ip_fw2.c revision 201150
1252995Sdteske/*-
2252995Sdteske * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
3252995Sdteske *
4252995Sdteske * Redistribution and use in source and binary forms, with or without
5252995Sdteske * modification, are permitted provided that the following conditions
6252995Sdteske * are met:
7252995Sdteske * 1. Redistributions of source code must retain the above copyright
8252995Sdteske *    notice, this list of conditions and the following disclaimer.
9252995Sdteske * 2. Redistributions in binary form must reproduce the above copyright
10252995Sdteske *    notice, this list of conditions and the following disclaimer in the
11252995Sdteske *    documentation and/or other materials provided with the distribution.
12252995Sdteske *
13252995Sdteske * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14252995Sdteske * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15252995Sdteske * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16252995Sdteske * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17252995Sdteske * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18252995Sdteske * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19252995Sdteske * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20252995Sdteske * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21252995Sdteske * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22252995Sdteske * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23252995Sdteske * SUCH DAMAGE.
24252995Sdteske */
25252995Sdteske
26252995Sdteske#include <sys/cdefs.h>
27252995Sdteske__FBSDID("$FreeBSD: head/sys/netinet/ipfw/ip_fw2.c 201150 2009-12-29 00:02:57Z luigi $");
28252995Sdteske
29252995Sdteske/*
30252995Sdteske * The FreeBSD IP packet firewall, main file
31252995Sdteske */
32252995Sdteske
33252995Sdteske#if !defined(KLD_MODULE)
34252995Sdteske#include "opt_ipfw.h"
35252995Sdteske#include "opt_ipdivert.h"
36252995Sdteske#include "opt_ipdn.h"
37252995Sdteske#include "opt_inet.h"
38252995Sdteske#ifndef INET
39252995Sdteske#error IPFIREWALL requires INET.
40252995Sdteske#endif /* INET */
41252995Sdteske#endif
42252995Sdteske#include "opt_inet6.h"
43252995Sdteske#include "opt_ipsec.h"
44252995Sdteske
45252995Sdteske#include <sys/param.h>
46252995Sdteske#include <sys/systm.h>
47252995Sdteske#include <sys/condvar.h>
48252995Sdteske#include <sys/eventhandler.h>
49252995Sdteske#include <sys/malloc.h>
50252995Sdteske#include <sys/mbuf.h>
51252995Sdteske#include <sys/kernel.h>
52252995Sdteske#include <sys/lock.h>
53252995Sdteske#include <sys/jail.h>
54252995Sdteske#include <sys/module.h>
55252995Sdteske#include <sys/priv.h>
56252995Sdteske#include <sys/proc.h>
57252995Sdteske#include <sys/rwlock.h>
58252995Sdteske#include <sys/socket.h>
59252995Sdteske#include <sys/socketvar.h>
60252995Sdteske#include <sys/sysctl.h>
61252995Sdteske#include <sys/syslog.h>
62252995Sdteske#include <sys/ucred.h>
63252995Sdteske#include <net/ethernet.h> /* for ETHERTYPE_IP */
64252995Sdteske#include <net/if.h>
65252995Sdteske#include <net/route.h>
66252995Sdteske#include <net/pf_mtag.h>
67252995Sdteske#include <net/vnet.h>
68252995Sdteske
69252995Sdteske#include <netinet/in.h>
70252995Sdteske#include <netinet/in_var.h>
71252995Sdteske#include <netinet/in_pcb.h>
72252995Sdteske#include <netinet/ip.h>
73252995Sdteske#include <netinet/ip_var.h>
74252995Sdteske#include <netinet/ip_icmp.h>
75252995Sdteske#include <netinet/ip_fw.h>
76252995Sdteske#include <netinet/ipfw/ip_fw_private.h>
77252995Sdteske#include <netinet/ip_divert.h>
78252995Sdteske#include <netinet/ip_carp.h>
79252995Sdteske#include <netinet/pim.h>
80252995Sdteske#include <netinet/tcp_var.h>
81252995Sdteske#include <netinet/udp.h>
82252995Sdteske#include <netinet/udp_var.h>
83252995Sdteske#include <netinet/sctp.h>
84252995Sdteske
85252995Sdteske#include <netinet/ip6.h>
86252995Sdteske#include <netinet/icmp6.h>
87252995Sdteske#ifdef INET6
88252995Sdteske#include <netinet6/scope6_var.h>
89252995Sdteske#include <netinet6/ip6_var.h>
90252995Sdteske#endif
91252995Sdteske
92252995Sdteske#include <machine/in_cksum.h>	/* XXX for in_cksum */
93252995Sdteske
94252995Sdteske#ifdef MAC
95252995Sdteske#include <security/mac/mac_framework.h>
96252995Sdteske#endif
97252995Sdteske
98252995Sdteske/*
99252995Sdteske * static variables followed by global ones.
100252995Sdteske * All ipfw global variables are here.
101252995Sdteske */
102252995Sdteske
103252995Sdteske/* ipfw_vnet_ready controls when we are open for business */
104252995Sdteskestatic VNET_DEFINE(int, ipfw_vnet_ready) = 0;
105252995Sdteske#define	V_ipfw_vnet_ready	VNET(ipfw_vnet_ready)
106252995Sdteske
107252995Sdteskestatic VNET_DEFINE(int, fw_deny_unknown_exthdrs);
108252995Sdteske#define	V_fw_deny_unknown_exthdrs	VNET(fw_deny_unknown_exthdrs)
109252995Sdteske
110252995Sdteske#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
111252995Sdteskestatic int default_to_accept = 1;
112252995Sdteske#else
113252995Sdteskestatic int default_to_accept;
114252995Sdteske#endif
115252995Sdteske
116252995SdteskeVNET_DEFINE(int, autoinc_step);
117252995Sdteske
118252995Sdteske/*
119252995Sdteske * Each rule belongs to one of 32 different sets (0..31).
120252995Sdteske * The variable set_disable contains one bit per set.
121252995Sdteske * If the bit is set, all rules in the corresponding set
122252995Sdteske * are disabled. Set RESVD_SET(31) is reserved for the default rule
123252995Sdteske * and rules that are not deleted by the flush command,
124252995Sdteske * and CANNOT be disabled.
125252995Sdteske * Rules in set RESVD_SET can only be deleted individually.
126252995Sdteske */
127252995SdteskeVNET_DEFINE(u_int32_t, set_disable);
128252995Sdteske#define	V_set_disable			VNET(set_disable)
129252995Sdteske
130252995SdteskeVNET_DEFINE(int, fw_verbose);
131252995Sdteske/* counter for ipfw_log(NULL...) */
132252995SdteskeVNET_DEFINE(u_int64_t, norule_counter);
133252995SdteskeVNET_DEFINE(int, verbose_limit);
134252995Sdteske
135252995Sdteske/* layer3_chain contains the list of rules for layer 3 */
136252995SdteskeVNET_DEFINE(struct ip_fw_chain, layer3_chain);
137252995Sdteske
138252995Sdteskeipfw_nat_t *ipfw_nat_ptr = NULL;
139252995Sdteskestruct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
140252995Sdteskeipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
141252995Sdteskeipfw_nat_cfg_t *ipfw_nat_del_ptr;
142252995Sdteskeipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
143252995Sdteskeipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
144252995Sdteske
145252995Sdteske#ifdef SYSCTL_NODE
146252995SdteskeSYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
147263791SdteskeSYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
148263791Sdteske    CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
149252995Sdteske    "Only do a single pass through ipfw when using dummynet(4)");
150263791SdteskeSYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
151252995Sdteske    CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
152252995Sdteske    "Rule number auto-increment step");
153263791SdteskeSYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose,
154263791Sdteske    CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
155252995Sdteske    "Log matches to ipfw rules");
156252995SdteskeSYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
157252995Sdteske    CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
158252995Sdteske    "Set upper limit of matches of ipfw rules logged");
159252995SdteskeSYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
160252995Sdteske    NULL, IPFW_DEFAULT_RULE,
161252995Sdteske    "The default/max possible rule number.");
162252995SdteskeSYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, tables_max, CTLFLAG_RD,
163252995Sdteske    NULL, IPFW_TABLES_MAX,
164252995Sdteske    "The maximum number of tables.");
165252995SdteskeSYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
166252995Sdteske    &default_to_accept, 0,
167263791Sdteske    "Make the default rule accept all packets.");
168263791SdteskeTUNABLE_INT("net.inet.ip.fw.default_to_accept", &default_to_accept);
169252995SdteskeSYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, static_count,
170252995Sdteske    CTLFLAG_RD, &VNET_NAME(layer3_chain.n_rules), 0,
171263791Sdteske    "Number of static rules");
172252995Sdteske
173252995Sdteske#ifdef INET6
174252995SdteskeSYSCTL_DECL(_net_inet6_ip6);
175252995SdteskeSYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
176252995SdteskeSYSCTL_VNET_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
177252995Sdteske    CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(fw_deny_unknown_exthdrs), 0,
178252995Sdteske    "Deny packets with unknown IPv6 Extension Headers");
179252995Sdteske#endif /* INET6 */
180252995Sdteske
181252995Sdteske#endif /* SYSCTL_NODE */
182252995Sdteske
183252995Sdteske
184252995Sdteske/*
185252995Sdteske * Some macros used in the various matching options.
186252995Sdteske * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
187252995Sdteske * Other macros just cast void * into the appropriate type
188252995Sdteske */
189252995Sdteske#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
190252995Sdteske#define	TCP(p)		((struct tcphdr *)(p))
191252995Sdteske#define	SCTP(p)		((struct sctphdr *)(p))
192252995Sdteske#define	UDP(p)		((struct udphdr *)(p))
193252995Sdteske#define	ICMP(p)		((struct icmphdr *)(p))
194252995Sdteske#define	ICMP6(p)	((struct icmp6_hdr *)(p))
195252995Sdteske
196252995Sdteskestatic __inline int
197252995Sdteskeicmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
198252995Sdteske{
199252995Sdteske	int type = icmp->icmp_type;
200252995Sdteske
201252995Sdteske	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
202252995Sdteske}
203252995Sdteske
204252995Sdteske#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
205252995Sdteske    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
206252995Sdteske
207252995Sdteskestatic int
208252995Sdteskeis_icmp_query(struct icmphdr *icmp)
209252995Sdteske{
210252995Sdteske	int type = icmp->icmp_type;
211252995Sdteske
212263791Sdteske	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
213252995Sdteske}
214252995Sdteske#undef TT
215252995Sdteske
216252995Sdteske/*
217252995Sdteske * The following checks use two arrays of 8 or 16 bits to store the
218252995Sdteske * bits that we want set or clear, respectively. They are in the
219252995Sdteske * low and high half of cmd->arg1 or cmd->d[0].
220 *
221 * We scan options and store the bits we find set. We succeed if
222 *
223 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
224 *
225 * The code is sometimes optimized not to store additional variables.
226 */
227
228static int
229flags_match(ipfw_insn *cmd, u_int8_t bits)
230{
231	u_char want_clear;
232	bits = ~bits;
233
234	if ( ((cmd->arg1 & 0xff) & bits) != 0)
235		return 0; /* some bits we want set were clear */
236	want_clear = (cmd->arg1 >> 8) & 0xff;
237	if ( (want_clear & bits) != want_clear)
238		return 0; /* some bits we want clear were set */
239	return 1;
240}
241
242static int
243ipopts_match(struct ip *ip, ipfw_insn *cmd)
244{
245	int optlen, bits = 0;
246	u_char *cp = (u_char *)(ip + 1);
247	int x = (ip->ip_hl << 2) - sizeof (struct ip);
248
249	for (; x > 0; x -= optlen, cp += optlen) {
250		int opt = cp[IPOPT_OPTVAL];
251
252		if (opt == IPOPT_EOL)
253			break;
254		if (opt == IPOPT_NOP)
255			optlen = 1;
256		else {
257			optlen = cp[IPOPT_OLEN];
258			if (optlen <= 0 || optlen > x)
259				return 0; /* invalid or truncated */
260		}
261		switch (opt) {
262
263		default:
264			break;
265
266		case IPOPT_LSRR:
267			bits |= IP_FW_IPOPT_LSRR;
268			break;
269
270		case IPOPT_SSRR:
271			bits |= IP_FW_IPOPT_SSRR;
272			break;
273
274		case IPOPT_RR:
275			bits |= IP_FW_IPOPT_RR;
276			break;
277
278		case IPOPT_TS:
279			bits |= IP_FW_IPOPT_TS;
280			break;
281		}
282	}
283	return (flags_match(cmd, bits));
284}
285
286static int
287tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
288{
289	int optlen, bits = 0;
290	u_char *cp = (u_char *)(tcp + 1);
291	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
292
293	for (; x > 0; x -= optlen, cp += optlen) {
294		int opt = cp[0];
295		if (opt == TCPOPT_EOL)
296			break;
297		if (opt == TCPOPT_NOP)
298			optlen = 1;
299		else {
300			optlen = cp[1];
301			if (optlen <= 0)
302				break;
303		}
304
305		switch (opt) {
306
307		default:
308			break;
309
310		case TCPOPT_MAXSEG:
311			bits |= IP_FW_TCPOPT_MSS;
312			break;
313
314		case TCPOPT_WINDOW:
315			bits |= IP_FW_TCPOPT_WINDOW;
316			break;
317
318		case TCPOPT_SACK_PERMITTED:
319		case TCPOPT_SACK:
320			bits |= IP_FW_TCPOPT_SACK;
321			break;
322
323		case TCPOPT_TIMESTAMP:
324			bits |= IP_FW_TCPOPT_TS;
325			break;
326
327		}
328	}
329	return (flags_match(cmd, bits));
330}
331
332static int
333iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
334{
335	if (ifp == NULL)	/* no iface with this packet, match fails */
336		return 0;
337	/* Check by name or by IP address */
338	if (cmd->name[0] != '\0') { /* match by name */
339		/* Check name */
340		if (cmd->p.glob) {
341			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
342				return(1);
343		} else {
344			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
345				return(1);
346		}
347	} else {
348		struct ifaddr *ia;
349
350		if_addr_rlock(ifp);
351		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
352			if (ia->ifa_addr->sa_family != AF_INET)
353				continue;
354			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
355			    (ia->ifa_addr))->sin_addr.s_addr) {
356				if_addr_runlock(ifp);
357				return(1);	/* match */
358			}
359		}
360		if_addr_runlock(ifp);
361	}
362	return(0);	/* no match, fail ... */
363}
364
365/*
366 * The verify_path function checks if a route to the src exists and
367 * if it is reachable via ifp (when provided).
368 *
369 * The 'verrevpath' option checks that the interface that an IP packet
370 * arrives on is the same interface that traffic destined for the
371 * packet's source address would be routed out of.
372 * The 'versrcreach' option just checks that the source address is
373 * reachable via any route (except default) in the routing table.
374 * These two are a measure to block forged packets. This is also
375 * commonly known as "anti-spoofing" or Unicast Reverse Path
376 * Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
377 * is purposely reminiscent of the Cisco IOS command,
378 *
379 *   ip verify unicast reverse-path
380 *   ip verify unicast source reachable-via any
381 *
382 * which implements the same functionality. But note that the syntax
383 * is misleading, and the check may be performed on all IP packets
384 * whether unicast, multicast, or broadcast.
385 */
386static int
387verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
388{
389	struct route ro;
390	struct sockaddr_in *dst;
391
392	bzero(&ro, sizeof(ro));
393
394	dst = (struct sockaddr_in *)&(ro.ro_dst);
395	dst->sin_family = AF_INET;
396	dst->sin_len = sizeof(*dst);
397	dst->sin_addr = src;
398	in_rtalloc_ign(&ro, 0, fib);
399
400	if (ro.ro_rt == NULL)
401		return 0;
402
403	/*
404	 * If ifp is provided, check for equality with rtentry.
405	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
406	 * in order to pass packets injected back by if_simloop():
407	 * if useloopback == 1 routing entry (via lo0) for our own address
408	 * may exist, so we need to handle routing assymetry.
409	 */
410	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
411		RTFREE(ro.ro_rt);
412		return 0;
413	}
414
415	/* if no ifp provided, check if rtentry is not default route */
416	if (ifp == NULL &&
417	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
418		RTFREE(ro.ro_rt);
419		return 0;
420	}
421
422	/* or if this is a blackhole/reject route */
423	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
424		RTFREE(ro.ro_rt);
425		return 0;
426	}
427
428	/* found valid route */
429	RTFREE(ro.ro_rt);
430	return 1;
431}
432
433#ifdef INET6
434/*
435 * ipv6 specific rules here...
436 */
437static __inline int
438icmp6type_match (int type, ipfw_insn_u32 *cmd)
439{
440	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
441}
442
443static int
444flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
445{
446	int i;
447	for (i=0; i <= cmd->o.arg1; ++i )
448		if (curr_flow == cmd->d[i] )
449			return 1;
450	return 0;
451}
452
453/* support for IP6_*_ME opcodes */
454static int
455search_ip6_addr_net (struct in6_addr * ip6_addr)
456{
457	struct ifnet *mdc;
458	struct ifaddr *mdc2;
459	struct in6_ifaddr *fdm;
460	struct in6_addr copia;
461
462	TAILQ_FOREACH(mdc, &V_ifnet, if_link) {
463		if_addr_rlock(mdc);
464		TAILQ_FOREACH(mdc2, &mdc->if_addrhead, ifa_link) {
465			if (mdc2->ifa_addr->sa_family == AF_INET6) {
466				fdm = (struct in6_ifaddr *)mdc2;
467				copia = fdm->ia_addr.sin6_addr;
468				/* need for leaving scope_id in the sock_addr */
469				in6_clearscope(&copia);
470				if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia)) {
471					if_addr_runlock(mdc);
472					return 1;
473				}
474			}
475		}
476		if_addr_runlock(mdc);
477	}
478	return 0;
479}
480
481static int
482verify_path6(struct in6_addr *src, struct ifnet *ifp)
483{
484	struct route_in6 ro;
485	struct sockaddr_in6 *dst;
486
487	bzero(&ro, sizeof(ro));
488
489	dst = (struct sockaddr_in6 * )&(ro.ro_dst);
490	dst->sin6_family = AF_INET6;
491	dst->sin6_len = sizeof(*dst);
492	dst->sin6_addr = *src;
493	/* XXX MRT 0 for ipv6 at this time */
494	rtalloc_ign((struct route *)&ro, 0);
495
496	if (ro.ro_rt == NULL)
497		return 0;
498
499	/*
500	 * if ifp is provided, check for equality with rtentry
501	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
502	 * to support the case of sending packets to an address of our own.
503	 * (where the former interface is the first argument of if_simloop()
504	 *  (=ifp), the latter is lo0)
505	 */
506	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
507		RTFREE(ro.ro_rt);
508		return 0;
509	}
510
511	/* if no ifp provided, check if rtentry is not default route */
512	if (ifp == NULL &&
513	    IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
514		RTFREE(ro.ro_rt);
515		return 0;
516	}
517
518	/* or if this is a blackhole/reject route */
519	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
520		RTFREE(ro.ro_rt);
521		return 0;
522	}
523
524	/* found valid route */
525	RTFREE(ro.ro_rt);
526	return 1;
527
528}
529
530static int
531is_icmp6_query(int icmp6_type)
532{
533	if ((icmp6_type <= ICMP6_MAXTYPE) &&
534	    (icmp6_type == ICMP6_ECHO_REQUEST ||
535	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
536	    icmp6_type == ICMP6_WRUREQUEST ||
537	    icmp6_type == ICMP6_FQDN_QUERY ||
538	    icmp6_type == ICMP6_NI_QUERY))
539		return (1);
540
541	return (0);
542}
543
544static void
545send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
546{
547	struct mbuf *m;
548
549	m = args->m;
550	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
551		struct tcphdr *tcp;
552		tcp = (struct tcphdr *)((char *)ip6 + hlen);
553
554		if ((tcp->th_flags & TH_RST) == 0) {
555			struct mbuf *m0;
556			m0 = ipfw_send_pkt(args->m, &(args->f_id),
557			    ntohl(tcp->th_seq), ntohl(tcp->th_ack),
558			    tcp->th_flags | TH_RST);
559			if (m0 != NULL)
560				ip6_output(m0, NULL, NULL, 0, NULL, NULL,
561				    NULL);
562		}
563		m_freem(m);
564	} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
565#if 0
566		/*
567		 * Unlike above, the mbufs need to line up with the ip6 hdr,
568		 * as the contents are read. We need to m_adj() the
569		 * needed amount.
570		 * The mbuf will however be thrown away so we can adjust it.
571		 * Remember we did an m_pullup on it already so we
572		 * can make some assumptions about contiguousness.
573		 */
574		if (args->L3offset)
575			m_adj(m, args->L3offset);
576#endif
577		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
578	} else
579		m_freem(m);
580
581	args->m = NULL;
582}
583
584#endif /* INET6 */
585
586
587/*
588 * sends a reject message, consuming the mbuf passed as an argument.
589 */
590static void
591send_reject(struct ip_fw_args *args, int code, int iplen, struct ip *ip)
592{
593
594#if 0
595	/* XXX When ip is not guaranteed to be at mtod() we will
596	 * need to account for this */
597	 * The mbuf will however be thrown away so we can adjust it.
598	 * Remember we did an m_pullup on it already so we
599	 * can make some assumptions about contiguousness.
600	 */
601	if (args->L3offset)
602		m_adj(m, args->L3offset);
603#endif
604	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
605		/* We need the IP header in host order for icmp_error(). */
606		if (args->eh != NULL) {
607			SET_HOST_IPLEN(ip);
608		}
609		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
610	} else if (args->f_id.proto == IPPROTO_TCP) {
611		struct tcphdr *const tcp =
612		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
613		if ( (tcp->th_flags & TH_RST) == 0) {
614			struct mbuf *m;
615			m = ipfw_send_pkt(args->m, &(args->f_id),
616				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
617				tcp->th_flags | TH_RST);
618			if (m != NULL)
619				ip_output(m, NULL, NULL, 0, NULL, NULL);
620		}
621		m_freem(args->m);
622	} else
623		m_freem(args->m);
624	args->m = NULL;
625}
626
627/*
628 * Support for uid/gid/jail lookup. These tests are expensive
629 * (because we may need to look into the list of active sockets)
630 * so we cache the results. ugid_lookupp is 0 if we have not
631 * yet done a lookup, 1 if we succeeded, and -1 if we tried
632 * and failed. The function always returns the match value.
633 * We could actually spare the variable and use *uc, setting
634 * it to '(void *)check_uidgid if we have no info, NULL if
635 * we tried and failed, or any other value if successful.
636 */
637static int
638check_uidgid(ipfw_insn_u32 *insn, int proto, struct ifnet *oif,
639    struct in_addr dst_ip, u_int16_t dst_port, struct in_addr src_ip,
640    u_int16_t src_port, struct ucred **uc, int *ugid_lookupp,
641    struct inpcb *inp)
642{
643	struct inpcbinfo *pi;
644	int wildcard;
645	struct inpcb *pcb;
646	int match;
647
648	/*
649	 * Check to see if the UDP or TCP stack supplied us with
650	 * the PCB. If so, rather then holding a lock and looking
651	 * up the PCB, we can use the one that was supplied.
652	 */
653	if (inp && *ugid_lookupp == 0) {
654		INP_LOCK_ASSERT(inp);
655		if (inp->inp_socket != NULL) {
656			*uc = crhold(inp->inp_cred);
657			*ugid_lookupp = 1;
658		} else
659			*ugid_lookupp = -1;
660	}
661	/*
662	 * If we have already been here and the packet has no
663	 * PCB entry associated with it, then we can safely
664	 * assume that this is a no match.
665	 */
666	if (*ugid_lookupp == -1)
667		return (0);
668	if (proto == IPPROTO_TCP) {
669		wildcard = 0;
670		pi = &V_tcbinfo;
671	} else if (proto == IPPROTO_UDP) {
672		wildcard = INPLOOKUP_WILDCARD;
673		pi = &V_udbinfo;
674	} else
675		return 0;
676	match = 0;
677	if (*ugid_lookupp == 0) {
678		INP_INFO_RLOCK(pi);
679		pcb =  (oif) ?
680			in_pcblookup_hash(pi,
681				dst_ip, htons(dst_port),
682				src_ip, htons(src_port),
683				wildcard, oif) :
684			in_pcblookup_hash(pi,
685				src_ip, htons(src_port),
686				dst_ip, htons(dst_port),
687				wildcard, NULL);
688		if (pcb != NULL) {
689			*uc = crhold(pcb->inp_cred);
690			*ugid_lookupp = 1;
691		}
692		INP_INFO_RUNLOCK(pi);
693		if (*ugid_lookupp == 0) {
694			/*
695			 * We tried and failed, set the variable to -1
696			 * so we will not try again on this packet.
697			 */
698			*ugid_lookupp = -1;
699			return (0);
700		}
701	}
702	if (insn->o.opcode == O_UID)
703		match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
704	else if (insn->o.opcode == O_GID)
705		match = groupmember((gid_t)insn->d[0], *uc);
706	else if (insn->o.opcode == O_JAIL)
707		match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
708	return match;
709}
710
711/*
712 * Helper function to write the matching rule into args
713 */
714static inline void
715set_match(struct ip_fw_args *args, int slot,
716	struct ip_fw_chain *chain)
717{
718	args->chain_id = chain->id;
719	args->slot = slot + 1; /* we use 0 as a marker */
720	args->rule_id = chain->map[slot]->id;
721	args->rulenum = chain->map[slot]->rulenum;
722}
723
724/*
725 * The main check routine for the firewall.
726 *
727 * All arguments are in args so we can modify them and return them
728 * back to the caller.
729 *
730 * Parameters:
731 *
732 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
733 *		Starts with the IP header.
734 *	args->eh (in)	Mac header if present, NULL for layer3 packet.
735 *	args->L3offset	Number of bytes bypassed if we came from L2.
736 *			e.g. often sizeof(eh)  ** NOTYET **
737 *	args->oif	Outgoing interface, NULL if packet is incoming.
738 *		The incoming interface is in the mbuf. (in)
739 *	args->divert_rule (in/out)
740 *		Skip up to the first rule past this rule number;
741 *		upon return, non-zero port number for divert or tee.
742 *
743 *	args->rule	Pointer to the last matching rule (in/out)
744 *	args->next_hop	Socket we are forwarding to (out).
745 *	args->f_id	Addresses grabbed from the packet (out)
746 * 	args->cookie	a cookie depending on rule action
747 *
748 * Return value:
749 *
750 *	IP_FW_PASS	the packet must be accepted
751 *	IP_FW_DENY	the packet must be dropped
752 *	IP_FW_DIVERT	divert packet, port in m_tag
753 *	IP_FW_TEE	tee packet, port in m_tag
754 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
755 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
756 *
757 */
758int
759ipfw_chk(struct ip_fw_args *args)
760{
761
762	/*
763	 * Local variables holding state while processing a packet:
764	 *
765	 * IMPORTANT NOTE: to speed up the processing of rules, there
766	 * are some assumption on the values of the variables, which
767	 * are documented here. Should you change them, please check
768	 * the implementation of the various instructions to make sure
769	 * that they still work.
770	 *
771	 * args->eh	The MAC header. It is non-null for a layer2
772	 *	packet, it is NULL for a layer-3 packet.
773	 * **notyet**
774	 * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
775	 *
776	 * m | args->m	Pointer to the mbuf, as received from the caller.
777	 *	It may change if ipfw_chk() does an m_pullup, or if it
778	 *	consumes the packet because it calls send_reject().
779	 *	XXX This has to change, so that ipfw_chk() never modifies
780	 *	or consumes the buffer.
781	 * ip	is the beginning of the ip(4 or 6) header.
782	 *	Calculated by adding the L3offset to the start of data.
783	 *	(Until we start using L3offset, the packet is
784	 *	supposed to start with the ip header).
785	 */
786	struct mbuf *m = args->m;
787	struct ip *ip = mtod(m, struct ip *);
788
789	/*
790	 * For rules which contain uid/gid or jail constraints, cache
791	 * a copy of the users credentials after the pcb lookup has been
792	 * executed. This will speed up the processing of rules with
793	 * these types of constraints, as well as decrease contention
794	 * on pcb related locks.
795	 */
796	struct ucred *ucred_cache = NULL;
797	int ucred_lookup = 0;
798
799	/*
800	 * divinput_flags	If non-zero, set to the IP_FW_DIVERT_*_FLAG
801	 *	associated with a packet input on a divert socket.  This
802	 *	will allow to distinguish traffic and its direction when
803	 *	it originates from a divert socket.
804	 */
805	u_int divinput_flags = 0;
806
807	/*
808	 * oif | args->oif	If NULL, ipfw_chk has been called on the
809	 *	inbound path (ether_input, ip_input).
810	 *	If non-NULL, ipfw_chk has been called on the outbound path
811	 *	(ether_output, ip_output).
812	 */
813	struct ifnet *oif = args->oif;
814
815	int f_pos = 0;		/* index of current rule in the array */
816	int retval = 0;
817
818	/*
819	 * hlen	The length of the IP header.
820	 */
821	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
822
823	/*
824	 * offset	The offset of a fragment. offset != 0 means that
825	 *	we have a fragment at this offset of an IPv4 packet.
826	 *	offset == 0 means that (if this is an IPv4 packet)
827	 *	this is the first or only fragment.
828	 *	For IPv6 offset == 0 means there is no Fragment Header.
829	 *	If offset != 0 for IPv6 always use correct mask to
830	 *	get the correct offset because we add IP6F_MORE_FRAG
831	 *	to be able to dectect the first fragment which would
832	 *	otherwise have offset = 0.
833	 */
834	u_short offset = 0;
835
836	/*
837	 * Local copies of addresses. They are only valid if we have
838	 * an IP packet.
839	 *
840	 * proto	The protocol. Set to 0 for non-ip packets,
841	 *	or to the protocol read from the packet otherwise.
842	 *	proto != 0 means that we have an IPv4 packet.
843	 *
844	 * src_port, dst_port	port numbers, in HOST format. Only
845	 *	valid for TCP and UDP packets.
846	 *
847	 * src_ip, dst_ip	ip addresses, in NETWORK format.
848	 *	Only valid for IPv4 packets.
849	 */
850	uint8_t proto;
851	uint16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
852	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
853	uint16_t iplen=0;
854	int pktlen;
855	uint16_t	etype = 0;	/* Host order stored ether type */
856
857	/*
858	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
859	 * 	MATCH_NONE when checked and not matched (q = NULL),
860	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
861	 */
862	int dyn_dir = MATCH_UNKNOWN;
863	ipfw_dyn_rule *q = NULL;
864	struct ip_fw_chain *chain = &V_layer3_chain;
865	struct m_tag *mtag;
866
867	/*
868	 * We store in ulp a pointer to the upper layer protocol header.
869	 * In the ipv4 case this is easy to determine from the header,
870	 * but for ipv6 we might have some additional headers in the middle.
871	 * ulp is NULL if not found.
872	 */
873	void *ulp = NULL;		/* upper layer protocol pointer. */
874	/* XXX ipv6 variables */
875	int is_ipv6 = 0;
876	u_int16_t ext_hd = 0;	/* bits vector for extension header filtering */
877	/* end of ipv6 variables */
878	int is_ipv4 = 0;
879
880	int done = 0;		/* flag to exit the outer loop */
881
882	if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
883		return (IP_FW_PASS);	/* accept */
884
885	dst_ip.s_addr = 0;		/* make sure it is initialized */
886	src_ip.s_addr = 0;		/* make sure it is initialized */
887	pktlen = m->m_pkthdr.len;
888	args->f_id.fib = M_GETFIB(m); /* note mbuf not altered) */
889	proto = args->f_id.proto = 0;	/* mark f_id invalid */
890		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
891
892/*
893 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
894 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
895 * pointer might become stale after other pullups (but we never use it
896 * this way).
897 */
898#define PULLUP_TO(_len, p, T)					\
899do {								\
900	int x = (_len) + sizeof(T);				\
901	if ((m)->m_len < x) {					\
902		args->m = m = m_pullup(m, x);			\
903		if (m == NULL)					\
904			goto pullup_failed;			\
905	}							\
906	p = (mtod(m, char *) + (_len));				\
907} while (0)
908
909	/*
910	 * if we have an ether header,
911	 */
912	if (args->eh)
913		etype = ntohs(args->eh->ether_type);
914
915	/* Identify IP packets and fill up variables. */
916	if (pktlen >= sizeof(struct ip6_hdr) &&
917	    (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
918		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
919		is_ipv6 = 1;
920		args->f_id.addr_type = 6;
921		hlen = sizeof(struct ip6_hdr);
922		proto = ip6->ip6_nxt;
923
924		/* Search extension headers to find upper layer protocols */
925		while (ulp == NULL) {
926			switch (proto) {
927			case IPPROTO_ICMPV6:
928				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
929				args->f_id.flags = ICMP6(ulp)->icmp6_type;
930				break;
931
932			case IPPROTO_TCP:
933				PULLUP_TO(hlen, ulp, struct tcphdr);
934				dst_port = TCP(ulp)->th_dport;
935				src_port = TCP(ulp)->th_sport;
936				args->f_id.flags = TCP(ulp)->th_flags;
937				break;
938
939			case IPPROTO_SCTP:
940				PULLUP_TO(hlen, ulp, struct sctphdr);
941				src_port = SCTP(ulp)->src_port;
942				dst_port = SCTP(ulp)->dest_port;
943				break;
944
945			case IPPROTO_UDP:
946				PULLUP_TO(hlen, ulp, struct udphdr);
947				dst_port = UDP(ulp)->uh_dport;
948				src_port = UDP(ulp)->uh_sport;
949				break;
950
951			case IPPROTO_HOPOPTS:	/* RFC 2460 */
952				PULLUP_TO(hlen, ulp, struct ip6_hbh);
953				ext_hd |= EXT_HOPOPTS;
954				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
955				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
956				ulp = NULL;
957				break;
958
959			case IPPROTO_ROUTING:	/* RFC 2460 */
960				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
961				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
962				case 0:
963					ext_hd |= EXT_RTHDR0;
964					break;
965				case 2:
966					ext_hd |= EXT_RTHDR2;
967					break;
968				default:
969					printf("IPFW2: IPV6 - Unknown Routing "
970					    "Header type(%d)\n",
971					    ((struct ip6_rthdr *)ulp)->ip6r_type);
972					if (V_fw_deny_unknown_exthdrs)
973					    return (IP_FW_DENY);
974					break;
975				}
976				ext_hd |= EXT_ROUTING;
977				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
978				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
979				ulp = NULL;
980				break;
981
982			case IPPROTO_FRAGMENT:	/* RFC 2460 */
983				PULLUP_TO(hlen, ulp, struct ip6_frag);
984				ext_hd |= EXT_FRAGMENT;
985				hlen += sizeof (struct ip6_frag);
986				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
987				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
988					IP6F_OFF_MASK;
989				/* Add IP6F_MORE_FRAG for offset of first
990				 * fragment to be != 0. */
991				offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
992					IP6F_MORE_FRAG;
993				if (offset == 0) {
994					printf("IPFW2: IPV6 - Invalid Fragment "
995					    "Header\n");
996					if (V_fw_deny_unknown_exthdrs)
997					    return (IP_FW_DENY);
998					break;
999				}
1000				args->f_id.frag_id6 =
1001				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
1002				ulp = NULL;
1003				break;
1004
1005			case IPPROTO_DSTOPTS:	/* RFC 2460 */
1006				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1007				ext_hd |= EXT_DSTOPTS;
1008				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1009				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1010				ulp = NULL;
1011				break;
1012
1013			case IPPROTO_AH:	/* RFC 2402 */
1014				PULLUP_TO(hlen, ulp, struct ip6_ext);
1015				ext_hd |= EXT_AH;
1016				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
1017				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
1018				ulp = NULL;
1019				break;
1020
1021			case IPPROTO_ESP:	/* RFC 2406 */
1022				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
1023				/* Anything past Seq# is variable length and
1024				 * data past this ext. header is encrypted. */
1025				ext_hd |= EXT_ESP;
1026				break;
1027
1028			case IPPROTO_NONE:	/* RFC 2460 */
1029				/*
1030				 * Packet ends here, and IPv6 header has
1031				 * already been pulled up. If ip6e_len!=0
1032				 * then octets must be ignored.
1033				 */
1034				ulp = ip; /* non-NULL to get out of loop. */
1035				break;
1036
1037			case IPPROTO_OSPFIGP:
1038				/* XXX OSPF header check? */
1039				PULLUP_TO(hlen, ulp, struct ip6_ext);
1040				break;
1041
1042			case IPPROTO_PIM:
1043				/* XXX PIM header check? */
1044				PULLUP_TO(hlen, ulp, struct pim);
1045				break;
1046
1047			case IPPROTO_CARP:
1048				PULLUP_TO(hlen, ulp, struct carp_header);
1049				if (((struct carp_header *)ulp)->carp_version !=
1050				    CARP_VERSION)
1051					return (IP_FW_DENY);
1052				if (((struct carp_header *)ulp)->carp_type !=
1053				    CARP_ADVERTISEMENT)
1054					return (IP_FW_DENY);
1055				break;
1056
1057			case IPPROTO_IPV6:	/* RFC 2893 */
1058				PULLUP_TO(hlen, ulp, struct ip6_hdr);
1059				break;
1060
1061			case IPPROTO_IPV4:	/* RFC 2893 */
1062				PULLUP_TO(hlen, ulp, struct ip);
1063				break;
1064
1065			default:
1066				printf("IPFW2: IPV6 - Unknown Extension "
1067				    "Header(%d), ext_hd=%x\n", proto, ext_hd);
1068				if (V_fw_deny_unknown_exthdrs)
1069				    return (IP_FW_DENY);
1070				PULLUP_TO(hlen, ulp, struct ip6_ext);
1071				break;
1072			} /*switch */
1073		}
1074		ip = mtod(m, struct ip *);
1075		ip6 = (struct ip6_hdr *)ip;
1076		args->f_id.src_ip6 = ip6->ip6_src;
1077		args->f_id.dst_ip6 = ip6->ip6_dst;
1078		args->f_id.src_ip = 0;
1079		args->f_id.dst_ip = 0;
1080		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
1081	} else if (pktlen >= sizeof(struct ip) &&
1082	    (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
1083	    	is_ipv4 = 1;
1084		hlen = ip->ip_hl << 2;
1085		args->f_id.addr_type = 4;
1086
1087		/*
1088		 * Collect parameters into local variables for faster matching.
1089		 */
1090		proto = ip->ip_p;
1091		src_ip = ip->ip_src;
1092		dst_ip = ip->ip_dst;
1093#ifndef HAVE_NET_IPLEN
1094		if (args->eh == NULL) { /* on l3 these are in host format */
1095			offset = ip->ip_off & IP_OFFMASK;
1096			iplen = ip->ip_len;
1097		} else
1098#endif /* !HAVE_NET_IPLEN */
1099		{	/* otherwise they are in net format */
1100			offset = ntohs(ip->ip_off) & IP_OFFMASK;
1101			iplen = ntohs(ip->ip_len);
1102		}
1103		pktlen = iplen < pktlen ? iplen : pktlen;
1104
1105		if (offset == 0) {
1106			switch (proto) {
1107			case IPPROTO_TCP:
1108				PULLUP_TO(hlen, ulp, struct tcphdr);
1109				dst_port = TCP(ulp)->th_dport;
1110				src_port = TCP(ulp)->th_sport;
1111				args->f_id.flags = TCP(ulp)->th_flags;
1112				break;
1113
1114			case IPPROTO_UDP:
1115				PULLUP_TO(hlen, ulp, struct udphdr);
1116				dst_port = UDP(ulp)->uh_dport;
1117				src_port = UDP(ulp)->uh_sport;
1118				break;
1119
1120			case IPPROTO_ICMP:
1121				PULLUP_TO(hlen, ulp, struct icmphdr);
1122				args->f_id.flags = ICMP(ulp)->icmp_type;
1123				break;
1124
1125			default:
1126				break;
1127			}
1128		}
1129
1130		ip = mtod(m, struct ip *);
1131		args->f_id.src_ip = ntohl(src_ip.s_addr);
1132		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1133	}
1134#undef PULLUP_TO
1135	if (proto) { /* we may have port numbers, store them */
1136		args->f_id.proto = proto;
1137		args->f_id.src_port = src_port = ntohs(src_port);
1138		args->f_id.dst_port = dst_port = ntohs(dst_port);
1139	}
1140
1141	IPFW_RLOCK(chain);
1142	if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
1143		IPFW_RUNLOCK(chain);
1144		return (IP_FW_PASS);	/* accept */
1145	}
1146	/* XXX divert should be handled same as other tags */
1147	mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
1148	if (args->slot) {
1149		/*
1150		 * Packet has already been tagged as a result of a previous
1151		 * match on rule args->rule aka args->rule_id (PIPE, QUEUE,
1152		 * REASS, NETGRAPH and similar, never a skipto).
1153		 * Validate the slot and continue from the next one
1154		 * if still present, otherwise do a lookup.
1155		 */
1156		if (V_fw_one_pass) {
1157			IPFW_RUNLOCK(chain);
1158			return (IP_FW_PASS);
1159		}
1160		f_pos = (args->chain_id == chain->id) ?
1161		    args->slot /* already incremented */ :
1162		    ipfw_find_rule(chain, args->rulenum, args->rule_id+1);
1163	} else {
1164		/*
1165		 * Find the starting rule. It can be either the first
1166		 * one, or the one after divert_rule if asked so.
1167		 */
1168		int skipto = mtag ? divert_cookie(mtag) : 0;
1169
1170		f_pos = 0;
1171		if (args->eh == NULL && skipto != 0) {
1172			if (skipto >= IPFW_DEFAULT_RULE) {
1173				IPFW_RUNLOCK(chain);
1174				return (IP_FW_DENY); /* invalid */
1175			}
1176			f_pos = ipfw_find_rule(chain, skipto+1, 0);
1177		}
1178	}
1179	/* reset divert rule to avoid confusion later */
1180	if (mtag) {
1181		divinput_flags = divert_info(mtag) &
1182		    (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
1183		m_tag_delete(m, mtag);
1184	}
1185
1186	/*
1187	 * Now scan the rules, and parse microinstructions for each rule.
1188	 * We have two nested loops and an inner switch. Sometimes we
1189	 * need to break out of one or both loops, or re-enter one of
1190	 * the loops with updated variables. Loop variables are:
1191	 *
1192	 *	f_pos (outer loop) points to the current rule.
1193	 *		On output it points to the matching rule.
1194	 *	done (outer loop) is used as a flag to break the loop.
1195	 *	l (inner loop)	residual length of current rule.
1196	 *		cmd points to the current microinstruction.
1197	 *
1198	 * We break the inner loop by setting l=0 and possibly
1199	 * cmdlen=0 if we don't want to advance cmd.
1200	 * We break the outer loop by setting done=1
1201	 * We can restart the inner loop by setting l>0 and f_pos, f, cmd
1202	 * as needed.
1203	 */
1204	for (; f_pos < chain->n_rules; f_pos++) {
1205		ipfw_insn *cmd;
1206		uint32_t tablearg = 0;
1207		int l, cmdlen, skip_or; /* skip rest of OR block */
1208		struct ip_fw *f;
1209
1210		f = chain->map[f_pos];
1211		if (V_set_disable & (1 << f->set) )
1212			continue;
1213
1214		skip_or = 0;
1215		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1216		    l -= cmdlen, cmd += cmdlen) {
1217			int match;
1218
1219			/*
1220			 * check_body is a jump target used when we find a
1221			 * CHECK_STATE, and need to jump to the body of
1222			 * the target rule.
1223			 */
1224
1225/* check_body: */
1226			cmdlen = F_LEN(cmd);
1227			/*
1228			 * An OR block (insn_1 || .. || insn_n) has the
1229			 * F_OR bit set in all but the last instruction.
1230			 * The first match will set "skip_or", and cause
1231			 * the following instructions to be skipped until
1232			 * past the one with the F_OR bit clear.
1233			 */
1234			if (skip_or) {		/* skip this instruction */
1235				if ((cmd->len & F_OR) == 0)
1236					skip_or = 0;	/* next one is good */
1237				continue;
1238			}
1239			match = 0; /* set to 1 if we succeed */
1240
1241			switch (cmd->opcode) {
1242			/*
1243			 * The first set of opcodes compares the packet's
1244			 * fields with some pattern, setting 'match' if a
1245			 * match is found. At the end of the loop there is
1246			 * logic to deal with F_NOT and F_OR flags associated
1247			 * with the opcode.
1248			 */
1249			case O_NOP:
1250				match = 1;
1251				break;
1252
1253			case O_FORWARD_MAC:
1254				printf("ipfw: opcode %d unimplemented\n",
1255				    cmd->opcode);
1256				break;
1257
1258			case O_GID:
1259			case O_UID:
1260			case O_JAIL:
1261				/*
1262				 * We only check offset == 0 && proto != 0,
1263				 * as this ensures that we have a
1264				 * packet with the ports info.
1265				 */
1266				if (offset!=0)
1267					break;
1268				if (is_ipv6) /* XXX to be fixed later */
1269					break;
1270				if (proto == IPPROTO_TCP ||
1271				    proto == IPPROTO_UDP)
1272					match = check_uidgid(
1273						    (ipfw_insn_u32 *)cmd,
1274						    proto, oif,
1275						    dst_ip, dst_port,
1276						    src_ip, src_port, &ucred_cache,
1277						    &ucred_lookup, args->inp);
1278				break;
1279
1280			case O_RECV:
1281				match = iface_match(m->m_pkthdr.rcvif,
1282				    (ipfw_insn_if *)cmd);
1283				break;
1284
1285			case O_XMIT:
1286				match = iface_match(oif, (ipfw_insn_if *)cmd);
1287				break;
1288
1289			case O_VIA:
1290				match = iface_match(oif ? oif :
1291				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
1292				break;
1293
1294			case O_MACADDR2:
1295				if (args->eh != NULL) {	/* have MAC header */
1296					u_int32_t *want = (u_int32_t *)
1297						((ipfw_insn_mac *)cmd)->addr;
1298					u_int32_t *mask = (u_int32_t *)
1299						((ipfw_insn_mac *)cmd)->mask;
1300					u_int32_t *hdr = (u_int32_t *)args->eh;
1301
1302					match =
1303					    ( want[0] == (hdr[0] & mask[0]) &&
1304					      want[1] == (hdr[1] & mask[1]) &&
1305					      want[2] == (hdr[2] & mask[2]) );
1306				}
1307				break;
1308
1309			case O_MAC_TYPE:
1310				if (args->eh != NULL) {
1311					u_int16_t *p =
1312					    ((ipfw_insn_u16 *)cmd)->ports;
1313					int i;
1314
1315					for (i = cmdlen - 1; !match && i>0;
1316					    i--, p += 2)
1317						match = (etype >= p[0] &&
1318						    etype <= p[1]);
1319				}
1320				break;
1321
1322			case O_FRAG:
1323				match = (offset != 0);
1324				break;
1325
1326			case O_IN:	/* "out" is "not in" */
1327				match = (oif == NULL);
1328				break;
1329
1330			case O_LAYER2:
1331				match = (args->eh != NULL);
1332				break;
1333
1334			case O_DIVERTED:
1335				match = (cmd->arg1 & 1 && divinput_flags &
1336				    IP_FW_DIVERT_LOOPBACK_FLAG) ||
1337					(cmd->arg1 & 2 && divinput_flags &
1338				    IP_FW_DIVERT_OUTPUT_FLAG);
1339				break;
1340
1341			case O_PROTO:
1342				/*
1343				 * We do not allow an arg of 0 so the
1344				 * check of "proto" only suffices.
1345				 */
1346				match = (proto == cmd->arg1);
1347				break;
1348
1349			case O_IP_SRC:
1350				match = is_ipv4 &&
1351				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1352				    src_ip.s_addr);
1353				break;
1354
1355			case O_IP_SRC_LOOKUP:
1356			case O_IP_DST_LOOKUP:
1357				if (is_ipv4) {
1358				    uint32_t key =
1359					(cmd->opcode == O_IP_DST_LOOKUP) ?
1360					    dst_ip.s_addr : src_ip.s_addr;
1361				    uint32_t v = 0;
1362
1363				    if (cmdlen > F_INSN_SIZE(ipfw_insn_u32)) {
1364					/* generic lookup. The key must be
1365					 * in 32bit big-endian format.
1366					 */
1367					v = ((ipfw_insn_u32 *)cmd)->d[1];
1368					if (v == 0)
1369					    key = dst_ip.s_addr;
1370					else if (v == 1)
1371					    key = src_ip.s_addr;
1372					else if (offset != 0)
1373					    break;
1374					else if (proto != IPPROTO_TCP &&
1375						proto != IPPROTO_UDP)
1376					    break;
1377					else if (v == 2)
1378					    key = htonl(dst_port);
1379					else if (v == 3)
1380					    key = htonl(src_port);
1381					else if (v == 4 || v == 5) {
1382					    check_uidgid(
1383						(ipfw_insn_u32 *)cmd,
1384						proto, oif,
1385						dst_ip, dst_port,
1386						src_ip, src_port, &ucred_cache,
1387						&ucred_lookup, args->inp);
1388					    if (v == 4 /* O_UID */)
1389						key = ucred_cache->cr_uid;
1390					    else if (v == 5 /* O_JAIL */)
1391						key = ucred_cache->cr_prison->pr_id;
1392					    key = htonl(key);
1393					} else
1394					    break;
1395				    }
1396				    match = ipfw_lookup_table(chain,
1397					cmd->arg1, key, &v);
1398				    if (!match)
1399					break;
1400				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
1401					match =
1402					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
1403				    else
1404					tablearg = v;
1405				}
1406				break;
1407
1408			case O_IP_SRC_MASK:
1409			case O_IP_DST_MASK:
1410				if (is_ipv4) {
1411				    uint32_t a =
1412					(cmd->opcode == O_IP_DST_MASK) ?
1413					    dst_ip.s_addr : src_ip.s_addr;
1414				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
1415				    int i = cmdlen-1;
1416
1417				    for (; !match && i>0; i-= 2, p+= 2)
1418					match = (p[0] == (a & p[1]));
1419				}
1420				break;
1421
1422			case O_IP_SRC_ME:
1423				if (is_ipv4) {
1424					struct ifnet *tif;
1425
1426					INADDR_TO_IFP(src_ip, tif);
1427					match = (tif != NULL);
1428				}
1429				break;
1430
1431			case O_IP_DST_SET:
1432			case O_IP_SRC_SET:
1433				if (is_ipv4) {
1434					u_int32_t *d = (u_int32_t *)(cmd+1);
1435					u_int32_t addr =
1436					    cmd->opcode == O_IP_DST_SET ?
1437						args->f_id.dst_ip :
1438						args->f_id.src_ip;
1439
1440					    if (addr < d[0])
1441						    break;
1442					    addr -= d[0]; /* subtract base */
1443					    match = (addr < cmd->arg1) &&
1444						( d[ 1 + (addr>>5)] &
1445						  (1<<(addr & 0x1f)) );
1446				}
1447				break;
1448
1449			case O_IP_DST:
1450				match = is_ipv4 &&
1451				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1452				    dst_ip.s_addr);
1453				break;
1454
1455			case O_IP_DST_ME:
1456				if (is_ipv4) {
1457					struct ifnet *tif;
1458
1459					INADDR_TO_IFP(dst_ip, tif);
1460					match = (tif != NULL);
1461				}
1462				break;
1463
1464			case O_IP_SRCPORT:
1465			case O_IP_DSTPORT:
1466				/*
1467				 * offset == 0 && proto != 0 is enough
1468				 * to guarantee that we have a
1469				 * packet with port info.
1470				 */
1471				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
1472				    && offset == 0) {
1473					u_int16_t x =
1474					    (cmd->opcode == O_IP_SRCPORT) ?
1475						src_port : dst_port ;
1476					u_int16_t *p =
1477					    ((ipfw_insn_u16 *)cmd)->ports;
1478					int i;
1479
1480					for (i = cmdlen - 1; !match && i>0;
1481					    i--, p += 2)
1482						match = (x>=p[0] && x<=p[1]);
1483				}
1484				break;
1485
1486			case O_ICMPTYPE:
1487				match = (offset == 0 && proto==IPPROTO_ICMP &&
1488				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
1489				break;
1490
1491#ifdef INET6
1492			case O_ICMP6TYPE:
1493				match = is_ipv6 && offset == 0 &&
1494				    proto==IPPROTO_ICMPV6 &&
1495				    icmp6type_match(
1496					ICMP6(ulp)->icmp6_type,
1497					(ipfw_insn_u32 *)cmd);
1498				break;
1499#endif /* INET6 */
1500
1501			case O_IPOPT:
1502				match = (is_ipv4 &&
1503				    ipopts_match(ip, cmd) );
1504				break;
1505
1506			case O_IPVER:
1507				match = (is_ipv4 &&
1508				    cmd->arg1 == ip->ip_v);
1509				break;
1510
1511			case O_IPID:
1512			case O_IPLEN:
1513			case O_IPTTL:
1514				if (is_ipv4) {	/* only for IP packets */
1515				    uint16_t x;
1516				    uint16_t *p;
1517				    int i;
1518
1519				    if (cmd->opcode == O_IPLEN)
1520					x = iplen;
1521				    else if (cmd->opcode == O_IPTTL)
1522					x = ip->ip_ttl;
1523				    else /* must be IPID */
1524					x = ntohs(ip->ip_id);
1525				    if (cmdlen == 1) {
1526					match = (cmd->arg1 == x);
1527					break;
1528				    }
1529				    /* otherwise we have ranges */
1530				    p = ((ipfw_insn_u16 *)cmd)->ports;
1531				    i = cmdlen - 1;
1532				    for (; !match && i>0; i--, p += 2)
1533					match = (x >= p[0] && x <= p[1]);
1534				}
1535				break;
1536
1537			case O_IPPRECEDENCE:
1538				match = (is_ipv4 &&
1539				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
1540				break;
1541
1542			case O_IPTOS:
1543				match = (is_ipv4 &&
1544				    flags_match(cmd, ip->ip_tos));
1545				break;
1546
1547			case O_TCPDATALEN:
1548				if (proto == IPPROTO_TCP && offset == 0) {
1549				    struct tcphdr *tcp;
1550				    uint16_t x;
1551				    uint16_t *p;
1552				    int i;
1553
1554				    tcp = TCP(ulp);
1555				    x = iplen -
1556					((ip->ip_hl + tcp->th_off) << 2);
1557				    if (cmdlen == 1) {
1558					match = (cmd->arg1 == x);
1559					break;
1560				    }
1561				    /* otherwise we have ranges */
1562				    p = ((ipfw_insn_u16 *)cmd)->ports;
1563				    i = cmdlen - 1;
1564				    for (; !match && i>0; i--, p += 2)
1565					match = (x >= p[0] && x <= p[1]);
1566				}
1567				break;
1568
1569			case O_TCPFLAGS:
1570				match = (proto == IPPROTO_TCP && offset == 0 &&
1571				    flags_match(cmd, TCP(ulp)->th_flags));
1572				break;
1573
1574			case O_TCPOPTS:
1575				match = (proto == IPPROTO_TCP && offset == 0 &&
1576				    tcpopts_match(TCP(ulp), cmd));
1577				break;
1578
1579			case O_TCPSEQ:
1580				match = (proto == IPPROTO_TCP && offset == 0 &&
1581				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1582					TCP(ulp)->th_seq);
1583				break;
1584
1585			case O_TCPACK:
1586				match = (proto == IPPROTO_TCP && offset == 0 &&
1587				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1588					TCP(ulp)->th_ack);
1589				break;
1590
1591			case O_TCPWIN:
1592				match = (proto == IPPROTO_TCP && offset == 0 &&
1593				    cmd->arg1 == TCP(ulp)->th_win);
1594				break;
1595
1596			case O_ESTAB:
1597				/* reject packets which have SYN only */
1598				/* XXX should i also check for TH_ACK ? */
1599				match = (proto == IPPROTO_TCP && offset == 0 &&
1600				    (TCP(ulp)->th_flags &
1601				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
1602				break;
1603
1604			case O_ALTQ: {
1605				struct pf_mtag *at;
1606				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
1607
1608				match = 1;
1609				at = pf_find_mtag(m);
1610				if (at != NULL && at->qid != 0)
1611					break;
1612				at = pf_get_mtag(m);
1613				if (at == NULL) {
1614					/*
1615					 * Let the packet fall back to the
1616					 * default ALTQ.
1617					 */
1618					break;
1619				}
1620				at->qid = altq->qid;
1621				if (is_ipv4)
1622					at->af = AF_INET;
1623				else
1624					at->af = AF_LINK;
1625				at->hdr = ip;
1626				break;
1627			}
1628
1629			case O_LOG:
1630				ipfw_log(f, hlen, args, m,
1631					    oif, offset, tablearg, ip);
1632				match = 1;
1633				break;
1634
1635			case O_PROB:
1636				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
1637				break;
1638
1639			case O_VERREVPATH:
1640				/* Outgoing packets automatically pass/match */
1641				match = ((oif != NULL) ||
1642				    (m->m_pkthdr.rcvif == NULL) ||
1643				    (
1644#ifdef INET6
1645				    is_ipv6 ?
1646					verify_path6(&(args->f_id.src_ip6),
1647					    m->m_pkthdr.rcvif) :
1648#endif
1649				    verify_path(src_ip, m->m_pkthdr.rcvif,
1650				        args->f_id.fib)));
1651				break;
1652
1653			case O_VERSRCREACH:
1654				/* Outgoing packets automatically pass/match */
1655				match = (hlen > 0 && ((oif != NULL) ||
1656#ifdef INET6
1657				    is_ipv6 ?
1658				        verify_path6(&(args->f_id.src_ip6),
1659				            NULL) :
1660#endif
1661				    verify_path(src_ip, NULL, args->f_id.fib)));
1662				break;
1663
1664			case O_ANTISPOOF:
1665				/* Outgoing packets automatically pass/match */
1666				if (oif == NULL && hlen > 0 &&
1667				    (  (is_ipv4 && in_localaddr(src_ip))
1668#ifdef INET6
1669				    || (is_ipv6 &&
1670				        in6_localaddr(&(args->f_id.src_ip6)))
1671#endif
1672				    ))
1673					match =
1674#ifdef INET6
1675					    is_ipv6 ? verify_path6(
1676					        &(args->f_id.src_ip6),
1677					        m->m_pkthdr.rcvif) :
1678#endif
1679					    verify_path(src_ip,
1680					    	m->m_pkthdr.rcvif,
1681					        args->f_id.fib);
1682				else
1683					match = 1;
1684				break;
1685
1686			case O_IPSEC:
1687#ifdef IPSEC
1688				match = (m_tag_find(m,
1689				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
1690#endif
1691				/* otherwise no match */
1692				break;
1693
1694#ifdef INET6
1695			case O_IP6_SRC:
1696				match = is_ipv6 &&
1697				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
1698				    &((ipfw_insn_ip6 *)cmd)->addr6);
1699				break;
1700
1701			case O_IP6_DST:
1702				match = is_ipv6 &&
1703				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
1704				    &((ipfw_insn_ip6 *)cmd)->addr6);
1705				break;
1706			case O_IP6_SRC_MASK:
1707			case O_IP6_DST_MASK:
1708				if (is_ipv6) {
1709					int i = cmdlen - 1;
1710					struct in6_addr p;
1711					struct in6_addr *d =
1712					    &((ipfw_insn_ip6 *)cmd)->addr6;
1713
1714					for (; !match && i > 0; d += 2,
1715					    i -= F_INSN_SIZE(struct in6_addr)
1716					    * 2) {
1717						p = (cmd->opcode ==
1718						    O_IP6_SRC_MASK) ?
1719						    args->f_id.src_ip6:
1720						    args->f_id.dst_ip6;
1721						APPLY_MASK(&p, &d[1]);
1722						match =
1723						    IN6_ARE_ADDR_EQUAL(&d[0],
1724						    &p);
1725					}
1726				}
1727				break;
1728
1729			case O_IP6_SRC_ME:
1730				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
1731				break;
1732
1733			case O_IP6_DST_ME:
1734				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
1735				break;
1736
1737			case O_FLOW6ID:
1738				match = is_ipv6 &&
1739				    flow6id_match(args->f_id.flow_id6,
1740				    (ipfw_insn_u32 *) cmd);
1741				break;
1742
1743			case O_EXT_HDR:
1744				match = is_ipv6 &&
1745				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
1746				break;
1747
1748			case O_IP6:
1749				match = is_ipv6;
1750				break;
1751#endif
1752
1753			case O_IP4:
1754				match = is_ipv4;
1755				break;
1756
1757			case O_TAG: {
1758				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
1759				    tablearg : cmd->arg1;
1760
1761				/* Packet is already tagged with this tag? */
1762				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
1763
1764				/* We have `untag' action when F_NOT flag is
1765				 * present. And we must remove this mtag from
1766				 * mbuf and reset `match' to zero (`match' will
1767				 * be inversed later).
1768				 * Otherwise we should allocate new mtag and
1769				 * push it into mbuf.
1770				 */
1771				if (cmd->len & F_NOT) { /* `untag' action */
1772					if (mtag != NULL)
1773						m_tag_delete(m, mtag);
1774				} else if (mtag == NULL) {
1775					if ((mtag = m_tag_alloc(MTAG_IPFW,
1776					    tag, 0, M_NOWAIT)) != NULL)
1777						m_tag_prepend(m, mtag);
1778				}
1779				match = (cmd->len & F_NOT) ? 0: 1;
1780				break;
1781			}
1782
1783			case O_FIB: /* try match the specified fib */
1784				if (args->f_id.fib == cmd->arg1)
1785					match = 1;
1786				break;
1787
1788			case O_TAGGED: {
1789				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
1790				    tablearg : cmd->arg1;
1791
1792				if (cmdlen == 1) {
1793					match = m_tag_locate(m, MTAG_IPFW,
1794					    tag, NULL) != NULL;
1795					break;
1796				}
1797
1798				/* we have ranges */
1799				for (mtag = m_tag_first(m);
1800				    mtag != NULL && !match;
1801				    mtag = m_tag_next(m, mtag)) {
1802					uint16_t *p;
1803					int i;
1804
1805					if (mtag->m_tag_cookie != MTAG_IPFW)
1806						continue;
1807
1808					p = ((ipfw_insn_u16 *)cmd)->ports;
1809					i = cmdlen - 1;
1810					for(; !match && i > 0; i--, p += 2)
1811						match =
1812						    mtag->m_tag_id >= p[0] &&
1813						    mtag->m_tag_id <= p[1];
1814				}
1815				break;
1816			}
1817
1818			/*
1819			 * The second set of opcodes represents 'actions',
1820			 * i.e. the terminal part of a rule once the packet
1821			 * matches all previous patterns.
1822			 * Typically there is only one action for each rule,
1823			 * and the opcode is stored at the end of the rule
1824			 * (but there are exceptions -- see below).
1825			 *
1826			 * In general, here we set retval and terminate the
1827			 * outer loop (would be a 'break 3' in some language,
1828			 * but we need to set l=0, done=1)
1829			 *
1830			 * Exceptions:
1831			 * O_COUNT and O_SKIPTO actions:
1832			 *   instead of terminating, we jump to the next rule
1833			 *   (setting l=0), or to the SKIPTO target (setting
1834			 *   f/f_len, cmd and l as needed), respectively.
1835			 *
1836			 * O_TAG, O_LOG and O_ALTQ action parameters:
1837			 *   perform some action and set match = 1;
1838			 *
1839			 * O_LIMIT and O_KEEP_STATE: these opcodes are
1840			 *   not real 'actions', and are stored right
1841			 *   before the 'action' part of the rule.
1842			 *   These opcodes try to install an entry in the
1843			 *   state tables; if successful, we continue with
1844			 *   the next opcode (match=1; break;), otherwise
1845			 *   the packet must be dropped (set retval,
1846			 *   break loops with l=0, done=1)
1847			 *
1848			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
1849			 *   cause a lookup of the state table, and a jump
1850			 *   to the 'action' part of the parent rule
1851			 *   if an entry is found, or
1852			 *   (CHECK_STATE only) a jump to the next rule if
1853			 *   the entry is not found.
1854			 *   The result of the lookup is cached so that
1855			 *   further instances of these opcodes become NOPs.
1856			 *   The jump to the next rule is done by setting
1857			 *   l=0, cmdlen=0.
1858			 */
1859			case O_LIMIT:
1860			case O_KEEP_STATE:
1861				if (ipfw_install_state(f,
1862				    (ipfw_insn_limit *)cmd, args, tablearg)) {
1863					/* error or limit violation */
1864					retval = IP_FW_DENY;
1865					l = 0;	/* exit inner loop */
1866					done = 1; /* exit outer loop */
1867				}
1868				match = 1;
1869				break;
1870
1871			case O_PROBE_STATE:
1872			case O_CHECK_STATE:
1873				/*
1874				 * dynamic rules are checked at the first
1875				 * keep-state or check-state occurrence,
1876				 * with the result being stored in dyn_dir.
1877				 * The compiler introduces a PROBE_STATE
1878				 * instruction for us when we have a
1879				 * KEEP_STATE (because PROBE_STATE needs
1880				 * to be run first).
1881				 */
1882				if (dyn_dir == MATCH_UNKNOWN &&
1883				    (q = ipfw_lookup_dyn_rule(&args->f_id,
1884				     &dyn_dir, proto == IPPROTO_TCP ?
1885					TCP(ulp) : NULL))
1886					!= NULL) {
1887					/*
1888					 * Found dynamic entry, update stats
1889					 * and jump to the 'action' part of
1890					 * the parent rule by setting
1891					 * f, cmd, l and clearing cmdlen.
1892					 */
1893					q->pcnt++;
1894					q->bcnt += pktlen;
1895					/* XXX we would like to have f_pos
1896					 * readily accessible in the dynamic
1897				         * rule, instead of having to
1898					 * lookup q->rule.
1899					 */
1900					f = q->rule;
1901					f_pos = ipfw_find_rule(chain,
1902						f->rulenum, f->id);
1903					cmd = ACTION_PTR(f);
1904					l = f->cmd_len - f->act_ofs;
1905					ipfw_dyn_unlock();
1906					cmdlen = 0;
1907					match = 1;
1908					break;
1909				}
1910				/*
1911				 * Dynamic entry not found. If CHECK_STATE,
1912				 * skip to next rule, if PROBE_STATE just
1913				 * ignore and continue with next opcode.
1914				 */
1915				if (cmd->opcode == O_CHECK_STATE)
1916					l = 0;	/* exit inner loop */
1917				match = 1;
1918				break;
1919
1920			case O_ACCEPT:
1921				retval = 0;	/* accept */
1922				l = 0;		/* exit inner loop */
1923				done = 1;	/* exit outer loop */
1924				break;
1925
1926			case O_PIPE:
1927			case O_QUEUE:
1928				set_match(args, f_pos, chain);
1929				args->cookie = (cmd->arg1 == IP_FW_TABLEARG) ?
1930					tablearg : cmd->arg1;
1931				if (cmd->opcode == O_QUEUE)
1932					args->cookie |= 0x80000000;
1933				retval = IP_FW_DUMMYNET;
1934				l = 0;          /* exit inner loop */
1935				done = 1;       /* exit outer loop */
1936				break;
1937
1938			case O_DIVERT:
1939			case O_TEE:
1940				if (args->eh) /* not on layer 2 */
1941				    break;
1942				/* otherwise this is terminal */
1943				l = 0;		/* exit inner loop */
1944				done = 1;	/* exit outer loop */
1945				mtag = m_tag_get(PACKET_TAG_DIVERT,
1946					sizeof(struct divert_tag),
1947					M_NOWAIT);
1948				if (mtag == NULL) {
1949				    retval = IP_FW_DENY;
1950				} else {
1951				    struct divert_tag *dt;
1952				    dt = (struct divert_tag *)(mtag+1);
1953				    dt->cookie = f->rulenum;
1954				    if (cmd->arg1 == IP_FW_TABLEARG)
1955					dt->info = tablearg;
1956				    else
1957					dt->info = cmd->arg1;
1958				    m_tag_prepend(m, mtag);
1959				    retval = (cmd->opcode == O_DIVERT) ?
1960					IP_FW_DIVERT : IP_FW_TEE;
1961				}
1962				break;
1963
1964			case O_COUNT:
1965				f->pcnt++;	/* update stats */
1966				f->bcnt += pktlen;
1967				f->timestamp = time_uptime;
1968				l = 0;		/* exit inner loop */
1969				break;
1970
1971			case O_SKIPTO:
1972			    f->pcnt++;	/* update stats */
1973			    f->bcnt += pktlen;
1974			    f->timestamp = time_uptime;
1975			    /* If possible use cached f_pos (in f->next_rule),
1976			     * whose version is written in f->next_rule
1977			     * (horrible hacks to avoid changing the ABI).
1978			     */
1979			    if (cmd->arg1 != IP_FW_TABLEARG &&
1980				    (uintptr_t)f->x_next == chain->id) {
1981				f_pos = (uintptr_t)f->next_rule;
1982			    } else {
1983				int i = (cmd->arg1 == IP_FW_TABLEARG) ?
1984					tablearg : cmd->arg1;
1985				/* make sure we do not jump backward */
1986				if (i <= f->rulenum)
1987				    i = f->rulenum + 1;
1988				f_pos = ipfw_find_rule(chain, i, 0);
1989				/* update the cache */
1990				if (cmd->arg1 != IP_FW_TABLEARG) {
1991				    f->next_rule =
1992					(void *)(uintptr_t)f_pos;
1993				    f->x_next =
1994					(void *)(uintptr_t)chain->id;
1995				}
1996			    }
1997			    /*
1998			     * Skip disabled rules, and re-enter
1999			     * the inner loop with the correct
2000			     * f_pos, f, l and cmd.
2001			     * Also clear cmdlen and skip_or
2002			     */
2003			    for (; f_pos < chain->n_rules - 1 &&
2004				    (V_set_disable &
2005				     (1 << chain->map[f_pos]->set));
2006				    f_pos++)
2007				;
2008			    /* prepare to enter the inner loop */
2009			    f = chain->map[f_pos];
2010			    l = f->cmd_len;
2011			    cmd = f->cmd;
2012			    match = 1;
2013			    cmdlen = 0;
2014			    skip_or = 0;
2015			    break;
2016
2017			case O_REJECT:
2018				/*
2019				 * Drop the packet and send a reject notice
2020				 * if the packet is not ICMP (or is an ICMP
2021				 * query), and it is not multicast/broadcast.
2022				 */
2023				if (hlen > 0 && is_ipv4 && offset == 0 &&
2024				    (proto != IPPROTO_ICMP ||
2025				     is_icmp_query(ICMP(ulp))) &&
2026				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2027				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
2028					send_reject(args, cmd->arg1, iplen, ip);
2029					m = args->m;
2030				}
2031				/* FALLTHROUGH */
2032#ifdef INET6
2033			case O_UNREACH6:
2034				if (hlen > 0 && is_ipv6 &&
2035				    ((offset & IP6F_OFF_MASK) == 0) &&
2036				    (proto != IPPROTO_ICMPV6 ||
2037				     (is_icmp6_query(args->f_id.flags) == 1)) &&
2038				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2039				    !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
2040					send_reject6(
2041					    args, cmd->arg1, hlen,
2042					    (struct ip6_hdr *)ip);
2043					m = args->m;
2044				}
2045				/* FALLTHROUGH */
2046#endif
2047			case O_DENY:
2048				retval = IP_FW_DENY;
2049				l = 0;		/* exit inner loop */
2050				done = 1;	/* exit outer loop */
2051				break;
2052
2053			case O_FORWARD_IP:
2054				if (args->eh)	/* not valid on layer2 pkts */
2055					break;
2056				if (!q || dyn_dir == MATCH_FORWARD) {
2057				    struct sockaddr_in *sa;
2058				    sa = &(((ipfw_insn_sa *)cmd)->sa);
2059				    if (sa->sin_addr.s_addr == INADDR_ANY) {
2060					bcopy(sa, &args->hopstore,
2061							sizeof(*sa));
2062					args->hopstore.sin_addr.s_addr =
2063						    htonl(tablearg);
2064					args->next_hop = &args->hopstore;
2065				    } else {
2066					args->next_hop = sa;
2067				    }
2068				}
2069				retval = IP_FW_PASS;
2070				l = 0;          /* exit inner loop */
2071				done = 1;       /* exit outer loop */
2072				break;
2073
2074			case O_NETGRAPH:
2075			case O_NGTEE:
2076				set_match(args, f_pos, chain);
2077				args->cookie = (cmd->arg1 == IP_FW_TABLEARG) ?
2078					tablearg : cmd->arg1;
2079				retval = (cmd->opcode == O_NETGRAPH) ?
2080				    IP_FW_NETGRAPH : IP_FW_NGTEE;
2081				l = 0;          /* exit inner loop */
2082				done = 1;       /* exit outer loop */
2083				break;
2084
2085			case O_SETFIB:
2086				f->pcnt++;	/* update stats */
2087				f->bcnt += pktlen;
2088				f->timestamp = time_uptime;
2089				M_SETFIB(m, cmd->arg1);
2090				args->f_id.fib = cmd->arg1;
2091				l = 0;		/* exit inner loop */
2092				break;
2093
2094			case O_NAT:
2095 				if (!IPFW_NAT_LOADED) {
2096				    retval = IP_FW_DENY;
2097				} else {
2098				    struct cfg_nat *t;
2099				    int nat_id;
2100
2101				    set_match(args, f_pos, chain);
2102				    t = ((ipfw_insn_nat *)cmd)->nat;
2103				    if (t == NULL) {
2104					nat_id = (cmd->arg1 == IP_FW_TABLEARG) ?
2105						tablearg : cmd->arg1;
2106					t = (*lookup_nat_ptr)(&chain->nat, nat_id);
2107
2108					if (t == NULL) {
2109					    retval = IP_FW_DENY;
2110					    l = 0;	/* exit inner loop */
2111					    done = 1;	/* exit outer loop */
2112					    break;
2113					}
2114					if (cmd->arg1 != IP_FW_TABLEARG)
2115					    ((ipfw_insn_nat *)cmd)->nat = t;
2116				    }
2117				    retval = ipfw_nat_ptr(args, t, m);
2118				}
2119				l = 0;          /* exit inner loop */
2120				done = 1;       /* exit outer loop */
2121				break;
2122
2123			case O_REASS: {
2124				int ip_off;
2125
2126				f->pcnt++;
2127				f->bcnt += pktlen;
2128				l = 0;	/* in any case exit inner loop */
2129
2130#ifndef HAVE_NET_IPLEN
2131				if (args->eh == NULL)
2132					ip_off = ip->ip_off;
2133				else
2134#endif /* !HAVE_NET_IPLEN */
2135				ip_off = ntohs(ip->ip_off);
2136
2137				/* if not fragmented, go to next rule */
2138				if ((ip_off & (IP_MF | IP_OFFMASK)) == 0)
2139				    break;
2140				/*
2141				 * ip_reass() expects len & off in host
2142				 * byte order: fix them in case we come
2143				 * from layer2.
2144				 */
2145				if (args->eh != NULL) {
2146					SET_HOST_IPLEN(ip);
2147				}
2148
2149				args->m = m = ip_reass(m);
2150
2151				/*
2152				 * IP header checksum fixup after
2153				 * reassembly and leave header
2154				 * in network byte order.
2155				 */
2156				if (m == NULL) { /* fragment got swallowed */
2157				    retval = IP_FW_DENY;
2158				} else { /* good, packet complete */
2159				    int hlen;
2160
2161				    ip = mtod(m, struct ip *);
2162				    hlen = ip->ip_hl << 2;
2163				    /* revert len. & off to net format if needed */
2164				    if (args->eh != NULL) {
2165					SET_NET_IPLEN(ip);
2166				    }
2167				    ip->ip_sum = 0;
2168				    if (hlen == sizeof(struct ip))
2169					ip->ip_sum = in_cksum_hdr(ip);
2170				    else
2171					ip->ip_sum = in_cksum(m, hlen);
2172				    retval = IP_FW_REASS;
2173				    set_match(args, f_pos, chain);
2174				}
2175				done = 1;	/* exit outer loop */
2176				break;
2177			}
2178
2179			default:
2180				panic("-- unknown opcode %d\n", cmd->opcode);
2181			} /* end of switch() on opcodes */
2182			/*
2183			 * if we get here with l=0, then match is irrelevant.
2184			 */
2185
2186			if (cmd->len & F_NOT)
2187				match = !match;
2188
2189			if (match) {
2190				if (cmd->len & F_OR)
2191					skip_or = 1;
2192			} else {
2193				if (!(cmd->len & F_OR)) /* not an OR block, */
2194					break;		/* try next rule    */
2195			}
2196
2197		}	/* end of inner loop, scan opcodes */
2198
2199		if (done)
2200			break;
2201
2202/* next_rule:; */	/* try next rule		*/
2203
2204	}		/* end of outer for, scan rules */
2205
2206	if (done) {
2207		struct ip_fw *rule = chain->map[f_pos];
2208		/* Update statistics */
2209		rule->pcnt++;
2210		rule->bcnt += pktlen;
2211		rule->timestamp = time_uptime;
2212	} else {
2213		retval = IP_FW_DENY;
2214		printf("ipfw: ouch!, skip past end of rules, denying packet\n");
2215	}
2216	IPFW_RUNLOCK(chain);
2217	if (ucred_cache != NULL)
2218		crfree(ucred_cache);
2219	return (retval);
2220
2221pullup_failed:
2222	if (V_fw_verbose)
2223		printf("ipfw: pullup failed\n");
2224	return (IP_FW_DENY);
2225}
2226
2227/*
2228 * Module and VNET glue
2229 */
2230
2231/*
2232 * Stuff that must be initialised only on boot or module load
2233 */
2234static int
2235ipfw_init(void)
2236{
2237	int error = 0;
2238
2239	ipfw_dyn_attach();
2240	/*
2241 	 * Only print out this stuff the first time around,
2242	 * when called from the sysinit code.
2243	 */
2244	printf("ipfw2 "
2245#ifdef INET6
2246		"(+ipv6) "
2247#endif
2248		"initialized, divert %s, nat %s, "
2249		"rule-based forwarding "
2250#ifdef IPFIREWALL_FORWARD
2251		"enabled, "
2252#else
2253		"disabled, "
2254#endif
2255		"default to %s, logging ",
2256#ifdef IPDIVERT
2257		"enabled",
2258#else
2259		"loadable",
2260#endif
2261#ifdef IPFIREWALL_NAT
2262		"enabled",
2263#else
2264		"loadable",
2265#endif
2266		default_to_accept ? "accept" : "deny");
2267
2268	/*
2269	 * Note: V_xxx variables can be accessed here but the vnet specific
2270	 * initializer may not have been called yet for the VIMAGE case.
2271	 * Tuneables will have been processed. We will print out values for
2272	 * the default vnet.
2273	 * XXX This should all be rationalized AFTER 8.0
2274	 */
2275	if (V_fw_verbose == 0)
2276		printf("disabled\n");
2277	else if (V_verbose_limit == 0)
2278		printf("unlimited\n");
2279	else
2280		printf("limited to %d packets/entry by default\n",
2281		    V_verbose_limit);
2282
2283	ipfw_log_bpf(1); /* init */
2284	return (error);
2285}
2286
2287/*
2288 * Called for the removal of the last instance only on module unload.
2289 */
2290static void
2291ipfw_destroy(void)
2292{
2293
2294	ipfw_log_bpf(0); /* uninit */
2295	ipfw_dyn_detach();
2296	printf("IP firewall unloaded\n");
2297}
2298
2299/*
2300 * Stuff that must be initialized for every instance
2301 * (including the first of course).
2302 */
2303static int
2304vnet_ipfw_init(const void *unused)
2305{
2306	int error;
2307	struct ip_fw *rule = NULL;
2308	struct ip_fw_chain *chain;
2309
2310	chain = &V_layer3_chain;
2311
2312	/* First set up some values that are compile time options */
2313	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
2314	V_fw_deny_unknown_exthdrs = 1;
2315#ifdef IPFIREWALL_VERBOSE
2316	V_fw_verbose = 1;
2317#endif
2318#ifdef IPFIREWALL_VERBOSE_LIMIT
2319	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
2320#endif
2321#ifdef IPFIREWALL_NAT
2322	LIST_INIT(&chain->nat);
2323#endif
2324
2325	/* insert the default rule and create the initial map */
2326	chain->n_rules = 1;
2327	chain->static_len = sizeof(struct ip_fw);
2328	chain->map = malloc(sizeof(struct ip_fw *), M_IPFW, M_NOWAIT | M_ZERO);
2329	if (chain->map)
2330		rule = malloc(chain->static_len, M_IPFW, M_NOWAIT | M_ZERO);
2331	if (rule == NULL) {
2332		if (chain->map)
2333			free(chain->map, M_IPFW);
2334		printf("ipfw2: ENOSPC initializing default rule "
2335			"(support disabled)\n");
2336		return (ENOSPC);
2337	}
2338	error = ipfw_init_tables(chain);
2339	if (error) {
2340		panic("init_tables"); /* XXX Marko fix this ! */
2341	}
2342
2343	/* fill and insert the default rule */
2344	rule->act_ofs = 0;
2345	rule->rulenum = IPFW_DEFAULT_RULE;
2346	rule->cmd_len = 1;
2347	rule->set = RESVD_SET;
2348	rule->cmd[0].len = 1;
2349	rule->cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
2350	chain->rules = chain->default_rule = chain->map[0] = rule;
2351	chain->id = rule->id = 1;
2352
2353	IPFW_LOCK_INIT(chain);
2354	ipfw_dyn_init();
2355
2356	/* First set up some values that are compile time options */
2357	V_ipfw_vnet_ready = 1;		/* Open for business */
2358
2359	/*
2360	 * Hook the sockopt handler, and the layer2 (V_ip_fw_chk_ptr)
2361	 * and pfil hooks for ipv4 and ipv6. Even if the latter two fail
2362	 * we still keep the module alive because the sockopt and
2363	 * layer2 paths are still useful.
2364	 * ipfw[6]_hook return 0 on success, ENOENT on failure,
2365	 * so we can ignore the exact return value and just set a flag.
2366	 *
2367	 * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so
2368	 * changes in the underlying (per-vnet) variables trigger
2369	 * immediate hook()/unhook() calls.
2370	 * In layer2 we have the same behaviour, except that V_ether_ipfw
2371	 * is checked on each packet because there are no pfil hooks.
2372	 */
2373	V_ip_fw_ctl_ptr = ipfw_ctl;
2374	V_ip_fw_chk_ptr = ipfw_chk;
2375	error = ipfw_attach_hooks(1);
2376	return (error);
2377}
2378
2379/*
2380 * Called for the removal of each instance.
2381 */
2382static int
2383vnet_ipfw_uninit(const void *unused)
2384{
2385	struct ip_fw *reap, *rule;
2386	struct ip_fw_chain *chain = &V_layer3_chain;
2387	int i;
2388
2389	V_ipfw_vnet_ready = 0; /* tell new callers to go away */
2390	/*
2391	 * disconnect from ipv4, ipv6, layer2 and sockopt.
2392	 * Then grab, release and grab again the WLOCK so we make
2393	 * sure the update is propagated and nobody will be in.
2394	 */
2395	(void)ipfw_attach_hooks(0 /* detach */);
2396	V_ip_fw_chk_ptr = NULL;
2397	V_ip_fw_ctl_ptr = NULL;
2398	IPFW_UH_WLOCK(chain);
2399	IPFW_UH_WUNLOCK(chain);
2400	IPFW_UH_WLOCK(chain);
2401
2402	IPFW_WLOCK(chain);
2403	IPFW_WUNLOCK(chain);
2404	IPFW_WLOCK(chain);
2405
2406	ipfw_dyn_uninit(0);	/* run the callout_drain */
2407	ipfw_flush_tables(chain);
2408	reap = NULL;
2409	for (i = 0; i < chain->n_rules; i++) {
2410		rule = chain->map[i];
2411		rule->x_next = reap;
2412		reap = rule;
2413	}
2414	if (chain->map)
2415		free(chain->map, M_IPFW);
2416	IPFW_WUNLOCK(chain);
2417	IPFW_UH_WUNLOCK(chain);
2418	if (reap != NULL)
2419		ipfw_reap_rules(reap);
2420	IPFW_LOCK_DESTROY(chain);
2421	ipfw_dyn_uninit(1);	/* free the remaining parts */
2422	return 0;
2423}
2424
2425/*
2426 * Module event handler.
2427 * In general we have the choice of handling most of these events by the
2428 * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
2429 * use the SYSINIT handlers as they are more capable of expressing the
2430 * flow of control during module and vnet operations, so this is just
2431 * a skeleton. Note there is no SYSINIT equivalent of the module
2432 * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
2433 */
2434static int
2435ipfw_modevent(module_t mod, int type, void *unused)
2436{
2437	int err = 0;
2438
2439	switch (type) {
2440	case MOD_LOAD:
2441		/* Called once at module load or
2442	 	 * system boot if compiled in. */
2443		break;
2444	case MOD_QUIESCE:
2445		/* Called before unload. May veto unloading. */
2446		break;
2447	case MOD_UNLOAD:
2448		/* Called during unload. */
2449		break;
2450	case MOD_SHUTDOWN:
2451		/* Called during system shutdown. */
2452		break;
2453	default:
2454		err = EOPNOTSUPP;
2455		break;
2456	}
2457	return err;
2458}
2459
2460static moduledata_t ipfwmod = {
2461	"ipfw",
2462	ipfw_modevent,
2463	0
2464};
2465
2466/* Define startup order. */
2467#define	IPFW_SI_SUB_FIREWALL	SI_SUB_PROTO_IFATTACHDOMAIN
2468#define	IPFW_MODEVENT_ORDER	(SI_ORDER_ANY - 255) /* On boot slot in here. */
2469#define	IPFW_MODULE_ORDER	(IPFW_MODEVENT_ORDER + 1) /* A little later. */
2470#define	IPFW_VNET_ORDER		(IPFW_MODEVENT_ORDER + 2) /* Later still. */
2471
2472DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
2473MODULE_VERSION(ipfw, 2);
2474/* should declare some dependencies here */
2475
2476/*
2477 * Starting up. Done in order after ipfwmod() has been called.
2478 * VNET_SYSINIT is also called for each existing vnet and each new vnet.
2479 */
2480SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2481	    ipfw_init, NULL);
2482VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2483	    vnet_ipfw_init, NULL);
2484
2485/*
2486 * Closing up shop. These are done in REVERSE ORDER, but still
2487 * after ipfwmod() has been called. Not called on reboot.
2488 * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
2489 * or when the module is unloaded.
2490 */
2491SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2492	    ipfw_destroy, NULL);
2493VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2494	    vnet_ipfw_uninit, NULL);
2495/* end of file */
2496