ip_fw2.c revision 200590
1/*-
2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: head/sys/netinet/ipfw/ip_fw2.c 200590 2009-12-15 21:24:12Z luigi $");
28
29#define        DEB(x)
30#define        DDB(x) x
31
32/*
33 * Implement IP packet firewall (new version)
34 */
35
36#if !defined(KLD_MODULE)
37#include "opt_ipfw.h"
38#include "opt_ipdivert.h"
39#include "opt_ipdn.h"
40#include "opt_inet.h"
41#ifndef INET
42#error IPFIREWALL requires INET.
43#endif /* INET */
44#endif
45#include "opt_inet6.h"
46#include "opt_ipsec.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/condvar.h>
51#include <sys/eventhandler.h>
52#include <sys/malloc.h>
53#include <sys/mbuf.h>
54#include <sys/kernel.h>
55#include <sys/lock.h>
56#include <sys/jail.h>
57#include <sys/module.h>
58#include <sys/priv.h>
59#include <sys/proc.h>
60#include <sys/rwlock.h>
61#include <sys/socket.h>
62#include <sys/socketvar.h>
63#include <sys/sysctl.h>
64#include <sys/syslog.h>
65#include <sys/ucred.h>
66#include <net/ethernet.h> /* for ETHERTYPE_IP */
67#include <net/if.h>
68#include <net/route.h>
69#include <net/pf_mtag.h>
70#include <net/vnet.h>
71
72#include <netinet/in.h>
73#include <netinet/in_var.h>
74#include <netinet/in_pcb.h>
75#include <netinet/ip.h>
76#include <netinet/ip_var.h>
77#include <netinet/ip_icmp.h>
78#include <netinet/ip_fw.h>
79#include <netinet/ipfw/ip_fw_private.h>
80#include <netinet/ip_divert.h>
81#include <netinet/ip_dummynet.h>
82#include <netinet/ip_carp.h>
83#include <netinet/pim.h>
84#include <netinet/tcp_var.h>
85#include <netinet/udp.h>
86#include <netinet/udp_var.h>
87#include <netinet/sctp.h>
88
89#include <netgraph/ng_ipfw.h>
90
91#include <netinet/ip6.h>
92#include <netinet/icmp6.h>
93#ifdef INET6
94#include <netinet6/scope6_var.h>
95#include <netinet6/ip6_var.h>
96#endif
97
98#include <machine/in_cksum.h>	/* XXX for in_cksum */
99
100#ifdef MAC
101#include <security/mac/mac_framework.h>
102#endif
103
104static VNET_DEFINE(int, ipfw_vnet_ready) = 0;
105#define	V_ipfw_vnet_ready	VNET(ipfw_vnet_ready)
106/*
107 * set_disable contains one bit per set value (0..31).
108 * If the bit is set, all rules with the corresponding set
109 * are disabled. Set RESVD_SET(31) is reserved for the default rule
110 * and rules that are not deleted by the flush command,
111 * and CANNOT be disabled.
112 * Rules in set RESVD_SET can only be deleted explicitly.
113 */
114VNET_DEFINE(u_int32_t, set_disable);
115VNET_DEFINE(int, fw_verbose);
116
117#define	V_set_disable			VNET(set_disable)
118#define	V_verbose_limit			VNET(verbose_limit)
119
120#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
121static int default_to_accept = 1;
122#else
123static int default_to_accept;
124#endif
125
126struct ip_fw *ip_fw_default_rule;
127
128/*
129 * list of rules for layer 3
130 */
131VNET_DEFINE(struct ip_fw_chain, layer3_chain);
132
133MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
134ipfw_nat_t *ipfw_nat_ptr = NULL;
135struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
136ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
137ipfw_nat_cfg_t *ipfw_nat_del_ptr;
138ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
139ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
140
141struct table_entry {
142	struct radix_node	rn[2];
143	struct sockaddr_in	addr, mask;
144	u_int32_t		value;
145};
146
147static VNET_DEFINE(int, autoinc_step);
148#define	V_autoinc_step			VNET(autoinc_step)
149static VNET_DEFINE(int, fw_deny_unknown_exthdrs);
150#define	V_fw_deny_unknown_exthdrs	VNET(fw_deny_unknown_exthdrs)
151
152extern int ipfw_chg_hook(SYSCTL_HANDLER_ARGS);
153
154#ifdef SYSCTL_NODE
155SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
156SYSCTL_VNET_PROC(_net_inet_ip_fw, OID_AUTO, enable,
157    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_enable), 0,
158    ipfw_chg_hook, "I", "Enable ipfw");
159SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
160    CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
161    "Rule number auto-increment step");
162SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
163    CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
164    "Only do a single pass through ipfw when using dummynet(4)");
165SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose,
166    CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
167    "Log matches to ipfw rules");
168SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
169    CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
170    "Set upper limit of matches of ipfw rules logged");
171SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
172    NULL, IPFW_DEFAULT_RULE,
173    "The default/max possible rule number.");
174SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, tables_max, CTLFLAG_RD,
175    NULL, IPFW_TABLES_MAX,
176    "The maximum number of tables.");
177SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
178    &default_to_accept, 0,
179    "Make the default rule accept all packets.");
180TUNABLE_INT("net.inet.ip.fw.default_to_accept", &default_to_accept);
181
182#ifdef INET6
183SYSCTL_DECL(_net_inet6_ip6);
184SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
185SYSCTL_VNET_PROC(_net_inet6_ip6_fw, OID_AUTO, enable,
186    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw6_enable), 0,
187    ipfw_chg_hook, "I", "Enable ipfw+6");
188SYSCTL_VNET_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
189    CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(fw_deny_unknown_exthdrs), 0,
190    "Deny packets with unknown IPv6 Extension Headers");
191#endif /* INET6 */
192
193#endif /* SYSCTL_NODE */
194
195
196/*
197 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
198 * Other macros just cast void * into the appropriate type
199 */
200#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
201#define	TCP(p)		((struct tcphdr *)(p))
202#define	SCTP(p)		((struct sctphdr *)(p))
203#define	UDP(p)		((struct udphdr *)(p))
204#define	ICMP(p)		((struct icmphdr *)(p))
205#define	ICMP6(p)	((struct icmp6_hdr *)(p))
206
207static __inline int
208icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
209{
210	int type = icmp->icmp_type;
211
212	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
213}
214
215#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
216    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
217
218static int
219is_icmp_query(struct icmphdr *icmp)
220{
221	int type = icmp->icmp_type;
222
223	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
224}
225#undef TT
226
227/*
228 * The following checks use two arrays of 8 or 16 bits to store the
229 * bits that we want set or clear, respectively. They are in the
230 * low and high half of cmd->arg1 or cmd->d[0].
231 *
232 * We scan options and store the bits we find set. We succeed if
233 *
234 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
235 *
236 * The code is sometimes optimized not to store additional variables.
237 */
238
239static int
240flags_match(ipfw_insn *cmd, u_int8_t bits)
241{
242	u_char want_clear;
243	bits = ~bits;
244
245	if ( ((cmd->arg1 & 0xff) & bits) != 0)
246		return 0; /* some bits we want set were clear */
247	want_clear = (cmd->arg1 >> 8) & 0xff;
248	if ( (want_clear & bits) != want_clear)
249		return 0; /* some bits we want clear were set */
250	return 1;
251}
252
253static int
254ipopts_match(struct ip *ip, ipfw_insn *cmd)
255{
256	int optlen, bits = 0;
257	u_char *cp = (u_char *)(ip + 1);
258	int x = (ip->ip_hl << 2) - sizeof (struct ip);
259
260	for (; x > 0; x -= optlen, cp += optlen) {
261		int opt = cp[IPOPT_OPTVAL];
262
263		if (opt == IPOPT_EOL)
264			break;
265		if (opt == IPOPT_NOP)
266			optlen = 1;
267		else {
268			optlen = cp[IPOPT_OLEN];
269			if (optlen <= 0 || optlen > x)
270				return 0; /* invalid or truncated */
271		}
272		switch (opt) {
273
274		default:
275			break;
276
277		case IPOPT_LSRR:
278			bits |= IP_FW_IPOPT_LSRR;
279			break;
280
281		case IPOPT_SSRR:
282			bits |= IP_FW_IPOPT_SSRR;
283			break;
284
285		case IPOPT_RR:
286			bits |= IP_FW_IPOPT_RR;
287			break;
288
289		case IPOPT_TS:
290			bits |= IP_FW_IPOPT_TS;
291			break;
292		}
293	}
294	return (flags_match(cmd, bits));
295}
296
297static int
298tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
299{
300	int optlen, bits = 0;
301	u_char *cp = (u_char *)(tcp + 1);
302	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
303
304	for (; x > 0; x -= optlen, cp += optlen) {
305		int opt = cp[0];
306		if (opt == TCPOPT_EOL)
307			break;
308		if (opt == TCPOPT_NOP)
309			optlen = 1;
310		else {
311			optlen = cp[1];
312			if (optlen <= 0)
313				break;
314		}
315
316		switch (opt) {
317
318		default:
319			break;
320
321		case TCPOPT_MAXSEG:
322			bits |= IP_FW_TCPOPT_MSS;
323			break;
324
325		case TCPOPT_WINDOW:
326			bits |= IP_FW_TCPOPT_WINDOW;
327			break;
328
329		case TCPOPT_SACK_PERMITTED:
330		case TCPOPT_SACK:
331			bits |= IP_FW_TCPOPT_SACK;
332			break;
333
334		case TCPOPT_TIMESTAMP:
335			bits |= IP_FW_TCPOPT_TS;
336			break;
337
338		}
339	}
340	return (flags_match(cmd, bits));
341}
342
343static int
344iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
345{
346	if (ifp == NULL)	/* no iface with this packet, match fails */
347		return 0;
348	/* Check by name or by IP address */
349	if (cmd->name[0] != '\0') { /* match by name */
350		/* Check name */
351		if (cmd->p.glob) {
352			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
353				return(1);
354		} else {
355			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
356				return(1);
357		}
358	} else {
359		struct ifaddr *ia;
360
361		if_addr_rlock(ifp);
362		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
363			if (ia->ifa_addr->sa_family != AF_INET)
364				continue;
365			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
366			    (ia->ifa_addr))->sin_addr.s_addr) {
367				if_addr_runlock(ifp);
368				return(1);	/* match */
369			}
370		}
371		if_addr_runlock(ifp);
372	}
373	return(0);	/* no match, fail ... */
374}
375
376/*
377 * The verify_path function checks if a route to the src exists and
378 * if it is reachable via ifp (when provided).
379 *
380 * The 'verrevpath' option checks that the interface that an IP packet
381 * arrives on is the same interface that traffic destined for the
382 * packet's source address would be routed out of.  The 'versrcreach'
383 * option just checks that the source address is reachable via any route
384 * (except default) in the routing table.  These two are a measure to block
385 * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
386 * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
387 * is purposely reminiscent of the Cisco IOS command,
388 *
389 *   ip verify unicast reverse-path
390 *   ip verify unicast source reachable-via any
391 *
392 * which implements the same functionality. But note that syntax is
393 * misleading. The check may be performed on all IP packets whether unicast,
394 * multicast, or broadcast.
395 */
396static int
397verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
398{
399	struct route ro;
400	struct sockaddr_in *dst;
401
402	bzero(&ro, sizeof(ro));
403
404	dst = (struct sockaddr_in *)&(ro.ro_dst);
405	dst->sin_family = AF_INET;
406	dst->sin_len = sizeof(*dst);
407	dst->sin_addr = src;
408	in_rtalloc_ign(&ro, 0, fib);
409
410	if (ro.ro_rt == NULL)
411		return 0;
412
413	/*
414	 * If ifp is provided, check for equality with rtentry.
415	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
416	 * in order to pass packets injected back by if_simloop():
417	 * if useloopback == 1 routing entry (via lo0) for our own address
418	 * may exist, so we need to handle routing assymetry.
419	 */
420	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
421		RTFREE(ro.ro_rt);
422		return 0;
423	}
424
425	/* if no ifp provided, check if rtentry is not default route */
426	if (ifp == NULL &&
427	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
428		RTFREE(ro.ro_rt);
429		return 0;
430	}
431
432	/* or if this is a blackhole/reject route */
433	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
434		RTFREE(ro.ro_rt);
435		return 0;
436	}
437
438	/* found valid route */
439	RTFREE(ro.ro_rt);
440	return 1;
441}
442
443#ifdef INET6
444/*
445 * ipv6 specific rules here...
446 */
447static __inline int
448icmp6type_match (int type, ipfw_insn_u32 *cmd)
449{
450	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
451}
452
453static int
454flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
455{
456	int i;
457	for (i=0; i <= cmd->o.arg1; ++i )
458		if (curr_flow == cmd->d[i] )
459			return 1;
460	return 0;
461}
462
463/* support for IP6_*_ME opcodes */
464static int
465search_ip6_addr_net (struct in6_addr * ip6_addr)
466{
467	struct ifnet *mdc;
468	struct ifaddr *mdc2;
469	struct in6_ifaddr *fdm;
470	struct in6_addr copia;
471
472	TAILQ_FOREACH(mdc, &V_ifnet, if_link) {
473		if_addr_rlock(mdc);
474		TAILQ_FOREACH(mdc2, &mdc->if_addrhead, ifa_link) {
475			if (mdc2->ifa_addr->sa_family == AF_INET6) {
476				fdm = (struct in6_ifaddr *)mdc2;
477				copia = fdm->ia_addr.sin6_addr;
478				/* need for leaving scope_id in the sock_addr */
479				in6_clearscope(&copia);
480				if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia)) {
481					if_addr_runlock(mdc);
482					return 1;
483				}
484			}
485		}
486		if_addr_runlock(mdc);
487	}
488	return 0;
489}
490
491static int
492verify_path6(struct in6_addr *src, struct ifnet *ifp)
493{
494	struct route_in6 ro;
495	struct sockaddr_in6 *dst;
496
497	bzero(&ro, sizeof(ro));
498
499	dst = (struct sockaddr_in6 * )&(ro.ro_dst);
500	dst->sin6_family = AF_INET6;
501	dst->sin6_len = sizeof(*dst);
502	dst->sin6_addr = *src;
503	/* XXX MRT 0 for ipv6 at this time */
504	rtalloc_ign((struct route *)&ro, 0);
505
506	if (ro.ro_rt == NULL)
507		return 0;
508
509	/*
510	 * if ifp is provided, check for equality with rtentry
511	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
512	 * to support the case of sending packets to an address of our own.
513	 * (where the former interface is the first argument of if_simloop()
514	 *  (=ifp), the latter is lo0)
515	 */
516	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
517		RTFREE(ro.ro_rt);
518		return 0;
519	}
520
521	/* if no ifp provided, check if rtentry is not default route */
522	if (ifp == NULL &&
523	    IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
524		RTFREE(ro.ro_rt);
525		return 0;
526	}
527
528	/* or if this is a blackhole/reject route */
529	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
530		RTFREE(ro.ro_rt);
531		return 0;
532	}
533
534	/* found valid route */
535	RTFREE(ro.ro_rt);
536	return 1;
537
538}
539static int
540is_icmp6_query(int icmp6_type)
541{
542	if ((icmp6_type <= ICMP6_MAXTYPE) &&
543	    (icmp6_type == ICMP6_ECHO_REQUEST ||
544	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
545	    icmp6_type == ICMP6_WRUREQUEST ||
546	    icmp6_type == ICMP6_FQDN_QUERY ||
547	    icmp6_type == ICMP6_NI_QUERY))
548		return (1);
549
550	return (0);
551}
552
553static void
554send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
555{
556	struct mbuf *m;
557
558	m = args->m;
559	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
560		struct tcphdr *tcp;
561		tcp = (struct tcphdr *)((char *)ip6 + hlen);
562
563		if ((tcp->th_flags & TH_RST) == 0) {
564			struct mbuf *m0;
565			m0 = send_pkt(args->m, &(args->f_id),
566			    ntohl(tcp->th_seq), ntohl(tcp->th_ack),
567			    tcp->th_flags | TH_RST);
568			if (m0 != NULL)
569				ip6_output(m0, NULL, NULL, 0, NULL, NULL,
570				    NULL);
571		}
572		m_freem(m);
573	} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
574#if 0
575		/*
576		 * Unlike above, the mbufs need to line up with the ip6 hdr,
577		 * as the contents are read. We need to m_adj() the
578		 * needed amount.
579		 * The mbuf will however be thrown away so we can adjust it.
580		 * Remember we did an m_pullup on it already so we
581		 * can make some assumptions about contiguousness.
582		 */
583		if (args->L3offset)
584			m_adj(m, args->L3offset);
585#endif
586		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
587	} else
588		m_freem(m);
589
590	args->m = NULL;
591}
592
593#endif /* INET6 */
594
595
596/*
597 * sends a reject message, consuming the mbuf passed as an argument.
598 */
599static void
600send_reject(struct ip_fw_args *args, int code, int ip_len, struct ip *ip)
601{
602
603#if 0
604	/* XXX When ip is not guaranteed to be at mtod() we will
605	 * need to account for this */
606	 * The mbuf will however be thrown away so we can adjust it.
607	 * Remember we did an m_pullup on it already so we
608	 * can make some assumptions about contiguousness.
609	 */
610	if (args->L3offset)
611		m_adj(m, args->L3offset);
612#endif
613	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
614		/* We need the IP header in host order for icmp_error(). */
615		if (args->eh != NULL) {
616			ip->ip_len = ntohs(ip->ip_len);
617			ip->ip_off = ntohs(ip->ip_off);
618		}
619		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
620	} else if (args->f_id.proto == IPPROTO_TCP) {
621		struct tcphdr *const tcp =
622		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
623		if ( (tcp->th_flags & TH_RST) == 0) {
624			struct mbuf *m;
625			m = send_pkt(args->m, &(args->f_id),
626				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
627				tcp->th_flags | TH_RST);
628			if (m != NULL)
629				ip_output(m, NULL, NULL, 0, NULL, NULL);
630		}
631		m_freem(args->m);
632	} else
633		m_freem(args->m);
634	args->m = NULL;
635}
636
637/**
638 *
639 * Given an ip_fw *, lookup_next_rule will return a pointer
640 * to the next rule, which can be either the jump
641 * target (for skipto instructions) or the next one in the list (in
642 * all other cases including a missing jump target).
643 * The result is also written in the "next_rule" field of the rule.
644 * Backward jumps are not allowed, so start looking from the next
645 * rule...
646 *
647 * This never returns NULL -- in case we do not have an exact match,
648 * the next rule is returned. When the ruleset is changed,
649 * pointers are flushed so we are always correct.
650 */
651
652static struct ip_fw *
653lookup_next_rule(struct ip_fw *me, u_int32_t tablearg)
654{
655	struct ip_fw *rule = NULL;
656	ipfw_insn *cmd;
657	u_int16_t	rulenum;
658
659	/* look for action, in case it is a skipto */
660	cmd = ACTION_PTR(me);
661	if (cmd->opcode == O_LOG)
662		cmd += F_LEN(cmd);
663	if (cmd->opcode == O_ALTQ)
664		cmd += F_LEN(cmd);
665	if (cmd->opcode == O_TAG)
666		cmd += F_LEN(cmd);
667	if (cmd->opcode == O_SKIPTO ) {
668		if (tablearg != 0) {
669			rulenum = (u_int16_t)tablearg;
670		} else {
671			rulenum = cmd->arg1;
672		}
673		for (rule = me->next; rule ; rule = rule->next) {
674			if (rule->rulenum >= rulenum) {
675				break;
676			}
677		}
678	}
679	if (rule == NULL)			/* failure or not a skipto */
680		rule = me->next;
681	me->next_rule = rule;
682	return rule;
683}
684
685static int
686check_uidgid(ipfw_insn_u32 *insn, int proto, struct ifnet *oif,
687    struct in_addr dst_ip, u_int16_t dst_port, struct in_addr src_ip,
688    u_int16_t src_port, struct ucred **uc, int *ugid_lookupp,
689    struct inpcb *inp)
690{
691	struct inpcbinfo *pi;
692	int wildcard;
693	struct inpcb *pcb;
694	int match;
695
696	/*
697	 * Check to see if the UDP or TCP stack supplied us with
698	 * the PCB. If so, rather then holding a lock and looking
699	 * up the PCB, we can use the one that was supplied.
700	 */
701	if (inp && *ugid_lookupp == 0) {
702		INP_LOCK_ASSERT(inp);
703		if (inp->inp_socket != NULL) {
704			*uc = crhold(inp->inp_cred);
705			*ugid_lookupp = 1;
706		} else
707			*ugid_lookupp = -1;
708	}
709	/*
710	 * If we have already been here and the packet has no
711	 * PCB entry associated with it, then we can safely
712	 * assume that this is a no match.
713	 */
714	if (*ugid_lookupp == -1)
715		return (0);
716	if (proto == IPPROTO_TCP) {
717		wildcard = 0;
718		pi = &V_tcbinfo;
719	} else if (proto == IPPROTO_UDP) {
720		wildcard = INPLOOKUP_WILDCARD;
721		pi = &V_udbinfo;
722	} else
723		return 0;
724	match = 0;
725	if (*ugid_lookupp == 0) {
726		INP_INFO_RLOCK(pi);
727		pcb =  (oif) ?
728			in_pcblookup_hash(pi,
729				dst_ip, htons(dst_port),
730				src_ip, htons(src_port),
731				wildcard, oif) :
732			in_pcblookup_hash(pi,
733				src_ip, htons(src_port),
734				dst_ip, htons(dst_port),
735				wildcard, NULL);
736		if (pcb != NULL) {
737			*uc = crhold(pcb->inp_cred);
738			*ugid_lookupp = 1;
739		}
740		INP_INFO_RUNLOCK(pi);
741		if (*ugid_lookupp == 0) {
742			/*
743			 * If the lookup did not yield any results, there
744			 * is no sense in coming back and trying again. So
745			 * we can set lookup to -1 and ensure that we wont
746			 * bother the pcb system again.
747			 */
748			*ugid_lookupp = -1;
749			return (0);
750		}
751	}
752	if (insn->o.opcode == O_UID)
753		match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
754	else if (insn->o.opcode == O_GID)
755		match = groupmember((gid_t)insn->d[0], *uc);
756	else if (insn->o.opcode == O_JAIL)
757		match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
758	return match;
759}
760
761/*
762 * The main check routine for the firewall.
763 *
764 * All arguments are in args so we can modify them and return them
765 * back to the caller.
766 *
767 * Parameters:
768 *
769 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
770 *		Starts with the IP header.
771 *	args->eh (in)	Mac header if present, or NULL for layer3 packet.
772 *	args->L3offset	Number of bytes bypassed if we came from L2.
773 *			e.g. often sizeof(eh)  ** NOTYET **
774 *	args->oif	Outgoing interface, or NULL if packet is incoming.
775 *		The incoming interface is in the mbuf. (in)
776 *	args->divert_rule (in/out)
777 *		Skip up to the first rule past this rule number;
778 *		upon return, non-zero port number for divert or tee.
779 *
780 *	args->rule	Pointer to the last matching rule (in/out)
781 *	args->next_hop	Socket we are forwarding to (out).
782 *	args->f_id	Addresses grabbed from the packet (out)
783 * 	args->cookie	a cookie depending on rule action
784 *
785 * Return value:
786 *
787 *	IP_FW_PASS	the packet must be accepted
788 *	IP_FW_DENY	the packet must be dropped
789 *	IP_FW_DIVERT	divert packet, port in m_tag
790 *	IP_FW_TEE	tee packet, port in m_tag
791 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
792 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
793 *
794 */
795int
796ipfw_chk(struct ip_fw_args *args)
797{
798
799	/*
800	 * Local variables holding state during the processing of a packet:
801	 *
802	 * IMPORTANT NOTE: to speed up the processing of rules, there
803	 * are some assumption on the values of the variables, which
804	 * are documented here. Should you change them, please check
805	 * the implementation of the various instructions to make sure
806	 * that they still work.
807	 *
808	 * args->eh	The MAC header. It is non-null for a layer2
809	 *	packet, it is NULL for a layer-3 packet.
810	 * **notyet**
811	 * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
812	 *
813	 * m | args->m	Pointer to the mbuf, as received from the caller.
814	 *	It may change if ipfw_chk() does an m_pullup, or if it
815	 *	consumes the packet because it calls send_reject().
816	 *	XXX This has to change, so that ipfw_chk() never modifies
817	 *	or consumes the buffer.
818	 * ip	is the beginning of the ip(4 or 6) header.
819	 *	Calculated by adding the L3offset to the start of data.
820	 *	(Until we start using L3offset, the packet is
821	 *	supposed to start with the ip header).
822	 */
823	struct mbuf *m = args->m;
824	struct ip *ip = mtod(m, struct ip *);
825
826	/*
827	 * For rules which contain uid/gid or jail constraints, cache
828	 * a copy of the users credentials after the pcb lookup has been
829	 * executed. This will speed up the processing of rules with
830	 * these types of constraints, as well as decrease contention
831	 * on pcb related locks.
832	 */
833	struct ucred *ucred_cache = NULL;
834	int ucred_lookup = 0;
835
836	/*
837	 * divinput_flags	If non-zero, set to the IP_FW_DIVERT_*_FLAG
838	 *	associated with a packet input on a divert socket.  This
839	 *	will allow to distinguish traffic and its direction when
840	 *	it originates from a divert socket.
841	 */
842	u_int divinput_flags = 0;
843
844	/*
845	 * oif | args->oif	If NULL, ipfw_chk has been called on the
846	 *	inbound path (ether_input, ip_input).
847	 *	If non-NULL, ipfw_chk has been called on the outbound path
848	 *	(ether_output, ip_output).
849	 */
850	struct ifnet *oif = args->oif;
851
852	struct ip_fw *f = NULL;		/* matching rule */
853	int retval = 0;
854
855	/*
856	 * hlen	The length of the IP header.
857	 */
858	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
859
860	/*
861	 * offset	The offset of a fragment. offset != 0 means that
862	 *	we have a fragment at this offset of an IPv4 packet.
863	 *	offset == 0 means that (if this is an IPv4 packet)
864	 *	this is the first or only fragment.
865	 *	For IPv6 offset == 0 means there is no Fragment Header.
866	 *	If offset != 0 for IPv6 always use correct mask to
867	 *	get the correct offset because we add IP6F_MORE_FRAG
868	 *	to be able to dectect the first fragment which would
869	 *	otherwise have offset = 0.
870	 */
871	u_short offset = 0;
872
873	/*
874	 * Local copies of addresses. They are only valid if we have
875	 * an IP packet.
876	 *
877	 * proto	The protocol. Set to 0 for non-ip packets,
878	 *	or to the protocol read from the packet otherwise.
879	 *	proto != 0 means that we have an IPv4 packet.
880	 *
881	 * src_port, dst_port	port numbers, in HOST format. Only
882	 *	valid for TCP and UDP packets.
883	 *
884	 * src_ip, dst_ip	ip addresses, in NETWORK format.
885	 *	Only valid for IPv4 packets.
886	 */
887	u_int8_t proto;
888	u_int16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
889	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
890	u_int16_t ip_len=0;
891	int pktlen;
892	u_int16_t	etype = 0;	/* Host order stored ether type */
893
894	/*
895	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
896	 * 	MATCH_NONE when checked and not matched (q = NULL),
897	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
898	 */
899	int dyn_dir = MATCH_UNKNOWN;
900	ipfw_dyn_rule *q = NULL;
901	struct ip_fw_chain *chain = &V_layer3_chain;
902	struct m_tag *mtag;
903
904	/*
905	 * We store in ulp a pointer to the upper layer protocol header.
906	 * In the ipv4 case this is easy to determine from the header,
907	 * but for ipv6 we might have some additional headers in the middle.
908	 * ulp is NULL if not found.
909	 */
910	void *ulp = NULL;		/* upper layer protocol pointer. */
911	/* XXX ipv6 variables */
912	int is_ipv6 = 0;
913	u_int16_t ext_hd = 0;	/* bits vector for extension header filtering */
914	/* end of ipv6 variables */
915	int is_ipv4 = 0;
916
917	int done = 0;		/* flag to exit the outer loop */
918
919	if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
920		return (IP_FW_PASS);	/* accept */
921
922	dst_ip.s_addr = 0;		/* make sure it is initialized */
923	src_ip.s_addr = 0;		/* make sure it is initialized */
924	pktlen = m->m_pkthdr.len;
925	args->f_id.fib = M_GETFIB(m); /* note mbuf not altered) */
926	proto = args->f_id.proto = 0;	/* mark f_id invalid */
927		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
928
929/*
930 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
931 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
932 * pointer might become stale after other pullups (but we never use it
933 * this way).
934 */
935#define PULLUP_TO(_len, p, T)						\
936do {									\
937	int x = (_len) + sizeof(T);					\
938	if ((m)->m_len < x) {						\
939		args->m = m = m_pullup(m, x);				\
940		if (m == NULL)						\
941			goto pullup_failed;				\
942	}								\
943	p = (mtod(m, char *) + (_len));					\
944} while (0)
945
946	/*
947	 * if we have an ether header,
948	 */
949	if (args->eh)
950		etype = ntohs(args->eh->ether_type);
951
952	/* Identify IP packets and fill up variables. */
953	if (pktlen >= sizeof(struct ip6_hdr) &&
954	    (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
955		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
956		is_ipv6 = 1;
957		args->f_id.addr_type = 6;
958		hlen = sizeof(struct ip6_hdr);
959		proto = ip6->ip6_nxt;
960
961		/* Search extension headers to find upper layer protocols */
962		while (ulp == NULL) {
963			switch (proto) {
964			case IPPROTO_ICMPV6:
965				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
966				args->f_id.flags = ICMP6(ulp)->icmp6_type;
967				break;
968
969			case IPPROTO_TCP:
970				PULLUP_TO(hlen, ulp, struct tcphdr);
971				dst_port = TCP(ulp)->th_dport;
972				src_port = TCP(ulp)->th_sport;
973				args->f_id.flags = TCP(ulp)->th_flags;
974				break;
975
976			case IPPROTO_SCTP:
977				PULLUP_TO(hlen, ulp, struct sctphdr);
978				src_port = SCTP(ulp)->src_port;
979				dst_port = SCTP(ulp)->dest_port;
980				break;
981
982			case IPPROTO_UDP:
983				PULLUP_TO(hlen, ulp, struct udphdr);
984				dst_port = UDP(ulp)->uh_dport;
985				src_port = UDP(ulp)->uh_sport;
986				break;
987
988			case IPPROTO_HOPOPTS:	/* RFC 2460 */
989				PULLUP_TO(hlen, ulp, struct ip6_hbh);
990				ext_hd |= EXT_HOPOPTS;
991				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
992				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
993				ulp = NULL;
994				break;
995
996			case IPPROTO_ROUTING:	/* RFC 2460 */
997				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
998				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
999				case 0:
1000					ext_hd |= EXT_RTHDR0;
1001					break;
1002				case 2:
1003					ext_hd |= EXT_RTHDR2;
1004					break;
1005				default:
1006					printf("IPFW2: IPV6 - Unknown Routing "
1007					    "Header type(%d)\n",
1008					    ((struct ip6_rthdr *)ulp)->ip6r_type);
1009					if (V_fw_deny_unknown_exthdrs)
1010					    return (IP_FW_DENY);
1011					break;
1012				}
1013				ext_hd |= EXT_ROUTING;
1014				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
1015				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
1016				ulp = NULL;
1017				break;
1018
1019			case IPPROTO_FRAGMENT:	/* RFC 2460 */
1020				PULLUP_TO(hlen, ulp, struct ip6_frag);
1021				ext_hd |= EXT_FRAGMENT;
1022				hlen += sizeof (struct ip6_frag);
1023				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
1024				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
1025					IP6F_OFF_MASK;
1026				/* Add IP6F_MORE_FRAG for offset of first
1027				 * fragment to be != 0. */
1028				offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
1029					IP6F_MORE_FRAG;
1030				if (offset == 0) {
1031					printf("IPFW2: IPV6 - Invalid Fragment "
1032					    "Header\n");
1033					if (V_fw_deny_unknown_exthdrs)
1034					    return (IP_FW_DENY);
1035					break;
1036				}
1037				args->f_id.frag_id6 =
1038				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
1039				ulp = NULL;
1040				break;
1041
1042			case IPPROTO_DSTOPTS:	/* RFC 2460 */
1043				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1044				ext_hd |= EXT_DSTOPTS;
1045				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1046				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1047				ulp = NULL;
1048				break;
1049
1050			case IPPROTO_AH:	/* RFC 2402 */
1051				PULLUP_TO(hlen, ulp, struct ip6_ext);
1052				ext_hd |= EXT_AH;
1053				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
1054				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
1055				ulp = NULL;
1056				break;
1057
1058			case IPPROTO_ESP:	/* RFC 2406 */
1059				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
1060				/* Anything past Seq# is variable length and
1061				 * data past this ext. header is encrypted. */
1062				ext_hd |= EXT_ESP;
1063				break;
1064
1065			case IPPROTO_NONE:	/* RFC 2460 */
1066				/*
1067				 * Packet ends here, and IPv6 header has
1068				 * already been pulled up. If ip6e_len!=0
1069				 * then octets must be ignored.
1070				 */
1071				ulp = ip; /* non-NULL to get out of loop. */
1072				break;
1073
1074			case IPPROTO_OSPFIGP:
1075				/* XXX OSPF header check? */
1076				PULLUP_TO(hlen, ulp, struct ip6_ext);
1077				break;
1078
1079			case IPPROTO_PIM:
1080				/* XXX PIM header check? */
1081				PULLUP_TO(hlen, ulp, struct pim);
1082				break;
1083
1084			case IPPROTO_CARP:
1085				PULLUP_TO(hlen, ulp, struct carp_header);
1086				if (((struct carp_header *)ulp)->carp_version !=
1087				    CARP_VERSION)
1088					return (IP_FW_DENY);
1089				if (((struct carp_header *)ulp)->carp_type !=
1090				    CARP_ADVERTISEMENT)
1091					return (IP_FW_DENY);
1092				break;
1093
1094			case IPPROTO_IPV6:	/* RFC 2893 */
1095				PULLUP_TO(hlen, ulp, struct ip6_hdr);
1096				break;
1097
1098			case IPPROTO_IPV4:	/* RFC 2893 */
1099				PULLUP_TO(hlen, ulp, struct ip);
1100				break;
1101
1102			default:
1103				printf("IPFW2: IPV6 - Unknown Extension "
1104				    "Header(%d), ext_hd=%x\n", proto, ext_hd);
1105				if (V_fw_deny_unknown_exthdrs)
1106				    return (IP_FW_DENY);
1107				PULLUP_TO(hlen, ulp, struct ip6_ext);
1108				break;
1109			} /*switch */
1110		}
1111		ip = mtod(m, struct ip *);
1112		ip6 = (struct ip6_hdr *)ip;
1113		args->f_id.src_ip6 = ip6->ip6_src;
1114		args->f_id.dst_ip6 = ip6->ip6_dst;
1115		args->f_id.src_ip = 0;
1116		args->f_id.dst_ip = 0;
1117		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
1118	} else if (pktlen >= sizeof(struct ip) &&
1119	    (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
1120	    	is_ipv4 = 1;
1121		hlen = ip->ip_hl << 2;
1122		args->f_id.addr_type = 4;
1123
1124		/*
1125		 * Collect parameters into local variables for faster matching.
1126		 */
1127		proto = ip->ip_p;
1128		src_ip = ip->ip_src;
1129		dst_ip = ip->ip_dst;
1130		if (args->eh != NULL) { /* layer 2 packets are as on the wire */
1131			offset = ntohs(ip->ip_off) & IP_OFFMASK;
1132			ip_len = ntohs(ip->ip_len);
1133		} else {
1134			offset = ip->ip_off & IP_OFFMASK;
1135			ip_len = ip->ip_len;
1136		}
1137		pktlen = ip_len < pktlen ? ip_len : pktlen;
1138
1139		if (offset == 0) {
1140			switch (proto) {
1141			case IPPROTO_TCP:
1142				PULLUP_TO(hlen, ulp, struct tcphdr);
1143				dst_port = TCP(ulp)->th_dport;
1144				src_port = TCP(ulp)->th_sport;
1145				args->f_id.flags = TCP(ulp)->th_flags;
1146				break;
1147
1148			case IPPROTO_UDP:
1149				PULLUP_TO(hlen, ulp, struct udphdr);
1150				dst_port = UDP(ulp)->uh_dport;
1151				src_port = UDP(ulp)->uh_sport;
1152				break;
1153
1154			case IPPROTO_ICMP:
1155				PULLUP_TO(hlen, ulp, struct icmphdr);
1156				args->f_id.flags = ICMP(ulp)->icmp_type;
1157				break;
1158
1159			default:
1160				break;
1161			}
1162		}
1163
1164		ip = mtod(m, struct ip *);
1165		args->f_id.src_ip = ntohl(src_ip.s_addr);
1166		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1167	}
1168#undef PULLUP_TO
1169	if (proto) { /* we may have port numbers, store them */
1170		args->f_id.proto = proto;
1171		args->f_id.src_port = src_port = ntohs(src_port);
1172		args->f_id.dst_port = dst_port = ntohs(dst_port);
1173	}
1174
1175	IPFW_RLOCK(chain);
1176	if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
1177		IPFW_RUNLOCK(chain);
1178		return (IP_FW_PASS);	/* accept */
1179	}
1180	mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
1181	if (args->rule) {
1182		/*
1183		 * Packet has already been tagged. Look for the next rule
1184		 * to restart processing. Make sure that args->rule still
1185		 * exists and not changed.
1186		 * If fw_one_pass != 0 then just accept it.
1187		 * XXX should not happen here, but optimized out in
1188		 * the caller.
1189		 */
1190		if (V_fw_one_pass) {
1191			IPFW_RUNLOCK(chain);
1192			return (IP_FW_PASS);
1193		}
1194		if (chain->id != args->chain_id) {
1195			for (f = chain->rules; f != NULL; f = f->next)
1196				if (f == args->rule && f->id == args->rule_id)
1197					break;
1198
1199			if (f != NULL)
1200				f = f->next_rule;
1201			else
1202				f = ip_fw_default_rule;
1203		} else
1204			f = args->rule->next_rule;
1205
1206		if (f == NULL)
1207			f = lookup_next_rule(args->rule, 0);
1208	} else {
1209		/*
1210		 * Find the starting rule. It can be either the first
1211		 * one, or the one after divert_rule if asked so.
1212		 */
1213		int skipto = mtag ? divert_cookie(mtag) : 0;
1214
1215		f = chain->rules;
1216		if (args->eh == NULL && skipto != 0) {
1217			if (skipto >= IPFW_DEFAULT_RULE) {
1218				IPFW_RUNLOCK(chain);
1219				return (IP_FW_DENY); /* invalid */
1220			}
1221			while (f && f->rulenum <= skipto)
1222				f = f->next;
1223			if (f == NULL) {	/* drop packet */
1224				IPFW_RUNLOCK(chain);
1225				return (IP_FW_DENY);
1226			}
1227		}
1228	}
1229	/* reset divert rule to avoid confusion later */
1230	if (mtag) {
1231		divinput_flags = divert_info(mtag) &
1232		    (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
1233		m_tag_delete(m, mtag);
1234	}
1235
1236	/*
1237	 * Now scan the rules, and parse microinstructions for each rule.
1238	 * We have two nested loops and an inner switch. Sometimes we
1239	 * need to break out of one or both loops, or re-enter one of
1240	 * the loops with updated variables. Loop variables are:
1241	 *
1242	 *	f (outer loop) points to the current rule.
1243	 *		On output it points to the matching rule.
1244	 *	done (outer loop) is used as a flag to break the loop.
1245	 *	l (inner loop)	residual length of current rule.
1246	 *		cmd points to the current microinstruction.
1247	 *
1248	 * We break the inner loop by setting l=0 and possibly
1249	 * cmdlen=0 if we don't want to advance cmd.
1250	 * We break the outer loop by setting done=1
1251	 * We can restart the inner loop by setting l>0 and f, cmd
1252	 * as needed.
1253	 */
1254	for (; f; f = f->next) {
1255		ipfw_insn *cmd;
1256		uint32_t tablearg = 0;
1257		int l, cmdlen, skip_or; /* skip rest of OR block */
1258
1259/* again: */
1260		if (V_set_disable & (1 << f->set) )
1261			continue;
1262
1263		skip_or = 0;
1264		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1265		    l -= cmdlen, cmd += cmdlen) {
1266			int match;
1267
1268			/*
1269			 * check_body is a jump target used when we find a
1270			 * CHECK_STATE, and need to jump to the body of
1271			 * the target rule.
1272			 */
1273
1274/* check_body: */
1275			cmdlen = F_LEN(cmd);
1276			/*
1277			 * An OR block (insn_1 || .. || insn_n) has the
1278			 * F_OR bit set in all but the last instruction.
1279			 * The first match will set "skip_or", and cause
1280			 * the following instructions to be skipped until
1281			 * past the one with the F_OR bit clear.
1282			 */
1283			if (skip_or) {		/* skip this instruction */
1284				if ((cmd->len & F_OR) == 0)
1285					skip_or = 0;	/* next one is good */
1286				continue;
1287			}
1288			match = 0; /* set to 1 if we succeed */
1289
1290			switch (cmd->opcode) {
1291			/*
1292			 * The first set of opcodes compares the packet's
1293			 * fields with some pattern, setting 'match' if a
1294			 * match is found. At the end of the loop there is
1295			 * logic to deal with F_NOT and F_OR flags associated
1296			 * with the opcode.
1297			 */
1298			case O_NOP:
1299				match = 1;
1300				break;
1301
1302			case O_FORWARD_MAC:
1303				printf("ipfw: opcode %d unimplemented\n",
1304				    cmd->opcode);
1305				break;
1306
1307			case O_GID:
1308			case O_UID:
1309			case O_JAIL:
1310				/*
1311				 * We only check offset == 0 && proto != 0,
1312				 * as this ensures that we have a
1313				 * packet with the ports info.
1314				 */
1315				if (offset!=0)
1316					break;
1317				if (is_ipv6) /* XXX to be fixed later */
1318					break;
1319				if (proto == IPPROTO_TCP ||
1320				    proto == IPPROTO_UDP)
1321					match = check_uidgid(
1322						    (ipfw_insn_u32 *)cmd,
1323						    proto, oif,
1324						    dst_ip, dst_port,
1325						    src_ip, src_port, &ucred_cache,
1326						    &ucred_lookup, args->inp);
1327				break;
1328
1329			case O_RECV:
1330				match = iface_match(m->m_pkthdr.rcvif,
1331				    (ipfw_insn_if *)cmd);
1332				break;
1333
1334			case O_XMIT:
1335				match = iface_match(oif, (ipfw_insn_if *)cmd);
1336				break;
1337
1338			case O_VIA:
1339				match = iface_match(oif ? oif :
1340				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
1341				break;
1342
1343			case O_MACADDR2:
1344				if (args->eh != NULL) {	/* have MAC header */
1345					u_int32_t *want = (u_int32_t *)
1346						((ipfw_insn_mac *)cmd)->addr;
1347					u_int32_t *mask = (u_int32_t *)
1348						((ipfw_insn_mac *)cmd)->mask;
1349					u_int32_t *hdr = (u_int32_t *)args->eh;
1350
1351					match =
1352					    ( want[0] == (hdr[0] & mask[0]) &&
1353					      want[1] == (hdr[1] & mask[1]) &&
1354					      want[2] == (hdr[2] & mask[2]) );
1355				}
1356				break;
1357
1358			case O_MAC_TYPE:
1359				if (args->eh != NULL) {
1360					u_int16_t *p =
1361					    ((ipfw_insn_u16 *)cmd)->ports;
1362					int i;
1363
1364					for (i = cmdlen - 1; !match && i>0;
1365					    i--, p += 2)
1366						match = (etype >= p[0] &&
1367						    etype <= p[1]);
1368				}
1369				break;
1370
1371			case O_FRAG:
1372				match = (offset != 0);
1373				break;
1374
1375			case O_IN:	/* "out" is "not in" */
1376				match = (oif == NULL);
1377				break;
1378
1379			case O_LAYER2:
1380				match = (args->eh != NULL);
1381				break;
1382
1383			case O_DIVERTED:
1384				match = (cmd->arg1 & 1 && divinput_flags &
1385				    IP_FW_DIVERT_LOOPBACK_FLAG) ||
1386					(cmd->arg1 & 2 && divinput_flags &
1387				    IP_FW_DIVERT_OUTPUT_FLAG);
1388				break;
1389
1390			case O_PROTO:
1391				/*
1392				 * We do not allow an arg of 0 so the
1393				 * check of "proto" only suffices.
1394				 */
1395				match = (proto == cmd->arg1);
1396				break;
1397
1398			case O_IP_SRC:
1399				match = is_ipv4 &&
1400				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1401				    src_ip.s_addr);
1402				break;
1403
1404			case O_IP_SRC_LOOKUP:
1405			case O_IP_DST_LOOKUP:
1406				if (is_ipv4) {
1407				    uint32_t a =
1408					(cmd->opcode == O_IP_DST_LOOKUP) ?
1409					    dst_ip.s_addr : src_ip.s_addr;
1410				    uint32_t v = 0;
1411
1412				    if (cmdlen > F_INSN_SIZE(ipfw_insn_u32)) {
1413					/* generic lookup */
1414					v = ((ipfw_insn_u32 *)cmd)->d[1];
1415					if (v == 0)
1416					    a = dst_ip.s_addr;
1417					else if (v == 1)
1418					    a = src_ip.s_addr;
1419					else if (offset != 0)
1420					    break;
1421					else if (proto != IPPROTO_TCP &&
1422						proto != IPPROTO_UDP)
1423					    break;
1424					else if (v == 2)
1425					    a = dst_port;
1426					else if (v == 3)
1427					    a = src_port;
1428					else if (v == 4 || v == 5) {
1429					    check_uidgid(
1430						(ipfw_insn_u32 *)cmd,
1431						proto, oif,
1432						dst_ip, dst_port,
1433						src_ip, src_port, &ucred_cache,
1434						&ucred_lookup, args->inp);
1435					    if (v == 4 /* O_UID */)
1436						a = ucred_cache->cr_uid;
1437					    else if (v == 5 /* O_JAIL */)
1438						a = ucred_cache->cr_prison->pr_id;
1439					} else
1440					    break;
1441				    }
1442				    match = ipfw_lookup_table(chain, cmd->arg1, a,
1443					&v);
1444				    if (!match)
1445					break;
1446				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
1447					match =
1448					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
1449				    else
1450					tablearg = v;
1451				}
1452				break;
1453
1454			case O_IP_SRC_MASK:
1455			case O_IP_DST_MASK:
1456				if (is_ipv4) {
1457				    uint32_t a =
1458					(cmd->opcode == O_IP_DST_MASK) ?
1459					    dst_ip.s_addr : src_ip.s_addr;
1460				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
1461				    int i = cmdlen-1;
1462
1463				    for (; !match && i>0; i-= 2, p+= 2)
1464					match = (p[0] == (a & p[1]));
1465				}
1466				break;
1467
1468			case O_IP_SRC_ME:
1469				if (is_ipv4) {
1470					struct ifnet *tif;
1471
1472					INADDR_TO_IFP(src_ip, tif);
1473					match = (tif != NULL);
1474				}
1475				break;
1476
1477			case O_IP_DST_SET:
1478			case O_IP_SRC_SET:
1479				if (is_ipv4) {
1480					u_int32_t *d = (u_int32_t *)(cmd+1);
1481					u_int32_t addr =
1482					    cmd->opcode == O_IP_DST_SET ?
1483						args->f_id.dst_ip :
1484						args->f_id.src_ip;
1485
1486					    if (addr < d[0])
1487						    break;
1488					    addr -= d[0]; /* subtract base */
1489					    match = (addr < cmd->arg1) &&
1490						( d[ 1 + (addr>>5)] &
1491						  (1<<(addr & 0x1f)) );
1492				}
1493				break;
1494
1495			case O_IP_DST:
1496				match = is_ipv4 &&
1497				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1498				    dst_ip.s_addr);
1499				break;
1500
1501			case O_IP_DST_ME:
1502				if (is_ipv4) {
1503					struct ifnet *tif;
1504
1505					INADDR_TO_IFP(dst_ip, tif);
1506					match = (tif != NULL);
1507				}
1508				break;
1509
1510			case O_IP_SRCPORT:
1511			case O_IP_DSTPORT:
1512				/*
1513				 * offset == 0 && proto != 0 is enough
1514				 * to guarantee that we have a
1515				 * packet with port info.
1516				 */
1517				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
1518				    && offset == 0) {
1519					u_int16_t x =
1520					    (cmd->opcode == O_IP_SRCPORT) ?
1521						src_port : dst_port ;
1522					u_int16_t *p =
1523					    ((ipfw_insn_u16 *)cmd)->ports;
1524					int i;
1525
1526					for (i = cmdlen - 1; !match && i>0;
1527					    i--, p += 2)
1528						match = (x>=p[0] && x<=p[1]);
1529				}
1530				break;
1531
1532			case O_ICMPTYPE:
1533				match = (offset == 0 && proto==IPPROTO_ICMP &&
1534				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
1535				break;
1536
1537#ifdef INET6
1538			case O_ICMP6TYPE:
1539				match = is_ipv6 && offset == 0 &&
1540				    proto==IPPROTO_ICMPV6 &&
1541				    icmp6type_match(
1542					ICMP6(ulp)->icmp6_type,
1543					(ipfw_insn_u32 *)cmd);
1544				break;
1545#endif /* INET6 */
1546
1547			case O_IPOPT:
1548				match = (is_ipv4 &&
1549				    ipopts_match(ip, cmd) );
1550				break;
1551
1552			case O_IPVER:
1553				match = (is_ipv4 &&
1554				    cmd->arg1 == ip->ip_v);
1555				break;
1556
1557			case O_IPID:
1558			case O_IPLEN:
1559			case O_IPTTL:
1560				if (is_ipv4) {	/* only for IP packets */
1561				    uint16_t x;
1562				    uint16_t *p;
1563				    int i;
1564
1565				    if (cmd->opcode == O_IPLEN)
1566					x = ip_len;
1567				    else if (cmd->opcode == O_IPTTL)
1568					x = ip->ip_ttl;
1569				    else /* must be IPID */
1570					x = ntohs(ip->ip_id);
1571				    if (cmdlen == 1) {
1572					match = (cmd->arg1 == x);
1573					break;
1574				    }
1575				    /* otherwise we have ranges */
1576				    p = ((ipfw_insn_u16 *)cmd)->ports;
1577				    i = cmdlen - 1;
1578				    for (; !match && i>0; i--, p += 2)
1579					match = (x >= p[0] && x <= p[1]);
1580				}
1581				break;
1582
1583			case O_IPPRECEDENCE:
1584				match = (is_ipv4 &&
1585				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
1586				break;
1587
1588			case O_IPTOS:
1589				match = (is_ipv4 &&
1590				    flags_match(cmd, ip->ip_tos));
1591				break;
1592
1593			case O_TCPDATALEN:
1594				if (proto == IPPROTO_TCP && offset == 0) {
1595				    struct tcphdr *tcp;
1596				    uint16_t x;
1597				    uint16_t *p;
1598				    int i;
1599
1600				    tcp = TCP(ulp);
1601				    x = ip_len -
1602					((ip->ip_hl + tcp->th_off) << 2);
1603				    if (cmdlen == 1) {
1604					match = (cmd->arg1 == x);
1605					break;
1606				    }
1607				    /* otherwise we have ranges */
1608				    p = ((ipfw_insn_u16 *)cmd)->ports;
1609				    i = cmdlen - 1;
1610				    for (; !match && i>0; i--, p += 2)
1611					match = (x >= p[0] && x <= p[1]);
1612				}
1613				break;
1614
1615			case O_TCPFLAGS:
1616				match = (proto == IPPROTO_TCP && offset == 0 &&
1617				    flags_match(cmd, TCP(ulp)->th_flags));
1618				break;
1619
1620			case O_TCPOPTS:
1621				match = (proto == IPPROTO_TCP && offset == 0 &&
1622				    tcpopts_match(TCP(ulp), cmd));
1623				break;
1624
1625			case O_TCPSEQ:
1626				match = (proto == IPPROTO_TCP && offset == 0 &&
1627				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1628					TCP(ulp)->th_seq);
1629				break;
1630
1631			case O_TCPACK:
1632				match = (proto == IPPROTO_TCP && offset == 0 &&
1633				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1634					TCP(ulp)->th_ack);
1635				break;
1636
1637			case O_TCPWIN:
1638				match = (proto == IPPROTO_TCP && offset == 0 &&
1639				    cmd->arg1 == TCP(ulp)->th_win);
1640				break;
1641
1642			case O_ESTAB:
1643				/* reject packets which have SYN only */
1644				/* XXX should i also check for TH_ACK ? */
1645				match = (proto == IPPROTO_TCP && offset == 0 &&
1646				    (TCP(ulp)->th_flags &
1647				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
1648				break;
1649
1650			case O_ALTQ: {
1651				struct pf_mtag *at;
1652				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
1653
1654				match = 1;
1655				at = pf_find_mtag(m);
1656				if (at != NULL && at->qid != 0)
1657					break;
1658				at = pf_get_mtag(m);
1659				if (at == NULL) {
1660					/*
1661					 * Let the packet fall back to the
1662					 * default ALTQ.
1663					 */
1664					break;
1665				}
1666				at->qid = altq->qid;
1667				if (is_ipv4)
1668					at->af = AF_INET;
1669				else
1670					at->af = AF_LINK;
1671				at->hdr = ip;
1672				break;
1673			}
1674
1675			case O_LOG:
1676				if (V_fw_verbose)
1677					ipfw_log(f, hlen, args, m,
1678					    oif, offset, tablearg, ip);
1679				match = 1;
1680				break;
1681
1682			case O_PROB:
1683				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
1684				break;
1685
1686			case O_VERREVPATH:
1687				/* Outgoing packets automatically pass/match */
1688				match = ((oif != NULL) ||
1689				    (m->m_pkthdr.rcvif == NULL) ||
1690				    (
1691#ifdef INET6
1692				    is_ipv6 ?
1693					verify_path6(&(args->f_id.src_ip6),
1694					    m->m_pkthdr.rcvif) :
1695#endif
1696				    verify_path(src_ip, m->m_pkthdr.rcvif,
1697				        args->f_id.fib)));
1698				break;
1699
1700			case O_VERSRCREACH:
1701				/* Outgoing packets automatically pass/match */
1702				match = (hlen > 0 && ((oif != NULL) ||
1703#ifdef INET6
1704				    is_ipv6 ?
1705				        verify_path6(&(args->f_id.src_ip6),
1706				            NULL) :
1707#endif
1708				    verify_path(src_ip, NULL, args->f_id.fib)));
1709				break;
1710
1711			case O_ANTISPOOF:
1712				/* Outgoing packets automatically pass/match */
1713				if (oif == NULL && hlen > 0 &&
1714				    (  (is_ipv4 && in_localaddr(src_ip))
1715#ifdef INET6
1716				    || (is_ipv6 &&
1717				        in6_localaddr(&(args->f_id.src_ip6)))
1718#endif
1719				    ))
1720					match =
1721#ifdef INET6
1722					    is_ipv6 ? verify_path6(
1723					        &(args->f_id.src_ip6),
1724					        m->m_pkthdr.rcvif) :
1725#endif
1726					    verify_path(src_ip,
1727					    	m->m_pkthdr.rcvif,
1728					        args->f_id.fib);
1729				else
1730					match = 1;
1731				break;
1732
1733			case O_IPSEC:
1734#ifdef IPSEC
1735				match = (m_tag_find(m,
1736				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
1737#endif
1738				/* otherwise no match */
1739				break;
1740
1741#ifdef INET6
1742			case O_IP6_SRC:
1743				match = is_ipv6 &&
1744				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
1745				    &((ipfw_insn_ip6 *)cmd)->addr6);
1746				break;
1747
1748			case O_IP6_DST:
1749				match = is_ipv6 &&
1750				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
1751				    &((ipfw_insn_ip6 *)cmd)->addr6);
1752				break;
1753			case O_IP6_SRC_MASK:
1754			case O_IP6_DST_MASK:
1755				if (is_ipv6) {
1756					int i = cmdlen - 1;
1757					struct in6_addr p;
1758					struct in6_addr *d =
1759					    &((ipfw_insn_ip6 *)cmd)->addr6;
1760
1761					for (; !match && i > 0; d += 2,
1762					    i -= F_INSN_SIZE(struct in6_addr)
1763					    * 2) {
1764						p = (cmd->opcode ==
1765						    O_IP6_SRC_MASK) ?
1766						    args->f_id.src_ip6:
1767						    args->f_id.dst_ip6;
1768						APPLY_MASK(&p, &d[1]);
1769						match =
1770						    IN6_ARE_ADDR_EQUAL(&d[0],
1771						    &p);
1772					}
1773				}
1774				break;
1775
1776			case O_IP6_SRC_ME:
1777				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
1778				break;
1779
1780			case O_IP6_DST_ME:
1781				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
1782				break;
1783
1784			case O_FLOW6ID:
1785				match = is_ipv6 &&
1786				    flow6id_match(args->f_id.flow_id6,
1787				    (ipfw_insn_u32 *) cmd);
1788				break;
1789
1790			case O_EXT_HDR:
1791				match = is_ipv6 &&
1792				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
1793				break;
1794
1795			case O_IP6:
1796				match = is_ipv6;
1797				break;
1798#endif
1799
1800			case O_IP4:
1801				match = is_ipv4;
1802				break;
1803
1804			case O_TAG: {
1805				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
1806				    tablearg : cmd->arg1;
1807
1808				/* Packet is already tagged with this tag? */
1809				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
1810
1811				/* We have `untag' action when F_NOT flag is
1812				 * present. And we must remove this mtag from
1813				 * mbuf and reset `match' to zero (`match' will
1814				 * be inversed later).
1815				 * Otherwise we should allocate new mtag and
1816				 * push it into mbuf.
1817				 */
1818				if (cmd->len & F_NOT) { /* `untag' action */
1819					if (mtag != NULL)
1820						m_tag_delete(m, mtag);
1821				} else if (mtag == NULL) {
1822					if ((mtag = m_tag_alloc(MTAG_IPFW,
1823					    tag, 0, M_NOWAIT)) != NULL)
1824						m_tag_prepend(m, mtag);
1825				}
1826				match = (cmd->len & F_NOT) ? 0: 1;
1827				break;
1828			}
1829
1830			case O_FIB: /* try match the specified fib */
1831				if (args->f_id.fib == cmd->arg1)
1832					match = 1;
1833				break;
1834
1835			case O_TAGGED: {
1836				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
1837				    tablearg : cmd->arg1;
1838
1839				if (cmdlen == 1) {
1840					match = m_tag_locate(m, MTAG_IPFW,
1841					    tag, NULL) != NULL;
1842					break;
1843				}
1844
1845				/* we have ranges */
1846				for (mtag = m_tag_first(m);
1847				    mtag != NULL && !match;
1848				    mtag = m_tag_next(m, mtag)) {
1849					uint16_t *p;
1850					int i;
1851
1852					if (mtag->m_tag_cookie != MTAG_IPFW)
1853						continue;
1854
1855					p = ((ipfw_insn_u16 *)cmd)->ports;
1856					i = cmdlen - 1;
1857					for(; !match && i > 0; i--, p += 2)
1858						match =
1859						    mtag->m_tag_id >= p[0] &&
1860						    mtag->m_tag_id <= p[1];
1861				}
1862				break;
1863			}
1864
1865			/*
1866			 * The second set of opcodes represents 'actions',
1867			 * i.e. the terminal part of a rule once the packet
1868			 * matches all previous patterns.
1869			 * Typically there is only one action for each rule,
1870			 * and the opcode is stored at the end of the rule
1871			 * (but there are exceptions -- see below).
1872			 *
1873			 * In general, here we set retval and terminate the
1874			 * outer loop (would be a 'break 3' in some language,
1875			 * but we need to set l=0, done=1)
1876			 *
1877			 * Exceptions:
1878			 * O_COUNT and O_SKIPTO actions:
1879			 *   instead of terminating, we jump to the next rule
1880			 *   (setting l=0), or to the SKIPTO target (by
1881			 *   setting f, cmd and l as needed), respectively.
1882			 *
1883			 * O_TAG, O_LOG and O_ALTQ action parameters:
1884			 *   perform some action and set match = 1;
1885			 *
1886			 * O_LIMIT and O_KEEP_STATE: these opcodes are
1887			 *   not real 'actions', and are stored right
1888			 *   before the 'action' part of the rule.
1889			 *   These opcodes try to install an entry in the
1890			 *   state tables; if successful, we continue with
1891			 *   the next opcode (match=1; break;), otherwise
1892			 *   the packet must be dropped (set retval,
1893			 *   break loops with l=0, done=1)
1894			 *
1895			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
1896			 *   cause a lookup of the state table, and a jump
1897			 *   to the 'action' part of the parent rule
1898			 *   if an entry is found, or
1899			 *   (CHECK_STATE only) a jump to the next rule if
1900			 *   the entry is not found.
1901			 *   The result of the lookup is cached so that
1902			 *   further instances of these opcodes become NOPs.
1903			 *   The jump to the next rule is done by setting
1904			 *   l=0, cmdlen=0.
1905			 */
1906			case O_LIMIT:
1907			case O_KEEP_STATE:
1908				if (install_state(f,
1909				    (ipfw_insn_limit *)cmd, args, tablearg)) {
1910					/* error or limit violation */
1911					retval = IP_FW_DENY;
1912					l = 0;	/* exit inner loop */
1913					done = 1; /* exit outer loop */
1914				}
1915				match = 1;
1916				break;
1917
1918			case O_PROBE_STATE:
1919			case O_CHECK_STATE:
1920				/*
1921				 * dynamic rules are checked at the first
1922				 * keep-state or check-state occurrence,
1923				 * with the result being stored in dyn_dir.
1924				 * The compiler introduces a PROBE_STATE
1925				 * instruction for us when we have a
1926				 * KEEP_STATE (because PROBE_STATE needs
1927				 * to be run first).
1928				 */
1929				if (dyn_dir == MATCH_UNKNOWN &&
1930				    (q = lookup_dyn_rule(&args->f_id,
1931				     &dyn_dir, proto == IPPROTO_TCP ?
1932					TCP(ulp) : NULL))
1933					!= NULL) {
1934					/*
1935					 * Found dynamic entry, update stats
1936					 * and jump to the 'action' part of
1937					 * the parent rule by setting
1938					 * f, cmd, l and clearing cmdlen.
1939					 */
1940					q->pcnt++;
1941					q->bcnt += pktlen;
1942					f = q->rule;
1943					cmd = ACTION_PTR(f);
1944					l = f->cmd_len - f->act_ofs;
1945					ipfw_dyn_unlock();
1946					cmdlen = 0;
1947					match = 1;
1948					break;
1949				}
1950				/*
1951				 * Dynamic entry not found. If CHECK_STATE,
1952				 * skip to next rule, if PROBE_STATE just
1953				 * ignore and continue with next opcode.
1954				 */
1955				if (cmd->opcode == O_CHECK_STATE)
1956					l = 0;	/* exit inner loop */
1957				match = 1;
1958				break;
1959
1960			case O_ACCEPT:
1961				retval = 0;	/* accept */
1962				l = 0;		/* exit inner loop */
1963				done = 1;	/* exit outer loop */
1964				break;
1965
1966			case O_PIPE:
1967			case O_QUEUE:
1968				args->rule = f; /* report matching rule */
1969				args->rule_id = f->id;
1970				args->chain_id = chain->id;
1971				if (cmd->arg1 == IP_FW_TABLEARG)
1972					args->cookie = tablearg;
1973				else
1974					args->cookie = cmd->arg1;
1975				retval = IP_FW_DUMMYNET;
1976				l = 0;          /* exit inner loop */
1977				done = 1;       /* exit outer loop */
1978				break;
1979
1980			case O_DIVERT:
1981			case O_TEE:
1982				if (args->eh) /* not on layer 2 */
1983				    break;
1984				/* otherwise this is terminal */
1985				l = 0;		/* exit inner loop */
1986				done = 1;	/* exit outer loop */
1987				mtag = m_tag_get(PACKET_TAG_DIVERT,
1988					sizeof(struct divert_tag),
1989					M_NOWAIT);
1990				if (mtag == NULL) {
1991				    retval = IP_FW_DENY;
1992				} else {
1993				    struct divert_tag *dt;
1994				    dt = (struct divert_tag *)(mtag+1);
1995				    dt->cookie = f->rulenum;
1996				    if (cmd->arg1 == IP_FW_TABLEARG)
1997					dt->info = tablearg;
1998				    else
1999					dt->info = cmd->arg1;
2000				    m_tag_prepend(m, mtag);
2001				    retval = (cmd->opcode == O_DIVERT) ?
2002					IP_FW_DIVERT : IP_FW_TEE;
2003				}
2004				break;
2005
2006			case O_COUNT:
2007			case O_SKIPTO:
2008				f->pcnt++;	/* update stats */
2009				f->bcnt += pktlen;
2010				f->timestamp = time_uptime;
2011				if (cmd->opcode == O_COUNT) {
2012					l = 0;		/* exit inner loop */
2013					break;
2014				}
2015				/* handle skipto */
2016				if (cmd->arg1 == IP_FW_TABLEARG) {
2017					f = lookup_next_rule(f, tablearg);
2018				} else {
2019					if (f->next_rule == NULL)
2020						lookup_next_rule(f, 0);
2021					f = f->next_rule;
2022				}
2023				/*
2024				 * Skip disabled rules, and
2025				 * re-enter the inner loop
2026				 * with the correct f, l and cmd.
2027				 * Also clear cmdlen and skip_or
2028				 */
2029				while (f && (V_set_disable & (1 << f->set)))
2030					f = f->next;
2031				if (f) { /* found a valid rule */
2032					l = f->cmd_len;
2033					cmd = f->cmd;
2034				} else {
2035					l = 0;  /* exit inner loop */
2036				}
2037				match = 1;
2038				cmdlen = 0;
2039				skip_or = 0;
2040				break;
2041
2042			case O_REJECT:
2043				/*
2044				 * Drop the packet and send a reject notice
2045				 * if the packet is not ICMP (or is an ICMP
2046				 * query), and it is not multicast/broadcast.
2047				 */
2048				if (hlen > 0 && is_ipv4 && offset == 0 &&
2049				    (proto != IPPROTO_ICMP ||
2050				     is_icmp_query(ICMP(ulp))) &&
2051				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2052				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
2053					send_reject(args, cmd->arg1, ip_len, ip);
2054					m = args->m;
2055				}
2056				/* FALLTHROUGH */
2057#ifdef INET6
2058			case O_UNREACH6:
2059				if (hlen > 0 && is_ipv6 &&
2060				    ((offset & IP6F_OFF_MASK) == 0) &&
2061				    (proto != IPPROTO_ICMPV6 ||
2062				     (is_icmp6_query(args->f_id.flags) == 1)) &&
2063				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2064				    !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
2065					send_reject6(
2066					    args, cmd->arg1, hlen,
2067					    (struct ip6_hdr *)ip);
2068					m = args->m;
2069				}
2070				/* FALLTHROUGH */
2071#endif
2072			case O_DENY:
2073				retval = IP_FW_DENY;
2074				l = 0;		/* exit inner loop */
2075				done = 1;	/* exit outer loop */
2076				break;
2077
2078			case O_FORWARD_IP:
2079				if (args->eh)	/* not valid on layer2 pkts */
2080					break;
2081				if (!q || dyn_dir == MATCH_FORWARD) {
2082				    struct sockaddr_in *sa;
2083				    sa = &(((ipfw_insn_sa *)cmd)->sa);
2084				    if (sa->sin_addr.s_addr == INADDR_ANY) {
2085					bcopy(sa, &args->hopstore,
2086							sizeof(*sa));
2087					args->hopstore.sin_addr.s_addr =
2088						    htonl(tablearg);
2089					args->next_hop = &args->hopstore;
2090				    } else {
2091					args->next_hop = sa;
2092				    }
2093				}
2094				retval = IP_FW_PASS;
2095				l = 0;          /* exit inner loop */
2096				done = 1;       /* exit outer loop */
2097				break;
2098
2099			case O_NETGRAPH:
2100			case O_NGTEE:
2101				args->rule = f;	/* report matching rule */
2102				args->rule_id = f->id;
2103				args->chain_id = chain->id;
2104				if (cmd->arg1 == IP_FW_TABLEARG)
2105					args->cookie = tablearg;
2106				else
2107					args->cookie = cmd->arg1;
2108				retval = (cmd->opcode == O_NETGRAPH) ?
2109				    IP_FW_NETGRAPH : IP_FW_NGTEE;
2110				l = 0;          /* exit inner loop */
2111				done = 1;       /* exit outer loop */
2112				break;
2113
2114			case O_SETFIB:
2115				f->pcnt++;	/* update stats */
2116				f->bcnt += pktlen;
2117				f->timestamp = time_uptime;
2118				M_SETFIB(m, cmd->arg1);
2119				args->f_id.fib = cmd->arg1;
2120				l = 0;		/* exit inner loop */
2121				break;
2122
2123			case O_NAT:
2124 				if (!IPFW_NAT_LOADED) {
2125				    retval = IP_FW_DENY;
2126				} else {
2127				    struct cfg_nat *t;
2128				    int nat_id;
2129
2130				    args->rule = f; /* Report matching rule. */
2131				    args->rule_id = f->id;
2132				    args->chain_id = chain->id;
2133				    t = ((ipfw_insn_nat *)cmd)->nat;
2134				    if (t == NULL) {
2135					nat_id = (cmd->arg1 == IP_FW_TABLEARG) ?
2136						tablearg : cmd->arg1;
2137					t = (*lookup_nat_ptr)(&V_layer3_chain.nat, nat_id);
2138
2139					if (t == NULL) {
2140					    retval = IP_FW_DENY;
2141					    l = 0;	/* exit inner loop */
2142					    done = 1;	/* exit outer loop */
2143					    break;
2144					}
2145					if (cmd->arg1 != IP_FW_TABLEARG)
2146					    ((ipfw_insn_nat *)cmd)->nat = t;
2147				    }
2148				    retval = ipfw_nat_ptr(args, t, m);
2149				}
2150				l = 0;          /* exit inner loop */
2151				done = 1;       /* exit outer loop */
2152				break;
2153
2154			case O_REASS: {
2155				int ip_off;
2156
2157				f->pcnt++;
2158				f->bcnt += pktlen;
2159				l = 0;	/* in any case exit inner loop */
2160
2161				ip_off = (args->eh != NULL) ?
2162					ntohs(ip->ip_off) : ip->ip_off;
2163				/* if not fragmented, go to next rule */
2164				if ((ip_off & (IP_MF | IP_OFFMASK)) == 0)
2165				    break;
2166				/*
2167				 * ip_reass() expects len & off in host
2168				 * byte order: fix them in case we come
2169				 * from layer2.
2170				 */
2171				if (args->eh != NULL) {
2172				    ip->ip_len = ntohs(ip->ip_len);
2173				    ip->ip_off = ntohs(ip->ip_off);
2174				}
2175
2176				args->m = m = ip_reass(m);
2177
2178				/*
2179				 * IP header checksum fixup after
2180				 * reassembly and leave header
2181				 * in network byte order.
2182				 */
2183				if (m == NULL) { /* fragment got swallowed */
2184				    retval = IP_FW_DENY;
2185				} else { /* good, packet complete */
2186				    int hlen;
2187
2188				    ip = mtod(m, struct ip *);
2189				    hlen = ip->ip_hl << 2;
2190				    /* revert len & off for layer2 pkts */
2191				    if (args->eh != NULL)
2192					ip->ip_len = htons(ip->ip_len);
2193				    ip->ip_sum = 0;
2194				    if (hlen == sizeof(struct ip))
2195					ip->ip_sum = in_cksum_hdr(ip);
2196				    else
2197					ip->ip_sum = in_cksum(m, hlen);
2198				    retval = IP_FW_REASS;
2199				    args->rule = f;
2200				    args->rule_id = f->id;
2201				    args->chain_id = chain->id;
2202				}
2203				done = 1;	/* exit outer loop */
2204				break;
2205			}
2206
2207			default:
2208				panic("-- unknown opcode %d\n", cmd->opcode);
2209			} /* end of switch() on opcodes */
2210			/*
2211			 * if we get here with l=0, then match is irrelevant.
2212			 */
2213
2214			if (cmd->len & F_NOT)
2215				match = !match;
2216
2217			if (match) {
2218				if (cmd->len & F_OR)
2219					skip_or = 1;
2220			} else {
2221				if (!(cmd->len & F_OR)) /* not an OR block, */
2222					break;		/* try next rule    */
2223			}
2224
2225		}	/* end of inner loop, scan opcodes */
2226
2227		if (done)
2228			break;
2229
2230/* next_rule:; */	/* try next rule		*/
2231
2232	}		/* end of outer for, scan rules */
2233
2234	if (done) {
2235		/* Update statistics */
2236		f->pcnt++;
2237		f->bcnt += pktlen;
2238		f->timestamp = time_uptime;
2239	} else {
2240		retval = IP_FW_DENY;
2241		printf("ipfw: ouch!, skip past end of rules, denying packet\n");
2242	}
2243	IPFW_RUNLOCK(chain);
2244	if (ucred_cache != NULL)
2245		crfree(ucred_cache);
2246	return (retval);
2247
2248pullup_failed:
2249	if (V_fw_verbose)
2250		printf("ipfw: pullup failed\n");
2251	return (IP_FW_DENY);
2252}
2253
2254/****************
2255 * Stuff that must be initialised only on boot or module load
2256 */
2257static int
2258ipfw_init(void)
2259{
2260	int error = 0;
2261
2262	ipfw_dyn_attach();
2263	/*
2264 	 * Only print out this stuff the first time around,
2265	 * when called from the sysinit code.
2266	 */
2267	printf("ipfw2 "
2268#ifdef INET6
2269		"(+ipv6) "
2270#endif
2271		"initialized, divert %s, nat %s, "
2272		"rule-based forwarding "
2273#ifdef IPFIREWALL_FORWARD
2274		"enabled, "
2275#else
2276		"disabled, "
2277#endif
2278		"default to %s, logging ",
2279#ifdef IPDIVERT
2280		"enabled",
2281#else
2282		"loadable",
2283#endif
2284#ifdef IPFIREWALL_NAT
2285		"enabled",
2286#else
2287		"loadable",
2288#endif
2289		default_to_accept ? "accept" : "deny");
2290
2291	/*
2292	 * Note: V_xxx variables can be accessed here but the vnet specific
2293	 * initializer may not have been called yet for the VIMAGE case.
2294	 * Tuneables will have been processed. We will print out values for
2295	 * the default vnet.
2296	 * XXX This should all be rationalized AFTER 8.0
2297	 */
2298	if (V_fw_verbose == 0)
2299		printf("disabled\n");
2300	else if (V_verbose_limit == 0)
2301		printf("unlimited\n");
2302	else
2303		printf("limited to %d packets/entry by default\n",
2304		    V_verbose_limit);
2305
2306	return (error);
2307}
2308
2309/**********************
2310 * Called for the removal of the last instance only on module unload.
2311 */
2312static void
2313ipfw_destroy(void)
2314{
2315
2316	ipfw_dyn_detach();
2317	printf("IP firewall unloaded\n");
2318}
2319
2320/****************
2321 * Stuff that must be initialized for every instance
2322 * (including the first of course).
2323 */
2324static int
2325vnet_ipfw_init(const void *unused)
2326{
2327	int error;
2328	struct ip_fw default_rule;
2329
2330	/* First set up some values that are compile time options */
2331#ifdef IPFIREWALL_VERBOSE
2332	V_fw_verbose = 1;
2333#endif
2334#ifdef IPFIREWALL_VERBOSE_LIMIT
2335	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
2336#endif
2337
2338	error = ipfw_init_tables(&V_layer3_chain);
2339	if (error) {
2340		panic("init_tables"); /* XXX Marko fix this ! */
2341	}
2342#ifdef IPFIREWALL_NAT
2343	LIST_INIT(&V_layer3_chain.nat);
2344#endif
2345
2346	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
2347
2348
2349	V_fw_deny_unknown_exthdrs = 1;
2350
2351	V_layer3_chain.rules = NULL;
2352	IPFW_LOCK_INIT(&V_layer3_chain);
2353
2354	bzero(&default_rule, sizeof default_rule);
2355	default_rule.act_ofs = 0;
2356	default_rule.rulenum = IPFW_DEFAULT_RULE;
2357	default_rule.cmd_len = 1;
2358	default_rule.set = RESVD_SET;
2359	default_rule.cmd[0].len = 1;
2360	default_rule.cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
2361	error = ipfw_add_rule(&V_layer3_chain, &default_rule);
2362
2363	if (error != 0) {
2364		printf("ipfw2: error %u initializing default rule "
2365			"(support disabled)\n", error);
2366		IPFW_LOCK_DESTROY(&V_layer3_chain);
2367		printf("leaving ipfw_iattach (1) with error %d\n", error);
2368		return (error);
2369	}
2370
2371	ip_fw_default_rule = V_layer3_chain.rules;
2372
2373	ipfw_dyn_init();
2374
2375	/* First set up some values that are compile time options */
2376	V_ipfw_vnet_ready = 1;		/* Open for business */
2377
2378	/*
2379	 * Hook the sockopt handler, and the layer2 (V_ip_fw_chk_ptr)
2380	 * and pfil hooks for ipv4 and ipv6. Even if the latter two fail
2381	 * we still keep the module alive because the sockopt and
2382	 * layer2 paths are still useful.
2383	 * ipfw[6]_hook return 0 on success, ENOENT on failure,
2384	 * so we can ignore the exact return value and just set a flag.
2385	 *
2386	 * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so
2387	 * changes in the underlying (per-vnet) variables trigger
2388	 * immediate hook()/unhook() calls.
2389	 * In layer2 we have the same behaviour, except that V_ether_ipfw
2390	 * is checked on each packet because there are no pfil hooks.
2391	 */
2392	V_ip_fw_ctl_ptr = ipfw_ctl;
2393	V_ip_fw_chk_ptr = ipfw_chk;
2394	if (V_fw_enable && ipfw_hook() != 0) {
2395		error = ENOENT; /* see ip_fw_pfil.c::ipfw_hook() */
2396		printf("ipfw_hook() error\n");
2397	}
2398#ifdef INET6
2399	if (V_fw6_enable && ipfw6_hook() != 0) {
2400		error = ENOENT;
2401		printf("ipfw6_hook() error\n");
2402	}
2403#endif
2404	return (error);
2405}
2406
2407/***********************
2408 * Called for the removal of each instance.
2409 */
2410static int
2411vnet_ipfw_uninit(const void *unused)
2412{
2413	struct ip_fw *reap;
2414
2415	V_ipfw_vnet_ready = 0; /* tell new callers to go away */
2416	/*
2417	 * disconnect from ipv4, ipv6, layer2 and sockopt.
2418	 * Then grab, release and grab again the WLOCK so we make
2419	 * sure the update is propagated and nobody will be in.
2420	 */
2421	ipfw_unhook();
2422#ifdef INET6
2423	ipfw6_unhook();
2424#endif
2425	V_ip_fw_chk_ptr = NULL;
2426	V_ip_fw_ctl_ptr = NULL;
2427
2428	IPFW_WLOCK(&V_layer3_chain);
2429	/* We wait on the wlock here until the last user leaves */
2430	IPFW_WUNLOCK(&V_layer3_chain);
2431	IPFW_WLOCK(&V_layer3_chain);
2432
2433	ipfw_dyn_uninit(0);	/* run the callout_drain */
2434	ipfw_flush_tables(&V_layer3_chain);
2435	V_layer3_chain.reap = NULL;
2436	ipfw_free_chain(&V_layer3_chain, 1 /* kill default rule */);
2437	reap = V_layer3_chain.reap;
2438	V_layer3_chain.reap = NULL;
2439	IPFW_WUNLOCK(&V_layer3_chain);
2440	if (reap != NULL)
2441		ipfw_reap_rules(reap);
2442	IPFW_LOCK_DESTROY(&V_layer3_chain);
2443	ipfw_dyn_uninit(1);	/* free the remaining parts */
2444	return 0;
2445}
2446
2447/*
2448 * Module event handler.
2449 * In general we have the choice of handling most of these events by the
2450 * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
2451 * use the SYSINIT handlers as they are more capable of expressing the
2452 * flow of control during module and vnet operations, so this is just
2453 * a skeleton. Note there is no SYSINIT equivalent of the module
2454 * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
2455 */
2456static int
2457ipfw_modevent(module_t mod, int type, void *unused)
2458{
2459	int err = 0;
2460
2461	switch (type) {
2462	case MOD_LOAD:
2463		/* Called once at module load or
2464	 	 * system boot if compiled in. */
2465		break;
2466	case MOD_QUIESCE:
2467		/* Called before unload. May veto unloading. */
2468		break;
2469	case MOD_UNLOAD:
2470		/* Called during unload. */
2471		break;
2472	case MOD_SHUTDOWN:
2473		/* Called during system shutdown. */
2474		break;
2475	default:
2476		err = EOPNOTSUPP;
2477		break;
2478	}
2479	return err;
2480}
2481
2482static moduledata_t ipfwmod = {
2483	"ipfw",
2484	ipfw_modevent,
2485	0
2486};
2487
2488/* Define startup order. */
2489#define	IPFW_SI_SUB_FIREWALL	SI_SUB_PROTO_IFATTACHDOMAIN
2490#define	IPFW_MODEVENT_ORDER	(SI_ORDER_ANY - 255) /* On boot slot in here. */
2491#define	IPFW_MODULE_ORDER	(IPFW_MODEVENT_ORDER + 1) /* A little later. */
2492#define	IPFW_VNET_ORDER		(IPFW_MODEVENT_ORDER + 2) /* Later still. */
2493
2494DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
2495MODULE_VERSION(ipfw, 2);
2496/* should declare some dependencies here */
2497
2498/*
2499 * Starting up. Done in order after ipfwmod() has been called.
2500 * VNET_SYSINIT is also called for each existing vnet and each new vnet.
2501 */
2502SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2503	    ipfw_init, NULL);
2504VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2505	    vnet_ipfw_init, NULL);
2506
2507/*
2508 * Closing up shop. These are done in REVERSE ORDER, but still
2509 * after ipfwmod() has been called. Not called on reboot.
2510 * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
2511 * or when the module is unloaded.
2512 */
2513SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2514	    ipfw_destroy, NULL);
2515VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2516	    vnet_ipfw_uninit, NULL);
2517
2518