);
446	return 1;
447#endif /* __FreeBSD__ */
448}
449
450#ifdef INET6
451/*
452 * ipv6 specific rules here...
453 */
454static __inline int
455icmp6type_match (int type, ipfw_insn_u32 *cmd)
456{
457	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
458}
459
460static int
461flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
462{
463	int i;
464	for (i=0; i <= cmd->o.arg1; ++i )
465		if (curr_flow == cmd->d[i] )
466			return 1;
467	return 0;
468}
469
470/* support for IP6_*_ME opcodes */
471static int
472search_ip6_addr_net (struct in6_addr * ip6_addr)
473{
474	struct ifnet *mdc;
475	struct ifaddr *mdc2;
476	struct in6_ifaddr *fdm;
477	struct in6_addr copia;
478
479	TAILQ_FOREACH(mdc, &V_ifnet, if_link) {
480		if_addr_rlock(mdc);
481		TAILQ_FOREACH(mdc2, &mdc->if_addrhead, ifa_link) {
482			if (mdc2->ifa_addr->sa_family == AF_INET6) {
483				fdm = (struct in6_ifaddr *)mdc2;
484				copia = fdm->ia_addr.sin6_addr;
485				/* need for leaving scope_id in the sock_addr */
486				in6_clearscope(&copia);
487				if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia)) {
488					if_addr_runlock(mdc);
489					return 1;
490				}
491			}
492		}
493		if_addr_runlock(mdc);
494	}
495	return 0;
496}
497
498static int
499verify_path6(struct in6_addr *src, struct ifnet *ifp, u_int fib)
500{
501	struct route_in6 ro;
502	struct sockaddr_in6 *dst;
503
504	bzero(&ro, sizeof(ro));
505
506	dst = (struct sockaddr_in6 * )&(ro.ro_dst);
507	dst->sin6_family = AF_INET6;
508	dst->sin6_len = sizeof(*dst);
509	dst->sin6_addr = *src;
510
511	in6_rtalloc_ign(&ro, 0, fib);
512	if (ro.ro_rt == NULL)
513		return 0;
514
515	/*
516	 * if ifp is provided, check for equality with rtentry
517	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
518	 * to support the case of sending packets to an address of our own.
519	 * (where the former interface is the first argument of if_simloop()
520	 *  (=ifp), the latter is lo0)
521	 */
522	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
523		RTFREE(ro.ro_rt);
524		return 0;
525	}
526
527	/* if no ifp provided, check if rtentry is not default route */
528	if (ifp == NULL &&
529	    IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
530		RTFREE(ro.ro_rt);
531		return 0;
532	}
533
534	/* or if this is a blackhole/reject route */
535	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
536		RTFREE(ro.ro_rt);
537		return 0;
538	}
539
540	/* found valid route */
541	RTFREE(ro.ro_rt);
542	return 1;
543
544}
545
546static int
547is_icmp6_query(int icmp6_type)
548{
549	if ((icmp6_type <= ICMP6_MAXTYPE) &&
550	    (icmp6_type == ICMP6_ECHO_REQUEST ||
551	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
552	    icmp6_type == ICMP6_WRUREQUEST ||
553	    icmp6_type == ICMP6_FQDN_QUERY ||
554	    icmp6_type == ICMP6_NI_QUERY))
555		return (1);
556
557	return (0);
558}
559
560static void
561send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
562{
563	struct mbuf *m;
564
565	m = args->m;
566	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
567		struct tcphdr *tcp;
568		tcp = (struct tcphdr *)((char *)ip6 + hlen);
569
570		if ((tcp->th_flags & TH_RST) == 0) {
571			struct mbuf *m0;
572			m0 = ipfw_send_pkt(args->m, &(args->f_id),
573			    ntohl(tcp->th_seq), ntohl(tcp->th_ack),
574			    tcp->th_flags | TH_RST);
575			if (m0 != NULL)
576				ip6_output(m0, NULL, NULL, 0, NULL, NULL,
577				    NULL);
578		}
579		FREE_PKT(m);
580	} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
581#if 0
582		/*
583		 * Unlike above, the mbufs need to line up with the ip6 hdr,
584		 * as the contents are read. We need to m_adj() the
585		 * needed amount.
586		 * The mbuf will however be thrown away so we can adjust it.
587		 * Remember we did an m_pullup on it already so we
588		 * can make some assumptions about contiguousness.
589		 */
590		if (args->L3offset)
591			m_adj(m, args->L3offset);
592#endif
593		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
594	} else
595		FREE_PKT(m);
596
597	args->m = NULL;
598}
599
600#endif /* INET6 */
601
602
603/*
604 * sends a reject message, consuming the mbuf passed as an argument.
605 */
606static void
607send_reject(struct ip_fw_args *args, int code, int iplen, struct ip *ip)
608{
609
610#if 0
611	/* XXX When ip is not guaranteed to be at mtod() we will
612	 * need to account for this */
613	 * The mbuf will however be thrown away so we can adjust it.
614	 * Remember we did an m_pullup on it already so we
615	 * can make some assumptions about contiguousness.
616	 */
617	if (args->L3offset)
618		m_adj(m, args->L3offset);
619#endif
620	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
621		/* We need the IP header in host order for icmp_error(). */
622		SET_HOST_IPLEN(ip);
623		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
624	} else if (args->f_id.proto == IPPROTO_TCP) {
625		struct tcphdr *const tcp =
626		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
627		if ( (tcp->th_flags & TH_RST) == 0) {
628			struct mbuf *m;
629			m = ipfw_send_pkt(args->m, &(args->f_id),
630				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
631				tcp->th_flags | TH_RST);
632			if (m != NULL)
633				ip_output(m, NULL, NULL, 0, NULL, NULL);
634		}
635		FREE_PKT(args->m);
636	} else
637		FREE_PKT(args->m);
638	args->m = NULL;
639}
640
641/*
642 * Support for uid/gid/jail lookup. These tests are expensive
643 * (because we may need to look into the list of active sockets)
644 * so we cache the results. ugid_lookupp is 0 if we have not
645 * yet done a lookup, 1 if we succeeded, and -1 if we tried
646 * and failed. The function always returns the match value.
647 * We could actually spare the variable and use *uc, setting
648 * it to '(void *)check_uidgid if we have no info, NULL if
649 * we tried and failed, or any other value if successful.
650 */
651static int
652check_uidgid(ipfw_insn_u32 *insn, struct ip_fw_args *args, int *ugid_lookupp,
653    struct ucred **uc)
654{
655#ifndef __FreeBSD__
656	/* XXX */
657	return cred_check(insn, proto, oif,
658	    dst_ip, dst_port, src_ip, src_port,
659	    (struct bsd_ucred *)uc, ugid_lookupp, ((struct mbuf *)inp)->m_skb);
660#else  /* FreeBSD */
661	struct in_addr src_ip, dst_ip;
662	struct inpcbinfo *pi;
663	struct ipfw_flow_id *id;
664	struct inpcb *pcb, *inp;
665	struct ifnet *oif;
666	int lookupflags;
667	int match;
668
669	id = &args->f_id;
670	inp = args->inp;
671	oif = args->oif;
672
673	/*
674	 * Check to see if the UDP or TCP stack supplied us with
675	 * the PCB. If so, rather then holding a lock and looking
676	 * up the PCB, we can use the one that was supplied.
677	 */
678	if (inp && *ugid_lookupp == 0) {
679		INP_LOCK_ASSERT(inp);
680		if (inp->inp_socket != NULL) {
681			*uc = crhold(inp->inp_cred);
682			*ugid_lookupp = 1;
683		} else
684			*ugid_lookupp = -1;
685	}
686	/*
687	 * If we have already been here and the packet has no
688	 * PCB entry associated with it, then we can safely
689	 * assume that this is a no match.
690	 */
691	if (*ugid_lookupp == -1)
692		return (0);
693	if (id->proto == IPPROTO_TCP) {
694		lookupflags = 0;
695		pi = &V_tcbinfo;
696	} else if (id->proto == IPPROTO_UDP) {
697		lookupflags = INPLOOKUP_WILDCARD;
698		pi = &V_udbinfo;
699	} else
700		return 0;
701	lookupflags |= INPLOOKUP_RLOCKPCB;
702	match = 0;
703	if (*ugid_lookupp == 0) {
704		if (id->addr_type == 6) {
705#ifdef INET6
706			if (oif == NULL)
707				pcb = in6_pcblookup_mbuf(pi,
708				    &id->src_ip6, htons(id->src_port),
709				    &id->dst_ip6, htons(id->dst_port),
710				    lookupflags, oif, args->m);
711			else
712				pcb = in6_pcblookup_mbuf(pi,
713				    &id->dst_ip6, htons(id->dst_port),
714				    &id->src_ip6, htons(id->src_port),
715				    lookupflags, oif, args->m);
716#else
717			*ugid_lookupp = -1;
718			return (0);
719#endif
720		} else {
721			src_ip.s_addr = htonl(id->src_ip);
722			dst_ip.s_addr = htonl(id->dst_ip);
723			if (oif == NULL)
724				pcb = in_pcblookup_mbuf(pi,
725				    src_ip, htons(id->src_port),
726				    dst_ip, htons(id->dst_port),
727				    lookupflags, oif, args->m);
728			else
729				pcb = in_pcblookup_mbuf(pi,
730				    dst_ip, htons(id->dst_port),
731				    src_ip, htons(id->src_port),
732				    lookupflags, oif, args->m);
733		}
734		if (pcb != NULL) {
735			INP_RLOCK_ASSERT(pcb);
736			*uc = crhold(pcb->inp_cred);
737			*ugid_lookupp = 1;
738			INP_RUNLOCK(pcb);
739		}
740		if (*ugid_lookupp == 0) {
741			/*
742			 * We tried and failed, set the variable to -1
743			 * so we will not try again on this packet.
744			 */
745			*ugid_lookupp = -1;
746			return (0);
747		}
748	}
749	if (insn->o.opcode == O_UID)
750		match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
751	else if (insn->o.opcode == O_GID)
752		match = groupmember((gid_t)insn->d[0], *uc);
753	else if (insn->o.opcode == O_JAIL)
754		match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
755	return (match);
756#endif /* __FreeBSD__ */
757}
758
759/*
760 * Helper function to set args with info on the rule after the matching
761 * one. slot is precise, whereas we guess rule_id as they are
762 * assigned sequentially.
763 */
764static inline void
765set_match(struct ip_fw_args *args, int slot,
766	struct ip_fw_chain *chain)
767{
768	args->rule.chain_id = chain->id;
769	args->rule.slot = slot + 1; /* we use 0 as a marker */
770	args->rule.rule_id = 1 + chain->map[slot]->id;
771	args->rule.rulenum = chain->map[slot]->rulenum;
772}
773
774/*
775 * The main check routine for the firewall.
776 *
777 * All arguments are in args so we can modify them and return them
778 * back to the caller.
779 *
780 * Parameters:
781 *
782 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
783 *		Starts with the IP header.
784 *	args->eh (in)	Mac header if present, NULL for layer3 packet.
785 *	args->L3offset	Number of bytes bypassed if we came from L2.
786 *			e.g. often sizeof(eh)  ** NOTYET **
787 *	args->oif	Outgoing interface, NULL if packet is incoming.
788 *		The incoming interface is in the mbuf. (in)
789 *	args->divert_rule (in/out)
790 *		Skip up to the first rule past this rule number;
791 *		upon return, non-zero port number for divert or tee.
792 *
793 *	args->rule	Pointer to the last matching rule (in/out)
794 *	args->next_hop	Socket we are forwarding to (out).
795 *	args->next_hop6	IPv6 next hop we are forwarding to (out).
796 *	args->f_id	Addresses grabbed from the packet (out)
797 * 	args->rule.info	a cookie depending on rule action
798 *
799 * Return value:
800 *
801 *	IP_FW_PASS	the packet must be accepted
802 *	IP_FW_DENY	the packet must be dropped
803 *	IP_FW_DIVERT	divert packet, port in m_tag
804 *	IP_FW_TEE	tee packet, port in m_tag
805 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
806 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
807 *		args->rule contains the matching rule,
808 *		args->rule.info has additional information.
809 *
810 */
811int
812ipfw_chk(struct ip_fw_args *args)
813{
814
815	/*
816	 * Local variables holding state while processing a packet:
817	 *
818	 * IMPORTANT NOTE: to speed up the processing of rules, there
819	 * are some assumption on the values of the variables, which
820	 * are documented here. Should you change them, please check
821	 * the implementation of the various instructions to make sure
822	 * that they still work.
823	 *
824	 * args->eh	The MAC header. It is non-null for a layer2
825	 *	packet, it is NULL for a layer-3 packet.
826	 * **notyet**
827	 * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
828	 *
829	 * m | args->m	Pointer to the mbuf, as received from the caller.
830	 *	It may change if ipfw_chk() does an m_pullup, or if it
831	 *	consumes the packet because it calls send_reject().
832	 *	XXX This has to change, so that ipfw_chk() never modifies
833	 *	or consumes the buffer.
834	 * ip	is the beginning of the ip(4 or 6) header.
835	 *	Calculated by adding the L3offset to the start of data.
836	 *	(Until we start using L3offset, the packet is
837	 *	supposed to start with the ip header).
838	 */
839	struct mbuf *m = args->m;
840	struct ip *ip = mtod(m, struct ip *);
841
842	/*
843	 * For rules which contain uid/gid or jail constraints, cache
844	 * a copy of the users credentials after the pcb lookup has been
845	 * executed. This will speed up the processing of rules with
846	 * these types of constraints, as well as decrease contention
847	 * on pcb related locks.
848	 */
849#ifndef __FreeBSD__
850	struct bsd_ucred ucred_cache;
851#else
852	struct ucred *ucred_cache = NULL;
853#endif
854	int ucred_lookup = 0;
855
856	/*
857	 * oif | args->oif	If NULL, ipfw_chk has been called on the
858	 *	inbound path (ether_input, ip_input).
859	 *	If non-NULL, ipfw_chk has been called on the outbound path
860	 *	(ether_output, ip_output).
861	 */
862	struct ifnet *oif = args->oif;
863
864	int f_pos = 0;		/* index of current rule in the array */
865	int retval = 0;
866
867	/*
868	 * hlen	The length of the IP header.
869	 */
870	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
871
872	/*
873	 * offset	The offset of a fragment. offset != 0 means that
874	 *	we have a fragment at this offset of an IPv4 packet.
875	 *	offset == 0 means that (if this is an IPv4 packet)
876	 *	this is the first or only fragment.
877	 *	For IPv6 offset|ip6f_mf == 0 means there is no Fragment Header
878	 *	or there is a single packet fragement (fragement header added
879	 *	without needed).  We will treat a single packet fragment as if
880	 *	there was no fragment header (or log/block depending on the
881	 *	V_fw_permit_single_frag6 sysctl setting).
882	 */
883	u_short offset = 0;
884	u_short ip6f_mf = 0;
885
886	/*
887	 * Local copies of addresses. They are only valid if we have
888	 * an IP packet.
889	 *
890	 * proto	The protocol. Set to 0 for non-ip packets,
891	 *	or to the protocol read from the packet otherwise.
892	 *	proto != 0 means that we have an IPv4 packet.
893	 *
894	 * src_port, dst_port	port numbers, in HOST format. Only
895	 *	valid for TCP and UDP packets.
896	 *
897	 * src_ip, dst_ip	ip addresses, in NETWORK format.
898	 *	Only valid for IPv4 packets.
899	 */
900	uint8_t proto;
901	uint16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
902	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
903	uint16_t iplen=0;
904	int pktlen;
905	uint16_t	etype = 0;	/* Host order stored ether type */
906
907	/*
908	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
909	 * 	MATCH_NONE when checked and not matched (q = NULL),
910	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
911	 */
912	int dyn_dir = MATCH_UNKNOWN;
913	ipfw_dyn_rule *q = NULL;
914	struct ip_fw_chain *chain = &V_layer3_chain;
915
916	/*
917	 * We store in ulp a pointer to the upper layer protocol header.
918	 * In the ipv4 case this is easy to determine from the header,
919	 * but for ipv6 we might have some additional headers in the middle.
920	 * ulp is NULL if not found.
921	 */
922	void *ulp = NULL;		/* upper layer protocol pointer. */
923
924	/* XXX ipv6 variables */
925	int is_ipv6 = 0;
926	uint8_t	icmp6_type = 0;
927	uint16_t ext_hd = 0;	/* bits vector for extension header filtering */
928	/* end of ipv6 variables */
929
930	int is_ipv4 = 0;
931
932	int done = 0;		/* flag to exit the outer loop */
933
934	if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
935		return (IP_FW_PASS);	/* accept */
936
937	dst_ip.s_addr = 0;		/* make sure it is initialized */
938	src_ip.s_addr = 0;		/* make sure it is initialized */
939	pktlen = m->m_pkthdr.len;
940	args->f_id.fib = M_GETFIB(m); /* note mbuf not altered) */
941	proto = args->f_id.proto = 0;	/* mark f_id invalid */
942		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
943
944/*
945 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
946 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
947 * pointer might become stale after other pullups (but we never use it
948 * this way).
949 */
950#define PULLUP_TO(_len, p, T)	PULLUP_LEN(_len, p, sizeof(T))
951#define PULLUP_LEN(_len, p, T)					\
952do {								\
953	int x = (_len) + T;					\
954	if ((m)->m_len < x) {					\
955		args->m = m = m_pullup(m, x);			\
956		if (m == NULL)					\
957			goto pullup_failed;			\
958	}							\
959	p = (mtod(m, char *) + (_len));				\
960} while (0)
961
962	/*
963	 * if we have an ether header,
964	 */
965	if (args->eh)
966		etype = ntohs(args->eh->ether_type);
967
968	/* Identify IP packets and fill up variables. */
969	if (pktlen >= sizeof(struct ip6_hdr) &&
970	    (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
971		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
972		is_ipv6 = 1;
973		args->f_id.addr_type = 6;
974		hlen = sizeof(struct ip6_hdr);
975		proto = ip6->ip6_nxt;
976
977		/* Search extension headers to find upper layer protocols */
978		while (ulp == NULL && offset == 0) {
979			switch (proto) {
980			case IPPROTO_ICMPV6:
981				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
982				icmp6_type = ICMP6(ulp)->icmp6_type;
983				break;
984
985			case IPPROTO_TCP:
986				PULLUP_TO(hlen, ulp, struct tcphdr);
987				dst_port = TCP(ulp)->th_dport;
988				src_port = TCP(ulp)->th_sport;
989				/* save flags for dynamic rules */
990				args->f_id._flags = TCP(ulp)->th_flags;
991				break;
992
993			case IPPROTO_SCTP:
994				PULLUP_TO(hlen, ulp, struct sctphdr);
995				src_port = SCTP(ulp)->src_port;
996				dst_port = SCTP(ulp)->dest_port;
997				break;
998
999			case IPPROTO_UDP:
1000				PULLUP_TO(hlen, ulp, struct udphdr);
1001				dst_port = UDP(ulp)->uh_dport;
1002				src_port = UDP(ulp)->uh_sport;
1003				break;
1004
1005			case IPPROTO_HOPOPTS:	/* RFC 2460 */
1006				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1007				ext_hd |= EXT_HOPOPTS;
1008				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1009				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1010				ulp = NULL;
1011				break;
1012
1013			case IPPROTO_ROUTING:	/* RFC 2460 */
1014				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
1015				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
1016				case 0:
1017					ext_hd |= EXT_RTHDR0;
1018					break;
1019				case 2:
1020					ext_hd |= EXT_RTHDR2;
1021					break;
1022				default:
1023					if (V_fw_verbose)
1024						printf("IPFW2: IPV6 - Unknown "
1025						    "Routing Header type(%d)\n",
1026						    ((struct ip6_rthdr *)
1027						    ulp)->ip6r_type);
1028					if (V_fw_deny_unknown_exthdrs)
1029					    return (IP_FW_DENY);
1030					break;
1031				}
1032				ext_hd |= EXT_ROUTING;
1033				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
1034				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
1035				ulp = NULL;
1036				break;
1037
1038			case IPPROTO_FRAGMENT:	/* RFC 2460 */
1039				PULLUP_TO(hlen, ulp, struct ip6_frag);
1040				ext_hd |= EXT_FRAGMENT;
1041				hlen += sizeof (struct ip6_frag);
1042				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
1043				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
1044					IP6F_OFF_MASK;
1045				ip6f_mf = ((struct ip6_frag *)ulp)->ip6f_offlg &
1046					IP6F_MORE_FRAG;
1047				if (V_fw_permit_single_frag6 == 0 &&
1048				    offset == 0 && ip6f_mf == 0) {
1049					if (V_fw_verbose)
1050						printf("IPFW2: IPV6 - Invalid "
1051						    "Fragment Header\n");
1052					if (V_fw_deny_unknown_exthdrs)
1053					    return (IP_FW_DENY);
1054					break;
1055				}
1056				args->f_id.extra =
1057				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
1058				ulp = NULL;
1059				break;
1060
1061			case IPPROTO_DSTOPTS:	/* RFC 2460 */
1062				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1063				ext_hd |= EXT_DSTOPTS;
1064				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1065				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1066				ulp = NULL;
1067				break;
1068
1069			case IPPROTO_AH:	/* RFC 2402 */
1070				PULLUP_TO(hlen, ulp, struct ip6_ext);
1071				ext_hd |= EXT_AH;
1072				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
1073				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
1074				ulp = NULL;
1075				break;
1076
1077			case IPPROTO_ESP:	/* RFC 2406 */
1078				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
1079				/* Anything past Seq# is variable length and
1080				 * data past this ext. header is encrypted. */
1081				ext_hd |= EXT_ESP;
1082				break;
1083
1084			case IPPROTO_NONE:	/* RFC 2460 */
1085				/*
1086				 * Packet ends here, and IPv6 header has
1087				 * already been pulled up. If ip6e_len!=0
1088				 * then octets must be ignored.
1089				 */
1090				ulp = ip; /* non-NULL to get out of loop. */
1091				break;
1092
1093			case IPPROTO_OSPFIGP:
1094				/* XXX OSPF header check? */
1095				PULLUP_TO(hlen, ulp, struct ip6_ext);
1096				break;
1097
1098			case IPPROTO_PIM:
1099				/* XXX PIM header check? */
1100				PULLUP_TO(hlen, ulp, struct pim);
1101				break;
1102
1103			case IPPROTO_CARP:
1104				PULLUP_TO(hlen, ulp, struct carp_header);
1105				if (((struct carp_header *)ulp)->carp_version !=
1106				    CARP_VERSION)
1107					return (IP_FW_DENY);
1108				if (((struct carp_header *)ulp)->carp_type !=
1109				    CARP_ADVERTISEMENT)
1110					return (IP_FW_DENY);
1111				break;
1112
1113			case IPPROTO_IPV6:	/* RFC 2893 */
1114				PULLUP_TO(hlen, ulp, struct ip6_hdr);
1115				break;
1116
1117			case IPPROTO_IPV4:	/* RFC 2893 */
1118				PULLUP_TO(hlen, ulp, struct ip);
1119				break;
1120
1121			default:
1122				if (V_fw_verbose)
1123					printf("IPFW2: IPV6 - Unknown "
1124					    "Extension Header(%d), ext_hd=%x\n",
1125					     proto, ext_hd);
1126				if (V_fw_deny_unknown_exthdrs)
1127				    return (IP_FW_DENY);
1128				PULLUP_TO(hlen, ulp, struct ip6_ext);
1129				break;
1130			} /*switch */
1131		}
1132		ip = mtod(m, struct ip *);
1133		ip6 = (struct ip6_hdr *)ip;
1134		args->f_id.src_ip6 = ip6->ip6_src;
1135		args->f_id.dst_ip6 = ip6->ip6_dst;
1136		args->f_id.src_ip = 0;
1137		args->f_id.dst_ip = 0;
1138		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
1139	} else if (pktlen >= sizeof(struct ip) &&
1140	    (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
1141	    	is_ipv4 = 1;
1142		hlen = ip->ip_hl << 2;
1143		args->f_id.addr_type = 4;
1144
1145		/*
1146		 * Collect parameters into local variables for faster matching.
1147		 */
1148		proto = ip->ip_p;
1149		src_ip = ip->ip_src;
1150		dst_ip = ip->ip_dst;
1151		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1152		iplen = ntohs(ip->ip_len);
1153		pktlen = iplen < pktlen ? iplen : pktlen;
1154
1155		if (offset == 0) {
1156			switch (proto) {
1157			case IPPROTO_TCP:
1158				PULLUP_TO(hlen, ulp, struct tcphdr);
1159				dst_port = TCP(ulp)->th_dport;
1160				src_port = TCP(ulp)->th_sport;
1161				/* save flags for dynamic rules */
1162				args->f_id._flags = TCP(ulp)->th_flags;
1163				break;
1164
1165			case IPPROTO_SCTP:
1166				PULLUP_TO(hlen, ulp, struct sctphdr);
1167				src_port = SCTP(ulp)->src_port;
1168				dst_port = SCTP(ulp)->dest_port;
1169				break;
1170
1171			case IPPROTO_UDP:
1172				PULLUP_TO(hlen, ulp, struct udphdr);
1173				dst_port = UDP(ulp)->uh_dport;
1174				src_port = UDP(ulp)->uh_sport;
1175				break;
1176
1177			case IPPROTO_ICMP:
1178				PULLUP_TO(hlen, ulp, struct icmphdr);
1179				//args->f_id.flags = ICMP(ulp)->icmp_type;
1180				break;
1181
1182			default:
1183				break;
1184			}
1185		}
1186
1187		ip = mtod(m, struct ip *);
1188		args->f_id.src_ip = ntohl(src_ip.s_addr);
1189		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1190	}
1191#undef PULLUP_TO
1192	if (proto) { /* we may have port numbers, store them */
1193		args->f_id.proto = proto;
1194		args->f_id.src_port = src_port = ntohs(src_port);
1195		args->f_id.dst_port = dst_port = ntohs(dst_port);
1196	}
1197
1198	IPFW_RLOCK(chain);
1199	if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
1200		IPFW_RUNLOCK(chain);
1201		return (IP_FW_PASS);	/* accept */
1202	}
1203	if (args->rule.slot) {
1204		/*
1205		 * Packet has already been tagged as a result of a previous
1206		 * match on rule args->rule aka args->rule_id (PIPE, QUEUE,
1207		 * REASS, NETGRAPH, DIVERT/TEE...)
1208		 * Validate the slot and continue from the next one
1209		 * if still present, otherwise do a lookup.
1210		 */
1211		f_pos = (args->rule.chain_id == chain->id) ?
1212		    args->rule.slot :
1213		    ipfw_find_rule(chain, args->rule.rulenum,
1214			args->rule.rule_id);
1215	} else {
1216		f_pos = 0;
1217	}
1218
1219	/*
1220	 * Now scan the rules, and parse microinstructions for each rule.
1221	 * We have two nested loops and an inner switch. Sometimes we
1222	 * need to break out of one or both loops, or re-enter one of
1223	 * the loops with updated variables. Loop variables are:
1224	 *
1225	 *	f_pos (outer loop) points to the current rule.
1226	 *		On output it points to the matching rule.
1227	 *	done (outer loop) is used as a flag to break the loop.
1228	 *	l (inner loop)	residual length of current rule.
1229	 *		cmd points to the current microinstruction.
1230	 *
1231	 * We break the inner loop by setting l=0 and possibly
1232	 * cmdlen=0 if we don't want to advance cmd.
1233	 * We break the outer loop by setting done=1
1234	 * We can restart the inner loop by setting l>0 and f_pos, f, cmd
1235	 * as needed.
1236	 */
1237	for (; f_pos < chain->n_rules; f_pos++) {
1238		ipfw_insn *cmd;
1239		uint32_t tablearg = 0;
1240		int l, cmdlen, skip_or; /* skip rest of OR block */
1241		struct ip_fw *f;
1242
1243		f = chain->map[f_pos];
1244		if (V_set_disable & (1 << f->set) )
1245			continue;
1246
1247		skip_or = 0;
1248		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1249		    l -= cmdlen, cmd += cmdlen) {
1250			int match;
1251
1252			/*
1253			 * check_body is a jump target used when we find a
1254			 * CHECK_STATE, and need to jump to the body of
1255			 * the target rule.
1256			 */
1257
1258/* check_body: */
1259			cmdlen = F_LEN(cmd);
1260			/*
1261			 * An OR block (insn_1 || .. || insn_n) has the
1262			 * F_OR bit set in all but the last instruction.
1263			 * The first match will set "skip_or", and cause
1264			 * the following instructions to be skipped until
1265			 * past the one with the F_OR bit clear.
1266			 */
1267			if (skip_or) {		/* skip this instruction */
1268				if ((cmd->len & F_OR) == 0)
1269					skip_or = 0;	/* next one is good */
1270				continue;
1271			}
1272			match = 0; /* set to 1 if we succeed */
1273
1274			switch (cmd->opcode) {
1275			/*
1276			 * The first set of opcodes compares the packet's
1277			 * fields with some pattern, setting 'match' if a
1278			 * match is found. At the end of the loop there is
1279			 * logic to deal with F_NOT and F_OR flags associated
1280			 * with the opcode.
1281			 */
1282			case O_NOP:
1283				match = 1;
1284				break;
1285
1286			case O_FORWARD_MAC:
1287				printf("ipfw: opcode %d unimplemented\n",
1288				    cmd->opcode);
1289				break;
1290
1291			case O_GID:
1292			case O_UID:
1293			case O_JAIL:
1294				/*
1295				 * We only check offset == 0 && proto != 0,
1296				 * as this ensures that we have a
1297				 * packet with the ports info.
1298				 */
1299				if (offset != 0)
1300					break;
1301				if (proto == IPPROTO_TCP ||
1302				    proto == IPPROTO_UDP)
1303					match = check_uidgid(
1304						    (ipfw_insn_u32 *)cmd,
1305						    args, &ucred_lookup,
1306#ifdef __FreeBSD__
1307						    &ucred_cache);
1308#else
1309						    (void *)&ucred_cache);
1310#endif
1311				break;
1312
1313			case O_RECV:
1314				match = iface_match(m->m_pkthdr.rcvif,
1315				    (ipfw_insn_if *)cmd);
1316				break;
1317
1318			case O_XMIT:
1319				match = iface_match(oif, (ipfw_insn_if *)cmd);
1320				break;
1321
1322			case O_VIA:
1323				match = iface_match(oif ? oif :
1324				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
1325				break;
1326
1327			case O_MACADDR2:
1328				if (args->eh != NULL) {	/* have MAC header */
1329					u_int32_t *want = (u_int32_t *)
1330						((ipfw_insn_mac *)cmd)->addr;
1331					u_int32_t *mask = (u_int32_t *)
1332						((ipfw_insn_mac *)cmd)->mask;
1333					u_int32_t *hdr = (u_int32_t *)args->eh;
1334
1335					match =
1336					    ( want[0] == (hdr[0] & mask[0]) &&
1337					      want[1] == (hdr[1] & mask[1]) &&
1338					      want[2] == (hdr[2] & mask[2]) );
1339				}
1340				break;
1341
1342			case O_MAC_TYPE:
1343				if (args->eh != NULL) {
1344					u_int16_t *p =
1345					    ((ipfw_insn_u16 *)cmd)->ports;
1346					int i;
1347
1348					for (i = cmdlen - 1; !match && i>0;
1349					    i--, p += 2)
1350						match = (etype >= p[0] &&
1351						    etype <= p[1]);
1352				}
1353				break;
1354
1355			case O_FRAG:
1356				match = (offset != 0);
1357				break;
1358
1359			case O_IN:	/* "out" is "not in" */
1360				match = (oif == NULL);
1361				break;
1362
1363			case O_LAYER2:
1364				match = (args->eh != NULL);
1365				break;
1366
1367			case O_DIVERTED:
1368			    {
1369				/* For diverted packets, args->rule.info
1370				 * contains the divert port (in host format)
1371				 * reason and direction.
1372				 */
1373				uint32_t i = args->rule.info;
1374				match = (i&IPFW_IS_MASK) == IPFW_IS_DIVERT &&
1375				    cmd->arg1 & ((i & IPFW_INFO_IN) ? 1 : 2);
1376			    }
1377				break;
1378
1379			case O_PROTO:
1380				/*
1381				 * We do not allow an arg of 0 so the
1382				 * check of "proto" only suffices.
1383				 */
1384				match = (proto == cmd->arg1);
1385				break;
1386
1387			case O_IP_SRC:
1388				match = is_ipv4 &&
1389				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1390				    src_ip.s_addr);
1391				break;
1392
1393			case O_IP_SRC_LOOKUP:
1394			case O_IP_DST_LOOKUP:
1395				if (is_ipv4) {
1396				    uint32_t key =
1397					(cmd->opcode == O_IP_DST_LOOKUP) ?
1398					    dst_ip.s_addr : src_ip.s_addr;
1399				    uint32_t v = 0;
1400
1401				    if (cmdlen > F_INSN_SIZE(ipfw_insn_u32)) {
1402					/* generic lookup. The key must be
1403					 * in 32bit big-endian format.
1404					 */
1405					v = ((ipfw_insn_u32 *)cmd)->d[1];
1406					if (v == 0)
1407					    key = dst_ip.s_addr;
1408					else if (v == 1)
1409					    key = src_ip.s_addr;
1410					else if (v == 6) /* dscp */
1411					    key = (ip->ip_tos >> 2) & 0x3f;
1412					else if (offset != 0)
1413					    break;
1414					else if (proto != IPPROTO_TCP &&
1415						proto != IPPROTO_UDP)
1416					    break;
1417					else if (v == 2)
1418					    key = htonl(dst_port);
1419					else if (v == 3)
1420					    key = htonl(src_port);
1421					else if (v == 4 || v == 5) {
1422					    check_uidgid(
1423						(ipfw_insn_u32 *)cmd,
1424						args, &ucred_lookup,
1425#ifdef __FreeBSD__
1426						&ucred_cache);
1427					    if (v == 4 /* O_UID */)
1428						key = ucred_cache->cr_uid;
1429					    else if (v == 5 /* O_JAIL */)
1430						key = ucred_cache->cr_prison->pr_id;
1431#else /* !__FreeBSD__ */
1432						(void *)&ucred_cache);
1433					    if (v ==4 /* O_UID */)
1434						key = ucred_cache.uid;
1435					    else if (v == 5 /* O_JAIL */)
1436						key = ucred_cache.xid;
1437#endif /* !__FreeBSD__ */
1438					    key = htonl(key);
1439					} else
1440					    break;
1441				    }
1442				    match = ipfw_lookup_table(chain,
1443					cmd->arg1, key, &v);
1444				    if (!match)
1445					break;
1446				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
1447					match =
1448					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
1449				    else
1450					tablearg = v;
1451				}
1452				break;
1453
1454			case O_IP_SRC_MASK:
1455			case O_IP_DST_MASK:
1456				if (is_ipv4) {
1457				    uint32_t a =
1458					(cmd->opcode == O_IP_DST_MASK) ?
1459					    dst_ip.s_addr : src_ip.s_addr;
1460				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
1461				    int i = cmdlen-1;
1462
1463				    for (; !match && i>0; i-= 2, p+= 2)
1464					match = (p[0] == (a & p[1]));
1465				}
1466				break;
1467
1468			case O_IP_SRC_ME:
1469				if (is_ipv4) {
1470					struct ifnet *tif;
1471
1472					INADDR_TO_IFP(src_ip, tif);
1473					match = (tif != NULL);
1474					break;
1475				}
1476#ifdef INET6
1477				/* FALLTHROUGH */
1478			case O_IP6_SRC_ME:
1479				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
1480#endif
1481				break;
1482
1483			case O_IP_DST_SET:
1484			case O_IP_SRC_SET:
1485				if (is_ipv4) {
1486					u_int32_t *d = (u_int32_t *)(cmd+1);
1487					u_int32_t addr =
1488					    cmd->opcode == O_IP_DST_SET ?
1489						args->f_id.dst_ip :
1490						args->f_id.src_ip;
1491
1492					    if (addr < d[0])
1493						    break;
1494					    addr -= d[0]; /* subtract base */
1495					    match = (addr < cmd->arg1) &&
1496						( d[ 1 + (addr>>5)] &
1497						  (1<<(addr & 0x1f)) );
1498				}
1499				break;
1500
1501			case O_IP_DST:
1502				match = is_ipv4 &&
1503				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1504				    dst_ip.s_addr);
1505				break;
1506
1507			case O_IP_DST_ME:
1508				if (is_ipv4) {
1509					struct ifnet *tif;
1510
1511					INADDR_TO_IFP(dst_ip, tif);
1512					match = (tif != NULL);
1513					break;
1514				}
1515#ifdef INET6
1516				/* FALLTHROUGH */
1517			case O_IP6_DST_ME:
1518				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
1519#endif
1520				break;
1521
1522
1523			case O_IP_SRCPORT:
1524			case O_IP_DSTPORT:
1525				/*
1526				 * offset == 0 && proto != 0 is enough
1527				 * to guarantee that we have a
1528				 * packet with port info.
1529				 */
1530				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
1531				    && offset == 0) {
1532					u_int16_t x =
1533					    (cmd->opcode == O_IP_SRCPORT) ?
1534						src_port : dst_port ;
1535					u_int16_t *p =
1536					    ((ipfw_insn_u16 *)cmd)->ports;
1537					int i;
1538
1539					for (i = cmdlen - 1; !match && i>0;
1540					    i--, p += 2)
1541						match = (x>=p[0] && x<=p[1]);
1542				}
1543				break;
1544
1545			case O_ICMPTYPE:
1546				match = (offset == 0 && proto==IPPROTO_ICMP &&
1547				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
1548				break;
1549
1550#ifdef INET6
1551			case O_ICMP6TYPE:
1552				match = is_ipv6 && offset == 0 &&
1553				    proto==IPPROTO_ICMPV6 &&
1554				    icmp6type_match(
1555					ICMP6(ulp)->icmp6_type,
1556					(ipfw_insn_u32 *)cmd);
1557				break;
1558#endif /* INET6 */
1559
1560			case O_IPOPT:
1561				match = (is_ipv4 &&
1562				    ipopts_match(ip, cmd) );
1563				break;
1564
1565			case O_IPVER:
1566				match = (is_ipv4 &&
1567				    cmd->arg1 == ip->ip_v);
1568				break;
1569
1570			case O_IPID:
1571			case O_IPLEN:
1572			case O_IPTTL:
1573				if (is_ipv4) {	/* only for IP packets */
1574				    uint16_t x;
1575				    uint16_t *p;
1576				    int i;
1577
1578				    if (cmd->opcode == O_IPLEN)
1579					x = iplen;
1580				    else if (cmd->opcode == O_IPTTL)
1581					x = ip->ip_ttl;
1582				    else /* must be IPID */
1583					x = ntohs(ip->ip_id);
1584				    if (cmdlen == 1) {
1585					match = (cmd->arg1 == x);
1586					break;
1587				    }
1588				    /* otherwise we have ranges */
1589				    p = ((ipfw_insn_u16 *)cmd)->ports;
1590				    i = cmdlen - 1;
1591				    for (; !match && i>0; i--, p += 2)
1592					match = (x >= p[0] && x <= p[1]);
1593				}
1594				break;
1595
1596			case O_IPPRECEDENCE:
1597				match = (is_ipv4 &&
1598				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
1599				break;
1600
1601			case O_IPTOS:
1602				match = (is_ipv4 &&
1603				    flags_match(cmd, ip->ip_tos));
1604				break;
1605
1606			case O_TCPDATALEN:
1607				if (proto == IPPROTO_TCP && offset == 0) {
1608				    struct tcphdr *tcp;
1609				    uint16_t x;
1610				    uint16_t *p;
1611				    int i;
1612
1613				    tcp = TCP(ulp);
1614				    x = iplen -
1615					((ip->ip_hl + tcp->th_off) << 2);
1616				    if (cmdlen == 1) {
1617					match = (cmd->arg1 == x);
1618					break;
1619				    }
1620				    /* otherwise we have ranges */
1621				    p = ((ipfw_insn_u16 *)cmd)->ports;
1622				    i = cmdlen - 1;
1623				    for (; !match && i>0; i--, p += 2)
1624					match = (x >= p[0] && x <= p[1]);
1625				}
1626				break;
1627
1628			case O_TCPFLAGS:
1629				match = (proto == IPPROTO_TCP && offset == 0 &&
1630				    flags_match(cmd, TCP(ulp)->th_flags));
1631				break;
1632
1633			case O_TCPOPTS:
1634				PULLUP_LEN(hlen, ulp, (TCP(ulp)->th_off << 2));
1635				match = (proto == IPPROTO_TCP && offset == 0 &&
1636				    tcpopts_match(TCP(ulp), cmd));
1637				break;
1638
1639			case O_TCPSEQ:
1640				match = (proto == IPPROTO_TCP && offset == 0 &&
1641				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1642					TCP(ulp)->th_seq);
1643				break;
1644
1645			case O_TCPACK:
1646				match = (proto == IPPROTO_TCP && offset == 0 &&
1647				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1648					TCP(ulp)->th_ack);
1649				break;
1650
1651			case O_TCPWIN:
1652				if (proto == IPPROTO_TCP && offset == 0) {
1653				    uint16_t x;
1654				    uint16_t *p;
1655				    int i;
1656
1657				    x = ntohs(TCP(ulp)->th_win);
1658				    if (cmdlen == 1) {
1659					match = (cmd->arg1 == x);
1660					break;
1661				    }
1662				    /* Otherwise we have ranges. */
1663				    p = ((ipfw_insn_u16 *)cmd)->ports;
1664				    i = cmdlen - 1;
1665				    for (; !match && i > 0; i--, p += 2)
1666					match = (x >= p[0] && x <= p[1]);
1667				}
1668				break;
1669
1670			case O_ESTAB:
1671				/* reject packets which have SYN only */
1672				/* XXX should i also check for TH_ACK ? */
1673				match = (proto == IPPROTO_TCP && offset == 0 &&
1674				    (TCP(ulp)->th_flags &
1675				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
1676				break;
1677
1678			case O_ALTQ: {
1679				struct pf_mtag *at;
1680				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
1681
1682				match = 1;
1683				at = pf_find_mtag(m);
1684				if (at != NULL && at->qid != 0)
1685					break;
1686				at = pf_get_mtag(m);
1687				if (at == NULL) {
1688					/*
1689					 * Let the packet fall back to the
1690					 * default ALTQ.
1691					 */
1692					break;
1693				}
1694				at->qid = altq->qid;
1695				at->hdr = ip;
1696				break;
1697			}
1698
1699			case O_LOG:
1700				ipfw_log(f, hlen, args, m,
1701				    oif, offset | ip6f_mf, tablearg, ip);
1702				match = 1;
1703				break;
1704
1705			case O_PROB:
1706				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
1707				break;
1708
1709			case O_VERREVPATH:
1710				/* Outgoing packets automatically pass/match */
1711				match = ((oif != NULL) ||
1712				    (m->m_pkthdr.rcvif == NULL) ||
1713				    (
1714#ifdef INET6
1715				    is_ipv6 ?
1716					verify_path6(&(args->f_id.src_ip6),
1717					    m->m_pkthdr.rcvif, args->f_id.fib) :
1718#endif
1719				    verify_path(src_ip, m->m_pkthdr.rcvif,
1720				        args->f_id.fib)));
1721				break;
1722
1723			case O_VERSRCREACH:
1724				/* Outgoing packets automatically pass/match */
1725				match = (hlen > 0 && ((oif != NULL) ||
1726#ifdef INET6
1727				    is_ipv6 ?
1728				        verify_path6(&(args->f_id.src_ip6),
1729				            NULL, args->f_id.fib) :
1730#endif
1731				    verify_path(src_ip, NULL, args->f_id.fib)));
1732				break;
1733
1734			case O_ANTISPOOF:
1735				/* Outgoing packets automatically pass/match */
1736				if (oif == NULL && hlen > 0 &&
1737				    (  (is_ipv4 && in_localaddr(src_ip))
1738#ifdef INET6
1739				    || (is_ipv6 &&
1740				        in6_localaddr(&(args->f_id.src_ip6)))
1741#endif
1742				    ))
1743					match =
1744#ifdef INET6
1745					    is_ipv6 ? verify_path6(
1746					        &(args->f_id.src_ip6),
1747					        m->m_pkthdr.rcvif,
1748						args->f_id.fib) :
1749#endif
1750					    verify_path(src_ip,
1751					    	m->m_pkthdr.rcvif,
1752					        args->f_id.fib);
1753				else
1754					match = 1;
1755				break;
1756
1757			case O_IPSEC:
1758#ifdef IPSEC
1759				match = (m_tag_find(m,
1760				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
1761#endif
1762				/* otherwise no match */
1763				break;
1764
1765#ifdef INET6
1766			case O_IP6_SRC:
1767				match = is_ipv6 &&
1768				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
1769				    &((ipfw_insn_ip6 *)cmd)->addr6);
1770				break;
1771
1772			case O_IP6_DST:
1773				match = is_ipv6 &&
1774				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
1775				    &((ipfw_insn_ip6 *)cmd)->addr6);
1776				break;
1777			case O_IP6_SRC_MASK:
1778			case O_IP6_DST_MASK:
1779				if (is_ipv6) {
1780					int i = cmdlen - 1;
1781					struct in6_addr p;
1782					struct in6_addr *d =
1783					    &((ipfw_insn_ip6 *)cmd)->addr6;
1784
1785					for (; !match && i > 0; d += 2,
1786					    i -= F_INSN_SIZE(struct in6_addr)
1787					    * 2) {
1788						p = (cmd->opcode ==
1789						    O_IP6_SRC_MASK) ?
1790						    args->f_id.src_ip6:
1791						    args->f_id.dst_ip6;
1792						APPLY_MASK(&p, &d[1]);
1793						match =
1794						    IN6_ARE_ADDR_EQUAL(&d[0],
1795						    &p);
1796					}
1797				}
1798				break;
1799
1800			case O_FLOW6ID:
1801				match = is_ipv6 &&
1802				    flow6id_match(args->f_id.flow_id6,
1803				    (ipfw_insn_u32 *) cmd);
1804				break;
1805
1806			case O_EXT_HDR:
1807				match = is_ipv6 &&
1808				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
1809				break;
1810
1811			case O_IP6:
1812				match = is_ipv6;
1813				break;
1814#endif
1815
1816			case O_IP4:
1817				match = is_ipv4;
1818				break;
1819
1820			case O_TAG: {
1821				struct m_tag *mtag;
1822				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
1823				    tablearg : cmd->arg1;
1824
1825				/* Packet is already tagged with this tag? */
1826				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
1827
1828				/* We have `untag' action when F_NOT flag is
1829				 * present. And we must remove this mtag from
1830				 * mbuf and reset `match' to zero (`match' will
1831				 * be inversed later).
1832				 * Otherwise we should allocate new mtag and
1833				 * push it into mbuf.
1834				 */
1835				if (cmd->len & F_NOT) { /* `untag' action */
1836					if (mtag != NULL)
1837						m_tag_delete(m, mtag);
1838					match = 0;
1839				} else {
1840					if (mtag == NULL) {
1841						mtag = m_tag_alloc( MTAG_IPFW,
1842						    tag, 0, M_NOWAIT);
1843						if (mtag != NULL)
1844							m_tag_prepend(m, mtag);
1845					}
1846					match = 1;
1847				}
1848				break;
1849			}
1850
1851			case O_FIB: /* try match the specified fib */
1852				if (args->f_id.fib == cmd->arg1)
1853					match = 1;
1854				break;
1855
1856			case O_SOCKARG:	{
1857				struct inpcb *inp = args->inp;
1858				struct inpcbinfo *pi;
1859
1860				if (is_ipv6) /* XXX can we remove this ? */
1861					break;
1862
1863				if (proto == IPPROTO_TCP)
1864					pi = &V_tcbinfo;
1865				else if (proto == IPPROTO_UDP)
1866					pi = &V_udbinfo;
1867				else
1868					break;
1869
1870				/*
1871				 * XXXRW: so_user_cookie should almost
1872				 * certainly be inp_user_cookie?
1873				 */
1874
1875				/* For incomming packet, lookup up the
1876				inpcb using the src/dest ip/port tuple */
1877				if (inp == NULL) {
1878					inp = in_pcblookup(pi,
1879						src_ip, htons(src_port),
1880						dst_ip, htons(dst_port),
1881						INPLOOKUP_RLOCKPCB, NULL);
1882					if (inp != NULL) {
1883						tablearg =
1884						    inp->inp_socket->so_user_cookie;
1885						if (tablearg)
1886							match = 1;
1887						INP_RUNLOCK(inp);
1888					}
1889				} else {
1890					if (inp->inp_socket) {
1891						tablearg =
1892						    inp->inp_socket->so_user_cookie;
1893						if (tablearg)
1894							match = 1;
1895					}
1896				}
1897				break;
1898			}
1899
1900			case O_TAGGED: {
1901				struct m_tag *mtag;
1902				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
1903				    tablearg : cmd->arg1;
1904
1905				if (cmdlen == 1) {
1906					match = m_tag_locate(m, MTAG_IPFW,
1907					    tag, NULL) != NULL;
1908					break;
1909				}
1910
1911				/* we have ranges */
1912				for (mtag = m_tag_first(m);
1913				    mtag != NULL && !match;
1914				    mtag = m_tag_next(m, mtag)) {
1915					uint16_t *p;
1916					int i;
1917
1918					if (mtag->m_tag_cookie != MTAG_IPFW)
1919						continue;
1920
1921					p = ((ipfw_insn_u16 *)cmd)->ports;
1922					i = cmdlen - 1;
1923					for(; !match && i > 0; i--, p += 2)
1924						match =
1925						    mtag->m_tag_id >= p[0] &&
1926						    mtag->m_tag_id <= p[1];
1927				}
1928				break;
1929			}
1930
1931			/*
1932			 * The second set of opcodes represents 'actions',
1933			 * i.e. the terminal part of a rule once the packet
1934			 * matches all previous patterns.
1935			 * Typically there is only one action for each rule,
1936			 * and the opcode is stored at the end of the rule
1937			 * (but there are exceptions -- see below).
1938			 *
1939			 * In general, here we set retval and terminate the
1940			 * outer loop (would be a 'break 3' in some language,
1941			 * but we need to set l=0, done=1)
1942			 *
1943			 * Exceptions:
1944			 * O_COUNT and O_SKIPTO actions:
1945			 *   instead of terminating, we jump to the next rule
1946			 *   (setting l=0), or to the SKIPTO target (setting
1947			 *   f/f_len, cmd and l as needed), respectively.
1948			 *
1949			 * O_TAG, O_LOG and O_ALTQ action parameters:
1950			 *   perform some action and set match = 1;
1951			 *
1952			 * O_LIMIT and O_KEEP_STATE: these opcodes are
1953			 *   not real 'actions', and are stored right
1954			 *   before the 'action' part of the rule.
1955			 *   These opcodes try to install an entry in the
1956			 *   state tables; if successful, we continue with
1957			 *   the next opcode (match=1; break;), otherwise
1958			 *   the packet must be dropped (set retval,
1959			 *   break loops with l=0, done=1)
1960			 *
1961			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
1962			 *   cause a lookup of the state table, and a jump
1963			 *   to the 'action' part of the parent rule
1964			 *   if an entry is found, or
1965			 *   (CHECK_STATE only) a jump to the next rule if
1966			 *   the entry is not found.
1967			 *   The result of the lookup is cached so that
1968			 *   further instances of these opcodes become NOPs.
1969			 *   The jump to the next rule is done by setting
1970			 *   l=0, cmdlen=0.
1971			 */
1972			case O_LIMIT:
1973			case O_KEEP_STATE:
1974				if (ipfw_install_state(f,
1975				    (ipfw_insn_limit *)cmd, args, tablearg)) {
1976					/* error or limit violation */
1977					retval = IP_FW_DENY;
1978					l = 0;	/* exit inner loop */
1979					done = 1; /* exit outer loop */
1980				}
1981				match = 1;
1982				break;
1983
1984			case O_PROBE_STATE:
1985			case O_CHECK_STATE:
1986				/*
1987				 * dynamic rules are checked at the first
1988				 * keep-state or check-state occurrence,
1989				 * with the result being stored in dyn_dir.
1990				 * The compiler introduces a PROBE_STATE
1991				 * instruction for us when we have a
1992				 * KEEP_STATE (because PROBE_STATE needs
1993				 * to be run first).
1994				 */
1995				if (dyn_dir == MATCH_UNKNOWN &&
1996				    (q = ipfw_lookup_dyn_rule(&args->f_id,
1997				     &dyn_dir, proto == IPPROTO_TCP ?
1998					TCP(ulp) : NULL))
1999					!= NULL) {
2000					/*
2001					 * Found dynamic entry, update stats
2002					 * and jump to the 'action' part of
2003					 * the parent rule by setting
2004					 * f, cmd, l and clearing cmdlen.
2005					 */
2006					q->pcnt++;
2007					q->bcnt += pktlen;
2008					/* XXX we would like to have f_pos
2009					 * readily accessible in the dynamic
2010				         * rule, instead of having to
2011					 * lookup q->rule.
2012					 */
2013					f = q->rule;
2014					f_pos = ipfw_find_rule(chain,
2015						f->rulenum, f->id);
2016					cmd = ACTION_PTR(f);
2017					l = f->cmd_len - f->act_ofs;
2018					ipfw_dyn_unlock();
2019					cmdlen = 0;
2020					match = 1;
2021					break;
2022				}
2023				/*
2024				 * Dynamic entry not found. If CHECK_STATE,
2025				 * skip to next rule, if PROBE_STATE just
2026				 * ignore and continue with next opcode.
2027				 */
2028				if (cmd->opcode == O_CHECK_STATE)
2029					l = 0;	/* exit inner loop */
2030				match = 1;
2031				break;
2032
2033			case O_ACCEPT:
2034				retval = 0;	/* accept */
2035				l = 0;		/* exit inner loop */
2036				done = 1;	/* exit outer loop */
2037				break;
2038
2039			case O_PIPE:
2040			case O_QUEUE:
2041				set_match(args, f_pos, chain);
2042				args->rule.info = (cmd->arg1 == IP_FW_TABLEARG) ?
2043					tablearg : cmd->arg1;
2044				if (cmd->opcode == O_PIPE)
2045					args->rule.info |= IPFW_IS_PIPE;
2046				if (V_fw_one_pass)
2047					args->rule.info |= IPFW_ONEPASS;
2048				retval = IP_FW_DUMMYNET;
2049				l = 0;          /* exit inner loop */
2050				done = 1;       /* exit outer loop */
2051				break;
2052
2053			case O_DIVERT:
2054			case O_TEE:
2055				if (args->eh) /* not on layer 2 */
2056				    break;
2057				/* otherwise this is terminal */
2058				l = 0;		/* exit inner loop */
2059				done = 1;	/* exit outer loop */
2060				retval = (cmd->opcode == O_DIVERT) ?
2061					IP_FW_DIVERT : IP_FW_TEE;
2062				set_match(args, f_pos, chain);
2063				args->rule.info = (cmd->arg1 == IP_FW_TABLEARG) ?
2064				    tablearg : cmd->arg1;
2065				break;
2066
2067			case O_COUNT:
2068				f->pcnt++;	/* update stats */
2069				f->bcnt += pktlen;
2070				f->timestamp = time_uptime;
2071				l = 0;		/* exit inner loop */
2072				break;
2073
2074			case O_SKIPTO:
2075			    f->pcnt++;	/* update stats */
2076			    f->bcnt += pktlen;
2077			    f->timestamp = time_uptime;
2078			    /* If possible use cached f_pos (in f->next_rule),
2079			     * whose version is written in f->next_rule
2080			     * (horrible hacks to avoid changing the ABI).
2081			     */
2082			    if (cmd->arg1 != IP_FW_TABLEARG &&
2083				    (uintptr_t)f->x_next == chain->id) {
2084				f_pos = (uintptr_t)f->next_rule;
2085			    } else {
2086				int i = (cmd->arg1 == IP_FW_TABLEARG) ?
2087					tablearg : cmd->arg1;
2088				/* make sure we do not jump backward */
2089				if (i <= f->rulenum)
2090				    i = f->rulenum + 1;
2091				f_pos = ipfw_find_rule(chain, i, 0);
2092				/* update the cache */
2093				if (cmd->arg1 != IP_FW_TABLEARG) {
2094				    f->next_rule =
2095					(void *)(uintptr_t)f_pos;
2096				    f->x_next =
2097					(void *)(uintptr_t)chain->id;
2098				}
2099			    }
2100			    /*
2101			     * Skip disabled rules, and re-enter
2102			     * the inner loop with the correct
2103			     * f_pos, f, l and cmd.
2104			     * Also clear cmdlen and skip_or
2105			     */
2106			    for (; f_pos < chain->n_rules - 1 &&
2107				    (V_set_disable &
2108				     (1 << chain->map[f_pos]->set));
2109				    f_pos++)
2110				;
2111			    /* Re-enter the inner loop at the skipto rule. */
2112			    f = chain->map[f_pos];
2113			    l = f->cmd_len;
2114			    cmd = f->cmd;
2115			    match = 1;
2116			    cmdlen = 0;
2117			    skip_or = 0;
2118			    continue;
2119			    break;	/* not reached */
2120
2121			case O_CALLRETURN: {
2122				/*
2123				 * Implementation of `subroutine' call/return,
2124				 * in the stack carried in an mbuf tag. This
2125				 * is different from `skipto' in that any call
2126				 * address is possible (`skipto' must prevent
2127				 * backward jumps to avoid endless loops).
2128				 * We have `return' action when F_NOT flag is
2129				 * present. The `m_tag_id' field is used as
2130				 * stack pointer.
2131				 */
2132				struct m_tag *mtag;
2133				uint16_t jmpto, *stack;
2134
2135#define	IS_CALL		((cmd->len & F_NOT) == 0)
2136#define	IS_RETURN	((cmd->len & F_NOT) != 0)
2137				/*
2138				 * Hand-rolled version of m_tag_locate() with
2139				 * wildcard `type'.
2140				 * If not already tagged, allocate new tag.
2141				 */
2142				mtag = m_tag_first(m);
2143				while (mtag != NULL) {
2144					if (mtag->m_tag_cookie ==
2145					    MTAG_IPFW_CALL)
2146						break;
2147					mtag = m_tag_next(m, mtag);
2148				}
2149				if (mtag == NULL && IS_CALL) {
2150					mtag = m_tag_alloc(MTAG_IPFW_CALL, 0,
2151					    IPFW_CALLSTACK_SIZE *
2152					    sizeof(uint16_t), M_NOWAIT);
2153					if (mtag != NULL)
2154						m_tag_prepend(m, mtag);
2155				}
2156
2157				/*
2158				 * On error both `call' and `return' just
2159				 * continue with next rule.
2160				 */
2161				if (IS_RETURN && (mtag == NULL ||
2162				    mtag->m_tag_id == 0)) {
2163					l = 0;		/* exit inner loop */
2164					break;
2165				}
2166				if (IS_CALL && (mtag == NULL ||
2167				    mtag->m_tag_id >= IPFW_CALLSTACK_SIZE)) {
2168					printf("ipfw: call stack error, "
2169					    "go to next rule\n");
2170					l = 0;		/* exit inner loop */
2171					break;
2172				}
2173
2174				f->pcnt++;	/* update stats */
2175				f->bcnt += pktlen;
2176				f->timestamp = time_uptime;
2177				stack = (uint16_t *)(mtag + 1);
2178
2179				/*
2180				 * The `call' action may use cached f_pos
2181				 * (in f->next_rule), whose version is written
2182				 * in f->next_rule.
2183				 * The `return' action, however, doesn't have
2184				 * fixed jump address in cmd->arg1 and can't use
2185				 * cache.
2186				 */
2187				if (IS_CALL) {
2188					stack[mtag->m_tag_id] = f->rulenum;
2189					mtag->m_tag_id++;
2190					if (cmd->arg1 != IP_FW_TABLEARG &&
2191					    (uintptr_t)f->x_next == chain->id) {
2192						f_pos = (uintptr_t)f->next_rule;
2193					} else {
2194						jmpto = (cmd->arg1 ==
2195						    IP_FW_TABLEARG) ? tablearg:
2196						    cmd->arg1;
2197						f_pos = ipfw_find_rule(chain,
2198						    jmpto, 0);
2199						/* update the cache */
2200						if (cmd->arg1 !=
2201						    IP_FW_TABLEARG) {
2202							f->next_rule =
2203							    (void *)(uintptr_t)
2204							    f_pos;
2205							f->x_next =
2206							    (void *)(uintptr_t)
2207							    chain->id;
2208						}
2209					}
2210				} else {	/* `return' action */
2211					mtag->m_tag_id--;
2212					jmpto = stack[mtag->m_tag_id] + 1;
2213					f_pos = ipfw_find_rule(chain, jmpto, 0);
2214				}
2215
2216				/*
2217				 * Skip disabled rules, and re-enter
2218				 * the inner loop with the correct
2219				 * f_pos, f, l and cmd.
2220				 * Also clear cmdlen and skip_or
2221				 */
2222				for (; f_pos < chain->n_rules - 1 &&
2223				    (V_set_disable &
2224				    (1 << chain->map[f_pos]->set)); f_pos++)
2225					;
2226				/* Re-enter the inner loop at the dest rule. */
2227				f = chain->map[f_pos];
2228				l = f->cmd_len;
2229				cmd = f->cmd;
2230				cmdlen = 0;
2231				skip_or = 0;
2232				continue;
2233				break;	/* NOTREACHED */
2234			}
2235#undef IS_CALL
2236#undef IS_RETURN
2237
2238			case O_REJECT:
2239				/*
2240				 * Drop the packet and send a reject notice
2241				 * if the packet is not ICMP (or is an ICMP
2242				 * query), and it is not multicast/broadcast.
2243				 */
2244				if (hlen > 0 && is_ipv4 && offset == 0 &&
2245				    (proto != IPPROTO_ICMP ||
2246				     is_icmp_query(ICMP(ulp))) &&
2247				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2248				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
2249					send_reject(args, cmd->arg1, iplen, ip);
2250					m = args->m;
2251				}
2252				/* FALLTHROUGH */
2253#ifdef INET6
2254			case O_UNREACH6:
2255				if (hlen > 0 && is_ipv6 &&
2256				    ((offset & IP6F_OFF_MASK) == 0) &&
2257				    (proto != IPPROTO_ICMPV6 ||
2258				     (is_icmp6_query(icmp6_type) == 1)) &&
2259				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2260				    !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
2261					send_reject6(
2262					    args, cmd->arg1, hlen,
2263					    (struct ip6_hdr *)ip);
2264					m = args->m;
2265				}
2266				/* FALLTHROUGH */
2267#endif
2268			case O_DENY:
2269				retval = IP_FW_DENY;
2270				l = 0;		/* exit inner loop */
2271				done = 1;	/* exit outer loop */
2272				break;
2273
2274			case O_FORWARD_IP:
2275				if (args->eh)	/* not valid on layer2 pkts */
2276					break;
2277				if (q == NULL || q->rule != f ||
2278				    dyn_dir == MATCH_FORWARD) {
2279				    struct sockaddr_in *sa;
2280				    sa = &(((ipfw_insn_sa *)cmd)->sa);
2281				    if (sa->sin_addr.s_addr == INADDR_ANY) {
2282					bcopy(sa, &args->hopstore,
2283							sizeof(*sa));
2284					args->hopstore.sin_addr.s_addr =
2285						    htonl(tablearg);
2286					args->next_hop = &args->hopstore;
2287				    } else {
2288					args->next_hop = sa;
2289				    }
2290				}
2291				retval = IP_FW_PASS;
2292				l = 0;          /* exit inner loop */
2293				done = 1;       /* exit outer loop */
2294				break;
2295
2296#ifdef INET6
2297			case O_FORWARD_IP6:
2298				if (args->eh)	/* not valid on layer2 pkts */
2299					break;
2300				if (q == NULL || q->rule != f ||
2301				    dyn_dir == MATCH_FORWARD) {
2302					struct sockaddr_in6 *sin6;
2303
2304					sin6 = &(((ipfw_insn_sa6 *)cmd)->sa);
2305					args->next_hop6 = sin6;
2306				}
2307				retval = IP_FW_PASS;
2308				l = 0;		/* exit inner loop */
2309				done = 1;	/* exit outer loop */
2310				break;
2311#endif
2312
2313			case O_NETGRAPH:
2314			case O_NGTEE:
2315				set_match(args, f_pos, chain);
2316				args->rule.info = (cmd->arg1 == IP_FW_TABLEARG) ?
2317					tablearg : cmd->arg1;
2318				if (V_fw_one_pass)
2319					args->rule.info |= IPFW_ONEPASS;
2320				retval = (cmd->opcode == O_NETGRAPH) ?
2321				    IP_FW_NETGRAPH : IP_FW_NGTEE;
2322				l = 0;          /* exit inner loop */
2323				done = 1;       /* exit outer loop */
2324				break;
2325
2326			case O_SETFIB: {
2327				uint32_t fib;
2328
2329				f->pcnt++;	/* update stats */
2330				f->bcnt += pktlen;
2331				f->timestamp = time_uptime;
2332				fib = (cmd->arg1 == IP_FW_TABLEARG) ? tablearg:
2333				    cmd->arg1;
2334				if (fib >= rt_numfibs)
2335					fib = 0;
2336				M_SETFIB(m, fib);
2337				args->f_id.fib = fib;
2338				l = 0;		/* exit inner loop */
2339				break;
2340		        }
2341
2342			case O_NAT:
2343 				if (!IPFW_NAT_LOADED) {
2344				    retval = IP_FW_DENY;
2345				} else {
2346				    struct cfg_nat *t;
2347				    int nat_id;
2348
2349				    set_match(args, f_pos, chain);
2350				    /* Check if this is 'global' nat rule */
2351				    if (cmd->arg1 == 0) {
2352					    retval = ipfw_nat_ptr(args, NULL, m);
2353					    l = 0;
2354					    done = 1;
2355					    break;
2356				    }
2357				    t = ((ipfw_insn_nat *)cmd)->nat;
2358				    if (t == NULL) {
2359					nat_id = (cmd->arg1 == IP_FW_TABLEARG) ?
2360						tablearg : cmd->arg1;
2361					t = (*lookup_nat_ptr)(&chain->nat, nat_id);
2362
2363					if (t == NULL) {
2364					    retval = IP_FW_DENY;
2365					    l = 0;	/* exit inner loop */
2366					    done = 1;	/* exit outer loop */
2367					    break;
2368					}
2369					if (cmd->arg1 != IP_FW_TABLEARG)
2370					    ((ipfw_insn_nat *)cmd)->nat = t;
2371				    }
2372				    retval = ipfw_nat_ptr(args, t, m);
2373				}
2374				l = 0;          /* exit inner loop */
2375				done = 1;       /* exit outer loop */
2376				break;
2377
2378			case O_REASS: {
2379				int ip_off;
2380
2381				f->pcnt++;
2382				f->bcnt += pktlen;
2383				l = 0;	/* in any case exit inner loop */
2384				ip_off = ntohs(ip->ip_off);
2385
2386				/* if not fragmented, go to next rule */
2387				if ((ip_off & (IP_MF | IP_OFFMASK)) == 0)
2388				    break;
2389				/*
2390				 * ip_reass() expects len & off in host
2391				 * byte order.
2392				 */
2393				SET_HOST_IPLEN(ip);
2394
2395				args->m = m = ip_reass(m);
2396
2397				/*
2398				 * do IP header checksum fixup.
2399				 */
2400				if (m == NULL) { /* fragment got swallowed */
2401				    retval = IP_FW_DENY;
2402				} else { /* good, packet complete */
2403				    int hlen;
2404
2405				    ip = mtod(m, struct ip *);
2406				    hlen = ip->ip_hl << 2;
2407				    SET_NET_IPLEN(ip);
2408				    ip->ip_sum = 0;
2409				    if (hlen == sizeof(struct ip))
2410					ip->ip_sum = in_cksum_hdr(ip);
2411				    else
2412					ip->ip_sum = in_cksum(m, hlen);
2413				    retval = IP_FW_REASS;
2414				    set_match(args, f_pos, chain);
2415				}
2416				done = 1;	/* exit outer loop */
2417				break;
2418			}
2419
2420			default:
2421				panic("-- unknown opcode %d\n", cmd->opcode);
2422			} /* end of switch() on opcodes */
2423			/*
2424			 * if we get here with l=0, then match is irrelevant.
2425			 */
2426
2427			if (cmd->len & F_NOT)
2428				match = !match;
2429
2430			if (match) {
2431				if (cmd->len & F_OR)
2432					skip_or = 1;
2433			} else {
2434				if (!(cmd->len & F_OR)) /* not an OR block, */
2435					break;		/* try next rule    */
2436			}
2437
2438		}	/* end of inner loop, scan opcodes */
2439#undef PULLUP_LEN
2440
2441		if (done)
2442			break;
2443
2444/* next_rule:; */	/* try next rule		*/
2445
2446	}		/* end of outer for, scan rules */
2447
2448	if (done) {
2449		struct ip_fw *rule = chain->map[f_pos];
2450		/* Update statistics */
2451		rule->pcnt++;
2452		rule->bcnt += pktlen;
2453		rule->timestamp = time_uptime;
2454	} else {
2455		retval = IP_FW_DENY;
2456		printf("ipfw: ouch!, skip past end of rules, denying packet\n");
2457	}
2458	IPFW_RUNLOCK(chain);
2459#ifdef __FreeBSD__
2460	if (ucred_cache != NULL)
2461		crfree(ucred_cache);
2462#endif
2463	return (retval);
2464
2465pullup_failed:
2466	if (V_fw_verbose)
2467		printf("ipfw: pullup failed\n");
2468	return (IP_FW_DENY);
2469}
2470
2471/*
2472 * Module and VNET glue
2473 */
2474
2475/*
2476 * Stuff that must be initialised only on boot or module load
2477 */
2478static int
2479ipfw_init(void)
2480{
2481	int error = 0;
2482
2483	ipfw_dyn_attach();
2484	/*
2485 	 * Only print out this stuff the first time around,
2486	 * when called from the sysinit code.
2487	 */
2488	printf("ipfw2 "
2489#ifdef INET6
2490		"(+ipv6) "
2491#endif
2492		"initialized, divert %s, nat %s, "
2493		"rule-based forwarding "
2494#ifdef IPFIREWALL_FORWARD
2495		"enabled, "
2496#else
2497		"disabled, "
2498#endif
2499		"default to %s, logging ",
2500#ifdef IPDIVERT
2501		"enabled",
2502#else
2503		"loadable",
2504#endif
2505#ifdef IPFIREWALL_NAT
2506		"enabled",
2507#else
2508		"loadable",
2509#endif
2510		default_to_accept ? "accept" : "deny");
2511
2512	/*
2513	 * Note: V_xxx variables can be accessed here but the vnet specific
2514	 * initializer may not have been called yet for the VIMAGE case.
2515	 * Tuneables will have been processed. We will print out values for
2516	 * the default vnet.
2517	 * XXX This should all be rationalized AFTER 8.0
2518	 */
2519	if (V_fw_verbose == 0)
2520		printf("disabled\n");
2521	else if (V_verbose_limit == 0)
2522		printf("unlimited\n");
2523	else
2524		printf("limited to %d packets/entry by default\n",
2525		    V_verbose_limit);
2526
2527	ipfw_log_bpf(1); /* init */
2528	return (error);
2529}
2530
2531/*
2532 * Called for the removal of the last instance only on module unload.
2533 */
2534static void
2535ipfw_destroy(void)
2536{
2537
2538	ipfw_log_bpf(0); /* uninit */
2539	ipfw_dyn_detach();
2540	printf("IP firewall unloaded\n");
2541}
2542
2543/*
2544 * Stuff that must be initialized for every instance
2545 * (including the first of course).
2546 */
2547static int
2548vnet_ipfw_init(const void *unused)
2549{
2550	int error;
2551	struct ip_fw *rule = NULL;
2552	struct ip_fw_chain *chain;
2553
2554	chain = &V_layer3_chain;
2555
2556	/* First set up some values that are compile time options */
2557	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
2558	V_fw_deny_unknown_exthdrs = 1;
2559#ifdef IPFIREWALL_VERBOSE
2560	V_fw_verbose = 1;
2561#endif
2562#ifdef IPFIREWALL_VERBOSE_LIMIT
2563	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
2564#endif
2565#ifdef IPFIREWALL_NAT
2566	LIST_INIT(&chain->nat);
2567#endif
2568
2569	/* insert the default rule and create the initial map */
2570	chain->n_rules = 1;
2571	chain->static_len = sizeof(struct ip_fw);
2572	chain->map = malloc(sizeof(struct ip_fw *), M_IPFW, M_NOWAIT | M_ZERO);
2573	if (chain->map)
2574		rule = malloc(chain->static_len, M_IPFW, M_NOWAIT | M_ZERO);
2575	if (rule == NULL) {
2576		if (chain->map)
2577			free(chain->map, M_IPFW);
2578		printf("ipfw2: ENOSPC initializing default rule "
2579			"(support disabled)\n");
2580		return (ENOSPC);
2581	}
2582	error = ipfw_init_tables(chain);
2583	if (error) {
2584		panic("init_tables"); /* XXX Marko fix this ! */
2585	}
2586
2587	/* fill and insert the default rule */
2588	rule->act_ofs = 0;
2589	rule->rulenum = IPFW_DEFAULT_RULE;
2590	rule->cmd_len = 1;
2591	rule->set = RESVD_SET;
2592	rule->cmd[0].len = 1;
2593	rule->cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
2594	chain->rules = chain->default_rule = chain->map[0] = rule;
2595	chain->id = rule->id = 1;
2596
2597	IPFW_LOCK_INIT(chain);
2598	ipfw_dyn_init();
2599
2600	/* First set up some values that are compile time options */
2601	V_ipfw_vnet_ready = 1;		/* Open for business */
2602
2603	/*
2604	 * Hook the sockopt handler, and the layer2 (V_ip_fw_chk_ptr)
2605	 * and pfil hooks for ipv4 and ipv6. Even if the latter two fail
2606	 * we still keep the module alive because the sockopt and
2607	 * layer2 paths are still useful.
2608	 * ipfw[6]_hook return 0 on success, ENOENT on failure,
2609	 * so we can ignore the exact return value and just set a flag.
2610	 *
2611	 * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so
2612	 * changes in the underlying (per-vnet) variables trigger
2613	 * immediate hook()/unhook() calls.
2614	 * In layer2 we have the same behaviour, except that V_ether_ipfw
2615	 * is checked on each packet because there are no pfil hooks.
2616	 */
2617	V_ip_fw_ctl_ptr = ipfw_ctl;
2618	V_ip_fw_chk_ptr = ipfw_chk;
2619	error = ipfw_attach_hooks(1);
2620	return (error);
2621}
2622
2623/*
2624 * Called for the removal of each instance.
2625 */
2626static int
2627vnet_ipfw_uninit(const void *unused)
2628{
2629	struct ip_fw *reap, *rule;
2630	struct ip_fw_chain *chain = &V_layer3_chain;
2631	int i;
2632
2633	V_ipfw_vnet_ready = 0; /* tell new callers to go away */
2634	/*
2635	 * disconnect from ipv4, ipv6, layer2 and sockopt.
2636	 * Then grab, release and grab again the WLOCK so we make
2637	 * sure the update is propagated and nobody will be in.
2638	 */
2639	(void)ipfw_attach_hooks(0 /* detach */);
2640	V_ip_fw_chk_ptr = NULL;
2641	V_ip_fw_ctl_ptr = NULL;
2642	IPFW_UH_WLOCK(chain);
2643	IPFW_UH_WUNLOCK(chain);
2644	IPFW_UH_WLOCK(chain);
2645
2646	IPFW_WLOCK(chain);
2647	IPFW_WUNLOCK(chain);
2648	IPFW_WLOCK(chain);
2649
2650	ipfw_dyn_uninit(0);	/* run the callout_drain */
2651	ipfw_destroy_tables(chain);
2652	reap = NULL;
2653	for (i = 0; i < chain->n_rules; i++) {
2654		rule = chain->map[i];
2655		rule->x_next = reap;
2656		reap = rule;
2657	}
2658	if (chain->map)
2659		free(chain->map, M_IPFW);
2660	IPFW_WUNLOCK(chain);
2661	IPFW_UH_WUNLOCK(chain);
2662	if (reap != NULL)
2663		ipfw_reap_rules(reap);
2664	IPFW_LOCK_DESTROY(chain);
2665	ipfw_dyn_uninit(1);	/* free the remaining parts */
2666	return 0;
2667}
2668
2669/*
2670 * Module event handler.
2671 * In general we have the choice of handling most of these events by the
2672 * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
2673 * use the SYSINIT handlers as they are more capable of expressing the
2674 * flow of control during module and vnet operations, so this is just
2675 * a skeleton. Note there is no SYSINIT equivalent of the module
2676 * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
2677 */
2678static int
2679ipfw_modevent(module_t mod, int type, void *unused)
2680{
2681	int err = 0;
2682
2683	switch (type) {
2684	case MOD_LOAD:
2685		/* Called once at module load or
2686	 	 * system boot if compiled in. */
2687		break;
2688	case MOD_QUIESCE:
2689		/* Called before unload. May veto unloading. */
2690		break;
2691	case MOD_UNLOAD:
2692		/* Called during unload. */
2693		break;
2694	case MOD_SHUTDOWN:
2695		/* Called during system shutdown. */
2696		break;
2697	default:
2698		err = EOPNOTSUPP;
2699		break;
2700	}
2701	return err;
2702}
2703
2704static moduledata_t ipfwmod = {
2705	"ipfw",
2706	ipfw_modevent,
2707	0
2708};
2709
2710/* Define startup order. */
2711#define	IPFW_SI_SUB_FIREWALL	SI_SUB_PROTO_IFATTACHDOMAIN
2712#define	IPFW_MODEVENT_ORDER	(SI_ORDER_ANY - 255) /* On boot slot in here. */
2713#define	IPFW_MODULE_ORDER	(IPFW_MODEVENT_ORDER + 1) /* A little later. */
2714#define	IPFW_VNET_ORDER		(IPFW_MODEVENT_ORDER + 2) /* Later still. */
2715
2716DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
2717MODULE_VERSION(ipfw, 2);
2718/* should declare some dependencies here */
2719
2720/*
2721 * Starting up. Done in order after ipfwmod() has been called.
2722 * VNET_SYSINIT is also called for each existing vnet and each new vnet.
2723 */
2724SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2725	    ipfw_init, NULL);
2726VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2727	    vnet_ipfw_init, NULL);
2728
2729/*
2730 * Closing up shop. These are done in REVERSE ORDER, but still
2731 * after ipfwmod() has been called. Not called on reboot.
2732 * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
2733 * or when the module is unloaded.
2734 */
2735SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2736	    ipfw_destroy, NULL);
2737VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2738	    vnet_ipfw_uninit, NULL);
2739/* end of file */
2740