ip_fw2.c revision 200055
1/*-
2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: head/sys/netinet/ipfw/ip_fw2.c 200055 2009-12-03 11:16:53Z ume $");
28
29#define        DEB(x)
30#define        DDB(x) x
31
32/*
33 * Implement IP packet firewall (new version)
34 */
35
36#if !defined(KLD_MODULE)
37#include "opt_ipfw.h"
38#include "opt_ipdivert.h"
39#include "opt_ipdn.h"
40#include "opt_inet.h"
41#ifndef INET
42#error IPFIREWALL requires INET.
43#endif /* INET */
44#endif
45#include "opt_inet6.h"
46#include "opt_ipsec.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/condvar.h>
51#include <sys/eventhandler.h>
52#include <sys/malloc.h>
53#include <sys/mbuf.h>
54#include <sys/kernel.h>
55#include <sys/lock.h>
56#include <sys/jail.h>
57#include <sys/module.h>
58#include <sys/priv.h>
59#include <sys/proc.h>
60#include <sys/rwlock.h>
61#include <sys/socket.h>
62#include <sys/socketvar.h>
63#include <sys/sysctl.h>
64#include <sys/syslog.h>
65#include <sys/ucred.h>
66#include <net/ethernet.h> /* for ETHERTYPE_IP */
67#include <net/if.h>
68#include <net/radix.h>
69#include <net/route.h>
70#include <net/pf_mtag.h>
71#include <net/vnet.h>
72
73#define	IPFW_INTERNAL	/* Access to protected data structures in ip_fw.h. */
74
75#include <netinet/in.h>
76#include <netinet/in_var.h>
77#include <netinet/in_pcb.h>
78#include <netinet/ip.h>
79#include <netinet/ip_var.h>
80#include <netinet/ip_icmp.h>
81#include <netinet/ip_fw.h>
82#include <netinet/ip_divert.h>
83#include <netinet/ip_dummynet.h>
84#include <netinet/ip_carp.h>
85#include <netinet/pim.h>
86#include <netinet/tcp_var.h>
87#include <netinet/udp.h>
88#include <netinet/udp_var.h>
89#include <netinet/sctp.h>
90
91#include <netgraph/ng_ipfw.h>
92
93#include <netinet/ip6.h>
94#include <netinet/icmp6.h>
95#ifdef INET6
96#include <netinet6/scope6_var.h>
97#include <netinet6/ip6_var.h>
98#endif
99
100#include <machine/in_cksum.h>	/* XXX for in_cksum */
101
102#ifdef MAC
103#include <security/mac/mac_framework.h>
104#endif
105
106static VNET_DEFINE(int, ipfw_vnet_ready) = 0;
107#define	V_ipfw_vnet_ready	VNET(ipfw_vnet_ready)
108/*
109 * set_disable contains one bit per set value (0..31).
110 * If the bit is set, all rules with the corresponding set
111 * are disabled. Set RESVD_SET(31) is reserved for the default rule
112 * and rules that are not deleted by the flush command,
113 * and CANNOT be disabled.
114 * Rules in set RESVD_SET can only be deleted explicitly.
115 */
116static VNET_DEFINE(u_int32_t, set_disable);
117static VNET_DEFINE(int, fw_verbose);
118static VNET_DEFINE(struct callout, ipfw_timeout);
119static VNET_DEFINE(int, verbose_limit);
120
121#define	V_set_disable			VNET(set_disable)
122#define	V_fw_verbose			VNET(fw_verbose)
123#define	V_ipfw_timeout			VNET(ipfw_timeout)
124#define	V_verbose_limit			VNET(verbose_limit)
125
126#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
127static int default_to_accept = 1;
128#else
129static int default_to_accept;
130#endif
131static uma_zone_t ipfw_dyn_rule_zone;
132
133struct ip_fw *ip_fw_default_rule;
134
135/*
136 * list of rules for layer 3
137 */
138VNET_DEFINE(struct ip_fw_chain, layer3_chain);
139
140MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
141MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
142#define IPFW_NAT_LOADED (ipfw_nat_ptr != NULL)
143ipfw_nat_t *ipfw_nat_ptr = NULL;
144ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
145ipfw_nat_cfg_t *ipfw_nat_del_ptr;
146ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
147ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
148
149struct table_entry {
150	struct radix_node	rn[2];
151	struct sockaddr_in	addr, mask;
152	u_int32_t		value;
153};
154
155static VNET_DEFINE(int, autoinc_step);
156#define	V_autoinc_step			VNET(autoinc_step)
157static VNET_DEFINE(int, fw_deny_unknown_exthdrs);
158#define	V_fw_deny_unknown_exthdrs	VNET(fw_deny_unknown_exthdrs)
159
160extern int ipfw_chg_hook(SYSCTL_HANDLER_ARGS);
161
162#ifdef SYSCTL_NODE
163SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
164SYSCTL_VNET_PROC(_net_inet_ip_fw, OID_AUTO, enable,
165    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_enable), 0,
166    ipfw_chg_hook, "I", "Enable ipfw");
167SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
168    CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
169    "Rule number auto-increment step");
170SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
171    CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
172    "Only do a single pass through ipfw when using dummynet(4)");
173SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose,
174    CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
175    "Log matches to ipfw rules");
176SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
177    CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
178    "Set upper limit of matches of ipfw rules logged");
179SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
180    NULL, IPFW_DEFAULT_RULE,
181    "The default/max possible rule number.");
182SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, tables_max, CTLFLAG_RD,
183    NULL, IPFW_TABLES_MAX,
184    "The maximum number of tables.");
185SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
186    &default_to_accept, 0,
187    "Make the default rule accept all packets.");
188TUNABLE_INT("net.inet.ip.fw.default_to_accept", &default_to_accept);
189
190#ifdef INET6
191SYSCTL_DECL(_net_inet6_ip6);
192SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
193SYSCTL_VNET_PROC(_net_inet6_ip6_fw, OID_AUTO, enable,
194    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw6_enable), 0,
195    ipfw_chg_hook, "I", "Enable ipfw+6");
196SYSCTL_VNET_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
197    CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(fw_deny_unknown_exthdrs), 0,
198    "Deny packets with unknown IPv6 Extension Headers");
199#endif /* INET6 */
200
201#endif /* SYSCTL_NODE */
202
203/*
204 * Description of dynamic rules.
205 *
206 * Dynamic rules are stored in lists accessed through a hash table
207 * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
208 * be modified through the sysctl variable dyn_buckets which is
209 * updated when the table becomes empty.
210 *
211 * XXX currently there is only one list, ipfw_dyn.
212 *
213 * When a packet is received, its address fields are first masked
214 * with the mask defined for the rule, then hashed, then matched
215 * against the entries in the corresponding list.
216 * Dynamic rules can be used for different purposes:
217 *  + stateful rules;
218 *  + enforcing limits on the number of sessions;
219 *  + in-kernel NAT (not implemented yet)
220 *
221 * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
222 * measured in seconds and depending on the flags.
223 *
224 * The total number of dynamic rules is stored in dyn_count.
225 * The max number of dynamic rules is dyn_max. When we reach
226 * the maximum number of rules we do not create anymore. This is
227 * done to avoid consuming too much memory, but also too much
228 * time when searching on each packet (ideally, we should try instead
229 * to put a limit on the length of the list on each bucket...).
230 *
231 * Each dynamic rule holds a pointer to the parent ipfw rule so
232 * we know what action to perform. Dynamic rules are removed when
233 * the parent rule is deleted. XXX we should make them survive.
234 *
235 * There are some limitations with dynamic rules -- we do not
236 * obey the 'randomized match', and we do not do multiple
237 * passes through the firewall. XXX check the latter!!!
238 */
239static VNET_DEFINE(ipfw_dyn_rule **, ipfw_dyn_v);
240static VNET_DEFINE(u_int32_t, dyn_buckets);
241static VNET_DEFINE(u_int32_t, curr_dyn_buckets);
242
243#define	V_ipfw_dyn_v			VNET(ipfw_dyn_v)
244#define	V_dyn_buckets			VNET(dyn_buckets)
245#define	V_curr_dyn_buckets		VNET(curr_dyn_buckets)
246
247static struct mtx ipfw_dyn_mtx;		/* mutex guarding dynamic rules */
248#define	IPFW_DYN_LOCK_INIT() \
249	mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
250#define	IPFW_DYN_LOCK_DESTROY()	mtx_destroy(&ipfw_dyn_mtx)
251#define	IPFW_DYN_LOCK()		mtx_lock(&ipfw_dyn_mtx)
252#define	IPFW_DYN_UNLOCK()	mtx_unlock(&ipfw_dyn_mtx)
253#define	IPFW_DYN_LOCK_ASSERT()	mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
254
255static struct mbuf *send_pkt(struct mbuf *, struct ipfw_flow_id *,
256    u_int32_t, u_int32_t, int);
257
258
259/*
260 * Timeouts for various events in handing dynamic rules.
261 */
262static VNET_DEFINE(u_int32_t, dyn_ack_lifetime);
263static VNET_DEFINE(u_int32_t, dyn_syn_lifetime);
264static VNET_DEFINE(u_int32_t, dyn_fin_lifetime);
265static VNET_DEFINE(u_int32_t, dyn_rst_lifetime);
266static VNET_DEFINE(u_int32_t, dyn_udp_lifetime);
267static VNET_DEFINE(u_int32_t, dyn_short_lifetime);
268
269#define	V_dyn_ack_lifetime		VNET(dyn_ack_lifetime)
270#define	V_dyn_syn_lifetime		VNET(dyn_syn_lifetime)
271#define	V_dyn_fin_lifetime		VNET(dyn_fin_lifetime)
272#define	V_dyn_rst_lifetime		VNET(dyn_rst_lifetime)
273#define	V_dyn_udp_lifetime		VNET(dyn_udp_lifetime)
274#define	V_dyn_short_lifetime		VNET(dyn_short_lifetime)
275
276/*
277 * Keepalives are sent if dyn_keepalive is set. They are sent every
278 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
279 * seconds of lifetime of a rule.
280 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
281 * than dyn_keepalive_period.
282 */
283
284static VNET_DEFINE(u_int32_t, dyn_keepalive_interval);
285static VNET_DEFINE(u_int32_t, dyn_keepalive_period);
286static VNET_DEFINE(u_int32_t, dyn_keepalive);
287
288#define	V_dyn_keepalive_interval	VNET(dyn_keepalive_interval)
289#define	V_dyn_keepalive_period		VNET(dyn_keepalive_period)
290#define	V_dyn_keepalive			VNET(dyn_keepalive)
291
292static VNET_DEFINE(u_int32_t, static_count);	/* # of static rules */
293static VNET_DEFINE(u_int32_t, static_len);	/* bytes of static rules */
294static VNET_DEFINE(u_int32_t, dyn_count);	/* # of dynamic rules */
295static VNET_DEFINE(u_int32_t, dyn_max);		/* max # of dynamic rules */
296
297#define	V_static_count			VNET(static_count)
298#define	V_static_len			VNET(static_len)
299#define	V_dyn_count			VNET(dyn_count)
300#define	V_dyn_max			VNET(dyn_max)
301
302#ifdef SYSCTL_NODE
303SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
304    CTLFLAG_RW, &VNET_NAME(dyn_buckets), 0,
305    "Number of dyn. buckets");
306SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
307    CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
308    "Current Number of dyn. buckets");
309SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_count,
310    CTLFLAG_RD, &VNET_NAME(dyn_count), 0,
311    "Number of dyn. rules");
312SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_max,
313    CTLFLAG_RW, &VNET_NAME(dyn_max), 0,
314    "Max number of dyn. rules");
315SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, static_count,
316    CTLFLAG_RD, &VNET_NAME(static_count), 0,
317    "Number of static rules");
318SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
319    CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
320    "Lifetime of dyn. rules for acks");
321SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
322    CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
323    "Lifetime of dyn. rules for syn");
324SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
325    CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
326    "Lifetime of dyn. rules for fin");
327SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
328    CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
329    "Lifetime of dyn. rules for rst");
330SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
331    CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
332    "Lifetime of dyn. rules for UDP");
333SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
334    CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
335    "Lifetime of dyn. rules for other situations");
336SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
337    CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
338    "Enable keepalives for dyn. rules");
339#endif /* SYSCTL_NODE */
340
341/*
342 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
343 * Other macros just cast void * into the appropriate type
344 */
345#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
346#define	TCP(p)		((struct tcphdr *)(p))
347#define	SCTP(p)		((struct sctphdr *)(p))
348#define	UDP(p)		((struct udphdr *)(p))
349#define	ICMP(p)		((struct icmphdr *)(p))
350#define	ICMP6(p)	((struct icmp6_hdr *)(p))
351
352static __inline int
353icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
354{
355	int type = icmp->icmp_type;
356
357	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
358}
359
360#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
361    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
362
363static int
364is_icmp_query(struct icmphdr *icmp)
365{
366	int type = icmp->icmp_type;
367
368	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
369}
370#undef TT
371
372/*
373 * The following checks use two arrays of 8 or 16 bits to store the
374 * bits that we want set or clear, respectively. They are in the
375 * low and high half of cmd->arg1 or cmd->d[0].
376 *
377 * We scan options and store the bits we find set. We succeed if
378 *
379 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
380 *
381 * The code is sometimes optimized not to store additional variables.
382 */
383
384static int
385flags_match(ipfw_insn *cmd, u_int8_t bits)
386{
387	u_char want_clear;
388	bits = ~bits;
389
390	if ( ((cmd->arg1 & 0xff) & bits) != 0)
391		return 0; /* some bits we want set were clear */
392	want_clear = (cmd->arg1 >> 8) & 0xff;
393	if ( (want_clear & bits) != want_clear)
394		return 0; /* some bits we want clear were set */
395	return 1;
396}
397
398static int
399ipopts_match(struct ip *ip, ipfw_insn *cmd)
400{
401	int optlen, bits = 0;
402	u_char *cp = (u_char *)(ip + 1);
403	int x = (ip->ip_hl << 2) - sizeof (struct ip);
404
405	for (; x > 0; x -= optlen, cp += optlen) {
406		int opt = cp[IPOPT_OPTVAL];
407
408		if (opt == IPOPT_EOL)
409			break;
410		if (opt == IPOPT_NOP)
411			optlen = 1;
412		else {
413			optlen = cp[IPOPT_OLEN];
414			if (optlen <= 0 || optlen > x)
415				return 0; /* invalid or truncated */
416		}
417		switch (opt) {
418
419		default:
420			break;
421
422		case IPOPT_LSRR:
423			bits |= IP_FW_IPOPT_LSRR;
424			break;
425
426		case IPOPT_SSRR:
427			bits |= IP_FW_IPOPT_SSRR;
428			break;
429
430		case IPOPT_RR:
431			bits |= IP_FW_IPOPT_RR;
432			break;
433
434		case IPOPT_TS:
435			bits |= IP_FW_IPOPT_TS;
436			break;
437		}
438	}
439	return (flags_match(cmd, bits));
440}
441
442static int
443tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
444{
445	int optlen, bits = 0;
446	u_char *cp = (u_char *)(tcp + 1);
447	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
448
449	for (; x > 0; x -= optlen, cp += optlen) {
450		int opt = cp[0];
451		if (opt == TCPOPT_EOL)
452			break;
453		if (opt == TCPOPT_NOP)
454			optlen = 1;
455		else {
456			optlen = cp[1];
457			if (optlen <= 0)
458				break;
459		}
460
461		switch (opt) {
462
463		default:
464			break;
465
466		case TCPOPT_MAXSEG:
467			bits |= IP_FW_TCPOPT_MSS;
468			break;
469
470		case TCPOPT_WINDOW:
471			bits |= IP_FW_TCPOPT_WINDOW;
472			break;
473
474		case TCPOPT_SACK_PERMITTED:
475		case TCPOPT_SACK:
476			bits |= IP_FW_TCPOPT_SACK;
477			break;
478
479		case TCPOPT_TIMESTAMP:
480			bits |= IP_FW_TCPOPT_TS;
481			break;
482
483		}
484	}
485	return (flags_match(cmd, bits));
486}
487
488static int
489iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
490{
491	if (ifp == NULL)	/* no iface with this packet, match fails */
492		return 0;
493	/* Check by name or by IP address */
494	if (cmd->name[0] != '\0') { /* match by name */
495		/* Check name */
496		if (cmd->p.glob) {
497			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
498				return(1);
499		} else {
500			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
501				return(1);
502		}
503	} else {
504		struct ifaddr *ia;
505
506		if_addr_rlock(ifp);
507		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
508			if (ia->ifa_addr->sa_family != AF_INET)
509				continue;
510			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
511			    (ia->ifa_addr))->sin_addr.s_addr) {
512				if_addr_runlock(ifp);
513				return(1);	/* match */
514			}
515		}
516		if_addr_runlock(ifp);
517	}
518	return(0);	/* no match, fail ... */
519}
520
521/*
522 * The verify_path function checks if a route to the src exists and
523 * if it is reachable via ifp (when provided).
524 *
525 * The 'verrevpath' option checks that the interface that an IP packet
526 * arrives on is the same interface that traffic destined for the
527 * packet's source address would be routed out of.  The 'versrcreach'
528 * option just checks that the source address is reachable via any route
529 * (except default) in the routing table.  These two are a measure to block
530 * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
531 * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
532 * is purposely reminiscent of the Cisco IOS command,
533 *
534 *   ip verify unicast reverse-path
535 *   ip verify unicast source reachable-via any
536 *
537 * which implements the same functionality. But note that syntax is
538 * misleading. The check may be performed on all IP packets whether unicast,
539 * multicast, or broadcast.
540 */
541static int
542verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
543{
544	struct route ro;
545	struct sockaddr_in *dst;
546
547	bzero(&ro, sizeof(ro));
548
549	dst = (struct sockaddr_in *)&(ro.ro_dst);
550	dst->sin_family = AF_INET;
551	dst->sin_len = sizeof(*dst);
552	dst->sin_addr = src;
553	in_rtalloc_ign(&ro, 0, fib);
554
555	if (ro.ro_rt == NULL)
556		return 0;
557
558	/*
559	 * If ifp is provided, check for equality with rtentry.
560	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
561	 * in order to pass packets injected back by if_simloop():
562	 * if useloopback == 1 routing entry (via lo0) for our own address
563	 * may exist, so we need to handle routing assymetry.
564	 */
565	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
566		RTFREE(ro.ro_rt);
567		return 0;
568	}
569
570	/* if no ifp provided, check if rtentry is not default route */
571	if (ifp == NULL &&
572	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
573		RTFREE(ro.ro_rt);
574		return 0;
575	}
576
577	/* or if this is a blackhole/reject route */
578	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
579		RTFREE(ro.ro_rt);
580		return 0;
581	}
582
583	/* found valid route */
584	RTFREE(ro.ro_rt);
585	return 1;
586}
587
588#ifdef INET6
589/*
590 * ipv6 specific rules here...
591 */
592static __inline int
593icmp6type_match (int type, ipfw_insn_u32 *cmd)
594{
595	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
596}
597
598static int
599flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
600{
601	int i;
602	for (i=0; i <= cmd->o.arg1; ++i )
603		if (curr_flow == cmd->d[i] )
604			return 1;
605	return 0;
606}
607
608/* support for IP6_*_ME opcodes */
609static int
610search_ip6_addr_net (struct in6_addr * ip6_addr)
611{
612	struct ifnet *mdc;
613	struct ifaddr *mdc2;
614	struct in6_ifaddr *fdm;
615	struct in6_addr copia;
616
617	TAILQ_FOREACH(mdc, &V_ifnet, if_link) {
618		if_addr_rlock(mdc);
619		TAILQ_FOREACH(mdc2, &mdc->if_addrhead, ifa_link) {
620			if (mdc2->ifa_addr->sa_family == AF_INET6) {
621				fdm = (struct in6_ifaddr *)mdc2;
622				copia = fdm->ia_addr.sin6_addr;
623				/* need for leaving scope_id in the sock_addr */
624				in6_clearscope(&copia);
625				if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia)) {
626					if_addr_runlock(mdc);
627					return 1;
628				}
629			}
630		}
631		if_addr_runlock(mdc);
632	}
633	return 0;
634}
635
636static int
637verify_path6(struct in6_addr *src, struct ifnet *ifp)
638{
639	struct route_in6 ro;
640	struct sockaddr_in6 *dst;
641
642	bzero(&ro, sizeof(ro));
643
644	dst = (struct sockaddr_in6 * )&(ro.ro_dst);
645	dst->sin6_family = AF_INET6;
646	dst->sin6_len = sizeof(*dst);
647	dst->sin6_addr = *src;
648	/* XXX MRT 0 for ipv6 at this time */
649	rtalloc_ign((struct route *)&ro, 0);
650
651	if (ro.ro_rt == NULL)
652		return 0;
653
654	/*
655	 * if ifp is provided, check for equality with rtentry
656	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
657	 * to support the case of sending packets to an address of our own.
658	 * (where the former interface is the first argument of if_simloop()
659	 *  (=ifp), the latter is lo0)
660	 */
661	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
662		RTFREE(ro.ro_rt);
663		return 0;
664	}
665
666	/* if no ifp provided, check if rtentry is not default route */
667	if (ifp == NULL &&
668	    IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
669		RTFREE(ro.ro_rt);
670		return 0;
671	}
672
673	/* or if this is a blackhole/reject route */
674	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
675		RTFREE(ro.ro_rt);
676		return 0;
677	}
678
679	/* found valid route */
680	RTFREE(ro.ro_rt);
681	return 1;
682
683}
684static __inline int
685hash_packet6(struct ipfw_flow_id *id)
686{
687	u_int32_t i;
688	i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
689	    (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
690	    (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
691	    (id->src_ip6.__u6_addr.__u6_addr32[3]) ^
692	    (id->dst_port) ^ (id->src_port);
693	return i;
694}
695
696static int
697is_icmp6_query(int icmp6_type)
698{
699	if ((icmp6_type <= ICMP6_MAXTYPE) &&
700	    (icmp6_type == ICMP6_ECHO_REQUEST ||
701	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
702	    icmp6_type == ICMP6_WRUREQUEST ||
703	    icmp6_type == ICMP6_FQDN_QUERY ||
704	    icmp6_type == ICMP6_NI_QUERY))
705		return (1);
706
707	return (0);
708}
709
710static void
711send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
712{
713	struct mbuf *m;
714
715	m = args->m;
716	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
717		struct tcphdr *tcp;
718		tcp = (struct tcphdr *)((char *)ip6 + hlen);
719
720		if ((tcp->th_flags & TH_RST) == 0) {
721			struct mbuf *m0;
722			m0 = send_pkt(args->m, &(args->f_id),
723			    ntohl(tcp->th_seq), ntohl(tcp->th_ack),
724			    tcp->th_flags | TH_RST);
725			if (m0 != NULL)
726				ip6_output(m0, NULL, NULL, 0, NULL, NULL,
727				    NULL);
728		}
729		m_freem(m);
730	} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
731#if 0
732		/*
733		 * Unlike above, the mbufs need to line up with the ip6 hdr,
734		 * as the contents are read. We need to m_adj() the
735		 * needed amount.
736		 * The mbuf will however be thrown away so we can adjust it.
737		 * Remember we did an m_pullup on it already so we
738		 * can make some assumptions about contiguousness.
739		 */
740		if (args->L3offset)
741			m_adj(m, args->L3offset);
742#endif
743		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
744	} else
745		m_freem(m);
746
747	args->m = NULL;
748}
749
750#endif /* INET6 */
751
752/* counter for ipfw_log(NULL...) */
753static VNET_DEFINE(u_int64_t, norule_counter);
754#define	V_norule_counter		VNET(norule_counter)
755
756#define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
757#define SNP(buf) buf, sizeof(buf)
758
759/*
760 * We enter here when we have a rule with O_LOG.
761 * XXX this function alone takes about 2Kbytes of code!
762 */
763static void
764ipfw_log(struct ip_fw *f, u_int hlen, struct ip_fw_args *args,
765    struct mbuf *m, struct ifnet *oif, u_short offset, uint32_t tablearg,
766    struct ip *ip)
767{
768	struct ether_header *eh = args->eh;
769	char *action;
770	int limit_reached = 0;
771	char action2[40], proto[128], fragment[32];
772
773	fragment[0] = '\0';
774	proto[0] = '\0';
775
776	if (f == NULL) {	/* bogus pkt */
777		if (V_verbose_limit != 0 && V_norule_counter >= V_verbose_limit)
778			return;
779		V_norule_counter++;
780		if (V_norule_counter == V_verbose_limit)
781			limit_reached = V_verbose_limit;
782		action = "Refuse";
783	} else {	/* O_LOG is the first action, find the real one */
784		ipfw_insn *cmd = ACTION_PTR(f);
785		ipfw_insn_log *l = (ipfw_insn_log *)cmd;
786
787		if (l->max_log != 0 && l->log_left == 0)
788			return;
789		l->log_left--;
790		if (l->log_left == 0)
791			limit_reached = l->max_log;
792		cmd += F_LEN(cmd);	/* point to first action */
793		if (cmd->opcode == O_ALTQ) {
794			ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
795
796			snprintf(SNPARGS(action2, 0), "Altq %d",
797				altq->qid);
798			cmd += F_LEN(cmd);
799		}
800		if (cmd->opcode == O_PROB)
801			cmd += F_LEN(cmd);
802
803		if (cmd->opcode == O_TAG)
804			cmd += F_LEN(cmd);
805
806		action = action2;
807		switch (cmd->opcode) {
808		case O_DENY:
809			action = "Deny";
810			break;
811
812		case O_REJECT:
813			if (cmd->arg1==ICMP_REJECT_RST)
814				action = "Reset";
815			else if (cmd->arg1==ICMP_UNREACH_HOST)
816				action = "Reject";
817			else
818				snprintf(SNPARGS(action2, 0), "Unreach %d",
819					cmd->arg1);
820			break;
821
822		case O_UNREACH6:
823			if (cmd->arg1==ICMP6_UNREACH_RST)
824				action = "Reset";
825			else
826				snprintf(SNPARGS(action2, 0), "Unreach %d",
827					cmd->arg1);
828			break;
829
830		case O_ACCEPT:
831			action = "Accept";
832			break;
833		case O_COUNT:
834			action = "Count";
835			break;
836		case O_DIVERT:
837			snprintf(SNPARGS(action2, 0), "Divert %d",
838				cmd->arg1);
839			break;
840		case O_TEE:
841			snprintf(SNPARGS(action2, 0), "Tee %d",
842				cmd->arg1);
843			break;
844		case O_SETFIB:
845			snprintf(SNPARGS(action2, 0), "SetFib %d",
846				cmd->arg1);
847			break;
848		case O_SKIPTO:
849			snprintf(SNPARGS(action2, 0), "SkipTo %d",
850				cmd->arg1);
851			break;
852		case O_PIPE:
853			snprintf(SNPARGS(action2, 0), "Pipe %d",
854				cmd->arg1);
855			break;
856		case O_QUEUE:
857			snprintf(SNPARGS(action2, 0), "Queue %d",
858				cmd->arg1);
859			break;
860		case O_FORWARD_IP: {
861			ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
862			int len;
863			struct in_addr dummyaddr;
864			if (sa->sa.sin_addr.s_addr == INADDR_ANY)
865				dummyaddr.s_addr = htonl(tablearg);
866			else
867				dummyaddr.s_addr = sa->sa.sin_addr.s_addr;
868
869			len = snprintf(SNPARGS(action2, 0), "Forward to %s",
870				inet_ntoa(dummyaddr));
871
872			if (sa->sa.sin_port)
873				snprintf(SNPARGS(action2, len), ":%d",
874				    sa->sa.sin_port);
875			}
876			break;
877		case O_NETGRAPH:
878			snprintf(SNPARGS(action2, 0), "Netgraph %d",
879				cmd->arg1);
880			break;
881		case O_NGTEE:
882			snprintf(SNPARGS(action2, 0), "Ngtee %d",
883				cmd->arg1);
884			break;
885		case O_NAT:
886			action = "Nat";
887 			break;
888		case O_REASS:
889			action = "Reass";
890			break;
891		default:
892			action = "UNKNOWN";
893			break;
894		}
895	}
896
897	if (hlen == 0) {	/* non-ip */
898		snprintf(SNPARGS(proto, 0), "MAC");
899
900	} else {
901		int len;
902		char src[48], dst[48];
903		struct icmphdr *icmp;
904		struct tcphdr *tcp;
905		struct udphdr *udp;
906#ifdef INET6
907		struct ip6_hdr *ip6 = NULL;
908		struct icmp6_hdr *icmp6;
909#endif
910		src[0] = '\0';
911		dst[0] = '\0';
912#ifdef INET6
913		if (IS_IP6_FLOW_ID(&(args->f_id))) {
914			char ip6buf[INET6_ADDRSTRLEN];
915			snprintf(src, sizeof(src), "[%s]",
916			    ip6_sprintf(ip6buf, &args->f_id.src_ip6));
917			snprintf(dst, sizeof(dst), "[%s]",
918			    ip6_sprintf(ip6buf, &args->f_id.dst_ip6));
919
920			ip6 = (struct ip6_hdr *)ip;
921			tcp = (struct tcphdr *)(((char *)ip) + hlen);
922			udp = (struct udphdr *)(((char *)ip) + hlen);
923		} else
924#endif
925		{
926			tcp = L3HDR(struct tcphdr, ip);
927			udp = L3HDR(struct udphdr, ip);
928
929			inet_ntoa_r(ip->ip_src, src);
930			inet_ntoa_r(ip->ip_dst, dst);
931		}
932
933		switch (args->f_id.proto) {
934		case IPPROTO_TCP:
935			len = snprintf(SNPARGS(proto, 0), "TCP %s", src);
936			if (offset == 0)
937				snprintf(SNPARGS(proto, len), ":%d %s:%d",
938				    ntohs(tcp->th_sport),
939				    dst,
940				    ntohs(tcp->th_dport));
941			else
942				snprintf(SNPARGS(proto, len), " %s", dst);
943			break;
944
945		case IPPROTO_UDP:
946			len = snprintf(SNPARGS(proto, 0), "UDP %s", src);
947			if (offset == 0)
948				snprintf(SNPARGS(proto, len), ":%d %s:%d",
949				    ntohs(udp->uh_sport),
950				    dst,
951				    ntohs(udp->uh_dport));
952			else
953				snprintf(SNPARGS(proto, len), " %s", dst);
954			break;
955
956		case IPPROTO_ICMP:
957			icmp = L3HDR(struct icmphdr, ip);
958			if (offset == 0)
959				len = snprintf(SNPARGS(proto, 0),
960				    "ICMP:%u.%u ",
961				    icmp->icmp_type, icmp->icmp_code);
962			else
963				len = snprintf(SNPARGS(proto, 0), "ICMP ");
964			len += snprintf(SNPARGS(proto, len), "%s", src);
965			snprintf(SNPARGS(proto, len), " %s", dst);
966			break;
967#ifdef INET6
968		case IPPROTO_ICMPV6:
969			icmp6 = (struct icmp6_hdr *)(((char *)ip) + hlen);
970			if (offset == 0)
971				len = snprintf(SNPARGS(proto, 0),
972				    "ICMPv6:%u.%u ",
973				    icmp6->icmp6_type, icmp6->icmp6_code);
974			else
975				len = snprintf(SNPARGS(proto, 0), "ICMPv6 ");
976			len += snprintf(SNPARGS(proto, len), "%s", src);
977			snprintf(SNPARGS(proto, len), " %s", dst);
978			break;
979#endif
980		default:
981			len = snprintf(SNPARGS(proto, 0), "P:%d %s",
982			    args->f_id.proto, src);
983			snprintf(SNPARGS(proto, len), " %s", dst);
984			break;
985		}
986
987#ifdef INET6
988		if (IS_IP6_FLOW_ID(&(args->f_id))) {
989			if (offset & (IP6F_OFF_MASK | IP6F_MORE_FRAG))
990				snprintf(SNPARGS(fragment, 0),
991				    " (frag %08x:%d@%d%s)",
992				    args->f_id.frag_id6,
993				    ntohs(ip6->ip6_plen) - hlen,
994				    ntohs(offset & IP6F_OFF_MASK) << 3,
995				    (offset & IP6F_MORE_FRAG) ? "+" : "");
996		} else
997#endif
998		{
999			int ip_off, ip_len;
1000			if (eh != NULL) { /* layer 2 packets are as on the wire */
1001				ip_off = ntohs(ip->ip_off);
1002				ip_len = ntohs(ip->ip_len);
1003			} else {
1004				ip_off = ip->ip_off;
1005				ip_len = ip->ip_len;
1006			}
1007			if (ip_off & (IP_MF | IP_OFFMASK))
1008				snprintf(SNPARGS(fragment, 0),
1009				    " (frag %d:%d@%d%s)",
1010				    ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
1011				    offset << 3,
1012				    (ip_off & IP_MF) ? "+" : "");
1013		}
1014	}
1015	if (oif || m->m_pkthdr.rcvif)
1016		log(LOG_SECURITY | LOG_INFO,
1017		    "ipfw: %d %s %s %s via %s%s\n",
1018		    f ? f->rulenum : -1,
1019		    action, proto, oif ? "out" : "in",
1020		    oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
1021		    fragment);
1022	else
1023		log(LOG_SECURITY | LOG_INFO,
1024		    "ipfw: %d %s %s [no if info]%s\n",
1025		    f ? f->rulenum : -1,
1026		    action, proto, fragment);
1027	if (limit_reached)
1028		log(LOG_SECURITY | LOG_NOTICE,
1029		    "ipfw: limit %d reached on entry %d\n",
1030		    limit_reached, f ? f->rulenum : -1);
1031}
1032
1033/*
1034 * IMPORTANT: the hash function for dynamic rules must be commutative
1035 * in source and destination (ip,port), because rules are bidirectional
1036 * and we want to find both in the same bucket.
1037 */
1038static __inline int
1039hash_packet(struct ipfw_flow_id *id)
1040{
1041	u_int32_t i;
1042
1043#ifdef INET6
1044	if (IS_IP6_FLOW_ID(id))
1045		i = hash_packet6(id);
1046	else
1047#endif /* INET6 */
1048	i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
1049	i &= (V_curr_dyn_buckets - 1);
1050	return i;
1051}
1052
1053static __inline void
1054unlink_dyn_rule_print(struct ipfw_flow_id *id)
1055{
1056	struct in_addr da;
1057	char src[48], dst[48];
1058
1059#ifdef INET6
1060	if (IS_IP6_FLOW_ID(id)) {
1061		ip6_sprintf(src, &id->src_ip6);
1062		ip6_sprintf(dst, &id->dst_ip6);
1063	} else
1064#endif
1065	{
1066		da.s_addr = htonl(id->src_ip);
1067		inet_ntoa_r(da, src);
1068		da.s_addr = htonl(id->dst_ip);
1069		inet_ntoa_r(da, dst);
1070	}
1071	printf("ipfw: unlink entry %s %d -> %s %d, %d left\n",
1072	    src, id->src_port, dst, id->dst_port, V_dyn_count - 1);
1073}
1074
1075/**
1076 * unlink a dynamic rule from a chain. prev is a pointer to
1077 * the previous one, q is a pointer to the rule to delete,
1078 * head is a pointer to the head of the queue.
1079 * Modifies q and potentially also head.
1080 */
1081#define UNLINK_DYN_RULE(prev, head, q) {				\
1082	ipfw_dyn_rule *old_q = q;					\
1083									\
1084	/* remove a refcount to the parent */				\
1085	if (q->dyn_type == O_LIMIT)					\
1086		q->parent->count--;					\
1087	DEB(unlink_dyn_rule_print(&q->id);)				\
1088	if (prev != NULL)						\
1089		prev->next = q = q->next;				\
1090	else								\
1091		head = q = q->next;					\
1092	V_dyn_count--;							\
1093	uma_zfree(ipfw_dyn_rule_zone, old_q); }
1094
1095#define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
1096
1097/**
1098 * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
1099 *
1100 * If keep_me == NULL, rules are deleted even if not expired,
1101 * otherwise only expired rules are removed.
1102 *
1103 * The value of the second parameter is also used to point to identify
1104 * a rule we absolutely do not want to remove (e.g. because we are
1105 * holding a reference to it -- this is the case with O_LIMIT_PARENT
1106 * rules). The pointer is only used for comparison, so any non-null
1107 * value will do.
1108 */
1109static void
1110remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
1111{
1112	static u_int32_t last_remove = 0;
1113
1114#define FORCE (keep_me == NULL)
1115
1116	ipfw_dyn_rule *prev, *q;
1117	int i, pass = 0, max_pass = 0;
1118
1119	IPFW_DYN_LOCK_ASSERT();
1120
1121	if (V_ipfw_dyn_v == NULL || V_dyn_count == 0)
1122		return;
1123	/* do not expire more than once per second, it is useless */
1124	if (!FORCE && last_remove == time_uptime)
1125		return;
1126	last_remove = time_uptime;
1127
1128	/*
1129	 * because O_LIMIT refer to parent rules, during the first pass only
1130	 * remove child and mark any pending LIMIT_PARENT, and remove
1131	 * them in a second pass.
1132	 */
1133next_pass:
1134	for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1135		for (prev=NULL, q = V_ipfw_dyn_v[i] ; q ; ) {
1136			/*
1137			 * Logic can become complex here, so we split tests.
1138			 */
1139			if (q == keep_me)
1140				goto next;
1141			if (rule != NULL && rule != q->rule)
1142				goto next; /* not the one we are looking for */
1143			if (q->dyn_type == O_LIMIT_PARENT) {
1144				/*
1145				 * handle parent in the second pass,
1146				 * record we need one.
1147				 */
1148				max_pass = 1;
1149				if (pass == 0)
1150					goto next;
1151				if (FORCE && q->count != 0 ) {
1152					/* XXX should not happen! */
1153					printf("ipfw: OUCH! cannot remove rule,"
1154					     " count %d\n", q->count);
1155				}
1156			} else {
1157				if (!FORCE &&
1158				    !TIME_LEQ( q->expire, time_uptime ))
1159					goto next;
1160			}
1161             if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
1162                     UNLINK_DYN_RULE(prev, V_ipfw_dyn_v[i], q);
1163                     continue;
1164             }
1165next:
1166			prev=q;
1167			q=q->next;
1168		}
1169	}
1170	if (pass++ < max_pass)
1171		goto next_pass;
1172}
1173
1174
1175/**
1176 * lookup a dynamic rule.
1177 */
1178static ipfw_dyn_rule *
1179lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
1180    struct tcphdr *tcp)
1181{
1182	/*
1183	 * stateful ipfw extensions.
1184	 * Lookup into dynamic session queue
1185	 */
1186#define MATCH_REVERSE	0
1187#define MATCH_FORWARD	1
1188#define MATCH_NONE	2
1189#define MATCH_UNKNOWN	3
1190	int i, dir = MATCH_NONE;
1191	ipfw_dyn_rule *prev, *q=NULL;
1192
1193	IPFW_DYN_LOCK_ASSERT();
1194
1195	if (V_ipfw_dyn_v == NULL)
1196		goto done;	/* not found */
1197	i = hash_packet( pkt );
1198	for (prev=NULL, q = V_ipfw_dyn_v[i] ; q != NULL ; ) {
1199		if (q->dyn_type == O_LIMIT_PARENT && q->count)
1200			goto next;
1201		if (TIME_LEQ( q->expire, time_uptime)) { /* expire entry */
1202			UNLINK_DYN_RULE(prev, V_ipfw_dyn_v[i], q);
1203			continue;
1204		}
1205		if (pkt->proto == q->id.proto &&
1206		    q->dyn_type != O_LIMIT_PARENT) {
1207			if (IS_IP6_FLOW_ID(pkt)) {
1208			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1209				&(q->id.src_ip6)) &&
1210			    IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1211				&(q->id.dst_ip6)) &&
1212			    pkt->src_port == q->id.src_port &&
1213			    pkt->dst_port == q->id.dst_port ) {
1214				dir = MATCH_FORWARD;
1215				break;
1216			    }
1217			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1218				    &(q->id.dst_ip6)) &&
1219				IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1220				    &(q->id.src_ip6)) &&
1221				pkt->src_port == q->id.dst_port &&
1222				pkt->dst_port == q->id.src_port ) {
1223				    dir = MATCH_REVERSE;
1224				    break;
1225			    }
1226			} else {
1227			    if (pkt->src_ip == q->id.src_ip &&
1228				pkt->dst_ip == q->id.dst_ip &&
1229				pkt->src_port == q->id.src_port &&
1230				pkt->dst_port == q->id.dst_port ) {
1231				    dir = MATCH_FORWARD;
1232				    break;
1233			    }
1234			    if (pkt->src_ip == q->id.dst_ip &&
1235				pkt->dst_ip == q->id.src_ip &&
1236				pkt->src_port == q->id.dst_port &&
1237				pkt->dst_port == q->id.src_port ) {
1238				    dir = MATCH_REVERSE;
1239				    break;
1240			    }
1241			}
1242		}
1243next:
1244		prev = q;
1245		q = q->next;
1246	}
1247	if (q == NULL)
1248		goto done; /* q = NULL, not found */
1249
1250	if ( prev != NULL) { /* found and not in front */
1251		prev->next = q->next;
1252		q->next = V_ipfw_dyn_v[i];
1253		V_ipfw_dyn_v[i] = q;
1254	}
1255	if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
1256		u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
1257
1258#define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
1259#define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
1260		q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
1261		switch (q->state) {
1262		case TH_SYN:				/* opening */
1263			q->expire = time_uptime + V_dyn_syn_lifetime;
1264			break;
1265
1266		case BOTH_SYN:			/* move to established */
1267		case BOTH_SYN | TH_FIN :	/* one side tries to close */
1268		case BOTH_SYN | (TH_FIN << 8) :
1269 			if (tcp) {
1270#define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
1271			    u_int32_t ack = ntohl(tcp->th_ack);
1272			    if (dir == MATCH_FORWARD) {
1273				if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
1274				    q->ack_fwd = ack;
1275				else { /* ignore out-of-sequence */
1276				    break;
1277				}
1278			    } else {
1279				if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
1280				    q->ack_rev = ack;
1281				else { /* ignore out-of-sequence */
1282				    break;
1283				}
1284			    }
1285			}
1286			q->expire = time_uptime + V_dyn_ack_lifetime;
1287			break;
1288
1289		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
1290			if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
1291				V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
1292			q->expire = time_uptime + V_dyn_fin_lifetime;
1293			break;
1294
1295		default:
1296#if 0
1297			/*
1298			 * reset or some invalid combination, but can also
1299			 * occur if we use keep-state the wrong way.
1300			 */
1301			if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
1302				printf("invalid state: 0x%x\n", q->state);
1303#endif
1304			if (V_dyn_rst_lifetime >= V_dyn_keepalive_period)
1305				V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
1306			q->expire = time_uptime + V_dyn_rst_lifetime;
1307			break;
1308		}
1309	} else if (pkt->proto == IPPROTO_UDP) {
1310		q->expire = time_uptime + V_dyn_udp_lifetime;
1311	} else {
1312		/* other protocols */
1313		q->expire = time_uptime + V_dyn_short_lifetime;
1314	}
1315done:
1316	if (match_direction)
1317		*match_direction = dir;
1318	return q;
1319}
1320
1321static ipfw_dyn_rule *
1322lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
1323    struct tcphdr *tcp)
1324{
1325	ipfw_dyn_rule *q;
1326
1327	IPFW_DYN_LOCK();
1328	q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
1329	if (q == NULL)
1330		IPFW_DYN_UNLOCK();
1331	/* NB: return table locked when q is not NULL */
1332	return q;
1333}
1334
1335static void
1336realloc_dynamic_table(void)
1337{
1338	IPFW_DYN_LOCK_ASSERT();
1339
1340	/*
1341	 * Try reallocation, make sure we have a power of 2 and do
1342	 * not allow more than 64k entries. In case of overflow,
1343	 * default to 1024.
1344	 */
1345
1346	if (V_dyn_buckets > 65536)
1347		V_dyn_buckets = 1024;
1348	if ((V_dyn_buckets & (V_dyn_buckets-1)) != 0) { /* not a power of 2 */
1349		V_dyn_buckets = V_curr_dyn_buckets; /* reset */
1350		return;
1351	}
1352	V_curr_dyn_buckets = V_dyn_buckets;
1353	if (V_ipfw_dyn_v != NULL)
1354		free(V_ipfw_dyn_v, M_IPFW);
1355	for (;;) {
1356		V_ipfw_dyn_v = malloc(V_curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
1357		       M_IPFW, M_NOWAIT | M_ZERO);
1358		if (V_ipfw_dyn_v != NULL || V_curr_dyn_buckets <= 2)
1359			break;
1360		V_curr_dyn_buckets /= 2;
1361	}
1362}
1363
1364/**
1365 * Install state of type 'type' for a dynamic session.
1366 * The hash table contains two type of rules:
1367 * - regular rules (O_KEEP_STATE)
1368 * - rules for sessions with limited number of sess per user
1369 *   (O_LIMIT). When they are created, the parent is
1370 *   increased by 1, and decreased on delete. In this case,
1371 *   the third parameter is the parent rule and not the chain.
1372 * - "parent" rules for the above (O_LIMIT_PARENT).
1373 */
1374static ipfw_dyn_rule *
1375add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
1376{
1377	ipfw_dyn_rule *r;
1378	int i;
1379
1380	IPFW_DYN_LOCK_ASSERT();
1381
1382	if (V_ipfw_dyn_v == NULL ||
1383	    (V_dyn_count == 0 && V_dyn_buckets != V_curr_dyn_buckets)) {
1384		realloc_dynamic_table();
1385		if (V_ipfw_dyn_v == NULL)
1386			return NULL; /* failed ! */
1387	}
1388	i = hash_packet(id);
1389
1390	r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
1391	if (r == NULL) {
1392		printf ("ipfw: sorry cannot allocate state\n");
1393		return NULL;
1394	}
1395
1396	/* increase refcount on parent, and set pointer */
1397	if (dyn_type == O_LIMIT) {
1398		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
1399		if ( parent->dyn_type != O_LIMIT_PARENT)
1400			panic("invalid parent");
1401		parent->count++;
1402		r->parent = parent;
1403		rule = parent->rule;
1404	}
1405
1406	r->id = *id;
1407	r->expire = time_uptime + V_dyn_syn_lifetime;
1408	r->rule = rule;
1409	r->dyn_type = dyn_type;
1410	r->pcnt = r->bcnt = 0;
1411	r->count = 0;
1412
1413	r->bucket = i;
1414	r->next = V_ipfw_dyn_v[i];
1415	V_ipfw_dyn_v[i] = r;
1416	V_dyn_count++;
1417	DEB({
1418		struct in_addr da;
1419		char src[48];
1420		char dst[48];
1421#ifdef INET6
1422		if (IS_IP6_FLOW_ID(&(r->id))) {
1423			ip6_sprintf(src, &r->id.src_ip6);
1424			ip6_sprintf(dst, &r->id.dst_ip6);
1425		} else
1426#endif
1427		{
1428			da.s_addr = htonl(r->id.src_ip);
1429			inet_ntoa_r(da, src);
1430			da.s_addr = htonl(r->id.dst_ip);
1431			inet_ntoa_r(da, dst);
1432		}
1433		printf("ipfw: add dyn entry ty %d %s %d -> %s %d, total %d\n",
1434		    dyn_type, src, r->id.src_port, dst, r->id.dst_port,
1435		    V_dyn_count);
1436	})
1437	return r;
1438}
1439
1440/**
1441 * lookup dynamic parent rule using pkt and rule as search keys.
1442 * If the lookup fails, then install one.
1443 */
1444static ipfw_dyn_rule *
1445lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
1446{
1447	ipfw_dyn_rule *q;
1448	int i;
1449
1450	IPFW_DYN_LOCK_ASSERT();
1451
1452	if (V_ipfw_dyn_v) {
1453		int is_v6 = IS_IP6_FLOW_ID(pkt);
1454		i = hash_packet( pkt );
1455		for (q = V_ipfw_dyn_v[i] ; q != NULL ; q=q->next)
1456			if (q->dyn_type == O_LIMIT_PARENT &&
1457			    rule== q->rule &&
1458			    pkt->proto == q->id.proto &&
1459			    pkt->src_port == q->id.src_port &&
1460			    pkt->dst_port == q->id.dst_port &&
1461			    (
1462				(is_v6 &&
1463				 IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1464					&(q->id.src_ip6)) &&
1465				 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1466					&(q->id.dst_ip6))) ||
1467				(!is_v6 &&
1468				 pkt->src_ip == q->id.src_ip &&
1469				 pkt->dst_ip == q->id.dst_ip)
1470			    )
1471			) {
1472				q->expire = time_uptime + V_dyn_short_lifetime;
1473				DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
1474				return q;
1475			}
1476	}
1477	return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
1478}
1479
1480/**
1481 * Install dynamic state for rule type cmd->o.opcode
1482 *
1483 * Returns 1 (failure) if state is not installed because of errors or because
1484 * session limitations are enforced.
1485 */
1486static int
1487install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
1488    struct ip_fw_args *args, uint32_t tablearg)
1489{
1490	static int last_log;
1491	ipfw_dyn_rule *q;
1492	struct in_addr da;
1493	char src[48], dst[48];
1494
1495	src[0] = '\0';
1496	dst[0] = '\0';
1497
1498	IPFW_DYN_LOCK();
1499
1500	DEB(
1501#ifdef INET6
1502	if (IS_IP6_FLOW_ID(&(args->f_id))) {
1503		ip6_sprintf(src, &args->f_id.src_ip6);
1504		ip6_sprintf(dst, &args->f_id.dst_ip6);
1505	} else
1506#endif
1507	{
1508		da.s_addr = htonl(args->f_id.src_ip);
1509		inet_ntoa_r(da, src);
1510		da.s_addr = htonl(args->f_id.dst_ip);
1511		inet_ntoa_r(da, dst);
1512	}
1513	printf("ipfw: %s: type %d %s %u -> %s %u\n",
1514	    __func__, cmd->o.opcode, src, args->f_id.src_port,
1515	    dst, args->f_id.dst_port);
1516	src[0] = '\0';
1517	dst[0] = '\0';
1518	)
1519
1520	q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1521
1522	if (q != NULL) {	/* should never occur */
1523		if (last_log != time_uptime) {
1524			last_log = time_uptime;
1525			printf("ipfw: %s: entry already present, done\n",
1526			    __func__);
1527		}
1528		IPFW_DYN_UNLOCK();
1529		return (0);
1530	}
1531
1532	if (V_dyn_count >= V_dyn_max)
1533		/* Run out of slots, try to remove any expired rule. */
1534		remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
1535
1536	if (V_dyn_count >= V_dyn_max) {
1537		if (last_log != time_uptime) {
1538			last_log = time_uptime;
1539			printf("ipfw: %s: Too many dynamic rules\n", __func__);
1540		}
1541		IPFW_DYN_UNLOCK();
1542		return (1);	/* cannot install, notify caller */
1543	}
1544
1545	switch (cmd->o.opcode) {
1546	case O_KEEP_STATE:	/* bidir rule */
1547		add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
1548		break;
1549
1550	case O_LIMIT: {		/* limit number of sessions */
1551		struct ipfw_flow_id id;
1552		ipfw_dyn_rule *parent;
1553		uint32_t conn_limit;
1554		uint16_t limit_mask = cmd->limit_mask;
1555
1556		conn_limit = (cmd->conn_limit == IP_FW_TABLEARG) ?
1557		    tablearg : cmd->conn_limit;
1558
1559		DEB(
1560		if (cmd->conn_limit == IP_FW_TABLEARG)
1561			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
1562			    "(tablearg)\n", __func__, conn_limit);
1563		else
1564			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
1565			    __func__, conn_limit);
1566		)
1567
1568		id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
1569		id.proto = args->f_id.proto;
1570		id.addr_type = args->f_id.addr_type;
1571		id.fib = M_GETFIB(args->m);
1572
1573		if (IS_IP6_FLOW_ID (&(args->f_id))) {
1574			if (limit_mask & DYN_SRC_ADDR)
1575				id.src_ip6 = args->f_id.src_ip6;
1576			if (limit_mask & DYN_DST_ADDR)
1577				id.dst_ip6 = args->f_id.dst_ip6;
1578		} else {
1579			if (limit_mask & DYN_SRC_ADDR)
1580				id.src_ip = args->f_id.src_ip;
1581			if (limit_mask & DYN_DST_ADDR)
1582				id.dst_ip = args->f_id.dst_ip;
1583		}
1584		if (limit_mask & DYN_SRC_PORT)
1585			id.src_port = args->f_id.src_port;
1586		if (limit_mask & DYN_DST_PORT)
1587			id.dst_port = args->f_id.dst_port;
1588		if ((parent = lookup_dyn_parent(&id, rule)) == NULL) {
1589			printf("ipfw: %s: add parent failed\n", __func__);
1590			IPFW_DYN_UNLOCK();
1591			return (1);
1592		}
1593
1594		if (parent->count >= conn_limit) {
1595			/* See if we can remove some expired rule. */
1596			remove_dyn_rule(rule, parent);
1597			if (parent->count >= conn_limit) {
1598				if (V_fw_verbose && last_log != time_uptime) {
1599					last_log = time_uptime;
1600#ifdef INET6
1601					/*
1602					 * XXX IPv6 flows are not
1603					 * supported yet.
1604					 */
1605					if (IS_IP6_FLOW_ID(&(args->f_id))) {
1606						char ip6buf[INET6_ADDRSTRLEN];
1607						snprintf(src, sizeof(src),
1608						    "[%s]", ip6_sprintf(ip6buf,
1609							&args->f_id.src_ip6));
1610						snprintf(dst, sizeof(dst),
1611						    "[%s]", ip6_sprintf(ip6buf,
1612							&args->f_id.dst_ip6));
1613					} else
1614#endif
1615					{
1616						da.s_addr =
1617						    htonl(args->f_id.src_ip);
1618						inet_ntoa_r(da, src);
1619						da.s_addr =
1620						    htonl(args->f_id.dst_ip);
1621						inet_ntoa_r(da, dst);
1622					}
1623					log(LOG_SECURITY | LOG_DEBUG,
1624					    "ipfw: %d %s %s:%u -> %s:%u, %s\n",
1625					    parent->rule->rulenum,
1626					    "drop session",
1627					    src, (args->f_id.src_port),
1628					    dst, (args->f_id.dst_port),
1629					    "too many entries");
1630				}
1631				IPFW_DYN_UNLOCK();
1632				return (1);
1633			}
1634		}
1635		add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1636		break;
1637	}
1638	default:
1639		printf("ipfw: %s: unknown dynamic rule type %u\n",
1640		    __func__, cmd->o.opcode);
1641		IPFW_DYN_UNLOCK();
1642		return (1);
1643	}
1644
1645	/* XXX just set lifetime */
1646	lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1647
1648	IPFW_DYN_UNLOCK();
1649	return (0);
1650}
1651
1652/*
1653 * Generate a TCP packet, containing either a RST or a keepalive.
1654 * When flags & TH_RST, we are sending a RST packet, because of a
1655 * "reset" action matched the packet.
1656 * Otherwise we are sending a keepalive, and flags & TH_
1657 * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
1658 * so that MAC can label the reply appropriately.
1659 */
1660static struct mbuf *
1661send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
1662    u_int32_t ack, int flags)
1663{
1664	struct mbuf *m;
1665	int len, dir;
1666	struct ip *h = NULL;		/* stupid compiler */
1667#ifdef INET6
1668	struct ip6_hdr *h6 = NULL;
1669#endif
1670	struct tcphdr *th = NULL;
1671
1672	MGETHDR(m, M_DONTWAIT, MT_DATA);
1673	if (m == NULL)
1674		return (NULL);
1675
1676	M_SETFIB(m, id->fib);
1677#ifdef MAC
1678	if (replyto != NULL)
1679		mac_netinet_firewall_reply(replyto, m);
1680	else
1681		mac_netinet_firewall_send(m);
1682#else
1683	(void)replyto;		/* don't warn about unused arg */
1684#endif
1685
1686	switch (id->addr_type) {
1687	case 4:
1688		len = sizeof(struct ip) + sizeof(struct tcphdr);
1689		break;
1690#ifdef INET6
1691	case 6:
1692		len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1693		break;
1694#endif
1695	default:
1696		/* XXX: log me?!? */
1697		m_freem(m);
1698		return (NULL);
1699	}
1700	dir = ((flags & (TH_SYN | TH_RST)) == TH_SYN);
1701
1702	m->m_data += max_linkhdr;
1703	m->m_flags |= M_SKIP_FIREWALL;
1704	m->m_pkthdr.len = m->m_len = len;
1705	m->m_pkthdr.rcvif = NULL;
1706	bzero(m->m_data, len);
1707
1708	switch (id->addr_type) {
1709	case 4:
1710		h = mtod(m, struct ip *);
1711
1712		/* prepare for checksum */
1713		h->ip_p = IPPROTO_TCP;
1714		h->ip_len = htons(sizeof(struct tcphdr));
1715		if (dir) {
1716			h->ip_src.s_addr = htonl(id->src_ip);
1717			h->ip_dst.s_addr = htonl(id->dst_ip);
1718		} else {
1719			h->ip_src.s_addr = htonl(id->dst_ip);
1720			h->ip_dst.s_addr = htonl(id->src_ip);
1721		}
1722
1723		th = (struct tcphdr *)(h + 1);
1724		break;
1725#ifdef INET6
1726	case 6:
1727		h6 = mtod(m, struct ip6_hdr *);
1728
1729		/* prepare for checksum */
1730		h6->ip6_nxt = IPPROTO_TCP;
1731		h6->ip6_plen = htons(sizeof(struct tcphdr));
1732		if (dir) {
1733			h6->ip6_src = id->src_ip6;
1734			h6->ip6_dst = id->dst_ip6;
1735		} else {
1736			h6->ip6_src = id->dst_ip6;
1737			h6->ip6_dst = id->src_ip6;
1738		}
1739
1740		th = (struct tcphdr *)(h6 + 1);
1741		break;
1742#endif
1743	}
1744
1745	if (dir) {
1746		th->th_sport = htons(id->src_port);
1747		th->th_dport = htons(id->dst_port);
1748	} else {
1749		th->th_sport = htons(id->dst_port);
1750		th->th_dport = htons(id->src_port);
1751	}
1752	th->th_off = sizeof(struct tcphdr) >> 2;
1753
1754	if (flags & TH_RST) {
1755		if (flags & TH_ACK) {
1756			th->th_seq = htonl(ack);
1757			th->th_flags = TH_RST;
1758		} else {
1759			if (flags & TH_SYN)
1760				seq++;
1761			th->th_ack = htonl(seq);
1762			th->th_flags = TH_RST | TH_ACK;
1763		}
1764	} else {
1765		/*
1766		 * Keepalive - use caller provided sequence numbers
1767		 */
1768		th->th_seq = htonl(seq);
1769		th->th_ack = htonl(ack);
1770		th->th_flags = TH_ACK;
1771	}
1772
1773	switch (id->addr_type) {
1774	case 4:
1775		th->th_sum = in_cksum(m, len);
1776
1777		/* finish the ip header */
1778		h->ip_v = 4;
1779		h->ip_hl = sizeof(*h) >> 2;
1780		h->ip_tos = IPTOS_LOWDELAY;
1781		h->ip_off = 0;
1782		h->ip_len = len;
1783		h->ip_ttl = V_ip_defttl;
1784		h->ip_sum = 0;
1785		break;
1786#ifdef INET6
1787	case 6:
1788		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(*h6),
1789		    sizeof(struct tcphdr));
1790
1791		/* finish the ip6 header */
1792		h6->ip6_vfc |= IPV6_VERSION;
1793		h6->ip6_hlim = IPV6_DEFHLIM;
1794		break;
1795#endif
1796	}
1797
1798	return (m);
1799}
1800
1801/*
1802 * sends a reject message, consuming the mbuf passed as an argument.
1803 */
1804static void
1805send_reject(struct ip_fw_args *args, int code, int ip_len, struct ip *ip)
1806{
1807
1808#if 0
1809	/* XXX When ip is not guaranteed to be at mtod() we will
1810	 * need to account for this */
1811	 * The mbuf will however be thrown away so we can adjust it.
1812	 * Remember we did an m_pullup on it already so we
1813	 * can make some assumptions about contiguousness.
1814	 */
1815	if (args->L3offset)
1816		m_adj(m, args->L3offset);
1817#endif
1818	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1819		/* We need the IP header in host order for icmp_error(). */
1820		if (args->eh != NULL) {
1821			ip->ip_len = ntohs(ip->ip_len);
1822			ip->ip_off = ntohs(ip->ip_off);
1823		}
1824		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1825	} else if (args->f_id.proto == IPPROTO_TCP) {
1826		struct tcphdr *const tcp =
1827		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1828		if ( (tcp->th_flags & TH_RST) == 0) {
1829			struct mbuf *m;
1830			m = send_pkt(args->m, &(args->f_id),
1831				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
1832				tcp->th_flags | TH_RST);
1833			if (m != NULL)
1834				ip_output(m, NULL, NULL, 0, NULL, NULL);
1835		}
1836		m_freem(args->m);
1837	} else
1838		m_freem(args->m);
1839	args->m = NULL;
1840}
1841
1842/**
1843 *
1844 * Given an ip_fw *, lookup_next_rule will return a pointer
1845 * to the next rule, which can be either the jump
1846 * target (for skipto instructions) or the next one in the list (in
1847 * all other cases including a missing jump target).
1848 * The result is also written in the "next_rule" field of the rule.
1849 * Backward jumps are not allowed, so start looking from the next
1850 * rule...
1851 *
1852 * This never returns NULL -- in case we do not have an exact match,
1853 * the next rule is returned. When the ruleset is changed,
1854 * pointers are flushed so we are always correct.
1855 */
1856
1857static struct ip_fw *
1858lookup_next_rule(struct ip_fw *me, u_int32_t tablearg)
1859{
1860	struct ip_fw *rule = NULL;
1861	ipfw_insn *cmd;
1862	u_int16_t	rulenum;
1863
1864	/* look for action, in case it is a skipto */
1865	cmd = ACTION_PTR(me);
1866	if (cmd->opcode == O_LOG)
1867		cmd += F_LEN(cmd);
1868	if (cmd->opcode == O_ALTQ)
1869		cmd += F_LEN(cmd);
1870	if (cmd->opcode == O_TAG)
1871		cmd += F_LEN(cmd);
1872	if (cmd->opcode == O_SKIPTO ) {
1873		if (tablearg != 0) {
1874			rulenum = (u_int16_t)tablearg;
1875		} else {
1876			rulenum = cmd->arg1;
1877		}
1878		for (rule = me->next; rule ; rule = rule->next) {
1879			if (rule->rulenum >= rulenum) {
1880				break;
1881			}
1882		}
1883	}
1884	if (rule == NULL)			/* failure or not a skipto */
1885		rule = me->next;
1886	me->next_rule = rule;
1887	return rule;
1888}
1889
1890static int
1891add_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1892    uint8_t mlen, uint32_t value)
1893{
1894	struct radix_node_head *rnh;
1895	struct table_entry *ent;
1896	struct radix_node *rn;
1897
1898	if (tbl >= IPFW_TABLES_MAX)
1899		return (EINVAL);
1900	rnh = ch->tables[tbl];
1901	ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
1902	if (ent == NULL)
1903		return (ENOMEM);
1904	ent->value = value;
1905	ent->addr.sin_len = ent->mask.sin_len = 8;
1906	ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1907	ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
1908	IPFW_WLOCK(ch);
1909	rn = rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent);
1910	if (rn == NULL) {
1911		IPFW_WUNLOCK(ch);
1912		free(ent, M_IPFW_TBL);
1913		return (EEXIST);
1914	}
1915	IPFW_WUNLOCK(ch);
1916	return (0);
1917}
1918
1919static int
1920del_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1921    uint8_t mlen)
1922{
1923	struct radix_node_head *rnh;
1924	struct table_entry *ent;
1925	struct sockaddr_in sa, mask;
1926
1927	if (tbl >= IPFW_TABLES_MAX)
1928		return (EINVAL);
1929	rnh = ch->tables[tbl];
1930	sa.sin_len = mask.sin_len = 8;
1931	mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1932	sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
1933	IPFW_WLOCK(ch);
1934	ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
1935	if (ent == NULL) {
1936		IPFW_WUNLOCK(ch);
1937		return (ESRCH);
1938	}
1939	IPFW_WUNLOCK(ch);
1940	free(ent, M_IPFW_TBL);
1941	return (0);
1942}
1943
1944static int
1945flush_table_entry(struct radix_node *rn, void *arg)
1946{
1947	struct radix_node_head * const rnh = arg;
1948	struct table_entry *ent;
1949
1950	ent = (struct table_entry *)
1951	    rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
1952	if (ent != NULL)
1953		free(ent, M_IPFW_TBL);
1954	return (0);
1955}
1956
1957static int
1958flush_table(struct ip_fw_chain *ch, uint16_t tbl)
1959{
1960	struct radix_node_head *rnh;
1961
1962	IPFW_WLOCK_ASSERT(ch);
1963
1964	if (tbl >= IPFW_TABLES_MAX)
1965		return (EINVAL);
1966	rnh = ch->tables[tbl];
1967	KASSERT(rnh != NULL, ("NULL IPFW table"));
1968	rnh->rnh_walktree(rnh, flush_table_entry, rnh);
1969	return (0);
1970}
1971
1972static void
1973flush_tables(struct ip_fw_chain *ch)
1974{
1975	uint16_t tbl;
1976
1977	IPFW_WLOCK_ASSERT(ch);
1978
1979	for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
1980		flush_table(ch, tbl);
1981}
1982
1983static int
1984init_tables(struct ip_fw_chain *ch)
1985{
1986	int i;
1987	uint16_t j;
1988
1989	for (i = 0; i < IPFW_TABLES_MAX; i++) {
1990		if (!rn_inithead((void **)&ch->tables[i], 32)) {
1991			for (j = 0; j < i; j++) {
1992				(void) flush_table(ch, j);
1993			}
1994			return (ENOMEM);
1995		}
1996	}
1997	return (0);
1998}
1999
2000static int
2001lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
2002    uint32_t *val)
2003{
2004	struct radix_node_head *rnh;
2005	struct table_entry *ent;
2006	struct sockaddr_in sa;
2007
2008	if (tbl >= IPFW_TABLES_MAX)
2009		return (0);
2010	rnh = ch->tables[tbl];
2011	sa.sin_len = 8;
2012	sa.sin_addr.s_addr = addr;
2013	ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
2014	if (ent != NULL) {
2015		*val = ent->value;
2016		return (1);
2017	}
2018	return (0);
2019}
2020
2021static int
2022count_table_entry(struct radix_node *rn, void *arg)
2023{
2024	u_int32_t * const cnt = arg;
2025
2026	(*cnt)++;
2027	return (0);
2028}
2029
2030static int
2031count_table(struct ip_fw_chain *ch, uint32_t tbl, uint32_t *cnt)
2032{
2033	struct radix_node_head *rnh;
2034
2035	if (tbl >= IPFW_TABLES_MAX)
2036		return (EINVAL);
2037	rnh = ch->tables[tbl];
2038	*cnt = 0;
2039	rnh->rnh_walktree(rnh, count_table_entry, cnt);
2040	return (0);
2041}
2042
2043static int
2044dump_table_entry(struct radix_node *rn, void *arg)
2045{
2046	struct table_entry * const n = (struct table_entry *)rn;
2047	ipfw_table * const tbl = arg;
2048	ipfw_table_entry *ent;
2049
2050	if (tbl->cnt == tbl->size)
2051		return (1);
2052	ent = &tbl->ent[tbl->cnt];
2053	ent->tbl = tbl->tbl;
2054	if (in_nullhost(n->mask.sin_addr))
2055		ent->masklen = 0;
2056	else
2057		ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
2058	ent->addr = n->addr.sin_addr.s_addr;
2059	ent->value = n->value;
2060	tbl->cnt++;
2061	return (0);
2062}
2063
2064static int
2065dump_table(struct ip_fw_chain *ch, ipfw_table *tbl)
2066{
2067	struct radix_node_head *rnh;
2068
2069	if (tbl->tbl >= IPFW_TABLES_MAX)
2070		return (EINVAL);
2071	rnh = ch->tables[tbl->tbl];
2072	tbl->cnt = 0;
2073	rnh->rnh_walktree(rnh, dump_table_entry, tbl);
2074	return (0);
2075}
2076
2077static int
2078check_uidgid(ipfw_insn_u32 *insn, int proto, struct ifnet *oif,
2079    struct in_addr dst_ip, u_int16_t dst_port, struct in_addr src_ip,
2080    u_int16_t src_port, struct ucred **uc, int *ugid_lookupp,
2081    struct inpcb *inp)
2082{
2083	struct inpcbinfo *pi;
2084	int wildcard;
2085	struct inpcb *pcb;
2086	int match;
2087
2088	/*
2089	 * Check to see if the UDP or TCP stack supplied us with
2090	 * the PCB. If so, rather then holding a lock and looking
2091	 * up the PCB, we can use the one that was supplied.
2092	 */
2093	if (inp && *ugid_lookupp == 0) {
2094		INP_LOCK_ASSERT(inp);
2095		if (inp->inp_socket != NULL) {
2096			*uc = crhold(inp->inp_cred);
2097			*ugid_lookupp = 1;
2098		} else
2099			*ugid_lookupp = -1;
2100	}
2101	/*
2102	 * If we have already been here and the packet has no
2103	 * PCB entry associated with it, then we can safely
2104	 * assume that this is a no match.
2105	 */
2106	if (*ugid_lookupp == -1)
2107		return (0);
2108	if (proto == IPPROTO_TCP) {
2109		wildcard = 0;
2110		pi = &V_tcbinfo;
2111	} else if (proto == IPPROTO_UDP) {
2112		wildcard = INPLOOKUP_WILDCARD;
2113		pi = &V_udbinfo;
2114	} else
2115		return 0;
2116	match = 0;
2117	if (*ugid_lookupp == 0) {
2118		INP_INFO_RLOCK(pi);
2119		pcb =  (oif) ?
2120			in_pcblookup_hash(pi,
2121				dst_ip, htons(dst_port),
2122				src_ip, htons(src_port),
2123				wildcard, oif) :
2124			in_pcblookup_hash(pi,
2125				src_ip, htons(src_port),
2126				dst_ip, htons(dst_port),
2127				wildcard, NULL);
2128		if (pcb != NULL) {
2129			*uc = crhold(pcb->inp_cred);
2130			*ugid_lookupp = 1;
2131		}
2132		INP_INFO_RUNLOCK(pi);
2133		if (*ugid_lookupp == 0) {
2134			/*
2135			 * If the lookup did not yield any results, there
2136			 * is no sense in coming back and trying again. So
2137			 * we can set lookup to -1 and ensure that we wont
2138			 * bother the pcb system again.
2139			 */
2140			*ugid_lookupp = -1;
2141			return (0);
2142		}
2143	}
2144	if (insn->o.opcode == O_UID)
2145		match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
2146	else if (insn->o.opcode == O_GID)
2147		match = groupmember((gid_t)insn->d[0], *uc);
2148	else if (insn->o.opcode == O_JAIL)
2149		match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
2150	return match;
2151}
2152
2153/*
2154 * The main check routine for the firewall.
2155 *
2156 * All arguments are in args so we can modify them and return them
2157 * back to the caller.
2158 *
2159 * Parameters:
2160 *
2161 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
2162 *		Starts with the IP header.
2163 *	args->eh (in)	Mac header if present, or NULL for layer3 packet.
2164 *	args->L3offset	Number of bytes bypassed if we came from L2.
2165 *			e.g. often sizeof(eh)  ** NOTYET **
2166 *	args->oif	Outgoing interface, or NULL if packet is incoming.
2167 *		The incoming interface is in the mbuf. (in)
2168 *	args->divert_rule (in/out)
2169 *		Skip up to the first rule past this rule number;
2170 *		upon return, non-zero port number for divert or tee.
2171 *
2172 *	args->rule	Pointer to the last matching rule (in/out)
2173 *	args->next_hop	Socket we are forwarding to (out).
2174 *	args->f_id	Addresses grabbed from the packet (out)
2175 * 	args->cookie	a cookie depending on rule action
2176 *
2177 * Return value:
2178 *
2179 *	IP_FW_PASS	the packet must be accepted
2180 *	IP_FW_DENY	the packet must be dropped
2181 *	IP_FW_DIVERT	divert packet, port in m_tag
2182 *	IP_FW_TEE	tee packet, port in m_tag
2183 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
2184 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
2185 *
2186 */
2187int
2188ipfw_chk(struct ip_fw_args *args)
2189{
2190
2191	/*
2192	 * Local variables holding state during the processing of a packet:
2193	 *
2194	 * IMPORTANT NOTE: to speed up the processing of rules, there
2195	 * are some assumption on the values of the variables, which
2196	 * are documented here. Should you change them, please check
2197	 * the implementation of the various instructions to make sure
2198	 * that they still work.
2199	 *
2200	 * args->eh	The MAC header. It is non-null for a layer2
2201	 *	packet, it is NULL for a layer-3 packet.
2202	 * **notyet**
2203	 * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
2204	 *
2205	 * m | args->m	Pointer to the mbuf, as received from the caller.
2206	 *	It may change if ipfw_chk() does an m_pullup, or if it
2207	 *	consumes the packet because it calls send_reject().
2208	 *	XXX This has to change, so that ipfw_chk() never modifies
2209	 *	or consumes the buffer.
2210	 * ip	is the beginning of the ip(4 or 6) header.
2211	 *	Calculated by adding the L3offset to the start of data.
2212	 *	(Until we start using L3offset, the packet is
2213	 *	supposed to start with the ip header).
2214	 */
2215	struct mbuf *m = args->m;
2216	struct ip *ip = mtod(m, struct ip *);
2217
2218	/*
2219	 * For rules which contain uid/gid or jail constraints, cache
2220	 * a copy of the users credentials after the pcb lookup has been
2221	 * executed. This will speed up the processing of rules with
2222	 * these types of constraints, as well as decrease contention
2223	 * on pcb related locks.
2224	 */
2225	struct ucred *ucred_cache = NULL;
2226	int ucred_lookup = 0;
2227
2228	/*
2229	 * divinput_flags	If non-zero, set to the IP_FW_DIVERT_*_FLAG
2230	 *	associated with a packet input on a divert socket.  This
2231	 *	will allow to distinguish traffic and its direction when
2232	 *	it originates from a divert socket.
2233	 */
2234	u_int divinput_flags = 0;
2235
2236	/*
2237	 * oif | args->oif	If NULL, ipfw_chk has been called on the
2238	 *	inbound path (ether_input, ip_input).
2239	 *	If non-NULL, ipfw_chk has been called on the outbound path
2240	 *	(ether_output, ip_output).
2241	 */
2242	struct ifnet *oif = args->oif;
2243
2244	struct ip_fw *f = NULL;		/* matching rule */
2245	int retval = 0;
2246
2247	/*
2248	 * hlen	The length of the IP header.
2249	 */
2250	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
2251
2252	/*
2253	 * offset	The offset of a fragment. offset != 0 means that
2254	 *	we have a fragment at this offset of an IPv4 packet.
2255	 *	offset == 0 means that (if this is an IPv4 packet)
2256	 *	this is the first or only fragment.
2257	 *	For IPv6 offset == 0 means there is no Fragment Header.
2258	 *	If offset != 0 for IPv6 always use correct mask to
2259	 *	get the correct offset because we add IP6F_MORE_FRAG
2260	 *	to be able to dectect the first fragment which would
2261	 *	otherwise have offset = 0.
2262	 */
2263	u_short offset = 0;
2264
2265	/*
2266	 * Local copies of addresses. They are only valid if we have
2267	 * an IP packet.
2268	 *
2269	 * proto	The protocol. Set to 0 for non-ip packets,
2270	 *	or to the protocol read from the packet otherwise.
2271	 *	proto != 0 means that we have an IPv4 packet.
2272	 *
2273	 * src_port, dst_port	port numbers, in HOST format. Only
2274	 *	valid for TCP and UDP packets.
2275	 *
2276	 * src_ip, dst_ip	ip addresses, in NETWORK format.
2277	 *	Only valid for IPv4 packets.
2278	 */
2279	u_int8_t proto;
2280	u_int16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
2281	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
2282	u_int16_t ip_len=0;
2283	int pktlen;
2284	u_int16_t	etype = 0;	/* Host order stored ether type */
2285
2286	/*
2287	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
2288	 * 	MATCH_NONE when checked and not matched (q = NULL),
2289	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
2290	 */
2291	int dyn_dir = MATCH_UNKNOWN;
2292	ipfw_dyn_rule *q = NULL;
2293	struct ip_fw_chain *chain = &V_layer3_chain;
2294	struct m_tag *mtag;
2295
2296	/*
2297	 * We store in ulp a pointer to the upper layer protocol header.
2298	 * In the ipv4 case this is easy to determine from the header,
2299	 * but for ipv6 we might have some additional headers in the middle.
2300	 * ulp is NULL if not found.
2301	 */
2302	void *ulp = NULL;		/* upper layer protocol pointer. */
2303	/* XXX ipv6 variables */
2304	int is_ipv6 = 0;
2305	u_int16_t ext_hd = 0;	/* bits vector for extension header filtering */
2306	/* end of ipv6 variables */
2307	int is_ipv4 = 0;
2308
2309	if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
2310		return (IP_FW_PASS);	/* accept */
2311
2312	dst_ip.s_addr = 0;		/* make sure it is initialized */
2313	src_ip.s_addr = 0;		/* make sure it is initialized */
2314	pktlen = m->m_pkthdr.len;
2315	args->f_id.fib = M_GETFIB(m); /* note mbuf not altered) */
2316	proto = args->f_id.proto = 0;	/* mark f_id invalid */
2317		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
2318
2319/*
2320 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
2321 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
2322 * pointer might become stale after other pullups (but we never use it
2323 * this way).
2324 */
2325#define PULLUP_TO(_len, p, T)						\
2326do {									\
2327	int x = (_len) + sizeof(T);					\
2328	if ((m)->m_len < x) {						\
2329		args->m = m = m_pullup(m, x);				\
2330		if (m == NULL)						\
2331			goto pullup_failed;				\
2332	}								\
2333	p = (mtod(m, char *) + (_len));					\
2334} while (0)
2335
2336	/*
2337	 * if we have an ether header,
2338	 */
2339	if (args->eh)
2340		etype = ntohs(args->eh->ether_type);
2341
2342	/* Identify IP packets and fill up variables. */
2343	if (pktlen >= sizeof(struct ip6_hdr) &&
2344	    (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
2345		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
2346		is_ipv6 = 1;
2347		args->f_id.addr_type = 6;
2348		hlen = sizeof(struct ip6_hdr);
2349		proto = ip6->ip6_nxt;
2350
2351		/* Search extension headers to find upper layer protocols */
2352		while (ulp == NULL) {
2353			switch (proto) {
2354			case IPPROTO_ICMPV6:
2355				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
2356				args->f_id.flags = ICMP6(ulp)->icmp6_type;
2357				break;
2358
2359			case IPPROTO_TCP:
2360				PULLUP_TO(hlen, ulp, struct tcphdr);
2361				dst_port = TCP(ulp)->th_dport;
2362				src_port = TCP(ulp)->th_sport;
2363				args->f_id.flags = TCP(ulp)->th_flags;
2364				break;
2365
2366			case IPPROTO_SCTP:
2367				PULLUP_TO(hlen, ulp, struct sctphdr);
2368				src_port = SCTP(ulp)->src_port;
2369				dst_port = SCTP(ulp)->dest_port;
2370				break;
2371
2372			case IPPROTO_UDP:
2373				PULLUP_TO(hlen, ulp, struct udphdr);
2374				dst_port = UDP(ulp)->uh_dport;
2375				src_port = UDP(ulp)->uh_sport;
2376				break;
2377
2378			case IPPROTO_HOPOPTS:	/* RFC 2460 */
2379				PULLUP_TO(hlen, ulp, struct ip6_hbh);
2380				ext_hd |= EXT_HOPOPTS;
2381				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2382				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2383				ulp = NULL;
2384				break;
2385
2386			case IPPROTO_ROUTING:	/* RFC 2460 */
2387				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
2388				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
2389				case 0:
2390					ext_hd |= EXT_RTHDR0;
2391					break;
2392				case 2:
2393					ext_hd |= EXT_RTHDR2;
2394					break;
2395				default:
2396					printf("IPFW2: IPV6 - Unknown Routing "
2397					    "Header type(%d)\n",
2398					    ((struct ip6_rthdr *)ulp)->ip6r_type);
2399					if (V_fw_deny_unknown_exthdrs)
2400					    return (IP_FW_DENY);
2401					break;
2402				}
2403				ext_hd |= EXT_ROUTING;
2404				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
2405				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
2406				ulp = NULL;
2407				break;
2408
2409			case IPPROTO_FRAGMENT:	/* RFC 2460 */
2410				PULLUP_TO(hlen, ulp, struct ip6_frag);
2411				ext_hd |= EXT_FRAGMENT;
2412				hlen += sizeof (struct ip6_frag);
2413				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
2414				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
2415					IP6F_OFF_MASK;
2416				/* Add IP6F_MORE_FRAG for offset of first
2417				 * fragment to be != 0. */
2418				offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
2419					IP6F_MORE_FRAG;
2420				if (offset == 0) {
2421					printf("IPFW2: IPV6 - Invalid Fragment "
2422					    "Header\n");
2423					if (V_fw_deny_unknown_exthdrs)
2424					    return (IP_FW_DENY);
2425					break;
2426				}
2427				args->f_id.frag_id6 =
2428				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
2429				ulp = NULL;
2430				break;
2431
2432			case IPPROTO_DSTOPTS:	/* RFC 2460 */
2433				PULLUP_TO(hlen, ulp, struct ip6_hbh);
2434				ext_hd |= EXT_DSTOPTS;
2435				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2436				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2437				ulp = NULL;
2438				break;
2439
2440			case IPPROTO_AH:	/* RFC 2402 */
2441				PULLUP_TO(hlen, ulp, struct ip6_ext);
2442				ext_hd |= EXT_AH;
2443				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
2444				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
2445				ulp = NULL;
2446				break;
2447
2448			case IPPROTO_ESP:	/* RFC 2406 */
2449				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
2450				/* Anything past Seq# is variable length and
2451				 * data past this ext. header is encrypted. */
2452				ext_hd |= EXT_ESP;
2453				break;
2454
2455			case IPPROTO_NONE:	/* RFC 2460 */
2456				/*
2457				 * Packet ends here, and IPv6 header has
2458				 * already been pulled up. If ip6e_len!=0
2459				 * then octets must be ignored.
2460				 */
2461				ulp = ip; /* non-NULL to get out of loop. */
2462				break;
2463
2464			case IPPROTO_OSPFIGP:
2465				/* XXX OSPF header check? */
2466				PULLUP_TO(hlen, ulp, struct ip6_ext);
2467				break;
2468
2469			case IPPROTO_PIM:
2470				/* XXX PIM header check? */
2471				PULLUP_TO(hlen, ulp, struct pim);
2472				break;
2473
2474			case IPPROTO_CARP:
2475				PULLUP_TO(hlen, ulp, struct carp_header);
2476				if (((struct carp_header *)ulp)->carp_version !=
2477				    CARP_VERSION)
2478					return (IP_FW_DENY);
2479				if (((struct carp_header *)ulp)->carp_type !=
2480				    CARP_ADVERTISEMENT)
2481					return (IP_FW_DENY);
2482				break;
2483
2484			case IPPROTO_IPV6:	/* RFC 2893 */
2485				PULLUP_TO(hlen, ulp, struct ip6_hdr);
2486				break;
2487
2488			case IPPROTO_IPV4:	/* RFC 2893 */
2489				PULLUP_TO(hlen, ulp, struct ip);
2490				break;
2491
2492			default:
2493				printf("IPFW2: IPV6 - Unknown Extension "
2494				    "Header(%d), ext_hd=%x\n", proto, ext_hd);
2495				if (V_fw_deny_unknown_exthdrs)
2496				    return (IP_FW_DENY);
2497				PULLUP_TO(hlen, ulp, struct ip6_ext);
2498				break;
2499			} /*switch */
2500		}
2501		ip = mtod(m, struct ip *);
2502		ip6 = (struct ip6_hdr *)ip;
2503		args->f_id.src_ip6 = ip6->ip6_src;
2504		args->f_id.dst_ip6 = ip6->ip6_dst;
2505		args->f_id.src_ip = 0;
2506		args->f_id.dst_ip = 0;
2507		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
2508	} else if (pktlen >= sizeof(struct ip) &&
2509	    (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
2510	    	is_ipv4 = 1;
2511		hlen = ip->ip_hl << 2;
2512		args->f_id.addr_type = 4;
2513
2514		/*
2515		 * Collect parameters into local variables for faster matching.
2516		 */
2517		proto = ip->ip_p;
2518		src_ip = ip->ip_src;
2519		dst_ip = ip->ip_dst;
2520		if (args->eh != NULL) { /* layer 2 packets are as on the wire */
2521			offset = ntohs(ip->ip_off) & IP_OFFMASK;
2522			ip_len = ntohs(ip->ip_len);
2523		} else {
2524			offset = ip->ip_off & IP_OFFMASK;
2525			ip_len = ip->ip_len;
2526		}
2527		pktlen = ip_len < pktlen ? ip_len : pktlen;
2528
2529		if (offset == 0) {
2530			switch (proto) {
2531			case IPPROTO_TCP:
2532				PULLUP_TO(hlen, ulp, struct tcphdr);
2533				dst_port = TCP(ulp)->th_dport;
2534				src_port = TCP(ulp)->th_sport;
2535				args->f_id.flags = TCP(ulp)->th_flags;
2536				break;
2537
2538			case IPPROTO_UDP:
2539				PULLUP_TO(hlen, ulp, struct udphdr);
2540				dst_port = UDP(ulp)->uh_dport;
2541				src_port = UDP(ulp)->uh_sport;
2542				break;
2543
2544			case IPPROTO_ICMP:
2545				PULLUP_TO(hlen, ulp, struct icmphdr);
2546				args->f_id.flags = ICMP(ulp)->icmp_type;
2547				break;
2548
2549			default:
2550				break;
2551			}
2552		}
2553
2554		ip = mtod(m, struct ip *);
2555		args->f_id.src_ip = ntohl(src_ip.s_addr);
2556		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
2557	}
2558#undef PULLUP_TO
2559	if (proto) { /* we may have port numbers, store them */
2560		args->f_id.proto = proto;
2561		args->f_id.src_port = src_port = ntohs(src_port);
2562		args->f_id.dst_port = dst_port = ntohs(dst_port);
2563	}
2564
2565	IPFW_RLOCK(chain);
2566	if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
2567		IPFW_RUNLOCK(chain);
2568		return (IP_FW_PASS);	/* accept */
2569	}
2570	mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
2571	if (args->rule) {
2572		/*
2573		 * Packet has already been tagged. Look for the next rule
2574		 * to restart processing. Make sure that args->rule still
2575		 * exists and not changed.
2576		 */
2577		if (chain->id != args->chain_id) {
2578			for (f = chain->rules; f != NULL; f = f->next)
2579				if (f == args->rule && f->id == args->rule_id)
2580					break;
2581
2582			if (f != NULL)
2583				f = f->next_rule;
2584			else
2585				f = ip_fw_default_rule;
2586		} else
2587			f = args->rule->next_rule;
2588
2589		if (f == NULL)
2590			f = lookup_next_rule(args->rule, 0);
2591	} else {
2592		/*
2593		 * Find the starting rule. It can be either the first
2594		 * one, or the one after divert_rule if asked so.
2595		 */
2596		int skipto = mtag ? divert_cookie(mtag) : 0;
2597
2598		f = chain->rules;
2599		if (args->eh == NULL && skipto != 0) {
2600			if (skipto >= IPFW_DEFAULT_RULE) {
2601				IPFW_RUNLOCK(chain);
2602				return (IP_FW_DENY); /* invalid */
2603			}
2604			while (f && f->rulenum <= skipto)
2605				f = f->next;
2606			if (f == NULL) {	/* drop packet */
2607				IPFW_RUNLOCK(chain);
2608				return (IP_FW_DENY);
2609			}
2610		}
2611	}
2612	/* reset divert rule to avoid confusion later */
2613	if (mtag) {
2614		divinput_flags = divert_info(mtag) &
2615		    (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
2616		m_tag_delete(m, mtag);
2617	}
2618
2619	/*
2620	 * Now scan the rules, and parse microinstructions for each rule.
2621	 */
2622	for (; f; f = f->next) {
2623		ipfw_insn *cmd;
2624		uint32_t tablearg = 0;
2625		int l, cmdlen, skip_or; /* skip rest of OR block */
2626
2627again:
2628		if (V_set_disable & (1 << f->set) )
2629			continue;
2630
2631		skip_or = 0;
2632		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
2633		    l -= cmdlen, cmd += cmdlen) {
2634			int match;
2635
2636			/*
2637			 * check_body is a jump target used when we find a
2638			 * CHECK_STATE, and need to jump to the body of
2639			 * the target rule.
2640			 */
2641
2642check_body:
2643			cmdlen = F_LEN(cmd);
2644			/*
2645			 * An OR block (insn_1 || .. || insn_n) has the
2646			 * F_OR bit set in all but the last instruction.
2647			 * The first match will set "skip_or", and cause
2648			 * the following instructions to be skipped until
2649			 * past the one with the F_OR bit clear.
2650			 */
2651			if (skip_or) {		/* skip this instruction */
2652				if ((cmd->len & F_OR) == 0)
2653					skip_or = 0;	/* next one is good */
2654				continue;
2655			}
2656			match = 0; /* set to 1 if we succeed */
2657
2658			switch (cmd->opcode) {
2659			/*
2660			 * The first set of opcodes compares the packet's
2661			 * fields with some pattern, setting 'match' if a
2662			 * match is found. At the end of the loop there is
2663			 * logic to deal with F_NOT and F_OR flags associated
2664			 * with the opcode.
2665			 */
2666			case O_NOP:
2667				match = 1;
2668				break;
2669
2670			case O_FORWARD_MAC:
2671				printf("ipfw: opcode %d unimplemented\n",
2672				    cmd->opcode);
2673				break;
2674
2675			case O_GID:
2676			case O_UID:
2677			case O_JAIL:
2678				/*
2679				 * We only check offset == 0 && proto != 0,
2680				 * as this ensures that we have a
2681				 * packet with the ports info.
2682				 */
2683				if (offset!=0)
2684					break;
2685				if (is_ipv6) /* XXX to be fixed later */
2686					break;
2687				if (proto == IPPROTO_TCP ||
2688				    proto == IPPROTO_UDP)
2689					match = check_uidgid(
2690						    (ipfw_insn_u32 *)cmd,
2691						    proto, oif,
2692						    dst_ip, dst_port,
2693						    src_ip, src_port, &ucred_cache,
2694						    &ucred_lookup, args->inp);
2695				break;
2696
2697			case O_RECV:
2698				match = iface_match(m->m_pkthdr.rcvif,
2699				    (ipfw_insn_if *)cmd);
2700				break;
2701
2702			case O_XMIT:
2703				match = iface_match(oif, (ipfw_insn_if *)cmd);
2704				break;
2705
2706			case O_VIA:
2707				match = iface_match(oif ? oif :
2708				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
2709				break;
2710
2711			case O_MACADDR2:
2712				if (args->eh != NULL) {	/* have MAC header */
2713					u_int32_t *want = (u_int32_t *)
2714						((ipfw_insn_mac *)cmd)->addr;
2715					u_int32_t *mask = (u_int32_t *)
2716						((ipfw_insn_mac *)cmd)->mask;
2717					u_int32_t *hdr = (u_int32_t *)args->eh;
2718
2719					match =
2720					    ( want[0] == (hdr[0] & mask[0]) &&
2721					      want[1] == (hdr[1] & mask[1]) &&
2722					      want[2] == (hdr[2] & mask[2]) );
2723				}
2724				break;
2725
2726			case O_MAC_TYPE:
2727				if (args->eh != NULL) {
2728					u_int16_t *p =
2729					    ((ipfw_insn_u16 *)cmd)->ports;
2730					int i;
2731
2732					for (i = cmdlen - 1; !match && i>0;
2733					    i--, p += 2)
2734						match = (etype >= p[0] &&
2735						    etype <= p[1]);
2736				}
2737				break;
2738
2739			case O_FRAG:
2740				match = (offset != 0);
2741				break;
2742
2743			case O_IN:	/* "out" is "not in" */
2744				match = (oif == NULL);
2745				break;
2746
2747			case O_LAYER2:
2748				match = (args->eh != NULL);
2749				break;
2750
2751			case O_DIVERTED:
2752				match = (cmd->arg1 & 1 && divinput_flags &
2753				    IP_FW_DIVERT_LOOPBACK_FLAG) ||
2754					(cmd->arg1 & 2 && divinput_flags &
2755				    IP_FW_DIVERT_OUTPUT_FLAG);
2756				break;
2757
2758			case O_PROTO:
2759				/*
2760				 * We do not allow an arg of 0 so the
2761				 * check of "proto" only suffices.
2762				 */
2763				match = (proto == cmd->arg1);
2764				break;
2765
2766			case O_IP_SRC:
2767				match = is_ipv4 &&
2768				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2769				    src_ip.s_addr);
2770				break;
2771
2772			case O_IP_SRC_LOOKUP:
2773			case O_IP_DST_LOOKUP:
2774				if (is_ipv4) {
2775				    uint32_t a =
2776					(cmd->opcode == O_IP_DST_LOOKUP) ?
2777					    dst_ip.s_addr : src_ip.s_addr;
2778				    uint32_t v = 0;
2779
2780				    match = lookup_table(chain, cmd->arg1, a,
2781					&v);
2782				    if (!match)
2783					break;
2784				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2785					match =
2786					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
2787				    else
2788					tablearg = v;
2789				}
2790				break;
2791
2792			case O_IP_SRC_MASK:
2793			case O_IP_DST_MASK:
2794				if (is_ipv4) {
2795				    uint32_t a =
2796					(cmd->opcode == O_IP_DST_MASK) ?
2797					    dst_ip.s_addr : src_ip.s_addr;
2798				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2799				    int i = cmdlen-1;
2800
2801				    for (; !match && i>0; i-= 2, p+= 2)
2802					match = (p[0] == (a & p[1]));
2803				}
2804				break;
2805
2806			case O_IP_SRC_ME:
2807				if (is_ipv4) {
2808					struct ifnet *tif;
2809
2810					INADDR_TO_IFP(src_ip, tif);
2811					match = (tif != NULL);
2812				}
2813				break;
2814
2815			case O_IP_DST_SET:
2816			case O_IP_SRC_SET:
2817				if (is_ipv4) {
2818					u_int32_t *d = (u_int32_t *)(cmd+1);
2819					u_int32_t addr =
2820					    cmd->opcode == O_IP_DST_SET ?
2821						args->f_id.dst_ip :
2822						args->f_id.src_ip;
2823
2824					    if (addr < d[0])
2825						    break;
2826					    addr -= d[0]; /* subtract base */
2827					    match = (addr < cmd->arg1) &&
2828						( d[ 1 + (addr>>5)] &
2829						  (1<<(addr & 0x1f)) );
2830				}
2831				break;
2832
2833			case O_IP_DST:
2834				match = is_ipv4 &&
2835				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2836				    dst_ip.s_addr);
2837				break;
2838
2839			case O_IP_DST_ME:
2840				if (is_ipv4) {
2841					struct ifnet *tif;
2842
2843					INADDR_TO_IFP(dst_ip, tif);
2844					match = (tif != NULL);
2845				}
2846				break;
2847
2848			case O_IP_SRCPORT:
2849			case O_IP_DSTPORT:
2850				/*
2851				 * offset == 0 && proto != 0 is enough
2852				 * to guarantee that we have a
2853				 * packet with port info.
2854				 */
2855				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
2856				    && offset == 0) {
2857					u_int16_t x =
2858					    (cmd->opcode == O_IP_SRCPORT) ?
2859						src_port : dst_port ;
2860					u_int16_t *p =
2861					    ((ipfw_insn_u16 *)cmd)->ports;
2862					int i;
2863
2864					for (i = cmdlen - 1; !match && i>0;
2865					    i--, p += 2)
2866						match = (x>=p[0] && x<=p[1]);
2867				}
2868				break;
2869
2870			case O_ICMPTYPE:
2871				match = (offset == 0 && proto==IPPROTO_ICMP &&
2872				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2873				break;
2874
2875#ifdef INET6
2876			case O_ICMP6TYPE:
2877				match = is_ipv6 && offset == 0 &&
2878				    proto==IPPROTO_ICMPV6 &&
2879				    icmp6type_match(
2880					ICMP6(ulp)->icmp6_type,
2881					(ipfw_insn_u32 *)cmd);
2882				break;
2883#endif /* INET6 */
2884
2885			case O_IPOPT:
2886				match = (is_ipv4 &&
2887				    ipopts_match(ip, cmd) );
2888				break;
2889
2890			case O_IPVER:
2891				match = (is_ipv4 &&
2892				    cmd->arg1 == ip->ip_v);
2893				break;
2894
2895			case O_IPID:
2896			case O_IPLEN:
2897			case O_IPTTL:
2898				if (is_ipv4) {	/* only for IP packets */
2899				    uint16_t x;
2900				    uint16_t *p;
2901				    int i;
2902
2903				    if (cmd->opcode == O_IPLEN)
2904					x = ip_len;
2905				    else if (cmd->opcode == O_IPTTL)
2906					x = ip->ip_ttl;
2907				    else /* must be IPID */
2908					x = ntohs(ip->ip_id);
2909				    if (cmdlen == 1) {
2910					match = (cmd->arg1 == x);
2911					break;
2912				    }
2913				    /* otherwise we have ranges */
2914				    p = ((ipfw_insn_u16 *)cmd)->ports;
2915				    i = cmdlen - 1;
2916				    for (; !match && i>0; i--, p += 2)
2917					match = (x >= p[0] && x <= p[1]);
2918				}
2919				break;
2920
2921			case O_IPPRECEDENCE:
2922				match = (is_ipv4 &&
2923				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
2924				break;
2925
2926			case O_IPTOS:
2927				match = (is_ipv4 &&
2928				    flags_match(cmd, ip->ip_tos));
2929				break;
2930
2931			case O_TCPDATALEN:
2932				if (proto == IPPROTO_TCP && offset == 0) {
2933				    struct tcphdr *tcp;
2934				    uint16_t x;
2935				    uint16_t *p;
2936				    int i;
2937
2938				    tcp = TCP(ulp);
2939				    x = ip_len -
2940					((ip->ip_hl + tcp->th_off) << 2);
2941				    if (cmdlen == 1) {
2942					match = (cmd->arg1 == x);
2943					break;
2944				    }
2945				    /* otherwise we have ranges */
2946				    p = ((ipfw_insn_u16 *)cmd)->ports;
2947				    i = cmdlen - 1;
2948				    for (; !match && i>0; i--, p += 2)
2949					match = (x >= p[0] && x <= p[1]);
2950				}
2951				break;
2952
2953			case O_TCPFLAGS:
2954				match = (proto == IPPROTO_TCP && offset == 0 &&
2955				    flags_match(cmd, TCP(ulp)->th_flags));
2956				break;
2957
2958			case O_TCPOPTS:
2959				match = (proto == IPPROTO_TCP && offset == 0 &&
2960				    tcpopts_match(TCP(ulp), cmd));
2961				break;
2962
2963			case O_TCPSEQ:
2964				match = (proto == IPPROTO_TCP && offset == 0 &&
2965				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2966					TCP(ulp)->th_seq);
2967				break;
2968
2969			case O_TCPACK:
2970				match = (proto == IPPROTO_TCP && offset == 0 &&
2971				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2972					TCP(ulp)->th_ack);
2973				break;
2974
2975			case O_TCPWIN:
2976				match = (proto == IPPROTO_TCP && offset == 0 &&
2977				    cmd->arg1 == TCP(ulp)->th_win);
2978				break;
2979
2980			case O_ESTAB:
2981				/* reject packets which have SYN only */
2982				/* XXX should i also check for TH_ACK ? */
2983				match = (proto == IPPROTO_TCP && offset == 0 &&
2984				    (TCP(ulp)->th_flags &
2985				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2986				break;
2987
2988			case O_ALTQ: {
2989				struct pf_mtag *at;
2990				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2991
2992				match = 1;
2993				at = pf_find_mtag(m);
2994				if (at != NULL && at->qid != 0)
2995					break;
2996				at = pf_get_mtag(m);
2997				if (at == NULL) {
2998					/*
2999					 * Let the packet fall back to the
3000					 * default ALTQ.
3001					 */
3002					break;
3003				}
3004				at->qid = altq->qid;
3005				if (is_ipv4)
3006					at->af = AF_INET;
3007				else
3008					at->af = AF_LINK;
3009				at->hdr = ip;
3010				break;
3011			}
3012
3013			case O_LOG:
3014				if (V_fw_verbose)
3015					ipfw_log(f, hlen, args, m,
3016					    oif, offset, tablearg, ip);
3017				match = 1;
3018				break;
3019
3020			case O_PROB:
3021				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
3022				break;
3023
3024			case O_VERREVPATH:
3025				/* Outgoing packets automatically pass/match */
3026				match = ((oif != NULL) ||
3027				    (m->m_pkthdr.rcvif == NULL) ||
3028				    (
3029#ifdef INET6
3030				    is_ipv6 ?
3031					verify_path6(&(args->f_id.src_ip6),
3032					    m->m_pkthdr.rcvif) :
3033#endif
3034				    verify_path(src_ip, m->m_pkthdr.rcvif,
3035				        args->f_id.fib)));
3036				break;
3037
3038			case O_VERSRCREACH:
3039				/* Outgoing packets automatically pass/match */
3040				match = (hlen > 0 && ((oif != NULL) ||
3041#ifdef INET6
3042				    is_ipv6 ?
3043				        verify_path6(&(args->f_id.src_ip6),
3044				            NULL) :
3045#endif
3046				    verify_path(src_ip, NULL, args->f_id.fib)));
3047				break;
3048
3049			case O_ANTISPOOF:
3050				/* Outgoing packets automatically pass/match */
3051				if (oif == NULL && hlen > 0 &&
3052				    (  (is_ipv4 && in_localaddr(src_ip))
3053#ifdef INET6
3054				    || (is_ipv6 &&
3055				        in6_localaddr(&(args->f_id.src_ip6)))
3056#endif
3057				    ))
3058					match =
3059#ifdef INET6
3060					    is_ipv6 ? verify_path6(
3061					        &(args->f_id.src_ip6),
3062					        m->m_pkthdr.rcvif) :
3063#endif
3064					    verify_path(src_ip,
3065					    	m->m_pkthdr.rcvif,
3066					        args->f_id.fib);
3067				else
3068					match = 1;
3069				break;
3070
3071			case O_IPSEC:
3072#ifdef IPSEC
3073				match = (m_tag_find(m,
3074				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
3075#endif
3076				/* otherwise no match */
3077				break;
3078
3079#ifdef INET6
3080			case O_IP6_SRC:
3081				match = is_ipv6 &&
3082				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
3083				    &((ipfw_insn_ip6 *)cmd)->addr6);
3084				break;
3085
3086			case O_IP6_DST:
3087				match = is_ipv6 &&
3088				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
3089				    &((ipfw_insn_ip6 *)cmd)->addr6);
3090				break;
3091			case O_IP6_SRC_MASK:
3092			case O_IP6_DST_MASK:
3093				if (is_ipv6) {
3094					int i = cmdlen - 1;
3095					struct in6_addr p;
3096					struct in6_addr *d =
3097					    &((ipfw_insn_ip6 *)cmd)->addr6;
3098
3099					for (; !match && i > 0; d += 2,
3100					    i -= F_INSN_SIZE(struct in6_addr)
3101					    * 2) {
3102						p = (cmd->opcode ==
3103						    O_IP6_SRC_MASK) ?
3104						    args->f_id.src_ip6:
3105						    args->f_id.dst_ip6;
3106						APPLY_MASK(&p, &d[1]);
3107						match =
3108						    IN6_ARE_ADDR_EQUAL(&d[0],
3109						    &p);
3110					}
3111				}
3112				break;
3113
3114			case O_IP6_SRC_ME:
3115				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
3116				break;
3117
3118			case O_IP6_DST_ME:
3119				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
3120				break;
3121
3122			case O_FLOW6ID:
3123				match = is_ipv6 &&
3124				    flow6id_match(args->f_id.flow_id6,
3125				    (ipfw_insn_u32 *) cmd);
3126				break;
3127
3128			case O_EXT_HDR:
3129				match = is_ipv6 &&
3130				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
3131				break;
3132
3133			case O_IP6:
3134				match = is_ipv6;
3135				break;
3136#endif
3137
3138			case O_IP4:
3139				match = is_ipv4;
3140				break;
3141
3142			case O_TAG: {
3143				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
3144				    tablearg : cmd->arg1;
3145
3146				/* Packet is already tagged with this tag? */
3147				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
3148
3149				/* We have `untag' action when F_NOT flag is
3150				 * present. And we must remove this mtag from
3151				 * mbuf and reset `match' to zero (`match' will
3152				 * be inversed later).
3153				 * Otherwise we should allocate new mtag and
3154				 * push it into mbuf.
3155				 */
3156				if (cmd->len & F_NOT) { /* `untag' action */
3157					if (mtag != NULL)
3158						m_tag_delete(m, mtag);
3159				} else if (mtag == NULL) {
3160					if ((mtag = m_tag_alloc(MTAG_IPFW,
3161					    tag, 0, M_NOWAIT)) != NULL)
3162						m_tag_prepend(m, mtag);
3163				}
3164				match = (cmd->len & F_NOT) ? 0: 1;
3165				break;
3166			}
3167
3168			case O_FIB: /* try match the specified fib */
3169				if (args->f_id.fib == cmd->arg1)
3170					match = 1;
3171				break;
3172
3173			case O_TAGGED: {
3174				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
3175				    tablearg : cmd->arg1;
3176
3177				if (cmdlen == 1) {
3178					match = m_tag_locate(m, MTAG_IPFW,
3179					    tag, NULL) != NULL;
3180					break;
3181				}
3182
3183				/* we have ranges */
3184				for (mtag = m_tag_first(m);
3185				    mtag != NULL && !match;
3186				    mtag = m_tag_next(m, mtag)) {
3187					uint16_t *p;
3188					int i;
3189
3190					if (mtag->m_tag_cookie != MTAG_IPFW)
3191						continue;
3192
3193					p = ((ipfw_insn_u16 *)cmd)->ports;
3194					i = cmdlen - 1;
3195					for(; !match && i > 0; i--, p += 2)
3196						match =
3197						    mtag->m_tag_id >= p[0] &&
3198						    mtag->m_tag_id <= p[1];
3199				}
3200				break;
3201			}
3202
3203			/*
3204			 * The second set of opcodes represents 'actions',
3205			 * i.e. the terminal part of a rule once the packet
3206			 * matches all previous patterns.
3207			 * Typically there is only one action for each rule,
3208			 * and the opcode is stored at the end of the rule
3209			 * (but there are exceptions -- see below).
3210			 *
3211			 * In general, here we set retval and terminate the
3212			 * outer loop (would be a 'break 3' in some language,
3213			 * but we need to do a 'goto done').
3214			 *
3215			 * Exceptions:
3216			 * O_COUNT and O_SKIPTO actions:
3217			 *   instead of terminating, we jump to the next rule
3218			 *   ('goto next_rule', equivalent to a 'break 2'),
3219			 *   or to the SKIPTO target ('goto again' after
3220			 *   having set f, cmd and l), respectively.
3221			 *
3222			 * O_TAG, O_LOG and O_ALTQ action parameters:
3223			 *   perform some action and set match = 1;
3224			 *
3225			 * O_LIMIT and O_KEEP_STATE: these opcodes are
3226			 *   not real 'actions', and are stored right
3227			 *   before the 'action' part of the rule.
3228			 *   These opcodes try to install an entry in the
3229			 *   state tables; if successful, we continue with
3230			 *   the next opcode (match=1; break;), otherwise
3231			 *   the packet *   must be dropped
3232			 *   ('goto done' after setting retval);
3233			 *
3234			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
3235			 *   cause a lookup of the state table, and a jump
3236			 *   to the 'action' part of the parent rule
3237			 *   ('goto check_body') if an entry is found, or
3238			 *   (CHECK_STATE only) a jump to the next rule if
3239			 *   the entry is not found ('goto next_rule').
3240			 *   The result of the lookup is cached to make
3241			 *   further instances of these opcodes are
3242			 *   effectively NOPs.
3243			 */
3244			case O_LIMIT:
3245			case O_KEEP_STATE:
3246				if (install_state(f,
3247				    (ipfw_insn_limit *)cmd, args, tablearg)) {
3248					retval = IP_FW_DENY;
3249					goto done; /* error/limit violation */
3250				}
3251				match = 1;
3252				break;
3253
3254			case O_PROBE_STATE:
3255			case O_CHECK_STATE:
3256				/*
3257				 * dynamic rules are checked at the first
3258				 * keep-state or check-state occurrence,
3259				 * with the result being stored in dyn_dir.
3260				 * The compiler introduces a PROBE_STATE
3261				 * instruction for us when we have a
3262				 * KEEP_STATE (because PROBE_STATE needs
3263				 * to be run first).
3264				 */
3265				if (dyn_dir == MATCH_UNKNOWN &&
3266				    (q = lookup_dyn_rule(&args->f_id,
3267				     &dyn_dir, proto == IPPROTO_TCP ?
3268					TCP(ulp) : NULL))
3269					!= NULL) {
3270					/*
3271					 * Found dynamic entry, update stats
3272					 * and jump to the 'action' part of
3273					 * the parent rule.
3274					 */
3275					q->pcnt++;
3276					q->bcnt += pktlen;
3277					f = q->rule;
3278					cmd = ACTION_PTR(f);
3279					l = f->cmd_len - f->act_ofs;
3280					IPFW_DYN_UNLOCK();
3281					goto check_body;
3282				}
3283				/*
3284				 * Dynamic entry not found. If CHECK_STATE,
3285				 * skip to next rule, if PROBE_STATE just
3286				 * ignore and continue with next opcode.
3287				 */
3288				if (cmd->opcode == O_CHECK_STATE)
3289					goto next_rule;
3290				match = 1;
3291				break;
3292
3293			case O_ACCEPT:
3294				retval = 0;	/* accept */
3295				goto done;
3296
3297			case O_PIPE:
3298			case O_QUEUE:
3299				args->rule = f; /* report matching rule */
3300				args->rule_id = f->id;
3301				args->chain_id = chain->id;
3302				if (cmd->arg1 == IP_FW_TABLEARG)
3303					args->cookie = tablearg;
3304				else
3305					args->cookie = cmd->arg1;
3306				retval = IP_FW_DUMMYNET;
3307				goto done;
3308
3309			case O_DIVERT:
3310			case O_TEE: {
3311				struct divert_tag *dt;
3312
3313				if (args->eh) /* not on layer 2 */
3314					break;
3315				mtag = m_tag_get(PACKET_TAG_DIVERT,
3316						sizeof(struct divert_tag),
3317						M_NOWAIT);
3318				if (mtag == NULL) {
3319					/* XXX statistic */
3320					/* drop packet */
3321					IPFW_RUNLOCK(chain);
3322					if (ucred_cache != NULL)
3323						crfree(ucred_cache);
3324					return (IP_FW_DENY);
3325				}
3326				dt = (struct divert_tag *)(mtag+1);
3327				dt->cookie = f->rulenum;
3328				if (cmd->arg1 == IP_FW_TABLEARG)
3329					dt->info = tablearg;
3330				else
3331					dt->info = cmd->arg1;
3332				m_tag_prepend(m, mtag);
3333				retval = (cmd->opcode == O_DIVERT) ?
3334				    IP_FW_DIVERT : IP_FW_TEE;
3335				goto done;
3336			}
3337			case O_COUNT:
3338			case O_SKIPTO:
3339				f->pcnt++;	/* update stats */
3340				f->bcnt += pktlen;
3341				f->timestamp = time_uptime;
3342				if (cmd->opcode == O_COUNT)
3343					goto next_rule;
3344				/* handle skipto */
3345				if (cmd->arg1 == IP_FW_TABLEARG) {
3346					f = lookup_next_rule(f, tablearg);
3347				} else {
3348					if (f->next_rule == NULL)
3349						lookup_next_rule(f, 0);
3350					f = f->next_rule;
3351				}
3352				goto again;
3353
3354			case O_REJECT:
3355				/*
3356				 * Drop the packet and send a reject notice
3357				 * if the packet is not ICMP (or is an ICMP
3358				 * query), and it is not multicast/broadcast.
3359				 */
3360				if (hlen > 0 && is_ipv4 && offset == 0 &&
3361				    (proto != IPPROTO_ICMP ||
3362				     is_icmp_query(ICMP(ulp))) &&
3363				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3364				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
3365					send_reject(args, cmd->arg1, ip_len, ip);
3366					m = args->m;
3367				}
3368				/* FALLTHROUGH */
3369#ifdef INET6
3370			case O_UNREACH6:
3371				if (hlen > 0 && is_ipv6 &&
3372				    ((offset & IP6F_OFF_MASK) == 0) &&
3373				    (proto != IPPROTO_ICMPV6 ||
3374				     (is_icmp6_query(args->f_id.flags) == 1)) &&
3375				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3376				    !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
3377					send_reject6(
3378					    args, cmd->arg1, hlen,
3379					    (struct ip6_hdr *)ip);
3380					m = args->m;
3381				}
3382				/* FALLTHROUGH */
3383#endif
3384			case O_DENY:
3385				retval = IP_FW_DENY;
3386				goto done;
3387
3388			case O_FORWARD_IP: {
3389				struct sockaddr_in *sa;
3390				sa = &(((ipfw_insn_sa *)cmd)->sa);
3391				if (args->eh)	/* not valid on layer2 pkts */
3392					break;
3393				if (!q || dyn_dir == MATCH_FORWARD) {
3394					if (sa->sin_addr.s_addr == INADDR_ANY) {
3395						bcopy(sa, &args->hopstore,
3396							sizeof(*sa));
3397						args->hopstore.sin_addr.s_addr =
3398						    htonl(tablearg);
3399						args->next_hop =
3400						    &args->hopstore;
3401					} else {
3402						args->next_hop = sa;
3403					}
3404				}
3405				retval = IP_FW_PASS;
3406			    }
3407			    goto done;
3408
3409			case O_NETGRAPH:
3410			case O_NGTEE:
3411				args->rule = f;	/* report matching rule */
3412				args->rule_id = f->id;
3413				args->chain_id = chain->id;
3414				if (cmd->arg1 == IP_FW_TABLEARG)
3415					args->cookie = tablearg;
3416				else
3417					args->cookie = cmd->arg1;
3418				retval = (cmd->opcode == O_NETGRAPH) ?
3419				    IP_FW_NETGRAPH : IP_FW_NGTEE;
3420				goto done;
3421
3422			case O_SETFIB:
3423				f->pcnt++;	/* update stats */
3424				f->bcnt += pktlen;
3425				f->timestamp = time_uptime;
3426				M_SETFIB(m, cmd->arg1);
3427				args->f_id.fib = cmd->arg1;
3428				goto next_rule;
3429
3430			case O_NAT: {
3431                        	struct cfg_nat *t;
3432                        	int nat_id;
3433
3434 				if (IPFW_NAT_LOADED) {
3435					args->rule = f; /* Report matching rule. */
3436					args->rule_id = f->id;
3437					args->chain_id = chain->id;
3438					t = ((ipfw_insn_nat *)cmd)->nat;
3439					if (t == NULL) {
3440						nat_id = (cmd->arg1 == IP_FW_TABLEARG) ?
3441						    tablearg : cmd->arg1;
3442						LOOKUP_NAT(V_layer3_chain, nat_id, t);
3443						if (t == NULL) {
3444							retval = IP_FW_DENY;
3445							goto done;
3446						}
3447						if (cmd->arg1 != IP_FW_TABLEARG)
3448							((ipfw_insn_nat *)cmd)->nat = t;
3449					}
3450					retval = ipfw_nat_ptr(args, t, m);
3451				} else
3452					retval = IP_FW_DENY;
3453				goto done;
3454			}
3455
3456			case O_REASS: {
3457				int ip_off;
3458
3459				f->pcnt++;
3460				f->bcnt += pktlen;
3461				ip_off = (args->eh != NULL) ? ntohs(ip->ip_off) : ip->ip_off;
3462				if (ip_off & (IP_MF | IP_OFFMASK)) {
3463					/*
3464					 * ip_reass() expects len & off in host
3465					 * byte order: fix them in case we come
3466					 * from layer2.
3467					 */
3468					if (args->eh != NULL) {
3469						ip->ip_len = ntohs(ip->ip_len);
3470						ip->ip_off = ntohs(ip->ip_off);
3471					}
3472
3473					m = ip_reass(m);
3474					args->m = m;
3475
3476					/*
3477					 * IP header checksum fixup after
3478					 * reassembly and leave header
3479					 * in network byte order.
3480					 */
3481					if (m != NULL) {
3482						int hlen;
3483
3484						ip = mtod(m, struct ip *);
3485						hlen = ip->ip_hl << 2;
3486						/* revert len & off for layer2 pkts */
3487						if (args->eh != NULL)
3488							ip->ip_len = htons(ip->ip_len);
3489						ip->ip_sum = 0;
3490						if (hlen == sizeof(struct ip))
3491							ip->ip_sum = in_cksum_hdr(ip);
3492						else
3493							ip->ip_sum = in_cksum(m, hlen);
3494						retval = IP_FW_REASS;
3495						args->rule = f;
3496						args->rule_id = f->id;
3497						args->chain_id = chain->id;
3498						goto done;
3499					} else {
3500						retval = IP_FW_DENY;
3501						goto done;
3502					}
3503				}
3504				goto next_rule;
3505			}
3506
3507			default:
3508				panic("-- unknown opcode %d\n", cmd->opcode);
3509			} /* end of switch() on opcodes */
3510
3511			if (cmd->len & F_NOT)
3512				match = !match;
3513
3514			if (match) {
3515				if (cmd->len & F_OR)
3516					skip_or = 1;
3517			} else {
3518				if (!(cmd->len & F_OR)) /* not an OR block, */
3519					break;		/* try next rule    */
3520			}
3521
3522		}	/* end of inner for, scan opcodes */
3523
3524next_rule:;		/* try next rule		*/
3525
3526	}		/* end of outer for, scan rules */
3527	printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3528	IPFW_RUNLOCK(chain);
3529	if (ucred_cache != NULL)
3530		crfree(ucred_cache);
3531	return (IP_FW_DENY);
3532
3533done:
3534	/* Update statistics */
3535	f->pcnt++;
3536	f->bcnt += pktlen;
3537	f->timestamp = time_uptime;
3538	IPFW_RUNLOCK(chain);
3539	if (ucred_cache != NULL)
3540		crfree(ucred_cache);
3541	return (retval);
3542
3543pullup_failed:
3544	if (V_fw_verbose)
3545		printf("ipfw: pullup failed\n");
3546	return (IP_FW_DENY);
3547}
3548
3549/*
3550 * When a rule is added/deleted, clear the next_rule pointers in all rules.
3551 * These will be reconstructed on the fly as packets are matched.
3552 */
3553static void
3554flush_rule_ptrs(struct ip_fw_chain *chain)
3555{
3556	struct ip_fw *rule;
3557
3558	IPFW_WLOCK_ASSERT(chain);
3559
3560	chain->id++;
3561
3562	for (rule = chain->rules; rule; rule = rule->next)
3563		rule->next_rule = NULL;
3564}
3565
3566/*
3567 * Add a new rule to the list. Copy the rule into a malloc'ed area, then
3568 * possibly create a rule number and add the rule to the list.
3569 * Update the rule_number in the input struct so the caller knows it as well.
3570 */
3571static int
3572add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
3573{
3574	struct ip_fw *rule, *f, *prev;
3575	int l = RULESIZE(input_rule);
3576
3577	if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
3578		return (EINVAL);
3579
3580	rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
3581	if (rule == NULL)
3582		return (ENOSPC);
3583
3584	bcopy(input_rule, rule, l);
3585
3586	rule->next = NULL;
3587	rule->next_rule = NULL;
3588
3589	rule->pcnt = 0;
3590	rule->bcnt = 0;
3591	rule->timestamp = 0;
3592
3593	IPFW_WLOCK(chain);
3594
3595	if (chain->rules == NULL) {	/* default rule */
3596		chain->rules = rule;
3597		rule->id = ++chain->id;
3598		goto done;
3599        }
3600
3601	/*
3602	 * If rulenum is 0, find highest numbered rule before the
3603	 * default rule, and add autoinc_step
3604	 */
3605	if (V_autoinc_step < 1)
3606		V_autoinc_step = 1;
3607	else if (V_autoinc_step > 1000)
3608		V_autoinc_step = 1000;
3609	if (rule->rulenum == 0) {
3610		/*
3611		 * locate the highest numbered rule before default
3612		 */
3613		for (f = chain->rules; f; f = f->next) {
3614			if (f->rulenum == IPFW_DEFAULT_RULE)
3615				break;
3616			rule->rulenum = f->rulenum;
3617		}
3618		if (rule->rulenum < IPFW_DEFAULT_RULE - V_autoinc_step)
3619			rule->rulenum += V_autoinc_step;
3620		input_rule->rulenum = rule->rulenum;
3621	}
3622
3623	/*
3624	 * Now insert the new rule in the right place in the sorted list.
3625	 */
3626	for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
3627		if (f->rulenum > rule->rulenum) { /* found the location */
3628			if (prev) {
3629				rule->next = f;
3630				prev->next = rule;
3631			} else { /* head insert */
3632				rule->next = chain->rules;
3633				chain->rules = rule;
3634			}
3635			break;
3636		}
3637	}
3638	flush_rule_ptrs(chain);
3639	/* chain->id incremented inside flush_rule_ptrs() */
3640	rule->id = chain->id;
3641done:
3642	V_static_count++;
3643	V_static_len += l;
3644	IPFW_WUNLOCK(chain);
3645	DEB(printf("ipfw: installed rule %d, static count now %d\n",
3646		rule->rulenum, V_static_count);)
3647	return (0);
3648}
3649
3650/**
3651 * Remove a static rule (including derived * dynamic rules)
3652 * and place it on the ``reap list'' for later reclamation.
3653 * The caller is in charge of clearing rule pointers to avoid
3654 * dangling pointers.
3655 * @return a pointer to the next entry.
3656 * Arguments are not checked, so they better be correct.
3657 */
3658static struct ip_fw *
3659remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule,
3660    struct ip_fw *prev)
3661{
3662	struct ip_fw *n;
3663	int l = RULESIZE(rule);
3664
3665	IPFW_WLOCK_ASSERT(chain);
3666
3667	n = rule->next;
3668	IPFW_DYN_LOCK();
3669	remove_dyn_rule(rule, NULL /* force removal */);
3670	IPFW_DYN_UNLOCK();
3671	if (prev == NULL)
3672		chain->rules = n;
3673	else
3674		prev->next = n;
3675	V_static_count--;
3676	V_static_len -= l;
3677
3678	rule->next = chain->reap;
3679	chain->reap = rule;
3680
3681	return n;
3682}
3683
3684/*
3685 * Reclaim storage associated with a list of rules.  This is
3686 * typically the list created using remove_rule.
3687 * A NULL pointer on input is handled correctly.
3688 */
3689static void
3690reap_rules(struct ip_fw *head)
3691{
3692	struct ip_fw *rule;
3693
3694	while ((rule = head) != NULL) {
3695		head = head->next;
3696		free(rule, M_IPFW);
3697	}
3698}
3699
3700/*
3701 * Remove all rules from a chain (except rules in set RESVD_SET
3702 * unless kill_default = 1).  The caller is responsible for
3703 * reclaiming storage for the rules left in chain->reap.
3704 */
3705static void
3706free_chain(struct ip_fw_chain *chain, int kill_default)
3707{
3708	struct ip_fw *prev, *rule;
3709
3710	IPFW_WLOCK_ASSERT(chain);
3711
3712	chain->reap = NULL;
3713	flush_rule_ptrs(chain); /* more efficient to do outside the loop */
3714	for (prev = NULL, rule = chain->rules; rule ; )
3715		if (kill_default || rule->set != RESVD_SET)
3716			rule = remove_rule(chain, rule, prev);
3717		else {
3718			prev = rule;
3719			rule = rule->next;
3720		}
3721}
3722
3723/**
3724 * Remove all rules with given number, and also do set manipulation.
3725 * Assumes chain != NULL && *chain != NULL.
3726 *
3727 * The argument is an u_int32_t. The low 16 bit are the rule or set number,
3728 * the next 8 bits are the new set, the top 8 bits are the command:
3729 *
3730 *	0	delete rules with given number
3731 *	1	delete rules with given set number
3732 *	2	move rules with given number to new set
3733 *	3	move rules with given set number to new set
3734 *	4	swap sets with given numbers
3735 *	5	delete rules with given number and with given set number
3736 */
3737static int
3738del_entry(struct ip_fw_chain *chain, u_int32_t arg)
3739{
3740	struct ip_fw *prev = NULL, *rule;
3741	u_int16_t rulenum;	/* rule or old_set */
3742	u_int8_t cmd, new_set;
3743
3744	rulenum = arg & 0xffff;
3745	cmd = (arg >> 24) & 0xff;
3746	new_set = (arg >> 16) & 0xff;
3747
3748	if (cmd > 5 || new_set > RESVD_SET)
3749		return EINVAL;
3750	if (cmd == 0 || cmd == 2 || cmd == 5) {
3751		if (rulenum >= IPFW_DEFAULT_RULE)
3752			return EINVAL;
3753	} else {
3754		if (rulenum > RESVD_SET)	/* old_set */
3755			return EINVAL;
3756	}
3757
3758	IPFW_WLOCK(chain);
3759	rule = chain->rules;	/* common starting point */
3760	chain->reap = NULL;	/* prepare for deletions */
3761	switch (cmd) {
3762	case 0:	/* delete rules with given number */
3763		/*
3764		 * locate first rule to delete
3765		 */
3766		for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3767			;
3768		if (rule->rulenum != rulenum) {
3769			IPFW_WUNLOCK(chain);
3770			return EINVAL;
3771		}
3772
3773		/*
3774		 * flush pointers outside the loop, then delete all matching
3775		 * rules. prev remains the same throughout the cycle.
3776		 */
3777		flush_rule_ptrs(chain);
3778		while (rule->rulenum == rulenum)
3779			rule = remove_rule(chain, rule, prev);
3780		break;
3781
3782	case 1:	/* delete all rules with given set number */
3783		flush_rule_ptrs(chain);
3784		while (rule->rulenum < IPFW_DEFAULT_RULE) {
3785			if (rule->set == rulenum)
3786				rule = remove_rule(chain, rule, prev);
3787			else {
3788				prev = rule;
3789				rule = rule->next;
3790			}
3791		}
3792		break;
3793
3794	case 2:	/* move rules with given number to new set */
3795		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3796			if (rule->rulenum == rulenum)
3797				rule->set = new_set;
3798		break;
3799
3800	case 3: /* move rules with given set number to new set */
3801		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3802			if (rule->set == rulenum)
3803				rule->set = new_set;
3804		break;
3805
3806	case 4: /* swap two sets */
3807		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3808			if (rule->set == rulenum)
3809				rule->set = new_set;
3810			else if (rule->set == new_set)
3811				rule->set = rulenum;
3812		break;
3813
3814	case 5: /* delete rules with given number and with given set number.
3815		 * rulenum - given rule number;
3816		 * new_set - given set number.
3817		 */
3818		for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3819			;
3820		if (rule->rulenum != rulenum) {
3821			IPFW_WUNLOCK(chain);
3822			return (EINVAL);
3823		}
3824		flush_rule_ptrs(chain);
3825		while (rule->rulenum == rulenum) {
3826			if (rule->set == new_set)
3827				rule = remove_rule(chain, rule, prev);
3828			else {
3829				prev = rule;
3830				rule = rule->next;
3831			}
3832		}
3833	}
3834	/*
3835	 * Look for rules to reclaim.  We grab the list before
3836	 * releasing the lock then reclaim them w/o the lock to
3837	 * avoid a LOR with dummynet.
3838	 */
3839	rule = chain->reap;
3840	IPFW_WUNLOCK(chain);
3841	reap_rules(rule);
3842	return 0;
3843}
3844
3845/*
3846 * Clear counters for a specific rule.
3847 * The enclosing "table" is assumed locked.
3848 */
3849static void
3850clear_counters(struct ip_fw *rule, int log_only)
3851{
3852	ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
3853
3854	if (log_only == 0) {
3855		rule->bcnt = rule->pcnt = 0;
3856		rule->timestamp = 0;
3857	}
3858	if (l->o.opcode == O_LOG)
3859		l->log_left = l->max_log;
3860}
3861
3862/**
3863 * Reset some or all counters on firewall rules.
3864 * The argument `arg' is an u_int32_t. The low 16 bit are the rule number,
3865 * the next 8 bits are the set number, the top 8 bits are the command:
3866 *	0	work with rules from all set's;
3867 *	1	work with rules only from specified set.
3868 * Specified rule number is zero if we want to clear all entries.
3869 * log_only is 1 if we only want to reset logs, zero otherwise.
3870 */
3871static int
3872zero_entry(struct ip_fw_chain *chain, u_int32_t arg, int log_only)
3873{
3874	struct ip_fw *rule;
3875	char *msg;
3876
3877	uint16_t rulenum = arg & 0xffff;
3878	uint8_t set = (arg >> 16) & 0xff;
3879	uint8_t cmd = (arg >> 24) & 0xff;
3880
3881	if (cmd > 1)
3882		return (EINVAL);
3883	if (cmd == 1 && set > RESVD_SET)
3884		return (EINVAL);
3885
3886	IPFW_WLOCK(chain);
3887	if (rulenum == 0) {
3888		V_norule_counter = 0;
3889		for (rule = chain->rules; rule; rule = rule->next) {
3890			/* Skip rules from another set. */
3891			if (cmd == 1 && rule->set != set)
3892				continue;
3893			clear_counters(rule, log_only);
3894		}
3895		msg = log_only ? "All logging counts reset" :
3896		    "Accounting cleared";
3897	} else {
3898		int cleared = 0;
3899		/*
3900		 * We can have multiple rules with the same number, so we
3901		 * need to clear them all.
3902		 */
3903		for (rule = chain->rules; rule; rule = rule->next)
3904			if (rule->rulenum == rulenum) {
3905				while (rule && rule->rulenum == rulenum) {
3906					if (cmd == 0 || rule->set == set)
3907						clear_counters(rule, log_only);
3908					rule = rule->next;
3909				}
3910				cleared = 1;
3911				break;
3912			}
3913		if (!cleared) {	/* we did not find any matching rules */
3914			IPFW_WUNLOCK(chain);
3915			return (EINVAL);
3916		}
3917		msg = log_only ? "logging count reset" : "cleared";
3918	}
3919	IPFW_WUNLOCK(chain);
3920
3921	if (V_fw_verbose) {
3922		int lev = LOG_SECURITY | LOG_NOTICE;
3923
3924		if (rulenum)
3925			log(lev, "ipfw: Entry %d %s.\n", rulenum, msg);
3926		else
3927			log(lev, "ipfw: %s.\n", msg);
3928	}
3929	return (0);
3930}
3931
3932/*
3933 * Check validity of the structure before insert.
3934 * Fortunately rules are simple, so this mostly need to check rule sizes.
3935 */
3936static int
3937check_ipfw_struct(struct ip_fw *rule, int size)
3938{
3939	int l, cmdlen = 0;
3940	int have_action=0;
3941	ipfw_insn *cmd;
3942
3943	if (size < sizeof(*rule)) {
3944		printf("ipfw: rule too short\n");
3945		return (EINVAL);
3946	}
3947	/* first, check for valid size */
3948	l = RULESIZE(rule);
3949	if (l != size) {
3950		printf("ipfw: size mismatch (have %d want %d)\n", size, l);
3951		return (EINVAL);
3952	}
3953	if (rule->act_ofs >= rule->cmd_len) {
3954		printf("ipfw: bogus action offset (%u > %u)\n",
3955		    rule->act_ofs, rule->cmd_len - 1);
3956		return (EINVAL);
3957	}
3958	/*
3959	 * Now go for the individual checks. Very simple ones, basically only
3960	 * instruction sizes.
3961	 */
3962	for (l = rule->cmd_len, cmd = rule->cmd ;
3963			l > 0 ; l -= cmdlen, cmd += cmdlen) {
3964		cmdlen = F_LEN(cmd);
3965		if (cmdlen > l) {
3966			printf("ipfw: opcode %d size truncated\n",
3967			    cmd->opcode);
3968			return EINVAL;
3969		}
3970		DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
3971		switch (cmd->opcode) {
3972		case O_PROBE_STATE:
3973		case O_KEEP_STATE:
3974		case O_PROTO:
3975		case O_IP_SRC_ME:
3976		case O_IP_DST_ME:
3977		case O_LAYER2:
3978		case O_IN:
3979		case O_FRAG:
3980		case O_DIVERTED:
3981		case O_IPOPT:
3982		case O_IPTOS:
3983		case O_IPPRECEDENCE:
3984		case O_IPVER:
3985		case O_TCPWIN:
3986		case O_TCPFLAGS:
3987		case O_TCPOPTS:
3988		case O_ESTAB:
3989		case O_VERREVPATH:
3990		case O_VERSRCREACH:
3991		case O_ANTISPOOF:
3992		case O_IPSEC:
3993#ifdef INET6
3994		case O_IP6_SRC_ME:
3995		case O_IP6_DST_ME:
3996		case O_EXT_HDR:
3997		case O_IP6:
3998#endif
3999		case O_IP4:
4000		case O_TAG:
4001			if (cmdlen != F_INSN_SIZE(ipfw_insn))
4002				goto bad_size;
4003			break;
4004
4005		case O_FIB:
4006			if (cmdlen != F_INSN_SIZE(ipfw_insn))
4007				goto bad_size;
4008			if (cmd->arg1 >= rt_numfibs) {
4009				printf("ipfw: invalid fib number %d\n",
4010					cmd->arg1);
4011				return EINVAL;
4012			}
4013			break;
4014
4015		case O_SETFIB:
4016			if (cmdlen != F_INSN_SIZE(ipfw_insn))
4017				goto bad_size;
4018			if (cmd->arg1 >= rt_numfibs) {
4019				printf("ipfw: invalid fib number %d\n",
4020					cmd->arg1);
4021				return EINVAL;
4022			}
4023			goto check_action;
4024
4025		case O_UID:
4026		case O_GID:
4027		case O_JAIL:
4028		case O_IP_SRC:
4029		case O_IP_DST:
4030		case O_TCPSEQ:
4031		case O_TCPACK:
4032		case O_PROB:
4033		case O_ICMPTYPE:
4034			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
4035				goto bad_size;
4036			break;
4037
4038		case O_LIMIT:
4039			if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
4040				goto bad_size;
4041			break;
4042
4043		case O_LOG:
4044			if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
4045				goto bad_size;
4046
4047			((ipfw_insn_log *)cmd)->log_left =
4048			    ((ipfw_insn_log *)cmd)->max_log;
4049
4050			break;
4051
4052		case O_IP_SRC_MASK:
4053		case O_IP_DST_MASK:
4054			/* only odd command lengths */
4055			if ( !(cmdlen & 1) || cmdlen > 31)
4056				goto bad_size;
4057			break;
4058
4059		case O_IP_SRC_SET:
4060		case O_IP_DST_SET:
4061			if (cmd->arg1 == 0 || cmd->arg1 > 256) {
4062				printf("ipfw: invalid set size %d\n",
4063					cmd->arg1);
4064				return EINVAL;
4065			}
4066			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
4067			    (cmd->arg1+31)/32 )
4068				goto bad_size;
4069			break;
4070
4071		case O_IP_SRC_LOOKUP:
4072		case O_IP_DST_LOOKUP:
4073			if (cmd->arg1 >= IPFW_TABLES_MAX) {
4074				printf("ipfw: invalid table number %d\n",
4075				    cmd->arg1);
4076				return (EINVAL);
4077			}
4078			if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
4079			    cmdlen != F_INSN_SIZE(ipfw_insn_u32))
4080				goto bad_size;
4081			break;
4082
4083		case O_MACADDR2:
4084			if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
4085				goto bad_size;
4086			break;
4087
4088		case O_NOP:
4089		case O_IPID:
4090		case O_IPTTL:
4091		case O_IPLEN:
4092		case O_TCPDATALEN:
4093		case O_TAGGED:
4094			if (cmdlen < 1 || cmdlen > 31)
4095				goto bad_size;
4096			break;
4097
4098		case O_MAC_TYPE:
4099		case O_IP_SRCPORT:
4100		case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
4101			if (cmdlen < 2 || cmdlen > 31)
4102				goto bad_size;
4103			break;
4104
4105		case O_RECV:
4106		case O_XMIT:
4107		case O_VIA:
4108			if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
4109				goto bad_size;
4110			break;
4111
4112		case O_ALTQ:
4113			if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
4114				goto bad_size;
4115			break;
4116
4117		case O_PIPE:
4118		case O_QUEUE:
4119			if (cmdlen != F_INSN_SIZE(ipfw_insn))
4120				goto bad_size;
4121			goto check_action;
4122
4123		case O_FORWARD_IP:
4124#ifdef	IPFIREWALL_FORWARD
4125			if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
4126				goto bad_size;
4127			goto check_action;
4128#else
4129			return EINVAL;
4130#endif
4131
4132		case O_DIVERT:
4133		case O_TEE:
4134			if (ip_divert_ptr == NULL)
4135				return EINVAL;
4136			else
4137				goto check_size;
4138		case O_NETGRAPH:
4139		case O_NGTEE:
4140			if (!NG_IPFW_LOADED)
4141				return EINVAL;
4142			else
4143				goto check_size;
4144		case O_NAT:
4145			if (!IPFW_NAT_LOADED)
4146				return EINVAL;
4147			if (cmdlen != F_INSN_SIZE(ipfw_insn_nat))
4148 				goto bad_size;
4149 			goto check_action;
4150		case O_FORWARD_MAC: /* XXX not implemented yet */
4151		case O_CHECK_STATE:
4152		case O_COUNT:
4153		case O_ACCEPT:
4154		case O_DENY:
4155		case O_REJECT:
4156#ifdef INET6
4157		case O_UNREACH6:
4158#endif
4159		case O_SKIPTO:
4160		case O_REASS:
4161check_size:
4162			if (cmdlen != F_INSN_SIZE(ipfw_insn))
4163				goto bad_size;
4164check_action:
4165			if (have_action) {
4166				printf("ipfw: opcode %d, multiple actions"
4167					" not allowed\n",
4168					cmd->opcode);
4169				return EINVAL;
4170			}
4171			have_action = 1;
4172			if (l != cmdlen) {
4173				printf("ipfw: opcode %d, action must be"
4174					" last opcode\n",
4175					cmd->opcode);
4176				return EINVAL;
4177			}
4178			break;
4179#ifdef INET6
4180		case O_IP6_SRC:
4181		case O_IP6_DST:
4182			if (cmdlen != F_INSN_SIZE(struct in6_addr) +
4183			    F_INSN_SIZE(ipfw_insn))
4184				goto bad_size;
4185			break;
4186
4187		case O_FLOW6ID:
4188			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
4189			    ((ipfw_insn_u32 *)cmd)->o.arg1)
4190				goto bad_size;
4191			break;
4192
4193		case O_IP6_SRC_MASK:
4194		case O_IP6_DST_MASK:
4195			if ( !(cmdlen & 1) || cmdlen > 127)
4196				goto bad_size;
4197			break;
4198		case O_ICMP6TYPE:
4199			if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
4200				goto bad_size;
4201			break;
4202#endif
4203
4204		default:
4205			switch (cmd->opcode) {
4206#ifndef INET6
4207			case O_IP6_SRC_ME:
4208			case O_IP6_DST_ME:
4209			case O_EXT_HDR:
4210			case O_IP6:
4211			case O_UNREACH6:
4212			case O_IP6_SRC:
4213			case O_IP6_DST:
4214			case O_FLOW6ID:
4215			case O_IP6_SRC_MASK:
4216			case O_IP6_DST_MASK:
4217			case O_ICMP6TYPE:
4218				printf("ipfw: no IPv6 support in kernel\n");
4219				return EPROTONOSUPPORT;
4220#endif
4221			default:
4222				printf("ipfw: opcode %d, unknown opcode\n",
4223					cmd->opcode);
4224				return EINVAL;
4225			}
4226		}
4227	}
4228	if (have_action == 0) {
4229		printf("ipfw: missing action\n");
4230		return EINVAL;
4231	}
4232	return 0;
4233
4234bad_size:
4235	printf("ipfw: opcode %d size %d wrong\n",
4236		cmd->opcode, cmdlen);
4237	return EINVAL;
4238}
4239
4240/*
4241 * Copy the static and dynamic rules to the supplied buffer
4242 * and return the amount of space actually used.
4243 */
4244static size_t
4245ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
4246{
4247	char *bp = buf;
4248	char *ep = bp + space;
4249	struct ip_fw *rule;
4250	int i;
4251	time_t	boot_seconds;
4252
4253        boot_seconds = boottime.tv_sec;
4254	/* XXX this can take a long time and locking will block packet flow */
4255	IPFW_RLOCK(chain);
4256	for (rule = chain->rules; rule ; rule = rule->next) {
4257		/*
4258		 * Verify the entry fits in the buffer in case the
4259		 * rules changed between calculating buffer space and
4260		 * now.  This would be better done using a generation
4261		 * number but should suffice for now.
4262		 */
4263		i = RULESIZE(rule);
4264		if (bp + i <= ep) {
4265			bcopy(rule, bp, i);
4266			/*
4267			 * XXX HACK. Store the disable mask in the "next"
4268			 * pointer in a wild attempt to keep the ABI the same.
4269			 * Why do we do this on EVERY rule?
4270			 */
4271			bcopy(&V_set_disable,
4272			    &(((struct ip_fw *)bp)->next_rule),
4273			    sizeof(V_set_disable));
4274			if (((struct ip_fw *)bp)->timestamp)
4275				((struct ip_fw *)bp)->timestamp += boot_seconds;
4276			bp += i;
4277		}
4278	}
4279	IPFW_RUNLOCK(chain);
4280	if (V_ipfw_dyn_v) {
4281		ipfw_dyn_rule *p, *last = NULL;
4282
4283		IPFW_DYN_LOCK();
4284		for (i = 0 ; i < V_curr_dyn_buckets; i++)
4285			for (p = V_ipfw_dyn_v[i] ; p != NULL; p = p->next) {
4286				if (bp + sizeof *p <= ep) {
4287					ipfw_dyn_rule *dst =
4288						(ipfw_dyn_rule *)bp;
4289					bcopy(p, dst, sizeof *p);
4290					bcopy(&(p->rule->rulenum), &(dst->rule),
4291					    sizeof(p->rule->rulenum));
4292					/*
4293					 * store set number into high word of
4294					 * dst->rule pointer.
4295					 */
4296					bcopy(&(p->rule->set),
4297					    (char *)&dst->rule +
4298					    sizeof(p->rule->rulenum),
4299					    sizeof(p->rule->set));
4300					/*
4301					 * store a non-null value in "next".
4302					 * The userland code will interpret a
4303					 * NULL here as a marker
4304					 * for the last dynamic rule.
4305					 */
4306					bcopy(&dst, &dst->next, sizeof(dst));
4307					last = dst;
4308					dst->expire =
4309					    TIME_LEQ(dst->expire, time_uptime) ?
4310						0 : dst->expire - time_uptime ;
4311					bp += sizeof(ipfw_dyn_rule);
4312				}
4313			}
4314		IPFW_DYN_UNLOCK();
4315		if (last != NULL) /* mark last dynamic rule */
4316			bzero(&last->next, sizeof(last));
4317	}
4318	return (bp - (char *)buf);
4319}
4320
4321
4322/**
4323 * {set|get}sockopt parser.
4324 */
4325static int
4326ipfw_ctl(struct sockopt *sopt)
4327{
4328#define	RULE_MAXSIZE	(256*sizeof(u_int32_t))
4329	int error;
4330	size_t size;
4331	struct ip_fw *buf, *rule;
4332	u_int32_t rulenum[2];
4333
4334	error = priv_check(sopt->sopt_td, PRIV_NETINET_IPFW);
4335	if (error)
4336		return (error);
4337
4338	/*
4339	 * Disallow modifications in really-really secure mode, but still allow
4340	 * the logging counters to be reset.
4341	 */
4342	if (sopt->sopt_name == IP_FW_ADD ||
4343	    (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
4344		error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
4345		if (error)
4346			return (error);
4347	}
4348
4349	error = 0;
4350
4351	switch (sopt->sopt_name) {
4352	case IP_FW_GET:
4353		/*
4354		 * pass up a copy of the current rules. Static rules
4355		 * come first (the last of which has number IPFW_DEFAULT_RULE),
4356		 * followed by a possibly empty list of dynamic rule.
4357		 * The last dynamic rule has NULL in the "next" field.
4358		 *
4359		 * Note that the calculated size is used to bound the
4360		 * amount of data returned to the user.  The rule set may
4361		 * change between calculating the size and returning the
4362		 * data in which case we'll just return what fits.
4363		 */
4364		size = V_static_len;	/* size of static rules */
4365		if (V_ipfw_dyn_v)		/* add size of dyn.rules */
4366			size += (V_dyn_count * sizeof(ipfw_dyn_rule));
4367
4368		if (size >= sopt->sopt_valsize)
4369			break;
4370		/*
4371		 * XXX todo: if the user passes a short length just to know
4372		 * how much room is needed, do not bother filling up the
4373		 * buffer, just jump to the sooptcopyout.
4374		 */
4375		buf = malloc(size, M_TEMP, M_WAITOK);
4376		error = sooptcopyout(sopt, buf,
4377				ipfw_getrules(&V_layer3_chain, buf, size));
4378		free(buf, M_TEMP);
4379		break;
4380
4381	case IP_FW_FLUSH:
4382		/*
4383		 * Normally we cannot release the lock on each iteration.
4384		 * We could do it here only because we start from the head all
4385		 * the times so there is no risk of missing some entries.
4386		 * On the other hand, the risk is that we end up with
4387		 * a very inconsistent ruleset, so better keep the lock
4388		 * around the whole cycle.
4389		 *
4390		 * XXX this code can be improved by resetting the head of
4391		 * the list to point to the default rule, and then freeing
4392		 * the old list without the need for a lock.
4393		 */
4394
4395		IPFW_WLOCK(&V_layer3_chain);
4396		free_chain(&V_layer3_chain, 0 /* keep default rule */);
4397		rule = V_layer3_chain.reap;
4398		IPFW_WUNLOCK(&V_layer3_chain);
4399		reap_rules(rule);
4400		break;
4401
4402	case IP_FW_ADD:
4403		rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
4404		error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
4405			sizeof(struct ip_fw) );
4406		if (error == 0)
4407			error = check_ipfw_struct(rule, sopt->sopt_valsize);
4408		if (error == 0) {
4409			error = add_rule(&V_layer3_chain, rule);
4410			size = RULESIZE(rule);
4411			if (!error && sopt->sopt_dir == SOPT_GET)
4412				error = sooptcopyout(sopt, rule, size);
4413		}
4414		free(rule, M_TEMP);
4415		break;
4416
4417	case IP_FW_DEL:
4418		/*
4419		 * IP_FW_DEL is used for deleting single rules or sets,
4420		 * and (ab)used to atomically manipulate sets. Argument size
4421		 * is used to distinguish between the two:
4422		 *    sizeof(u_int32_t)
4423		 *	delete single rule or set of rules,
4424		 *	or reassign rules (or sets) to a different set.
4425		 *    2*sizeof(u_int32_t)
4426		 *	atomic disable/enable sets.
4427		 *	first u_int32_t contains sets to be disabled,
4428		 *	second u_int32_t contains sets to be enabled.
4429		 */
4430		error = sooptcopyin(sopt, rulenum,
4431			2*sizeof(u_int32_t), sizeof(u_int32_t));
4432		if (error)
4433			break;
4434		size = sopt->sopt_valsize;
4435		if (size == sizeof(u_int32_t))	/* delete or reassign */
4436			error = del_entry(&V_layer3_chain, rulenum[0]);
4437		else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
4438			V_set_disable =
4439			    (V_set_disable | rulenum[0]) & ~rulenum[1] &
4440			    ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
4441		else
4442			error = EINVAL;
4443		break;
4444
4445	case IP_FW_ZERO:
4446	case IP_FW_RESETLOG: /* argument is an u_int_32, the rule number */
4447		rulenum[0] = 0;
4448		if (sopt->sopt_val != 0) {
4449		    error = sooptcopyin(sopt, rulenum,
4450			    sizeof(u_int32_t), sizeof(u_int32_t));
4451		    if (error)
4452			break;
4453		}
4454		error = zero_entry(&V_layer3_chain, rulenum[0],
4455			sopt->sopt_name == IP_FW_RESETLOG);
4456		break;
4457
4458	case IP_FW_TABLE_ADD:
4459		{
4460			ipfw_table_entry ent;
4461
4462			error = sooptcopyin(sopt, &ent,
4463			    sizeof(ent), sizeof(ent));
4464			if (error)
4465				break;
4466			error = add_table_entry(&V_layer3_chain, ent.tbl,
4467			    ent.addr, ent.masklen, ent.value);
4468		}
4469		break;
4470
4471	case IP_FW_TABLE_DEL:
4472		{
4473			ipfw_table_entry ent;
4474
4475			error = sooptcopyin(sopt, &ent,
4476			    sizeof(ent), sizeof(ent));
4477			if (error)
4478				break;
4479			error = del_table_entry(&V_layer3_chain, ent.tbl,
4480			    ent.addr, ent.masklen);
4481		}
4482		break;
4483
4484	case IP_FW_TABLE_FLUSH:
4485		{
4486			u_int16_t tbl;
4487
4488			error = sooptcopyin(sopt, &tbl,
4489			    sizeof(tbl), sizeof(tbl));
4490			if (error)
4491				break;
4492			IPFW_WLOCK(&V_layer3_chain);
4493			error = flush_table(&V_layer3_chain, tbl);
4494			IPFW_WUNLOCK(&V_layer3_chain);
4495		}
4496		break;
4497
4498	case IP_FW_TABLE_GETSIZE:
4499		{
4500			u_int32_t tbl, cnt;
4501
4502			if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
4503			    sizeof(tbl))))
4504				break;
4505			IPFW_RLOCK(&V_layer3_chain);
4506			error = count_table(&V_layer3_chain, tbl, &cnt);
4507			IPFW_RUNLOCK(&V_layer3_chain);
4508			if (error)
4509				break;
4510			error = sooptcopyout(sopt, &cnt, sizeof(cnt));
4511		}
4512		break;
4513
4514	case IP_FW_TABLE_LIST:
4515		{
4516			ipfw_table *tbl;
4517
4518			if (sopt->sopt_valsize < sizeof(*tbl)) {
4519				error = EINVAL;
4520				break;
4521			}
4522			size = sopt->sopt_valsize;
4523			tbl = malloc(size, M_TEMP, M_WAITOK);
4524			error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
4525			if (error) {
4526				free(tbl, M_TEMP);
4527				break;
4528			}
4529			tbl->size = (size - sizeof(*tbl)) /
4530			    sizeof(ipfw_table_entry);
4531			IPFW_RLOCK(&V_layer3_chain);
4532			error = dump_table(&V_layer3_chain, tbl);
4533			IPFW_RUNLOCK(&V_layer3_chain);
4534			if (error) {
4535				free(tbl, M_TEMP);
4536				break;
4537			}
4538			error = sooptcopyout(sopt, tbl, size);
4539			free(tbl, M_TEMP);
4540		}
4541		break;
4542
4543	case IP_FW_NAT_CFG:
4544		if (IPFW_NAT_LOADED)
4545			error = ipfw_nat_cfg_ptr(sopt);
4546		else {
4547			printf("IP_FW_NAT_CFG: %s\n",
4548			    "ipfw_nat not present, please load it");
4549			error = EINVAL;
4550		}
4551		break;
4552
4553	case IP_FW_NAT_DEL:
4554		if (IPFW_NAT_LOADED)
4555			error = ipfw_nat_del_ptr(sopt);
4556		else {
4557			printf("IP_FW_NAT_DEL: %s\n",
4558			    "ipfw_nat not present, please load it");
4559			error = EINVAL;
4560		}
4561		break;
4562
4563	case IP_FW_NAT_GET_CONFIG:
4564		if (IPFW_NAT_LOADED)
4565			error = ipfw_nat_get_cfg_ptr(sopt);
4566		else {
4567			printf("IP_FW_NAT_GET_CFG: %s\n",
4568			    "ipfw_nat not present, please load it");
4569			error = EINVAL;
4570		}
4571		break;
4572
4573	case IP_FW_NAT_GET_LOG:
4574		if (IPFW_NAT_LOADED)
4575			error = ipfw_nat_get_log_ptr(sopt);
4576		else {
4577			printf("IP_FW_NAT_GET_LOG: %s\n",
4578			    "ipfw_nat not present, please load it");
4579			error = EINVAL;
4580		}
4581		break;
4582
4583	default:
4584		printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
4585		error = EINVAL;
4586	}
4587
4588	return (error);
4589#undef RULE_MAXSIZE
4590}
4591
4592
4593/*
4594 * This procedure is only used to handle keepalives. It is invoked
4595 * every dyn_keepalive_period
4596 */
4597static void
4598ipfw_tick(void * vnetx)
4599{
4600	struct mbuf *m0, *m, *mnext, **mtailp;
4601#ifdef INET6
4602	struct mbuf *m6, **m6_tailp;
4603#endif
4604	int i;
4605	ipfw_dyn_rule *q;
4606#ifdef VIMAGE
4607	struct vnet *vp = vnetx;
4608#endif
4609
4610	CURVNET_SET(vp);
4611	if (V_dyn_keepalive == 0 || V_ipfw_dyn_v == NULL || V_dyn_count == 0)
4612		goto done;
4613
4614	/*
4615	 * We make a chain of packets to go out here -- not deferring
4616	 * until after we drop the IPFW dynamic rule lock would result
4617	 * in a lock order reversal with the normal packet input -> ipfw
4618	 * call stack.
4619	 */
4620	m0 = NULL;
4621	mtailp = &m0;
4622#ifdef INET6
4623	m6 = NULL;
4624	m6_tailp = &m6;
4625#endif
4626	IPFW_DYN_LOCK();
4627	for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
4628		for (q = V_ipfw_dyn_v[i] ; q ; q = q->next ) {
4629			if (q->dyn_type == O_LIMIT_PARENT)
4630				continue;
4631			if (q->id.proto != IPPROTO_TCP)
4632				continue;
4633			if ( (q->state & BOTH_SYN) != BOTH_SYN)
4634				continue;
4635			if (TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
4636			    q->expire))
4637				continue;	/* too early */
4638			if (TIME_LEQ(q->expire, time_uptime))
4639				continue;	/* too late, rule expired */
4640
4641			m = send_pkt(NULL, &(q->id), q->ack_rev - 1,
4642				q->ack_fwd, TH_SYN);
4643			mnext = send_pkt(NULL, &(q->id), q->ack_fwd - 1,
4644				q->ack_rev, 0);
4645
4646			switch (q->id.addr_type) {
4647			case 4:
4648				if (m != NULL) {
4649					*mtailp = m;
4650					mtailp = &(*mtailp)->m_nextpkt;
4651				}
4652				if (mnext != NULL) {
4653					*mtailp = mnext;
4654					mtailp = &(*mtailp)->m_nextpkt;
4655				}
4656				break;
4657#ifdef INET6
4658			case 6:
4659				if (m != NULL) {
4660					*m6_tailp = m;
4661					m6_tailp = &(*m6_tailp)->m_nextpkt;
4662				}
4663				if (mnext != NULL) {
4664					*m6_tailp = mnext;
4665					m6_tailp = &(*m6_tailp)->m_nextpkt;
4666				}
4667				break;
4668#endif
4669			}
4670
4671			m = mnext = NULL;
4672		}
4673	}
4674	IPFW_DYN_UNLOCK();
4675	for (m = mnext = m0; m != NULL; m = mnext) {
4676		mnext = m->m_nextpkt;
4677		m->m_nextpkt = NULL;
4678		ip_output(m, NULL, NULL, 0, NULL, NULL);
4679	}
4680#ifdef INET6
4681	for (m = mnext = m6; m != NULL; m = mnext) {
4682		mnext = m->m_nextpkt;
4683		m->m_nextpkt = NULL;
4684		ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
4685	}
4686#endif
4687done:
4688	callout_reset(&V_ipfw_timeout, V_dyn_keepalive_period * hz,
4689		      ipfw_tick, vnetx);
4690	CURVNET_RESTORE();
4691}
4692
4693/****************
4694 * Stuff that must be initialised only on boot or module load
4695 */
4696static int
4697ipfw_init(void)
4698{
4699	int error = 0;
4700
4701	ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule",
4702	    sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
4703	    UMA_ALIGN_PTR, 0);
4704
4705	IPFW_DYN_LOCK_INIT();
4706	/*
4707 	 * Only print out this stuff the first time around,
4708	 * when called from the sysinit code.
4709	 */
4710	printf("ipfw2 "
4711#ifdef INET6
4712		"(+ipv6) "
4713#endif
4714		"initialized, divert %s, nat %s, "
4715		"rule-based forwarding "
4716#ifdef IPFIREWALL_FORWARD
4717		"enabled, "
4718#else
4719		"disabled, "
4720#endif
4721		"default to %s, logging ",
4722#ifdef IPDIVERT
4723		"enabled",
4724#else
4725		"loadable",
4726#endif
4727#ifdef IPFIREWALL_NAT
4728		"enabled",
4729#else
4730		"loadable",
4731#endif
4732		default_to_accept ? "accept" : "deny");
4733
4734	/*
4735	 * Note: V_xxx variables can be accessed here but the vnet specific
4736	 * initializer may not have been called yet for the VIMAGE case.
4737	 * Tuneables will have been processed. We will print out values for
4738	 * the default vnet.
4739	 * XXX This should all be rationalized AFTER 8.0
4740	 */
4741	if (V_fw_verbose == 0)
4742		printf("disabled\n");
4743	else if (V_verbose_limit == 0)
4744		printf("unlimited\n");
4745	else
4746		printf("limited to %d packets/entry by default\n",
4747		    V_verbose_limit);
4748
4749	return (error);
4750}
4751
4752/**********************
4753 * Called for the removal of the last instance only on module unload.
4754 */
4755static void
4756ipfw_destroy(void)
4757{
4758
4759	uma_zdestroy(ipfw_dyn_rule_zone);
4760	IPFW_DYN_LOCK_DESTROY();
4761	printf("IP firewall unloaded\n");
4762}
4763
4764/****************
4765 * Stuff that must be initialized for every instance
4766 * (including the first of course).
4767 */
4768static int
4769vnet_ipfw_init(const void *unused)
4770{
4771	int error;
4772	struct ip_fw default_rule;
4773
4774	/* First set up some values that are compile time options */
4775#ifdef IPFIREWALL_VERBOSE
4776	V_fw_verbose = 1;
4777#endif
4778#ifdef IPFIREWALL_VERBOSE_LIMIT
4779	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
4780#endif
4781
4782	error = init_tables(&V_layer3_chain);
4783	if (error) {
4784		panic("init_tables"); /* XXX Marko fix this ! */
4785	}
4786#ifdef IPFIREWALL_NAT
4787	LIST_INIT(&V_layer3_chain.nat);
4788#endif
4789
4790	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
4791
4792	V_ipfw_dyn_v = NULL;
4793	V_dyn_buckets = 256;	/* must be power of 2 */
4794	V_curr_dyn_buckets = 256; /* must be power of 2 */
4795
4796	V_dyn_ack_lifetime = 300;
4797	V_dyn_syn_lifetime = 20;
4798	V_dyn_fin_lifetime = 1;
4799	V_dyn_rst_lifetime = 1;
4800	V_dyn_udp_lifetime = 10;
4801	V_dyn_short_lifetime = 5;
4802
4803	V_dyn_keepalive_interval = 20;
4804	V_dyn_keepalive_period = 5;
4805	V_dyn_keepalive = 1;	/* do send keepalives */
4806
4807	V_dyn_max = 4096;	/* max # of dynamic rules */
4808
4809	V_fw_deny_unknown_exthdrs = 1;
4810
4811	V_layer3_chain.rules = NULL;
4812	IPFW_LOCK_INIT(&V_layer3_chain);
4813	callout_init(&V_ipfw_timeout, CALLOUT_MPSAFE);
4814
4815	bzero(&default_rule, sizeof default_rule);
4816	default_rule.act_ofs = 0;
4817	default_rule.rulenum = IPFW_DEFAULT_RULE;
4818	default_rule.cmd_len = 1;
4819	default_rule.set = RESVD_SET;
4820	default_rule.cmd[0].len = 1;
4821	default_rule.cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
4822	error = add_rule(&V_layer3_chain, &default_rule);
4823
4824	if (error != 0) {
4825		printf("ipfw2: error %u initializing default rule "
4826			"(support disabled)\n", error);
4827		IPFW_LOCK_DESTROY(&V_layer3_chain);
4828		printf("leaving ipfw_iattach (1) with error %d\n", error);
4829		return (error);
4830	}
4831
4832	ip_fw_default_rule = V_layer3_chain.rules;
4833
4834	if (error) {
4835		IPFW_LOCK_DESTROY(&V_layer3_chain);
4836		printf("leaving ipfw_iattach (2) with error %d\n", error);
4837		return (error);
4838	}
4839#ifdef VIMAGE  /* want a better way to do this */
4840	callout_reset(&V_ipfw_timeout, hz, ipfw_tick, curvnet);
4841#else
4842	callout_reset(&V_ipfw_timeout, hz, ipfw_tick, NULL);
4843#endif
4844
4845	/* First set up some values that are compile time options */
4846	V_ipfw_vnet_ready = 1;		/* Open for business */
4847
4848	/* Hook up the raw inputs */
4849	V_ip_fw_ctl_ptr = ipfw_ctl;
4850	V_ip_fw_chk_ptr = ipfw_chk;
4851
4852	/*
4853	 * Hook us up to pfil.
4854	 */
4855	if (V_fw_enable) {
4856		if ((error = ipfw_hook()) != 0) {
4857			printf("ipfw_hook() error\n");
4858			return (error);
4859		}
4860	}
4861#ifdef INET6
4862	if (V_fw6_enable) {
4863		if ((error = ipfw6_hook()) != 0) {
4864			printf("ipfw6_hook() error\n");
4865			/* XXX should we unhook everything else? */
4866			return (error);
4867		}
4868	}
4869#endif
4870	return (0);
4871}
4872
4873/***********************
4874 * Called for the removal of each instance.
4875 */
4876static int
4877vnet_ipfw_uninit(const void *unused)
4878{
4879	struct ip_fw *reap;
4880
4881	V_ipfw_vnet_ready = 0; /* tell new callers to go away */
4882	ipfw_unhook();
4883#ifdef INET6
4884	ipfw6_unhook();
4885#endif
4886	/* layer2 and other entrypoints still come in this way. */
4887	V_ip_fw_chk_ptr = NULL;
4888	V_ip_fw_ctl_ptr = NULL;
4889	IPFW_WLOCK(&V_layer3_chain);
4890	/* We wait on the wlock here until the last user leaves */
4891	IPFW_WUNLOCK(&V_layer3_chain);
4892	IPFW_WLOCK(&V_layer3_chain);
4893	callout_drain(&V_ipfw_timeout);
4894	flush_tables(&V_layer3_chain);
4895	V_layer3_chain.reap = NULL;
4896	free_chain(&V_layer3_chain, 1 /* kill default rule */);
4897	reap = V_layer3_chain.reap;
4898	V_layer3_chain.reap = NULL;
4899	IPFW_WUNLOCK(&V_layer3_chain);
4900	if (reap != NULL)
4901		reap_rules(reap);
4902	IPFW_LOCK_DESTROY(&V_layer3_chain);
4903	if (V_ipfw_dyn_v != NULL)
4904		free(V_ipfw_dyn_v, M_IPFW);
4905	return 0;
4906}
4907
4908/*
4909 * Module event handler.
4910 * In general we have the choice of handling most of these events by the
4911 * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
4912 * use the SYSINIT handlers as they are more capable of expressing the
4913 * flow of control during module and vnet operations, so this is just
4914 * a skeleton. Note there is no SYSINIT equivalent of the module
4915 * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
4916 */
4917static int
4918ipfw_modevent(module_t mod, int type, void *unused)
4919{
4920	int err = 0;
4921
4922	switch (type) {
4923	case MOD_LOAD:
4924		/* Called once at module load or
4925	 	 * system boot if compiled in. */
4926		break;
4927	case MOD_QUIESCE:
4928		/* Called before unload. May veto unloading. */
4929		break;
4930	case MOD_UNLOAD:
4931		/* Called during unload. */
4932		break;
4933	case MOD_SHUTDOWN:
4934		/* Called during system shutdown. */
4935		break;
4936	default:
4937		err = EOPNOTSUPP;
4938		break;
4939	}
4940	return err;
4941}
4942
4943static moduledata_t ipfwmod = {
4944	"ipfw",
4945	ipfw_modevent,
4946	0
4947};
4948
4949/* Define startup order. */
4950#define	IPFW_SI_SUB_FIREWALL	SI_SUB_PROTO_IFATTACHDOMAIN
4951#define	IPFW_MODEVENT_ORDER	(SI_ORDER_ANY - 255) /* On boot slot in here. */
4952#define	IPFW_MODULE_ORDER	(IPFW_MODEVENT_ORDER + 1) /* A little later. */
4953#define	IPFW_VNET_ORDER		(IPFW_MODEVENT_ORDER + 2) /* Later still. */
4954
4955DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
4956MODULE_VERSION(ipfw, 2);
4957/* should declare some dependencies here */
4958
4959/*
4960 * Starting up. Done in order after ipfwmod() has been called.
4961 * VNET_SYSINIT is also called for each existing vnet and each new vnet.
4962 */
4963SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
4964	    ipfw_init, NULL);
4965VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
4966	    vnet_ipfw_init, NULL);
4967
4968/*
4969 * Closing up shop. These are done in REVERSE ORDER, but still
4970 * after ipfwmod() has been called. Not called on reboot.
4971 * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
4972 * or when the module is unloaded.
4973 */
4974SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
4975	    ipfw_destroy, NULL);
4976VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
4977	    vnet_ipfw_uninit, NULL);
4978
4979