ip_fw2.c revision 204591
1/*-
2 * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: head/sys/netinet/ipfw/ip_fw2.c 204591 2010-03-02 17:40:48Z luigi $");
28
29/*
30 * The FreeBSD IP packet firewall, main file
31 */
32
33#if !defined(KLD_MODULE)
34#include "opt_ipfw.h"
35#include "opt_ipdivert.h"
36#include "opt_ipdn.h"
37#include "opt_inet.h"
38#ifndef INET
39#error IPFIREWALL requires INET.
40#endif /* INET */
41#endif
42#include "opt_inet6.h"
43#include "opt_ipsec.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/condvar.h>
48#include <sys/eventhandler.h>
49#include <sys/malloc.h>
50#include <sys/mbuf.h>
51#include <sys/kernel.h>
52#include <sys/lock.h>
53#include <sys/jail.h>
54#include <sys/module.h>
55#include <sys/priv.h>
56#include <sys/proc.h>
57#include <sys/rwlock.h>
58#include <sys/socket.h>
59#include <sys/socketvar.h>
60#include <sys/sysctl.h>
61#include <sys/syslog.h>
62#include <sys/ucred.h>
63#include <net/ethernet.h> /* for ETHERTYPE_IP */
64#include <net/if.h>
65#include <net/route.h>
66#include <net/pf_mtag.h>
67#include <net/vnet.h>
68
69#include <netinet/in.h>
70#include <netinet/in_var.h>
71#include <netinet/in_pcb.h>
72#include <netinet/ip.h>
73#include <netinet/ip_var.h>
74#include <netinet/ip_icmp.h>
75#include <netinet/ip_fw.h>
76#include <netinet/ipfw/ip_fw_private.h>
77#include <netinet/ip_carp.h>
78#include <netinet/pim.h>
79#include <netinet/tcp_var.h>
80#include <netinet/udp.h>
81#include <netinet/udp_var.h>
82#include <netinet/sctp.h>
83
84#include <netinet/ip6.h>
85#include <netinet/icmp6.h>
86#ifdef INET6
87#include <netinet6/scope6_var.h>
88#include <netinet6/ip6_var.h>
89#endif
90
91#include <machine/in_cksum.h>	/* XXX for in_cksum */
92
93#ifdef MAC
94#include <security/mac/mac_framework.h>
95#endif
96
97/*
98 * static variables followed by global ones.
99 * All ipfw global variables are here.
100 */
101
102/* ipfw_vnet_ready controls when we are open for business */
103static VNET_DEFINE(int, ipfw_vnet_ready) = 0;
104#define	V_ipfw_vnet_ready	VNET(ipfw_vnet_ready)
105
106static VNET_DEFINE(int, fw_deny_unknown_exthdrs);
107#define	V_fw_deny_unknown_exthdrs	VNET(fw_deny_unknown_exthdrs)
108
109#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
110static int default_to_accept = 1;
111#else
112static int default_to_accept;
113#endif
114
115VNET_DEFINE(int, autoinc_step);
116
117/*
118 * Each rule belongs to one of 32 different sets (0..31).
119 * The variable set_disable contains one bit per set.
120 * If the bit is set, all rules in the corresponding set
121 * are disabled. Set RESVD_SET(31) is reserved for the default rule
122 * and rules that are not deleted by the flush command,
123 * and CANNOT be disabled.
124 * Rules in set RESVD_SET can only be deleted individually.
125 */
126VNET_DEFINE(u_int32_t, set_disable);
127#define	V_set_disable			VNET(set_disable)
128
129VNET_DEFINE(int, fw_verbose);
130/* counter for ipfw_log(NULL...) */
131VNET_DEFINE(u_int64_t, norule_counter);
132VNET_DEFINE(int, verbose_limit);
133
134/* layer3_chain contains the list of rules for layer 3 */
135VNET_DEFINE(struct ip_fw_chain, layer3_chain);
136
137ipfw_nat_t *ipfw_nat_ptr = NULL;
138struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
139ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
140ipfw_nat_cfg_t *ipfw_nat_del_ptr;
141ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
142ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
143
144#ifdef SYSCTL_NODE
145uint32_t dummy_def = IPFW_DEFAULT_RULE;
146uint32_t dummy_tables_max = IPFW_TABLES_MAX;
147
148SYSBEGIN(f3)
149
150SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
151SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
152    CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
153    "Only do a single pass through ipfw when using dummynet(4)");
154SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
155    CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
156    "Rule number auto-increment step");
157SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose,
158    CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
159    "Log matches to ipfw rules");
160SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
161    CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
162    "Set upper limit of matches of ipfw rules logged");
163SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
164    &dummy_def, 0,
165    "The default/max possible rule number.");
166SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, tables_max, CTLFLAG_RD,
167    &dummy_tables_max, 0,
168    "The maximum number of tables.");
169SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
170    &default_to_accept, 0,
171    "Make the default rule accept all packets.");
172TUNABLE_INT("net.inet.ip.fw.default_to_accept", &default_to_accept);
173SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, static_count,
174    CTLFLAG_RD, &VNET_NAME(layer3_chain.n_rules), 0,
175    "Number of static rules");
176
177#ifdef INET6
178SYSCTL_DECL(_net_inet6_ip6);
179SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
180SYSCTL_VNET_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
181    CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(fw_deny_unknown_exthdrs), 0,
182    "Deny packets with unknown IPv6 Extension Headers");
183#endif /* INET6 */
184
185SYSEND
186
187#endif /* SYSCTL_NODE */
188
189
190/*
191 * Some macros used in the various matching options.
192 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
193 * Other macros just cast void * into the appropriate type
194 */
195#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
196#define	TCP(p)		((struct tcphdr *)(p))
197#define	SCTP(p)		((struct sctphdr *)(p))
198#define	UDP(p)		((struct udphdr *)(p))
199#define	ICMP(p)		((struct icmphdr *)(p))
200#define	ICMP6(p)	((struct icmp6_hdr *)(p))
201
202static __inline int
203icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
204{
205	int type = icmp->icmp_type;
206
207	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
208}
209
210#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
211    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
212
213static int
214is_icmp_query(struct icmphdr *icmp)
215{
216	int type = icmp->icmp_type;
217
218	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
219}
220#undef TT
221
222/*
223 * The following checks use two arrays of 8 or 16 bits to store the
224 * bits that we want set or clear, respectively. They are in the
225 * low and high half of cmd->arg1 or cmd->d[0].
226 *
227 * We scan options and store the bits we find set. We succeed if
228 *
229 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
230 *
231 * The code is sometimes optimized not to store additional variables.
232 */
233
234static int
235flags_match(ipfw_insn *cmd, u_int8_t bits)
236{
237	u_char want_clear;
238	bits = ~bits;
239
240	if ( ((cmd->arg1 & 0xff) & bits) != 0)
241		return 0; /* some bits we want set were clear */
242	want_clear = (cmd->arg1 >> 8) & 0xff;
243	if ( (want_clear & bits) != want_clear)
244		return 0; /* some bits we want clear were set */
245	return 1;
246}
247
248static int
249ipopts_match(struct ip *ip, ipfw_insn *cmd)
250{
251	int optlen, bits = 0;
252	u_char *cp = (u_char *)(ip + 1);
253	int x = (ip->ip_hl << 2) - sizeof (struct ip);
254
255	for (; x > 0; x -= optlen, cp += optlen) {
256		int opt = cp[IPOPT_OPTVAL];
257
258		if (opt == IPOPT_EOL)
259			break;
260		if (opt == IPOPT_NOP)
261			optlen = 1;
262		else {
263			optlen = cp[IPOPT_OLEN];
264			if (optlen <= 0 || optlen > x)
265				return 0; /* invalid or truncated */
266		}
267		switch (opt) {
268
269		default:
270			break;
271
272		case IPOPT_LSRR:
273			bits |= IP_FW_IPOPT_LSRR;
274			break;
275
276		case IPOPT_SSRR:
277			bits |= IP_FW_IPOPT_SSRR;
278			break;
279
280		case IPOPT_RR:
281			bits |= IP_FW_IPOPT_RR;
282			break;
283
284		case IPOPT_TS:
285			bits |= IP_FW_IPOPT_TS;
286			break;
287		}
288	}
289	return (flags_match(cmd, bits));
290}
291
292static int
293tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
294{
295	int optlen, bits = 0;
296	u_char *cp = (u_char *)(tcp + 1);
297	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
298
299	for (; x > 0; x -= optlen, cp += optlen) {
300		int opt = cp[0];
301		if (opt == TCPOPT_EOL)
302			break;
303		if (opt == TCPOPT_NOP)
304			optlen = 1;
305		else {
306			optlen = cp[1];
307			if (optlen <= 0)
308				break;
309		}
310
311		switch (opt) {
312
313		default:
314			break;
315
316		case TCPOPT_MAXSEG:
317			bits |= IP_FW_TCPOPT_MSS;
318			break;
319
320		case TCPOPT_WINDOW:
321			bits |= IP_FW_TCPOPT_WINDOW;
322			break;
323
324		case TCPOPT_SACK_PERMITTED:
325		case TCPOPT_SACK:
326			bits |= IP_FW_TCPOPT_SACK;
327			break;
328
329		case TCPOPT_TIMESTAMP:
330			bits |= IP_FW_TCPOPT_TS;
331			break;
332
333		}
334	}
335	return (flags_match(cmd, bits));
336}
337
338static int
339iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
340{
341	if (ifp == NULL)	/* no iface with this packet, match fails */
342		return 0;
343	/* Check by name or by IP address */
344	if (cmd->name[0] != '\0') { /* match by name */
345		/* Check name */
346		if (cmd->p.glob) {
347			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
348				return(1);
349		} else {
350			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
351				return(1);
352		}
353	} else {
354#ifdef	__FreeBSD__	/* and OSX too ? */
355		struct ifaddr *ia;
356
357		if_addr_rlock(ifp);
358		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
359			if (ia->ifa_addr->sa_family != AF_INET)
360				continue;
361			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
362			    (ia->ifa_addr))->sin_addr.s_addr) {
363				if_addr_runlock(ifp);
364				return(1);	/* match */
365			}
366		}
367		if_addr_runlock(ifp);
368#endif /* __FreeBSD__ */
369	}
370	return(0);	/* no match, fail ... */
371}
372
373/*
374 * The verify_path function checks if a route to the src exists and
375 * if it is reachable via ifp (when provided).
376 *
377 * The 'verrevpath' option checks that the interface that an IP packet
378 * arrives on is the same interface that traffic destined for the
379 * packet's source address would be routed out of.
380 * The 'versrcreach' option just checks that the source address is
381 * reachable via any route (except default) in the routing table.
382 * These two are a measure to block forged packets. This is also
383 * commonly known as "anti-spoofing" or Unicast Reverse Path
384 * Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
385 * is purposely reminiscent of the Cisco IOS command,
386 *
387 *   ip verify unicast reverse-path
388 *   ip verify unicast source reachable-via any
389 *
390 * which implements the same functionality. But note that the syntax
391 * is misleading, and the check may be performed on all IP packets
392 * whether unicast, multicast, or broadcast.
393 */
394static int
395verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
396{
397#ifndef __FreeBSD__
398	return 0;
399#else
400	struct route ro;
401	struct sockaddr_in *dst;
402
403	bzero(&ro, sizeof(ro));
404
405	dst = (struct sockaddr_in *)&(ro.ro_dst);
406	dst->sin_family = AF_INET;
407	dst->sin_len = sizeof(*dst);
408	dst->sin_addr = src;
409	in_rtalloc_ign(&ro, 0, fib);
410
411	if (ro.ro_rt == NULL)
412		return 0;
413
414	/*
415	 * If ifp is provided, check for equality with rtentry.
416	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
417	 * in order to pass packets injected back by if_simloop():
418	 * if useloopback == 1 routing entry (via lo0) for our own address
419	 * may exist, so we need to handle routing assymetry.
420	 */
421	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
422		RTFREE(ro.ro_rt);
423		return 0;
424	}
425
426	/* if no ifp provided, check if rtentry is not default route */
427	if (ifp == NULL &&
428	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
429		RTFREE(ro.ro_rt);
430		return 0;
431	}
432
433	/* or if this is a blackhole/reject route */
434	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
435		RTFREE(ro.ro_rt);
436		return 0;
437	}
438
439	/* found valid route */
440	RTFREE(ro.ro_rt);
441	return 1;
442#endif /* __FreeBSD__ */
443}
444
445#ifdef INET6
446/*
447 * ipv6 specific rules here...
448 */
449static __inline int
450icmp6type_match (int type, ipfw_insn_u32 *cmd)
451{
452	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
453}
454
455static int
456flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
457{
458	int i;
459	for (i=0; i <= cmd->o.arg1; ++i )
460		if (curr_flow == cmd->d[i] )
461			return 1;
462	return 0;
463}
464
465/* support for IP6_*_ME opcodes */
466static int
467search_ip6_addr_net (struct in6_addr * ip6_addr)
468{
469	struct ifnet *mdc;
470	struct ifaddr *mdc2;
471	struct in6_ifaddr *fdm;
472	struct in6_addr copia;
473
474	TAILQ_FOREACH(mdc, &V_ifnet, if_link) {
475		if_addr_rlock(mdc);
476		TAILQ_FOREACH(mdc2, &mdc->if_addrhead, ifa_link) {
477			if (mdc2->ifa_addr->sa_family == AF_INET6) {
478				fdm = (struct in6_ifaddr *)mdc2;
479				copia = fdm->ia_addr.sin6_addr;
480				/* need for leaving scope_id in the sock_addr */
481				in6_clearscope(&copia);
482				if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia)) {
483					if_addr_runlock(mdc);
484					return 1;
485				}
486			}
487		}
488		if_addr_runlock(mdc);
489	}
490	return 0;
491}
492
493static int
494verify_path6(struct in6_addr *src, struct ifnet *ifp)
495{
496	struct route_in6 ro;
497	struct sockaddr_in6 *dst;
498
499	bzero(&ro, sizeof(ro));
500
501	dst = (struct sockaddr_in6 * )&(ro.ro_dst);
502	dst->sin6_family = AF_INET6;
503	dst->sin6_len = sizeof(*dst);
504	dst->sin6_addr = *src;
505	/* XXX MRT 0 for ipv6 at this time */
506	rtalloc_ign((struct route *)&ro, 0);
507
508	if (ro.ro_rt == NULL)
509		return 0;
510
511	/*
512	 * if ifp is provided, check for equality with rtentry
513	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
514	 * to support the case of sending packets to an address of our own.
515	 * (where the former interface is the first argument of if_simloop()
516	 *  (=ifp), the latter is lo0)
517	 */
518	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
519		RTFREE(ro.ro_rt);
520		return 0;
521	}
522
523	/* if no ifp provided, check if rtentry is not default route */
524	if (ifp == NULL &&
525	    IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
526		RTFREE(ro.ro_rt);
527		return 0;
528	}
529
530	/* or if this is a blackhole/reject route */
531	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
532		RTFREE(ro.ro_rt);
533		return 0;
534	}
535
536	/* found valid route */
537	RTFREE(ro.ro_rt);
538	return 1;
539
540}
541
542static int
543is_icmp6_query(int icmp6_type)
544{
545	if ((icmp6_type <= ICMP6_MAXTYPE) &&
546	    (icmp6_type == ICMP6_ECHO_REQUEST ||
547	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
548	    icmp6_type == ICMP6_WRUREQUEST ||
549	    icmp6_type == ICMP6_FQDN_QUERY ||
550	    icmp6_type == ICMP6_NI_QUERY))
551		return (1);
552
553	return (0);
554}
555
556static void
557send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
558{
559	struct mbuf *m;
560
561	m = args->m;
562	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
563		struct tcphdr *tcp;
564		tcp = (struct tcphdr *)((char *)ip6 + hlen);
565
566		if ((tcp->th_flags & TH_RST) == 0) {
567			struct mbuf *m0;
568			m0 = ipfw_send_pkt(args->m, &(args->f_id),
569			    ntohl(tcp->th_seq), ntohl(tcp->th_ack),
570			    tcp->th_flags | TH_RST);
571			if (m0 != NULL)
572				ip6_output(m0, NULL, NULL, 0, NULL, NULL,
573				    NULL);
574		}
575		FREE_PKT(m);
576	} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
577#if 0
578		/*
579		 * Unlike above, the mbufs need to line up with the ip6 hdr,
580		 * as the contents are read. We need to m_adj() the
581		 * needed amount.
582		 * The mbuf will however be thrown away so we can adjust it.
583		 * Remember we did an m_pullup on it already so we
584		 * can make some assumptions about contiguousness.
585		 */
586		if (args->L3offset)
587			m_adj(m, args->L3offset);
588#endif
589		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
590	} else
591		FREE_PKT(m);
592
593	args->m = NULL;
594}
595
596#endif /* INET6 */
597
598
599/*
600 * sends a reject message, consuming the mbuf passed as an argument.
601 */
602static void
603send_reject(struct ip_fw_args *args, int code, int iplen, struct ip *ip)
604{
605
606#if 0
607	/* XXX When ip is not guaranteed to be at mtod() we will
608	 * need to account for this */
609	 * The mbuf will however be thrown away so we can adjust it.
610	 * Remember we did an m_pullup on it already so we
611	 * can make some assumptions about contiguousness.
612	 */
613	if (args->L3offset)
614		m_adj(m, args->L3offset);
615#endif
616	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
617		/* We need the IP header in host order for icmp_error(). */
618		SET_HOST_IPLEN(ip);
619		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
620	} else if (args->f_id.proto == IPPROTO_TCP) {
621		struct tcphdr *const tcp =
622		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
623		if ( (tcp->th_flags & TH_RST) == 0) {
624			struct mbuf *m;
625			m = ipfw_send_pkt(args->m, &(args->f_id),
626				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
627				tcp->th_flags | TH_RST);
628			if (m != NULL)
629				ip_output(m, NULL, NULL, 0, NULL, NULL);
630		}
631		FREE_PKT(args->m);
632	} else
633		FREE_PKT(args->m);
634	args->m = NULL;
635}
636
637/*
638 * Support for uid/gid/jail lookup. These tests are expensive
639 * (because we may need to look into the list of active sockets)
640 * so we cache the results. ugid_lookupp is 0 if we have not
641 * yet done a lookup, 1 if we succeeded, and -1 if we tried
642 * and failed. The function always returns the match value.
643 * We could actually spare the variable and use *uc, setting
644 * it to '(void *)check_uidgid if we have no info, NULL if
645 * we tried and failed, or any other value if successful.
646 */
647static int
648check_uidgid(ipfw_insn_u32 *insn, int proto, struct ifnet *oif,
649    struct in_addr dst_ip, u_int16_t dst_port, struct in_addr src_ip,
650    u_int16_t src_port, int *ugid_lookupp,
651    struct ucred **uc, struct inpcb *inp)
652{
653#ifndef __FreeBSD__
654	return cred_check(insn, proto, oif,
655	    dst_ip, dst_port, src_ip, src_port,
656	    (struct bsd_ucred *)uc, ugid_lookupp, ((struct mbuf *)inp)->m_skb);
657#else  /* FreeBSD */
658	struct inpcbinfo *pi;
659	int wildcard;
660	struct inpcb *pcb;
661	int match;
662
663	/*
664	 * Check to see if the UDP or TCP stack supplied us with
665	 * the PCB. If so, rather then holding a lock and looking
666	 * up the PCB, we can use the one that was supplied.
667	 */
668	if (inp && *ugid_lookupp == 0) {
669		INP_LOCK_ASSERT(inp);
670		if (inp->inp_socket != NULL) {
671			*uc = crhold(inp->inp_cred);
672			*ugid_lookupp = 1;
673		} else
674			*ugid_lookupp = -1;
675	}
676	/*
677	 * If we have already been here and the packet has no
678	 * PCB entry associated with it, then we can safely
679	 * assume that this is a no match.
680	 */
681	if (*ugid_lookupp == -1)
682		return (0);
683	if (proto == IPPROTO_TCP) {
684		wildcard = 0;
685		pi = &V_tcbinfo;
686	} else if (proto == IPPROTO_UDP) {
687		wildcard = INPLOOKUP_WILDCARD;
688		pi = &V_udbinfo;
689	} else
690		return 0;
691	match = 0;
692	if (*ugid_lookupp == 0) {
693		INP_INFO_RLOCK(pi);
694		pcb =  (oif) ?
695			in_pcblookup_hash(pi,
696				dst_ip, htons(dst_port),
697				src_ip, htons(src_port),
698				wildcard, oif) :
699			in_pcblookup_hash(pi,
700				src_ip, htons(src_port),
701				dst_ip, htons(dst_port),
702				wildcard, NULL);
703		if (pcb != NULL) {
704			*uc = crhold(pcb->inp_cred);
705			*ugid_lookupp = 1;
706		}
707		INP_INFO_RUNLOCK(pi);
708		if (*ugid_lookupp == 0) {
709			/*
710			 * We tried and failed, set the variable to -1
711			 * so we will not try again on this packet.
712			 */
713			*ugid_lookupp = -1;
714			return (0);
715		}
716	}
717	if (insn->o.opcode == O_UID)
718		match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
719	else if (insn->o.opcode == O_GID)
720		match = groupmember((gid_t)insn->d[0], *uc);
721	else if (insn->o.opcode == O_JAIL)
722		match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
723	return match;
724#endif /* __FreeBSD__ */
725}
726
727/*
728 * Helper function to set args with info on the rule after the matching
729 * one. slot is precise, whereas we guess rule_id as they are
730 * assigned sequentially.
731 */
732static inline void
733set_match(struct ip_fw_args *args, int slot,
734	struct ip_fw_chain *chain)
735{
736	args->rule.chain_id = chain->id;
737	args->rule.slot = slot + 1; /* we use 0 as a marker */
738	args->rule.rule_id = 1 + chain->map[slot]->id;
739	args->rule.rulenum = chain->map[slot]->rulenum;
740}
741
742/*
743 * The main check routine for the firewall.
744 *
745 * All arguments are in args so we can modify them and return them
746 * back to the caller.
747 *
748 * Parameters:
749 *
750 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
751 *		Starts with the IP header.
752 *	args->eh (in)	Mac header if present, NULL for layer3 packet.
753 *	args->L3offset	Number of bytes bypassed if we came from L2.
754 *			e.g. often sizeof(eh)  ** NOTYET **
755 *	args->oif	Outgoing interface, NULL if packet is incoming.
756 *		The incoming interface is in the mbuf. (in)
757 *	args->divert_rule (in/out)
758 *		Skip up to the first rule past this rule number;
759 *		upon return, non-zero port number for divert or tee.
760 *
761 *	args->rule	Pointer to the last matching rule (in/out)
762 *	args->next_hop	Socket we are forwarding to (out).
763 *	args->f_id	Addresses grabbed from the packet (out)
764 * 	args->rule.info	a cookie depending on rule action
765 *
766 * Return value:
767 *
768 *	IP_FW_PASS	the packet must be accepted
769 *	IP_FW_DENY	the packet must be dropped
770 *	IP_FW_DIVERT	divert packet, port in m_tag
771 *	IP_FW_TEE	tee packet, port in m_tag
772 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
773 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
774 *		args->rule contains the matching rule,
775 *		args->rule.info has additional information.
776 *
777 */
778int
779ipfw_chk(struct ip_fw_args *args)
780{
781
782	/*
783	 * Local variables holding state while processing a packet:
784	 *
785	 * IMPORTANT NOTE: to speed up the processing of rules, there
786	 * are some assumption on the values of the variables, which
787	 * are documented here. Should you change them, please check
788	 * the implementation of the various instructions to make sure
789	 * that they still work.
790	 *
791	 * args->eh	The MAC header. It is non-null for a layer2
792	 *	packet, it is NULL for a layer-3 packet.
793	 * **notyet**
794	 * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
795	 *
796	 * m | args->m	Pointer to the mbuf, as received from the caller.
797	 *	It may change if ipfw_chk() does an m_pullup, or if it
798	 *	consumes the packet because it calls send_reject().
799	 *	XXX This has to change, so that ipfw_chk() never modifies
800	 *	or consumes the buffer.
801	 * ip	is the beginning of the ip(4 or 6) header.
802	 *	Calculated by adding the L3offset to the start of data.
803	 *	(Until we start using L3offset, the packet is
804	 *	supposed to start with the ip header).
805	 */
806	struct mbuf *m = args->m;
807	struct ip *ip = mtod(m, struct ip *);
808
809	/*
810	 * For rules which contain uid/gid or jail constraints, cache
811	 * a copy of the users credentials after the pcb lookup has been
812	 * executed. This will speed up the processing of rules with
813	 * these types of constraints, as well as decrease contention
814	 * on pcb related locks.
815	 */
816#ifndef __FreeBSD__
817	struct bsd_ucred ucred_cache;
818#else
819	struct ucred *ucred_cache = NULL;
820#endif
821	int ucred_lookup = 0;
822
823	/*
824	 * oif | args->oif	If NULL, ipfw_chk has been called on the
825	 *	inbound path (ether_input, ip_input).
826	 *	If non-NULL, ipfw_chk has been called on the outbound path
827	 *	(ether_output, ip_output).
828	 */
829	struct ifnet *oif = args->oif;
830
831	int f_pos = 0;		/* index of current rule in the array */
832	int retval = 0;
833
834	/*
835	 * hlen	The length of the IP header.
836	 */
837	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
838
839	/*
840	 * offset	The offset of a fragment. offset != 0 means that
841	 *	we have a fragment at this offset of an IPv4 packet.
842	 *	offset == 0 means that (if this is an IPv4 packet)
843	 *	this is the first or only fragment.
844	 *	For IPv6 offset == 0 means there is no Fragment Header.
845	 *	If offset != 0 for IPv6 always use correct mask to
846	 *	get the correct offset because we add IP6F_MORE_FRAG
847	 *	to be able to dectect the first fragment which would
848	 *	otherwise have offset = 0.
849	 */
850	u_short offset = 0;
851
852	/*
853	 * Local copies of addresses. They are only valid if we have
854	 * an IP packet.
855	 *
856	 * proto	The protocol. Set to 0 for non-ip packets,
857	 *	or to the protocol read from the packet otherwise.
858	 *	proto != 0 means that we have an IPv4 packet.
859	 *
860	 * src_port, dst_port	port numbers, in HOST format. Only
861	 *	valid for TCP and UDP packets.
862	 *
863	 * src_ip, dst_ip	ip addresses, in NETWORK format.
864	 *	Only valid for IPv4 packets.
865	 */
866	uint8_t proto;
867	uint16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
868	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
869	uint16_t iplen=0;
870	int pktlen;
871	uint16_t	etype = 0;	/* Host order stored ether type */
872
873	/*
874	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
875	 * 	MATCH_NONE when checked and not matched (q = NULL),
876	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
877	 */
878	int dyn_dir = MATCH_UNKNOWN;
879	ipfw_dyn_rule *q = NULL;
880	struct ip_fw_chain *chain = &V_layer3_chain;
881
882	/*
883	 * We store in ulp a pointer to the upper layer protocol header.
884	 * In the ipv4 case this is easy to determine from the header,
885	 * but for ipv6 we might have some additional headers in the middle.
886	 * ulp is NULL if not found.
887	 */
888	void *ulp = NULL;		/* upper layer protocol pointer. */
889	/* XXX ipv6 variables */
890	int is_ipv6 = 0;
891	u_int16_t ext_hd = 0;	/* bits vector for extension header filtering */
892	/* end of ipv6 variables */
893	int is_ipv4 = 0;
894
895	int done = 0;		/* flag to exit the outer loop */
896
897	if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
898		return (IP_FW_PASS);	/* accept */
899
900	dst_ip.s_addr = 0;		/* make sure it is initialized */
901	src_ip.s_addr = 0;		/* make sure it is initialized */
902	pktlen = m->m_pkthdr.len;
903	args->f_id.fib = M_GETFIB(m); /* note mbuf not altered) */
904	proto = args->f_id.proto = 0;	/* mark f_id invalid */
905		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
906
907/*
908 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
909 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
910 * pointer might become stale after other pullups (but we never use it
911 * this way).
912 */
913#define PULLUP_TO(_len, p, T)					\
914do {								\
915	int x = (_len) + sizeof(T);				\
916	if ((m)->m_len < x) {					\
917		args->m = m = m_pullup(m, x);			\
918		if (m == NULL)					\
919			goto pullup_failed;			\
920	}							\
921	p = (mtod(m, char *) + (_len));				\
922} while (0)
923
924	/*
925	 * if we have an ether header,
926	 */
927	if (args->eh)
928		etype = ntohs(args->eh->ether_type);
929
930	/* Identify IP packets and fill up variables. */
931	if (pktlen >= sizeof(struct ip6_hdr) &&
932	    (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
933		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
934		is_ipv6 = 1;
935		args->f_id.addr_type = 6;
936		hlen = sizeof(struct ip6_hdr);
937		proto = ip6->ip6_nxt;
938
939		/* Search extension headers to find upper layer protocols */
940		while (ulp == NULL) {
941			switch (proto) {
942			case IPPROTO_ICMPV6:
943				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
944				args->f_id.flags = ICMP6(ulp)->icmp6_type;
945				break;
946
947			case IPPROTO_TCP:
948				PULLUP_TO(hlen, ulp, struct tcphdr);
949				dst_port = TCP(ulp)->th_dport;
950				src_port = TCP(ulp)->th_sport;
951				args->f_id.flags = TCP(ulp)->th_flags;
952				break;
953
954			case IPPROTO_SCTP:
955				PULLUP_TO(hlen, ulp, struct sctphdr);
956				src_port = SCTP(ulp)->src_port;
957				dst_port = SCTP(ulp)->dest_port;
958				break;
959
960			case IPPROTO_UDP:
961				PULLUP_TO(hlen, ulp, struct udphdr);
962				dst_port = UDP(ulp)->uh_dport;
963				src_port = UDP(ulp)->uh_sport;
964				break;
965
966			case IPPROTO_HOPOPTS:	/* RFC 2460 */
967				PULLUP_TO(hlen, ulp, struct ip6_hbh);
968				ext_hd |= EXT_HOPOPTS;
969				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
970				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
971				ulp = NULL;
972				break;
973
974			case IPPROTO_ROUTING:	/* RFC 2460 */
975				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
976				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
977				case 0:
978					ext_hd |= EXT_RTHDR0;
979					break;
980				case 2:
981					ext_hd |= EXT_RTHDR2;
982					break;
983				default:
984					printf("IPFW2: IPV6 - Unknown Routing "
985					    "Header type(%d)\n",
986					    ((struct ip6_rthdr *)ulp)->ip6r_type);
987					if (V_fw_deny_unknown_exthdrs)
988					    return (IP_FW_DENY);
989					break;
990				}
991				ext_hd |= EXT_ROUTING;
992				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
993				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
994				ulp = NULL;
995				break;
996
997			case IPPROTO_FRAGMENT:	/* RFC 2460 */
998				PULLUP_TO(hlen, ulp, struct ip6_frag);
999				ext_hd |= EXT_FRAGMENT;
1000				hlen += sizeof (struct ip6_frag);
1001				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
1002				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
1003					IP6F_OFF_MASK;
1004				/* Add IP6F_MORE_FRAG for offset of first
1005				 * fragment to be != 0. */
1006				offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
1007					IP6F_MORE_FRAG;
1008				if (offset == 0) {
1009					printf("IPFW2: IPV6 - Invalid Fragment "
1010					    "Header\n");
1011					if (V_fw_deny_unknown_exthdrs)
1012					    return (IP_FW_DENY);
1013					break;
1014				}
1015				args->f_id.frag_id6 =
1016				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
1017				ulp = NULL;
1018				break;
1019
1020			case IPPROTO_DSTOPTS:	/* RFC 2460 */
1021				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1022				ext_hd |= EXT_DSTOPTS;
1023				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1024				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1025				ulp = NULL;
1026				break;
1027
1028			case IPPROTO_AH:	/* RFC 2402 */
1029				PULLUP_TO(hlen, ulp, struct ip6_ext);
1030				ext_hd |= EXT_AH;
1031				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
1032				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
1033				ulp = NULL;
1034				break;
1035
1036			case IPPROTO_ESP:	/* RFC 2406 */
1037				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
1038				/* Anything past Seq# is variable length and
1039				 * data past this ext. header is encrypted. */
1040				ext_hd |= EXT_ESP;
1041				break;
1042
1043			case IPPROTO_NONE:	/* RFC 2460 */
1044				/*
1045				 * Packet ends here, and IPv6 header has
1046				 * already been pulled up. If ip6e_len!=0
1047				 * then octets must be ignored.
1048				 */
1049				ulp = ip; /* non-NULL to get out of loop. */
1050				break;
1051
1052			case IPPROTO_OSPFIGP:
1053				/* XXX OSPF header check? */
1054				PULLUP_TO(hlen, ulp, struct ip6_ext);
1055				break;
1056
1057			case IPPROTO_PIM:
1058				/* XXX PIM header check? */
1059				PULLUP_TO(hlen, ulp, struct pim);
1060				break;
1061
1062			case IPPROTO_CARP:
1063				PULLUP_TO(hlen, ulp, struct carp_header);
1064				if (((struct carp_header *)ulp)->carp_version !=
1065				    CARP_VERSION)
1066					return (IP_FW_DENY);
1067				if (((struct carp_header *)ulp)->carp_type !=
1068				    CARP_ADVERTISEMENT)
1069					return (IP_FW_DENY);
1070				break;
1071
1072			case IPPROTO_IPV6:	/* RFC 2893 */
1073				PULLUP_TO(hlen, ulp, struct ip6_hdr);
1074				break;
1075
1076			case IPPROTO_IPV4:	/* RFC 2893 */
1077				PULLUP_TO(hlen, ulp, struct ip);
1078				break;
1079
1080			default:
1081				printf("IPFW2: IPV6 - Unknown Extension "
1082				    "Header(%d), ext_hd=%x\n", proto, ext_hd);
1083				if (V_fw_deny_unknown_exthdrs)
1084				    return (IP_FW_DENY);
1085				PULLUP_TO(hlen, ulp, struct ip6_ext);
1086				break;
1087			} /*switch */
1088		}
1089		ip = mtod(m, struct ip *);
1090		ip6 = (struct ip6_hdr *)ip;
1091		args->f_id.src_ip6 = ip6->ip6_src;
1092		args->f_id.dst_ip6 = ip6->ip6_dst;
1093		args->f_id.src_ip = 0;
1094		args->f_id.dst_ip = 0;
1095		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
1096	} else if (pktlen >= sizeof(struct ip) &&
1097	    (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
1098	    	is_ipv4 = 1;
1099		hlen = ip->ip_hl << 2;
1100		args->f_id.addr_type = 4;
1101
1102		/*
1103		 * Collect parameters into local variables for faster matching.
1104		 */
1105		proto = ip->ip_p;
1106		src_ip = ip->ip_src;
1107		dst_ip = ip->ip_dst;
1108		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1109		iplen = ntohs(ip->ip_len);
1110		pktlen = iplen < pktlen ? iplen : pktlen;
1111
1112		if (offset == 0) {
1113			switch (proto) {
1114			case IPPROTO_TCP:
1115				PULLUP_TO(hlen, ulp, struct tcphdr);
1116				dst_port = TCP(ulp)->th_dport;
1117				src_port = TCP(ulp)->th_sport;
1118				args->f_id.flags = TCP(ulp)->th_flags;
1119				break;
1120
1121			case IPPROTO_UDP:
1122				PULLUP_TO(hlen, ulp, struct udphdr);
1123				dst_port = UDP(ulp)->uh_dport;
1124				src_port = UDP(ulp)->uh_sport;
1125				break;
1126
1127			case IPPROTO_ICMP:
1128				PULLUP_TO(hlen, ulp, struct icmphdr);
1129				args->f_id.flags = ICMP(ulp)->icmp_type;
1130				break;
1131
1132			default:
1133				break;
1134			}
1135		}
1136
1137		ip = mtod(m, struct ip *);
1138		args->f_id.src_ip = ntohl(src_ip.s_addr);
1139		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1140	}
1141#undef PULLUP_TO
1142	if (proto) { /* we may have port numbers, store them */
1143		args->f_id.proto = proto;
1144		args->f_id.src_port = src_port = ntohs(src_port);
1145		args->f_id.dst_port = dst_port = ntohs(dst_port);
1146	}
1147
1148	IPFW_RLOCK(chain);
1149	if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
1150		IPFW_RUNLOCK(chain);
1151		return (IP_FW_PASS);	/* accept */
1152	}
1153	if (args->rule.slot) {
1154		/*
1155		 * Packet has already been tagged as a result of a previous
1156		 * match on rule args->rule aka args->rule_id (PIPE, QUEUE,
1157		 * REASS, NETGRAPH, DIVERT/TEE...)
1158		 * Validate the slot and continue from the next one
1159		 * if still present, otherwise do a lookup.
1160		 */
1161		f_pos = (args->rule.chain_id == chain->id) ?
1162		    args->rule.slot :
1163		    ipfw_find_rule(chain, args->rule.rulenum,
1164			args->rule.rule_id);
1165	} else {
1166		f_pos = 0;
1167	}
1168
1169	/*
1170	 * Now scan the rules, and parse microinstructions for each rule.
1171	 * We have two nested loops and an inner switch. Sometimes we
1172	 * need to break out of one or both loops, or re-enter one of
1173	 * the loops with updated variables. Loop variables are:
1174	 *
1175	 *	f_pos (outer loop) points to the current rule.
1176	 *		On output it points to the matching rule.
1177	 *	done (outer loop) is used as a flag to break the loop.
1178	 *	l (inner loop)	residual length of current rule.
1179	 *		cmd points to the current microinstruction.
1180	 *
1181	 * We break the inner loop by setting l=0 and possibly
1182	 * cmdlen=0 if we don't want to advance cmd.
1183	 * We break the outer loop by setting done=1
1184	 * We can restart the inner loop by setting l>0 and f_pos, f, cmd
1185	 * as needed.
1186	 */
1187	for (; f_pos < chain->n_rules; f_pos++) {
1188		ipfw_insn *cmd;
1189		uint32_t tablearg = 0;
1190		int l, cmdlen, skip_or; /* skip rest of OR block */
1191		struct ip_fw *f;
1192
1193		f = chain->map[f_pos];
1194		if (V_set_disable & (1 << f->set) )
1195			continue;
1196
1197		skip_or = 0;
1198		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1199		    l -= cmdlen, cmd += cmdlen) {
1200			int match;
1201
1202			/*
1203			 * check_body is a jump target used when we find a
1204			 * CHECK_STATE, and need to jump to the body of
1205			 * the target rule.
1206			 */
1207
1208/* check_body: */
1209			cmdlen = F_LEN(cmd);
1210			/*
1211			 * An OR block (insn_1 || .. || insn_n) has the
1212			 * F_OR bit set in all but the last instruction.
1213			 * The first match will set "skip_or", and cause
1214			 * the following instructions to be skipped until
1215			 * past the one with the F_OR bit clear.
1216			 */
1217			if (skip_or) {		/* skip this instruction */
1218				if ((cmd->len & F_OR) == 0)
1219					skip_or = 0;	/* next one is good */
1220				continue;
1221			}
1222			match = 0; /* set to 1 if we succeed */
1223
1224			switch (cmd->opcode) {
1225			/*
1226			 * The first set of opcodes compares the packet's
1227			 * fields with some pattern, setting 'match' if a
1228			 * match is found. At the end of the loop there is
1229			 * logic to deal with F_NOT and F_OR flags associated
1230			 * with the opcode.
1231			 */
1232			case O_NOP:
1233				match = 1;
1234				break;
1235
1236			case O_FORWARD_MAC:
1237				printf("ipfw: opcode %d unimplemented\n",
1238				    cmd->opcode);
1239				break;
1240
1241			case O_GID:
1242			case O_UID:
1243			case O_JAIL:
1244				/*
1245				 * We only check offset == 0 && proto != 0,
1246				 * as this ensures that we have a
1247				 * packet with the ports info.
1248				 */
1249				if (offset!=0)
1250					break;
1251				if (is_ipv6) /* XXX to be fixed later */
1252					break;
1253				if (proto == IPPROTO_TCP ||
1254				    proto == IPPROTO_UDP)
1255					match = check_uidgid(
1256						    (ipfw_insn_u32 *)cmd,
1257						    proto, oif,
1258						    dst_ip, dst_port,
1259						    src_ip, src_port, &ucred_lookup,
1260#ifdef __FreeBSD__
1261						    &ucred_cache, args->inp);
1262#else
1263						    (void *)&ucred_cache,
1264						    (struct inpcb *)args->m);
1265#endif
1266				break;
1267
1268			case O_RECV:
1269				match = iface_match(m->m_pkthdr.rcvif,
1270				    (ipfw_insn_if *)cmd);
1271				break;
1272
1273			case O_XMIT:
1274				match = iface_match(oif, (ipfw_insn_if *)cmd);
1275				break;
1276
1277			case O_VIA:
1278				match = iface_match(oif ? oif :
1279				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
1280				break;
1281
1282			case O_MACADDR2:
1283				if (args->eh != NULL) {	/* have MAC header */
1284					u_int32_t *want = (u_int32_t *)
1285						((ipfw_insn_mac *)cmd)->addr;
1286					u_int32_t *mask = (u_int32_t *)
1287						((ipfw_insn_mac *)cmd)->mask;
1288					u_int32_t *hdr = (u_int32_t *)args->eh;
1289
1290					match =
1291					    ( want[0] == (hdr[0] & mask[0]) &&
1292					      want[1] == (hdr[1] & mask[1]) &&
1293					      want[2] == (hdr[2] & mask[2]) );
1294				}
1295				break;
1296
1297			case O_MAC_TYPE:
1298				if (args->eh != NULL) {
1299					u_int16_t *p =
1300					    ((ipfw_insn_u16 *)cmd)->ports;
1301					int i;
1302
1303					for (i = cmdlen - 1; !match && i>0;
1304					    i--, p += 2)
1305						match = (etype >= p[0] &&
1306						    etype <= p[1]);
1307				}
1308				break;
1309
1310			case O_FRAG:
1311				match = (offset != 0);
1312				break;
1313
1314			case O_IN:	/* "out" is "not in" */
1315				match = (oif == NULL);
1316				break;
1317
1318			case O_LAYER2:
1319				match = (args->eh != NULL);
1320				break;
1321
1322			case O_DIVERTED:
1323			    {
1324				/* For diverted packets, args->rule.info
1325				 * contains the divert port (in host format)
1326				 * reason and direction.
1327	 			 */
1328				uint32_t i = args->rule.info;
1329				match = (i&IPFW_IS_MASK) == IPFW_IS_DIVERT &&
1330				    cmd->arg1 & ((i & IPFW_INFO_IN) ? 1 : 2);
1331			    }
1332				break;
1333
1334			case O_PROTO:
1335				/*
1336				 * We do not allow an arg of 0 so the
1337				 * check of "proto" only suffices.
1338				 */
1339				match = (proto == cmd->arg1);
1340				break;
1341
1342			case O_IP_SRC:
1343				match = is_ipv4 &&
1344				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1345				    src_ip.s_addr);
1346				break;
1347
1348			case O_IP_SRC_LOOKUP:
1349			case O_IP_DST_LOOKUP:
1350				if (is_ipv4) {
1351				    uint32_t key =
1352					(cmd->opcode == O_IP_DST_LOOKUP) ?
1353					    dst_ip.s_addr : src_ip.s_addr;
1354				    uint32_t v = 0;
1355
1356				    if (cmdlen > F_INSN_SIZE(ipfw_insn_u32)) {
1357					/* generic lookup. The key must be
1358					 * in 32bit big-endian format.
1359					 */
1360					v = ((ipfw_insn_u32 *)cmd)->d[1];
1361					if (v == 0)
1362					    key = dst_ip.s_addr;
1363					else if (v == 1)
1364					    key = src_ip.s_addr;
1365					else if (offset != 0)
1366					    break;
1367					else if (proto != IPPROTO_TCP &&
1368						proto != IPPROTO_UDP)
1369					    break;
1370					else if (v == 2)
1371					    key = htonl(dst_port);
1372					else if (v == 3)
1373					    key = htonl(src_port);
1374					else if (v == 4 || v == 5) {
1375					    check_uidgid(
1376						(ipfw_insn_u32 *)cmd,
1377						proto, oif,
1378						dst_ip, dst_port,
1379						src_ip, src_port, &ucred_lookup,
1380#ifdef __FreeBSD__
1381						&ucred_cache, args->inp);
1382					    if (v == 4 /* O_UID */)
1383						key = ucred_cache->cr_uid;
1384					    else if (v == 5 /* O_JAIL */)
1385						key = ucred_cache->cr_prison->pr_id;
1386#else /* !__FreeBSD__ */
1387						(void *)&ucred_cache,
1388						(struct inpcb *)args->m);
1389					    if (v ==4 /* O_UID */)
1390						key = ucred_cache.uid;
1391					    else if (v == 5 /* O_JAIL */)
1392						key = ucred_cache.xid;
1393#endif /* !__FreeBSD__ */
1394					    key = htonl(key);
1395					} else
1396					    break;
1397				    }
1398				    match = ipfw_lookup_table(chain,
1399					cmd->arg1, key, &v);
1400				    if (!match)
1401					break;
1402				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
1403					match =
1404					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
1405				    else
1406					tablearg = v;
1407				}
1408				break;
1409
1410			case O_IP_SRC_MASK:
1411			case O_IP_DST_MASK:
1412				if (is_ipv4) {
1413				    uint32_t a =
1414					(cmd->opcode == O_IP_DST_MASK) ?
1415					    dst_ip.s_addr : src_ip.s_addr;
1416				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
1417				    int i = cmdlen-1;
1418
1419				    for (; !match && i>0; i-= 2, p+= 2)
1420					match = (p[0] == (a & p[1]));
1421				}
1422				break;
1423
1424			case O_IP_SRC_ME:
1425				if (is_ipv4) {
1426					struct ifnet *tif;
1427
1428					INADDR_TO_IFP(src_ip, tif);
1429					match = (tif != NULL);
1430					break;
1431				}
1432#ifdef INET6
1433				/* FALLTHROUGH */
1434			case O_IP6_SRC_ME:
1435				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
1436#endif
1437				break;
1438
1439			case O_IP_DST_SET:
1440			case O_IP_SRC_SET:
1441				if (is_ipv4) {
1442					u_int32_t *d = (u_int32_t *)(cmd+1);
1443					u_int32_t addr =
1444					    cmd->opcode == O_IP_DST_SET ?
1445						args->f_id.dst_ip :
1446						args->f_id.src_ip;
1447
1448					    if (addr < d[0])
1449						    break;
1450					    addr -= d[0]; /* subtract base */
1451					    match = (addr < cmd->arg1) &&
1452						( d[ 1 + (addr>>5)] &
1453						  (1<<(addr & 0x1f)) );
1454				}
1455				break;
1456
1457			case O_IP_DST:
1458				match = is_ipv4 &&
1459				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1460				    dst_ip.s_addr);
1461				break;
1462
1463			case O_IP_DST_ME:
1464				if (is_ipv4) {
1465					struct ifnet *tif;
1466
1467					INADDR_TO_IFP(dst_ip, tif);
1468					match = (tif != NULL);
1469					break;
1470				}
1471#ifdef INET6
1472				/* FALLTHROUGH */
1473			case O_IP6_DST_ME:
1474				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
1475#endif
1476				break;
1477
1478
1479			case O_IP_SRCPORT:
1480			case O_IP_DSTPORT:
1481				/*
1482				 * offset == 0 && proto != 0 is enough
1483				 * to guarantee that we have a
1484				 * packet with port info.
1485				 */
1486				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
1487				    && offset == 0) {
1488					u_int16_t x =
1489					    (cmd->opcode == O_IP_SRCPORT) ?
1490						src_port : dst_port ;
1491					u_int16_t *p =
1492					    ((ipfw_insn_u16 *)cmd)->ports;
1493					int i;
1494
1495					for (i = cmdlen - 1; !match && i>0;
1496					    i--, p += 2)
1497						match = (x>=p[0] && x<=p[1]);
1498				}
1499				break;
1500
1501			case O_ICMPTYPE:
1502				match = (offset == 0 && proto==IPPROTO_ICMP &&
1503				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
1504				break;
1505
1506#ifdef INET6
1507			case O_ICMP6TYPE:
1508				match = is_ipv6 && offset == 0 &&
1509				    proto==IPPROTO_ICMPV6 &&
1510				    icmp6type_match(
1511					ICMP6(ulp)->icmp6_type,
1512					(ipfw_insn_u32 *)cmd);
1513				break;
1514#endif /* INET6 */
1515
1516			case O_IPOPT:
1517				match = (is_ipv4 &&
1518				    ipopts_match(ip, cmd) );
1519				break;
1520
1521			case O_IPVER:
1522				match = (is_ipv4 &&
1523				    cmd->arg1 == ip->ip_v);
1524				break;
1525
1526			case O_IPID:
1527			case O_IPLEN:
1528			case O_IPTTL:
1529				if (is_ipv4) {	/* only for IP packets */
1530				    uint16_t x;
1531				    uint16_t *p;
1532				    int i;
1533
1534				    if (cmd->opcode == O_IPLEN)
1535					x = iplen;
1536				    else if (cmd->opcode == O_IPTTL)
1537					x = ip->ip_ttl;
1538				    else /* must be IPID */
1539					x = ntohs(ip->ip_id);
1540				    if (cmdlen == 1) {
1541					match = (cmd->arg1 == x);
1542					break;
1543				    }
1544				    /* otherwise we have ranges */
1545				    p = ((ipfw_insn_u16 *)cmd)->ports;
1546				    i = cmdlen - 1;
1547				    for (; !match && i>0; i--, p += 2)
1548					match = (x >= p[0] && x <= p[1]);
1549				}
1550				break;
1551
1552			case O_IPPRECEDENCE:
1553				match = (is_ipv4 &&
1554				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
1555				break;
1556
1557			case O_IPTOS:
1558				match = (is_ipv4 &&
1559				    flags_match(cmd, ip->ip_tos));
1560				break;
1561
1562			case O_TCPDATALEN:
1563				if (proto == IPPROTO_TCP && offset == 0) {
1564				    struct tcphdr *tcp;
1565				    uint16_t x;
1566				    uint16_t *p;
1567				    int i;
1568
1569				    tcp = TCP(ulp);
1570				    x = iplen -
1571					((ip->ip_hl + tcp->th_off) << 2);
1572				    if (cmdlen == 1) {
1573					match = (cmd->arg1 == x);
1574					break;
1575				    }
1576				    /* otherwise we have ranges */
1577				    p = ((ipfw_insn_u16 *)cmd)->ports;
1578				    i = cmdlen - 1;
1579				    for (; !match && i>0; i--, p += 2)
1580					match = (x >= p[0] && x <= p[1]);
1581				}
1582				break;
1583
1584			case O_TCPFLAGS:
1585				match = (proto == IPPROTO_TCP && offset == 0 &&
1586				    flags_match(cmd, TCP(ulp)->th_flags));
1587				break;
1588
1589			case O_TCPOPTS:
1590				match = (proto == IPPROTO_TCP && offset == 0 &&
1591				    tcpopts_match(TCP(ulp), cmd));
1592				break;
1593
1594			case O_TCPSEQ:
1595				match = (proto == IPPROTO_TCP && offset == 0 &&
1596				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1597					TCP(ulp)->th_seq);
1598				break;
1599
1600			case O_TCPACK:
1601				match = (proto == IPPROTO_TCP && offset == 0 &&
1602				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1603					TCP(ulp)->th_ack);
1604				break;
1605
1606			case O_TCPWIN:
1607				match = (proto == IPPROTO_TCP && offset == 0 &&
1608				    cmd->arg1 == TCP(ulp)->th_win);
1609				break;
1610
1611			case O_ESTAB:
1612				/* reject packets which have SYN only */
1613				/* XXX should i also check for TH_ACK ? */
1614				match = (proto == IPPROTO_TCP && offset == 0 &&
1615				    (TCP(ulp)->th_flags &
1616				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
1617				break;
1618
1619			case O_ALTQ: {
1620				struct pf_mtag *at;
1621				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
1622
1623				match = 1;
1624				at = pf_find_mtag(m);
1625				if (at != NULL && at->qid != 0)
1626					break;
1627				at = pf_get_mtag(m);
1628				if (at == NULL) {
1629					/*
1630					 * Let the packet fall back to the
1631					 * default ALTQ.
1632					 */
1633					break;
1634				}
1635				at->qid = altq->qid;
1636				if (is_ipv4)
1637					at->af = AF_INET;
1638				else
1639					at->af = AF_LINK;
1640				at->hdr = ip;
1641				break;
1642			}
1643
1644			case O_LOG:
1645				ipfw_log(f, hlen, args, m,
1646					    oif, offset, tablearg, ip);
1647				match = 1;
1648				break;
1649
1650			case O_PROB:
1651				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
1652				break;
1653
1654			case O_VERREVPATH:
1655				/* Outgoing packets automatically pass/match */
1656				match = ((oif != NULL) ||
1657				    (m->m_pkthdr.rcvif == NULL) ||
1658				    (
1659#ifdef INET6
1660				    is_ipv6 ?
1661					verify_path6(&(args->f_id.src_ip6),
1662					    m->m_pkthdr.rcvif) :
1663#endif
1664				    verify_path(src_ip, m->m_pkthdr.rcvif,
1665				        args->f_id.fib)));
1666				break;
1667
1668			case O_VERSRCREACH:
1669				/* Outgoing packets automatically pass/match */
1670				match = (hlen > 0 && ((oif != NULL) ||
1671#ifdef INET6
1672				    is_ipv6 ?
1673				        verify_path6(&(args->f_id.src_ip6),
1674				            NULL) :
1675#endif
1676				    verify_path(src_ip, NULL, args->f_id.fib)));
1677				break;
1678
1679			case O_ANTISPOOF:
1680				/* Outgoing packets automatically pass/match */
1681				if (oif == NULL && hlen > 0 &&
1682				    (  (is_ipv4 && in_localaddr(src_ip))
1683#ifdef INET6
1684				    || (is_ipv6 &&
1685				        in6_localaddr(&(args->f_id.src_ip6)))
1686#endif
1687				    ))
1688					match =
1689#ifdef INET6
1690					    is_ipv6 ? verify_path6(
1691					        &(args->f_id.src_ip6),
1692					        m->m_pkthdr.rcvif) :
1693#endif
1694					    verify_path(src_ip,
1695					    	m->m_pkthdr.rcvif,
1696					        args->f_id.fib);
1697				else
1698					match = 1;
1699				break;
1700
1701			case O_IPSEC:
1702#ifdef IPSEC
1703				match = (m_tag_find(m,
1704				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
1705#endif
1706				/* otherwise no match */
1707				break;
1708
1709#ifdef INET6
1710			case O_IP6_SRC:
1711				match = is_ipv6 &&
1712				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
1713				    &((ipfw_insn_ip6 *)cmd)->addr6);
1714				break;
1715
1716			case O_IP6_DST:
1717				match = is_ipv6 &&
1718				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
1719				    &((ipfw_insn_ip6 *)cmd)->addr6);
1720				break;
1721			case O_IP6_SRC_MASK:
1722			case O_IP6_DST_MASK:
1723				if (is_ipv6) {
1724					int i = cmdlen - 1;
1725					struct in6_addr p;
1726					struct in6_addr *d =
1727					    &((ipfw_insn_ip6 *)cmd)->addr6;
1728
1729					for (; !match && i > 0; d += 2,
1730					    i -= F_INSN_SIZE(struct in6_addr)
1731					    * 2) {
1732						p = (cmd->opcode ==
1733						    O_IP6_SRC_MASK) ?
1734						    args->f_id.src_ip6:
1735						    args->f_id.dst_ip6;
1736						APPLY_MASK(&p, &d[1]);
1737						match =
1738						    IN6_ARE_ADDR_EQUAL(&d[0],
1739						    &p);
1740					}
1741				}
1742				break;
1743
1744			case O_FLOW6ID:
1745				match = is_ipv6 &&
1746				    flow6id_match(args->f_id.flow_id6,
1747				    (ipfw_insn_u32 *) cmd);
1748				break;
1749
1750			case O_EXT_HDR:
1751				match = is_ipv6 &&
1752				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
1753				break;
1754
1755			case O_IP6:
1756				match = is_ipv6;
1757				break;
1758#endif
1759
1760			case O_IP4:
1761				match = is_ipv4;
1762				break;
1763
1764			case O_TAG: {
1765				struct m_tag *mtag;
1766				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
1767				    tablearg : cmd->arg1;
1768
1769				/* Packet is already tagged with this tag? */
1770				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
1771
1772				/* We have `untag' action when F_NOT flag is
1773				 * present. And we must remove this mtag from
1774				 * mbuf and reset `match' to zero (`match' will
1775				 * be inversed later).
1776				 * Otherwise we should allocate new mtag and
1777				 * push it into mbuf.
1778				 */
1779				if (cmd->len & F_NOT) { /* `untag' action */
1780					if (mtag != NULL)
1781						m_tag_delete(m, mtag);
1782					match = 0;
1783				} else if (mtag == NULL) {
1784					if ((mtag = m_tag_alloc(MTAG_IPFW,
1785					    tag, 0, M_NOWAIT)) != NULL)
1786						m_tag_prepend(m, mtag);
1787					match = 1;
1788				}
1789				break;
1790			}
1791
1792			case O_FIB: /* try match the specified fib */
1793				if (args->f_id.fib == cmd->arg1)
1794					match = 1;
1795				break;
1796
1797			case O_TAGGED: {
1798				struct m_tag *mtag;
1799				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
1800				    tablearg : cmd->arg1;
1801
1802				if (cmdlen == 1) {
1803					match = m_tag_locate(m, MTAG_IPFW,
1804					    tag, NULL) != NULL;
1805					break;
1806				}
1807
1808				/* we have ranges */
1809				for (mtag = m_tag_first(m);
1810				    mtag != NULL && !match;
1811				    mtag = m_tag_next(m, mtag)) {
1812					uint16_t *p;
1813					int i;
1814
1815					if (mtag->m_tag_cookie != MTAG_IPFW)
1816						continue;
1817
1818					p = ((ipfw_insn_u16 *)cmd)->ports;
1819					i = cmdlen - 1;
1820					for(; !match && i > 0; i--, p += 2)
1821						match =
1822						    mtag->m_tag_id >= p[0] &&
1823						    mtag->m_tag_id <= p[1];
1824				}
1825				break;
1826			}
1827
1828			/*
1829			 * The second set of opcodes represents 'actions',
1830			 * i.e. the terminal part of a rule once the packet
1831			 * matches all previous patterns.
1832			 * Typically there is only one action for each rule,
1833			 * and the opcode is stored at the end of the rule
1834			 * (but there are exceptions -- see below).
1835			 *
1836			 * In general, here we set retval and terminate the
1837			 * outer loop (would be a 'break 3' in some language,
1838			 * but we need to set l=0, done=1)
1839			 *
1840			 * Exceptions:
1841			 * O_COUNT and O_SKIPTO actions:
1842			 *   instead of terminating, we jump to the next rule
1843			 *   (setting l=0), or to the SKIPTO target (setting
1844			 *   f/f_len, cmd and l as needed), respectively.
1845			 *
1846			 * O_TAG, O_LOG and O_ALTQ action parameters:
1847			 *   perform some action and set match = 1;
1848			 *
1849			 * O_LIMIT and O_KEEP_STATE: these opcodes are
1850			 *   not real 'actions', and are stored right
1851			 *   before the 'action' part of the rule.
1852			 *   These opcodes try to install an entry in the
1853			 *   state tables; if successful, we continue with
1854			 *   the next opcode (match=1; break;), otherwise
1855			 *   the packet must be dropped (set retval,
1856			 *   break loops with l=0, done=1)
1857			 *
1858			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
1859			 *   cause a lookup of the state table, and a jump
1860			 *   to the 'action' part of the parent rule
1861			 *   if an entry is found, or
1862			 *   (CHECK_STATE only) a jump to the next rule if
1863			 *   the entry is not found.
1864			 *   The result of the lookup is cached so that
1865			 *   further instances of these opcodes become NOPs.
1866			 *   The jump to the next rule is done by setting
1867			 *   l=0, cmdlen=0.
1868			 */
1869			case O_LIMIT:
1870			case O_KEEP_STATE:
1871				if (ipfw_install_state(f,
1872				    (ipfw_insn_limit *)cmd, args, tablearg)) {
1873					/* error or limit violation */
1874					retval = IP_FW_DENY;
1875					l = 0;	/* exit inner loop */
1876					done = 1; /* exit outer loop */
1877				}
1878				match = 1;
1879				break;
1880
1881			case O_PROBE_STATE:
1882			case O_CHECK_STATE:
1883				/*
1884				 * dynamic rules are checked at the first
1885				 * keep-state or check-state occurrence,
1886				 * with the result being stored in dyn_dir.
1887				 * The compiler introduces a PROBE_STATE
1888				 * instruction for us when we have a
1889				 * KEEP_STATE (because PROBE_STATE needs
1890				 * to be run first).
1891				 */
1892				if (dyn_dir == MATCH_UNKNOWN &&
1893				    (q = ipfw_lookup_dyn_rule(&args->f_id,
1894				     &dyn_dir, proto == IPPROTO_TCP ?
1895					TCP(ulp) : NULL))
1896					!= NULL) {
1897					/*
1898					 * Found dynamic entry, update stats
1899					 * and jump to the 'action' part of
1900					 * the parent rule by setting
1901					 * f, cmd, l and clearing cmdlen.
1902					 */
1903					q->pcnt++;
1904					q->bcnt += pktlen;
1905					/* XXX we would like to have f_pos
1906					 * readily accessible in the dynamic
1907				         * rule, instead of having to
1908					 * lookup q->rule.
1909					 */
1910					f = q->rule;
1911					f_pos = ipfw_find_rule(chain,
1912						f->rulenum, f->id);
1913					cmd = ACTION_PTR(f);
1914					l = f->cmd_len - f->act_ofs;
1915					ipfw_dyn_unlock();
1916					cmdlen = 0;
1917					match = 1;
1918					break;
1919				}
1920				/*
1921				 * Dynamic entry not found. If CHECK_STATE,
1922				 * skip to next rule, if PROBE_STATE just
1923				 * ignore and continue with next opcode.
1924				 */
1925				if (cmd->opcode == O_CHECK_STATE)
1926					l = 0;	/* exit inner loop */
1927				match = 1;
1928				break;
1929
1930			case O_ACCEPT:
1931				retval = 0;	/* accept */
1932				l = 0;		/* exit inner loop */
1933				done = 1;	/* exit outer loop */
1934				break;
1935
1936			case O_PIPE:
1937			case O_QUEUE:
1938				set_match(args, f_pos, chain);
1939				args->rule.info = (cmd->arg1 == IP_FW_TABLEARG) ?
1940					tablearg : cmd->arg1;
1941				if (cmd->opcode == O_PIPE)
1942					args->rule.info |= IPFW_IS_PIPE;
1943				if (V_fw_one_pass)
1944					args->rule.info |= IPFW_ONEPASS;
1945				retval = IP_FW_DUMMYNET;
1946				l = 0;          /* exit inner loop */
1947				done = 1;       /* exit outer loop */
1948				break;
1949
1950			case O_DIVERT:
1951			case O_TEE:
1952				if (args->eh) /* not on layer 2 */
1953				    break;
1954				/* otherwise this is terminal */
1955				l = 0;		/* exit inner loop */
1956				done = 1;	/* exit outer loop */
1957				retval = (cmd->opcode == O_DIVERT) ?
1958					IP_FW_DIVERT : IP_FW_TEE;
1959				set_match(args, f_pos, chain);
1960				args->rule.info = (cmd->arg1 == IP_FW_TABLEARG) ?
1961				    tablearg : cmd->arg1;
1962				break;
1963
1964			case O_COUNT:
1965				f->pcnt++;	/* update stats */
1966				f->bcnt += pktlen;
1967				f->timestamp = time_uptime;
1968				l = 0;		/* exit inner loop */
1969				break;
1970
1971			case O_SKIPTO:
1972			    f->pcnt++;	/* update stats */
1973			    f->bcnt += pktlen;
1974			    f->timestamp = time_uptime;
1975			    /* If possible use cached f_pos (in f->next_rule),
1976			     * whose version is written in f->next_rule
1977			     * (horrible hacks to avoid changing the ABI).
1978			     */
1979			    if (cmd->arg1 != IP_FW_TABLEARG &&
1980				    (uintptr_t)f->x_next == chain->id) {
1981				f_pos = (uintptr_t)f->next_rule;
1982			    } else {
1983				int i = (cmd->arg1 == IP_FW_TABLEARG) ?
1984					tablearg : cmd->arg1;
1985				/* make sure we do not jump backward */
1986				if (i <= f->rulenum)
1987				    i = f->rulenum + 1;
1988				f_pos = ipfw_find_rule(chain, i, 0);
1989				/* update the cache */
1990				if (cmd->arg1 != IP_FW_TABLEARG) {
1991				    f->next_rule =
1992					(void *)(uintptr_t)f_pos;
1993				    f->x_next =
1994					(void *)(uintptr_t)chain->id;
1995				}
1996			    }
1997			    /*
1998			     * Skip disabled rules, and re-enter
1999			     * the inner loop with the correct
2000			     * f_pos, f, l and cmd.
2001			     * Also clear cmdlen and skip_or
2002			     */
2003			    for (; f_pos < chain->n_rules - 1 &&
2004				    (V_set_disable &
2005				     (1 << chain->map[f_pos]->set));
2006				    f_pos++)
2007				;
2008			    /* prepare to enter the inner loop */
2009			    f = chain->map[f_pos];
2010			    l = f->cmd_len;
2011			    cmd = f->cmd;
2012			    match = 1;
2013			    cmdlen = 0;
2014			    skip_or = 0;
2015			    break;
2016
2017			case O_REJECT:
2018				/*
2019				 * Drop the packet and send a reject notice
2020				 * if the packet is not ICMP (or is an ICMP
2021				 * query), and it is not multicast/broadcast.
2022				 */
2023				if (hlen > 0 && is_ipv4 && offset == 0 &&
2024				    (proto != IPPROTO_ICMP ||
2025				     is_icmp_query(ICMP(ulp))) &&
2026				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2027				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
2028					send_reject(args, cmd->arg1, iplen, ip);
2029					m = args->m;
2030				}
2031				/* FALLTHROUGH */
2032#ifdef INET6
2033			case O_UNREACH6:
2034				if (hlen > 0 && is_ipv6 &&
2035				    ((offset & IP6F_OFF_MASK) == 0) &&
2036				    (proto != IPPROTO_ICMPV6 ||
2037				     (is_icmp6_query(args->f_id.flags) == 1)) &&
2038				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2039				    !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
2040					send_reject6(
2041					    args, cmd->arg1, hlen,
2042					    (struct ip6_hdr *)ip);
2043					m = args->m;
2044				}
2045				/* FALLTHROUGH */
2046#endif
2047			case O_DENY:
2048				retval = IP_FW_DENY;
2049				l = 0;		/* exit inner loop */
2050				done = 1;	/* exit outer loop */
2051				break;
2052
2053			case O_FORWARD_IP:
2054				if (args->eh)	/* not valid on layer2 pkts */
2055					break;
2056				if (!q || dyn_dir == MATCH_FORWARD) {
2057				    struct sockaddr_in *sa;
2058				    sa = &(((ipfw_insn_sa *)cmd)->sa);
2059				    if (sa->sin_addr.s_addr == INADDR_ANY) {
2060					bcopy(sa, &args->hopstore,
2061							sizeof(*sa));
2062					args->hopstore.sin_addr.s_addr =
2063						    htonl(tablearg);
2064					args->next_hop = &args->hopstore;
2065				    } else {
2066					args->next_hop = sa;
2067				    }
2068				}
2069				retval = IP_FW_PASS;
2070				l = 0;          /* exit inner loop */
2071				done = 1;       /* exit outer loop */
2072				break;
2073
2074			case O_NETGRAPH:
2075			case O_NGTEE:
2076				set_match(args, f_pos, chain);
2077				args->rule.info = (cmd->arg1 == IP_FW_TABLEARG) ?
2078					tablearg : cmd->arg1;
2079				retval = (cmd->opcode == O_NETGRAPH) ?
2080				    IP_FW_NETGRAPH : IP_FW_NGTEE;
2081				l = 0;          /* exit inner loop */
2082				done = 1;       /* exit outer loop */
2083				break;
2084
2085			case O_SETFIB:
2086				f->pcnt++;	/* update stats */
2087				f->bcnt += pktlen;
2088				f->timestamp = time_uptime;
2089				M_SETFIB(m, cmd->arg1);
2090				args->f_id.fib = cmd->arg1;
2091				l = 0;		/* exit inner loop */
2092				break;
2093
2094			case O_NAT:
2095 				if (!IPFW_NAT_LOADED) {
2096				    retval = IP_FW_DENY;
2097				} else {
2098				    struct cfg_nat *t;
2099				    int nat_id;
2100
2101				    set_match(args, f_pos, chain);
2102				    t = ((ipfw_insn_nat *)cmd)->nat;
2103				    if (t == NULL) {
2104					nat_id = (cmd->arg1 == IP_FW_TABLEARG) ?
2105						tablearg : cmd->arg1;
2106					t = (*lookup_nat_ptr)(&chain->nat, nat_id);
2107
2108					if (t == NULL) {
2109					    retval = IP_FW_DENY;
2110					    l = 0;	/* exit inner loop */
2111					    done = 1;	/* exit outer loop */
2112					    break;
2113					}
2114					if (cmd->arg1 != IP_FW_TABLEARG)
2115					    ((ipfw_insn_nat *)cmd)->nat = t;
2116				    }
2117				    retval = ipfw_nat_ptr(args, t, m);
2118				}
2119				l = 0;          /* exit inner loop */
2120				done = 1;       /* exit outer loop */
2121				break;
2122
2123			case O_REASS: {
2124				int ip_off;
2125
2126				f->pcnt++;
2127				f->bcnt += pktlen;
2128				l = 0;	/* in any case exit inner loop */
2129				ip_off = ntohs(ip->ip_off);
2130
2131				/* if not fragmented, go to next rule */
2132				if ((ip_off & (IP_MF | IP_OFFMASK)) == 0)
2133				    break;
2134				/*
2135				 * ip_reass() expects len & off in host
2136				 * byte order.
2137				 */
2138				SET_HOST_IPLEN(ip);
2139
2140				args->m = m = ip_reass(m);
2141
2142				/*
2143				 * do IP header checksum fixup.
2144				 */
2145				if (m == NULL) { /* fragment got swallowed */
2146				    retval = IP_FW_DENY;
2147				} else { /* good, packet complete */
2148				    int hlen;
2149
2150				    ip = mtod(m, struct ip *);
2151				    hlen = ip->ip_hl << 2;
2152				    SET_NET_IPLEN(ip);
2153				    ip->ip_sum = 0;
2154				    if (hlen == sizeof(struct ip))
2155					ip->ip_sum = in_cksum_hdr(ip);
2156				    else
2157					ip->ip_sum = in_cksum(m, hlen);
2158				    retval = IP_FW_REASS;
2159				    set_match(args, f_pos, chain);
2160				}
2161				done = 1;	/* exit outer loop */
2162				break;
2163			}
2164
2165			default:
2166				panic("-- unknown opcode %d\n", cmd->opcode);
2167			} /* end of switch() on opcodes */
2168			/*
2169			 * if we get here with l=0, then match is irrelevant.
2170			 */
2171
2172			if (cmd->len & F_NOT)
2173				match = !match;
2174
2175			if (match) {
2176				if (cmd->len & F_OR)
2177					skip_or = 1;
2178			} else {
2179				if (!(cmd->len & F_OR)) /* not an OR block, */
2180					break;		/* try next rule    */
2181			}
2182
2183		}	/* end of inner loop, scan opcodes */
2184
2185		if (done)
2186			break;
2187
2188/* next_rule:; */	/* try next rule		*/
2189
2190	}		/* end of outer for, scan rules */
2191
2192	if (done) {
2193		struct ip_fw *rule = chain->map[f_pos];
2194		/* Update statistics */
2195		rule->pcnt++;
2196		rule->bcnt += pktlen;
2197		rule->timestamp = time_uptime;
2198	} else {
2199		retval = IP_FW_DENY;
2200		printf("ipfw: ouch!, skip past end of rules, denying packet\n");
2201	}
2202	IPFW_RUNLOCK(chain);
2203#ifdef __FreeBSD__
2204	if (ucred_cache != NULL)
2205		crfree(ucred_cache);
2206#endif
2207	return (retval);
2208
2209pullup_failed:
2210	if (V_fw_verbose)
2211		printf("ipfw: pullup failed\n");
2212	return (IP_FW_DENY);
2213}
2214
2215/*
2216 * Module and VNET glue
2217 */
2218
2219/*
2220 * Stuff that must be initialised only on boot or module load
2221 */
2222static int
2223ipfw_init(void)
2224{
2225	int error = 0;
2226
2227	ipfw_dyn_attach();
2228	/*
2229 	 * Only print out this stuff the first time around,
2230	 * when called from the sysinit code.
2231	 */
2232	printf("ipfw2 "
2233#ifdef INET6
2234		"(+ipv6) "
2235#endif
2236		"initialized, divert %s, nat %s, "
2237		"rule-based forwarding "
2238#ifdef IPFIREWALL_FORWARD
2239		"enabled, "
2240#else
2241		"disabled, "
2242#endif
2243		"default to %s, logging ",
2244#ifdef IPDIVERT
2245		"enabled",
2246#else
2247		"loadable",
2248#endif
2249#ifdef IPFIREWALL_NAT
2250		"enabled",
2251#else
2252		"loadable",
2253#endif
2254		default_to_accept ? "accept" : "deny");
2255
2256	/*
2257	 * Note: V_xxx variables can be accessed here but the vnet specific
2258	 * initializer may not have been called yet for the VIMAGE case.
2259	 * Tuneables will have been processed. We will print out values for
2260	 * the default vnet.
2261	 * XXX This should all be rationalized AFTER 8.0
2262	 */
2263	if (V_fw_verbose == 0)
2264		printf("disabled\n");
2265	else if (V_verbose_limit == 0)
2266		printf("unlimited\n");
2267	else
2268		printf("limited to %d packets/entry by default\n",
2269		    V_verbose_limit);
2270
2271	ipfw_log_bpf(1); /* init */
2272	return (error);
2273}
2274
2275/*
2276 * Called for the removal of the last instance only on module unload.
2277 */
2278static void
2279ipfw_destroy(void)
2280{
2281
2282	ipfw_log_bpf(0); /* uninit */
2283	ipfw_dyn_detach();
2284	printf("IP firewall unloaded\n");
2285}
2286
2287/*
2288 * Stuff that must be initialized for every instance
2289 * (including the first of course).
2290 */
2291static int
2292vnet_ipfw_init(const void *unused)
2293{
2294	int error;
2295	struct ip_fw *rule = NULL;
2296	struct ip_fw_chain *chain;
2297
2298	chain = &V_layer3_chain;
2299
2300	/* First set up some values that are compile time options */
2301	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
2302	V_fw_deny_unknown_exthdrs = 1;
2303#ifdef IPFIREWALL_VERBOSE
2304	V_fw_verbose = 1;
2305#endif
2306#ifdef IPFIREWALL_VERBOSE_LIMIT
2307	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
2308#endif
2309#ifdef IPFIREWALL_NAT
2310	LIST_INIT(&chain->nat);
2311#endif
2312
2313	/* insert the default rule and create the initial map */
2314	chain->n_rules = 1;
2315	chain->static_len = sizeof(struct ip_fw);
2316	chain->map = malloc(sizeof(struct ip_fw *), M_IPFW, M_NOWAIT | M_ZERO);
2317	if (chain->map)
2318		rule = malloc(chain->static_len, M_IPFW, M_NOWAIT | M_ZERO);
2319	if (rule == NULL) {
2320		if (chain->map)
2321			free(chain->map, M_IPFW);
2322		printf("ipfw2: ENOSPC initializing default rule "
2323			"(support disabled)\n");
2324		return (ENOSPC);
2325	}
2326	error = ipfw_init_tables(chain);
2327	if (error) {
2328		panic("init_tables"); /* XXX Marko fix this ! */
2329	}
2330
2331	/* fill and insert the default rule */
2332	rule->act_ofs = 0;
2333	rule->rulenum = IPFW_DEFAULT_RULE;
2334	rule->cmd_len = 1;
2335	rule->set = RESVD_SET;
2336	rule->cmd[0].len = 1;
2337	rule->cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
2338	chain->rules = chain->default_rule = chain->map[0] = rule;
2339	chain->id = rule->id = 1;
2340
2341	IPFW_LOCK_INIT(chain);
2342	ipfw_dyn_init();
2343
2344	/* First set up some values that are compile time options */
2345	V_ipfw_vnet_ready = 1;		/* Open for business */
2346
2347	/*
2348	 * Hook the sockopt handler, and the layer2 (V_ip_fw_chk_ptr)
2349	 * and pfil hooks for ipv4 and ipv6. Even if the latter two fail
2350	 * we still keep the module alive because the sockopt and
2351	 * layer2 paths are still useful.
2352	 * ipfw[6]_hook return 0 on success, ENOENT on failure,
2353	 * so we can ignore the exact return value and just set a flag.
2354	 *
2355	 * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so
2356	 * changes in the underlying (per-vnet) variables trigger
2357	 * immediate hook()/unhook() calls.
2358	 * In layer2 we have the same behaviour, except that V_ether_ipfw
2359	 * is checked on each packet because there are no pfil hooks.
2360	 */
2361	V_ip_fw_ctl_ptr = ipfw_ctl;
2362	V_ip_fw_chk_ptr = ipfw_chk;
2363	error = ipfw_attach_hooks(1);
2364	return (error);
2365}
2366
2367/*
2368 * Called for the removal of each instance.
2369 */
2370static int
2371vnet_ipfw_uninit(const void *unused)
2372{
2373	struct ip_fw *reap, *rule;
2374	struct ip_fw_chain *chain = &V_layer3_chain;
2375	int i;
2376
2377	V_ipfw_vnet_ready = 0; /* tell new callers to go away */
2378	/*
2379	 * disconnect from ipv4, ipv6, layer2 and sockopt.
2380	 * Then grab, release and grab again the WLOCK so we make
2381	 * sure the update is propagated and nobody will be in.
2382	 */
2383	(void)ipfw_attach_hooks(0 /* detach */);
2384	V_ip_fw_chk_ptr = NULL;
2385	V_ip_fw_ctl_ptr = NULL;
2386	IPFW_UH_WLOCK(chain);
2387	IPFW_UH_WUNLOCK(chain);
2388	IPFW_UH_WLOCK(chain);
2389
2390	IPFW_WLOCK(chain);
2391	IPFW_WUNLOCK(chain);
2392	IPFW_WLOCK(chain);
2393
2394	ipfw_dyn_uninit(0);	/* run the callout_drain */
2395	ipfw_flush_tables(chain);
2396	reap = NULL;
2397	for (i = 0; i < chain->n_rules; i++) {
2398		rule = chain->map[i];
2399		rule->x_next = reap;
2400		reap = rule;
2401	}
2402	if (chain->map)
2403		free(chain->map, M_IPFW);
2404	IPFW_WUNLOCK(chain);
2405	IPFW_UH_WUNLOCK(chain);
2406	if (reap != NULL)
2407		ipfw_reap_rules(reap);
2408	IPFW_LOCK_DESTROY(chain);
2409	ipfw_dyn_uninit(1);	/* free the remaining parts */
2410	return 0;
2411}
2412
2413/*
2414 * Module event handler.
2415 * In general we have the choice of handling most of these events by the
2416 * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
2417 * use the SYSINIT handlers as they are more capable of expressing the
2418 * flow of control during module and vnet operations, so this is just
2419 * a skeleton. Note there is no SYSINIT equivalent of the module
2420 * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
2421 */
2422static int
2423ipfw_modevent(module_t mod, int type, void *unused)
2424{
2425	int err = 0;
2426
2427	switch (type) {
2428	case MOD_LOAD:
2429		/* Called once at module load or
2430	 	 * system boot if compiled in. */
2431		break;
2432	case MOD_QUIESCE:
2433		/* Called before unload. May veto unloading. */
2434		break;
2435	case MOD_UNLOAD:
2436		/* Called during unload. */
2437		break;
2438	case MOD_SHUTDOWN:
2439		/* Called during system shutdown. */
2440		break;
2441	default:
2442		err = EOPNOTSUPP;
2443		break;
2444	}
2445	return err;
2446}
2447
2448static moduledata_t ipfwmod = {
2449	"ipfw",
2450	ipfw_modevent,
2451	0
2452};
2453
2454/* Define startup order. */
2455#define	IPFW_SI_SUB_FIREWALL	SI_SUB_PROTO_IFATTACHDOMAIN
2456#define	IPFW_MODEVENT_ORDER	(SI_ORDER_ANY - 255) /* On boot slot in here. */
2457#define	IPFW_MODULE_ORDER	(IPFW_MODEVENT_ORDER + 1) /* A little later. */
2458#define	IPFW_VNET_ORDER		(IPFW_MODEVENT_ORDER + 2) /* Later still. */
2459
2460DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
2461MODULE_VERSION(ipfw, 2);
2462/* should declare some dependencies here */
2463
2464/*
2465 * Starting up. Done in order after ipfwmod() has been called.
2466 * VNET_SYSINIT is also called for each existing vnet and each new vnet.
2467 */
2468SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2469	    ipfw_init, NULL);
2470VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2471	    vnet_ipfw_init, NULL);
2472
2473/*
2474 * Closing up shop. These are done in REVERSE ORDER, but still
2475 * after ipfwmod() has been called. Not called on reboot.
2476 * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
2477 * or when the module is unloaded.
2478 */
2479SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2480	    ipfw_destroy, NULL);
2481VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2482	    vnet_ipfw_uninit, NULL);
2483/* end of file */
2484