ip_fw2.c revision 200654
1/*-
2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: head/sys/netinet/ipfw/ip_fw2.c 200654 2009-12-17 23:11:16Z luigi $");
28
29/*
30 * The FreeBSD IP packet firewall, main file
31 */
32
33#if !defined(KLD_MODULE)
34#include "opt_ipfw.h"
35#include "opt_ipdivert.h"
36#include "opt_ipdn.h"
37#include "opt_inet.h"
38#ifndef INET
39#error IPFIREWALL requires INET.
40#endif /* INET */
41#endif
42#include "opt_inet6.h"
43#include "opt_ipsec.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/condvar.h>
48#include <sys/eventhandler.h>
49#include <sys/malloc.h>
50#include <sys/mbuf.h>
51#include <sys/kernel.h>
52#include <sys/lock.h>
53#include <sys/jail.h>
54#include <sys/module.h>
55#include <sys/priv.h>
56#include <sys/proc.h>
57#include <sys/rwlock.h>
58#include <sys/socket.h>
59#include <sys/socketvar.h>
60#include <sys/sysctl.h>
61#include <sys/syslog.h>
62#include <sys/ucred.h>
63#include <net/ethernet.h> /* for ETHERTYPE_IP */
64#include <net/if.h>
65#include <net/route.h>
66#include <net/pf_mtag.h>
67#include <net/vnet.h>
68
69#include <netinet/in.h>
70#include <netinet/in_var.h>
71#include <netinet/in_pcb.h>
72#include <netinet/ip.h>
73#include <netinet/ip_var.h>
74#include <netinet/ip_icmp.h>
75#include <netinet/ip_fw.h>
76#include <netinet/ipfw/ip_fw_private.h>
77#include <netinet/ip_divert.h>
78#include <netinet/ip_dummynet.h>
79#include <netinet/ip_carp.h>
80#include <netinet/pim.h>
81#include <netinet/tcp_var.h>
82#include <netinet/udp.h>
83#include <netinet/udp_var.h>
84#include <netinet/sctp.h>
85
86#include <netgraph/ng_ipfw.h>
87
88#include <netinet/ip6.h>
89#include <netinet/icmp6.h>
90#ifdef INET6
91#include <netinet6/scope6_var.h>
92#include <netinet6/ip6_var.h>
93#endif
94
95#include <machine/in_cksum.h>	/* XXX for in_cksum */
96
97#ifdef MAC
98#include <security/mac/mac_framework.h>
99#endif
100
101/*
102 * static variables followed by global ones.
103 * All ipfw global variables are here.
104 */
105
106/* ipfw_vnet_ready controls when we are open for business */
107static VNET_DEFINE(int, ipfw_vnet_ready) = 0;
108#define	V_ipfw_vnet_ready	VNET(ipfw_vnet_ready)
109
110static VNET_DEFINE(int, fw_deny_unknown_exthdrs);
111#define	V_fw_deny_unknown_exthdrs	VNET(fw_deny_unknown_exthdrs)
112
113#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
114static int default_to_accept = 1;
115#else
116static int default_to_accept;
117#endif
118
119VNET_DEFINE(int, autoinc_step);
120
121/*
122 * Each rule belongs to one of 32 different sets (0..31).
123 * The variable set_disable contains one bit per set.
124 * If the bit is set, all rules in the corresponding set
125 * are disabled. Set RESVD_SET(31) is reserved for the default rule
126 * and rules that are not deleted by the flush command,
127 * and CANNOT be disabled.
128 * Rules in set RESVD_SET can only be deleted individually.
129 */
130VNET_DEFINE(u_int32_t, set_disable);
131#define	V_set_disable			VNET(set_disable)
132
133VNET_DEFINE(int, fw_verbose);
134//#define	V_verbose_limit			VNET(verbose_limit)
135/* counter for ipfw_log(NULL...) */
136VNET_DEFINE(u_int64_t, norule_counter);
137VNET_DEFINE(int, verbose_limit);
138
139
140/* layer3_chain contains the list of rules for layer 3 */
141VNET_DEFINE(struct ip_fw_chain, layer3_chain);
142
143ipfw_nat_t *ipfw_nat_ptr = NULL;
144struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
145ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
146ipfw_nat_cfg_t *ipfw_nat_del_ptr;
147ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
148ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
149
150extern int ipfw_chg_hook(SYSCTL_HANDLER_ARGS);
151
152#ifdef SYSCTL_NODE
153SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
154SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
155    CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
156    "Only do a single pass through ipfw when using dummynet(4)");
157SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
158    CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
159    "Rule number auto-increment step");
160SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose,
161    CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
162    "Log matches to ipfw rules");
163SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
164    CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
165    "Set upper limit of matches of ipfw rules logged");
166SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
167    NULL, IPFW_DEFAULT_RULE,
168    "The default/max possible rule number.");
169SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, tables_max, CTLFLAG_RD,
170    NULL, IPFW_TABLES_MAX,
171    "The maximum number of tables.");
172SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
173    &default_to_accept, 0,
174    "Make the default rule accept all packets.");
175TUNABLE_INT("net.inet.ip.fw.default_to_accept", &default_to_accept);
176
177#ifdef INET6
178SYSCTL_DECL(_net_inet6_ip6);
179SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
180SYSCTL_VNET_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
181    CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(fw_deny_unknown_exthdrs), 0,
182    "Deny packets with unknown IPv6 Extension Headers");
183#endif /* INET6 */
184
185#endif /* SYSCTL_NODE */
186
187
188/*
189 * Some macros used in the various matching options.
190 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
191 * Other macros just cast void * into the appropriate type
192 */
193#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
194#define	TCP(p)		((struct tcphdr *)(p))
195#define	SCTP(p)		((struct sctphdr *)(p))
196#define	UDP(p)		((struct udphdr *)(p))
197#define	ICMP(p)		((struct icmphdr *)(p))
198#define	ICMP6(p)	((struct icmp6_hdr *)(p))
199
200static __inline int
201icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
202{
203	int type = icmp->icmp_type;
204
205	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
206}
207
208#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
209    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
210
211static int
212is_icmp_query(struct icmphdr *icmp)
213{
214	int type = icmp->icmp_type;
215
216	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
217}
218#undef TT
219
220/*
221 * The following checks use two arrays of 8 or 16 bits to store the
222 * bits that we want set or clear, respectively. They are in the
223 * low and high half of cmd->arg1 or cmd->d[0].
224 *
225 * We scan options and store the bits we find set. We succeed if
226 *
227 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
228 *
229 * The code is sometimes optimized not to store additional variables.
230 */
231
232static int
233flags_match(ipfw_insn *cmd, u_int8_t bits)
234{
235	u_char want_clear;
236	bits = ~bits;
237
238	if ( ((cmd->arg1 & 0xff) & bits) != 0)
239		return 0; /* some bits we want set were clear */
240	want_clear = (cmd->arg1 >> 8) & 0xff;
241	if ( (want_clear & bits) != want_clear)
242		return 0; /* some bits we want clear were set */
243	return 1;
244}
245
246static int
247ipopts_match(struct ip *ip, ipfw_insn *cmd)
248{
249	int optlen, bits = 0;
250	u_char *cp = (u_char *)(ip + 1);
251	int x = (ip->ip_hl << 2) - sizeof (struct ip);
252
253	for (; x > 0; x -= optlen, cp += optlen) {
254		int opt = cp[IPOPT_OPTVAL];
255
256		if (opt == IPOPT_EOL)
257			break;
258		if (opt == IPOPT_NOP)
259			optlen = 1;
260		else {
261			optlen = cp[IPOPT_OLEN];
262			if (optlen <= 0 || optlen > x)
263				return 0; /* invalid or truncated */
264		}
265		switch (opt) {
266
267		default:
268			break;
269
270		case IPOPT_LSRR:
271			bits |= IP_FW_IPOPT_LSRR;
272			break;
273
274		case IPOPT_SSRR:
275			bits |= IP_FW_IPOPT_SSRR;
276			break;
277
278		case IPOPT_RR:
279			bits |= IP_FW_IPOPT_RR;
280			break;
281
282		case IPOPT_TS:
283			bits |= IP_FW_IPOPT_TS;
284			break;
285		}
286	}
287	return (flags_match(cmd, bits));
288}
289
290static int
291tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
292{
293	int optlen, bits = 0;
294	u_char *cp = (u_char *)(tcp + 1);
295	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
296
297	for (; x > 0; x -= optlen, cp += optlen) {
298		int opt = cp[0];
299		if (opt == TCPOPT_EOL)
300			break;
301		if (opt == TCPOPT_NOP)
302			optlen = 1;
303		else {
304			optlen = cp[1];
305			if (optlen <= 0)
306				break;
307		}
308
309		switch (opt) {
310
311		default:
312			break;
313
314		case TCPOPT_MAXSEG:
315			bits |= IP_FW_TCPOPT_MSS;
316			break;
317
318		case TCPOPT_WINDOW:
319			bits |= IP_FW_TCPOPT_WINDOW;
320			break;
321
322		case TCPOPT_SACK_PERMITTED:
323		case TCPOPT_SACK:
324			bits |= IP_FW_TCPOPT_SACK;
325			break;
326
327		case TCPOPT_TIMESTAMP:
328			bits |= IP_FW_TCPOPT_TS;
329			break;
330
331		}
332	}
333	return (flags_match(cmd, bits));
334}
335
336static int
337iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
338{
339	if (ifp == NULL)	/* no iface with this packet, match fails */
340		return 0;
341	/* Check by name or by IP address */
342	if (cmd->name[0] != '\0') { /* match by name */
343		/* Check name */
344		if (cmd->p.glob) {
345			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
346				return(1);
347		} else {
348			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
349				return(1);
350		}
351	} else {
352		struct ifaddr *ia;
353
354		if_addr_rlock(ifp);
355		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
356			if (ia->ifa_addr->sa_family != AF_INET)
357				continue;
358			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
359			    (ia->ifa_addr))->sin_addr.s_addr) {
360				if_addr_runlock(ifp);
361				return(1);	/* match */
362			}
363		}
364		if_addr_runlock(ifp);
365	}
366	return(0);	/* no match, fail ... */
367}
368
369/*
370 * The verify_path function checks if a route to the src exists and
371 * if it is reachable via ifp (when provided).
372 *
373 * The 'verrevpath' option checks that the interface that an IP packet
374 * arrives on is the same interface that traffic destined for the
375 * packet's source address would be routed out of.
376 * The 'versrcreach' option just checks that the source address is
377 * reachable via any route (except default) in the routing table.
378 * These two are a measure to block forged packets. This is also
379 * commonly known as "anti-spoofing" or Unicast Reverse Path
380 * Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
381 * is purposely reminiscent of the Cisco IOS command,
382 *
383 *   ip verify unicast reverse-path
384 *   ip verify unicast source reachable-via any
385 *
386 * which implements the same functionality. But note that the syntax
387 * is misleading, and the check may be performed on all IP packets
388 * whether unicast, multicast, or broadcast.
389 */
390static int
391verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
392{
393	struct route ro;
394	struct sockaddr_in *dst;
395
396	bzero(&ro, sizeof(ro));
397
398	dst = (struct sockaddr_in *)&(ro.ro_dst);
399	dst->sin_family = AF_INET;
400	dst->sin_len = sizeof(*dst);
401	dst->sin_addr = src;
402	in_rtalloc_ign(&ro, 0, fib);
403
404	if (ro.ro_rt == NULL)
405		return 0;
406
407	/*
408	 * If ifp is provided, check for equality with rtentry.
409	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
410	 * in order to pass packets injected back by if_simloop():
411	 * if useloopback == 1 routing entry (via lo0) for our own address
412	 * may exist, so we need to handle routing assymetry.
413	 */
414	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
415		RTFREE(ro.ro_rt);
416		return 0;
417	}
418
419	/* if no ifp provided, check if rtentry is not default route */
420	if (ifp == NULL &&
421	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
422		RTFREE(ro.ro_rt);
423		return 0;
424	}
425
426	/* or if this is a blackhole/reject route */
427	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
428		RTFREE(ro.ro_rt);
429		return 0;
430	}
431
432	/* found valid route */
433	RTFREE(ro.ro_rt);
434	return 1;
435}
436
437#ifdef INET6
438/*
439 * ipv6 specific rules here...
440 */
441static __inline int
442icmp6type_match (int type, ipfw_insn_u32 *cmd)
443{
444	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
445}
446
447static int
448flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
449{
450	int i;
451	for (i=0; i <= cmd->o.arg1; ++i )
452		if (curr_flow == cmd->d[i] )
453			return 1;
454	return 0;
455}
456
457/* support for IP6_*_ME opcodes */
458static int
459search_ip6_addr_net (struct in6_addr * ip6_addr)
460{
461	struct ifnet *mdc;
462	struct ifaddr *mdc2;
463	struct in6_ifaddr *fdm;
464	struct in6_addr copia;
465
466	TAILQ_FOREACH(mdc, &V_ifnet, if_link) {
467		if_addr_rlock(mdc);
468		TAILQ_FOREACH(mdc2, &mdc->if_addrhead, ifa_link) {
469			if (mdc2->ifa_addr->sa_family == AF_INET6) {
470				fdm = (struct in6_ifaddr *)mdc2;
471				copia = fdm->ia_addr.sin6_addr;
472				/* need for leaving scope_id in the sock_addr */
473				in6_clearscope(&copia);
474				if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia)) {
475					if_addr_runlock(mdc);
476					return 1;
477				}
478			}
479		}
480		if_addr_runlock(mdc);
481	}
482	return 0;
483}
484
485static int
486verify_path6(struct in6_addr *src, struct ifnet *ifp)
487{
488	struct route_in6 ro;
489	struct sockaddr_in6 *dst;
490
491	bzero(&ro, sizeof(ro));
492
493	dst = (struct sockaddr_in6 * )&(ro.ro_dst);
494	dst->sin6_family = AF_INET6;
495	dst->sin6_len = sizeof(*dst);
496	dst->sin6_addr = *src;
497	/* XXX MRT 0 for ipv6 at this time */
498	rtalloc_ign((struct route *)&ro, 0);
499
500	if (ro.ro_rt == NULL)
501		return 0;
502
503	/*
504	 * if ifp is provided, check for equality with rtentry
505	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
506	 * to support the case of sending packets to an address of our own.
507	 * (where the former interface is the first argument of if_simloop()
508	 *  (=ifp), the latter is lo0)
509	 */
510	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
511		RTFREE(ro.ro_rt);
512		return 0;
513	}
514
515	/* if no ifp provided, check if rtentry is not default route */
516	if (ifp == NULL &&
517	    IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
518		RTFREE(ro.ro_rt);
519		return 0;
520	}
521
522	/* or if this is a blackhole/reject route */
523	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
524		RTFREE(ro.ro_rt);
525		return 0;
526	}
527
528	/* found valid route */
529	RTFREE(ro.ro_rt);
530	return 1;
531
532}
533
534static int
535is_icmp6_query(int icmp6_type)
536{
537	if ((icmp6_type <= ICMP6_MAXTYPE) &&
538	    (icmp6_type == ICMP6_ECHO_REQUEST ||
539	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
540	    icmp6_type == ICMP6_WRUREQUEST ||
541	    icmp6_type == ICMP6_FQDN_QUERY ||
542	    icmp6_type == ICMP6_NI_QUERY))
543		return (1);
544
545	return (0);
546}
547
548static void
549send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
550{
551	struct mbuf *m;
552
553	m = args->m;
554	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
555		struct tcphdr *tcp;
556		tcp = (struct tcphdr *)((char *)ip6 + hlen);
557
558		if ((tcp->th_flags & TH_RST) == 0) {
559			struct mbuf *m0;
560			m0 = ipfw_send_pkt(args->m, &(args->f_id),
561			    ntohl(tcp->th_seq), ntohl(tcp->th_ack),
562			    tcp->th_flags | TH_RST);
563			if (m0 != NULL)
564				ip6_output(m0, NULL, NULL, 0, NULL, NULL,
565				    NULL);
566		}
567		m_freem(m);
568	} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
569#if 0
570		/*
571		 * Unlike above, the mbufs need to line up with the ip6 hdr,
572		 * as the contents are read. We need to m_adj() the
573		 * needed amount.
574		 * The mbuf will however be thrown away so we can adjust it.
575		 * Remember we did an m_pullup on it already so we
576		 * can make some assumptions about contiguousness.
577		 */
578		if (args->L3offset)
579			m_adj(m, args->L3offset);
580#endif
581		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
582	} else
583		m_freem(m);
584
585	args->m = NULL;
586}
587
588#endif /* INET6 */
589
590
591/*
592 * sends a reject message, consuming the mbuf passed as an argument.
593 */
594static void
595send_reject(struct ip_fw_args *args, int code, int ip_len, struct ip *ip)
596{
597
598#if 0
599	/* XXX When ip is not guaranteed to be at mtod() we will
600	 * need to account for this */
601	 * The mbuf will however be thrown away so we can adjust it.
602	 * Remember we did an m_pullup on it already so we
603	 * can make some assumptions about contiguousness.
604	 */
605	if (args->L3offset)
606		m_adj(m, args->L3offset);
607#endif
608	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
609		/* We need the IP header in host order for icmp_error(). */
610		if (args->eh != NULL) {
611			ip->ip_len = ntohs(ip->ip_len);
612			ip->ip_off = ntohs(ip->ip_off);
613		}
614		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
615	} else if (args->f_id.proto == IPPROTO_TCP) {
616		struct tcphdr *const tcp =
617		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
618		if ( (tcp->th_flags & TH_RST) == 0) {
619			struct mbuf *m;
620			m = ipfw_send_pkt(args->m, &(args->f_id),
621				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
622				tcp->th_flags | TH_RST);
623			if (m != NULL)
624				ip_output(m, NULL, NULL, 0, NULL, NULL);
625		}
626		m_freem(args->m);
627	} else
628		m_freem(args->m);
629	args->m = NULL;
630}
631
632/**
633 * Return the pointer to the skipto target.
634 *
635 * IMPORTANT: this should only be called on SKIPTO rules, and the
636 * jump target is taken from the 'rulenum' argument, which may come
637 * from the rule itself (direct skipto) or not (tablearg)
638 *
639 * The function never returns NULL: if the requested rule is not
640 * present, it returns the next rule in the chain.
641 * This also happens in case of a bogus argument > 65535
642 */
643static struct ip_fw *
644lookup_next_rule(struct ip_fw *me, uint32_t rulenum)
645{
646	struct ip_fw *rule;
647
648	for (rule = me->next; rule ; rule = rule->next) {
649		if (rule->rulenum >= rulenum)
650			break;
651	}
652	if (rule == NULL)	/* failure or not a skipto */
653		rule = me->next ? me->next : me;
654	return rule;
655}
656
657/*
658 * Support for uid/gid/jail lookup. These tests are expensive
659 * (because we may need to look into the list of active sockets)
660 * so we cache the results. ugid_lookupp is 0 if we have not
661 * yet done a lookup, 1 if we succeeded, and -1 if we tried
662 * and failed. The function always returns the match value.
663 * We could actually spare the variable and use *uc, setting
664 * it to '(void *)check_uidgid if we have no info, NULL if
665 * we tried and failed, or any other value if successful.
666 */
667static int
668check_uidgid(ipfw_insn_u32 *insn, int proto, struct ifnet *oif,
669    struct in_addr dst_ip, u_int16_t dst_port, struct in_addr src_ip,
670    u_int16_t src_port, struct ucred **uc, int *ugid_lookupp,
671    struct inpcb *inp)
672{
673	struct inpcbinfo *pi;
674	int wildcard;
675	struct inpcb *pcb;
676	int match;
677
678	/*
679	 * Check to see if the UDP or TCP stack supplied us with
680	 * the PCB. If so, rather then holding a lock and looking
681	 * up the PCB, we can use the one that was supplied.
682	 */
683	if (inp && *ugid_lookupp == 0) {
684		INP_LOCK_ASSERT(inp);
685		if (inp->inp_socket != NULL) {
686			*uc = crhold(inp->inp_cred);
687			*ugid_lookupp = 1;
688		} else
689			*ugid_lookupp = -1;
690	}
691	/*
692	 * If we have already been here and the packet has no
693	 * PCB entry associated with it, then we can safely
694	 * assume that this is a no match.
695	 */
696	if (*ugid_lookupp == -1)
697		return (0);
698	if (proto == IPPROTO_TCP) {
699		wildcard = 0;
700		pi = &V_tcbinfo;
701	} else if (proto == IPPROTO_UDP) {
702		wildcard = INPLOOKUP_WILDCARD;
703		pi = &V_udbinfo;
704	} else
705		return 0;
706	match = 0;
707	if (*ugid_lookupp == 0) {
708		INP_INFO_RLOCK(pi);
709		pcb =  (oif) ?
710			in_pcblookup_hash(pi,
711				dst_ip, htons(dst_port),
712				src_ip, htons(src_port),
713				wildcard, oif) :
714			in_pcblookup_hash(pi,
715				src_ip, htons(src_port),
716				dst_ip, htons(dst_port),
717				wildcard, NULL);
718		if (pcb != NULL) {
719			*uc = crhold(pcb->inp_cred);
720			*ugid_lookupp = 1;
721		}
722		INP_INFO_RUNLOCK(pi);
723		if (*ugid_lookupp == 0) {
724			/*
725			 * We tried and failed, set the variable to -1
726			 * so we will not try again on this packet.
727			 */
728			*ugid_lookupp = -1;
729			return (0);
730		}
731	}
732	if (insn->o.opcode == O_UID)
733		match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
734	else if (insn->o.opcode == O_GID)
735		match = groupmember((gid_t)insn->d[0], *uc);
736	else if (insn->o.opcode == O_JAIL)
737		match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
738	return match;
739}
740
741/*
742 * The main check routine for the firewall.
743 *
744 * All arguments are in args so we can modify them and return them
745 * back to the caller.
746 *
747 * Parameters:
748 *
749 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
750 *		Starts with the IP header.
751 *	args->eh (in)	Mac header if present, NULL for layer3 packet.
752 *	args->L3offset	Number of bytes bypassed if we came from L2.
753 *			e.g. often sizeof(eh)  ** NOTYET **
754 *	args->oif	Outgoing interface, NULL if packet is incoming.
755 *		The incoming interface is in the mbuf. (in)
756 *	args->divert_rule (in/out)
757 *		Skip up to the first rule past this rule number;
758 *		upon return, non-zero port number for divert or tee.
759 *
760 *	args->rule	Pointer to the last matching rule (in/out)
761 *	args->next_hop	Socket we are forwarding to (out).
762 *	args->f_id	Addresses grabbed from the packet (out)
763 * 	args->cookie	a cookie depending on rule action
764 *
765 * Return value:
766 *
767 *	IP_FW_PASS	the packet must be accepted
768 *	IP_FW_DENY	the packet must be dropped
769 *	IP_FW_DIVERT	divert packet, port in m_tag
770 *	IP_FW_TEE	tee packet, port in m_tag
771 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
772 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
773 *
774 */
775int
776ipfw_chk(struct ip_fw_args *args)
777{
778
779	/*
780	 * Local variables holding state while processing a packet:
781	 *
782	 * IMPORTANT NOTE: to speed up the processing of rules, there
783	 * are some assumption on the values of the variables, which
784	 * are documented here. Should you change them, please check
785	 * the implementation of the various instructions to make sure
786	 * that they still work.
787	 *
788	 * args->eh	The MAC header. It is non-null for a layer2
789	 *	packet, it is NULL for a layer-3 packet.
790	 * **notyet**
791	 * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
792	 *
793	 * m | args->m	Pointer to the mbuf, as received from the caller.
794	 *	It may change if ipfw_chk() does an m_pullup, or if it
795	 *	consumes the packet because it calls send_reject().
796	 *	XXX This has to change, so that ipfw_chk() never modifies
797	 *	or consumes the buffer.
798	 * ip	is the beginning of the ip(4 or 6) header.
799	 *	Calculated by adding the L3offset to the start of data.
800	 *	(Until we start using L3offset, the packet is
801	 *	supposed to start with the ip header).
802	 */
803	struct mbuf *m = args->m;
804	struct ip *ip = mtod(m, struct ip *);
805
806	/*
807	 * For rules which contain uid/gid or jail constraints, cache
808	 * a copy of the users credentials after the pcb lookup has been
809	 * executed. This will speed up the processing of rules with
810	 * these types of constraints, as well as decrease contention
811	 * on pcb related locks.
812	 */
813	struct ucred *ucred_cache = NULL;
814	int ucred_lookup = 0;
815
816	/*
817	 * divinput_flags	If non-zero, set to the IP_FW_DIVERT_*_FLAG
818	 *	associated with a packet input on a divert socket.  This
819	 *	will allow to distinguish traffic and its direction when
820	 *	it originates from a divert socket.
821	 */
822	u_int divinput_flags = 0;
823
824	/*
825	 * oif | args->oif	If NULL, ipfw_chk has been called on the
826	 *	inbound path (ether_input, ip_input).
827	 *	If non-NULL, ipfw_chk has been called on the outbound path
828	 *	(ether_output, ip_output).
829	 */
830	struct ifnet *oif = args->oif;
831
832	struct ip_fw *f = NULL;		/* matching rule */
833	int retval = 0;
834
835	/*
836	 * hlen	The length of the IP header.
837	 */
838	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
839
840	/*
841	 * offset	The offset of a fragment. offset != 0 means that
842	 *	we have a fragment at this offset of an IPv4 packet.
843	 *	offset == 0 means that (if this is an IPv4 packet)
844	 *	this is the first or only fragment.
845	 *	For IPv6 offset == 0 means there is no Fragment Header.
846	 *	If offset != 0 for IPv6 always use correct mask to
847	 *	get the correct offset because we add IP6F_MORE_FRAG
848	 *	to be able to dectect the first fragment which would
849	 *	otherwise have offset = 0.
850	 */
851	u_short offset = 0;
852
853	/*
854	 * Local copies of addresses. They are only valid if we have
855	 * an IP packet.
856	 *
857	 * proto	The protocol. Set to 0 for non-ip packets,
858	 *	or to the protocol read from the packet otherwise.
859	 *	proto != 0 means that we have an IPv4 packet.
860	 *
861	 * src_port, dst_port	port numbers, in HOST format. Only
862	 *	valid for TCP and UDP packets.
863	 *
864	 * src_ip, dst_ip	ip addresses, in NETWORK format.
865	 *	Only valid for IPv4 packets.
866	 */
867	u_int8_t proto;
868	u_int16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
869	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
870	u_int16_t ip_len=0;
871	int pktlen;
872	u_int16_t	etype = 0;	/* Host order stored ether type */
873
874	/*
875	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
876	 * 	MATCH_NONE when checked and not matched (q = NULL),
877	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
878	 */
879	int dyn_dir = MATCH_UNKNOWN;
880	ipfw_dyn_rule *q = NULL;
881	struct ip_fw_chain *chain = &V_layer3_chain;
882	struct m_tag *mtag;
883
884	/*
885	 * We store in ulp a pointer to the upper layer protocol header.
886	 * In the ipv4 case this is easy to determine from the header,
887	 * but for ipv6 we might have some additional headers in the middle.
888	 * ulp is NULL if not found.
889	 */
890	void *ulp = NULL;		/* upper layer protocol pointer. */
891	/* XXX ipv6 variables */
892	int is_ipv6 = 0;
893	u_int16_t ext_hd = 0;	/* bits vector for extension header filtering */
894	/* end of ipv6 variables */
895	int is_ipv4 = 0;
896
897	int done = 0;		/* flag to exit the outer loop */
898
899	if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
900		return (IP_FW_PASS);	/* accept */
901
902	dst_ip.s_addr = 0;		/* make sure it is initialized */
903	src_ip.s_addr = 0;		/* make sure it is initialized */
904	pktlen = m->m_pkthdr.len;
905	args->f_id.fib = M_GETFIB(m); /* note mbuf not altered) */
906	proto = args->f_id.proto = 0;	/* mark f_id invalid */
907		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
908
909/*
910 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
911 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
912 * pointer might become stale after other pullups (but we never use it
913 * this way).
914 */
915#define PULLUP_TO(_len, p, T)					\
916do {								\
917	int x = (_len) + sizeof(T);				\
918	if ((m)->m_len < x) {					\
919		args->m = m = m_pullup(m, x);			\
920		if (m == NULL)					\
921			goto pullup_failed;			\
922	}							\
923	p = (mtod(m, char *) + (_len));				\
924} while (0)
925
926	/*
927	 * if we have an ether header,
928	 */
929	if (args->eh)
930		etype = ntohs(args->eh->ether_type);
931
932	/* Identify IP packets and fill up variables. */
933	if (pktlen >= sizeof(struct ip6_hdr) &&
934	    (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
935		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
936		is_ipv6 = 1;
937		args->f_id.addr_type = 6;
938		hlen = sizeof(struct ip6_hdr);
939		proto = ip6->ip6_nxt;
940
941		/* Search extension headers to find upper layer protocols */
942		while (ulp == NULL) {
943			switch (proto) {
944			case IPPROTO_ICMPV6:
945				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
946				args->f_id.flags = ICMP6(ulp)->icmp6_type;
947				break;
948
949			case IPPROTO_TCP:
950				PULLUP_TO(hlen, ulp, struct tcphdr);
951				dst_port = TCP(ulp)->th_dport;
952				src_port = TCP(ulp)->th_sport;
953				args->f_id.flags = TCP(ulp)->th_flags;
954				break;
955
956			case IPPROTO_SCTP:
957				PULLUP_TO(hlen, ulp, struct sctphdr);
958				src_port = SCTP(ulp)->src_port;
959				dst_port = SCTP(ulp)->dest_port;
960				break;
961
962			case IPPROTO_UDP:
963				PULLUP_TO(hlen, ulp, struct udphdr);
964				dst_port = UDP(ulp)->uh_dport;
965				src_port = UDP(ulp)->uh_sport;
966				break;
967
968			case IPPROTO_HOPOPTS:	/* RFC 2460 */
969				PULLUP_TO(hlen, ulp, struct ip6_hbh);
970				ext_hd |= EXT_HOPOPTS;
971				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
972				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
973				ulp = NULL;
974				break;
975
976			case IPPROTO_ROUTING:	/* RFC 2460 */
977				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
978				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
979				case 0:
980					ext_hd |= EXT_RTHDR0;
981					break;
982				case 2:
983					ext_hd |= EXT_RTHDR2;
984					break;
985				default:
986					printf("IPFW2: IPV6 - Unknown Routing "
987					    "Header type(%d)\n",
988					    ((struct ip6_rthdr *)ulp)->ip6r_type);
989					if (V_fw_deny_unknown_exthdrs)
990					    return (IP_FW_DENY);
991					break;
992				}
993				ext_hd |= EXT_ROUTING;
994				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
995				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
996				ulp = NULL;
997				break;
998
999			case IPPROTO_FRAGMENT:	/* RFC 2460 */
1000				PULLUP_TO(hlen, ulp, struct ip6_frag);
1001				ext_hd |= EXT_FRAGMENT;
1002				hlen += sizeof (struct ip6_frag);
1003				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
1004				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
1005					IP6F_OFF_MASK;
1006				/* Add IP6F_MORE_FRAG for offset of first
1007				 * fragment to be != 0. */
1008				offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
1009					IP6F_MORE_FRAG;
1010				if (offset == 0) {
1011					printf("IPFW2: IPV6 - Invalid Fragment "
1012					    "Header\n");
1013					if (V_fw_deny_unknown_exthdrs)
1014					    return (IP_FW_DENY);
1015					break;
1016				}
1017				args->f_id.frag_id6 =
1018				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
1019				ulp = NULL;
1020				break;
1021
1022			case IPPROTO_DSTOPTS:	/* RFC 2460 */
1023				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1024				ext_hd |= EXT_DSTOPTS;
1025				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1026				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1027				ulp = NULL;
1028				break;
1029
1030			case IPPROTO_AH:	/* RFC 2402 */
1031				PULLUP_TO(hlen, ulp, struct ip6_ext);
1032				ext_hd |= EXT_AH;
1033				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
1034				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
1035				ulp = NULL;
1036				break;
1037
1038			case IPPROTO_ESP:	/* RFC 2406 */
1039				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
1040				/* Anything past Seq# is variable length and
1041				 * data past this ext. header is encrypted. */
1042				ext_hd |= EXT_ESP;
1043				break;
1044
1045			case IPPROTO_NONE:	/* RFC 2460 */
1046				/*
1047				 * Packet ends here, and IPv6 header has
1048				 * already been pulled up. If ip6e_len!=0
1049				 * then octets must be ignored.
1050				 */
1051				ulp = ip; /* non-NULL to get out of loop. */
1052				break;
1053
1054			case IPPROTO_OSPFIGP:
1055				/* XXX OSPF header check? */
1056				PULLUP_TO(hlen, ulp, struct ip6_ext);
1057				break;
1058
1059			case IPPROTO_PIM:
1060				/* XXX PIM header check? */
1061				PULLUP_TO(hlen, ulp, struct pim);
1062				break;
1063
1064			case IPPROTO_CARP:
1065				PULLUP_TO(hlen, ulp, struct carp_header);
1066				if (((struct carp_header *)ulp)->carp_version !=
1067				    CARP_VERSION)
1068					return (IP_FW_DENY);
1069				if (((struct carp_header *)ulp)->carp_type !=
1070				    CARP_ADVERTISEMENT)
1071					return (IP_FW_DENY);
1072				break;
1073
1074			case IPPROTO_IPV6:	/* RFC 2893 */
1075				PULLUP_TO(hlen, ulp, struct ip6_hdr);
1076				break;
1077
1078			case IPPROTO_IPV4:	/* RFC 2893 */
1079				PULLUP_TO(hlen, ulp, struct ip);
1080				break;
1081
1082			default:
1083				printf("IPFW2: IPV6 - Unknown Extension "
1084				    "Header(%d), ext_hd=%x\n", proto, ext_hd);
1085				if (V_fw_deny_unknown_exthdrs)
1086				    return (IP_FW_DENY);
1087				PULLUP_TO(hlen, ulp, struct ip6_ext);
1088				break;
1089			} /*switch */
1090		}
1091		ip = mtod(m, struct ip *);
1092		ip6 = (struct ip6_hdr *)ip;
1093		args->f_id.src_ip6 = ip6->ip6_src;
1094		args->f_id.dst_ip6 = ip6->ip6_dst;
1095		args->f_id.src_ip = 0;
1096		args->f_id.dst_ip = 0;
1097		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
1098	} else if (pktlen >= sizeof(struct ip) &&
1099	    (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
1100	    	is_ipv4 = 1;
1101		hlen = ip->ip_hl << 2;
1102		args->f_id.addr_type = 4;
1103
1104		/*
1105		 * Collect parameters into local variables for faster matching.
1106		 */
1107		proto = ip->ip_p;
1108		src_ip = ip->ip_src;
1109		dst_ip = ip->ip_dst;
1110		if (args->eh != NULL) { /* layer 2 packets are as on the wire */
1111			offset = ntohs(ip->ip_off) & IP_OFFMASK;
1112			ip_len = ntohs(ip->ip_len);
1113		} else {
1114			offset = ip->ip_off & IP_OFFMASK;
1115			ip_len = ip->ip_len;
1116		}
1117		pktlen = ip_len < pktlen ? ip_len : pktlen;
1118
1119		if (offset == 0) {
1120			switch (proto) {
1121			case IPPROTO_TCP:
1122				PULLUP_TO(hlen, ulp, struct tcphdr);
1123				dst_port = TCP(ulp)->th_dport;
1124				src_port = TCP(ulp)->th_sport;
1125				args->f_id.flags = TCP(ulp)->th_flags;
1126				break;
1127
1128			case IPPROTO_UDP:
1129				PULLUP_TO(hlen, ulp, struct udphdr);
1130				dst_port = UDP(ulp)->uh_dport;
1131				src_port = UDP(ulp)->uh_sport;
1132				break;
1133
1134			case IPPROTO_ICMP:
1135				PULLUP_TO(hlen, ulp, struct icmphdr);
1136				args->f_id.flags = ICMP(ulp)->icmp_type;
1137				break;
1138
1139			default:
1140				break;
1141			}
1142		}
1143
1144		ip = mtod(m, struct ip *);
1145		args->f_id.src_ip = ntohl(src_ip.s_addr);
1146		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1147	}
1148#undef PULLUP_TO
1149	if (proto) { /* we may have port numbers, store them */
1150		args->f_id.proto = proto;
1151		args->f_id.src_port = src_port = ntohs(src_port);
1152		args->f_id.dst_port = dst_port = ntohs(dst_port);
1153	}
1154
1155	IPFW_RLOCK(chain);
1156	if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
1157		IPFW_RUNLOCK(chain);
1158		return (IP_FW_PASS);	/* accept */
1159	}
1160	mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
1161	if (args->rule) {
1162		/*
1163		 * Packet has already been tagged as a result of a previous
1164		 * match on rule args->rule aka args->rule_id (PIPE, QUEUE,
1165		 * REASS, NETGRAPH and similar, never a skipto).
1166		 * Validate the pointer and continue from args->rule->next
1167		 * if still present, otherwise use the default rule.
1168		 * XXX If fw_one_pass != 0 then just accept it, though
1169		 * the caller should never pass us such packets.
1170		 */
1171		if (V_fw_one_pass) {
1172			IPFW_RUNLOCK(chain);
1173			return (IP_FW_PASS);
1174		}
1175		if (chain->id == args->chain_id) { /* pointer still valid */
1176			f = args->rule->next;
1177		} else { /* must revalidate the pointer */
1178			for (f = chain->rules; f != NULL; f = f->next)
1179				if (f == args->rule && f->id == args->rule_id) {
1180					f = args->rule->next;
1181					break;
1182				}
1183		}
1184		if (f == NULL) /* in case of errors, use default; */
1185			f = chain->default_rule;
1186	} else {
1187		/*
1188		 * Find the starting rule. It can be either the first
1189		 * one, or the one after divert_rule if asked so.
1190		 */
1191		int skipto = mtag ? divert_cookie(mtag) : 0;
1192
1193		f = chain->rules;
1194		if (args->eh == NULL && skipto != 0) {
1195			if (skipto >= IPFW_DEFAULT_RULE) {
1196				IPFW_RUNLOCK(chain);
1197				return (IP_FW_DENY); /* invalid */
1198			}
1199			while (f && f->rulenum <= skipto)
1200				f = f->next;
1201			if (f == NULL) {	/* drop packet */
1202				IPFW_RUNLOCK(chain);
1203				return (IP_FW_DENY);
1204			}
1205		}
1206	}
1207	/* reset divert rule to avoid confusion later */
1208	if (mtag) {
1209		divinput_flags = divert_info(mtag) &
1210		    (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
1211		m_tag_delete(m, mtag);
1212	}
1213
1214	/*
1215	 * Now scan the rules, and parse microinstructions for each rule.
1216	 * We have two nested loops and an inner switch. Sometimes we
1217	 * need to break out of one or both loops, or re-enter one of
1218	 * the loops with updated variables. Loop variables are:
1219	 *
1220	 *	f (outer loop) points to the current rule.
1221	 *		On output it points to the matching rule.
1222	 *	done (outer loop) is used as a flag to break the loop.
1223	 *	l (inner loop)	residual length of current rule.
1224	 *		cmd points to the current microinstruction.
1225	 *
1226	 * We break the inner loop by setting l=0 and possibly
1227	 * cmdlen=0 if we don't want to advance cmd.
1228	 * We break the outer loop by setting done=1
1229	 * We can restart the inner loop by setting l>0 and f, cmd
1230	 * as needed.
1231	 */
1232	for (; f; f = f->next) {
1233		ipfw_insn *cmd;
1234		uint32_t tablearg = 0;
1235		int l, cmdlen, skip_or; /* skip rest of OR block */
1236
1237/* again: */
1238		if (V_set_disable & (1 << f->set) )
1239			continue;
1240
1241		skip_or = 0;
1242		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1243		    l -= cmdlen, cmd += cmdlen) {
1244			int match;
1245
1246			/*
1247			 * check_body is a jump target used when we find a
1248			 * CHECK_STATE, and need to jump to the body of
1249			 * the target rule.
1250			 */
1251
1252/* check_body: */
1253			cmdlen = F_LEN(cmd);
1254			/*
1255			 * An OR block (insn_1 || .. || insn_n) has the
1256			 * F_OR bit set in all but the last instruction.
1257			 * The first match will set "skip_or", and cause
1258			 * the following instructions to be skipped until
1259			 * past the one with the F_OR bit clear.
1260			 */
1261			if (skip_or) {		/* skip this instruction */
1262				if ((cmd->len & F_OR) == 0)
1263					skip_or = 0;	/* next one is good */
1264				continue;
1265			}
1266			match = 0; /* set to 1 if we succeed */
1267
1268			switch (cmd->opcode) {
1269			/*
1270			 * The first set of opcodes compares the packet's
1271			 * fields with some pattern, setting 'match' if a
1272			 * match is found. At the end of the loop there is
1273			 * logic to deal with F_NOT and F_OR flags associated
1274			 * with the opcode.
1275			 */
1276			case O_NOP:
1277				match = 1;
1278				break;
1279
1280			case O_FORWARD_MAC:
1281				printf("ipfw: opcode %d unimplemented\n",
1282				    cmd->opcode);
1283				break;
1284
1285			case O_GID:
1286			case O_UID:
1287			case O_JAIL:
1288				/*
1289				 * We only check offset == 0 && proto != 0,
1290				 * as this ensures that we have a
1291				 * packet with the ports info.
1292				 */
1293				if (offset!=0)
1294					break;
1295				if (is_ipv6) /* XXX to be fixed later */
1296					break;
1297				if (proto == IPPROTO_TCP ||
1298				    proto == IPPROTO_UDP)
1299					match = check_uidgid(
1300						    (ipfw_insn_u32 *)cmd,
1301						    proto, oif,
1302						    dst_ip, dst_port,
1303						    src_ip, src_port, &ucred_cache,
1304						    &ucred_lookup, args->inp);
1305				break;
1306
1307			case O_RECV:
1308				match = iface_match(m->m_pkthdr.rcvif,
1309				    (ipfw_insn_if *)cmd);
1310				break;
1311
1312			case O_XMIT:
1313				match = iface_match(oif, (ipfw_insn_if *)cmd);
1314				break;
1315
1316			case O_VIA:
1317				match = iface_match(oif ? oif :
1318				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
1319				break;
1320
1321			case O_MACADDR2:
1322				if (args->eh != NULL) {	/* have MAC header */
1323					u_int32_t *want = (u_int32_t *)
1324						((ipfw_insn_mac *)cmd)->addr;
1325					u_int32_t *mask = (u_int32_t *)
1326						((ipfw_insn_mac *)cmd)->mask;
1327					u_int32_t *hdr = (u_int32_t *)args->eh;
1328
1329					match =
1330					    ( want[0] == (hdr[0] & mask[0]) &&
1331					      want[1] == (hdr[1] & mask[1]) &&
1332					      want[2] == (hdr[2] & mask[2]) );
1333				}
1334				break;
1335
1336			case O_MAC_TYPE:
1337				if (args->eh != NULL) {
1338					u_int16_t *p =
1339					    ((ipfw_insn_u16 *)cmd)->ports;
1340					int i;
1341
1342					for (i = cmdlen - 1; !match && i>0;
1343					    i--, p += 2)
1344						match = (etype >= p[0] &&
1345						    etype <= p[1]);
1346				}
1347				break;
1348
1349			case O_FRAG:
1350				match = (offset != 0);
1351				break;
1352
1353			case O_IN:	/* "out" is "not in" */
1354				match = (oif == NULL);
1355				break;
1356
1357			case O_LAYER2:
1358				match = (args->eh != NULL);
1359				break;
1360
1361			case O_DIVERTED:
1362				match = (cmd->arg1 & 1 && divinput_flags &
1363				    IP_FW_DIVERT_LOOPBACK_FLAG) ||
1364					(cmd->arg1 & 2 && divinput_flags &
1365				    IP_FW_DIVERT_OUTPUT_FLAG);
1366				break;
1367
1368			case O_PROTO:
1369				/*
1370				 * We do not allow an arg of 0 so the
1371				 * check of "proto" only suffices.
1372				 */
1373				match = (proto == cmd->arg1);
1374				break;
1375
1376			case O_IP_SRC:
1377				match = is_ipv4 &&
1378				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1379				    src_ip.s_addr);
1380				break;
1381
1382			case O_IP_SRC_LOOKUP:
1383			case O_IP_DST_LOOKUP:
1384				if (is_ipv4) {
1385				    uint32_t a =
1386					(cmd->opcode == O_IP_DST_LOOKUP) ?
1387					    dst_ip.s_addr : src_ip.s_addr;
1388				    uint32_t v = 0;
1389
1390				    if (cmdlen > F_INSN_SIZE(ipfw_insn_u32)) {
1391					/* generic lookup */
1392					v = ((ipfw_insn_u32 *)cmd)->d[1];
1393					if (v == 0)
1394					    a = dst_ip.s_addr;
1395					else if (v == 1)
1396					    a = src_ip.s_addr;
1397					else if (offset != 0)
1398					    break;
1399					else if (proto != IPPROTO_TCP &&
1400						proto != IPPROTO_UDP)
1401					    break;
1402					else if (v == 2)
1403					    a = dst_port;
1404					else if (v == 3)
1405					    a = src_port;
1406					else if (v == 4 || v == 5) {
1407					    check_uidgid(
1408						(ipfw_insn_u32 *)cmd,
1409						proto, oif,
1410						dst_ip, dst_port,
1411						src_ip, src_port, &ucred_cache,
1412						&ucred_lookup, args->inp);
1413					    if (v == 4 /* O_UID */)
1414						a = ucred_cache->cr_uid;
1415					    else if (v == 5 /* O_JAIL */)
1416						a = ucred_cache->cr_prison->pr_id;
1417					} else
1418					    break;
1419				    }
1420				    match = ipfw_lookup_table(chain, cmd->arg1, a,
1421					&v);
1422				    if (!match)
1423					break;
1424				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
1425					match =
1426					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
1427				    else
1428					tablearg = v;
1429				}
1430				break;
1431
1432			case O_IP_SRC_MASK:
1433			case O_IP_DST_MASK:
1434				if (is_ipv4) {
1435				    uint32_t a =
1436					(cmd->opcode == O_IP_DST_MASK) ?
1437					    dst_ip.s_addr : src_ip.s_addr;
1438				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
1439				    int i = cmdlen-1;
1440
1441				    for (; !match && i>0; i-= 2, p+= 2)
1442					match = (p[0] == (a & p[1]));
1443				}
1444				break;
1445
1446			case O_IP_SRC_ME:
1447				if (is_ipv4) {
1448					struct ifnet *tif;
1449
1450					INADDR_TO_IFP(src_ip, tif);
1451					match = (tif != NULL);
1452				}
1453				break;
1454
1455			case O_IP_DST_SET:
1456			case O_IP_SRC_SET:
1457				if (is_ipv4) {
1458					u_int32_t *d = (u_int32_t *)(cmd+1);
1459					u_int32_t addr =
1460					    cmd->opcode == O_IP_DST_SET ?
1461						args->f_id.dst_ip :
1462						args->f_id.src_ip;
1463
1464					    if (addr < d[0])
1465						    break;
1466					    addr -= d[0]; /* subtract base */
1467					    match = (addr < cmd->arg1) &&
1468						( d[ 1 + (addr>>5)] &
1469						  (1<<(addr & 0x1f)) );
1470				}
1471				break;
1472
1473			case O_IP_DST:
1474				match = is_ipv4 &&
1475				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1476				    dst_ip.s_addr);
1477				break;
1478
1479			case O_IP_DST_ME:
1480				if (is_ipv4) {
1481					struct ifnet *tif;
1482
1483					INADDR_TO_IFP(dst_ip, tif);
1484					match = (tif != NULL);
1485				}
1486				break;
1487
1488			case O_IP_SRCPORT:
1489			case O_IP_DSTPORT:
1490				/*
1491				 * offset == 0 && proto != 0 is enough
1492				 * to guarantee that we have a
1493				 * packet with port info.
1494				 */
1495				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
1496				    && offset == 0) {
1497					u_int16_t x =
1498					    (cmd->opcode == O_IP_SRCPORT) ?
1499						src_port : dst_port ;
1500					u_int16_t *p =
1501					    ((ipfw_insn_u16 *)cmd)->ports;
1502					int i;
1503
1504					for (i = cmdlen - 1; !match && i>0;
1505					    i--, p += 2)
1506						match = (x>=p[0] && x<=p[1]);
1507				}
1508				break;
1509
1510			case O_ICMPTYPE:
1511				match = (offset == 0 && proto==IPPROTO_ICMP &&
1512				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
1513				break;
1514
1515#ifdef INET6
1516			case O_ICMP6TYPE:
1517				match = is_ipv6 && offset == 0 &&
1518				    proto==IPPROTO_ICMPV6 &&
1519				    icmp6type_match(
1520					ICMP6(ulp)->icmp6_type,
1521					(ipfw_insn_u32 *)cmd);
1522				break;
1523#endif /* INET6 */
1524
1525			case O_IPOPT:
1526				match = (is_ipv4 &&
1527				    ipopts_match(ip, cmd) );
1528				break;
1529
1530			case O_IPVER:
1531				match = (is_ipv4 &&
1532				    cmd->arg1 == ip->ip_v);
1533				break;
1534
1535			case O_IPID:
1536			case O_IPLEN:
1537			case O_IPTTL:
1538				if (is_ipv4) {	/* only for IP packets */
1539				    uint16_t x;
1540				    uint16_t *p;
1541				    int i;
1542
1543				    if (cmd->opcode == O_IPLEN)
1544					x = ip_len;
1545				    else if (cmd->opcode == O_IPTTL)
1546					x = ip->ip_ttl;
1547				    else /* must be IPID */
1548					x = ntohs(ip->ip_id);
1549				    if (cmdlen == 1) {
1550					match = (cmd->arg1 == x);
1551					break;
1552				    }
1553				    /* otherwise we have ranges */
1554				    p = ((ipfw_insn_u16 *)cmd)->ports;
1555				    i = cmdlen - 1;
1556				    for (; !match && i>0; i--, p += 2)
1557					match = (x >= p[0] && x <= p[1]);
1558				}
1559				break;
1560
1561			case O_IPPRECEDENCE:
1562				match = (is_ipv4 &&
1563				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
1564				break;
1565
1566			case O_IPTOS:
1567				match = (is_ipv4 &&
1568				    flags_match(cmd, ip->ip_tos));
1569				break;
1570
1571			case O_TCPDATALEN:
1572				if (proto == IPPROTO_TCP && offset == 0) {
1573				    struct tcphdr *tcp;
1574				    uint16_t x;
1575				    uint16_t *p;
1576				    int i;
1577
1578				    tcp = TCP(ulp);
1579				    x = ip_len -
1580					((ip->ip_hl + tcp->th_off) << 2);
1581				    if (cmdlen == 1) {
1582					match = (cmd->arg1 == x);
1583					break;
1584				    }
1585				    /* otherwise we have ranges */
1586				    p = ((ipfw_insn_u16 *)cmd)->ports;
1587				    i = cmdlen - 1;
1588				    for (; !match && i>0; i--, p += 2)
1589					match = (x >= p[0] && x <= p[1]);
1590				}
1591				break;
1592
1593			case O_TCPFLAGS:
1594				match = (proto == IPPROTO_TCP && offset == 0 &&
1595				    flags_match(cmd, TCP(ulp)->th_flags));
1596				break;
1597
1598			case O_TCPOPTS:
1599				match = (proto == IPPROTO_TCP && offset == 0 &&
1600				    tcpopts_match(TCP(ulp), cmd));
1601				break;
1602
1603			case O_TCPSEQ:
1604				match = (proto == IPPROTO_TCP && offset == 0 &&
1605				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1606					TCP(ulp)->th_seq);
1607				break;
1608
1609			case O_TCPACK:
1610				match = (proto == IPPROTO_TCP && offset == 0 &&
1611				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1612					TCP(ulp)->th_ack);
1613				break;
1614
1615			case O_TCPWIN:
1616				match = (proto == IPPROTO_TCP && offset == 0 &&
1617				    cmd->arg1 == TCP(ulp)->th_win);
1618				break;
1619
1620			case O_ESTAB:
1621				/* reject packets which have SYN only */
1622				/* XXX should i also check for TH_ACK ? */
1623				match = (proto == IPPROTO_TCP && offset == 0 &&
1624				    (TCP(ulp)->th_flags &
1625				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
1626				break;
1627
1628			case O_ALTQ: {
1629				struct pf_mtag *at;
1630				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
1631
1632				match = 1;
1633				at = pf_find_mtag(m);
1634				if (at != NULL && at->qid != 0)
1635					break;
1636				at = pf_get_mtag(m);
1637				if (at == NULL) {
1638					/*
1639					 * Let the packet fall back to the
1640					 * default ALTQ.
1641					 */
1642					break;
1643				}
1644				at->qid = altq->qid;
1645				if (is_ipv4)
1646					at->af = AF_INET;
1647				else
1648					at->af = AF_LINK;
1649				at->hdr = ip;
1650				break;
1651			}
1652
1653			case O_LOG:
1654				ipfw_log(f, hlen, args, m,
1655					    oif, offset, tablearg, ip);
1656				match = 1;
1657				break;
1658
1659			case O_PROB:
1660				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
1661				break;
1662
1663			case O_VERREVPATH:
1664				/* Outgoing packets automatically pass/match */
1665				match = ((oif != NULL) ||
1666				    (m->m_pkthdr.rcvif == NULL) ||
1667				    (
1668#ifdef INET6
1669				    is_ipv6 ?
1670					verify_path6(&(args->f_id.src_ip6),
1671					    m->m_pkthdr.rcvif) :
1672#endif
1673				    verify_path(src_ip, m->m_pkthdr.rcvif,
1674				        args->f_id.fib)));
1675				break;
1676
1677			case O_VERSRCREACH:
1678				/* Outgoing packets automatically pass/match */
1679				match = (hlen > 0 && ((oif != NULL) ||
1680#ifdef INET6
1681				    is_ipv6 ?
1682				        verify_path6(&(args->f_id.src_ip6),
1683				            NULL) :
1684#endif
1685				    verify_path(src_ip, NULL, args->f_id.fib)));
1686				break;
1687
1688			case O_ANTISPOOF:
1689				/* Outgoing packets automatically pass/match */
1690				if (oif == NULL && hlen > 0 &&
1691				    (  (is_ipv4 && in_localaddr(src_ip))
1692#ifdef INET6
1693				    || (is_ipv6 &&
1694				        in6_localaddr(&(args->f_id.src_ip6)))
1695#endif
1696				    ))
1697					match =
1698#ifdef INET6
1699					    is_ipv6 ? verify_path6(
1700					        &(args->f_id.src_ip6),
1701					        m->m_pkthdr.rcvif) :
1702#endif
1703					    verify_path(src_ip,
1704					    	m->m_pkthdr.rcvif,
1705					        args->f_id.fib);
1706				else
1707					match = 1;
1708				break;
1709
1710			case O_IPSEC:
1711#ifdef IPSEC
1712				match = (m_tag_find(m,
1713				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
1714#endif
1715				/* otherwise no match */
1716				break;
1717
1718#ifdef INET6
1719			case O_IP6_SRC:
1720				match = is_ipv6 &&
1721				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
1722				    &((ipfw_insn_ip6 *)cmd)->addr6);
1723				break;
1724
1725			case O_IP6_DST:
1726				match = is_ipv6 &&
1727				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
1728				    &((ipfw_insn_ip6 *)cmd)->addr6);
1729				break;
1730			case O_IP6_SRC_MASK:
1731			case O_IP6_DST_MASK:
1732				if (is_ipv6) {
1733					int i = cmdlen - 1;
1734					struct in6_addr p;
1735					struct in6_addr *d =
1736					    &((ipfw_insn_ip6 *)cmd)->addr6;
1737
1738					for (; !match && i > 0; d += 2,
1739					    i -= F_INSN_SIZE(struct in6_addr)
1740					    * 2) {
1741						p = (cmd->opcode ==
1742						    O_IP6_SRC_MASK) ?
1743						    args->f_id.src_ip6:
1744						    args->f_id.dst_ip6;
1745						APPLY_MASK(&p, &d[1]);
1746						match =
1747						    IN6_ARE_ADDR_EQUAL(&d[0],
1748						    &p);
1749					}
1750				}
1751				break;
1752
1753			case O_IP6_SRC_ME:
1754				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
1755				break;
1756
1757			case O_IP6_DST_ME:
1758				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
1759				break;
1760
1761			case O_FLOW6ID:
1762				match = is_ipv6 &&
1763				    flow6id_match(args->f_id.flow_id6,
1764				    (ipfw_insn_u32 *) cmd);
1765				break;
1766
1767			case O_EXT_HDR:
1768				match = is_ipv6 &&
1769				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
1770				break;
1771
1772			case O_IP6:
1773				match = is_ipv6;
1774				break;
1775#endif
1776
1777			case O_IP4:
1778				match = is_ipv4;
1779				break;
1780
1781			case O_TAG: {
1782				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
1783				    tablearg : cmd->arg1;
1784
1785				/* Packet is already tagged with this tag? */
1786				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
1787
1788				/* We have `untag' action when F_NOT flag is
1789				 * present. And we must remove this mtag from
1790				 * mbuf and reset `match' to zero (`match' will
1791				 * be inversed later).
1792				 * Otherwise we should allocate new mtag and
1793				 * push it into mbuf.
1794				 */
1795				if (cmd->len & F_NOT) { /* `untag' action */
1796					if (mtag != NULL)
1797						m_tag_delete(m, mtag);
1798				} else if (mtag == NULL) {
1799					if ((mtag = m_tag_alloc(MTAG_IPFW,
1800					    tag, 0, M_NOWAIT)) != NULL)
1801						m_tag_prepend(m, mtag);
1802				}
1803				match = (cmd->len & F_NOT) ? 0: 1;
1804				break;
1805			}
1806
1807			case O_FIB: /* try match the specified fib */
1808				if (args->f_id.fib == cmd->arg1)
1809					match = 1;
1810				break;
1811
1812			case O_TAGGED: {
1813				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
1814				    tablearg : cmd->arg1;
1815
1816				if (cmdlen == 1) {
1817					match = m_tag_locate(m, MTAG_IPFW,
1818					    tag, NULL) != NULL;
1819					break;
1820				}
1821
1822				/* we have ranges */
1823				for (mtag = m_tag_first(m);
1824				    mtag != NULL && !match;
1825				    mtag = m_tag_next(m, mtag)) {
1826					uint16_t *p;
1827					int i;
1828
1829					if (mtag->m_tag_cookie != MTAG_IPFW)
1830						continue;
1831
1832					p = ((ipfw_insn_u16 *)cmd)->ports;
1833					i = cmdlen - 1;
1834					for(; !match && i > 0; i--, p += 2)
1835						match =
1836						    mtag->m_tag_id >= p[0] &&
1837						    mtag->m_tag_id <= p[1];
1838				}
1839				break;
1840			}
1841
1842			/*
1843			 * The second set of opcodes represents 'actions',
1844			 * i.e. the terminal part of a rule once the packet
1845			 * matches all previous patterns.
1846			 * Typically there is only one action for each rule,
1847			 * and the opcode is stored at the end of the rule
1848			 * (but there are exceptions -- see below).
1849			 *
1850			 * In general, here we set retval and terminate the
1851			 * outer loop (would be a 'break 3' in some language,
1852			 * but we need to set l=0, done=1)
1853			 *
1854			 * Exceptions:
1855			 * O_COUNT and O_SKIPTO actions:
1856			 *   instead of terminating, we jump to the next rule
1857			 *   (setting l=0), or to the SKIPTO target (by
1858			 *   setting f, cmd and l as needed), respectively.
1859			 *
1860			 * O_TAG, O_LOG and O_ALTQ action parameters:
1861			 *   perform some action and set match = 1;
1862			 *
1863			 * O_LIMIT and O_KEEP_STATE: these opcodes are
1864			 *   not real 'actions', and are stored right
1865			 *   before the 'action' part of the rule.
1866			 *   These opcodes try to install an entry in the
1867			 *   state tables; if successful, we continue with
1868			 *   the next opcode (match=1; break;), otherwise
1869			 *   the packet must be dropped (set retval,
1870			 *   break loops with l=0, done=1)
1871			 *
1872			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
1873			 *   cause a lookup of the state table, and a jump
1874			 *   to the 'action' part of the parent rule
1875			 *   if an entry is found, or
1876			 *   (CHECK_STATE only) a jump to the next rule if
1877			 *   the entry is not found.
1878			 *   The result of the lookup is cached so that
1879			 *   further instances of these opcodes become NOPs.
1880			 *   The jump to the next rule is done by setting
1881			 *   l=0, cmdlen=0.
1882			 */
1883			case O_LIMIT:
1884			case O_KEEP_STATE:
1885				if (ipfw_install_state(f,
1886				    (ipfw_insn_limit *)cmd, args, tablearg)) {
1887					/* error or limit violation */
1888					retval = IP_FW_DENY;
1889					l = 0;	/* exit inner loop */
1890					done = 1; /* exit outer loop */
1891				}
1892				match = 1;
1893				break;
1894
1895			case O_PROBE_STATE:
1896			case O_CHECK_STATE:
1897				/*
1898				 * dynamic rules are checked at the first
1899				 * keep-state or check-state occurrence,
1900				 * with the result being stored in dyn_dir.
1901				 * The compiler introduces a PROBE_STATE
1902				 * instruction for us when we have a
1903				 * KEEP_STATE (because PROBE_STATE needs
1904				 * to be run first).
1905				 */
1906				if (dyn_dir == MATCH_UNKNOWN &&
1907				    (q = ipfw_lookup_dyn_rule(&args->f_id,
1908				     &dyn_dir, proto == IPPROTO_TCP ?
1909					TCP(ulp) : NULL))
1910					!= NULL) {
1911					/*
1912					 * Found dynamic entry, update stats
1913					 * and jump to the 'action' part of
1914					 * the parent rule by setting
1915					 * f, cmd, l and clearing cmdlen.
1916					 */
1917					q->pcnt++;
1918					q->bcnt += pktlen;
1919					f = q->rule;
1920					cmd = ACTION_PTR(f);
1921					l = f->cmd_len - f->act_ofs;
1922					ipfw_dyn_unlock();
1923					cmdlen = 0;
1924					match = 1;
1925					break;
1926				}
1927				/*
1928				 * Dynamic entry not found. If CHECK_STATE,
1929				 * skip to next rule, if PROBE_STATE just
1930				 * ignore and continue with next opcode.
1931				 */
1932				if (cmd->opcode == O_CHECK_STATE)
1933					l = 0;	/* exit inner loop */
1934				match = 1;
1935				break;
1936
1937			case O_ACCEPT:
1938				retval = 0;	/* accept */
1939				l = 0;		/* exit inner loop */
1940				done = 1;	/* exit outer loop */
1941				break;
1942
1943			case O_PIPE:
1944			case O_QUEUE:
1945				args->rule = f; /* report matching rule */
1946				args->rule_id = f->id;
1947				args->chain_id = chain->id;
1948				if (cmd->arg1 == IP_FW_TABLEARG)
1949					args->cookie = tablearg;
1950				else
1951					args->cookie = cmd->arg1;
1952				retval = IP_FW_DUMMYNET;
1953				l = 0;          /* exit inner loop */
1954				done = 1;       /* exit outer loop */
1955				break;
1956
1957			case O_DIVERT:
1958			case O_TEE:
1959				if (args->eh) /* not on layer 2 */
1960				    break;
1961				/* otherwise this is terminal */
1962				l = 0;		/* exit inner loop */
1963				done = 1;	/* exit outer loop */
1964				mtag = m_tag_get(PACKET_TAG_DIVERT,
1965					sizeof(struct divert_tag),
1966					M_NOWAIT);
1967				if (mtag == NULL) {
1968				    retval = IP_FW_DENY;
1969				} else {
1970				    struct divert_tag *dt;
1971				    dt = (struct divert_tag *)(mtag+1);
1972				    dt->cookie = f->rulenum;
1973				    if (cmd->arg1 == IP_FW_TABLEARG)
1974					dt->info = tablearg;
1975				    else
1976					dt->info = cmd->arg1;
1977				    m_tag_prepend(m, mtag);
1978				    retval = (cmd->opcode == O_DIVERT) ?
1979					IP_FW_DIVERT : IP_FW_TEE;
1980				}
1981				break;
1982
1983			case O_COUNT:
1984			case O_SKIPTO:
1985				f->pcnt++;	/* update stats */
1986				f->bcnt += pktlen;
1987				f->timestamp = time_uptime;
1988				if (cmd->opcode == O_COUNT) {
1989					l = 0;		/* exit inner loop */
1990					break;
1991				}
1992				/* skipto: */
1993				if (cmd->arg1 == IP_FW_TABLEARG) {
1994				    f = lookup_next_rule(f, tablearg);
1995				} else { /* direct skipto */
1996				    /* update f->next_rule if not set */
1997				    if (f->next_rule == NULL)
1998					f->next_rule =
1999					    lookup_next_rule(f, cmd->arg1);
2000				    f = f->next_rule;
2001				}
2002				/*
2003				 * Skip disabled rules, and
2004				 * re-enter the inner loop
2005				 * with the correct f, l and cmd.
2006				 * Also clear cmdlen and skip_or
2007				 */
2008				while (f && (V_set_disable & (1 << f->set)))
2009					f = f->next;
2010				if (f) { /* found a valid rule */
2011					l = f->cmd_len;
2012					cmd = f->cmd;
2013				} else { /* should not happen */
2014					l = 0;  /* exit inner loop */
2015				}
2016				match = 1;
2017				cmdlen = 0;
2018				skip_or = 0;
2019				break;
2020
2021			case O_REJECT:
2022				/*
2023				 * Drop the packet and send a reject notice
2024				 * if the packet is not ICMP (or is an ICMP
2025				 * query), and it is not multicast/broadcast.
2026				 */
2027				if (hlen > 0 && is_ipv4 && offset == 0 &&
2028				    (proto != IPPROTO_ICMP ||
2029				     is_icmp_query(ICMP(ulp))) &&
2030				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2031				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
2032					send_reject(args, cmd->arg1, ip_len, ip);
2033					m = args->m;
2034				}
2035				/* FALLTHROUGH */
2036#ifdef INET6
2037			case O_UNREACH6:
2038				if (hlen > 0 && is_ipv6 &&
2039				    ((offset & IP6F_OFF_MASK) == 0) &&
2040				    (proto != IPPROTO_ICMPV6 ||
2041				     (is_icmp6_query(args->f_id.flags) == 1)) &&
2042				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2043				    !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
2044					send_reject6(
2045					    args, cmd->arg1, hlen,
2046					    (struct ip6_hdr *)ip);
2047					m = args->m;
2048				}
2049				/* FALLTHROUGH */
2050#endif
2051			case O_DENY:
2052				retval = IP_FW_DENY;
2053				l = 0;		/* exit inner loop */
2054				done = 1;	/* exit outer loop */
2055				break;
2056
2057			case O_FORWARD_IP:
2058				if (args->eh)	/* not valid on layer2 pkts */
2059					break;
2060				if (!q || dyn_dir == MATCH_FORWARD) {
2061				    struct sockaddr_in *sa;
2062				    sa = &(((ipfw_insn_sa *)cmd)->sa);
2063				    if (sa->sin_addr.s_addr == INADDR_ANY) {
2064					bcopy(sa, &args->hopstore,
2065							sizeof(*sa));
2066					args->hopstore.sin_addr.s_addr =
2067						    htonl(tablearg);
2068					args->next_hop = &args->hopstore;
2069				    } else {
2070					args->next_hop = sa;
2071				    }
2072				}
2073				retval = IP_FW_PASS;
2074				l = 0;          /* exit inner loop */
2075				done = 1;       /* exit outer loop */
2076				break;
2077
2078			case O_NETGRAPH:
2079			case O_NGTEE:
2080				args->rule = f;	/* report matching rule */
2081				args->rule_id = f->id;
2082				args->chain_id = chain->id;
2083				if (cmd->arg1 == IP_FW_TABLEARG)
2084					args->cookie = tablearg;
2085				else
2086					args->cookie = cmd->arg1;
2087				retval = (cmd->opcode == O_NETGRAPH) ?
2088				    IP_FW_NETGRAPH : IP_FW_NGTEE;
2089				l = 0;          /* exit inner loop */
2090				done = 1;       /* exit outer loop */
2091				break;
2092
2093			case O_SETFIB:
2094				f->pcnt++;	/* update stats */
2095				f->bcnt += pktlen;
2096				f->timestamp = time_uptime;
2097				M_SETFIB(m, cmd->arg1);
2098				args->f_id.fib = cmd->arg1;
2099				l = 0;		/* exit inner loop */
2100				break;
2101
2102			case O_NAT:
2103 				if (!IPFW_NAT_LOADED) {
2104				    retval = IP_FW_DENY;
2105				} else {
2106				    struct cfg_nat *t;
2107				    int nat_id;
2108
2109				    args->rule = f; /* Report matching rule. */
2110				    args->rule_id = f->id;
2111				    args->chain_id = chain->id;
2112				    t = ((ipfw_insn_nat *)cmd)->nat;
2113				    if (t == NULL) {
2114					nat_id = (cmd->arg1 == IP_FW_TABLEARG) ?
2115						tablearg : cmd->arg1;
2116					t = (*lookup_nat_ptr)(&V_layer3_chain.nat, nat_id);
2117
2118					if (t == NULL) {
2119					    retval = IP_FW_DENY;
2120					    l = 0;	/* exit inner loop */
2121					    done = 1;	/* exit outer loop */
2122					    break;
2123					}
2124					if (cmd->arg1 != IP_FW_TABLEARG)
2125					    ((ipfw_insn_nat *)cmd)->nat = t;
2126				    }
2127				    retval = ipfw_nat_ptr(args, t, m);
2128				}
2129				l = 0;          /* exit inner loop */
2130				done = 1;       /* exit outer loop */
2131				break;
2132
2133			case O_REASS: {
2134				int ip_off;
2135
2136				f->pcnt++;
2137				f->bcnt += pktlen;
2138				l = 0;	/* in any case exit inner loop */
2139
2140				ip_off = (args->eh != NULL) ?
2141					ntohs(ip->ip_off) : ip->ip_off;
2142				/* if not fragmented, go to next rule */
2143				if ((ip_off & (IP_MF | IP_OFFMASK)) == 0)
2144				    break;
2145				/*
2146				 * ip_reass() expects len & off in host
2147				 * byte order: fix them in case we come
2148				 * from layer2.
2149				 */
2150				if (args->eh != NULL) {
2151				    ip->ip_len = ntohs(ip->ip_len);
2152				    ip->ip_off = ntohs(ip->ip_off);
2153				}
2154
2155				args->m = m = ip_reass(m);
2156
2157				/*
2158				 * IP header checksum fixup after
2159				 * reassembly and leave header
2160				 * in network byte order.
2161				 */
2162				if (m == NULL) { /* fragment got swallowed */
2163				    retval = IP_FW_DENY;
2164				} else { /* good, packet complete */
2165				    int hlen;
2166
2167				    ip = mtod(m, struct ip *);
2168				    hlen = ip->ip_hl << 2;
2169				    /* revert len & off for layer2 pkts */
2170				    if (args->eh != NULL)
2171					ip->ip_len = htons(ip->ip_len);
2172				    ip->ip_sum = 0;
2173				    if (hlen == sizeof(struct ip))
2174					ip->ip_sum = in_cksum_hdr(ip);
2175				    else
2176					ip->ip_sum = in_cksum(m, hlen);
2177				    retval = IP_FW_REASS;
2178				    args->rule = f;
2179				    args->rule_id = f->id;
2180				    args->chain_id = chain->id;
2181				}
2182				done = 1;	/* exit outer loop */
2183				break;
2184			}
2185
2186			default:
2187				panic("-- unknown opcode %d\n", cmd->opcode);
2188			} /* end of switch() on opcodes */
2189			/*
2190			 * if we get here with l=0, then match is irrelevant.
2191			 */
2192
2193			if (cmd->len & F_NOT)
2194				match = !match;
2195
2196			if (match) {
2197				if (cmd->len & F_OR)
2198					skip_or = 1;
2199			} else {
2200				if (!(cmd->len & F_OR)) /* not an OR block, */
2201					break;		/* try next rule    */
2202			}
2203
2204		}	/* end of inner loop, scan opcodes */
2205
2206		if (done)
2207			break;
2208
2209/* next_rule:; */	/* try next rule		*/
2210
2211	}		/* end of outer for, scan rules */
2212
2213	if (done) {
2214		/* Update statistics */
2215		f->pcnt++;
2216		f->bcnt += pktlen;
2217		f->timestamp = time_uptime;
2218	} else {
2219		retval = IP_FW_DENY;
2220		printf("ipfw: ouch!, skip past end of rules, denying packet\n");
2221	}
2222	IPFW_RUNLOCK(chain);
2223	if (ucred_cache != NULL)
2224		crfree(ucred_cache);
2225	return (retval);
2226
2227pullup_failed:
2228	if (V_fw_verbose)
2229		printf("ipfw: pullup failed\n");
2230	return (IP_FW_DENY);
2231}
2232
2233/*
2234 * Module and VNET glue
2235 */
2236
2237/*
2238 * Stuff that must be initialised only on boot or module load
2239 */
2240static int
2241ipfw_init(void)
2242{
2243	int error = 0;
2244
2245	ipfw_dyn_attach();
2246	/*
2247 	 * Only print out this stuff the first time around,
2248	 * when called from the sysinit code.
2249	 */
2250	printf("ipfw2 "
2251#ifdef INET6
2252		"(+ipv6) "
2253#endif
2254		"initialized, divert %s, nat %s, "
2255		"rule-based forwarding "
2256#ifdef IPFIREWALL_FORWARD
2257		"enabled, "
2258#else
2259		"disabled, "
2260#endif
2261		"default to %s, logging ",
2262#ifdef IPDIVERT
2263		"enabled",
2264#else
2265		"loadable",
2266#endif
2267#ifdef IPFIREWALL_NAT
2268		"enabled",
2269#else
2270		"loadable",
2271#endif
2272		default_to_accept ? "accept" : "deny");
2273
2274	/*
2275	 * Note: V_xxx variables can be accessed here but the vnet specific
2276	 * initializer may not have been called yet for the VIMAGE case.
2277	 * Tuneables will have been processed. We will print out values for
2278	 * the default vnet.
2279	 * XXX This should all be rationalized AFTER 8.0
2280	 */
2281	if (V_fw_verbose == 0)
2282		printf("disabled\n");
2283	else if (V_verbose_limit == 0)
2284		printf("unlimited\n");
2285	else
2286		printf("limited to %d packets/entry by default\n",
2287		    V_verbose_limit);
2288
2289	ipfw_log_bpf(1); /* init */
2290	return (error);
2291}
2292
2293/*
2294 * Called for the removal of the last instance only on module unload.
2295 */
2296static void
2297ipfw_destroy(void)
2298{
2299
2300	ipfw_log_bpf(0); /* uninit */
2301	ipfw_dyn_detach();
2302	printf("IP firewall unloaded\n");
2303}
2304
2305/*
2306 * Stuff that must be initialized for every instance
2307 * (including the first of course).
2308 */
2309static int
2310vnet_ipfw_init(const void *unused)
2311{
2312	int error;
2313	struct ip_fw default_rule;
2314
2315	/* First set up some values that are compile time options */
2316#ifdef IPFIREWALL_VERBOSE
2317	V_fw_verbose = 1;
2318#endif
2319#ifdef IPFIREWALL_VERBOSE_LIMIT
2320	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
2321#endif
2322
2323	error = ipfw_init_tables(&V_layer3_chain);
2324	if (error) {
2325		panic("init_tables"); /* XXX Marko fix this ! */
2326	}
2327#ifdef IPFIREWALL_NAT
2328	LIST_INIT(&V_layer3_chain.nat);
2329#endif
2330
2331	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
2332
2333	V_fw_deny_unknown_exthdrs = 1;
2334
2335	V_layer3_chain.rules = NULL;
2336	IPFW_LOCK_INIT(&V_layer3_chain);
2337
2338	bzero(&default_rule, sizeof default_rule);
2339	default_rule.act_ofs = 0;
2340	default_rule.rulenum = IPFW_DEFAULT_RULE;
2341	default_rule.cmd_len = 1;
2342	default_rule.set = RESVD_SET;
2343	default_rule.cmd[0].len = 1;
2344	default_rule.cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
2345	error = ipfw_add_rule(&V_layer3_chain, &default_rule);
2346
2347	if (error != 0) {
2348		printf("ipfw2: error %u initializing default rule "
2349			"(support disabled)\n", error);
2350		IPFW_LOCK_DESTROY(&V_layer3_chain);
2351		printf("leaving ipfw_iattach (1) with error %d\n", error);
2352		return (error);
2353	}
2354
2355	V_layer3_chain.default_rule = V_layer3_chain.rules;
2356
2357	ipfw_dyn_init();
2358
2359	/* First set up some values that are compile time options */
2360	V_ipfw_vnet_ready = 1;		/* Open for business */
2361
2362	/*
2363	 * Hook the sockopt handler, and the layer2 (V_ip_fw_chk_ptr)
2364	 * and pfil hooks for ipv4 and ipv6. Even if the latter two fail
2365	 * we still keep the module alive because the sockopt and
2366	 * layer2 paths are still useful.
2367	 * ipfw[6]_hook return 0 on success, ENOENT on failure,
2368	 * so we can ignore the exact return value and just set a flag.
2369	 *
2370	 * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so
2371	 * changes in the underlying (per-vnet) variables trigger
2372	 * immediate hook()/unhook() calls.
2373	 * In layer2 we have the same behaviour, except that V_ether_ipfw
2374	 * is checked on each packet because there are no pfil hooks.
2375	 */
2376	V_ip_fw_ctl_ptr = ipfw_ctl;
2377	V_ip_fw_chk_ptr = ipfw_chk;
2378	error = ipfw_attach_hooks();
2379	return (error);
2380}
2381
2382/*
2383 * Called for the removal of each instance.
2384 */
2385static int
2386vnet_ipfw_uninit(const void *unused)
2387{
2388	struct ip_fw *reap;
2389
2390	V_ipfw_vnet_ready = 0; /* tell new callers to go away */
2391	/*
2392	 * disconnect from ipv4, ipv6, layer2 and sockopt.
2393	 * Then grab, release and grab again the WLOCK so we make
2394	 * sure the update is propagated and nobody will be in.
2395	 */
2396	ipfw_unhook();
2397#ifdef INET6
2398	ipfw6_unhook();
2399#endif
2400	V_ip_fw_chk_ptr = NULL;
2401	V_ip_fw_ctl_ptr = NULL;
2402
2403	IPFW_WLOCK(&V_layer3_chain);
2404	/* We wait on the wlock here until the last user leaves */
2405	IPFW_WUNLOCK(&V_layer3_chain);
2406	IPFW_WLOCK(&V_layer3_chain);
2407
2408	ipfw_dyn_uninit(0);	/* run the callout_drain */
2409	ipfw_flush_tables(&V_layer3_chain);
2410	V_layer3_chain.reap = NULL;
2411	ipfw_free_chain(&V_layer3_chain, 1 /* kill default rule */);
2412	reap = V_layer3_chain.reap;
2413	V_layer3_chain.reap = NULL;
2414	IPFW_WUNLOCK(&V_layer3_chain);
2415	if (reap != NULL)
2416		ipfw_reap_rules(reap);
2417	IPFW_LOCK_DESTROY(&V_layer3_chain);
2418	ipfw_dyn_uninit(1);	/* free the remaining parts */
2419	return 0;
2420}
2421
2422/*
2423 * Module event handler.
2424 * In general we have the choice of handling most of these events by the
2425 * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
2426 * use the SYSINIT handlers as they are more capable of expressing the
2427 * flow of control during module and vnet operations, so this is just
2428 * a skeleton. Note there is no SYSINIT equivalent of the module
2429 * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
2430 */
2431static int
2432ipfw_modevent(module_t mod, int type, void *unused)
2433{
2434	int err = 0;
2435
2436	switch (type) {
2437	case MOD_LOAD:
2438		/* Called once at module load or
2439	 	 * system boot if compiled in. */
2440		break;
2441	case MOD_QUIESCE:
2442		/* Called before unload. May veto unloading. */
2443		break;
2444	case MOD_UNLOAD:
2445		/* Called during unload. */
2446		break;
2447	case MOD_SHUTDOWN:
2448		/* Called during system shutdown. */
2449		break;
2450	default:
2451		err = EOPNOTSUPP;
2452		break;
2453	}
2454	return err;
2455}
2456
2457static moduledata_t ipfwmod = {
2458	"ipfw",
2459	ipfw_modevent,
2460	0
2461};
2462
2463/* Define startup order. */
2464#define	IPFW_SI_SUB_FIREWALL	SI_SUB_PROTO_IFATTACHDOMAIN
2465#define	IPFW_MODEVENT_ORDER	(SI_ORDER_ANY - 255) /* On boot slot in here. */
2466#define	IPFW_MODULE_ORDER	(IPFW_MODEVENT_ORDER + 1) /* A little later. */
2467#define	IPFW_VNET_ORDER		(IPFW_MODEVENT_ORDER + 2) /* Later still. */
2468
2469DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
2470MODULE_VERSION(ipfw, 2);
2471/* should declare some dependencies here */
2472
2473/*
2474 * Starting up. Done in order after ipfwmod() has been called.
2475 * VNET_SYSINIT is also called for each existing vnet and each new vnet.
2476 */
2477SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2478	    ipfw_init, NULL);
2479VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2480	    vnet_ipfw_init, NULL);
2481
2482/*
2483 * Closing up shop. These are done in REVERSE ORDER, but still
2484 * after ipfwmod() has been called. Not called on reboot.
2485 * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
2486 * or when the module is unloaded.
2487 */
2488SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2489	    ipfw_destroy, NULL);
2490VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2491	    vnet_ipfw_uninit, NULL);
2492/* end of file */
2493