ip_fw2.c revision 215701
196191Sdes/*-
296191Sdes * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
396191Sdes *
496191Sdes * Redistribution and use in source and binary forms, with or without
596191Sdes * modification, are permitted provided that the following conditions
696191Sdes * are met:
796191Sdes * 1. Redistributions of source code must retain the above copyright
896191Sdes *    notice, this list of conditions and the following disclaimer.
996191Sdes * 2. Redistributions in binary form must reproduce the above copyright
1096191Sdes *    notice, this list of conditions and the following disclaimer in the
1196191Sdes *    documentation and/or other materials provided with the distribution.
1296191Sdes *
1396191Sdes * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
1496191Sdes * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
1596191Sdes * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
1696191Sdes * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
1796191Sdes * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
1896191Sdes * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
1996191Sdes * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
2096191Sdes * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
2196191Sdes * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
2296191Sdes * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
2396191Sdes * SUCH DAMAGE.
2496191Sdes */
2596191Sdes
2696191Sdes#include <sys/cdefs.h>
2796191Sdes__FBSDID("$FreeBSD: head/sys/netinet/ipfw/ip_fw2.c 215701 2010-11-22 19:32:54Z dim $");
2896191Sdes
2996191Sdes/*
3096191Sdes * The FreeBSD IP packet firewall, main file
3196191Sdes */
3296191Sdes
3396191Sdes#if !defined(KLD_MODULE)
3496191Sdes#include "opt_ipfw.h"
3596191Sdes#include "opt_ipdivert.h"
3696191Sdes#include "opt_ipdn.h"
3796191Sdes#include "opt_inet.h"
3896191Sdes#ifndef INET
3996191Sdes#error IPFIREWALL requires INET.
4096191Sdes#endif /* INET */
4196191Sdes#endif
4296191Sdes#include "opt_inet6.h"
4396191Sdes#include "opt_ipsec.h"
4496191Sdes
4596191Sdes#include <sys/param.h>
4696191Sdes#include <sys/systm.h>
4796191Sdes#include <sys/condvar.h>
4896191Sdes#include <sys/eventhandler.h>
4996191Sdes#include <sys/malloc.h>
5096191Sdes#include <sys/mbuf.h>
5196191Sdes#include <sys/kernel.h>
5296191Sdes#include <sys/lock.h>
5396191Sdes#include <sys/jail.h>
5496191Sdes#include <sys/module.h>
5596191Sdes#include <sys/priv.h>
5696191Sdes#include <sys/proc.h>
5796191Sdes#include <sys/rwlock.h>
5896191Sdes#include <sys/socket.h>
5996191Sdes#include <sys/socketvar.h>
6096191Sdes#include <sys/sysctl.h>
6196191Sdes#include <sys/syslog.h>
6296191Sdes#include <sys/ucred.h>
6396191Sdes#include <net/ethernet.h> /* for ETHERTYPE_IP */
6496191Sdes#include <net/if.h>
6596191Sdes#include <net/route.h>
6696191Sdes#include <net/pf_mtag.h>
6796191Sdes#include <net/vnet.h>
6896191Sdes
6996191Sdes#include <netinet/in.h>
7096191Sdes#include <netinet/in_var.h>
7196191Sdes#include <netinet/in_pcb.h>
7296191Sdes#include <netinet/ip.h>
7396191Sdes#include <netinet/ip_var.h>
7496191Sdes#include <netinet/ip_icmp.h>
7596191Sdes#include <netinet/ip_fw.h>
7696191Sdes#include <netinet/ipfw/ip_fw_private.h>
7796191Sdes#include <netinet/ip_carp.h>
7896191Sdes#include <netinet/pim.h>
7996191Sdes#include <netinet/tcp_var.h>
8096191Sdes#include <netinet/udp.h>
8196191Sdes#include <netinet/udp_var.h>
8296191Sdes#include <netinet/sctp.h>
8396191Sdes
8496191Sdes#include <netinet/ip6.h>
8596191Sdes#include <netinet/icmp6.h>
8696191Sdes#ifdef INET6
8796191Sdes#include <netinet6/scope6_var.h>
8896191Sdes#include <netinet6/ip6_var.h>
8996191Sdes#endif
9096191Sdes
9196191Sdes#include <machine/in_cksum.h>	/* XXX for in_cksum */
9296191Sdes
9396191Sdes#ifdef MAC
9496191Sdes#include <security/mac/mac_framework.h>
9596191Sdes#endif
9696191Sdes
9796191Sdes/*
9896191Sdes * static variables followed by global ones.
9996191Sdes * All ipfw global variables are here.
10096191Sdes */
10196191Sdes
10296191Sdes/* ipfw_vnet_ready controls when we are open for business */
10396191Sdesstatic VNET_DEFINE(int, ipfw_vnet_ready) = 0;
10496191Sdes#define	V_ipfw_vnet_ready	VNET(ipfw_vnet_ready)
10596191Sdes
10696191Sdesstatic VNET_DEFINE(int, fw_deny_unknown_exthdrs);
10796191Sdes#define	V_fw_deny_unknown_exthdrs	VNET(fw_deny_unknown_exthdrs)
10896191Sdes
10996191Sdes#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
11096191Sdesstatic int default_to_accept = 1;
11196191Sdes#else
11296191Sdesstatic int default_to_accept;
11396191Sdes#endif
11496191Sdes
11596191SdesVNET_DEFINE(int, autoinc_step);
116
117/*
118 * Each rule belongs to one of 32 different sets (0..31).
119 * The variable set_disable contains one bit per set.
120 * If the bit is set, all rules in the corresponding set
121 * are disabled. Set RESVD_SET(31) is reserved for the default rule
122 * and rules that are not deleted by the flush command,
123 * and CANNOT be disabled.
124 * Rules in set RESVD_SET can only be deleted individually.
125 */
126VNET_DEFINE(u_int32_t, set_disable);
127#define	V_set_disable			VNET(set_disable)
128
129VNET_DEFINE(int, fw_verbose);
130/* counter for ipfw_log(NULL...) */
131VNET_DEFINE(u_int64_t, norule_counter);
132VNET_DEFINE(int, verbose_limit);
133
134/* layer3_chain contains the list of rules for layer 3 */
135VNET_DEFINE(struct ip_fw_chain, layer3_chain);
136
137ipfw_nat_t *ipfw_nat_ptr = NULL;
138struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
139ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
140ipfw_nat_cfg_t *ipfw_nat_del_ptr;
141ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
142ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
143
144#ifdef SYSCTL_NODE
145uint32_t dummy_def = IPFW_DEFAULT_RULE;
146uint32_t dummy_tables_max = IPFW_TABLES_MAX;
147
148SYSBEGIN(f3)
149
150SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
151SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
152    CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
153    "Only do a single pass through ipfw when using dummynet(4)");
154SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
155    CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
156    "Rule number auto-increment step");
157SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose,
158    CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
159    "Log matches to ipfw rules");
160SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
161    CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
162    "Set upper limit of matches of ipfw rules logged");
163SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
164    &dummy_def, 0,
165    "The default/max possible rule number.");
166SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, tables_max, CTLFLAG_RD,
167    &dummy_tables_max, 0,
168    "The maximum number of tables.");
169SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
170    &default_to_accept, 0,
171    "Make the default rule accept all packets.");
172TUNABLE_INT("net.inet.ip.fw.default_to_accept", &default_to_accept);
173SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, static_count,
174    CTLFLAG_RD, &VNET_NAME(layer3_chain.n_rules), 0,
175    "Number of static rules");
176
177#ifdef INET6
178SYSCTL_DECL(_net_inet6_ip6);
179SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
180SYSCTL_VNET_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
181    CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(fw_deny_unknown_exthdrs), 0,
182    "Deny packets with unknown IPv6 Extension Headers");
183#endif /* INET6 */
184
185SYSEND
186
187#endif /* SYSCTL_NODE */
188
189
190/*
191 * Some macros used in the various matching options.
192 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
193 * Other macros just cast void * into the appropriate type
194 */
195#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
196#define	TCP(p)		((struct tcphdr *)(p))
197#define	SCTP(p)		((struct sctphdr *)(p))
198#define	UDP(p)		((struct udphdr *)(p))
199#define	ICMP(p)		((struct icmphdr *)(p))
200#define	ICMP6(p)	((struct icmp6_hdr *)(p))
201
202static __inline int
203icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
204{
205	int type = icmp->icmp_type;
206
207	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
208}
209
210#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
211    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
212
213static int
214is_icmp_query(struct icmphdr *icmp)
215{
216	int type = icmp->icmp_type;
217
218	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
219}
220#undef TT
221
222/*
223 * The following checks use two arrays of 8 or 16 bits to store the
224 * bits that we want set or clear, respectively. They are in the
225 * low and high half of cmd->arg1 or cmd->d[0].
226 *
227 * We scan options and store the bits we find set. We succeed if
228 *
229 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
230 *
231 * The code is sometimes optimized not to store additional variables.
232 */
233
234static int
235flags_match(ipfw_insn *cmd, u_int8_t bits)
236{
237	u_char want_clear;
238	bits = ~bits;
239
240	if ( ((cmd->arg1 & 0xff) & bits) != 0)
241		return 0; /* some bits we want set were clear */
242	want_clear = (cmd->arg1 >> 8) & 0xff;
243	if ( (want_clear & bits) != want_clear)
244		return 0; /* some bits we want clear were set */
245	return 1;
246}
247
248static int
249ipopts_match(struct ip *ip, ipfw_insn *cmd)
250{
251	int optlen, bits = 0;
252	u_char *cp = (u_char *)(ip + 1);
253	int x = (ip->ip_hl << 2) - sizeof (struct ip);
254
255	for (; x > 0; x -= optlen, cp += optlen) {
256		int opt = cp[IPOPT_OPTVAL];
257
258		if (opt == IPOPT_EOL)
259			break;
260		if (opt == IPOPT_NOP)
261			optlen = 1;
262		else {
263			optlen = cp[IPOPT_OLEN];
264			if (optlen <= 0 || optlen > x)
265				return 0; /* invalid or truncated */
266		}
267		switch (opt) {
268
269		default:
270			break;
271
272		case IPOPT_LSRR:
273			bits |= IP_FW_IPOPT_LSRR;
274			break;
275
276		case IPOPT_SSRR:
277			bits |= IP_FW_IPOPT_SSRR;
278			break;
279
280		case IPOPT_RR:
281			bits |= IP_FW_IPOPT_RR;
282			break;
283
284		case IPOPT_TS:
285			bits |= IP_FW_IPOPT_TS;
286			break;
287		}
288	}
289	return (flags_match(cmd, bits));
290}
291
292static int
293tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
294{
295	int optlen, bits = 0;
296	u_char *cp = (u_char *)(tcp + 1);
297	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
298
299	for (; x > 0; x -= optlen, cp += optlen) {
300		int opt = cp[0];
301		if (opt == TCPOPT_EOL)
302			break;
303		if (opt == TCPOPT_NOP)
304			optlen = 1;
305		else {
306			optlen = cp[1];
307			if (optlen <= 0)
308				break;
309		}
310
311		switch (opt) {
312
313		default:
314			break;
315
316		case TCPOPT_MAXSEG:
317			bits |= IP_FW_TCPOPT_MSS;
318			break;
319
320		case TCPOPT_WINDOW:
321			bits |= IP_FW_TCPOPT_WINDOW;
322			break;
323
324		case TCPOPT_SACK_PERMITTED:
325		case TCPOPT_SACK:
326			bits |= IP_FW_TCPOPT_SACK;
327			break;
328
329		case TCPOPT_TIMESTAMP:
330			bits |= IP_FW_TCPOPT_TS;
331			break;
332
333		}
334	}
335	return (flags_match(cmd, bits));
336}
337
338static int
339iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
340{
341	if (ifp == NULL)	/* no iface with this packet, match fails */
342		return 0;
343	/* Check by name or by IP address */
344	if (cmd->name[0] != '\0') { /* match by name */
345		/* Check name */
346		if (cmd->p.glob) {
347			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
348				return(1);
349		} else {
350			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
351				return(1);
352		}
353	} else {
354#ifdef __FreeBSD__	/* and OSX too ? */
355		struct ifaddr *ia;
356
357		if_addr_rlock(ifp);
358		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
359			if (ia->ifa_addr->sa_family != AF_INET)
360				continue;
361			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
362			    (ia->ifa_addr))->sin_addr.s_addr) {
363				if_addr_runlock(ifp);
364				return(1);	/* match */
365			}
366		}
367		if_addr_runlock(ifp);
368#endif /* __FreeBSD__ */
369	}
370	return(0);	/* no match, fail ... */
371}
372
373/*
374 * The verify_path function checks if a route to the src exists and
375 * if it is reachable via ifp (when provided).
376 *
377 * The 'verrevpath' option checks that the interface that an IP packet
378 * arrives on is the same interface that traffic destined for the
379 * packet's source address would be routed out of.
380 * The 'versrcreach' option just checks that the source address is
381 * reachable via any route (except default) in the routing table.
382 * These two are a measure to block forged packets. This is also
383 * commonly known as "anti-spoofing" or Unicast Reverse Path
384 * Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
385 * is purposely reminiscent of the Cisco IOS command,
386 *
387 *   ip verify unicast reverse-path
388 *   ip verify unicast source reachable-via any
389 *
390 * which implements the same functionality. But note that the syntax
391 * is misleading, and the check may be performed on all IP packets
392 * whether unicast, multicast, or broadcast.
393 */
394static int
395verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
396{
397#ifndef __FreeBSD__
398	return 0;
399#else
400	struct route ro;
401	struct sockaddr_in *dst;
402
403	bzero(&ro, sizeof(ro));
404
405	dst = (struct sockaddr_in *)&(ro.ro_dst);
406	dst->sin_family = AF_INET;
407	dst->sin_len = sizeof(*dst);
408	dst->sin_addr = src;
409	in_rtalloc_ign(&ro, 0, fib);
410
411	if (ro.ro_rt == NULL)
412		return 0;
413
414	/*
415	 * If ifp is provided, check for equality with rtentry.
416	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
417	 * in order to pass packets injected back by if_simloop():
418	 * if useloopback == 1 routing entry (via lo0) for our own address
419	 * may exist, so we need to handle routing assymetry.
420	 */
421	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
422		RTFREE(ro.ro_rt);
423		return 0;
424	}
425
426	/* if no ifp provided, check if rtentry is not default route */
427	if (ifp == NULL &&
428	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
429		RTFREE(ro.ro_rt);
430		return 0;
431	}
432
433	/* or if this is a blackhole/reject route */
434	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
435		RTFREE(ro.ro_rt);
436		return 0;
437	}
438
439	/* found valid route */
440	RTFREE(ro.ro_rt);
441	return 1;
442#endif /* __FreeBSD__ */
443}
444
445#ifdef INET6
446/*
447 * ipv6 specific rules here...
448 */
449static __inline int
450icmp6type_match (int type, ipfw_insn_u32 *cmd)
451{
452	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
453}
454
455static int
456flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
457{
458	int i;
459	for (i=0; i <= cmd->o.arg1; ++i )
460		if (curr_flow == cmd->d[i] )
461			return 1;
462	return 0;
463}
464
465/* support for IP6_*_ME opcodes */
466static int
467search_ip6_addr_net (struct in6_addr * ip6_addr)
468{
469	struct ifnet *mdc;
470	struct ifaddr *mdc2;
471	struct in6_ifaddr *fdm;
472	struct in6_addr copia;
473
474	TAILQ_FOREACH(mdc, &V_ifnet, if_link) {
475		if_addr_rlock(mdc);
476		TAILQ_FOREACH(mdc2, &mdc->if_addrhead, ifa_link) {
477			if (mdc2->ifa_addr->sa_family == AF_INET6) {
478				fdm = (struct in6_ifaddr *)mdc2;
479				copia = fdm->ia_addr.sin6_addr;
480				/* need for leaving scope_id in the sock_addr */
481				in6_clearscope(&copia);
482				if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia)) {
483					if_addr_runlock(mdc);
484					return 1;
485				}
486			}
487		}
488		if_addr_runlock(mdc);
489	}
490	return 0;
491}
492
493static int
494verify_path6(struct in6_addr *src, struct ifnet *ifp)
495{
496	struct route_in6 ro;
497	struct sockaddr_in6 *dst;
498
499	bzero(&ro, sizeof(ro));
500
501	dst = (struct sockaddr_in6 * )&(ro.ro_dst);
502	dst->sin6_family = AF_INET6;
503	dst->sin6_len = sizeof(*dst);
504	dst->sin6_addr = *src;
505	/* XXX MRT 0 for ipv6 at this time */
506	rtalloc_ign((struct route *)&ro, 0);
507
508	if (ro.ro_rt == NULL)
509		return 0;
510
511	/*
512	 * if ifp is provided, check for equality with rtentry
513	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
514	 * to support the case of sending packets to an address of our own.
515	 * (where the former interface is the first argument of if_simloop()
516	 *  (=ifp), the latter is lo0)
517	 */
518	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
519		RTFREE(ro.ro_rt);
520		return 0;
521	}
522
523	/* if no ifp provided, check if rtentry is not default route */
524	if (ifp == NULL &&
525	    IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
526		RTFREE(ro.ro_rt);
527		return 0;
528	}
529
530	/* or if this is a blackhole/reject route */
531	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
532		RTFREE(ro.ro_rt);
533		return 0;
534	}
535
536	/* found valid route */
537	RTFREE(ro.ro_rt);
538	return 1;
539
540}
541
542static int
543is_icmp6_query(int icmp6_type)
544{
545	if ((icmp6_type <= ICMP6_MAXTYPE) &&
546	    (icmp6_type == ICMP6_ECHO_REQUEST ||
547	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
548	    icmp6_type == ICMP6_WRUREQUEST ||
549	    icmp6_type == ICMP6_FQDN_QUERY ||
550	    icmp6_type == ICMP6_NI_QUERY))
551		return (1);
552
553	return (0);
554}
555
556static void
557send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
558{
559	struct mbuf *m;
560
561	m = args->m;
562	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
563		struct tcphdr *tcp;
564		tcp = (struct tcphdr *)((char *)ip6 + hlen);
565
566		if ((tcp->th_flags & TH_RST) == 0) {
567			struct mbuf *m0;
568			m0 = ipfw_send_pkt(args->m, &(args->f_id),
569			    ntohl(tcp->th_seq), ntohl(tcp->th_ack),
570			    tcp->th_flags | TH_RST);
571			if (m0 != NULL)
572				ip6_output(m0, NULL, NULL, 0, NULL, NULL,
573				    NULL);
574		}
575		FREE_PKT(m);
576	} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
577#if 0
578		/*
579		 * Unlike above, the mbufs need to line up with the ip6 hdr,
580		 * as the contents are read. We need to m_adj() the
581		 * needed amount.
582		 * The mbuf will however be thrown away so we can adjust it.
583		 * Remember we did an m_pullup on it already so we
584		 * can make some assumptions about contiguousness.
585		 */
586		if (args->L3offset)
587			m_adj(m, args->L3offset);
588#endif
589		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
590	} else
591		FREE_PKT(m);
592
593	args->m = NULL;
594}
595
596#endif /* INET6 */
597
598
599/*
600 * sends a reject message, consuming the mbuf passed as an argument.
601 */
602static void
603send_reject(struct ip_fw_args *args, int code, int iplen, struct ip *ip)
604{
605
606#if 0
607	/* XXX When ip is not guaranteed to be at mtod() we will
608	 * need to account for this */
609	 * The mbuf will however be thrown away so we can adjust it.
610	 * Remember we did an m_pullup on it already so we
611	 * can make some assumptions about contiguousness.
612	 */
613	if (args->L3offset)
614		m_adj(m, args->L3offset);
615#endif
616	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
617		/* We need the IP header in host order for icmp_error(). */
618		SET_HOST_IPLEN(ip);
619		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
620	} else if (args->f_id.proto == IPPROTO_TCP) {
621		struct tcphdr *const tcp =
622		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
623		if ( (tcp->th_flags & TH_RST) == 0) {
624			struct mbuf *m;
625			m = ipfw_send_pkt(args->m, &(args->f_id),
626				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
627				tcp->th_flags | TH_RST);
628			if (m != NULL)
629				ip_output(m, NULL, NULL, 0, NULL, NULL);
630		}
631		FREE_PKT(args->m);
632	} else
633		FREE_PKT(args->m);
634	args->m = NULL;
635}
636
637/*
638 * Support for uid/gid/jail lookup. These tests are expensive
639 * (because we may need to look into the list of active sockets)
640 * so we cache the results. ugid_lookupp is 0 if we have not
641 * yet done a lookup, 1 if we succeeded, and -1 if we tried
642 * and failed. The function always returns the match value.
643 * We could actually spare the variable and use *uc, setting
644 * it to '(void *)check_uidgid if we have no info, NULL if
645 * we tried and failed, or any other value if successful.
646 */
647static int
648check_uidgid(ipfw_insn_u32 *insn, int proto, struct ifnet *oif,
649    struct in_addr dst_ip, u_int16_t dst_port, struct in_addr src_ip,
650    u_int16_t src_port, int *ugid_lookupp,
651    struct ucred **uc, struct inpcb *inp)
652{
653#ifndef __FreeBSD__
654	return cred_check(insn, proto, oif,
655	    dst_ip, dst_port, src_ip, src_port,
656	    (struct bsd_ucred *)uc, ugid_lookupp, ((struct mbuf *)inp)->m_skb);
657#else  /* FreeBSD */
658	struct inpcbinfo *pi;
659	int wildcard;
660	struct inpcb *pcb;
661	int match;
662
663	/*
664	 * Check to see if the UDP or TCP stack supplied us with
665	 * the PCB. If so, rather then holding a lock and looking
666	 * up the PCB, we can use the one that was supplied.
667	 */
668	if (inp && *ugid_lookupp == 0) {
669		INP_LOCK_ASSERT(inp);
670		if (inp->inp_socket != NULL) {
671			*uc = crhold(inp->inp_cred);
672			*ugid_lookupp = 1;
673		} else
674			*ugid_lookupp = -1;
675	}
676	/*
677	 * If we have already been here and the packet has no
678	 * PCB entry associated with it, then we can safely
679	 * assume that this is a no match.
680	 */
681	if (*ugid_lookupp == -1)
682		return (0);
683	if (proto == IPPROTO_TCP) {
684		wildcard = 0;
685		pi = &V_tcbinfo;
686	} else if (proto == IPPROTO_UDP) {
687		wildcard = INPLOOKUP_WILDCARD;
688		pi = &V_udbinfo;
689	} else
690		return 0;
691	match = 0;
692	if (*ugid_lookupp == 0) {
693		INP_INFO_RLOCK(pi);
694		pcb =  (oif) ?
695			in_pcblookup_hash(pi,
696				dst_ip, htons(dst_port),
697				src_ip, htons(src_port),
698				wildcard, oif) :
699			in_pcblookup_hash(pi,
700				src_ip, htons(src_port),
701				dst_ip, htons(dst_port),
702				wildcard, NULL);
703		if (pcb != NULL) {
704			*uc = crhold(pcb->inp_cred);
705			*ugid_lookupp = 1;
706		}
707		INP_INFO_RUNLOCK(pi);
708		if (*ugid_lookupp == 0) {
709			/*
710			 * We tried and failed, set the variable to -1
711			 * so we will not try again on this packet.
712			 */
713			*ugid_lookupp = -1;
714			return (0);
715		}
716	}
717	if (insn->o.opcode == O_UID)
718		match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
719	else if (insn->o.opcode == O_GID)
720		match = groupmember((gid_t)insn->d[0], *uc);
721	else if (insn->o.opcode == O_JAIL)
722		match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
723	return match;
724#endif /* __FreeBSD__ */
725}
726
727/*
728 * Helper function to set args with info on the rule after the matching
729 * one. slot is precise, whereas we guess rule_id as they are
730 * assigned sequentially.
731 */
732static inline void
733set_match(struct ip_fw_args *args, int slot,
734	struct ip_fw_chain *chain)
735{
736	args->rule.chain_id = chain->id;
737	args->rule.slot = slot + 1; /* we use 0 as a marker */
738	args->rule.rule_id = 1 + chain->map[slot]->id;
739	args->rule.rulenum = chain->map[slot]->rulenum;
740}
741
742/*
743 * The main check routine for the firewall.
744 *
745 * All arguments are in args so we can modify them and return them
746 * back to the caller.
747 *
748 * Parameters:
749 *
750 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
751 *		Starts with the IP header.
752 *	args->eh (in)	Mac header if present, NULL for layer3 packet.
753 *	args->L3offset	Number of bytes bypassed if we came from L2.
754 *			e.g. often sizeof(eh)  ** NOTYET **
755 *	args->oif	Outgoing interface, NULL if packet is incoming.
756 *		The incoming interface is in the mbuf. (in)
757 *	args->divert_rule (in/out)
758 *		Skip up to the first rule past this rule number;
759 *		upon return, non-zero port number for divert or tee.
760 *
761 *	args->rule	Pointer to the last matching rule (in/out)
762 *	args->next_hop	Socket we are forwarding to (out).
763 *	args->f_id	Addresses grabbed from the packet (out)
764 * 	args->rule.info	a cookie depending on rule action
765 *
766 * Return value:
767 *
768 *	IP_FW_PASS	the packet must be accepted
769 *	IP_FW_DENY	the packet must be dropped
770 *	IP_FW_DIVERT	divert packet, port in m_tag
771 *	IP_FW_TEE	tee packet, port in m_tag
772 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
773 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
774 *		args->rule contains the matching rule,
775 *		args->rule.info has additional information.
776 *
777 */
778int
779ipfw_chk(struct ip_fw_args *args)
780{
781
782	/*
783	 * Local variables holding state while processing a packet:
784	 *
785	 * IMPORTANT NOTE: to speed up the processing of rules, there
786	 * are some assumption on the values of the variables, which
787	 * are documented here. Should you change them, please check
788	 * the implementation of the various instructions to make sure
789	 * that they still work.
790	 *
791	 * args->eh	The MAC header. It is non-null for a layer2
792	 *	packet, it is NULL for a layer-3 packet.
793	 * **notyet**
794	 * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
795	 *
796	 * m | args->m	Pointer to the mbuf, as received from the caller.
797	 *	It may change if ipfw_chk() does an m_pullup, or if it
798	 *	consumes the packet because it calls send_reject().
799	 *	XXX This has to change, so that ipfw_chk() never modifies
800	 *	or consumes the buffer.
801	 * ip	is the beginning of the ip(4 or 6) header.
802	 *	Calculated by adding the L3offset to the start of data.
803	 *	(Until we start using L3offset, the packet is
804	 *	supposed to start with the ip header).
805	 */
806	struct mbuf *m = args->m;
807	struct ip *ip = mtod(m, struct ip *);
808
809	/*
810	 * For rules which contain uid/gid or jail constraints, cache
811	 * a copy of the users credentials after the pcb lookup has been
812	 * executed. This will speed up the processing of rules with
813	 * these types of constraints, as well as decrease contention
814	 * on pcb related locks.
815	 */
816#ifndef __FreeBSD__
817	struct bsd_ucred ucred_cache;
818#else
819	struct ucred *ucred_cache = NULL;
820#endif
821	int ucred_lookup = 0;
822
823	/*
824	 * oif | args->oif	If NULL, ipfw_chk has been called on the
825	 *	inbound path (ether_input, ip_input).
826	 *	If non-NULL, ipfw_chk has been called on the outbound path
827	 *	(ether_output, ip_output).
828	 */
829	struct ifnet *oif = args->oif;
830
831	int f_pos = 0;		/* index of current rule in the array */
832	int retval = 0;
833
834	/*
835	 * hlen	The length of the IP header.
836	 */
837	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
838
839	/*
840	 * offset	The offset of a fragment. offset != 0 means that
841	 *	we have a fragment at this offset of an IPv4 packet.
842	 *	offset == 0 means that (if this is an IPv4 packet)
843	 *	this is the first or only fragment.
844	 *	For IPv6 offset == 0 means there is no Fragment Header.
845	 *	If offset != 0 for IPv6 always use correct mask to
846	 *	get the correct offset because we add IP6F_MORE_FRAG
847	 *	to be able to dectect the first fragment which would
848	 *	otherwise have offset = 0.
849	 */
850	u_short offset = 0;
851
852	/*
853	 * Local copies of addresses. They are only valid if we have
854	 * an IP packet.
855	 *
856	 * proto	The protocol. Set to 0 for non-ip packets,
857	 *	or to the protocol read from the packet otherwise.
858	 *	proto != 0 means that we have an IPv4 packet.
859	 *
860	 * src_port, dst_port	port numbers, in HOST format. Only
861	 *	valid for TCP and UDP packets.
862	 *
863	 * src_ip, dst_ip	ip addresses, in NETWORK format.
864	 *	Only valid for IPv4 packets.
865	 */
866	uint8_t proto;
867	uint16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
868	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
869	uint16_t iplen=0;
870	int pktlen;
871	uint16_t	etype = 0;	/* Host order stored ether type */
872
873	/*
874	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
875	 * 	MATCH_NONE when checked and not matched (q = NULL),
876	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
877	 */
878	int dyn_dir = MATCH_UNKNOWN;
879	ipfw_dyn_rule *q = NULL;
880	struct ip_fw_chain *chain = &V_layer3_chain;
881
882	/*
883	 * We store in ulp a pointer to the upper layer protocol header.
884	 * In the ipv4 case this is easy to determine from the header,
885	 * but for ipv6 we might have some additional headers in the middle.
886	 * ulp is NULL if not found.
887	 */
888	void *ulp = NULL;		/* upper layer protocol pointer. */
889
890	/* XXX ipv6 variables */
891	int is_ipv6 = 0;
892	uint8_t	icmp6_type = 0;
893	uint16_t ext_hd = 0;	/* bits vector for extension header filtering */
894	/* end of ipv6 variables */
895
896	int is_ipv4 = 0;
897
898	int done = 0;		/* flag to exit the outer loop */
899
900	if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
901		return (IP_FW_PASS);	/* accept */
902
903	dst_ip.s_addr = 0;		/* make sure it is initialized */
904	src_ip.s_addr = 0;		/* make sure it is initialized */
905	pktlen = m->m_pkthdr.len;
906	args->f_id.fib = M_GETFIB(m); /* note mbuf not altered) */
907	proto = args->f_id.proto = 0;	/* mark f_id invalid */
908		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
909
910/*
911 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
912 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
913 * pointer might become stale after other pullups (but we never use it
914 * this way).
915 */
916#define PULLUP_TO(_len, p, T)					\
917do {								\
918	int x = (_len) + sizeof(T);				\
919	if ((m)->m_len < x) {					\
920		args->m = m = m_pullup(m, x);			\
921		if (m == NULL)					\
922			goto pullup_failed;			\
923	}							\
924	p = (mtod(m, char *) + (_len));				\
925} while (0)
926
927	/*
928	 * if we have an ether header,
929	 */
930	if (args->eh)
931		etype = ntohs(args->eh->ether_type);
932
933	/* Identify IP packets and fill up variables. */
934	if (pktlen >= sizeof(struct ip6_hdr) &&
935	    (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
936		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
937		is_ipv6 = 1;
938		args->f_id.addr_type = 6;
939		hlen = sizeof(struct ip6_hdr);
940		proto = ip6->ip6_nxt;
941
942		/* Search extension headers to find upper layer protocols */
943		while (ulp == NULL) {
944			switch (proto) {
945			case IPPROTO_ICMPV6:
946				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
947				icmp6_type = ICMP6(ulp)->icmp6_type;
948				break;
949
950			case IPPROTO_TCP:
951				PULLUP_TO(hlen, ulp, struct tcphdr);
952				dst_port = TCP(ulp)->th_dport;
953				src_port = TCP(ulp)->th_sport;
954				/* save flags for dynamic rules */
955				args->f_id._flags = TCP(ulp)->th_flags;
956				break;
957
958			case IPPROTO_SCTP:
959				PULLUP_TO(hlen, ulp, struct sctphdr);
960				src_port = SCTP(ulp)->src_port;
961				dst_port = SCTP(ulp)->dest_port;
962				break;
963
964			case IPPROTO_UDP:
965				PULLUP_TO(hlen, ulp, struct udphdr);
966				dst_port = UDP(ulp)->uh_dport;
967				src_port = UDP(ulp)->uh_sport;
968				break;
969
970			case IPPROTO_HOPOPTS:	/* RFC 2460 */
971				PULLUP_TO(hlen, ulp, struct ip6_hbh);
972				ext_hd |= EXT_HOPOPTS;
973				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
974				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
975				ulp = NULL;
976				break;
977
978			case IPPROTO_ROUTING:	/* RFC 2460 */
979				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
980				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
981				case 0:
982					ext_hd |= EXT_RTHDR0;
983					break;
984				case 2:
985					ext_hd |= EXT_RTHDR2;
986					break;
987				default:
988					printf("IPFW2: IPV6 - Unknown Routing "
989					    "Header type(%d)\n",
990					    ((struct ip6_rthdr *)ulp)->ip6r_type);
991					if (V_fw_deny_unknown_exthdrs)
992					    return (IP_FW_DENY);
993					break;
994				}
995				ext_hd |= EXT_ROUTING;
996				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
997				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
998				ulp = NULL;
999				break;
1000
1001			case IPPROTO_FRAGMENT:	/* RFC 2460 */
1002				PULLUP_TO(hlen, ulp, struct ip6_frag);
1003				ext_hd |= EXT_FRAGMENT;
1004				hlen += sizeof (struct ip6_frag);
1005				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
1006				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
1007					IP6F_OFF_MASK;
1008				/* Add IP6F_MORE_FRAG for offset of first
1009				 * fragment to be != 0. */
1010				offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
1011					IP6F_MORE_FRAG;
1012				if (offset == 0) {
1013					printf("IPFW2: IPV6 - Invalid Fragment "
1014					    "Header\n");
1015					if (V_fw_deny_unknown_exthdrs)
1016					    return (IP_FW_DENY);
1017					break;
1018				}
1019				args->f_id.extra =
1020				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
1021				ulp = NULL;
1022				break;
1023
1024			case IPPROTO_DSTOPTS:	/* RFC 2460 */
1025				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1026				ext_hd |= EXT_DSTOPTS;
1027				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1028				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1029				ulp = NULL;
1030				break;
1031
1032			case IPPROTO_AH:	/* RFC 2402 */
1033				PULLUP_TO(hlen, ulp, struct ip6_ext);
1034				ext_hd |= EXT_AH;
1035				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
1036				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
1037				ulp = NULL;
1038				break;
1039
1040			case IPPROTO_ESP:	/* RFC 2406 */
1041				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
1042				/* Anything past Seq# is variable length and
1043				 * data past this ext. header is encrypted. */
1044				ext_hd |= EXT_ESP;
1045				break;
1046
1047			case IPPROTO_NONE:	/* RFC 2460 */
1048				/*
1049				 * Packet ends here, and IPv6 header has
1050				 * already been pulled up. If ip6e_len!=0
1051				 * then octets must be ignored.
1052				 */
1053				ulp = ip; /* non-NULL to get out of loop. */
1054				break;
1055
1056			case IPPROTO_OSPFIGP:
1057				/* XXX OSPF header check? */
1058				PULLUP_TO(hlen, ulp, struct ip6_ext);
1059				break;
1060
1061			case IPPROTO_PIM:
1062				/* XXX PIM header check? */
1063				PULLUP_TO(hlen, ulp, struct pim);
1064				break;
1065
1066			case IPPROTO_CARP:
1067				PULLUP_TO(hlen, ulp, struct carp_header);
1068				if (((struct carp_header *)ulp)->carp_version !=
1069				    CARP_VERSION)
1070					return (IP_FW_DENY);
1071				if (((struct carp_header *)ulp)->carp_type !=
1072				    CARP_ADVERTISEMENT)
1073					return (IP_FW_DENY);
1074				break;
1075
1076			case IPPROTO_IPV6:	/* RFC 2893 */
1077				PULLUP_TO(hlen, ulp, struct ip6_hdr);
1078				break;
1079
1080			case IPPROTO_IPV4:	/* RFC 2893 */
1081				PULLUP_TO(hlen, ulp, struct ip);
1082				break;
1083
1084			default:
1085				printf("IPFW2: IPV6 - Unknown Extension "
1086				    "Header(%d), ext_hd=%x\n", proto, ext_hd);
1087				if (V_fw_deny_unknown_exthdrs)
1088				    return (IP_FW_DENY);
1089				PULLUP_TO(hlen, ulp, struct ip6_ext);
1090				break;
1091			} /*switch */
1092		}
1093		ip = mtod(m, struct ip *);
1094		ip6 = (struct ip6_hdr *)ip;
1095		args->f_id.src_ip6 = ip6->ip6_src;
1096		args->f_id.dst_ip6 = ip6->ip6_dst;
1097		args->f_id.src_ip = 0;
1098		args->f_id.dst_ip = 0;
1099		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
1100	} else if (pktlen >= sizeof(struct ip) &&
1101	    (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
1102	    	is_ipv4 = 1;
1103		hlen = ip->ip_hl << 2;
1104		args->f_id.addr_type = 4;
1105
1106		/*
1107		 * Collect parameters into local variables for faster matching.
1108		 */
1109		proto = ip->ip_p;
1110		src_ip = ip->ip_src;
1111		dst_ip = ip->ip_dst;
1112		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1113		iplen = ntohs(ip->ip_len);
1114		pktlen = iplen < pktlen ? iplen : pktlen;
1115
1116		if (offset == 0) {
1117			switch (proto) {
1118			case IPPROTO_TCP:
1119				PULLUP_TO(hlen, ulp, struct tcphdr);
1120				dst_port = TCP(ulp)->th_dport;
1121				src_port = TCP(ulp)->th_sport;
1122				/* save flags for dynamic rules */
1123				args->f_id._flags = TCP(ulp)->th_flags;
1124				break;
1125
1126			case IPPROTO_UDP:
1127				PULLUP_TO(hlen, ulp, struct udphdr);
1128				dst_port = UDP(ulp)->uh_dport;
1129				src_port = UDP(ulp)->uh_sport;
1130				break;
1131
1132			case IPPROTO_ICMP:
1133				PULLUP_TO(hlen, ulp, struct icmphdr);
1134				//args->f_id.flags = ICMP(ulp)->icmp_type;
1135				break;
1136
1137			default:
1138				break;
1139			}
1140		}
1141
1142		ip = mtod(m, struct ip *);
1143		args->f_id.src_ip = ntohl(src_ip.s_addr);
1144		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1145	}
1146#undef PULLUP_TO
1147	if (proto) { /* we may have port numbers, store them */
1148		args->f_id.proto = proto;
1149		args->f_id.src_port = src_port = ntohs(src_port);
1150		args->f_id.dst_port = dst_port = ntohs(dst_port);
1151	}
1152
1153	IPFW_RLOCK(chain);
1154	if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
1155		IPFW_RUNLOCK(chain);
1156		return (IP_FW_PASS);	/* accept */
1157	}
1158	if (args->rule.slot) {
1159		/*
1160		 * Packet has already been tagged as a result of a previous
1161		 * match on rule args->rule aka args->rule_id (PIPE, QUEUE,
1162		 * REASS, NETGRAPH, DIVERT/TEE...)
1163		 * Validate the slot and continue from the next one
1164		 * if still present, otherwise do a lookup.
1165		 */
1166		f_pos = (args->rule.chain_id == chain->id) ?
1167		    args->rule.slot :
1168		    ipfw_find_rule(chain, args->rule.rulenum,
1169			args->rule.rule_id);
1170	} else {
1171		f_pos = 0;
1172	}
1173
1174	/*
1175	 * Now scan the rules, and parse microinstructions for each rule.
1176	 * We have two nested loops and an inner switch. Sometimes we
1177	 * need to break out of one or both loops, or re-enter one of
1178	 * the loops with updated variables. Loop variables are:
1179	 *
1180	 *	f_pos (outer loop) points to the current rule.
1181	 *		On output it points to the matching rule.
1182	 *	done (outer loop) is used as a flag to break the loop.
1183	 *	l (inner loop)	residual length of current rule.
1184	 *		cmd points to the current microinstruction.
1185	 *
1186	 * We break the inner loop by setting l=0 and possibly
1187	 * cmdlen=0 if we don't want to advance cmd.
1188	 * We break the outer loop by setting done=1
1189	 * We can restart the inner loop by setting l>0 and f_pos, f, cmd
1190	 * as needed.
1191	 */
1192	for (; f_pos < chain->n_rules; f_pos++) {
1193		ipfw_insn *cmd;
1194		uint32_t tablearg = 0;
1195		int l, cmdlen, skip_or; /* skip rest of OR block */
1196		struct ip_fw *f;
1197
1198		f = chain->map[f_pos];
1199		if (V_set_disable & (1 << f->set) )
1200			continue;
1201
1202		skip_or = 0;
1203		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1204		    l -= cmdlen, cmd += cmdlen) {
1205			int match;
1206
1207			/*
1208			 * check_body is a jump target used when we find a
1209			 * CHECK_STATE, and need to jump to the body of
1210			 * the target rule.
1211			 */
1212
1213/* check_body: */
1214			cmdlen = F_LEN(cmd);
1215			/*
1216			 * An OR block (insn_1 || .. || insn_n) has the
1217			 * F_OR bit set in all but the last instruction.
1218			 * The first match will set "skip_or", and cause
1219			 * the following instructions to be skipped until
1220			 * past the one with the F_OR bit clear.
1221			 */
1222			if (skip_or) {		/* skip this instruction */
1223				if ((cmd->len & F_OR) == 0)
1224					skip_or = 0;	/* next one is good */
1225				continue;
1226			}
1227			match = 0; /* set to 1 if we succeed */
1228
1229			switch (cmd->opcode) {
1230			/*
1231			 * The first set of opcodes compares the packet's
1232			 * fields with some pattern, setting 'match' if a
1233			 * match is found. At the end of the loop there is
1234			 * logic to deal with F_NOT and F_OR flags associated
1235			 * with the opcode.
1236			 */
1237			case O_NOP:
1238				match = 1;
1239				break;
1240
1241			case O_FORWARD_MAC:
1242				printf("ipfw: opcode %d unimplemented\n",
1243				    cmd->opcode);
1244				break;
1245
1246			case O_GID:
1247			case O_UID:
1248			case O_JAIL:
1249				/*
1250				 * We only check offset == 0 && proto != 0,
1251				 * as this ensures that we have a
1252				 * packet with the ports info.
1253				 */
1254				if (offset!=0)
1255					break;
1256				if (is_ipv6) /* XXX to be fixed later */
1257					break;
1258				if (proto == IPPROTO_TCP ||
1259				    proto == IPPROTO_UDP)
1260					match = check_uidgid(
1261						    (ipfw_insn_u32 *)cmd,
1262						    proto, oif,
1263						    dst_ip, dst_port,
1264						    src_ip, src_port, &ucred_lookup,
1265#ifdef __FreeBSD__
1266						    &ucred_cache, args->inp);
1267#else
1268						    (void *)&ucred_cache,
1269						    (struct inpcb *)args->m);
1270#endif
1271				break;
1272
1273			case O_RECV:
1274				match = iface_match(m->m_pkthdr.rcvif,
1275				    (ipfw_insn_if *)cmd);
1276				break;
1277
1278			case O_XMIT:
1279				match = iface_match(oif, (ipfw_insn_if *)cmd);
1280				break;
1281
1282			case O_VIA:
1283				match = iface_match(oif ? oif :
1284				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
1285				break;
1286
1287			case O_MACADDR2:
1288				if (args->eh != NULL) {	/* have MAC header */
1289					u_int32_t *want = (u_int32_t *)
1290						((ipfw_insn_mac *)cmd)->addr;
1291					u_int32_t *mask = (u_int32_t *)
1292						((ipfw_insn_mac *)cmd)->mask;
1293					u_int32_t *hdr = (u_int32_t *)args->eh;
1294
1295					match =
1296					    ( want[0] == (hdr[0] & mask[0]) &&
1297					      want[1] == (hdr[1] & mask[1]) &&
1298					      want[2] == (hdr[2] & mask[2]) );
1299				}
1300				break;
1301
1302			case O_MAC_TYPE:
1303				if (args->eh != NULL) {
1304					u_int16_t *p =
1305					    ((ipfw_insn_u16 *)cmd)->ports;
1306					int i;
1307
1308					for (i = cmdlen - 1; !match && i>0;
1309					    i--, p += 2)
1310						match = (etype >= p[0] &&
1311						    etype <= p[1]);
1312				}
1313				break;
1314
1315			case O_FRAG:
1316				match = (offset != 0);
1317				break;
1318
1319			case O_IN:	/* "out" is "not in" */
1320				match = (oif == NULL);
1321				break;
1322
1323			case O_LAYER2:
1324				match = (args->eh != NULL);
1325				break;
1326
1327			case O_DIVERTED:
1328			    {
1329				/* For diverted packets, args->rule.info
1330				 * contains the divert port (in host format)
1331				 * reason and direction.
1332				 */
1333				uint32_t i = args->rule.info;
1334				match = (i&IPFW_IS_MASK) == IPFW_IS_DIVERT &&
1335				    cmd->arg1 & ((i & IPFW_INFO_IN) ? 1 : 2);
1336			    }
1337				break;
1338
1339			case O_PROTO:
1340				/*
1341				 * We do not allow an arg of 0 so the
1342				 * check of "proto" only suffices.
1343				 */
1344				match = (proto == cmd->arg1);
1345				break;
1346
1347			case O_IP_SRC:
1348				match = is_ipv4 &&
1349				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1350				    src_ip.s_addr);
1351				break;
1352
1353			case O_IP_SRC_LOOKUP:
1354			case O_IP_DST_LOOKUP:
1355				if (is_ipv4) {
1356				    uint32_t key =
1357					(cmd->opcode == O_IP_DST_LOOKUP) ?
1358					    dst_ip.s_addr : src_ip.s_addr;
1359				    uint32_t v = 0;
1360
1361				    if (cmdlen > F_INSN_SIZE(ipfw_insn_u32)) {
1362					/* generic lookup. The key must be
1363					 * in 32bit big-endian format.
1364					 */
1365					v = ((ipfw_insn_u32 *)cmd)->d[1];
1366					if (v == 0)
1367					    key = dst_ip.s_addr;
1368					else if (v == 1)
1369					    key = src_ip.s_addr;
1370					else if (v == 6) /* dscp */
1371					    key = (ip->ip_tos >> 2) & 0x3f;
1372					else if (offset != 0)
1373					    break;
1374					else if (proto != IPPROTO_TCP &&
1375						proto != IPPROTO_UDP)
1376					    break;
1377					else if (v == 2)
1378					    key = htonl(dst_port);
1379					else if (v == 3)
1380					    key = htonl(src_port);
1381					else if (v == 4 || v == 5) {
1382					    check_uidgid(
1383						(ipfw_insn_u32 *)cmd,
1384						proto, oif,
1385						dst_ip, dst_port,
1386						src_ip, src_port, &ucred_lookup,
1387#ifdef __FreeBSD__
1388						&ucred_cache, args->inp);
1389					    if (v == 4 /* O_UID */)
1390						key = ucred_cache->cr_uid;
1391					    else if (v == 5 /* O_JAIL */)
1392						key = ucred_cache->cr_prison->pr_id;
1393#else /* !__FreeBSD__ */
1394						(void *)&ucred_cache,
1395						(struct inpcb *)args->m);
1396					    if (v ==4 /* O_UID */)
1397						key = ucred_cache.uid;
1398					    else if (v == 5 /* O_JAIL */)
1399						key = ucred_cache.xid;
1400#endif /* !__FreeBSD__ */
1401					    key = htonl(key);
1402					} else
1403					    break;
1404				    }
1405				    match = ipfw_lookup_table(chain,
1406					cmd->arg1, key, &v);
1407				    if (!match)
1408					break;
1409				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
1410					match =
1411					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
1412				    else
1413					tablearg = v;
1414				}
1415				break;
1416
1417			case O_IP_SRC_MASK:
1418			case O_IP_DST_MASK:
1419				if (is_ipv4) {
1420				    uint32_t a =
1421					(cmd->opcode == O_IP_DST_MASK) ?
1422					    dst_ip.s_addr : src_ip.s_addr;
1423				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
1424				    int i = cmdlen-1;
1425
1426				    for (; !match && i>0; i-= 2, p+= 2)
1427					match = (p[0] == (a & p[1]));
1428				}
1429				break;
1430
1431			case O_IP_SRC_ME:
1432				if (is_ipv4) {
1433					struct ifnet *tif;
1434
1435					INADDR_TO_IFP(src_ip, tif);
1436					match = (tif != NULL);
1437					break;
1438				}
1439#ifdef INET6
1440				/* FALLTHROUGH */
1441			case O_IP6_SRC_ME:
1442				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
1443#endif
1444				break;
1445
1446			case O_IP_DST_SET:
1447			case O_IP_SRC_SET:
1448				if (is_ipv4) {
1449					u_int32_t *d = (u_int32_t *)(cmd+1);
1450					u_int32_t addr =
1451					    cmd->opcode == O_IP_DST_SET ?
1452						args->f_id.dst_ip :
1453						args->f_id.src_ip;
1454
1455					    if (addr < d[0])
1456						    break;
1457					    addr -= d[0]; /* subtract base */
1458					    match = (addr < cmd->arg1) &&
1459						( d[ 1 + (addr>>5)] &
1460						  (1<<(addr & 0x1f)) );
1461				}
1462				break;
1463
1464			case O_IP_DST:
1465				match = is_ipv4 &&
1466				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1467				    dst_ip.s_addr);
1468				break;
1469
1470			case O_IP_DST_ME:
1471				if (is_ipv4) {
1472					struct ifnet *tif;
1473
1474					INADDR_TO_IFP(dst_ip, tif);
1475					match = (tif != NULL);
1476					break;
1477				}
1478#ifdef INET6
1479				/* FALLTHROUGH */
1480			case O_IP6_DST_ME:
1481				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
1482#endif
1483				break;
1484
1485
1486			case O_IP_SRCPORT:
1487			case O_IP_DSTPORT:
1488				/*
1489				 * offset == 0 && proto != 0 is enough
1490				 * to guarantee that we have a
1491				 * packet with port info.
1492				 */
1493				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
1494				    && offset == 0) {
1495					u_int16_t x =
1496					    (cmd->opcode == O_IP_SRCPORT) ?
1497						src_port : dst_port ;
1498					u_int16_t *p =
1499					    ((ipfw_insn_u16 *)cmd)->ports;
1500					int i;
1501
1502					for (i = cmdlen - 1; !match && i>0;
1503					    i--, p += 2)
1504						match = (x>=p[0] && x<=p[1]);
1505				}
1506				break;
1507
1508			case O_ICMPTYPE:
1509				match = (offset == 0 && proto==IPPROTO_ICMP &&
1510				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
1511				break;
1512
1513#ifdef INET6
1514			case O_ICMP6TYPE:
1515				match = is_ipv6 && offset == 0 &&
1516				    proto==IPPROTO_ICMPV6 &&
1517				    icmp6type_match(
1518					ICMP6(ulp)->icmp6_type,
1519					(ipfw_insn_u32 *)cmd);
1520				break;
1521#endif /* INET6 */
1522
1523			case O_IPOPT:
1524				match = (is_ipv4 &&
1525				    ipopts_match(ip, cmd) );
1526				break;
1527
1528			case O_IPVER:
1529				match = (is_ipv4 &&
1530				    cmd->arg1 == ip->ip_v);
1531				break;
1532
1533			case O_IPID:
1534			case O_IPLEN:
1535			case O_IPTTL:
1536				if (is_ipv4) {	/* only for IP packets */
1537				    uint16_t x;
1538				    uint16_t *p;
1539				    int i;
1540
1541				    if (cmd->opcode == O_IPLEN)
1542					x = iplen;
1543				    else if (cmd->opcode == O_IPTTL)
1544					x = ip->ip_ttl;
1545				    else /* must be IPID */
1546					x = ntohs(ip->ip_id);
1547				    if (cmdlen == 1) {
1548					match = (cmd->arg1 == x);
1549					break;
1550				    }
1551				    /* otherwise we have ranges */
1552				    p = ((ipfw_insn_u16 *)cmd)->ports;
1553				    i = cmdlen - 1;
1554				    for (; !match && i>0; i--, p += 2)
1555					match = (x >= p[0] && x <= p[1]);
1556				}
1557				break;
1558
1559			case O_IPPRECEDENCE:
1560				match = (is_ipv4 &&
1561				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
1562				break;
1563
1564			case O_IPTOS:
1565				match = (is_ipv4 &&
1566				    flags_match(cmd, ip->ip_tos));
1567				break;
1568
1569			case O_TCPDATALEN:
1570				if (proto == IPPROTO_TCP && offset == 0) {
1571				    struct tcphdr *tcp;
1572				    uint16_t x;
1573				    uint16_t *p;
1574				    int i;
1575
1576				    tcp = TCP(ulp);
1577				    x = iplen -
1578					((ip->ip_hl + tcp->th_off) << 2);
1579				    if (cmdlen == 1) {
1580					match = (cmd->arg1 == x);
1581					break;
1582				    }
1583				    /* otherwise we have ranges */
1584				    p = ((ipfw_insn_u16 *)cmd)->ports;
1585				    i = cmdlen - 1;
1586				    for (; !match && i>0; i--, p += 2)
1587					match = (x >= p[0] && x <= p[1]);
1588				}
1589				break;
1590
1591			case O_TCPFLAGS:
1592				match = (proto == IPPROTO_TCP && offset == 0 &&
1593				    flags_match(cmd, TCP(ulp)->th_flags));
1594				break;
1595
1596			case O_TCPOPTS:
1597				match = (proto == IPPROTO_TCP && offset == 0 &&
1598				    tcpopts_match(TCP(ulp), cmd));
1599				break;
1600
1601			case O_TCPSEQ:
1602				match = (proto == IPPROTO_TCP && offset == 0 &&
1603				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1604					TCP(ulp)->th_seq);
1605				break;
1606
1607			case O_TCPACK:
1608				match = (proto == IPPROTO_TCP && offset == 0 &&
1609				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1610					TCP(ulp)->th_ack);
1611				break;
1612
1613			case O_TCPWIN:
1614				match = (proto == IPPROTO_TCP && offset == 0 &&
1615				    cmd->arg1 == TCP(ulp)->th_win);
1616				break;
1617
1618			case O_ESTAB:
1619				/* reject packets which have SYN only */
1620				/* XXX should i also check for TH_ACK ? */
1621				match = (proto == IPPROTO_TCP && offset == 0 &&
1622				    (TCP(ulp)->th_flags &
1623				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
1624				break;
1625
1626			case O_ALTQ: {
1627				struct pf_mtag *at;
1628				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
1629
1630				match = 1;
1631				at = pf_find_mtag(m);
1632				if (at != NULL && at->qid != 0)
1633					break;
1634				at = pf_get_mtag(m);
1635				if (at == NULL) {
1636					/*
1637					 * Let the packet fall back to the
1638					 * default ALTQ.
1639					 */
1640					break;
1641				}
1642				at->qid = altq->qid;
1643				if (is_ipv4)
1644					at->af = AF_INET;
1645				else
1646					at->af = AF_LINK;
1647				at->hdr = ip;
1648				break;
1649			}
1650
1651			case O_LOG:
1652				ipfw_log(f, hlen, args, m,
1653					    oif, offset, tablearg, ip);
1654				match = 1;
1655				break;
1656
1657			case O_PROB:
1658				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
1659				break;
1660
1661			case O_VERREVPATH:
1662				/* Outgoing packets automatically pass/match */
1663				match = ((oif != NULL) ||
1664				    (m->m_pkthdr.rcvif == NULL) ||
1665				    (
1666#ifdef INET6
1667				    is_ipv6 ?
1668					verify_path6(&(args->f_id.src_ip6),
1669					    m->m_pkthdr.rcvif) :
1670#endif
1671				    verify_path(src_ip, m->m_pkthdr.rcvif,
1672				        args->f_id.fib)));
1673				break;
1674
1675			case O_VERSRCREACH:
1676				/* Outgoing packets automatically pass/match */
1677				match = (hlen > 0 && ((oif != NULL) ||
1678#ifdef INET6
1679				    is_ipv6 ?
1680				        verify_path6(&(args->f_id.src_ip6),
1681				            NULL) :
1682#endif
1683				    verify_path(src_ip, NULL, args->f_id.fib)));
1684				break;
1685
1686			case O_ANTISPOOF:
1687				/* Outgoing packets automatically pass/match */
1688				if (oif == NULL && hlen > 0 &&
1689				    (  (is_ipv4 && in_localaddr(src_ip))
1690#ifdef INET6
1691				    || (is_ipv6 &&
1692				        in6_localaddr(&(args->f_id.src_ip6)))
1693#endif
1694				    ))
1695					match =
1696#ifdef INET6
1697					    is_ipv6 ? verify_path6(
1698					        &(args->f_id.src_ip6),
1699					        m->m_pkthdr.rcvif) :
1700#endif
1701					    verify_path(src_ip,
1702					    	m->m_pkthdr.rcvif,
1703					        args->f_id.fib);
1704				else
1705					match = 1;
1706				break;
1707
1708			case O_IPSEC:
1709#ifdef IPSEC
1710				match = (m_tag_find(m,
1711				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
1712#endif
1713				/* otherwise no match */
1714				break;
1715
1716#ifdef INET6
1717			case O_IP6_SRC:
1718				match = is_ipv6 &&
1719				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
1720				    &((ipfw_insn_ip6 *)cmd)->addr6);
1721				break;
1722
1723			case O_IP6_DST:
1724				match = is_ipv6 &&
1725				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
1726				    &((ipfw_insn_ip6 *)cmd)->addr6);
1727				break;
1728			case O_IP6_SRC_MASK:
1729			case O_IP6_DST_MASK:
1730				if (is_ipv6) {
1731					int i = cmdlen - 1;
1732					struct in6_addr p;
1733					struct in6_addr *d =
1734					    &((ipfw_insn_ip6 *)cmd)->addr6;
1735
1736					for (; !match && i > 0; d += 2,
1737					    i -= F_INSN_SIZE(struct in6_addr)
1738					    * 2) {
1739						p = (cmd->opcode ==
1740						    O_IP6_SRC_MASK) ?
1741						    args->f_id.src_ip6:
1742						    args->f_id.dst_ip6;
1743						APPLY_MASK(&p, &d[1]);
1744						match =
1745						    IN6_ARE_ADDR_EQUAL(&d[0],
1746						    &p);
1747					}
1748				}
1749				break;
1750
1751			case O_FLOW6ID:
1752				match = is_ipv6 &&
1753				    flow6id_match(args->f_id.flow_id6,
1754				    (ipfw_insn_u32 *) cmd);
1755				break;
1756
1757			case O_EXT_HDR:
1758				match = is_ipv6 &&
1759				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
1760				break;
1761
1762			case O_IP6:
1763				match = is_ipv6;
1764				break;
1765#endif
1766
1767			case O_IP4:
1768				match = is_ipv4;
1769				break;
1770
1771			case O_TAG: {
1772				struct m_tag *mtag;
1773				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
1774				    tablearg : cmd->arg1;
1775
1776				/* Packet is already tagged with this tag? */
1777				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
1778
1779				/* We have `untag' action when F_NOT flag is
1780				 * present. And we must remove this mtag from
1781				 * mbuf and reset `match' to zero (`match' will
1782				 * be inversed later).
1783				 * Otherwise we should allocate new mtag and
1784				 * push it into mbuf.
1785				 */
1786				if (cmd->len & F_NOT) { /* `untag' action */
1787					if (mtag != NULL)
1788						m_tag_delete(m, mtag);
1789					match = 0;
1790				} else if (mtag == NULL) {
1791					if ((mtag = m_tag_alloc(MTAG_IPFW,
1792					    tag, 0, M_NOWAIT)) != NULL)
1793						m_tag_prepend(m, mtag);
1794					match = 1;
1795				}
1796				break;
1797			}
1798
1799			case O_FIB: /* try match the specified fib */
1800				if (args->f_id.fib == cmd->arg1)
1801					match = 1;
1802				break;
1803
1804			case O_SOCKARG:	{
1805				struct inpcb *inp = args->inp;
1806				struct inpcbinfo *pi;
1807
1808				if (is_ipv6) /* XXX can we remove this ? */
1809					break;
1810
1811				if (proto == IPPROTO_TCP)
1812					pi = &V_tcbinfo;
1813				else if (proto == IPPROTO_UDP)
1814					pi = &V_udbinfo;
1815				else
1816					break;
1817
1818				/* For incomming packet, lookup up the
1819				inpcb using the src/dest ip/port tuple */
1820				if (inp == NULL) {
1821					INP_INFO_RLOCK(pi);
1822					inp = in_pcblookup_hash(pi,
1823						src_ip, htons(src_port),
1824						dst_ip, htons(dst_port),
1825						0, NULL);
1826					INP_INFO_RUNLOCK(pi);
1827				}
1828
1829				if (inp && inp->inp_socket) {
1830					tablearg = inp->inp_socket->so_user_cookie;
1831					if (tablearg)
1832						match = 1;
1833				}
1834				break;
1835			}
1836
1837			case O_TAGGED: {
1838				struct m_tag *mtag;
1839				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
1840				    tablearg : cmd->arg1;
1841
1842				if (cmdlen == 1) {
1843					match = m_tag_locate(m, MTAG_IPFW,
1844					    tag, NULL) != NULL;
1845					break;
1846				}
1847
1848				/* we have ranges */
1849				for (mtag = m_tag_first(m);
1850				    mtag != NULL && !match;
1851				    mtag = m_tag_next(m, mtag)) {
1852					uint16_t *p;
1853					int i;
1854
1855					if (mtag->m_tag_cookie != MTAG_IPFW)
1856						continue;
1857
1858					p = ((ipfw_insn_u16 *)cmd)->ports;
1859					i = cmdlen - 1;
1860					for(; !match && i > 0; i--, p += 2)
1861						match =
1862						    mtag->m_tag_id >= p[0] &&
1863						    mtag->m_tag_id <= p[1];
1864				}
1865				break;
1866			}
1867
1868			/*
1869			 * The second set of opcodes represents 'actions',
1870			 * i.e. the terminal part of a rule once the packet
1871			 * matches all previous patterns.
1872			 * Typically there is only one action for each rule,
1873			 * and the opcode is stored at the end of the rule
1874			 * (but there are exceptions -- see below).
1875			 *
1876			 * In general, here we set retval and terminate the
1877			 * outer loop (would be a 'break 3' in some language,
1878			 * but we need to set l=0, done=1)
1879			 *
1880			 * Exceptions:
1881			 * O_COUNT and O_SKIPTO actions:
1882			 *   instead of terminating, we jump to the next rule
1883			 *   (setting l=0), or to the SKIPTO target (setting
1884			 *   f/f_len, cmd and l as needed), respectively.
1885			 *
1886			 * O_TAG, O_LOG and O_ALTQ action parameters:
1887			 *   perform some action and set match = 1;
1888			 *
1889			 * O_LIMIT and O_KEEP_STATE: these opcodes are
1890			 *   not real 'actions', and are stored right
1891			 *   before the 'action' part of the rule.
1892			 *   These opcodes try to install an entry in the
1893			 *   state tables; if successful, we continue with
1894			 *   the next opcode (match=1; break;), otherwise
1895			 *   the packet must be dropped (set retval,
1896			 *   break loops with l=0, done=1)
1897			 *
1898			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
1899			 *   cause a lookup of the state table, and a jump
1900			 *   to the 'action' part of the parent rule
1901			 *   if an entry is found, or
1902			 *   (CHECK_STATE only) a jump to the next rule if
1903			 *   the entry is not found.
1904			 *   The result of the lookup is cached so that
1905			 *   further instances of these opcodes become NOPs.
1906			 *   The jump to the next rule is done by setting
1907			 *   l=0, cmdlen=0.
1908			 */
1909			case O_LIMIT:
1910			case O_KEEP_STATE:
1911				if (ipfw_install_state(f,
1912				    (ipfw_insn_limit *)cmd, args, tablearg)) {
1913					/* error or limit violation */
1914					retval = IP_FW_DENY;
1915					l = 0;	/* exit inner loop */
1916					done = 1; /* exit outer loop */
1917				}
1918				match = 1;
1919				break;
1920
1921			case O_PROBE_STATE:
1922			case O_CHECK_STATE:
1923				/*
1924				 * dynamic rules are checked at the first
1925				 * keep-state or check-state occurrence,
1926				 * with the result being stored in dyn_dir.
1927				 * The compiler introduces a PROBE_STATE
1928				 * instruction for us when we have a
1929				 * KEEP_STATE (because PROBE_STATE needs
1930				 * to be run first).
1931				 */
1932				if (dyn_dir == MATCH_UNKNOWN &&
1933				    (q = ipfw_lookup_dyn_rule(&args->f_id,
1934				     &dyn_dir, proto == IPPROTO_TCP ?
1935					TCP(ulp) : NULL))
1936					!= NULL) {
1937					/*
1938					 * Found dynamic entry, update stats
1939					 * and jump to the 'action' part of
1940					 * the parent rule by setting
1941					 * f, cmd, l and clearing cmdlen.
1942					 */
1943					q->pcnt++;
1944					q->bcnt += pktlen;
1945					/* XXX we would like to have f_pos
1946					 * readily accessible in the dynamic
1947				         * rule, instead of having to
1948					 * lookup q->rule.
1949					 */
1950					f = q->rule;
1951					f_pos = ipfw_find_rule(chain,
1952						f->rulenum, f->id);
1953					cmd = ACTION_PTR(f);
1954					l = f->cmd_len - f->act_ofs;
1955					ipfw_dyn_unlock();
1956					cmdlen = 0;
1957					match = 1;
1958					break;
1959				}
1960				/*
1961				 * Dynamic entry not found. If CHECK_STATE,
1962				 * skip to next rule, if PROBE_STATE just
1963				 * ignore and continue with next opcode.
1964				 */
1965				if (cmd->opcode == O_CHECK_STATE)
1966					l = 0;	/* exit inner loop */
1967				match = 1;
1968				break;
1969
1970			case O_ACCEPT:
1971				retval = 0;	/* accept */
1972				l = 0;		/* exit inner loop */
1973				done = 1;	/* exit outer loop */
1974				break;
1975
1976			case O_PIPE:
1977			case O_QUEUE:
1978				set_match(args, f_pos, chain);
1979				args->rule.info = (cmd->arg1 == IP_FW_TABLEARG) ?
1980					tablearg : cmd->arg1;
1981				if (cmd->opcode == O_PIPE)
1982					args->rule.info |= IPFW_IS_PIPE;
1983				if (V_fw_one_pass)
1984					args->rule.info |= IPFW_ONEPASS;
1985				retval = IP_FW_DUMMYNET;
1986				l = 0;          /* exit inner loop */
1987				done = 1;       /* exit outer loop */
1988				break;
1989
1990			case O_DIVERT:
1991			case O_TEE:
1992				if (args->eh) /* not on layer 2 */
1993				    break;
1994				/* otherwise this is terminal */
1995				l = 0;		/* exit inner loop */
1996				done = 1;	/* exit outer loop */
1997				retval = (cmd->opcode == O_DIVERT) ?
1998					IP_FW_DIVERT : IP_FW_TEE;
1999				set_match(args, f_pos, chain);
2000				args->rule.info = (cmd->arg1 == IP_FW_TABLEARG) ?
2001				    tablearg : cmd->arg1;
2002				break;
2003
2004			case O_COUNT:
2005				f->pcnt++;	/* update stats */
2006				f->bcnt += pktlen;
2007				f->timestamp = time_uptime;
2008				l = 0;		/* exit inner loop */
2009				break;
2010
2011			case O_SKIPTO:
2012			    f->pcnt++;	/* update stats */
2013			    f->bcnt += pktlen;
2014			    f->timestamp = time_uptime;
2015			    /* If possible use cached f_pos (in f->next_rule),
2016			     * whose version is written in f->next_rule
2017			     * (horrible hacks to avoid changing the ABI).
2018			     */
2019			    if (cmd->arg1 != IP_FW_TABLEARG &&
2020				    (uintptr_t)f->x_next == chain->id) {
2021				f_pos = (uintptr_t)f->next_rule;
2022			    } else {
2023				int i = (cmd->arg1 == IP_FW_TABLEARG) ?
2024					tablearg : cmd->arg1;
2025				/* make sure we do not jump backward */
2026				if (i <= f->rulenum)
2027				    i = f->rulenum + 1;
2028				f_pos = ipfw_find_rule(chain, i, 0);
2029				/* update the cache */
2030				if (cmd->arg1 != IP_FW_TABLEARG) {
2031				    f->next_rule =
2032					(void *)(uintptr_t)f_pos;
2033				    f->x_next =
2034					(void *)(uintptr_t)chain->id;
2035				}
2036			    }
2037			    /*
2038			     * Skip disabled rules, and re-enter
2039			     * the inner loop with the correct
2040			     * f_pos, f, l and cmd.
2041			     * Also clear cmdlen and skip_or
2042			     */
2043			    for (; f_pos < chain->n_rules - 1 &&
2044				    (V_set_disable &
2045				     (1 << chain->map[f_pos]->set));
2046				    f_pos++)
2047				;
2048			    /* Re-enter the inner loop at the skipto rule. */
2049			    f = chain->map[f_pos];
2050			    l = f->cmd_len;
2051			    cmd = f->cmd;
2052			    match = 1;
2053			    cmdlen = 0;
2054			    skip_or = 0;
2055			    continue;
2056			    break;	/* not reached */
2057
2058			case O_REJECT:
2059				/*
2060				 * Drop the packet and send a reject notice
2061				 * if the packet is not ICMP (or is an ICMP
2062				 * query), and it is not multicast/broadcast.
2063				 */
2064				if (hlen > 0 && is_ipv4 && offset == 0 &&
2065				    (proto != IPPROTO_ICMP ||
2066				     is_icmp_query(ICMP(ulp))) &&
2067				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2068				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
2069					send_reject(args, cmd->arg1, iplen, ip);
2070					m = args->m;
2071				}
2072				/* FALLTHROUGH */
2073#ifdef INET6
2074			case O_UNREACH6:
2075				if (hlen > 0 && is_ipv6 &&
2076				    ((offset & IP6F_OFF_MASK) == 0) &&
2077				    (proto != IPPROTO_ICMPV6 ||
2078				     (is_icmp6_query(icmp6_type) == 1)) &&
2079				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2080				    !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
2081					send_reject6(
2082					    args, cmd->arg1, hlen,
2083					    (struct ip6_hdr *)ip);
2084					m = args->m;
2085				}
2086				/* FALLTHROUGH */
2087#endif
2088			case O_DENY:
2089				retval = IP_FW_DENY;
2090				l = 0;		/* exit inner loop */
2091				done = 1;	/* exit outer loop */
2092				break;
2093
2094			case O_FORWARD_IP:
2095				if (args->eh)	/* not valid on layer2 pkts */
2096					break;
2097				if (!q || dyn_dir == MATCH_FORWARD) {
2098				    struct sockaddr_in *sa;
2099				    sa = &(((ipfw_insn_sa *)cmd)->sa);
2100				    if (sa->sin_addr.s_addr == INADDR_ANY) {
2101					bcopy(sa, &args->hopstore,
2102							sizeof(*sa));
2103					args->hopstore.sin_addr.s_addr =
2104						    htonl(tablearg);
2105					args->next_hop = &args->hopstore;
2106				    } else {
2107					args->next_hop = sa;
2108				    }
2109				}
2110				retval = IP_FW_PASS;
2111				l = 0;          /* exit inner loop */
2112				done = 1;       /* exit outer loop */
2113				break;
2114
2115			case O_NETGRAPH:
2116			case O_NGTEE:
2117				set_match(args, f_pos, chain);
2118				args->rule.info = (cmd->arg1 == IP_FW_TABLEARG) ?
2119					tablearg : cmd->arg1;
2120				if (V_fw_one_pass)
2121					args->rule.info |= IPFW_ONEPASS;
2122				retval = (cmd->opcode == O_NETGRAPH) ?
2123				    IP_FW_NETGRAPH : IP_FW_NGTEE;
2124				l = 0;          /* exit inner loop */
2125				done = 1;       /* exit outer loop */
2126				break;
2127
2128			case O_SETFIB:
2129				f->pcnt++;	/* update stats */
2130				f->bcnt += pktlen;
2131				f->timestamp = time_uptime;
2132				M_SETFIB(m, cmd->arg1);
2133				args->f_id.fib = cmd->arg1;
2134				l = 0;		/* exit inner loop */
2135				break;
2136
2137			case O_NAT:
2138 				if (!IPFW_NAT_LOADED) {
2139				    retval = IP_FW_DENY;
2140				} else {
2141				    struct cfg_nat *t;
2142				    int nat_id;
2143
2144				    set_match(args, f_pos, chain);
2145				    t = ((ipfw_insn_nat *)cmd)->nat;
2146				    if (t == NULL) {
2147					nat_id = (cmd->arg1 == IP_FW_TABLEARG) ?
2148						tablearg : cmd->arg1;
2149					t = (*lookup_nat_ptr)(&chain->nat, nat_id);
2150
2151					if (t == NULL) {
2152					    retval = IP_FW_DENY;
2153					    l = 0;	/* exit inner loop */
2154					    done = 1;	/* exit outer loop */
2155					    break;
2156					}
2157					if (cmd->arg1 != IP_FW_TABLEARG)
2158					    ((ipfw_insn_nat *)cmd)->nat = t;
2159				    }
2160				    retval = ipfw_nat_ptr(args, t, m);
2161				}
2162				l = 0;          /* exit inner loop */
2163				done = 1;       /* exit outer loop */
2164				break;
2165
2166			case O_REASS: {
2167				int ip_off;
2168
2169				f->pcnt++;
2170				f->bcnt += pktlen;
2171				l = 0;	/* in any case exit inner loop */
2172				ip_off = ntohs(ip->ip_off);
2173
2174				/* if not fragmented, go to next rule */
2175				if ((ip_off & (IP_MF | IP_OFFMASK)) == 0)
2176				    break;
2177				/*
2178				 * ip_reass() expects len & off in host
2179				 * byte order.
2180				 */
2181				SET_HOST_IPLEN(ip);
2182
2183				args->m = m = ip_reass(m);
2184
2185				/*
2186				 * do IP header checksum fixup.
2187				 */
2188				if (m == NULL) { /* fragment got swallowed */
2189				    retval = IP_FW_DENY;
2190				} else { /* good, packet complete */
2191				    int hlen;
2192
2193				    ip = mtod(m, struct ip *);
2194				    hlen = ip->ip_hl << 2;
2195				    SET_NET_IPLEN(ip);
2196				    ip->ip_sum = 0;
2197				    if (hlen == sizeof(struct ip))
2198					ip->ip_sum = in_cksum_hdr(ip);
2199				    else
2200					ip->ip_sum = in_cksum(m, hlen);
2201				    retval = IP_FW_REASS;
2202				    set_match(args, f_pos, chain);
2203				}
2204				done = 1;	/* exit outer loop */
2205				break;
2206			}
2207
2208			default:
2209				panic("-- unknown opcode %d\n", cmd->opcode);
2210			} /* end of switch() on opcodes */
2211			/*
2212			 * if we get here with l=0, then match is irrelevant.
2213			 */
2214
2215			if (cmd->len & F_NOT)
2216				match = !match;
2217
2218			if (match) {
2219				if (cmd->len & F_OR)
2220					skip_or = 1;
2221			} else {
2222				if (!(cmd->len & F_OR)) /* not an OR block, */
2223					break;		/* try next rule    */
2224			}
2225
2226		}	/* end of inner loop, scan opcodes */
2227
2228		if (done)
2229			break;
2230
2231/* next_rule:; */	/* try next rule		*/
2232
2233	}		/* end of outer for, scan rules */
2234
2235	if (done) {
2236		struct ip_fw *rule = chain->map[f_pos];
2237		/* Update statistics */
2238		rule->pcnt++;
2239		rule->bcnt += pktlen;
2240		rule->timestamp = time_uptime;
2241	} else {
2242		retval = IP_FW_DENY;
2243		printf("ipfw: ouch!, skip past end of rules, denying packet\n");
2244	}
2245	IPFW_RUNLOCK(chain);
2246#ifdef __FreeBSD__
2247	if (ucred_cache != NULL)
2248		crfree(ucred_cache);
2249#endif
2250	return (retval);
2251
2252pullup_failed:
2253	if (V_fw_verbose)
2254		printf("ipfw: pullup failed\n");
2255	return (IP_FW_DENY);
2256}
2257
2258/*
2259 * Module and VNET glue
2260 */
2261
2262/*
2263 * Stuff that must be initialised only on boot or module load
2264 */
2265static int
2266ipfw_init(void)
2267{
2268	int error = 0;
2269
2270	ipfw_dyn_attach();
2271	/*
2272 	 * Only print out this stuff the first time around,
2273	 * when called from the sysinit code.
2274	 */
2275	printf("ipfw2 "
2276#ifdef INET6
2277		"(+ipv6) "
2278#endif
2279		"initialized, divert %s, nat %s, "
2280		"rule-based forwarding "
2281#ifdef IPFIREWALL_FORWARD
2282		"enabled, "
2283#else
2284		"disabled, "
2285#endif
2286		"default to %s, logging ",
2287#ifdef IPDIVERT
2288		"enabled",
2289#else
2290		"loadable",
2291#endif
2292#ifdef IPFIREWALL_NAT
2293		"enabled",
2294#else
2295		"loadable",
2296#endif
2297		default_to_accept ? "accept" : "deny");
2298
2299	/*
2300	 * Note: V_xxx variables can be accessed here but the vnet specific
2301	 * initializer may not have been called yet for the VIMAGE case.
2302	 * Tuneables will have been processed. We will print out values for
2303	 * the default vnet.
2304	 * XXX This should all be rationalized AFTER 8.0
2305	 */
2306	if (V_fw_verbose == 0)
2307		printf("disabled\n");
2308	else if (V_verbose_limit == 0)
2309		printf("unlimited\n");
2310	else
2311		printf("limited to %d packets/entry by default\n",
2312		    V_verbose_limit);
2313
2314	ipfw_log_bpf(1); /* init */
2315	return (error);
2316}
2317
2318/*
2319 * Called for the removal of the last instance only on module unload.
2320 */
2321static void
2322ipfw_destroy(void)
2323{
2324
2325	ipfw_log_bpf(0); /* uninit */
2326	ipfw_dyn_detach();
2327	printf("IP firewall unloaded\n");
2328}
2329
2330/*
2331 * Stuff that must be initialized for every instance
2332 * (including the first of course).
2333 */
2334static int
2335vnet_ipfw_init(const void *unused)
2336{
2337	int error;
2338	struct ip_fw *rule = NULL;
2339	struct ip_fw_chain *chain;
2340
2341	chain = &V_layer3_chain;
2342
2343	/* First set up some values that are compile time options */
2344	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
2345	V_fw_deny_unknown_exthdrs = 1;
2346#ifdef IPFIREWALL_VERBOSE
2347	V_fw_verbose = 1;
2348#endif
2349#ifdef IPFIREWALL_VERBOSE_LIMIT
2350	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
2351#endif
2352#ifdef IPFIREWALL_NAT
2353	LIST_INIT(&chain->nat);
2354#endif
2355
2356	/* insert the default rule and create the initial map */
2357	chain->n_rules = 1;
2358	chain->static_len = sizeof(struct ip_fw);
2359	chain->map = malloc(sizeof(struct ip_fw *), M_IPFW, M_NOWAIT | M_ZERO);
2360	if (chain->map)
2361		rule = malloc(chain->static_len, M_IPFW, M_NOWAIT | M_ZERO);
2362	if (rule == NULL) {
2363		if (chain->map)
2364			free(chain->map, M_IPFW);
2365		printf("ipfw2: ENOSPC initializing default rule "
2366			"(support disabled)\n");
2367		return (ENOSPC);
2368	}
2369	error = ipfw_init_tables(chain);
2370	if (error) {
2371		panic("init_tables"); /* XXX Marko fix this ! */
2372	}
2373
2374	/* fill and insert the default rule */
2375	rule->act_ofs = 0;
2376	rule->rulenum = IPFW_DEFAULT_RULE;
2377	rule->cmd_len = 1;
2378	rule->set = RESVD_SET;
2379	rule->cmd[0].len = 1;
2380	rule->cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
2381	chain->rules = chain->default_rule = chain->map[0] = rule;
2382	chain->id = rule->id = 1;
2383
2384	IPFW_LOCK_INIT(chain);
2385	ipfw_dyn_init();
2386
2387	/* First set up some values that are compile time options */
2388	V_ipfw_vnet_ready = 1;		/* Open for business */
2389
2390	/*
2391	 * Hook the sockopt handler, and the layer2 (V_ip_fw_chk_ptr)
2392	 * and pfil hooks for ipv4 and ipv6. Even if the latter two fail
2393	 * we still keep the module alive because the sockopt and
2394	 * layer2 paths are still useful.
2395	 * ipfw[6]_hook return 0 on success, ENOENT on failure,
2396	 * so we can ignore the exact return value and just set a flag.
2397	 *
2398	 * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so
2399	 * changes in the underlying (per-vnet) variables trigger
2400	 * immediate hook()/unhook() calls.
2401	 * In layer2 we have the same behaviour, except that V_ether_ipfw
2402	 * is checked on each packet because there are no pfil hooks.
2403	 */
2404	V_ip_fw_ctl_ptr = ipfw_ctl;
2405	V_ip_fw_chk_ptr = ipfw_chk;
2406	error = ipfw_attach_hooks(1);
2407	return (error);
2408}
2409
2410/*
2411 * Called for the removal of each instance.
2412 */
2413static int
2414vnet_ipfw_uninit(const void *unused)
2415{
2416	struct ip_fw *reap, *rule;
2417	struct ip_fw_chain *chain = &V_layer3_chain;
2418	int i;
2419
2420	V_ipfw_vnet_ready = 0; /* tell new callers to go away */
2421	/*
2422	 * disconnect from ipv4, ipv6, layer2 and sockopt.
2423	 * Then grab, release and grab again the WLOCK so we make
2424	 * sure the update is propagated and nobody will be in.
2425	 */
2426	(void)ipfw_attach_hooks(0 /* detach */);
2427	V_ip_fw_chk_ptr = NULL;
2428	V_ip_fw_ctl_ptr = NULL;
2429	IPFW_UH_WLOCK(chain);
2430	IPFW_UH_WUNLOCK(chain);
2431	IPFW_UH_WLOCK(chain);
2432
2433	IPFW_WLOCK(chain);
2434	IPFW_WUNLOCK(chain);
2435	IPFW_WLOCK(chain);
2436
2437	ipfw_dyn_uninit(0);	/* run the callout_drain */
2438	ipfw_destroy_tables(chain);
2439	reap = NULL;
2440	for (i = 0; i < chain->n_rules; i++) {
2441		rule = chain->map[i];
2442		rule->x_next = reap;
2443		reap = rule;
2444	}
2445	if (chain->map)
2446		free(chain->map, M_IPFW);
2447	IPFW_WUNLOCK(chain);
2448	IPFW_UH_WUNLOCK(chain);
2449	if (reap != NULL)
2450		ipfw_reap_rules(reap);
2451	IPFW_LOCK_DESTROY(chain);
2452	ipfw_dyn_uninit(1);	/* free the remaining parts */
2453	return 0;
2454}
2455
2456/*
2457 * Module event handler.
2458 * In general we have the choice of handling most of these events by the
2459 * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
2460 * use the SYSINIT handlers as they are more capable of expressing the
2461 * flow of control during module and vnet operations, so this is just
2462 * a skeleton. Note there is no SYSINIT equivalent of the module
2463 * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
2464 */
2465static int
2466ipfw_modevent(module_t mod, int type, void *unused)
2467{
2468	int err = 0;
2469
2470	switch (type) {
2471	case MOD_LOAD:
2472		/* Called once at module load or
2473	 	 * system boot if compiled in. */
2474		break;
2475	case MOD_QUIESCE:
2476		/* Called before unload. May veto unloading. */
2477		break;
2478	case MOD_UNLOAD:
2479		/* Called during unload. */
2480		break;
2481	case MOD_SHUTDOWN:
2482		/* Called during system shutdown. */
2483		break;
2484	default:
2485		err = EOPNOTSUPP;
2486		break;
2487	}
2488	return err;
2489}
2490
2491static moduledata_t ipfwmod = {
2492	"ipfw",
2493	ipfw_modevent,
2494	0
2495};
2496
2497/* Define startup order. */
2498#define	IPFW_SI_SUB_FIREWALL	SI_SUB_PROTO_IFATTACHDOMAIN
2499#define	IPFW_MODEVENT_ORDER	(SI_ORDER_ANY - 255) /* On boot slot in here. */
2500#define	IPFW_MODULE_ORDER	(IPFW_MODEVENT_ORDER + 1) /* A little later. */
2501#define	IPFW_VNET_ORDER		(IPFW_MODEVENT_ORDER + 2) /* Later still. */
2502
2503DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
2504MODULE_VERSION(ipfw, 2);
2505/* should declare some dependencies here */
2506
2507/*
2508 * Starting up. Done in order after ipfwmod() has been called.
2509 * VNET_SYSINIT is also called for each existing vnet and each new vnet.
2510 */
2511SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2512	    ipfw_init, NULL);
2513VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2514	    vnet_ipfw_init, NULL);
2515
2516/*
2517 * Closing up shop. These are done in REVERSE ORDER, but still
2518 * after ipfwmod() has been called. Not called on reboot.
2519 * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
2520 * or when the module is unloaded.
2521 */
2522SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2523	    ipfw_destroy, NULL);
2524VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2525	    vnet_ipfw_uninit, NULL);
2526/* end of file */
2527