ip_fw2.c revision 227232
1/*-
2 * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: stable/9/sys/netinet/ipfw/ip_fw2.c 227232 2011-11-06 17:31:57Z bz $");
28
29/*
30 * The FreeBSD IP packet firewall, main file
31 */
32
33#include "opt_ipfw.h"
34#include "opt_ipdivert.h"
35#include "opt_inet.h"
36#ifndef INET
37#error IPFIREWALL requires INET.
38#endif /* INET */
39#include "opt_inet6.h"
40#include "opt_ipsec.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/condvar.h>
45#include <sys/eventhandler.h>
46#include <sys/malloc.h>
47#include <sys/mbuf.h>
48#include <sys/kernel.h>
49#include <sys/lock.h>
50#include <sys/jail.h>
51#include <sys/module.h>
52#include <sys/priv.h>
53#include <sys/proc.h>
54#include <sys/rwlock.h>
55#include <sys/socket.h>
56#include <sys/socketvar.h>
57#include <sys/sysctl.h>
58#include <sys/syslog.h>
59#include <sys/ucred.h>
60#include <net/ethernet.h> /* for ETHERTYPE_IP */
61#include <net/if.h>
62#include <net/route.h>
63#include <net/pf_mtag.h>
64#include <net/vnet.h>
65
66#include <netinet/in.h>
67#include <netinet/in_var.h>
68#include <netinet/in_pcb.h>
69#include <netinet/ip.h>
70#include <netinet/ip_var.h>
71#include <netinet/ip_icmp.h>
72#include <netinet/ip_fw.h>
73#include <netinet/ipfw/ip_fw_private.h>
74#include <netinet/ip_carp.h>
75#include <netinet/pim.h>
76#include <netinet/tcp_var.h>
77#include <netinet/udp.h>
78#include <netinet/udp_var.h>
79#include <netinet/sctp.h>
80
81#include <netinet/ip6.h>
82#include <netinet/icmp6.h>
83#ifdef INET6
84#include <netinet6/in6_pcb.h>
85#include <netinet6/scope6_var.h>
86#include <netinet6/ip6_var.h>
87#endif
88
89#include <machine/in_cksum.h>	/* XXX for in_cksum */
90
91#ifdef MAC
92#include <security/mac/mac_framework.h>
93#endif
94
95/*
96 * static variables followed by global ones.
97 * All ipfw global variables are here.
98 */
99
100/* ipfw_vnet_ready controls when we are open for business */
101static VNET_DEFINE(int, ipfw_vnet_ready) = 0;
102#define	V_ipfw_vnet_ready	VNET(ipfw_vnet_ready)
103
104static VNET_DEFINE(int, fw_deny_unknown_exthdrs);
105#define	V_fw_deny_unknown_exthdrs	VNET(fw_deny_unknown_exthdrs)
106
107static VNET_DEFINE(int, fw_permit_single_frag6) = 1;
108#define	V_fw_permit_single_frag6	VNET(fw_permit_single_frag6)
109
110#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
111static int default_to_accept = 1;
112#else
113static int default_to_accept;
114#endif
115
116VNET_DEFINE(int, autoinc_step);
117VNET_DEFINE(int, fw_one_pass) = 1;
118
119/*
120 * Each rule belongs to one of 32 different sets (0..31).
121 * The variable set_disable contains one bit per set.
122 * If the bit is set, all rules in the corresponding set
123 * are disabled. Set RESVD_SET(31) is reserved for the default rule
124 * and rules that are not deleted by the flush command,
125 * and CANNOT be disabled.
126 * Rules in set RESVD_SET can only be deleted individually.
127 */
128VNET_DEFINE(u_int32_t, set_disable);
129#define	V_set_disable			VNET(set_disable)
130
131VNET_DEFINE(int, fw_verbose);
132/* counter for ipfw_log(NULL...) */
133VNET_DEFINE(u_int64_t, norule_counter);
134VNET_DEFINE(int, verbose_limit);
135
136/* layer3_chain contains the list of rules for layer 3 */
137VNET_DEFINE(struct ip_fw_chain, layer3_chain);
138
139ipfw_nat_t *ipfw_nat_ptr = NULL;
140struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
141ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
142ipfw_nat_cfg_t *ipfw_nat_del_ptr;
143ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
144ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
145
146#ifdef SYSCTL_NODE
147uint32_t dummy_def = IPFW_DEFAULT_RULE;
148uint32_t dummy_tables_max = IPFW_TABLES_MAX;
149
150SYSBEGIN(f3)
151
152SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
153SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
154    CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
155    "Only do a single pass through ipfw when using dummynet(4)");
156SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
157    CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
158    "Rule number auto-increment step");
159SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose,
160    CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
161    "Log matches to ipfw rules");
162SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
163    CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
164    "Set upper limit of matches of ipfw rules logged");
165SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
166    &dummy_def, 0,
167    "The default/max possible rule number.");
168SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, tables_max, CTLFLAG_RD,
169    &dummy_tables_max, 0,
170    "The maximum number of tables.");
171SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
172    &default_to_accept, 0,
173    "Make the default rule accept all packets.");
174TUNABLE_INT("net.inet.ip.fw.default_to_accept", &default_to_accept);
175SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, static_count,
176    CTLFLAG_RD, &VNET_NAME(layer3_chain.n_rules), 0,
177    "Number of static rules");
178
179#ifdef INET6
180SYSCTL_DECL(_net_inet6_ip6);
181SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
182SYSCTL_VNET_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
183    CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(fw_deny_unknown_exthdrs), 0,
184    "Deny packets with unknown IPv6 Extension Headers");
185SYSCTL_VNET_INT(_net_inet6_ip6_fw, OID_AUTO, permit_single_frag6,
186    CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(fw_permit_single_frag6), 0,
187    "Permit single packet IPv6 fragments");
188#endif /* INET6 */
189
190SYSEND
191
192#endif /* SYSCTL_NODE */
193
194
195/*
196 * Some macros used in the various matching options.
197 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
198 * Other macros just cast void * into the appropriate type
199 */
200#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
201#define	TCP(p)		((struct tcphdr *)(p))
202#define	SCTP(p)		((struct sctphdr *)(p))
203#define	UDP(p)		((struct udphdr *)(p))
204#define	ICMP(p)		((struct icmphdr *)(p))
205#define	ICMP6(p)	((struct icmp6_hdr *)(p))
206
207static __inline int
208icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
209{
210	int type = icmp->icmp_type;
211
212	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
213}
214
215#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
216    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
217
218static int
219is_icmp_query(struct icmphdr *icmp)
220{
221	int type = icmp->icmp_type;
222
223	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
224}
225#undef TT
226
227/*
228 * The following checks use two arrays of 8 or 16 bits to store the
229 * bits that we want set or clear, respectively. They are in the
230 * low and high half of cmd->arg1 or cmd->d[0].
231 *
232 * We scan options and store the bits we find set. We succeed if
233 *
234 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
235 *
236 * The code is sometimes optimized not to store additional variables.
237 */
238
239static int
240flags_match(ipfw_insn *cmd, u_int8_t bits)
241{
242	u_char want_clear;
243	bits = ~bits;
244
245	if ( ((cmd->arg1 & 0xff) & bits) != 0)
246		return 0; /* some bits we want set were clear */
247	want_clear = (cmd->arg1 >> 8) & 0xff;
248	if ( (want_clear & bits) != want_clear)
249		return 0; /* some bits we want clear were set */
250	return 1;
251}
252
253static int
254ipopts_match(struct ip *ip, ipfw_insn *cmd)
255{
256	int optlen, bits = 0;
257	u_char *cp = (u_char *)(ip + 1);
258	int x = (ip->ip_hl << 2) - sizeof (struct ip);
259
260	for (; x > 0; x -= optlen, cp += optlen) {
261		int opt = cp[IPOPT_OPTVAL];
262
263		if (opt == IPOPT_EOL)
264			break;
265		if (opt == IPOPT_NOP)
266			optlen = 1;
267		else {
268			optlen = cp[IPOPT_OLEN];
269			if (optlen <= 0 || optlen > x)
270				return 0; /* invalid or truncated */
271		}
272		switch (opt) {
273
274		default:
275			break;
276
277		case IPOPT_LSRR:
278			bits |= IP_FW_IPOPT_LSRR;
279			break;
280
281		case IPOPT_SSRR:
282			bits |= IP_FW_IPOPT_SSRR;
283			break;
284
285		case IPOPT_RR:
286			bits |= IP_FW_IPOPT_RR;
287			break;
288
289		case IPOPT_TS:
290			bits |= IP_FW_IPOPT_TS;
291			break;
292		}
293	}
294	return (flags_match(cmd, bits));
295}
296
297static int
298tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
299{
300	int optlen, bits = 0;
301	u_char *cp = (u_char *)(tcp + 1);
302	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
303
304	for (; x > 0; x -= optlen, cp += optlen) {
305		int opt = cp[0];
306		if (opt == TCPOPT_EOL)
307			break;
308		if (opt == TCPOPT_NOP)
309			optlen = 1;
310		else {
311			optlen = cp[1];
312			if (optlen <= 0)
313				break;
314		}
315
316		switch (opt) {
317
318		default:
319			break;
320
321		case TCPOPT_MAXSEG:
322			bits |= IP_FW_TCPOPT_MSS;
323			break;
324
325		case TCPOPT_WINDOW:
326			bits |= IP_FW_TCPOPT_WINDOW;
327			break;
328
329		case TCPOPT_SACK_PERMITTED:
330		case TCPOPT_SACK:
331			bits |= IP_FW_TCPOPT_SACK;
332			break;
333
334		case TCPOPT_TIMESTAMP:
335			bits |= IP_FW_TCPOPT_TS;
336			break;
337
338		}
339	}
340	return (flags_match(cmd, bits));
341}
342
343static int
344iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
345{
346	if (ifp == NULL)	/* no iface with this packet, match fails */
347		return 0;
348	/* Check by name or by IP address */
349	if (cmd->name[0] != '\0') { /* match by name */
350		/* Check name */
351		if (cmd->p.glob) {
352			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
353				return(1);
354		} else {
355			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
356				return(1);
357		}
358	} else {
359#ifdef __FreeBSD__	/* and OSX too ? */
360		struct ifaddr *ia;
361
362		if_addr_rlock(ifp);
363		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
364			if (ia->ifa_addr->sa_family != AF_INET)
365				continue;
366			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
367			    (ia->ifa_addr))->sin_addr.s_addr) {
368				if_addr_runlock(ifp);
369				return(1);	/* match */
370			}
371		}
372		if_addr_runlock(ifp);
373#endif /* __FreeBSD__ */
374	}
375	return(0);	/* no match, fail ... */
376}
377
378/*
379 * The verify_path function checks if a route to the src exists and
380 * if it is reachable via ifp (when provided).
381 *
382 * The 'verrevpath' option checks that the interface that an IP packet
383 * arrives on is the same interface that traffic destined for the
384 * packet's source address would be routed out of.
385 * The 'versrcreach' option just checks that the source address is
386 * reachable via any route (except default) in the routing table.
387 * These two are a measure to block forged packets. This is also
388 * commonly known as "anti-spoofing" or Unicast Reverse Path
389 * Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
390 * is purposely reminiscent of the Cisco IOS command,
391 *
392 *   ip verify unicast reverse-path
393 *   ip verify unicast source reachable-via any
394 *
395 * which implements the same functionality. But note that the syntax
396 * is misleading, and the check may be performed on all IP packets
397 * whether unicast, multicast, or broadcast.
398 */
399static int
400verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
401{
402#ifndef __FreeBSD__
403	return 0;
404#else
405	struct route ro;
406	struct sockaddr_in *dst;
407
408	bzero(&ro, sizeof(ro));
409
410	dst = (struct sockaddr_in *)&(ro.ro_dst);
411	dst->sin_family = AF_INET;
412	dst->sin_len = sizeof(*dst);
413	dst->sin_addr = src;
414	in_rtalloc_ign(&ro, 0, fib);
415
416	if (ro.ro_rt == NULL)
417		return 0;
418
419	/*
420	 * If ifp is provided, check for equality with rtentry.
421	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
422	 * in order to pass packets injected back by if_simloop():
423	 * if useloopback == 1 routing entry (via lo0) for our own address
424	 * may exist, so we need to handle routing assymetry.
425	 */
426	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
427		RTFREE(ro.ro_rt);
428		return 0;
429	}
430
431	/* if no ifp provided, check if rtentry is not default route */
432	if (ifp == NULL &&
433	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
434		RTFREE(ro.ro_rt);
435		return 0;
436	}
437
438	/* or if this is a blackhole/reject route */
439	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
440		RTFREE(ro.ro_rt);
441		return 0;
442	}
443
444	/* found valid route */
445	RTFREE(ro.ro_rt);
446	return 1;
447#endif /* __FreeBSD__ */
448}
449
450#ifdef INET6
451/*
452 * ipv6 specific rules here...
453 */
454static __inline int
455icmp6type_match (int type, ipfw_insn_u32 *cmd)
456{
457	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
458}
459
460static int
461flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
462{
463	int i;
464	for (i=0; i <= cmd->o.arg1; ++i )
465		if (curr_flow == cmd->d[i] )
466			return 1;
467	return 0;
468}
469
470/* support for IP6_*_ME opcodes */
471static int
472search_ip6_addr_net (struct in6_addr * ip6_addr)
473{
474	struct ifnet *mdc;
475	struct ifaddr *mdc2;
476	struct in6_ifaddr *fdm;
477	struct in6_addr copia;
478
479	TAILQ_FOREACH(mdc, &V_ifnet, if_link) {
480		if_addr_rlock(mdc);
481		TAILQ_FOREACH(mdc2, &mdc->if_addrhead, ifa_link) {
482			if (mdc2->ifa_addr->sa_family == AF_INET6) {
483				fdm = (struct in6_ifaddr *)mdc2;
484				copia = fdm->ia_addr.sin6_addr;
485				/* need for leaving scope_id in the sock_addr */
486				in6_clearscope(&copia);
487				if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia)) {
488					if_addr_runlock(mdc);
489					return 1;
490				}
491			}
492		}
493		if_addr_runlock(mdc);
494	}
495	return 0;
496}
497
498static int
499verify_path6(struct in6_addr *src, struct ifnet *ifp)
500{
501	struct route_in6 ro;
502	struct sockaddr_in6 *dst;
503
504	bzero(&ro, sizeof(ro));
505
506	dst = (struct sockaddr_in6 * )&(ro.ro_dst);
507	dst->sin6_family = AF_INET6;
508	dst->sin6_len = sizeof(*dst);
509	dst->sin6_addr = *src;
510	/* XXX MRT 0 for ipv6 at this time */
511	rtalloc_ign((struct route *)&ro, 0);
512
513	if (ro.ro_rt == NULL)
514		return 0;
515
516	/*
517	 * if ifp is provided, check for equality with rtentry
518	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
519	 * to support the case of sending packets to an address of our own.
520	 * (where the former interface is the first argument of if_simloop()
521	 *  (=ifp), the latter is lo0)
522	 */
523	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
524		RTFREE(ro.ro_rt);
525		return 0;
526	}
527
528	/* if no ifp provided, check if rtentry is not default route */
529	if (ifp == NULL &&
530	    IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
531		RTFREE(ro.ro_rt);
532		return 0;
533	}
534
535	/* or if this is a blackhole/reject route */
536	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
537		RTFREE(ro.ro_rt);
538		return 0;
539	}
540
541	/* found valid route */
542	RTFREE(ro.ro_rt);
543	return 1;
544
545}
546
547static int
548is_icmp6_query(int icmp6_type)
549{
550	if ((icmp6_type <= ICMP6_MAXTYPE) &&
551	    (icmp6_type == ICMP6_ECHO_REQUEST ||
552	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
553	    icmp6_type == ICMP6_WRUREQUEST ||
554	    icmp6_type == ICMP6_FQDN_QUERY ||
555	    icmp6_type == ICMP6_NI_QUERY))
556		return (1);
557
558	return (0);
559}
560
561static void
562send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
563{
564	struct mbuf *m;
565
566	m = args->m;
567	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
568		struct tcphdr *tcp;
569		tcp = (struct tcphdr *)((char *)ip6 + hlen);
570
571		if ((tcp->th_flags & TH_RST) == 0) {
572			struct mbuf *m0;
573			m0 = ipfw_send_pkt(args->m, &(args->f_id),
574			    ntohl(tcp->th_seq), ntohl(tcp->th_ack),
575			    tcp->th_flags | TH_RST);
576			if (m0 != NULL)
577				ip6_output(m0, NULL, NULL, 0, NULL, NULL,
578				    NULL);
579		}
580		FREE_PKT(m);
581	} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
582#if 0
583		/*
584		 * Unlike above, the mbufs need to line up with the ip6 hdr,
585		 * as the contents are read. We need to m_adj() the
586		 * needed amount.
587		 * The mbuf will however be thrown away so we can adjust it.
588		 * Remember we did an m_pullup on it already so we
589		 * can make some assumptions about contiguousness.
590		 */
591		if (args->L3offset)
592			m_adj(m, args->L3offset);
593#endif
594		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
595	} else
596		FREE_PKT(m);
597
598	args->m = NULL;
599}
600
601#endif /* INET6 */
602
603
604/*
605 * sends a reject message, consuming the mbuf passed as an argument.
606 */
607static void
608send_reject(struct ip_fw_args *args, int code, int iplen, struct ip *ip)
609{
610
611#if 0
612	/* XXX When ip is not guaranteed to be at mtod() we will
613	 * need to account for this */
614	 * The mbuf will however be thrown away so we can adjust it.
615	 * Remember we did an m_pullup on it already so we
616	 * can make some assumptions about contiguousness.
617	 */
618	if (args->L3offset)
619		m_adj(m, args->L3offset);
620#endif
621	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
622		/* We need the IP header in host order for icmp_error(). */
623		SET_HOST_IPLEN(ip);
624		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
625	} else if (args->f_id.proto == IPPROTO_TCP) {
626		struct tcphdr *const tcp =
627		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
628		if ( (tcp->th_flags & TH_RST) == 0) {
629			struct mbuf *m;
630			m = ipfw_send_pkt(args->m, &(args->f_id),
631				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
632				tcp->th_flags | TH_RST);
633			if (m != NULL)
634				ip_output(m, NULL, NULL, 0, NULL, NULL);
635		}
636		FREE_PKT(args->m);
637	} else
638		FREE_PKT(args->m);
639	args->m = NULL;
640}
641
642/*
643 * Support for uid/gid/jail lookup. These tests are expensive
644 * (because we may need to look into the list of active sockets)
645 * so we cache the results. ugid_lookupp is 0 if we have not
646 * yet done a lookup, 1 if we succeeded, and -1 if we tried
647 * and failed. The function always returns the match value.
648 * We could actually spare the variable and use *uc, setting
649 * it to '(void *)check_uidgid if we have no info, NULL if
650 * we tried and failed, or any other value if successful.
651 */
652static int
653check_uidgid(ipfw_insn_u32 *insn, struct ip_fw_args *args, int *ugid_lookupp,
654    struct ucred **uc)
655{
656#ifndef __FreeBSD__
657	/* XXX */
658	return cred_check(insn, proto, oif,
659	    dst_ip, dst_port, src_ip, src_port,
660	    (struct bsd_ucred *)uc, ugid_lookupp, ((struct mbuf *)inp)->m_skb);
661#else  /* FreeBSD */
662	struct in_addr src_ip, dst_ip;
663	struct inpcbinfo *pi;
664	struct ipfw_flow_id *id;
665	struct inpcb *pcb, *inp;
666	struct ifnet *oif;
667	int lookupflags;
668	int match;
669
670	id = &args->f_id;
671	inp = args->inp;
672	oif = args->oif;
673
674	/*
675	 * Check to see if the UDP or TCP stack supplied us with
676	 * the PCB. If so, rather then holding a lock and looking
677	 * up the PCB, we can use the one that was supplied.
678	 */
679	if (inp && *ugid_lookupp == 0) {
680		INP_LOCK_ASSERT(inp);
681		if (inp->inp_socket != NULL) {
682			*uc = crhold(inp->inp_cred);
683			*ugid_lookupp = 1;
684		} else
685			*ugid_lookupp = -1;
686	}
687	/*
688	 * If we have already been here and the packet has no
689	 * PCB entry associated with it, then we can safely
690	 * assume that this is a no match.
691	 */
692	if (*ugid_lookupp == -1)
693		return (0);
694	if (id->proto == IPPROTO_TCP) {
695		lookupflags = 0;
696		pi = &V_tcbinfo;
697	} else if (id->proto == IPPROTO_UDP) {
698		lookupflags = INPLOOKUP_WILDCARD;
699		pi = &V_udbinfo;
700	} else
701		return 0;
702	lookupflags |= INPLOOKUP_RLOCKPCB;
703	match = 0;
704	if (*ugid_lookupp == 0) {
705		if (id->addr_type == 6) {
706#ifdef INET6
707			if (oif == NULL)
708				pcb = in6_pcblookup_mbuf(pi,
709				    &id->src_ip6, htons(id->src_port),
710				    &id->dst_ip6, htons(id->dst_port),
711				    lookupflags, oif, args->m);
712			else
713				pcb = in6_pcblookup_mbuf(pi,
714				    &id->dst_ip6, htons(id->dst_port),
715				    &id->src_ip6, htons(id->src_port),
716				    lookupflags, oif, args->m);
717#else
718			*ugid_lookupp = -1;
719			return (0);
720#endif
721		} else {
722			src_ip.s_addr = htonl(id->src_ip);
723			dst_ip.s_addr = htonl(id->dst_ip);
724			if (oif == NULL)
725				pcb = in_pcblookup_mbuf(pi,
726				    src_ip, htons(id->src_port),
727				    dst_ip, htons(id->dst_port),
728				    lookupflags, oif, args->m);
729			else
730				pcb = in_pcblookup_mbuf(pi,
731				    dst_ip, htons(id->dst_port),
732				    src_ip, htons(id->src_port),
733				    lookupflags, oif, args->m);
734		}
735		if (pcb != NULL) {
736			INP_RLOCK_ASSERT(pcb);
737			*uc = crhold(pcb->inp_cred);
738			*ugid_lookupp = 1;
739			INP_RUNLOCK(pcb);
740		}
741		if (*ugid_lookupp == 0) {
742			/*
743			 * We tried and failed, set the variable to -1
744			 * so we will not try again on this packet.
745			 */
746			*ugid_lookupp = -1;
747			return (0);
748		}
749	}
750	if (insn->o.opcode == O_UID)
751		match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
752	else if (insn->o.opcode == O_GID)
753		match = groupmember((gid_t)insn->d[0], *uc);
754	else if (insn->o.opcode == O_JAIL)
755		match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
756	return (match);
757#endif /* __FreeBSD__ */
758}
759
760/*
761 * Helper function to set args with info on the rule after the matching
762 * one. slot is precise, whereas we guess rule_id as they are
763 * assigned sequentially.
764 */
765static inline void
766set_match(struct ip_fw_args *args, int slot,
767	struct ip_fw_chain *chain)
768{
769	args->rule.chain_id = chain->id;
770	args->rule.slot = slot + 1; /* we use 0 as a marker */
771	args->rule.rule_id = 1 + chain->map[slot]->id;
772	args->rule.rulenum = chain->map[slot]->rulenum;
773}
774
775/*
776 * The main check routine for the firewall.
777 *
778 * All arguments are in args so we can modify them and return them
779 * back to the caller.
780 *
781 * Parameters:
782 *
783 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
784 *		Starts with the IP header.
785 *	args->eh (in)	Mac header if present, NULL for layer3 packet.
786 *	args->L3offset	Number of bytes bypassed if we came from L2.
787 *			e.g. often sizeof(eh)  ** NOTYET **
788 *	args->oif	Outgoing interface, NULL if packet is incoming.
789 *		The incoming interface is in the mbuf. (in)
790 *	args->divert_rule (in/out)
791 *		Skip up to the first rule past this rule number;
792 *		upon return, non-zero port number for divert or tee.
793 *
794 *	args->rule	Pointer to the last matching rule (in/out)
795 *	args->next_hop	Socket we are forwarding to (out).
796 *	args->next_hop6	IPv6 next hop we are forwarding to (out).
797 *	args->f_id	Addresses grabbed from the packet (out)
798 * 	args->rule.info	a cookie depending on rule action
799 *
800 * Return value:
801 *
802 *	IP_FW_PASS	the packet must be accepted
803 *	IP_FW_DENY	the packet must be dropped
804 *	IP_FW_DIVERT	divert packet, port in m_tag
805 *	IP_FW_TEE	tee packet, port in m_tag
806 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
807 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
808 *		args->rule contains the matching rule,
809 *		args->rule.info has additional information.
810 *
811 */
812int
813ipfw_chk(struct ip_fw_args *args)
814{
815
816	/*
817	 * Local variables holding state while processing a packet:
818	 *
819	 * IMPORTANT NOTE: to speed up the processing of rules, there
820	 * are some assumption on the values of the variables, which
821	 * are documented here. Should you change them, please check
822	 * the implementation of the various instructions to make sure
823	 * that they still work.
824	 *
825	 * args->eh	The MAC header. It is non-null for a layer2
826	 *	packet, it is NULL for a layer-3 packet.
827	 * **notyet**
828	 * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
829	 *
830	 * m | args->m	Pointer to the mbuf, as received from the caller.
831	 *	It may change if ipfw_chk() does an m_pullup, or if it
832	 *	consumes the packet because it calls send_reject().
833	 *	XXX This has to change, so that ipfw_chk() never modifies
834	 *	or consumes the buffer.
835	 * ip	is the beginning of the ip(4 or 6) header.
836	 *	Calculated by adding the L3offset to the start of data.
837	 *	(Until we start using L3offset, the packet is
838	 *	supposed to start with the ip header).
839	 */
840	struct mbuf *m = args->m;
841	struct ip *ip = mtod(m, struct ip *);
842
843	/*
844	 * For rules which contain uid/gid or jail constraints, cache
845	 * a copy of the users credentials after the pcb lookup has been
846	 * executed. This will speed up the processing of rules with
847	 * these types of constraints, as well as decrease contention
848	 * on pcb related locks.
849	 */
850#ifndef __FreeBSD__
851	struct bsd_ucred ucred_cache;
852#else
853	struct ucred *ucred_cache = NULL;
854#endif
855	int ucred_lookup = 0;
856
857	/*
858	 * oif | args->oif	If NULL, ipfw_chk has been called on the
859	 *	inbound path (ether_input, ip_input).
860	 *	If non-NULL, ipfw_chk has been called on the outbound path
861	 *	(ether_output, ip_output).
862	 */
863	struct ifnet *oif = args->oif;
864
865	int f_pos = 0;		/* index of current rule in the array */
866	int retval = 0;
867
868	/*
869	 * hlen	The length of the IP header.
870	 */
871	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
872
873	/*
874	 * offset	The offset of a fragment. offset != 0 means that
875	 *	we have a fragment at this offset of an IPv4 packet.
876	 *	offset == 0 means that (if this is an IPv4 packet)
877	 *	this is the first or only fragment.
878	 *	For IPv6 offset|ip6f_mf == 0 means there is no Fragment Header
879	 *	or there is a single packet fragement (fragement header added
880	 *	without needed).  We will treat a single packet fragment as if
881	 *	there was no fragment header (or log/block depending on the
882	 *	V_fw_permit_single_frag6 sysctl setting).
883	 */
884	u_short offset = 0;
885	u_short ip6f_mf = 0;
886
887	/*
888	 * Local copies of addresses. They are only valid if we have
889	 * an IP packet.
890	 *
891	 * proto	The protocol. Set to 0 for non-ip packets,
892	 *	or to the protocol read from the packet otherwise.
893	 *	proto != 0 means that we have an IPv4 packet.
894	 *
895	 * src_port, dst_port	port numbers, in HOST format. Only
896	 *	valid for TCP and UDP packets.
897	 *
898	 * src_ip, dst_ip	ip addresses, in NETWORK format.
899	 *	Only valid for IPv4 packets.
900	 */
901	uint8_t proto;
902	uint16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
903	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
904	uint16_t iplen=0;
905	int pktlen;
906	uint16_t	etype = 0;	/* Host order stored ether type */
907
908	/*
909	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
910	 * 	MATCH_NONE when checked and not matched (q = NULL),
911	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
912	 */
913	int dyn_dir = MATCH_UNKNOWN;
914	ipfw_dyn_rule *q = NULL;
915	struct ip_fw_chain *chain = &V_layer3_chain;
916
917	/*
918	 * We store in ulp a pointer to the upper layer protocol header.
919	 * In the ipv4 case this is easy to determine from the header,
920	 * but for ipv6 we might have some additional headers in the middle.
921	 * ulp is NULL if not found.
922	 */
923	void *ulp = NULL;		/* upper layer protocol pointer. */
924
925	/* XXX ipv6 variables */
926	int is_ipv6 = 0;
927	uint8_t	icmp6_type = 0;
928	uint16_t ext_hd = 0;	/* bits vector for extension header filtering */
929	/* end of ipv6 variables */
930
931	int is_ipv4 = 0;
932
933	int done = 0;		/* flag to exit the outer loop */
934
935	if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
936		return (IP_FW_PASS);	/* accept */
937
938	dst_ip.s_addr = 0;		/* make sure it is initialized */
939	src_ip.s_addr = 0;		/* make sure it is initialized */
940	pktlen = m->m_pkthdr.len;
941	args->f_id.fib = M_GETFIB(m); /* note mbuf not altered) */
942	proto = args->f_id.proto = 0;	/* mark f_id invalid */
943		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
944
945/*
946 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
947 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
948 * pointer might become stale after other pullups (but we never use it
949 * this way).
950 */
951#define PULLUP_TO(_len, p, T)	PULLUP_LEN(_len, p, sizeof(T))
952#define PULLUP_LEN(_len, p, T)					\
953do {								\
954	int x = (_len) + T;					\
955	if ((m)->m_len < x) {					\
956		args->m = m = m_pullup(m, x);			\
957		if (m == NULL)					\
958			goto pullup_failed;			\
959	}							\
960	p = (mtod(m, char *) + (_len));				\
961} while (0)
962
963	/*
964	 * if we have an ether header,
965	 */
966	if (args->eh)
967		etype = ntohs(args->eh->ether_type);
968
969	/* Identify IP packets and fill up variables. */
970	if (pktlen >= sizeof(struct ip6_hdr) &&
971	    (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
972		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
973		is_ipv6 = 1;
974		args->f_id.addr_type = 6;
975		hlen = sizeof(struct ip6_hdr);
976		proto = ip6->ip6_nxt;
977
978		/* Search extension headers to find upper layer protocols */
979		while (ulp == NULL && offset == 0) {
980			switch (proto) {
981			case IPPROTO_ICMPV6:
982				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
983				icmp6_type = ICMP6(ulp)->icmp6_type;
984				break;
985
986			case IPPROTO_TCP:
987				PULLUP_TO(hlen, ulp, struct tcphdr);
988				dst_port = TCP(ulp)->th_dport;
989				src_port = TCP(ulp)->th_sport;
990				/* save flags for dynamic rules */
991				args->f_id._flags = TCP(ulp)->th_flags;
992				break;
993
994			case IPPROTO_SCTP:
995				PULLUP_TO(hlen, ulp, struct sctphdr);
996				src_port = SCTP(ulp)->src_port;
997				dst_port = SCTP(ulp)->dest_port;
998				break;
999
1000			case IPPROTO_UDP:
1001				PULLUP_TO(hlen, ulp, struct udphdr);
1002				dst_port = UDP(ulp)->uh_dport;
1003				src_port = UDP(ulp)->uh_sport;
1004				break;
1005
1006			case IPPROTO_HOPOPTS:	/* RFC 2460 */
1007				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1008				ext_hd |= EXT_HOPOPTS;
1009				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1010				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1011				ulp = NULL;
1012				break;
1013
1014			case IPPROTO_ROUTING:	/* RFC 2460 */
1015				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
1016				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
1017				case 0:
1018					ext_hd |= EXT_RTHDR0;
1019					break;
1020				case 2:
1021					ext_hd |= EXT_RTHDR2;
1022					break;
1023				default:
1024					if (V_fw_verbose)
1025						printf("IPFW2: IPV6 - Unknown "
1026						    "Routing Header type(%d)\n",
1027						    ((struct ip6_rthdr *)
1028						    ulp)->ip6r_type);
1029					if (V_fw_deny_unknown_exthdrs)
1030					    return (IP_FW_DENY);
1031					break;
1032				}
1033				ext_hd |= EXT_ROUTING;
1034				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
1035				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
1036				ulp = NULL;
1037				break;
1038
1039			case IPPROTO_FRAGMENT:	/* RFC 2460 */
1040				PULLUP_TO(hlen, ulp, struct ip6_frag);
1041				ext_hd |= EXT_FRAGMENT;
1042				hlen += sizeof (struct ip6_frag);
1043				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
1044				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
1045					IP6F_OFF_MASK;
1046				ip6f_mf = ((struct ip6_frag *)ulp)->ip6f_offlg &
1047					IP6F_MORE_FRAG;
1048				if (V_fw_permit_single_frag6 == 0 &&
1049				    offset == 0 && ip6f_mf == 0) {
1050					if (V_fw_verbose)
1051						printf("IPFW2: IPV6 - Invalid "
1052						    "Fragment Header\n");
1053					if (V_fw_deny_unknown_exthdrs)
1054					    return (IP_FW_DENY);
1055					break;
1056				}
1057				args->f_id.extra =
1058				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
1059				ulp = NULL;
1060				break;
1061
1062			case IPPROTO_DSTOPTS:	/* RFC 2460 */
1063				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1064				ext_hd |= EXT_DSTOPTS;
1065				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1066				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1067				ulp = NULL;
1068				break;
1069
1070			case IPPROTO_AH:	/* RFC 2402 */
1071				PULLUP_TO(hlen, ulp, struct ip6_ext);
1072				ext_hd |= EXT_AH;
1073				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
1074				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
1075				ulp = NULL;
1076				break;
1077
1078			case IPPROTO_ESP:	/* RFC 2406 */
1079				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
1080				/* Anything past Seq# is variable length and
1081				 * data past this ext. header is encrypted. */
1082				ext_hd |= EXT_ESP;
1083				break;
1084
1085			case IPPROTO_NONE:	/* RFC 2460 */
1086				/*
1087				 * Packet ends here, and IPv6 header has
1088				 * already been pulled up. If ip6e_len!=0
1089				 * then octets must be ignored.
1090				 */
1091				ulp = ip; /* non-NULL to get out of loop. */
1092				break;
1093
1094			case IPPROTO_OSPFIGP:
1095				/* XXX OSPF header check? */
1096				PULLUP_TO(hlen, ulp, struct ip6_ext);
1097				break;
1098
1099			case IPPROTO_PIM:
1100				/* XXX PIM header check? */
1101				PULLUP_TO(hlen, ulp, struct pim);
1102				break;
1103
1104			case IPPROTO_CARP:
1105				PULLUP_TO(hlen, ulp, struct carp_header);
1106				if (((struct carp_header *)ulp)->carp_version !=
1107				    CARP_VERSION)
1108					return (IP_FW_DENY);
1109				if (((struct carp_header *)ulp)->carp_type !=
1110				    CARP_ADVERTISEMENT)
1111					return (IP_FW_DENY);
1112				break;
1113
1114			case IPPROTO_IPV6:	/* RFC 2893 */
1115				PULLUP_TO(hlen, ulp, struct ip6_hdr);
1116				break;
1117
1118			case IPPROTO_IPV4:	/* RFC 2893 */
1119				PULLUP_TO(hlen, ulp, struct ip);
1120				break;
1121
1122			default:
1123				if (V_fw_verbose)
1124					printf("IPFW2: IPV6 - Unknown "
1125					    "Extension Header(%d), ext_hd=%x\n",
1126					     proto, ext_hd);
1127				if (V_fw_deny_unknown_exthdrs)
1128				    return (IP_FW_DENY);
1129				PULLUP_TO(hlen, ulp, struct ip6_ext);
1130				break;
1131			} /*switch */
1132		}
1133		ip = mtod(m, struct ip *);
1134		ip6 = (struct ip6_hdr *)ip;
1135		args->f_id.src_ip6 = ip6->ip6_src;
1136		args->f_id.dst_ip6 = ip6->ip6_dst;
1137		args->f_id.src_ip = 0;
1138		args->f_id.dst_ip = 0;
1139		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
1140	} else if (pktlen >= sizeof(struct ip) &&
1141	    (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
1142	    	is_ipv4 = 1;
1143		hlen = ip->ip_hl << 2;
1144		args->f_id.addr_type = 4;
1145
1146		/*
1147		 * Collect parameters into local variables for faster matching.
1148		 */
1149		proto = ip->ip_p;
1150		src_ip = ip->ip_src;
1151		dst_ip = ip->ip_dst;
1152		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1153		iplen = ntohs(ip->ip_len);
1154		pktlen = iplen < pktlen ? iplen : pktlen;
1155
1156		if (offset == 0) {
1157			switch (proto) {
1158			case IPPROTO_TCP:
1159				PULLUP_TO(hlen, ulp, struct tcphdr);
1160				dst_port = TCP(ulp)->th_dport;
1161				src_port = TCP(ulp)->th_sport;
1162				/* save flags for dynamic rules */
1163				args->f_id._flags = TCP(ulp)->th_flags;
1164				break;
1165
1166			case IPPROTO_SCTP:
1167				PULLUP_TO(hlen, ulp, struct sctphdr);
1168				src_port = SCTP(ulp)->src_port;
1169				dst_port = SCTP(ulp)->dest_port;
1170				break;
1171
1172			case IPPROTO_UDP:
1173				PULLUP_TO(hlen, ulp, struct udphdr);
1174				dst_port = UDP(ulp)->uh_dport;
1175				src_port = UDP(ulp)->uh_sport;
1176				break;
1177
1178			case IPPROTO_ICMP:
1179				PULLUP_TO(hlen, ulp, struct icmphdr);
1180				//args->f_id.flags = ICMP(ulp)->icmp_type;
1181				break;
1182
1183			default:
1184				break;
1185			}
1186		}
1187
1188		ip = mtod(m, struct ip *);
1189		args->f_id.src_ip = ntohl(src_ip.s_addr);
1190		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1191	}
1192#undef PULLUP_TO
1193	if (proto) { /* we may have port numbers, store them */
1194		args->f_id.proto = proto;
1195		args->f_id.src_port = src_port = ntohs(src_port);
1196		args->f_id.dst_port = dst_port = ntohs(dst_port);
1197	}
1198
1199	IPFW_RLOCK(chain);
1200	if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
1201		IPFW_RUNLOCK(chain);
1202		return (IP_FW_PASS);	/* accept */
1203	}
1204	if (args->rule.slot) {
1205		/*
1206		 * Packet has already been tagged as a result of a previous
1207		 * match on rule args->rule aka args->rule_id (PIPE, QUEUE,
1208		 * REASS, NETGRAPH, DIVERT/TEE...)
1209		 * Validate the slot and continue from the next one
1210		 * if still present, otherwise do a lookup.
1211		 */
1212		f_pos = (args->rule.chain_id == chain->id) ?
1213		    args->rule.slot :
1214		    ipfw_find_rule(chain, args->rule.rulenum,
1215			args->rule.rule_id);
1216	} else {
1217		f_pos = 0;
1218	}
1219
1220	/*
1221	 * Now scan the rules, and parse microinstructions for each rule.
1222	 * We have two nested loops and an inner switch. Sometimes we
1223	 * need to break out of one or both loops, or re-enter one of
1224	 * the loops with updated variables. Loop variables are:
1225	 *
1226	 *	f_pos (outer loop) points to the current rule.
1227	 *		On output it points to the matching rule.
1228	 *	done (outer loop) is used as a flag to break the loop.
1229	 *	l (inner loop)	residual length of current rule.
1230	 *		cmd points to the current microinstruction.
1231	 *
1232	 * We break the inner loop by setting l=0 and possibly
1233	 * cmdlen=0 if we don't want to advance cmd.
1234	 * We break the outer loop by setting done=1
1235	 * We can restart the inner loop by setting l>0 and f_pos, f, cmd
1236	 * as needed.
1237	 */
1238	for (; f_pos < chain->n_rules; f_pos++) {
1239		ipfw_insn *cmd;
1240		uint32_t tablearg = 0;
1241		int l, cmdlen, skip_or; /* skip rest of OR block */
1242		struct ip_fw *f;
1243
1244		f = chain->map[f_pos];
1245		if (V_set_disable & (1 << f->set) )
1246			continue;
1247
1248		skip_or = 0;
1249		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1250		    l -= cmdlen, cmd += cmdlen) {
1251			int match;
1252
1253			/*
1254			 * check_body is a jump target used when we find a
1255			 * CHECK_STATE, and need to jump to the body of
1256			 * the target rule.
1257			 */
1258
1259/* check_body: */
1260			cmdlen = F_LEN(cmd);
1261			/*
1262			 * An OR block (insn_1 || .. || insn_n) has the
1263			 * F_OR bit set in all but the last instruction.
1264			 * The first match will set "skip_or", and cause
1265			 * the following instructions to be skipped until
1266			 * past the one with the F_OR bit clear.
1267			 */
1268			if (skip_or) {		/* skip this instruction */
1269				if ((cmd->len & F_OR) == 0)
1270					skip_or = 0;	/* next one is good */
1271				continue;
1272			}
1273			match = 0; /* set to 1 if we succeed */
1274
1275			switch (cmd->opcode) {
1276			/*
1277			 * The first set of opcodes compares the packet's
1278			 * fields with some pattern, setting 'match' if a
1279			 * match is found. At the end of the loop there is
1280			 * logic to deal with F_NOT and F_OR flags associated
1281			 * with the opcode.
1282			 */
1283			case O_NOP:
1284				match = 1;
1285				break;
1286
1287			case O_FORWARD_MAC:
1288				printf("ipfw: opcode %d unimplemented\n",
1289				    cmd->opcode);
1290				break;
1291
1292			case O_GID:
1293			case O_UID:
1294			case O_JAIL:
1295				/*
1296				 * We only check offset == 0 && proto != 0,
1297				 * as this ensures that we have a
1298				 * packet with the ports info.
1299				 */
1300				if (offset != 0)
1301					break;
1302				if (proto == IPPROTO_TCP ||
1303				    proto == IPPROTO_UDP)
1304					match = check_uidgid(
1305						    (ipfw_insn_u32 *)cmd,
1306						    args, &ucred_lookup,
1307#ifdef __FreeBSD__
1308						    &ucred_cache);
1309#else
1310						    (void *)&ucred_cache);
1311#endif
1312				break;
1313
1314			case O_RECV:
1315				match = iface_match(m->m_pkthdr.rcvif,
1316				    (ipfw_insn_if *)cmd);
1317				break;
1318
1319			case O_XMIT:
1320				match = iface_match(oif, (ipfw_insn_if *)cmd);
1321				break;
1322
1323			case O_VIA:
1324				match = iface_match(oif ? oif :
1325				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
1326				break;
1327
1328			case O_MACADDR2:
1329				if (args->eh != NULL) {	/* have MAC header */
1330					u_int32_t *want = (u_int32_t *)
1331						((ipfw_insn_mac *)cmd)->addr;
1332					u_int32_t *mask = (u_int32_t *)
1333						((ipfw_insn_mac *)cmd)->mask;
1334					u_int32_t *hdr = (u_int32_t *)args->eh;
1335
1336					match =
1337					    ( want[0] == (hdr[0] & mask[0]) &&
1338					      want[1] == (hdr[1] & mask[1]) &&
1339					      want[2] == (hdr[2] & mask[2]) );
1340				}
1341				break;
1342
1343			case O_MAC_TYPE:
1344				if (args->eh != NULL) {
1345					u_int16_t *p =
1346					    ((ipfw_insn_u16 *)cmd)->ports;
1347					int i;
1348
1349					for (i = cmdlen - 1; !match && i>0;
1350					    i--, p += 2)
1351						match = (etype >= p[0] &&
1352						    etype <= p[1]);
1353				}
1354				break;
1355
1356			case O_FRAG:
1357				match = (offset != 0);
1358				break;
1359
1360			case O_IN:	/* "out" is "not in" */
1361				match = (oif == NULL);
1362				break;
1363
1364			case O_LAYER2:
1365				match = (args->eh != NULL);
1366				break;
1367
1368			case O_DIVERTED:
1369			    {
1370				/* For diverted packets, args->rule.info
1371				 * contains the divert port (in host format)
1372				 * reason and direction.
1373				 */
1374				uint32_t i = args->rule.info;
1375				match = (i&IPFW_IS_MASK) == IPFW_IS_DIVERT &&
1376				    cmd->arg1 & ((i & IPFW_INFO_IN) ? 1 : 2);
1377			    }
1378				break;
1379
1380			case O_PROTO:
1381				/*
1382				 * We do not allow an arg of 0 so the
1383				 * check of "proto" only suffices.
1384				 */
1385				match = (proto == cmd->arg1);
1386				break;
1387
1388			case O_IP_SRC:
1389				match = is_ipv4 &&
1390				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1391				    src_ip.s_addr);
1392				break;
1393
1394			case O_IP_SRC_LOOKUP:
1395			case O_IP_DST_LOOKUP:
1396				if (is_ipv4) {
1397				    uint32_t key =
1398					(cmd->opcode == O_IP_DST_LOOKUP) ?
1399					    dst_ip.s_addr : src_ip.s_addr;
1400				    uint32_t v = 0;
1401
1402				    if (cmdlen > F_INSN_SIZE(ipfw_insn_u32)) {
1403					/* generic lookup. The key must be
1404					 * in 32bit big-endian format.
1405					 */
1406					v = ((ipfw_insn_u32 *)cmd)->d[1];
1407					if (v == 0)
1408					    key = dst_ip.s_addr;
1409					else if (v == 1)
1410					    key = src_ip.s_addr;
1411					else if (v == 6) /* dscp */
1412					    key = (ip->ip_tos >> 2) & 0x3f;
1413					else if (offset != 0)
1414					    break;
1415					else if (proto != IPPROTO_TCP &&
1416						proto != IPPROTO_UDP)
1417					    break;
1418					else if (v == 2)
1419					    key = htonl(dst_port);
1420					else if (v == 3)
1421					    key = htonl(src_port);
1422					else if (v == 4 || v == 5) {
1423					    check_uidgid(
1424						(ipfw_insn_u32 *)cmd,
1425						args, &ucred_lookup,
1426#ifdef __FreeBSD__
1427						&ucred_cache);
1428					    if (v == 4 /* O_UID */)
1429						key = ucred_cache->cr_uid;
1430					    else if (v == 5 /* O_JAIL */)
1431						key = ucred_cache->cr_prison->pr_id;
1432#else /* !__FreeBSD__ */
1433						(void *)&ucred_cache);
1434					    if (v ==4 /* O_UID */)
1435						key = ucred_cache.uid;
1436					    else if (v == 5 /* O_JAIL */)
1437						key = ucred_cache.xid;
1438#endif /* !__FreeBSD__ */
1439					    key = htonl(key);
1440					} else
1441					    break;
1442				    }
1443				    match = ipfw_lookup_table(chain,
1444					cmd->arg1, key, &v);
1445				    if (!match)
1446					break;
1447				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
1448					match =
1449					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
1450				    else
1451					tablearg = v;
1452				}
1453				break;
1454
1455			case O_IP_SRC_MASK:
1456			case O_IP_DST_MASK:
1457				if (is_ipv4) {
1458				    uint32_t a =
1459					(cmd->opcode == O_IP_DST_MASK) ?
1460					    dst_ip.s_addr : src_ip.s_addr;
1461				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
1462				    int i = cmdlen-1;
1463
1464				    for (; !match && i>0; i-= 2, p+= 2)
1465					match = (p[0] == (a & p[1]));
1466				}
1467				break;
1468
1469			case O_IP_SRC_ME:
1470				if (is_ipv4) {
1471					struct ifnet *tif;
1472
1473					INADDR_TO_IFP(src_ip, tif);
1474					match = (tif != NULL);
1475					break;
1476				}
1477#ifdef INET6
1478				/* FALLTHROUGH */
1479			case O_IP6_SRC_ME:
1480				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
1481#endif
1482				break;
1483
1484			case O_IP_DST_SET:
1485			case O_IP_SRC_SET:
1486				if (is_ipv4) {
1487					u_int32_t *d = (u_int32_t *)(cmd+1);
1488					u_int32_t addr =
1489					    cmd->opcode == O_IP_DST_SET ?
1490						args->f_id.dst_ip :
1491						args->f_id.src_ip;
1492
1493					    if (addr < d[0])
1494						    break;
1495					    addr -= d[0]; /* subtract base */
1496					    match = (addr < cmd->arg1) &&
1497						( d[ 1 + (addr>>5)] &
1498						  (1<<(addr & 0x1f)) );
1499				}
1500				break;
1501
1502			case O_IP_DST:
1503				match = is_ipv4 &&
1504				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1505				    dst_ip.s_addr);
1506				break;
1507
1508			case O_IP_DST_ME:
1509				if (is_ipv4) {
1510					struct ifnet *tif;
1511
1512					INADDR_TO_IFP(dst_ip, tif);
1513					match = (tif != NULL);
1514					break;
1515				}
1516#ifdef INET6
1517				/* FALLTHROUGH */
1518			case O_IP6_DST_ME:
1519				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
1520#endif
1521				break;
1522
1523
1524			case O_IP_SRCPORT:
1525			case O_IP_DSTPORT:
1526				/*
1527				 * offset == 0 && proto != 0 is enough
1528				 * to guarantee that we have a
1529				 * packet with port info.
1530				 */
1531				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
1532				    && offset == 0) {
1533					u_int16_t x =
1534					    (cmd->opcode == O_IP_SRCPORT) ?
1535						src_port : dst_port ;
1536					u_int16_t *p =
1537					    ((ipfw_insn_u16 *)cmd)->ports;
1538					int i;
1539
1540					for (i = cmdlen - 1; !match && i>0;
1541					    i--, p += 2)
1542						match = (x>=p[0] && x<=p[1]);
1543				}
1544				break;
1545
1546			case O_ICMPTYPE:
1547				match = (offset == 0 && proto==IPPROTO_ICMP &&
1548				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
1549				break;
1550
1551#ifdef INET6
1552			case O_ICMP6TYPE:
1553				match = is_ipv6 && offset == 0 &&
1554				    proto==IPPROTO_ICMPV6 &&
1555				    icmp6type_match(
1556					ICMP6(ulp)->icmp6_type,
1557					(ipfw_insn_u32 *)cmd);
1558				break;
1559#endif /* INET6 */
1560
1561			case O_IPOPT:
1562				match = (is_ipv4 &&
1563				    ipopts_match(ip, cmd) );
1564				break;
1565
1566			case O_IPVER:
1567				match = (is_ipv4 &&
1568				    cmd->arg1 == ip->ip_v);
1569				break;
1570
1571			case O_IPID:
1572			case O_IPLEN:
1573			case O_IPTTL:
1574				if (is_ipv4) {	/* only for IP packets */
1575				    uint16_t x;
1576				    uint16_t *p;
1577				    int i;
1578
1579				    if (cmd->opcode == O_IPLEN)
1580					x = iplen;
1581				    else if (cmd->opcode == O_IPTTL)
1582					x = ip->ip_ttl;
1583				    else /* must be IPID */
1584					x = ntohs(ip->ip_id);
1585				    if (cmdlen == 1) {
1586					match = (cmd->arg1 == x);
1587					break;
1588				    }
1589				    /* otherwise we have ranges */
1590				    p = ((ipfw_insn_u16 *)cmd)->ports;
1591				    i = cmdlen - 1;
1592				    for (; !match && i>0; i--, p += 2)
1593					match = (x >= p[0] && x <= p[1]);
1594				}
1595				break;
1596
1597			case O_IPPRECEDENCE:
1598				match = (is_ipv4 &&
1599				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
1600				break;
1601
1602			case O_IPTOS:
1603				match = (is_ipv4 &&
1604				    flags_match(cmd, ip->ip_tos));
1605				break;
1606
1607			case O_TCPDATALEN:
1608				if (proto == IPPROTO_TCP && offset == 0) {
1609				    struct tcphdr *tcp;
1610				    uint16_t x;
1611				    uint16_t *p;
1612				    int i;
1613
1614				    tcp = TCP(ulp);
1615				    x = iplen -
1616					((ip->ip_hl + tcp->th_off) << 2);
1617				    if (cmdlen == 1) {
1618					match = (cmd->arg1 == x);
1619					break;
1620				    }
1621				    /* otherwise we have ranges */
1622				    p = ((ipfw_insn_u16 *)cmd)->ports;
1623				    i = cmdlen - 1;
1624				    for (; !match && i>0; i--, p += 2)
1625					match = (x >= p[0] && x <= p[1]);
1626				}
1627				break;
1628
1629			case O_TCPFLAGS:
1630				match = (proto == IPPROTO_TCP && offset == 0 &&
1631				    flags_match(cmd, TCP(ulp)->th_flags));
1632				break;
1633
1634			case O_TCPOPTS:
1635				PULLUP_LEN(hlen, ulp, (TCP(ulp)->th_off << 2));
1636				match = (proto == IPPROTO_TCP && offset == 0 &&
1637				    tcpopts_match(TCP(ulp), cmd));
1638				break;
1639
1640			case O_TCPSEQ:
1641				match = (proto == IPPROTO_TCP && offset == 0 &&
1642				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1643					TCP(ulp)->th_seq);
1644				break;
1645
1646			case O_TCPACK:
1647				match = (proto == IPPROTO_TCP && offset == 0 &&
1648				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1649					TCP(ulp)->th_ack);
1650				break;
1651
1652			case O_TCPWIN:
1653				match = (proto == IPPROTO_TCP && offset == 0 &&
1654				    cmd->arg1 == TCP(ulp)->th_win);
1655				break;
1656
1657			case O_ESTAB:
1658				/* reject packets which have SYN only */
1659				/* XXX should i also check for TH_ACK ? */
1660				match = (proto == IPPROTO_TCP && offset == 0 &&
1661				    (TCP(ulp)->th_flags &
1662				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
1663				break;
1664
1665			case O_ALTQ: {
1666				struct pf_mtag *at;
1667				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
1668
1669				match = 1;
1670				at = pf_find_mtag(m);
1671				if (at != NULL && at->qid != 0)
1672					break;
1673				at = pf_get_mtag(m);
1674				if (at == NULL) {
1675					/*
1676					 * Let the packet fall back to the
1677					 * default ALTQ.
1678					 */
1679					break;
1680				}
1681				at->qid = altq->qid;
1682				at->hdr = ip;
1683				break;
1684			}
1685
1686			case O_LOG:
1687				ipfw_log(f, hlen, args, m,
1688				    oif, offset | ip6f_mf, tablearg, ip);
1689				match = 1;
1690				break;
1691
1692			case O_PROB:
1693				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
1694				break;
1695
1696			case O_VERREVPATH:
1697				/* Outgoing packets automatically pass/match */
1698				match = ((oif != NULL) ||
1699				    (m->m_pkthdr.rcvif == NULL) ||
1700				    (
1701#ifdef INET6
1702				    is_ipv6 ?
1703					verify_path6(&(args->f_id.src_ip6),
1704					    m->m_pkthdr.rcvif) :
1705#endif
1706				    verify_path(src_ip, m->m_pkthdr.rcvif,
1707				        args->f_id.fib)));
1708				break;
1709
1710			case O_VERSRCREACH:
1711				/* Outgoing packets automatically pass/match */
1712				match = (hlen > 0 && ((oif != NULL) ||
1713#ifdef INET6
1714				    is_ipv6 ?
1715				        verify_path6(&(args->f_id.src_ip6),
1716				            NULL) :
1717#endif
1718				    verify_path(src_ip, NULL, args->f_id.fib)));
1719				break;
1720
1721			case O_ANTISPOOF:
1722				/* Outgoing packets automatically pass/match */
1723				if (oif == NULL && hlen > 0 &&
1724				    (  (is_ipv4 && in_localaddr(src_ip))
1725#ifdef INET6
1726				    || (is_ipv6 &&
1727				        in6_localaddr(&(args->f_id.src_ip6)))
1728#endif
1729				    ))
1730					match =
1731#ifdef INET6
1732					    is_ipv6 ? verify_path6(
1733					        &(args->f_id.src_ip6),
1734					        m->m_pkthdr.rcvif) :
1735#endif
1736					    verify_path(src_ip,
1737					    	m->m_pkthdr.rcvif,
1738					        args->f_id.fib);
1739				else
1740					match = 1;
1741				break;
1742
1743			case O_IPSEC:
1744#ifdef IPSEC
1745				match = (m_tag_find(m,
1746				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
1747#endif
1748				/* otherwise no match */
1749				break;
1750
1751#ifdef INET6
1752			case O_IP6_SRC:
1753				match = is_ipv6 &&
1754				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
1755				    &((ipfw_insn_ip6 *)cmd)->addr6);
1756				break;
1757
1758			case O_IP6_DST:
1759				match = is_ipv6 &&
1760				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
1761				    &((ipfw_insn_ip6 *)cmd)->addr6);
1762				break;
1763			case O_IP6_SRC_MASK:
1764			case O_IP6_DST_MASK:
1765				if (is_ipv6) {
1766					int i = cmdlen - 1;
1767					struct in6_addr p;
1768					struct in6_addr *d =
1769					    &((ipfw_insn_ip6 *)cmd)->addr6;
1770
1771					for (; !match && i > 0; d += 2,
1772					    i -= F_INSN_SIZE(struct in6_addr)
1773					    * 2) {
1774						p = (cmd->opcode ==
1775						    O_IP6_SRC_MASK) ?
1776						    args->f_id.src_ip6:
1777						    args->f_id.dst_ip6;
1778						APPLY_MASK(&p, &d[1]);
1779						match =
1780						    IN6_ARE_ADDR_EQUAL(&d[0],
1781						    &p);
1782					}
1783				}
1784				break;
1785
1786			case O_FLOW6ID:
1787				match = is_ipv6 &&
1788				    flow6id_match(args->f_id.flow_id6,
1789				    (ipfw_insn_u32 *) cmd);
1790				break;
1791
1792			case O_EXT_HDR:
1793				match = is_ipv6 &&
1794				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
1795				break;
1796
1797			case O_IP6:
1798				match = is_ipv6;
1799				break;
1800#endif
1801
1802			case O_IP4:
1803				match = is_ipv4;
1804				break;
1805
1806			case O_TAG: {
1807				struct m_tag *mtag;
1808				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
1809				    tablearg : cmd->arg1;
1810
1811				/* Packet is already tagged with this tag? */
1812				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
1813
1814				/* We have `untag' action when F_NOT flag is
1815				 * present. And we must remove this mtag from
1816				 * mbuf and reset `match' to zero (`match' will
1817				 * be inversed later).
1818				 * Otherwise we should allocate new mtag and
1819				 * push it into mbuf.
1820				 */
1821				if (cmd->len & F_NOT) { /* `untag' action */
1822					if (mtag != NULL)
1823						m_tag_delete(m, mtag);
1824					match = 0;
1825				} else {
1826					if (mtag == NULL) {
1827						mtag = m_tag_alloc( MTAG_IPFW,
1828						    tag, 0, M_NOWAIT);
1829						if (mtag != NULL)
1830							m_tag_prepend(m, mtag);
1831					}
1832					match = 1;
1833				}
1834				break;
1835			}
1836
1837			case O_FIB: /* try match the specified fib */
1838				if (args->f_id.fib == cmd->arg1)
1839					match = 1;
1840				break;
1841
1842			case O_SOCKARG:	{
1843				struct inpcb *inp = args->inp;
1844				struct inpcbinfo *pi;
1845
1846				if (is_ipv6) /* XXX can we remove this ? */
1847					break;
1848
1849				if (proto == IPPROTO_TCP)
1850					pi = &V_tcbinfo;
1851				else if (proto == IPPROTO_UDP)
1852					pi = &V_udbinfo;
1853				else
1854					break;
1855
1856				/*
1857				 * XXXRW: so_user_cookie should almost
1858				 * certainly be inp_user_cookie?
1859				 */
1860
1861				/* For incomming packet, lookup up the
1862				inpcb using the src/dest ip/port tuple */
1863				if (inp == NULL) {
1864					inp = in_pcblookup(pi,
1865						src_ip, htons(src_port),
1866						dst_ip, htons(dst_port),
1867						INPLOOKUP_RLOCKPCB, NULL);
1868					if (inp != NULL) {
1869						tablearg =
1870						    inp->inp_socket->so_user_cookie;
1871						if (tablearg)
1872							match = 1;
1873						INP_RUNLOCK(inp);
1874					}
1875				} else {
1876					if (inp->inp_socket) {
1877						tablearg =
1878						    inp->inp_socket->so_user_cookie;
1879						if (tablearg)
1880							match = 1;
1881					}
1882				}
1883				break;
1884			}
1885
1886			case O_TAGGED: {
1887				struct m_tag *mtag;
1888				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
1889				    tablearg : cmd->arg1;
1890
1891				if (cmdlen == 1) {
1892					match = m_tag_locate(m, MTAG_IPFW,
1893					    tag, NULL) != NULL;
1894					break;
1895				}
1896
1897				/* we have ranges */
1898				for (mtag = m_tag_first(m);
1899				    mtag != NULL && !match;
1900				    mtag = m_tag_next(m, mtag)) {
1901					uint16_t *p;
1902					int i;
1903
1904					if (mtag->m_tag_cookie != MTAG_IPFW)
1905						continue;
1906
1907					p = ((ipfw_insn_u16 *)cmd)->ports;
1908					i = cmdlen - 1;
1909					for(; !match && i > 0; i--, p += 2)
1910						match =
1911						    mtag->m_tag_id >= p[0] &&
1912						    mtag->m_tag_id <= p[1];
1913				}
1914				break;
1915			}
1916
1917			/*
1918			 * The second set of opcodes represents 'actions',
1919			 * i.e. the terminal part of a rule once the packet
1920			 * matches all previous patterns.
1921			 * Typically there is only one action for each rule,
1922			 * and the opcode is stored at the end of the rule
1923			 * (but there are exceptions -- see below).
1924			 *
1925			 * In general, here we set retval and terminate the
1926			 * outer loop (would be a 'break 3' in some language,
1927			 * but we need to set l=0, done=1)
1928			 *
1929			 * Exceptions:
1930			 * O_COUNT and O_SKIPTO actions:
1931			 *   instead of terminating, we jump to the next rule
1932			 *   (setting l=0), or to the SKIPTO target (setting
1933			 *   f/f_len, cmd and l as needed), respectively.
1934			 *
1935			 * O_TAG, O_LOG and O_ALTQ action parameters:
1936			 *   perform some action and set match = 1;
1937			 *
1938			 * O_LIMIT and O_KEEP_STATE: these opcodes are
1939			 *   not real 'actions', and are stored right
1940			 *   before the 'action' part of the rule.
1941			 *   These opcodes try to install an entry in the
1942			 *   state tables; if successful, we continue with
1943			 *   the next opcode (match=1; break;), otherwise
1944			 *   the packet must be dropped (set retval,
1945			 *   break loops with l=0, done=1)
1946			 *
1947			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
1948			 *   cause a lookup of the state table, and a jump
1949			 *   to the 'action' part of the parent rule
1950			 *   if an entry is found, or
1951			 *   (CHECK_STATE only) a jump to the next rule if
1952			 *   the entry is not found.
1953			 *   The result of the lookup is cached so that
1954			 *   further instances of these opcodes become NOPs.
1955			 *   The jump to the next rule is done by setting
1956			 *   l=0, cmdlen=0.
1957			 */
1958			case O_LIMIT:
1959			case O_KEEP_STATE:
1960				if (ipfw_install_state(f,
1961				    (ipfw_insn_limit *)cmd, args, tablearg)) {
1962					/* error or limit violation */
1963					retval = IP_FW_DENY;
1964					l = 0;	/* exit inner loop */
1965					done = 1; /* exit outer loop */
1966				}
1967				match = 1;
1968				break;
1969
1970			case O_PROBE_STATE:
1971			case O_CHECK_STATE:
1972				/*
1973				 * dynamic rules are checked at the first
1974				 * keep-state or check-state occurrence,
1975				 * with the result being stored in dyn_dir.
1976				 * The compiler introduces a PROBE_STATE
1977				 * instruction for us when we have a
1978				 * KEEP_STATE (because PROBE_STATE needs
1979				 * to be run first).
1980				 */
1981				if (dyn_dir == MATCH_UNKNOWN &&
1982				    (q = ipfw_lookup_dyn_rule(&args->f_id,
1983				     &dyn_dir, proto == IPPROTO_TCP ?
1984					TCP(ulp) : NULL))
1985					!= NULL) {
1986					/*
1987					 * Found dynamic entry, update stats
1988					 * and jump to the 'action' part of
1989					 * the parent rule by setting
1990					 * f, cmd, l and clearing cmdlen.
1991					 */
1992					q->pcnt++;
1993					q->bcnt += pktlen;
1994					/* XXX we would like to have f_pos
1995					 * readily accessible in the dynamic
1996				         * rule, instead of having to
1997					 * lookup q->rule.
1998					 */
1999					f = q->rule;
2000					f_pos = ipfw_find_rule(chain,
2001						f->rulenum, f->id);
2002					cmd = ACTION_PTR(f);
2003					l = f->cmd_len - f->act_ofs;
2004					ipfw_dyn_unlock();
2005					cmdlen = 0;
2006					match = 1;
2007					break;
2008				}
2009				/*
2010				 * Dynamic entry not found. If CHECK_STATE,
2011				 * skip to next rule, if PROBE_STATE just
2012				 * ignore and continue with next opcode.
2013				 */
2014				if (cmd->opcode == O_CHECK_STATE)
2015					l = 0;	/* exit inner loop */
2016				match = 1;
2017				break;
2018
2019			case O_ACCEPT:
2020				retval = 0;	/* accept */
2021				l = 0;		/* exit inner loop */
2022				done = 1;	/* exit outer loop */
2023				break;
2024
2025			case O_PIPE:
2026			case O_QUEUE:
2027				set_match(args, f_pos, chain);
2028				args->rule.info = (cmd->arg1 == IP_FW_TABLEARG) ?
2029					tablearg : cmd->arg1;
2030				if (cmd->opcode == O_PIPE)
2031					args->rule.info |= IPFW_IS_PIPE;
2032				if (V_fw_one_pass)
2033					args->rule.info |= IPFW_ONEPASS;
2034				retval = IP_FW_DUMMYNET;
2035				l = 0;          /* exit inner loop */
2036				done = 1;       /* exit outer loop */
2037				break;
2038
2039			case O_DIVERT:
2040			case O_TEE:
2041				if (args->eh) /* not on layer 2 */
2042				    break;
2043				/* otherwise this is terminal */
2044				l = 0;		/* exit inner loop */
2045				done = 1;	/* exit outer loop */
2046				retval = (cmd->opcode == O_DIVERT) ?
2047					IP_FW_DIVERT : IP_FW_TEE;
2048				set_match(args, f_pos, chain);
2049				args->rule.info = (cmd->arg1 == IP_FW_TABLEARG) ?
2050				    tablearg : cmd->arg1;
2051				break;
2052
2053			case O_COUNT:
2054				f->pcnt++;	/* update stats */
2055				f->bcnt += pktlen;
2056				f->timestamp = time_uptime;
2057				l = 0;		/* exit inner loop */
2058				break;
2059
2060			case O_SKIPTO:
2061			    f->pcnt++;	/* update stats */
2062			    f->bcnt += pktlen;
2063			    f->timestamp = time_uptime;
2064			    /* If possible use cached f_pos (in f->next_rule),
2065			     * whose version is written in f->next_rule
2066			     * (horrible hacks to avoid changing the ABI).
2067			     */
2068			    if (cmd->arg1 != IP_FW_TABLEARG &&
2069				    (uintptr_t)f->x_next == chain->id) {
2070				f_pos = (uintptr_t)f->next_rule;
2071			    } else {
2072				int i = (cmd->arg1 == IP_FW_TABLEARG) ?
2073					tablearg : cmd->arg1;
2074				/* make sure we do not jump backward */
2075				if (i <= f->rulenum)
2076				    i = f->rulenum + 1;
2077				f_pos = ipfw_find_rule(chain, i, 0);
2078				/* update the cache */
2079				if (cmd->arg1 != IP_FW_TABLEARG) {
2080				    f->next_rule =
2081					(void *)(uintptr_t)f_pos;
2082				    f->x_next =
2083					(void *)(uintptr_t)chain->id;
2084				}
2085			    }
2086			    /*
2087			     * Skip disabled rules, and re-enter
2088			     * the inner loop with the correct
2089			     * f_pos, f, l and cmd.
2090			     * Also clear cmdlen and skip_or
2091			     */
2092			    for (; f_pos < chain->n_rules - 1 &&
2093				    (V_set_disable &
2094				     (1 << chain->map[f_pos]->set));
2095				    f_pos++)
2096				;
2097			    /* Re-enter the inner loop at the skipto rule. */
2098			    f = chain->map[f_pos];
2099			    l = f->cmd_len;
2100			    cmd = f->cmd;
2101			    match = 1;
2102			    cmdlen = 0;
2103			    skip_or = 0;
2104			    continue;
2105			    break;	/* not reached */
2106
2107			case O_CALLRETURN: {
2108				/*
2109				 * Implementation of `subroutine' call/return,
2110				 * in the stack carried in an mbuf tag. This
2111				 * is different from `skipto' in that any call
2112				 * address is possible (`skipto' must prevent
2113				 * backward jumps to avoid endless loops).
2114				 * We have `return' action when F_NOT flag is
2115				 * present. The `m_tag_id' field is used as
2116				 * stack pointer.
2117				 */
2118				struct m_tag *mtag;
2119				uint16_t jmpto, *stack;
2120
2121#define	IS_CALL		((cmd->len & F_NOT) == 0)
2122#define	IS_RETURN	((cmd->len & F_NOT) != 0)
2123				/*
2124				 * Hand-rolled version of m_tag_locate() with
2125				 * wildcard `type'.
2126				 * If not already tagged, allocate new tag.
2127				 */
2128				mtag = m_tag_first(m);
2129				while (mtag != NULL) {
2130					if (mtag->m_tag_cookie ==
2131					    MTAG_IPFW_CALL)
2132						break;
2133					mtag = m_tag_next(m, mtag);
2134				}
2135				if (mtag == NULL && IS_CALL) {
2136					mtag = m_tag_alloc(MTAG_IPFW_CALL, 0,
2137					    IPFW_CALLSTACK_SIZE *
2138					    sizeof(uint16_t), M_NOWAIT);
2139					if (mtag != NULL)
2140						m_tag_prepend(m, mtag);
2141				}
2142
2143				/*
2144				 * On error both `call' and `return' just
2145				 * continue with next rule.
2146				 */
2147				if (IS_RETURN && (mtag == NULL ||
2148				    mtag->m_tag_id == 0)) {
2149					l = 0;		/* exit inner loop */
2150					break;
2151				}
2152				if (IS_CALL && (mtag == NULL ||
2153				    mtag->m_tag_id >= IPFW_CALLSTACK_SIZE)) {
2154					printf("ipfw: call stack error, "
2155					    "go to next rule\n");
2156					l = 0;		/* exit inner loop */
2157					break;
2158				}
2159
2160				f->pcnt++;	/* update stats */
2161				f->bcnt += pktlen;
2162				f->timestamp = time_uptime;
2163				stack = (uint16_t *)(mtag + 1);
2164
2165				/*
2166				 * The `call' action may use cached f_pos
2167				 * (in f->next_rule), whose version is written
2168				 * in f->next_rule.
2169				 * The `return' action, however, doesn't have
2170				 * fixed jump address in cmd->arg1 and can't use
2171				 * cache.
2172				 */
2173				if (IS_CALL) {
2174					stack[mtag->m_tag_id] = f->rulenum;
2175					mtag->m_tag_id++;
2176					if (cmd->arg1 != IP_FW_TABLEARG &&
2177					    (uintptr_t)f->x_next == chain->id) {
2178						f_pos = (uintptr_t)f->next_rule;
2179					} else {
2180						jmpto = (cmd->arg1 ==
2181						    IP_FW_TABLEARG) ? tablearg:
2182						    cmd->arg1;
2183						f_pos = ipfw_find_rule(chain,
2184						    jmpto, 0);
2185						/* update the cache */
2186						if (cmd->arg1 !=
2187						    IP_FW_TABLEARG) {
2188							f->next_rule =
2189							    (void *)(uintptr_t)
2190							    f_pos;
2191							f->x_next =
2192							    (void *)(uintptr_t)
2193							    chain->id;
2194						}
2195					}
2196				} else {	/* `return' action */
2197					mtag->m_tag_id--;
2198					jmpto = stack[mtag->m_tag_id] + 1;
2199					f_pos = ipfw_find_rule(chain, jmpto, 0);
2200				}
2201
2202				/*
2203				 * Skip disabled rules, and re-enter
2204				 * the inner loop with the correct
2205				 * f_pos, f, l and cmd.
2206				 * Also clear cmdlen and skip_or
2207				 */
2208				for (; f_pos < chain->n_rules - 1 &&
2209				    (V_set_disable &
2210				    (1 << chain->map[f_pos]->set)); f_pos++)
2211					;
2212				/* Re-enter the inner loop at the dest rule. */
2213				f = chain->map[f_pos];
2214				l = f->cmd_len;
2215				cmd = f->cmd;
2216				cmdlen = 0;
2217				skip_or = 0;
2218				continue;
2219				break;	/* NOTREACHED */
2220			}
2221#undef IS_CALL
2222#undef IS_RETURN
2223
2224			case O_REJECT:
2225				/*
2226				 * Drop the packet and send a reject notice
2227				 * if the packet is not ICMP (or is an ICMP
2228				 * query), and it is not multicast/broadcast.
2229				 */
2230				if (hlen > 0 && is_ipv4 && offset == 0 &&
2231				    (proto != IPPROTO_ICMP ||
2232				     is_icmp_query(ICMP(ulp))) &&
2233				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2234				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
2235					send_reject(args, cmd->arg1, iplen, ip);
2236					m = args->m;
2237				}
2238				/* FALLTHROUGH */
2239#ifdef INET6
2240			case O_UNREACH6:
2241				if (hlen > 0 && is_ipv6 &&
2242				    ((offset & IP6F_OFF_MASK) == 0) &&
2243				    (proto != IPPROTO_ICMPV6 ||
2244				     (is_icmp6_query(icmp6_type) == 1)) &&
2245				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2246				    !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
2247					send_reject6(
2248					    args, cmd->arg1, hlen,
2249					    (struct ip6_hdr *)ip);
2250					m = args->m;
2251				}
2252				/* FALLTHROUGH */
2253#endif
2254			case O_DENY:
2255				retval = IP_FW_DENY;
2256				l = 0;		/* exit inner loop */
2257				done = 1;	/* exit outer loop */
2258				break;
2259
2260			case O_FORWARD_IP:
2261				if (args->eh)	/* not valid on layer2 pkts */
2262					break;
2263				if (q == NULL || q->rule != f ||
2264				    dyn_dir == MATCH_FORWARD) {
2265				    struct sockaddr_in *sa;
2266				    sa = &(((ipfw_insn_sa *)cmd)->sa);
2267				    if (sa->sin_addr.s_addr == INADDR_ANY) {
2268					bcopy(sa, &args->hopstore,
2269							sizeof(*sa));
2270					args->hopstore.sin_addr.s_addr =
2271						    htonl(tablearg);
2272					args->next_hop = &args->hopstore;
2273				    } else {
2274					args->next_hop = sa;
2275				    }
2276				}
2277				retval = IP_FW_PASS;
2278				l = 0;          /* exit inner loop */
2279				done = 1;       /* exit outer loop */
2280				break;
2281
2282#ifdef INET6
2283			case O_FORWARD_IP6:
2284				if (args->eh)	/* not valid on layer2 pkts */
2285					break;
2286				if (q == NULL || q->rule != f ||
2287				    dyn_dir == MATCH_FORWARD) {
2288					struct sockaddr_in6 *sin6;
2289
2290					sin6 = &(((ipfw_insn_sa6 *)cmd)->sa);
2291					args->next_hop6 = sin6;
2292				}
2293				retval = IP_FW_PASS;
2294				l = 0;		/* exit inner loop */
2295				done = 1;	/* exit outer loop */
2296				break;
2297#endif
2298
2299			case O_NETGRAPH:
2300			case O_NGTEE:
2301				set_match(args, f_pos, chain);
2302				args->rule.info = (cmd->arg1 == IP_FW_TABLEARG) ?
2303					tablearg : cmd->arg1;
2304				if (V_fw_one_pass)
2305					args->rule.info |= IPFW_ONEPASS;
2306				retval = (cmd->opcode == O_NETGRAPH) ?
2307				    IP_FW_NETGRAPH : IP_FW_NGTEE;
2308				l = 0;          /* exit inner loop */
2309				done = 1;       /* exit outer loop */
2310				break;
2311
2312			case O_SETFIB: {
2313				uint32_t fib;
2314
2315				f->pcnt++;	/* update stats */
2316				f->bcnt += pktlen;
2317				f->timestamp = time_uptime;
2318				fib = (cmd->arg1 == IP_FW_TABLEARG) ? tablearg:
2319				    cmd->arg1;
2320				if (fib >= rt_numfibs)
2321					fib = 0;
2322				M_SETFIB(m, fib);
2323				args->f_id.fib = fib;
2324				l = 0;		/* exit inner loop */
2325				break;
2326		        }
2327
2328			case O_NAT:
2329 				if (!IPFW_NAT_LOADED) {
2330				    retval = IP_FW_DENY;
2331				} else {
2332				    struct cfg_nat *t;
2333				    int nat_id;
2334
2335				    set_match(args, f_pos, chain);
2336				    /* Check if this is 'global' nat rule */
2337				    if (cmd->arg1 == 0) {
2338					    retval = ipfw_nat_ptr(args, NULL, m);
2339					    l = 0;
2340					    done = 1;
2341					    break;
2342				    }
2343				    t = ((ipfw_insn_nat *)cmd)->nat;
2344				    if (t == NULL) {
2345					nat_id = (cmd->arg1 == IP_FW_TABLEARG) ?
2346						tablearg : cmd->arg1;
2347					t = (*lookup_nat_ptr)(&chain->nat, nat_id);
2348
2349					if (t == NULL) {
2350					    retval = IP_FW_DENY;
2351					    l = 0;	/* exit inner loop */
2352					    done = 1;	/* exit outer loop */
2353					    break;
2354					}
2355					if (cmd->arg1 != IP_FW_TABLEARG)
2356					    ((ipfw_insn_nat *)cmd)->nat = t;
2357				    }
2358				    retval = ipfw_nat_ptr(args, t, m);
2359				}
2360				l = 0;          /* exit inner loop */
2361				done = 1;       /* exit outer loop */
2362				break;
2363
2364			case O_REASS: {
2365				int ip_off;
2366
2367				f->pcnt++;
2368				f->bcnt += pktlen;
2369				l = 0;	/* in any case exit inner loop */
2370				ip_off = ntohs(ip->ip_off);
2371
2372				/* if not fragmented, go to next rule */
2373				if ((ip_off & (IP_MF | IP_OFFMASK)) == 0)
2374				    break;
2375				/*
2376				 * ip_reass() expects len & off in host
2377				 * byte order.
2378				 */
2379				SET_HOST_IPLEN(ip);
2380
2381				args->m = m = ip_reass(m);
2382
2383				/*
2384				 * do IP header checksum fixup.
2385				 */
2386				if (m == NULL) { /* fragment got swallowed */
2387				    retval = IP_FW_DENY;
2388				} else { /* good, packet complete */
2389				    int hlen;
2390
2391				    ip = mtod(m, struct ip *);
2392				    hlen = ip->ip_hl << 2;
2393				    SET_NET_IPLEN(ip);
2394				    ip->ip_sum = 0;
2395				    if (hlen == sizeof(struct ip))
2396					ip->ip_sum = in_cksum_hdr(ip);
2397				    else
2398					ip->ip_sum = in_cksum(m, hlen);
2399				    retval = IP_FW_REASS;
2400				    set_match(args, f_pos, chain);
2401				}
2402				done = 1;	/* exit outer loop */
2403				break;
2404			}
2405
2406			default:
2407				panic("-- unknown opcode %d\n", cmd->opcode);
2408			} /* end of switch() on opcodes */
2409			/*
2410			 * if we get here with l=0, then match is irrelevant.
2411			 */
2412
2413			if (cmd->len & F_NOT)
2414				match = !match;
2415
2416			if (match) {
2417				if (cmd->len & F_OR)
2418					skip_or = 1;
2419			} else {
2420				if (!(cmd->len & F_OR)) /* not an OR block, */
2421					break;		/* try next rule    */
2422			}
2423
2424		}	/* end of inner loop, scan opcodes */
2425#undef PULLUP_LEN
2426
2427		if (done)
2428			break;
2429
2430/* next_rule:; */	/* try next rule		*/
2431
2432	}		/* end of outer for, scan rules */
2433
2434	if (done) {
2435		struct ip_fw *rule = chain->map[f_pos];
2436		/* Update statistics */
2437		rule->pcnt++;
2438		rule->bcnt += pktlen;
2439		rule->timestamp = time_uptime;
2440	} else {
2441		retval = IP_FW_DENY;
2442		printf("ipfw: ouch!, skip past end of rules, denying packet\n");
2443	}
2444	IPFW_RUNLOCK(chain);
2445#ifdef __FreeBSD__
2446	if (ucred_cache != NULL)
2447		crfree(ucred_cache);
2448#endif
2449	return (retval);
2450
2451pullup_failed:
2452	if (V_fw_verbose)
2453		printf("ipfw: pullup failed\n");
2454	return (IP_FW_DENY);
2455}
2456
2457/*
2458 * Module and VNET glue
2459 */
2460
2461/*
2462 * Stuff that must be initialised only on boot or module load
2463 */
2464static int
2465ipfw_init(void)
2466{
2467	int error = 0;
2468
2469	ipfw_dyn_attach();
2470	/*
2471 	 * Only print out this stuff the first time around,
2472	 * when called from the sysinit code.
2473	 */
2474	printf("ipfw2 "
2475#ifdef INET6
2476		"(+ipv6) "
2477#endif
2478		"initialized, divert %s, nat %s, "
2479		"rule-based forwarding "
2480#ifdef IPFIREWALL_FORWARD
2481		"enabled, "
2482#else
2483		"disabled, "
2484#endif
2485		"default to %s, logging ",
2486#ifdef IPDIVERT
2487		"enabled",
2488#else
2489		"loadable",
2490#endif
2491#ifdef IPFIREWALL_NAT
2492		"enabled",
2493#else
2494		"loadable",
2495#endif
2496		default_to_accept ? "accept" : "deny");
2497
2498	/*
2499	 * Note: V_xxx variables can be accessed here but the vnet specific
2500	 * initializer may not have been called yet for the VIMAGE case.
2501	 * Tuneables will have been processed. We will print out values for
2502	 * the default vnet.
2503	 * XXX This should all be rationalized AFTER 8.0
2504	 */
2505	if (V_fw_verbose == 0)
2506		printf("disabled\n");
2507	else if (V_verbose_limit == 0)
2508		printf("unlimited\n");
2509	else
2510		printf("limited to %d packets/entry by default\n",
2511		    V_verbose_limit);
2512
2513	ipfw_log_bpf(1); /* init */
2514	return (error);
2515}
2516
2517/*
2518 * Called for the removal of the last instance only on module unload.
2519 */
2520static void
2521ipfw_destroy(void)
2522{
2523
2524	ipfw_log_bpf(0); /* uninit */
2525	ipfw_dyn_detach();
2526	printf("IP firewall unloaded\n");
2527}
2528
2529/*
2530 * Stuff that must be initialized for every instance
2531 * (including the first of course).
2532 */
2533static int
2534vnet_ipfw_init(const void *unused)
2535{
2536	int error;
2537	struct ip_fw *rule = NULL;
2538	struct ip_fw_chain *chain;
2539
2540	chain = &V_layer3_chain;
2541
2542	/* First set up some values that are compile time options */
2543	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
2544	V_fw_deny_unknown_exthdrs = 1;
2545#ifdef IPFIREWALL_VERBOSE
2546	V_fw_verbose = 1;
2547#endif
2548#ifdef IPFIREWALL_VERBOSE_LIMIT
2549	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
2550#endif
2551#ifdef IPFIREWALL_NAT
2552	LIST_INIT(&chain->nat);
2553#endif
2554
2555	/* insert the default rule and create the initial map */
2556	chain->n_rules = 1;
2557	chain->static_len = sizeof(struct ip_fw);
2558	chain->map = malloc(sizeof(struct ip_fw *), M_IPFW, M_NOWAIT | M_ZERO);
2559	if (chain->map)
2560		rule = malloc(chain->static_len, M_IPFW, M_NOWAIT | M_ZERO);
2561	if (rule == NULL) {
2562		if (chain->map)
2563			free(chain->map, M_IPFW);
2564		printf("ipfw2: ENOSPC initializing default rule "
2565			"(support disabled)\n");
2566		return (ENOSPC);
2567	}
2568	error = ipfw_init_tables(chain);
2569	if (error) {
2570		panic("init_tables"); /* XXX Marko fix this ! */
2571	}
2572
2573	/* fill and insert the default rule */
2574	rule->act_ofs = 0;
2575	rule->rulenum = IPFW_DEFAULT_RULE;
2576	rule->cmd_len = 1;
2577	rule->set = RESVD_SET;
2578	rule->cmd[0].len = 1;
2579	rule->cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
2580	chain->rules = chain->default_rule = chain->map[0] = rule;
2581	chain->id = rule->id = 1;
2582
2583	IPFW_LOCK_INIT(chain);
2584	ipfw_dyn_init();
2585
2586	/* First set up some values that are compile time options */
2587	V_ipfw_vnet_ready = 1;		/* Open for business */
2588
2589	/*
2590	 * Hook the sockopt handler, and the layer2 (V_ip_fw_chk_ptr)
2591	 * and pfil hooks for ipv4 and ipv6. Even if the latter two fail
2592	 * we still keep the module alive because the sockopt and
2593	 * layer2 paths are still useful.
2594	 * ipfw[6]_hook return 0 on success, ENOENT on failure,
2595	 * so we can ignore the exact return value and just set a flag.
2596	 *
2597	 * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so
2598	 * changes in the underlying (per-vnet) variables trigger
2599	 * immediate hook()/unhook() calls.
2600	 * In layer2 we have the same behaviour, except that V_ether_ipfw
2601	 * is checked on each packet because there are no pfil hooks.
2602	 */
2603	V_ip_fw_ctl_ptr = ipfw_ctl;
2604	V_ip_fw_chk_ptr = ipfw_chk;
2605	error = ipfw_attach_hooks(1);
2606	return (error);
2607}
2608
2609/*
2610 * Called for the removal of each instance.
2611 */
2612static int
2613vnet_ipfw_uninit(const void *unused)
2614{
2615	struct ip_fw *reap, *rule;
2616	struct ip_fw_chain *chain = &V_layer3_chain;
2617	int i;
2618
2619	V_ipfw_vnet_ready = 0; /* tell new callers to go away */
2620	/*
2621	 * disconnect from ipv4, ipv6, layer2 and sockopt.
2622	 * Then grab, release and grab again the WLOCK so we make
2623	 * sure the update is propagated and nobody will be in.
2624	 */
2625	(void)ipfw_attach_hooks(0 /* detach */);
2626	V_ip_fw_chk_ptr = NULL;
2627	V_ip_fw_ctl_ptr = NULL;
2628	IPFW_UH_WLOCK(chain);
2629	IPFW_UH_WUNLOCK(chain);
2630	IPFW_UH_WLOCK(chain);
2631
2632	IPFW_WLOCK(chain);
2633	IPFW_WUNLOCK(chain);
2634	IPFW_WLOCK(chain);
2635
2636	ipfw_dyn_uninit(0);	/* run the callout_drain */
2637	ipfw_destroy_tables(chain);
2638	reap = NULL;
2639	for (i = 0; i < chain->n_rules; i++) {
2640		rule = chain->map[i];
2641		rule->x_next = reap;
2642		reap = rule;
2643	}
2644	if (chain->map)
2645		free(chain->map, M_IPFW);
2646	IPFW_WUNLOCK(chain);
2647	IPFW_UH_WUNLOCK(chain);
2648	if (reap != NULL)
2649		ipfw_reap_rules(reap);
2650	IPFW_LOCK_DESTROY(chain);
2651	ipfw_dyn_uninit(1);	/* free the remaining parts */
2652	return 0;
2653}
2654
2655/*
2656 * Module event handler.
2657 * In general we have the choice of handling most of these events by the
2658 * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
2659 * use the SYSINIT handlers as they are more capable of expressing the
2660 * flow of control during module and vnet operations, so this is just
2661 * a skeleton. Note there is no SYSINIT equivalent of the module
2662 * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
2663 */
2664static int
2665ipfw_modevent(module_t mod, int type, void *unused)
2666{
2667	int err = 0;
2668
2669	switch (type) {
2670	case MOD_LOAD:
2671		/* Called once at module load or
2672	 	 * system boot if compiled in. */
2673		break;
2674	case MOD_QUIESCE:
2675		/* Called before unload. May veto unloading. */
2676		break;
2677	case MOD_UNLOAD:
2678		/* Called during unload. */
2679		break;
2680	case MOD_SHUTDOWN:
2681		/* Called during system shutdown. */
2682		break;
2683	default:
2684		err = EOPNOTSUPP;
2685		break;
2686	}
2687	return err;
2688}
2689
2690static moduledata_t ipfwmod = {
2691	"ipfw",
2692	ipfw_modevent,
2693	0
2694};
2695
2696/* Define startup order. */
2697#define	IPFW_SI_SUB_FIREWALL	SI_SUB_PROTO_IFATTACHDOMAIN
2698#define	IPFW_MODEVENT_ORDER	(SI_ORDER_ANY - 255) /* On boot slot in here. */
2699#define	IPFW_MODULE_ORDER	(IPFW_MODEVENT_ORDER + 1) /* A little later. */
2700#define	IPFW_VNET_ORDER		(IPFW_MODEVENT_ORDER + 2) /* Later still. */
2701
2702DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
2703MODULE_VERSION(ipfw, 2);
2704/* should declare some dependencies here */
2705
2706/*
2707 * Starting up. Done in order after ipfwmod() has been called.
2708 * VNET_SYSINIT is also called for each existing vnet and each new vnet.
2709 */
2710SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2711	    ipfw_init, NULL);
2712VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2713	    vnet_ipfw_init, NULL);
2714
2715/*
2716 * Closing up shop. These are done in REVERSE ORDER, but still
2717 * after ipfwmod() has been called. Not called on reboot.
2718 * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
2719 * or when the module is unloaded.
2720 */
2721SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2722	    ipfw_destroy, NULL);
2723VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2724	    vnet_ipfw_uninit, NULL);
2725/* end of file */
2726