ip_fw2.c revision 193894
1/*-
2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: head/sys/netinet/ipfw/ip_fw2.c 193894 2009-06-10 10:34:59Z luigi $");
28
29#define        DEB(x)
30#define        DDB(x) x
31
32/*
33 * Implement IP packet firewall (new version)
34 */
35
36#if !defined(KLD_MODULE)
37#include "opt_ipfw.h"
38#include "opt_ipdivert.h"
39#include "opt_ipdn.h"
40#include "opt_inet.h"
41#ifndef INET
42#error IPFIREWALL requires INET.
43#endif /* INET */
44#endif
45#include "opt_inet6.h"
46#include "opt_ipsec.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/condvar.h>
51#include <sys/eventhandler.h>
52#include <sys/malloc.h>
53#include <sys/mbuf.h>
54#include <sys/kernel.h>
55#include <sys/lock.h>
56#include <sys/jail.h>
57#include <sys/module.h>
58#include <sys/priv.h>
59#include <sys/proc.h>
60#include <sys/rwlock.h>
61#include <sys/socket.h>
62#include <sys/socketvar.h>
63#include <sys/sysctl.h>
64#include <sys/syslog.h>
65#include <sys/ucred.h>
66#include <sys/vimage.h>
67#include <net/ethernet.h> /* for ETHERTYPE_IP */
68#include <net/if.h>
69#include <net/radix.h>
70#include <net/route.h>
71#include <net/pf_mtag.h>
72#include <net/vnet.h>
73
74#define	IPFW_INTERNAL	/* Access to protected data structures in ip_fw.h. */
75
76#include <netinet/in.h>
77#include <netinet/in_var.h>
78#include <netinet/in_pcb.h>
79#include <netinet/ip.h>
80#include <netinet/ip_var.h>
81#include <netinet/ip_icmp.h>
82#include <netinet/ip_fw.h>
83#include <netinet/ip_divert.h>
84#include <netinet/ip_dummynet.h>
85#include <netinet/ip_carp.h>
86#include <netinet/pim.h>
87#include <netinet/tcp_var.h>
88#include <netinet/udp.h>
89#include <netinet/udp_var.h>
90#include <netinet/sctp.h>
91#include <netinet/vinet.h>
92
93#include <netgraph/ng_ipfw.h>
94
95#include <netinet/ip6.h>
96#include <netinet/icmp6.h>
97#ifdef INET6
98#include <netinet6/scope6_var.h>
99#endif
100
101#include <machine/in_cksum.h>	/* XXX for in_cksum */
102
103#ifdef MAC
104#include <security/mac/mac_framework.h>
105#endif
106
107#ifndef VIMAGE
108#ifndef VIMAGE_GLOBALS
109struct vnet_ipfw vnet_ipfw_0;
110#endif
111#endif
112
113/*
114 * set_disable contains one bit per set value (0..31).
115 * If the bit is set, all rules with the corresponding set
116 * are disabled. Set RESVD_SET(31) is reserved for the default rule
117 * and rules that are not deleted by the flush command,
118 * and CANNOT be disabled.
119 * Rules in set RESVD_SET can only be deleted explicitly.
120 */
121#ifdef VIMAGE_GLOBALS
122static u_int32_t set_disable;
123static int fw_verbose;
124static struct callout ipfw_timeout;
125static int verbose_limit;
126#endif
127
128#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
129static int default_to_accept = 1;
130#else
131static int default_to_accept;
132#endif
133static uma_zone_t ipfw_dyn_rule_zone;
134
135struct ip_fw *ip_fw_default_rule;
136
137/*
138 * Data structure to cache our ucred related
139 * information. This structure only gets used if
140 * the user specified UID/GID based constraints in
141 * a firewall rule.
142 */
143struct ip_fw_ugid {
144	gid_t		fw_groups[NGROUPS];
145	int		fw_ngroups;
146	uid_t		fw_uid;
147	int		fw_prid;
148};
149
150/*
151 * list of rules for layer 3
152 */
153#ifdef VIMAGE_GLOBALS
154struct ip_fw_chain layer3_chain;
155#endif
156
157MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
158MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
159#define IPFW_NAT_LOADED (ipfw_nat_ptr != NULL)
160ipfw_nat_t *ipfw_nat_ptr = NULL;
161ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
162ipfw_nat_cfg_t *ipfw_nat_del_ptr;
163ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
164ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
165
166struct table_entry {
167	struct radix_node	rn[2];
168	struct sockaddr_in	addr, mask;
169	u_int32_t		value;
170};
171
172#ifdef VIMAGE_GLOBALS
173static int autoinc_step;
174#endif
175
176extern int ipfw_chg_hook(SYSCTL_HANDLER_ARGS);
177
178#ifdef SYSCTL_NODE
179SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
180SYSCTL_V_PROC(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, enable,
181    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3, fw_enable, 0,
182    ipfw_chg_hook, "I", "Enable ipfw");
183SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, autoinc_step,
184    CTLFLAG_RW, autoinc_step, 0, "Rule number auto-increment step");
185SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_fw, OID_AUTO, one_pass,
186    CTLFLAG_RW | CTLFLAG_SECURE3, fw_one_pass, 0,
187    "Only do a single pass through ipfw when using dummynet(4)");
188SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, verbose,
189    CTLFLAG_RW | CTLFLAG_SECURE3,
190    fw_verbose, 0, "Log matches to ipfw rules");
191SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, verbose_limit,
192    CTLFLAG_RW, verbose_limit, 0,
193    "Set upper limit of matches of ipfw rules logged");
194SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
195    NULL, IPFW_DEFAULT_RULE, "The default/max possible rule number.");
196SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, tables_max, CTLFLAG_RD,
197    NULL, IPFW_TABLES_MAX, "The maximum number of tables.");
198SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
199    &default_to_accept, 0, "Make the default rule accept all packets.");
200TUNABLE_INT("net.inet.ip.fw.default_to_accept", &default_to_accept);
201#endif /* SYSCTL_NODE */
202
203/*
204 * Description of dynamic rules.
205 *
206 * Dynamic rules are stored in lists accessed through a hash table
207 * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
208 * be modified through the sysctl variable dyn_buckets which is
209 * updated when the table becomes empty.
210 *
211 * XXX currently there is only one list, ipfw_dyn.
212 *
213 * When a packet is received, its address fields are first masked
214 * with the mask defined for the rule, then hashed, then matched
215 * against the entries in the corresponding list.
216 * Dynamic rules can be used for different purposes:
217 *  + stateful rules;
218 *  + enforcing limits on the number of sessions;
219 *  + in-kernel NAT (not implemented yet)
220 *
221 * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
222 * measured in seconds and depending on the flags.
223 *
224 * The total number of dynamic rules is stored in dyn_count.
225 * The max number of dynamic rules is dyn_max. When we reach
226 * the maximum number of rules we do not create anymore. This is
227 * done to avoid consuming too much memory, but also too much
228 * time when searching on each packet (ideally, we should try instead
229 * to put a limit on the length of the list on each bucket...).
230 *
231 * Each dynamic rule holds a pointer to the parent ipfw rule so
232 * we know what action to perform. Dynamic rules are removed when
233 * the parent rule is deleted. XXX we should make them survive.
234 *
235 * There are some limitations with dynamic rules -- we do not
236 * obey the 'randomized match', and we do not do multiple
237 * passes through the firewall. XXX check the latter!!!
238 */
239#ifdef VIMAGE_GLOBALS
240static ipfw_dyn_rule **ipfw_dyn_v;
241static u_int32_t dyn_buckets;
242static u_int32_t curr_dyn_buckets;
243#endif
244
245static struct mtx ipfw_dyn_mtx;		/* mutex guarding dynamic rules */
246#define	IPFW_DYN_LOCK_INIT() \
247	mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
248#define	IPFW_DYN_LOCK_DESTROY()	mtx_destroy(&ipfw_dyn_mtx)
249#define	IPFW_DYN_LOCK()		mtx_lock(&ipfw_dyn_mtx)
250#define	IPFW_DYN_UNLOCK()	mtx_unlock(&ipfw_dyn_mtx)
251#define	IPFW_DYN_LOCK_ASSERT()	mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
252
253/*
254 * Timeouts for various events in handing dynamic rules.
255 */
256#ifdef VIMAGE_GLOBALS
257static u_int32_t dyn_ack_lifetime;
258static u_int32_t dyn_syn_lifetime;
259static u_int32_t dyn_fin_lifetime;
260static u_int32_t dyn_rst_lifetime;
261static u_int32_t dyn_udp_lifetime;
262static u_int32_t dyn_short_lifetime;
263
264/*
265 * Keepalives are sent if dyn_keepalive is set. They are sent every
266 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
267 * seconds of lifetime of a rule.
268 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
269 * than dyn_keepalive_period.
270 */
271
272static u_int32_t dyn_keepalive_interval;
273static u_int32_t dyn_keepalive_period;
274static u_int32_t dyn_keepalive;
275
276static u_int32_t static_count;	/* # of static rules */
277static u_int32_t static_len;	/* size in bytes of static rules */
278static u_int32_t dyn_count;	/* # of dynamic rules */
279static u_int32_t dyn_max;	/* max # of dynamic rules */
280#endif /* VIMAGE_GLOBALS */
281
282#ifdef SYSCTL_NODE
283SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_buckets,
284    CTLFLAG_RW, dyn_buckets, 0, "Number of dyn. buckets");
285SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
286    CTLFLAG_RD, curr_dyn_buckets, 0, "Current Number of dyn. buckets");
287SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_count,
288    CTLFLAG_RD, dyn_count, 0, "Number of dyn. rules");
289SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_max,
290    CTLFLAG_RW, dyn_max, 0, "Max number of dyn. rules");
291SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, static_count,
292    CTLFLAG_RD, static_count, 0, "Number of static rules");
293SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
294    CTLFLAG_RW, dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
295SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
296    CTLFLAG_RW, dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
297SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
298    CTLFLAG_RW, dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
299SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
300    CTLFLAG_RW, dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
301SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
302    CTLFLAG_RW, dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
303SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
304    CTLFLAG_RW, dyn_short_lifetime, 0,
305    "Lifetime of dyn. rules for other situations");
306SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_keepalive,
307    CTLFLAG_RW, dyn_keepalive, 0, "Enable keepalives for dyn. rules");
308#endif /* SYSCTL_NODE */
309
310#ifdef INET6
311/*
312 * IPv6 specific variables
313 */
314#ifdef SYSCTL_NODE
315SYSCTL_DECL(_net_inet6_ip6);
316#endif /* SYSCTL_NODE */
317
318static struct sysctl_ctx_list ip6_fw_sysctl_ctx;
319static struct sysctl_oid *ip6_fw_sysctl_tree;
320#endif /* INET6 */
321
322#ifdef VIMAGE_GLOBALS
323static int fw_deny_unknown_exthdrs;
324#endif
325
326/*
327 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
328 * Other macros just cast void * into the appropriate type
329 */
330#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
331#define	TCP(p)		((struct tcphdr *)(p))
332#define	SCTP(p)		((struct sctphdr *)(p))
333#define	UDP(p)		((struct udphdr *)(p))
334#define	ICMP(p)		((struct icmphdr *)(p))
335#define	ICMP6(p)	((struct icmp6_hdr *)(p))
336
337static __inline int
338icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
339{
340	int type = icmp->icmp_type;
341
342	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
343}
344
345#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
346    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
347
348static int
349is_icmp_query(struct icmphdr *icmp)
350{
351	int type = icmp->icmp_type;
352
353	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
354}
355#undef TT
356
357/*
358 * The following checks use two arrays of 8 or 16 bits to store the
359 * bits that we want set or clear, respectively. They are in the
360 * low and high half of cmd->arg1 or cmd->d[0].
361 *
362 * We scan options and store the bits we find set. We succeed if
363 *
364 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
365 *
366 * The code is sometimes optimized not to store additional variables.
367 */
368
369static int
370flags_match(ipfw_insn *cmd, u_int8_t bits)
371{
372	u_char want_clear;
373	bits = ~bits;
374
375	if ( ((cmd->arg1 & 0xff) & bits) != 0)
376		return 0; /* some bits we want set were clear */
377	want_clear = (cmd->arg1 >> 8) & 0xff;
378	if ( (want_clear & bits) != want_clear)
379		return 0; /* some bits we want clear were set */
380	return 1;
381}
382
383static int
384ipopts_match(struct ip *ip, ipfw_insn *cmd)
385{
386	int optlen, bits = 0;
387	u_char *cp = (u_char *)(ip + 1);
388	int x = (ip->ip_hl << 2) - sizeof (struct ip);
389
390	for (; x > 0; x -= optlen, cp += optlen) {
391		int opt = cp[IPOPT_OPTVAL];
392
393		if (opt == IPOPT_EOL)
394			break;
395		if (opt == IPOPT_NOP)
396			optlen = 1;
397		else {
398			optlen = cp[IPOPT_OLEN];
399			if (optlen <= 0 || optlen > x)
400				return 0; /* invalid or truncated */
401		}
402		switch (opt) {
403
404		default:
405			break;
406
407		case IPOPT_LSRR:
408			bits |= IP_FW_IPOPT_LSRR;
409			break;
410
411		case IPOPT_SSRR:
412			bits |= IP_FW_IPOPT_SSRR;
413			break;
414
415		case IPOPT_RR:
416			bits |= IP_FW_IPOPT_RR;
417			break;
418
419		case IPOPT_TS:
420			bits |= IP_FW_IPOPT_TS;
421			break;
422		}
423	}
424	return (flags_match(cmd, bits));
425}
426
427static int
428tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
429{
430	int optlen, bits = 0;
431	u_char *cp = (u_char *)(tcp + 1);
432	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
433
434	for (; x > 0; x -= optlen, cp += optlen) {
435		int opt = cp[0];
436		if (opt == TCPOPT_EOL)
437			break;
438		if (opt == TCPOPT_NOP)
439			optlen = 1;
440		else {
441			optlen = cp[1];
442			if (optlen <= 0)
443				break;
444		}
445
446		switch (opt) {
447
448		default:
449			break;
450
451		case TCPOPT_MAXSEG:
452			bits |= IP_FW_TCPOPT_MSS;
453			break;
454
455		case TCPOPT_WINDOW:
456			bits |= IP_FW_TCPOPT_WINDOW;
457			break;
458
459		case TCPOPT_SACK_PERMITTED:
460		case TCPOPT_SACK:
461			bits |= IP_FW_TCPOPT_SACK;
462			break;
463
464		case TCPOPT_TIMESTAMP:
465			bits |= IP_FW_TCPOPT_TS;
466			break;
467
468		}
469	}
470	return (flags_match(cmd, bits));
471}
472
473static int
474iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
475{
476	if (ifp == NULL)	/* no iface with this packet, match fails */
477		return 0;
478	/* Check by name or by IP address */
479	if (cmd->name[0] != '\0') { /* match by name */
480		/* Check name */
481		if (cmd->p.glob) {
482			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
483				return(1);
484		} else {
485			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
486				return(1);
487		}
488	} else {
489		struct ifaddr *ia;
490
491		IF_ADDR_LOCK(ifp);
492		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
493			if (ia->ifa_addr->sa_family != AF_INET)
494				continue;
495			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
496			    (ia->ifa_addr))->sin_addr.s_addr) {
497				IF_ADDR_UNLOCK(ifp);
498				return(1);	/* match */
499			}
500		}
501		IF_ADDR_UNLOCK(ifp);
502	}
503	return(0);	/* no match, fail ... */
504}
505
506/*
507 * The verify_path function checks if a route to the src exists and
508 * if it is reachable via ifp (when provided).
509 *
510 * The 'verrevpath' option checks that the interface that an IP packet
511 * arrives on is the same interface that traffic destined for the
512 * packet's source address would be routed out of.  The 'versrcreach'
513 * option just checks that the source address is reachable via any route
514 * (except default) in the routing table.  These two are a measure to block
515 * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
516 * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
517 * is purposely reminiscent of the Cisco IOS command,
518 *
519 *   ip verify unicast reverse-path
520 *   ip verify unicast source reachable-via any
521 *
522 * which implements the same functionality. But note that syntax is
523 * misleading. The check may be performed on all IP packets whether unicast,
524 * multicast, or broadcast.
525 */
526static int
527verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
528{
529	struct route ro;
530	struct sockaddr_in *dst;
531
532	bzero(&ro, sizeof(ro));
533
534	dst = (struct sockaddr_in *)&(ro.ro_dst);
535	dst->sin_family = AF_INET;
536	dst->sin_len = sizeof(*dst);
537	dst->sin_addr = src;
538	in_rtalloc_ign(&ro, 0, fib);
539
540	if (ro.ro_rt == NULL)
541		return 0;
542
543	/*
544	 * If ifp is provided, check for equality with rtentry.
545	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
546	 * in order to pass packets injected back by if_simloop():
547	 * if useloopback == 1 routing entry (via lo0) for our own address
548	 * may exist, so we need to handle routing assymetry.
549	 */
550	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
551		RTFREE(ro.ro_rt);
552		return 0;
553	}
554
555	/* if no ifp provided, check if rtentry is not default route */
556	if (ifp == NULL &&
557	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
558		RTFREE(ro.ro_rt);
559		return 0;
560	}
561
562	/* or if this is a blackhole/reject route */
563	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
564		RTFREE(ro.ro_rt);
565		return 0;
566	}
567
568	/* found valid route */
569	RTFREE(ro.ro_rt);
570	return 1;
571}
572
573#ifdef INET6
574/*
575 * ipv6 specific rules here...
576 */
577static __inline int
578icmp6type_match (int type, ipfw_insn_u32 *cmd)
579{
580	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
581}
582
583static int
584flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
585{
586	int i;
587	for (i=0; i <= cmd->o.arg1; ++i )
588		if (curr_flow == cmd->d[i] )
589			return 1;
590	return 0;
591}
592
593/* support for IP6_*_ME opcodes */
594static int
595search_ip6_addr_net (struct in6_addr * ip6_addr)
596{
597	INIT_VNET_NET(curvnet);
598	struct ifnet *mdc;
599	struct ifaddr *mdc2;
600	struct in6_ifaddr *fdm;
601	struct in6_addr copia;
602
603	TAILQ_FOREACH(mdc, &V_ifnet, if_link) {
604		IF_ADDR_LOCK(mdc);
605		TAILQ_FOREACH(mdc2, &mdc->if_addrhead, ifa_link) {
606			if (mdc2->ifa_addr->sa_family == AF_INET6) {
607				fdm = (struct in6_ifaddr *)mdc2;
608				copia = fdm->ia_addr.sin6_addr;
609				/* need for leaving scope_id in the sock_addr */
610				in6_clearscope(&copia);
611				if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia)) {
612					IF_ADDR_UNLOCK(mdc);
613					return 1;
614				}
615			}
616		}
617		IF_ADDR_UNLOCK(mdc);
618	}
619	return 0;
620}
621
622static int
623verify_path6(struct in6_addr *src, struct ifnet *ifp)
624{
625	struct route_in6 ro;
626	struct sockaddr_in6 *dst;
627
628	bzero(&ro, sizeof(ro));
629
630	dst = (struct sockaddr_in6 * )&(ro.ro_dst);
631	dst->sin6_family = AF_INET6;
632	dst->sin6_len = sizeof(*dst);
633	dst->sin6_addr = *src;
634	/* XXX MRT 0 for ipv6 at this time */
635	rtalloc_ign((struct route *)&ro, 0);
636
637	if (ro.ro_rt == NULL)
638		return 0;
639
640	/*
641	 * if ifp is provided, check for equality with rtentry
642	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
643	 * to support the case of sending packets to an address of our own.
644	 * (where the former interface is the first argument of if_simloop()
645	 *  (=ifp), the latter is lo0)
646	 */
647	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
648		RTFREE(ro.ro_rt);
649		return 0;
650	}
651
652	/* if no ifp provided, check if rtentry is not default route */
653	if (ifp == NULL &&
654	    IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
655		RTFREE(ro.ro_rt);
656		return 0;
657	}
658
659	/* or if this is a blackhole/reject route */
660	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
661		RTFREE(ro.ro_rt);
662		return 0;
663	}
664
665	/* found valid route */
666	RTFREE(ro.ro_rt);
667	return 1;
668
669}
670static __inline int
671hash_packet6(struct ipfw_flow_id *id)
672{
673	u_int32_t i;
674	i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
675	    (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
676	    (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
677	    (id->src_ip6.__u6_addr.__u6_addr32[3]) ^
678	    (id->dst_port) ^ (id->src_port);
679	return i;
680}
681
682static int
683is_icmp6_query(int icmp6_type)
684{
685	if ((icmp6_type <= ICMP6_MAXTYPE) &&
686	    (icmp6_type == ICMP6_ECHO_REQUEST ||
687	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
688	    icmp6_type == ICMP6_WRUREQUEST ||
689	    icmp6_type == ICMP6_FQDN_QUERY ||
690	    icmp6_type == ICMP6_NI_QUERY))
691		return (1);
692
693	return (0);
694}
695
696static void
697send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
698{
699	struct mbuf *m;
700
701	m = args->m;
702	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
703		struct tcphdr *tcp;
704		tcp_seq ack, seq;
705		int flags;
706		struct {
707			struct ip6_hdr ip6;
708			struct tcphdr th;
709		} ti;
710		tcp = (struct tcphdr *)((char *)ip6 + hlen);
711
712		if ((tcp->th_flags & TH_RST) != 0) {
713			m_freem(m);
714			args->m = NULL;
715			return;
716		}
717
718		ti.ip6 = *ip6;
719		ti.th = *tcp;
720		ti.th.th_seq = ntohl(ti.th.th_seq);
721		ti.th.th_ack = ntohl(ti.th.th_ack);
722		ti.ip6.ip6_nxt = IPPROTO_TCP;
723
724		if (ti.th.th_flags & TH_ACK) {
725			ack = 0;
726			seq = ti.th.th_ack;
727			flags = TH_RST;
728		} else {
729			ack = ti.th.th_seq;
730			if ((m->m_flags & M_PKTHDR) != 0) {
731				/*
732				 * total new data to ACK is:
733				 * total packet length,
734				 * minus the header length,
735				 * minus the tcp header length.
736				 */
737				ack += m->m_pkthdr.len - hlen
738					- (ti.th.th_off << 2);
739			} else if (ip6->ip6_plen) {
740				ack += ntohs(ip6->ip6_plen) + sizeof(*ip6) -
741				    hlen - (ti.th.th_off << 2);
742			} else {
743				m_freem(m);
744				return;
745			}
746			if (tcp->th_flags & TH_SYN)
747				ack++;
748			seq = 0;
749			flags = TH_RST|TH_ACK;
750		}
751		bcopy(&ti, ip6, sizeof(ti));
752		/*
753		 * m is only used to recycle the mbuf
754		 * The data in it is never read so we don't need
755		 * to correct the offsets or anything
756		 */
757		tcp_respond(NULL, ip6, tcp, m, ack, seq, flags);
758	} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
759#if 0
760		/*
761		 * Unlike above, the mbufs need to line up with the ip6 hdr,
762		 * as the contents are read. We need to m_adj() the
763		 * needed amount.
764		 * The mbuf will however be thrown away so we can adjust it.
765		 * Remember we did an m_pullup on it already so we
766		 * can make some assumptions about contiguousness.
767		 */
768		if (args->L3offset)
769			m_adj(m, args->L3offset);
770#endif
771		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
772	} else
773		m_freem(m);
774
775	args->m = NULL;
776}
777
778#endif /* INET6 */
779
780#ifdef VIMAGE_GLOBALS
781static u_int64_t norule_counter;	/* counter for ipfw_log(NULL...) */
782#endif
783
784#define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
785#define SNP(buf) buf, sizeof(buf)
786
787/*
788 * We enter here when we have a rule with O_LOG.
789 * XXX this function alone takes about 2Kbytes of code!
790 */
791static void
792ipfw_log(struct ip_fw *f, u_int hlen, struct ip_fw_args *args,
793    struct mbuf *m, struct ifnet *oif, u_short offset, uint32_t tablearg,
794    struct ip *ip)
795{
796	INIT_VNET_IPFW(curvnet);
797	struct ether_header *eh = args->eh;
798	char *action;
799	int limit_reached = 0;
800	char action2[40], proto[128], fragment[32];
801
802	fragment[0] = '\0';
803	proto[0] = '\0';
804
805	if (f == NULL) {	/* bogus pkt */
806		if (V_verbose_limit != 0 && V_norule_counter >= V_verbose_limit)
807			return;
808		V_norule_counter++;
809		if (V_norule_counter == V_verbose_limit)
810			limit_reached = V_verbose_limit;
811		action = "Refuse";
812	} else {	/* O_LOG is the first action, find the real one */
813		ipfw_insn *cmd = ACTION_PTR(f);
814		ipfw_insn_log *l = (ipfw_insn_log *)cmd;
815
816		if (l->max_log != 0 && l->log_left == 0)
817			return;
818		l->log_left--;
819		if (l->log_left == 0)
820			limit_reached = l->max_log;
821		cmd += F_LEN(cmd);	/* point to first action */
822		if (cmd->opcode == O_ALTQ) {
823			ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
824
825			snprintf(SNPARGS(action2, 0), "Altq %d",
826				altq->qid);
827			cmd += F_LEN(cmd);
828		}
829		if (cmd->opcode == O_PROB)
830			cmd += F_LEN(cmd);
831
832		if (cmd->opcode == O_TAG)
833			cmd += F_LEN(cmd);
834
835		action = action2;
836		switch (cmd->opcode) {
837		case O_DENY:
838			action = "Deny";
839			break;
840
841		case O_REJECT:
842			if (cmd->arg1==ICMP_REJECT_RST)
843				action = "Reset";
844			else if (cmd->arg1==ICMP_UNREACH_HOST)
845				action = "Reject";
846			else
847				snprintf(SNPARGS(action2, 0), "Unreach %d",
848					cmd->arg1);
849			break;
850
851		case O_UNREACH6:
852			if (cmd->arg1==ICMP6_UNREACH_RST)
853				action = "Reset";
854			else
855				snprintf(SNPARGS(action2, 0), "Unreach %d",
856					cmd->arg1);
857			break;
858
859		case O_ACCEPT:
860			action = "Accept";
861			break;
862		case O_COUNT:
863			action = "Count";
864			break;
865		case O_DIVERT:
866			snprintf(SNPARGS(action2, 0), "Divert %d",
867				cmd->arg1);
868			break;
869		case O_TEE:
870			snprintf(SNPARGS(action2, 0), "Tee %d",
871				cmd->arg1);
872			break;
873		case O_SETFIB:
874			snprintf(SNPARGS(action2, 0), "SetFib %d",
875				cmd->arg1);
876			break;
877		case O_SKIPTO:
878			snprintf(SNPARGS(action2, 0), "SkipTo %d",
879				cmd->arg1);
880			break;
881		case O_PIPE:
882			snprintf(SNPARGS(action2, 0), "Pipe %d",
883				cmd->arg1);
884			break;
885		case O_QUEUE:
886			snprintf(SNPARGS(action2, 0), "Queue %d",
887				cmd->arg1);
888			break;
889		case O_FORWARD_IP: {
890			ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
891			int len;
892			struct in_addr dummyaddr;
893			if (sa->sa.sin_addr.s_addr == INADDR_ANY)
894				dummyaddr.s_addr = htonl(tablearg);
895			else
896				dummyaddr.s_addr = sa->sa.sin_addr.s_addr;
897
898			len = snprintf(SNPARGS(action2, 0), "Forward to %s",
899				inet_ntoa(dummyaddr));
900
901			if (sa->sa.sin_port)
902				snprintf(SNPARGS(action2, len), ":%d",
903				    sa->sa.sin_port);
904			}
905			break;
906		case O_NETGRAPH:
907			snprintf(SNPARGS(action2, 0), "Netgraph %d",
908				cmd->arg1);
909			break;
910		case O_NGTEE:
911			snprintf(SNPARGS(action2, 0), "Ngtee %d",
912				cmd->arg1);
913			break;
914		case O_NAT:
915			action = "Nat";
916 			break;
917		case O_REASS:
918			action = "Reass";
919			break;
920		default:
921			action = "UNKNOWN";
922			break;
923		}
924	}
925
926	if (hlen == 0) {	/* non-ip */
927		snprintf(SNPARGS(proto, 0), "MAC");
928
929	} else {
930		int len;
931		char src[48], dst[48];
932		struct icmphdr *icmp;
933		struct tcphdr *tcp;
934		struct udphdr *udp;
935#ifdef INET6
936		struct ip6_hdr *ip6 = NULL;
937		struct icmp6_hdr *icmp6;
938#endif
939		src[0] = '\0';
940		dst[0] = '\0';
941#ifdef INET6
942		if (IS_IP6_FLOW_ID(&(args->f_id))) {
943			char ip6buf[INET6_ADDRSTRLEN];
944			snprintf(src, sizeof(src), "[%s]",
945			    ip6_sprintf(ip6buf, &args->f_id.src_ip6));
946			snprintf(dst, sizeof(dst), "[%s]",
947			    ip6_sprintf(ip6buf, &args->f_id.dst_ip6));
948
949			ip6 = (struct ip6_hdr *)ip;
950			tcp = (struct tcphdr *)(((char *)ip) + hlen);
951			udp = (struct udphdr *)(((char *)ip) + hlen);
952		} else
953#endif
954		{
955			tcp = L3HDR(struct tcphdr, ip);
956			udp = L3HDR(struct udphdr, ip);
957
958			inet_ntoa_r(ip->ip_src, src);
959			inet_ntoa_r(ip->ip_dst, dst);
960		}
961
962		switch (args->f_id.proto) {
963		case IPPROTO_TCP:
964			len = snprintf(SNPARGS(proto, 0), "TCP %s", src);
965			if (offset == 0)
966				snprintf(SNPARGS(proto, len), ":%d %s:%d",
967				    ntohs(tcp->th_sport),
968				    dst,
969				    ntohs(tcp->th_dport));
970			else
971				snprintf(SNPARGS(proto, len), " %s", dst);
972			break;
973
974		case IPPROTO_UDP:
975			len = snprintf(SNPARGS(proto, 0), "UDP %s", src);
976			if (offset == 0)
977				snprintf(SNPARGS(proto, len), ":%d %s:%d",
978				    ntohs(udp->uh_sport),
979				    dst,
980				    ntohs(udp->uh_dport));
981			else
982				snprintf(SNPARGS(proto, len), " %s", dst);
983			break;
984
985		case IPPROTO_ICMP:
986			icmp = L3HDR(struct icmphdr, ip);
987			if (offset == 0)
988				len = snprintf(SNPARGS(proto, 0),
989				    "ICMP:%u.%u ",
990				    icmp->icmp_type, icmp->icmp_code);
991			else
992				len = snprintf(SNPARGS(proto, 0), "ICMP ");
993			len += snprintf(SNPARGS(proto, len), "%s", src);
994			snprintf(SNPARGS(proto, len), " %s", dst);
995			break;
996#ifdef INET6
997		case IPPROTO_ICMPV6:
998			icmp6 = (struct icmp6_hdr *)(((char *)ip) + hlen);
999			if (offset == 0)
1000				len = snprintf(SNPARGS(proto, 0),
1001				    "ICMPv6:%u.%u ",
1002				    icmp6->icmp6_type, icmp6->icmp6_code);
1003			else
1004				len = snprintf(SNPARGS(proto, 0), "ICMPv6 ");
1005			len += snprintf(SNPARGS(proto, len), "%s", src);
1006			snprintf(SNPARGS(proto, len), " %s", dst);
1007			break;
1008#endif
1009		default:
1010			len = snprintf(SNPARGS(proto, 0), "P:%d %s",
1011			    args->f_id.proto, src);
1012			snprintf(SNPARGS(proto, len), " %s", dst);
1013			break;
1014		}
1015
1016#ifdef INET6
1017		if (IS_IP6_FLOW_ID(&(args->f_id))) {
1018			if (offset & (IP6F_OFF_MASK | IP6F_MORE_FRAG))
1019				snprintf(SNPARGS(fragment, 0),
1020				    " (frag %08x:%d@%d%s)",
1021				    args->f_id.frag_id6,
1022				    ntohs(ip6->ip6_plen) - hlen,
1023				    ntohs(offset & IP6F_OFF_MASK) << 3,
1024				    (offset & IP6F_MORE_FRAG) ? "+" : "");
1025		} else
1026#endif
1027		{
1028			int ip_off, ip_len;
1029			if (eh != NULL) { /* layer 2 packets are as on the wire */
1030				ip_off = ntohs(ip->ip_off);
1031				ip_len = ntohs(ip->ip_len);
1032			} else {
1033				ip_off = ip->ip_off;
1034				ip_len = ip->ip_len;
1035			}
1036			if (ip_off & (IP_MF | IP_OFFMASK))
1037				snprintf(SNPARGS(fragment, 0),
1038				    " (frag %d:%d@%d%s)",
1039				    ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
1040				    offset << 3,
1041				    (ip_off & IP_MF) ? "+" : "");
1042		}
1043	}
1044	if (oif || m->m_pkthdr.rcvif)
1045		log(LOG_SECURITY | LOG_INFO,
1046		    "ipfw: %d %s %s %s via %s%s\n",
1047		    f ? f->rulenum : -1,
1048		    action, proto, oif ? "out" : "in",
1049		    oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
1050		    fragment);
1051	else
1052		log(LOG_SECURITY | LOG_INFO,
1053		    "ipfw: %d %s %s [no if info]%s\n",
1054		    f ? f->rulenum : -1,
1055		    action, proto, fragment);
1056	if (limit_reached)
1057		log(LOG_SECURITY | LOG_NOTICE,
1058		    "ipfw: limit %d reached on entry %d\n",
1059		    limit_reached, f ? f->rulenum : -1);
1060}
1061
1062/*
1063 * IMPORTANT: the hash function for dynamic rules must be commutative
1064 * in source and destination (ip,port), because rules are bidirectional
1065 * and we want to find both in the same bucket.
1066 */
1067static __inline int
1068hash_packet(struct ipfw_flow_id *id)
1069{
1070	INIT_VNET_IPFW(curvnet);
1071	u_int32_t i;
1072
1073#ifdef INET6
1074	if (IS_IP6_FLOW_ID(id))
1075		i = hash_packet6(id);
1076	else
1077#endif /* INET6 */
1078	i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
1079	i &= (V_curr_dyn_buckets - 1);
1080	return i;
1081}
1082
1083/**
1084 * unlink a dynamic rule from a chain. prev is a pointer to
1085 * the previous one, q is a pointer to the rule to delete,
1086 * head is a pointer to the head of the queue.
1087 * Modifies q and potentially also head.
1088 */
1089#define UNLINK_DYN_RULE(prev, head, q) {				\
1090	ipfw_dyn_rule *old_q = q;					\
1091									\
1092	/* remove a refcount to the parent */				\
1093	if (q->dyn_type == O_LIMIT)					\
1094		q->parent->count--;					\
1095	DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
1096		(q->id.src_ip), (q->id.src_port),			\
1097		(q->id.dst_ip), (q->id.dst_port), V_dyn_count-1 ); )	\
1098	if (prev != NULL)						\
1099		prev->next = q = q->next;				\
1100	else								\
1101		head = q = q->next;					\
1102	V_dyn_count--;							\
1103	uma_zfree(ipfw_dyn_rule_zone, old_q); }
1104
1105#define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
1106
1107/**
1108 * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
1109 *
1110 * If keep_me == NULL, rules are deleted even if not expired,
1111 * otherwise only expired rules are removed.
1112 *
1113 * The value of the second parameter is also used to point to identify
1114 * a rule we absolutely do not want to remove (e.g. because we are
1115 * holding a reference to it -- this is the case with O_LIMIT_PARENT
1116 * rules). The pointer is only used for comparison, so any non-null
1117 * value will do.
1118 */
1119static void
1120remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
1121{
1122	INIT_VNET_IPFW(curvnet);
1123	static u_int32_t last_remove = 0;
1124
1125#define FORCE (keep_me == NULL)
1126
1127	ipfw_dyn_rule *prev, *q;
1128	int i, pass = 0, max_pass = 0;
1129
1130	IPFW_DYN_LOCK_ASSERT();
1131
1132	if (V_ipfw_dyn_v == NULL || V_dyn_count == 0)
1133		return;
1134	/* do not expire more than once per second, it is useless */
1135	if (!FORCE && last_remove == time_uptime)
1136		return;
1137	last_remove = time_uptime;
1138
1139	/*
1140	 * because O_LIMIT refer to parent rules, during the first pass only
1141	 * remove child and mark any pending LIMIT_PARENT, and remove
1142	 * them in a second pass.
1143	 */
1144next_pass:
1145	for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1146		for (prev=NULL, q = V_ipfw_dyn_v[i] ; q ; ) {
1147			/*
1148			 * Logic can become complex here, so we split tests.
1149			 */
1150			if (q == keep_me)
1151				goto next;
1152			if (rule != NULL && rule != q->rule)
1153				goto next; /* not the one we are looking for */
1154			if (q->dyn_type == O_LIMIT_PARENT) {
1155				/*
1156				 * handle parent in the second pass,
1157				 * record we need one.
1158				 */
1159				max_pass = 1;
1160				if (pass == 0)
1161					goto next;
1162				if (FORCE && q->count != 0 ) {
1163					/* XXX should not happen! */
1164					printf("ipfw: OUCH! cannot remove rule,"
1165					     " count %d\n", q->count);
1166				}
1167			} else {
1168				if (!FORCE &&
1169				    !TIME_LEQ( q->expire, time_uptime ))
1170					goto next;
1171			}
1172             if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
1173                     UNLINK_DYN_RULE(prev, V_ipfw_dyn_v[i], q);
1174                     continue;
1175             }
1176next:
1177			prev=q;
1178			q=q->next;
1179		}
1180	}
1181	if (pass++ < max_pass)
1182		goto next_pass;
1183}
1184
1185
1186/**
1187 * lookup a dynamic rule.
1188 */
1189static ipfw_dyn_rule *
1190lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
1191    struct tcphdr *tcp)
1192{
1193	INIT_VNET_IPFW(curvnet);
1194	/*
1195	 * stateful ipfw extensions.
1196	 * Lookup into dynamic session queue
1197	 */
1198#define MATCH_REVERSE	0
1199#define MATCH_FORWARD	1
1200#define MATCH_NONE	2
1201#define MATCH_UNKNOWN	3
1202	int i, dir = MATCH_NONE;
1203	ipfw_dyn_rule *prev, *q=NULL;
1204
1205	IPFW_DYN_LOCK_ASSERT();
1206
1207	if (V_ipfw_dyn_v == NULL)
1208		goto done;	/* not found */
1209	i = hash_packet( pkt );
1210	for (prev=NULL, q = V_ipfw_dyn_v[i] ; q != NULL ; ) {
1211		if (q->dyn_type == O_LIMIT_PARENT && q->count)
1212			goto next;
1213		if (TIME_LEQ( q->expire, time_uptime)) { /* expire entry */
1214			UNLINK_DYN_RULE(prev, V_ipfw_dyn_v[i], q);
1215			continue;
1216		}
1217		if (pkt->proto == q->id.proto &&
1218		    q->dyn_type != O_LIMIT_PARENT) {
1219			if (IS_IP6_FLOW_ID(pkt)) {
1220			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1221				&(q->id.src_ip6)) &&
1222			    IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1223				&(q->id.dst_ip6)) &&
1224			    pkt->src_port == q->id.src_port &&
1225			    pkt->dst_port == q->id.dst_port ) {
1226				dir = MATCH_FORWARD;
1227				break;
1228			    }
1229			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1230				    &(q->id.dst_ip6)) &&
1231				IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1232				    &(q->id.src_ip6)) &&
1233				pkt->src_port == q->id.dst_port &&
1234				pkt->dst_port == q->id.src_port ) {
1235				    dir = MATCH_REVERSE;
1236				    break;
1237			    }
1238			} else {
1239			    if (pkt->src_ip == q->id.src_ip &&
1240				pkt->dst_ip == q->id.dst_ip &&
1241				pkt->src_port == q->id.src_port &&
1242				pkt->dst_port == q->id.dst_port ) {
1243				    dir = MATCH_FORWARD;
1244				    break;
1245			    }
1246			    if (pkt->src_ip == q->id.dst_ip &&
1247				pkt->dst_ip == q->id.src_ip &&
1248				pkt->src_port == q->id.dst_port &&
1249				pkt->dst_port == q->id.src_port ) {
1250				    dir = MATCH_REVERSE;
1251				    break;
1252			    }
1253			}
1254		}
1255next:
1256		prev = q;
1257		q = q->next;
1258	}
1259	if (q == NULL)
1260		goto done; /* q = NULL, not found */
1261
1262	if ( prev != NULL) { /* found and not in front */
1263		prev->next = q->next;
1264		q->next = V_ipfw_dyn_v[i];
1265		V_ipfw_dyn_v[i] = q;
1266	}
1267	if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
1268		u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
1269
1270#define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
1271#define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
1272		q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
1273		switch (q->state) {
1274		case TH_SYN:				/* opening */
1275			q->expire = time_uptime + V_dyn_syn_lifetime;
1276			break;
1277
1278		case BOTH_SYN:			/* move to established */
1279		case BOTH_SYN | TH_FIN :	/* one side tries to close */
1280		case BOTH_SYN | (TH_FIN << 8) :
1281 			if (tcp) {
1282#define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
1283			    u_int32_t ack = ntohl(tcp->th_ack);
1284			    if (dir == MATCH_FORWARD) {
1285				if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
1286				    q->ack_fwd = ack;
1287				else { /* ignore out-of-sequence */
1288				    break;
1289				}
1290			    } else {
1291				if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
1292				    q->ack_rev = ack;
1293				else { /* ignore out-of-sequence */
1294				    break;
1295				}
1296			    }
1297			}
1298			q->expire = time_uptime + V_dyn_ack_lifetime;
1299			break;
1300
1301		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
1302			if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
1303				V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
1304			q->expire = time_uptime + V_dyn_fin_lifetime;
1305			break;
1306
1307		default:
1308#if 0
1309			/*
1310			 * reset or some invalid combination, but can also
1311			 * occur if we use keep-state the wrong way.
1312			 */
1313			if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
1314				printf("invalid state: 0x%x\n", q->state);
1315#endif
1316			if (V_dyn_rst_lifetime >= V_dyn_keepalive_period)
1317				V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
1318			q->expire = time_uptime + V_dyn_rst_lifetime;
1319			break;
1320		}
1321	} else if (pkt->proto == IPPROTO_UDP) {
1322		q->expire = time_uptime + V_dyn_udp_lifetime;
1323	} else {
1324		/* other protocols */
1325		q->expire = time_uptime + V_dyn_short_lifetime;
1326	}
1327done:
1328	if (match_direction)
1329		*match_direction = dir;
1330	return q;
1331}
1332
1333static ipfw_dyn_rule *
1334lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
1335    struct tcphdr *tcp)
1336{
1337	ipfw_dyn_rule *q;
1338
1339	IPFW_DYN_LOCK();
1340	q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
1341	if (q == NULL)
1342		IPFW_DYN_UNLOCK();
1343	/* NB: return table locked when q is not NULL */
1344	return q;
1345}
1346
1347static void
1348realloc_dynamic_table(void)
1349{
1350	INIT_VNET_IPFW(curvnet);
1351	IPFW_DYN_LOCK_ASSERT();
1352
1353	/*
1354	 * Try reallocation, make sure we have a power of 2 and do
1355	 * not allow more than 64k entries. In case of overflow,
1356	 * default to 1024.
1357	 */
1358
1359	if (V_dyn_buckets > 65536)
1360		V_dyn_buckets = 1024;
1361	if ((V_dyn_buckets & (V_dyn_buckets-1)) != 0) { /* not a power of 2 */
1362		V_dyn_buckets = V_curr_dyn_buckets; /* reset */
1363		return;
1364	}
1365	V_curr_dyn_buckets = V_dyn_buckets;
1366	if (V_ipfw_dyn_v != NULL)
1367		free(V_ipfw_dyn_v, M_IPFW);
1368	for (;;) {
1369		V_ipfw_dyn_v = malloc(V_curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
1370		       M_IPFW, M_NOWAIT | M_ZERO);
1371		if (V_ipfw_dyn_v != NULL || V_curr_dyn_buckets <= 2)
1372			break;
1373		V_curr_dyn_buckets /= 2;
1374	}
1375}
1376
1377/**
1378 * Install state of type 'type' for a dynamic session.
1379 * The hash table contains two type of rules:
1380 * - regular rules (O_KEEP_STATE)
1381 * - rules for sessions with limited number of sess per user
1382 *   (O_LIMIT). When they are created, the parent is
1383 *   increased by 1, and decreased on delete. In this case,
1384 *   the third parameter is the parent rule and not the chain.
1385 * - "parent" rules for the above (O_LIMIT_PARENT).
1386 */
1387static ipfw_dyn_rule *
1388add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
1389{
1390	INIT_VNET_IPFW(curvnet);
1391	ipfw_dyn_rule *r;
1392	int i;
1393
1394	IPFW_DYN_LOCK_ASSERT();
1395
1396	if (V_ipfw_dyn_v == NULL ||
1397	    (V_dyn_count == 0 && V_dyn_buckets != V_curr_dyn_buckets)) {
1398		realloc_dynamic_table();
1399		if (V_ipfw_dyn_v == NULL)
1400			return NULL; /* failed ! */
1401	}
1402	i = hash_packet(id);
1403
1404	r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
1405	if (r == NULL) {
1406		printf ("ipfw: sorry cannot allocate state\n");
1407		return NULL;
1408	}
1409
1410	/* increase refcount on parent, and set pointer */
1411	if (dyn_type == O_LIMIT) {
1412		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
1413		if ( parent->dyn_type != O_LIMIT_PARENT)
1414			panic("invalid parent");
1415		parent->count++;
1416		r->parent = parent;
1417		rule = parent->rule;
1418	}
1419
1420	r->id = *id;
1421	r->expire = time_uptime + V_dyn_syn_lifetime;
1422	r->rule = rule;
1423	r->dyn_type = dyn_type;
1424	r->pcnt = r->bcnt = 0;
1425	r->count = 0;
1426
1427	r->bucket = i;
1428	r->next = V_ipfw_dyn_v[i];
1429	V_ipfw_dyn_v[i] = r;
1430	V_dyn_count++;
1431	DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1432	   dyn_type,
1433	   (r->id.src_ip), (r->id.src_port),
1434	   (r->id.dst_ip), (r->id.dst_port),
1435	   V_dyn_count ); )
1436	return r;
1437}
1438
1439/**
1440 * lookup dynamic parent rule using pkt and rule as search keys.
1441 * If the lookup fails, then install one.
1442 */
1443static ipfw_dyn_rule *
1444lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
1445{
1446	INIT_VNET_IPFW(curvnet);
1447	ipfw_dyn_rule *q;
1448	int i;
1449
1450	IPFW_DYN_LOCK_ASSERT();
1451
1452	if (V_ipfw_dyn_v) {
1453		int is_v6 = IS_IP6_FLOW_ID(pkt);
1454		i = hash_packet( pkt );
1455		for (q = V_ipfw_dyn_v[i] ; q != NULL ; q=q->next)
1456			if (q->dyn_type == O_LIMIT_PARENT &&
1457			    rule== q->rule &&
1458			    pkt->proto == q->id.proto &&
1459			    pkt->src_port == q->id.src_port &&
1460			    pkt->dst_port == q->id.dst_port &&
1461			    (
1462				(is_v6 &&
1463				 IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1464					&(q->id.src_ip6)) &&
1465				 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1466					&(q->id.dst_ip6))) ||
1467				(!is_v6 &&
1468				 pkt->src_ip == q->id.src_ip &&
1469				 pkt->dst_ip == q->id.dst_ip)
1470			    )
1471			) {
1472				q->expire = time_uptime + V_dyn_short_lifetime;
1473				DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
1474				return q;
1475			}
1476	}
1477	return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
1478}
1479
1480/**
1481 * Install dynamic state for rule type cmd->o.opcode
1482 *
1483 * Returns 1 (failure) if state is not installed because of errors or because
1484 * session limitations are enforced.
1485 */
1486static int
1487install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
1488    struct ip_fw_args *args, uint32_t tablearg)
1489{
1490	INIT_VNET_IPFW(curvnet);
1491	static int last_log;
1492	ipfw_dyn_rule *q;
1493	struct in_addr da;
1494	char src[48], dst[48];
1495
1496	src[0] = '\0';
1497	dst[0] = '\0';
1498
1499	DEB(
1500	printf("ipfw: %s: type %d 0x%08x %u -> 0x%08x %u\n",
1501	    __func__, cmd->o.opcode,
1502	    (args->f_id.src_ip), (args->f_id.src_port),
1503	    (args->f_id.dst_ip), (args->f_id.dst_port));
1504	)
1505
1506	IPFW_DYN_LOCK();
1507
1508	q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1509
1510	if (q != NULL) {	/* should never occur */
1511		if (last_log != time_uptime) {
1512			last_log = time_uptime;
1513			printf("ipfw: %s: entry already present, done\n",
1514			    __func__);
1515		}
1516		IPFW_DYN_UNLOCK();
1517		return (0);
1518	}
1519
1520	if (V_dyn_count >= V_dyn_max)
1521		/* Run out of slots, try to remove any expired rule. */
1522		remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
1523
1524	if (V_dyn_count >= V_dyn_max) {
1525		if (last_log != time_uptime) {
1526			last_log = time_uptime;
1527			printf("ipfw: %s: Too many dynamic rules\n", __func__);
1528		}
1529		IPFW_DYN_UNLOCK();
1530		return (1);	/* cannot install, notify caller */
1531	}
1532
1533	switch (cmd->o.opcode) {
1534	case O_KEEP_STATE:	/* bidir rule */
1535		add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
1536		break;
1537
1538	case O_LIMIT: {		/* limit number of sessions */
1539		struct ipfw_flow_id id;
1540		ipfw_dyn_rule *parent;
1541		uint32_t conn_limit;
1542		uint16_t limit_mask = cmd->limit_mask;
1543
1544		conn_limit = (cmd->conn_limit == IP_FW_TABLEARG) ?
1545		    tablearg : cmd->conn_limit;
1546
1547		DEB(
1548		if (cmd->conn_limit == IP_FW_TABLEARG)
1549			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
1550			    "(tablearg)\n", __func__, conn_limit);
1551		else
1552			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
1553			    __func__, conn_limit);
1554		)
1555
1556		id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
1557		id.proto = args->f_id.proto;
1558		id.addr_type = args->f_id.addr_type;
1559		id.fib = M_GETFIB(args->m);
1560
1561		if (IS_IP6_FLOW_ID (&(args->f_id))) {
1562			if (limit_mask & DYN_SRC_ADDR)
1563				id.src_ip6 = args->f_id.src_ip6;
1564			if (limit_mask & DYN_DST_ADDR)
1565				id.dst_ip6 = args->f_id.dst_ip6;
1566		} else {
1567			if (limit_mask & DYN_SRC_ADDR)
1568				id.src_ip = args->f_id.src_ip;
1569			if (limit_mask & DYN_DST_ADDR)
1570				id.dst_ip = args->f_id.dst_ip;
1571		}
1572		if (limit_mask & DYN_SRC_PORT)
1573			id.src_port = args->f_id.src_port;
1574		if (limit_mask & DYN_DST_PORT)
1575			id.dst_port = args->f_id.dst_port;
1576		if ((parent = lookup_dyn_parent(&id, rule)) == NULL) {
1577			printf("ipfw: %s: add parent failed\n", __func__);
1578			IPFW_DYN_UNLOCK();
1579			return (1);
1580		}
1581
1582		if (parent->count >= conn_limit) {
1583			/* See if we can remove some expired rule. */
1584			remove_dyn_rule(rule, parent);
1585			if (parent->count >= conn_limit) {
1586				if (V_fw_verbose && last_log != time_uptime) {
1587					last_log = time_uptime;
1588#ifdef INET6
1589					/*
1590					 * XXX IPv6 flows are not
1591					 * supported yet.
1592					 */
1593					if (IS_IP6_FLOW_ID(&(args->f_id))) {
1594						char ip6buf[INET6_ADDRSTRLEN];
1595						snprintf(src, sizeof(src),
1596						    "[%s]", ip6_sprintf(ip6buf,
1597							&args->f_id.src_ip6));
1598						snprintf(dst, sizeof(dst),
1599						    "[%s]", ip6_sprintf(ip6buf,
1600							&args->f_id.dst_ip6));
1601					} else
1602#endif
1603					{
1604						da.s_addr =
1605						    htonl(args->f_id.src_ip);
1606						inet_ntoa_r(da, src);
1607						da.s_addr =
1608						    htonl(args->f_id.dst_ip);
1609						inet_ntoa_r(da, dst);
1610					}
1611					log(LOG_SECURITY | LOG_DEBUG,
1612					    "ipfw: %d %s %s:%u -> %s:%u, %s\n",
1613					    parent->rule->rulenum,
1614					    "drop session",
1615					    src, (args->f_id.src_port),
1616					    dst, (args->f_id.dst_port),
1617					    "too many entries");
1618				}
1619				IPFW_DYN_UNLOCK();
1620				return (1);
1621			}
1622		}
1623		add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1624		break;
1625	}
1626	default:
1627		printf("ipfw: %s: unknown dynamic rule type %u\n",
1628		    __func__, cmd->o.opcode);
1629		IPFW_DYN_UNLOCK();
1630		return (1);
1631	}
1632
1633	/* XXX just set lifetime */
1634	lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1635
1636	IPFW_DYN_UNLOCK();
1637	return (0);
1638}
1639
1640/*
1641 * Generate a TCP packet, containing either a RST or a keepalive.
1642 * When flags & TH_RST, we are sending a RST packet, because of a
1643 * "reset" action matched the packet.
1644 * Otherwise we are sending a keepalive, and flags & TH_
1645 * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
1646 * so that MAC can label the reply appropriately.
1647 */
1648static struct mbuf *
1649send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
1650    u_int32_t ack, int flags)
1651{
1652	INIT_VNET_INET(curvnet);
1653	struct mbuf *m;
1654	struct ip *ip;
1655	struct tcphdr *tcp;
1656
1657	MGETHDR(m, M_DONTWAIT, MT_DATA);
1658	if (m == 0)
1659		return (NULL);
1660	m->m_pkthdr.rcvif = (struct ifnet *)0;
1661
1662	M_SETFIB(m, id->fib);
1663#ifdef MAC
1664	if (replyto != NULL)
1665		mac_netinet_firewall_reply(replyto, m);
1666	else
1667		mac_netinet_firewall_send(m);
1668#else
1669	(void)replyto;		/* don't warn about unused arg */
1670#endif
1671
1672	m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1673	m->m_data += max_linkhdr;
1674
1675	ip = mtod(m, struct ip *);
1676	bzero(ip, m->m_len);
1677	tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1678	ip->ip_p = IPPROTO_TCP;
1679	tcp->th_off = 5;
1680	/*
1681	 * Assume we are sending a RST (or a keepalive in the reverse
1682	 * direction), swap src and destination addresses and ports.
1683	 */
1684	ip->ip_src.s_addr = htonl(id->dst_ip);
1685	ip->ip_dst.s_addr = htonl(id->src_ip);
1686	tcp->th_sport = htons(id->dst_port);
1687	tcp->th_dport = htons(id->src_port);
1688	if (flags & TH_RST) {	/* we are sending a RST */
1689		if (flags & TH_ACK) {
1690			tcp->th_seq = htonl(ack);
1691			tcp->th_ack = htonl(0);
1692			tcp->th_flags = TH_RST;
1693		} else {
1694			if (flags & TH_SYN)
1695				seq++;
1696			tcp->th_seq = htonl(0);
1697			tcp->th_ack = htonl(seq);
1698			tcp->th_flags = TH_RST | TH_ACK;
1699		}
1700	} else {
1701		/*
1702		 * We are sending a keepalive. flags & TH_SYN determines
1703		 * the direction, forward if set, reverse if clear.
1704		 * NOTE: seq and ack are always assumed to be correct
1705		 * as set by the caller. This may be confusing...
1706		 */
1707		if (flags & TH_SYN) {
1708			/*
1709			 * we have to rewrite the correct addresses!
1710			 */
1711			ip->ip_dst.s_addr = htonl(id->dst_ip);
1712			ip->ip_src.s_addr = htonl(id->src_ip);
1713			tcp->th_dport = htons(id->dst_port);
1714			tcp->th_sport = htons(id->src_port);
1715		}
1716		tcp->th_seq = htonl(seq);
1717		tcp->th_ack = htonl(ack);
1718		tcp->th_flags = TH_ACK;
1719	}
1720	/*
1721	 * set ip_len to the payload size so we can compute
1722	 * the tcp checksum on the pseudoheader
1723	 * XXX check this, could save a couple of words ?
1724	 */
1725	ip->ip_len = htons(sizeof(struct tcphdr));
1726	tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1727	/*
1728	 * now fill fields left out earlier
1729	 */
1730	ip->ip_ttl = V_ip_defttl;
1731	ip->ip_len = m->m_pkthdr.len;
1732	m->m_flags |= M_SKIP_FIREWALL;
1733	return (m);
1734}
1735
1736/*
1737 * sends a reject message, consuming the mbuf passed as an argument.
1738 */
1739static void
1740send_reject(struct ip_fw_args *args, int code, int ip_len, struct ip *ip)
1741{
1742
1743#if 0
1744	/* XXX When ip is not guaranteed to be at mtod() we will
1745	 * need to account for this */
1746	 * The mbuf will however be thrown away so we can adjust it.
1747	 * Remember we did an m_pullup on it already so we
1748	 * can make some assumptions about contiguousness.
1749	 */
1750	if (args->L3offset)
1751		m_adj(m, args->L3offset);
1752#endif
1753	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1754		/* We need the IP header in host order for icmp_error(). */
1755		if (args->eh != NULL) {
1756			ip->ip_len = ntohs(ip->ip_len);
1757			ip->ip_off = ntohs(ip->ip_off);
1758		}
1759		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1760	} else if (args->f_id.proto == IPPROTO_TCP) {
1761		struct tcphdr *const tcp =
1762		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1763		if ( (tcp->th_flags & TH_RST) == 0) {
1764			struct mbuf *m;
1765			m = send_pkt(args->m, &(args->f_id),
1766				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
1767				tcp->th_flags | TH_RST);
1768			if (m != NULL)
1769				ip_output(m, NULL, NULL, 0, NULL, NULL);
1770		}
1771		m_freem(args->m);
1772	} else
1773		m_freem(args->m);
1774	args->m = NULL;
1775}
1776
1777/**
1778 *
1779 * Given an ip_fw *, lookup_next_rule will return a pointer
1780 * to the next rule, which can be either the jump
1781 * target (for skipto instructions) or the next one in the list (in
1782 * all other cases including a missing jump target).
1783 * The result is also written in the "next_rule" field of the rule.
1784 * Backward jumps are not allowed, so start looking from the next
1785 * rule...
1786 *
1787 * This never returns NULL -- in case we do not have an exact match,
1788 * the next rule is returned. When the ruleset is changed,
1789 * pointers are flushed so we are always correct.
1790 */
1791
1792static struct ip_fw *
1793lookup_next_rule(struct ip_fw *me, u_int32_t tablearg)
1794{
1795	struct ip_fw *rule = NULL;
1796	ipfw_insn *cmd;
1797	u_int16_t	rulenum;
1798
1799	/* look for action, in case it is a skipto */
1800	cmd = ACTION_PTR(me);
1801	if (cmd->opcode == O_LOG)
1802		cmd += F_LEN(cmd);
1803	if (cmd->opcode == O_ALTQ)
1804		cmd += F_LEN(cmd);
1805	if (cmd->opcode == O_TAG)
1806		cmd += F_LEN(cmd);
1807	if (cmd->opcode == O_SKIPTO ) {
1808		if (tablearg != 0) {
1809			rulenum = (u_int16_t)tablearg;
1810		} else {
1811			rulenum = cmd->arg1;
1812		}
1813		for (rule = me->next; rule ; rule = rule->next) {
1814			if (rule->rulenum >= rulenum) {
1815				break;
1816			}
1817		}
1818	}
1819	if (rule == NULL)			/* failure or not a skipto */
1820		rule = me->next;
1821	me->next_rule = rule;
1822	return rule;
1823}
1824
1825static int
1826add_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1827    uint8_t mlen, uint32_t value)
1828{
1829	struct radix_node_head *rnh;
1830	struct table_entry *ent;
1831	struct radix_node *rn;
1832
1833	if (tbl >= IPFW_TABLES_MAX)
1834		return (EINVAL);
1835	rnh = ch->tables[tbl];
1836	ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
1837	if (ent == NULL)
1838		return (ENOMEM);
1839	ent->value = value;
1840	ent->addr.sin_len = ent->mask.sin_len = 8;
1841	ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1842	ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
1843	IPFW_WLOCK(ch);
1844	rn = rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent);
1845	if (rn == NULL) {
1846		IPFW_WUNLOCK(ch);
1847		free(ent, M_IPFW_TBL);
1848		return (EEXIST);
1849	}
1850	IPFW_WUNLOCK(ch);
1851	return (0);
1852}
1853
1854static int
1855del_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1856    uint8_t mlen)
1857{
1858	struct radix_node_head *rnh;
1859	struct table_entry *ent;
1860	struct sockaddr_in sa, mask;
1861
1862	if (tbl >= IPFW_TABLES_MAX)
1863		return (EINVAL);
1864	rnh = ch->tables[tbl];
1865	sa.sin_len = mask.sin_len = 8;
1866	mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1867	sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
1868	IPFW_WLOCK(ch);
1869	ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
1870	if (ent == NULL) {
1871		IPFW_WUNLOCK(ch);
1872		return (ESRCH);
1873	}
1874	IPFW_WUNLOCK(ch);
1875	free(ent, M_IPFW_TBL);
1876	return (0);
1877}
1878
1879static int
1880flush_table_entry(struct radix_node *rn, void *arg)
1881{
1882	struct radix_node_head * const rnh = arg;
1883	struct table_entry *ent;
1884
1885	ent = (struct table_entry *)
1886	    rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
1887	if (ent != NULL)
1888		free(ent, M_IPFW_TBL);
1889	return (0);
1890}
1891
1892static int
1893flush_table(struct ip_fw_chain *ch, uint16_t tbl)
1894{
1895	struct radix_node_head *rnh;
1896
1897	IPFW_WLOCK_ASSERT(ch);
1898
1899	if (tbl >= IPFW_TABLES_MAX)
1900		return (EINVAL);
1901	rnh = ch->tables[tbl];
1902	KASSERT(rnh != NULL, ("NULL IPFW table"));
1903	rnh->rnh_walktree(rnh, flush_table_entry, rnh);
1904	return (0);
1905}
1906
1907static void
1908flush_tables(struct ip_fw_chain *ch)
1909{
1910	uint16_t tbl;
1911
1912	IPFW_WLOCK_ASSERT(ch);
1913
1914	for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
1915		flush_table(ch, tbl);
1916}
1917
1918static int
1919init_tables(struct ip_fw_chain *ch)
1920{
1921	int i;
1922	uint16_t j;
1923
1924	for (i = 0; i < IPFW_TABLES_MAX; i++) {
1925		if (!rn_inithead((void **)&ch->tables[i], 32)) {
1926			for (j = 0; j < i; j++) {
1927				(void) flush_table(ch, j);
1928			}
1929			return (ENOMEM);
1930		}
1931	}
1932	return (0);
1933}
1934
1935static int
1936lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1937    uint32_t *val)
1938{
1939	struct radix_node_head *rnh;
1940	struct table_entry *ent;
1941	struct sockaddr_in sa;
1942
1943	if (tbl >= IPFW_TABLES_MAX)
1944		return (0);
1945	rnh = ch->tables[tbl];
1946	sa.sin_len = 8;
1947	sa.sin_addr.s_addr = addr;
1948	ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
1949	if (ent != NULL) {
1950		*val = ent->value;
1951		return (1);
1952	}
1953	return (0);
1954}
1955
1956static int
1957count_table_entry(struct radix_node *rn, void *arg)
1958{
1959	u_int32_t * const cnt = arg;
1960
1961	(*cnt)++;
1962	return (0);
1963}
1964
1965static int
1966count_table(struct ip_fw_chain *ch, uint32_t tbl, uint32_t *cnt)
1967{
1968	struct radix_node_head *rnh;
1969
1970	if (tbl >= IPFW_TABLES_MAX)
1971		return (EINVAL);
1972	rnh = ch->tables[tbl];
1973	*cnt = 0;
1974	rnh->rnh_walktree(rnh, count_table_entry, cnt);
1975	return (0);
1976}
1977
1978static int
1979dump_table_entry(struct radix_node *rn, void *arg)
1980{
1981	struct table_entry * const n = (struct table_entry *)rn;
1982	ipfw_table * const tbl = arg;
1983	ipfw_table_entry *ent;
1984
1985	if (tbl->cnt == tbl->size)
1986		return (1);
1987	ent = &tbl->ent[tbl->cnt];
1988	ent->tbl = tbl->tbl;
1989	if (in_nullhost(n->mask.sin_addr))
1990		ent->masklen = 0;
1991	else
1992		ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
1993	ent->addr = n->addr.sin_addr.s_addr;
1994	ent->value = n->value;
1995	tbl->cnt++;
1996	return (0);
1997}
1998
1999static int
2000dump_table(struct ip_fw_chain *ch, ipfw_table *tbl)
2001{
2002	struct radix_node_head *rnh;
2003
2004	if (tbl->tbl >= IPFW_TABLES_MAX)
2005		return (EINVAL);
2006	rnh = ch->tables[tbl->tbl];
2007	tbl->cnt = 0;
2008	rnh->rnh_walktree(rnh, dump_table_entry, tbl);
2009	return (0);
2010}
2011
2012static void
2013fill_ugid_cache(struct inpcb *inp, struct ip_fw_ugid *ugp)
2014{
2015	struct ucred *cr;
2016
2017	cr = inp->inp_cred;
2018	ugp->fw_prid = jailed(cr) ? cr->cr_prison->pr_id : -1;
2019	ugp->fw_uid = cr->cr_uid;
2020	ugp->fw_ngroups = cr->cr_ngroups;
2021	bcopy(cr->cr_groups, ugp->fw_groups, sizeof(ugp->fw_groups));
2022}
2023
2024static int
2025check_uidgid(ipfw_insn_u32 *insn, int proto, struct ifnet *oif,
2026    struct in_addr dst_ip, u_int16_t dst_port, struct in_addr src_ip,
2027    u_int16_t src_port, struct ip_fw_ugid *ugp, int *ugid_lookupp,
2028    struct inpcb *inp)
2029{
2030	INIT_VNET_INET(curvnet);
2031	struct inpcbinfo *pi;
2032	int wildcard;
2033	struct inpcb *pcb;
2034	int match;
2035	gid_t *gp;
2036
2037	/*
2038	 * Check to see if the UDP or TCP stack supplied us with
2039	 * the PCB. If so, rather then holding a lock and looking
2040	 * up the PCB, we can use the one that was supplied.
2041	 */
2042	if (inp && *ugid_lookupp == 0) {
2043		INP_LOCK_ASSERT(inp);
2044		if (inp->inp_socket != NULL) {
2045			fill_ugid_cache(inp, ugp);
2046			*ugid_lookupp = 1;
2047		} else
2048			*ugid_lookupp = -1;
2049	}
2050	/*
2051	 * If we have already been here and the packet has no
2052	 * PCB entry associated with it, then we can safely
2053	 * assume that this is a no match.
2054	 */
2055	if (*ugid_lookupp == -1)
2056		return (0);
2057	if (proto == IPPROTO_TCP) {
2058		wildcard = 0;
2059		pi = &V_tcbinfo;
2060	} else if (proto == IPPROTO_UDP) {
2061		wildcard = INPLOOKUP_WILDCARD;
2062		pi = &V_udbinfo;
2063	} else
2064		return 0;
2065	match = 0;
2066	if (*ugid_lookupp == 0) {
2067		INP_INFO_RLOCK(pi);
2068		pcb =  (oif) ?
2069			in_pcblookup_hash(pi,
2070				dst_ip, htons(dst_port),
2071				src_ip, htons(src_port),
2072				wildcard, oif) :
2073			in_pcblookup_hash(pi,
2074				src_ip, htons(src_port),
2075				dst_ip, htons(dst_port),
2076				wildcard, NULL);
2077		if (pcb != NULL) {
2078			fill_ugid_cache(pcb, ugp);
2079			*ugid_lookupp = 1;
2080		}
2081		INP_INFO_RUNLOCK(pi);
2082		if (*ugid_lookupp == 0) {
2083			/*
2084			 * If the lookup did not yield any results, there
2085			 * is no sense in coming back and trying again. So
2086			 * we can set lookup to -1 and ensure that we wont
2087			 * bother the pcb system again.
2088			 */
2089			*ugid_lookupp = -1;
2090			return (0);
2091		}
2092	}
2093	if (insn->o.opcode == O_UID)
2094		match = (ugp->fw_uid == (uid_t)insn->d[0]);
2095	else if (insn->o.opcode == O_GID) {
2096		for (gp = ugp->fw_groups;
2097			gp < &ugp->fw_groups[ugp->fw_ngroups]; gp++)
2098			if (*gp == (gid_t)insn->d[0]) {
2099				match = 1;
2100				break;
2101			}
2102	} else if (insn->o.opcode == O_JAIL)
2103		match = (ugp->fw_prid == (int)insn->d[0]);
2104	return match;
2105}
2106
2107/*
2108 * The main check routine for the firewall.
2109 *
2110 * All arguments are in args so we can modify them and return them
2111 * back to the caller.
2112 *
2113 * Parameters:
2114 *
2115 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
2116 *		Starts with the IP header.
2117 *	args->eh (in)	Mac header if present, or NULL for layer3 packet.
2118 *	args->L3offset	Number of bytes bypassed if we came from L2.
2119 *			e.g. often sizeof(eh)  ** NOTYET **
2120 *	args->oif	Outgoing interface, or NULL if packet is incoming.
2121 *		The incoming interface is in the mbuf. (in)
2122 *	args->divert_rule (in/out)
2123 *		Skip up to the first rule past this rule number;
2124 *		upon return, non-zero port number for divert or tee.
2125 *
2126 *	args->rule	Pointer to the last matching rule (in/out)
2127 *	args->next_hop	Socket we are forwarding to (out).
2128 *	args->f_id	Addresses grabbed from the packet (out)
2129 * 	args->cookie	a cookie depending on rule action
2130 *
2131 * Return value:
2132 *
2133 *	IP_FW_PASS	the packet must be accepted
2134 *	IP_FW_DENY	the packet must be dropped
2135 *	IP_FW_DIVERT	divert packet, port in m_tag
2136 *	IP_FW_TEE	tee packet, port in m_tag
2137 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
2138 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
2139 *
2140 */
2141int
2142ipfw_chk(struct ip_fw_args *args)
2143{
2144	INIT_VNET_INET(curvnet);
2145	INIT_VNET_IPFW(curvnet);
2146
2147	/*
2148	 * Local variables holding state during the processing of a packet:
2149	 *
2150	 * IMPORTANT NOTE: to speed up the processing of rules, there
2151	 * are some assumption on the values of the variables, which
2152	 * are documented here. Should you change them, please check
2153	 * the implementation of the various instructions to make sure
2154	 * that they still work.
2155	 *
2156	 * args->eh	The MAC header. It is non-null for a layer2
2157	 *	packet, it is NULL for a layer-3 packet.
2158	 * **notyet**
2159	 * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
2160	 *
2161	 * m | args->m	Pointer to the mbuf, as received from the caller.
2162	 *	It may change if ipfw_chk() does an m_pullup, or if it
2163	 *	consumes the packet because it calls send_reject().
2164	 *	XXX This has to change, so that ipfw_chk() never modifies
2165	 *	or consumes the buffer.
2166	 * ip	is the beginning of the ip(4 or 6) header.
2167	 *	Calculated by adding the L3offset to the start of data.
2168	 *	(Until we start using L3offset, the packet is
2169	 *	supposed to start with the ip header).
2170	 */
2171	struct mbuf *m = args->m;
2172	struct ip *ip = mtod(m, struct ip *);
2173
2174	/*
2175	 * For rules which contain uid/gid or jail constraints, cache
2176	 * a copy of the users credentials after the pcb lookup has been
2177	 * executed. This will speed up the processing of rules with
2178	 * these types of constraints, as well as decrease contention
2179	 * on pcb related locks.
2180	 */
2181	struct ip_fw_ugid fw_ugid_cache;
2182	int ugid_lookup = 0;
2183
2184	/*
2185	 * divinput_flags	If non-zero, set to the IP_FW_DIVERT_*_FLAG
2186	 *	associated with a packet input on a divert socket.  This
2187	 *	will allow to distinguish traffic and its direction when
2188	 *	it originates from a divert socket.
2189	 */
2190	u_int divinput_flags = 0;
2191
2192	/*
2193	 * oif | args->oif	If NULL, ipfw_chk has been called on the
2194	 *	inbound path (ether_input, ip_input).
2195	 *	If non-NULL, ipfw_chk has been called on the outbound path
2196	 *	(ether_output, ip_output).
2197	 */
2198	struct ifnet *oif = args->oif;
2199
2200	struct ip_fw *f = NULL;		/* matching rule */
2201	int retval = 0;
2202
2203	/*
2204	 * hlen	The length of the IP header.
2205	 */
2206	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
2207
2208	/*
2209	 * offset	The offset of a fragment. offset != 0 means that
2210	 *	we have a fragment at this offset of an IPv4 packet.
2211	 *	offset == 0 means that (if this is an IPv4 packet)
2212	 *	this is the first or only fragment.
2213	 *	For IPv6 offset == 0 means there is no Fragment Header.
2214	 *	If offset != 0 for IPv6 always use correct mask to
2215	 *	get the correct offset because we add IP6F_MORE_FRAG
2216	 *	to be able to dectect the first fragment which would
2217	 *	otherwise have offset = 0.
2218	 */
2219	u_short offset = 0;
2220
2221	/*
2222	 * Local copies of addresses. They are only valid if we have
2223	 * an IP packet.
2224	 *
2225	 * proto	The protocol. Set to 0 for non-ip packets,
2226	 *	or to the protocol read from the packet otherwise.
2227	 *	proto != 0 means that we have an IPv4 packet.
2228	 *
2229	 * src_port, dst_port	port numbers, in HOST format. Only
2230	 *	valid for TCP and UDP packets.
2231	 *
2232	 * src_ip, dst_ip	ip addresses, in NETWORK format.
2233	 *	Only valid for IPv4 packets.
2234	 */
2235	u_int8_t proto;
2236	u_int16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
2237	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
2238	u_int16_t ip_len=0;
2239	int pktlen;
2240	u_int16_t	etype = 0;	/* Host order stored ether type */
2241
2242	/*
2243	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
2244	 * 	MATCH_NONE when checked and not matched (q = NULL),
2245	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
2246	 */
2247	int dyn_dir = MATCH_UNKNOWN;
2248	ipfw_dyn_rule *q = NULL;
2249	struct ip_fw_chain *chain = &V_layer3_chain;
2250	struct m_tag *mtag;
2251
2252	/*
2253	 * We store in ulp a pointer to the upper layer protocol header.
2254	 * In the ipv4 case this is easy to determine from the header,
2255	 * but for ipv6 we might have some additional headers in the middle.
2256	 * ulp is NULL if not found.
2257	 */
2258	void *ulp = NULL;		/* upper layer protocol pointer. */
2259	/* XXX ipv6 variables */
2260	int is_ipv6 = 0;
2261	u_int16_t ext_hd = 0;	/* bits vector for extension header filtering */
2262	/* end of ipv6 variables */
2263	int is_ipv4 = 0;
2264
2265	if (m->m_flags & M_SKIP_FIREWALL)
2266		return (IP_FW_PASS);	/* accept */
2267
2268	dst_ip.s_addr = 0;		/* make sure it is initialized */
2269	pktlen = m->m_pkthdr.len;
2270	args->f_id.fib = M_GETFIB(m); /* note mbuf not altered) */
2271	proto = args->f_id.proto = 0;	/* mark f_id invalid */
2272		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
2273
2274/*
2275 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
2276 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
2277 * pointer might become stale after other pullups (but we never use it
2278 * this way).
2279 */
2280#define PULLUP_TO(len, p, T)						\
2281do {									\
2282	int x = (len) + sizeof(T);					\
2283	if ((m)->m_len < x) {						\
2284		args->m = m = m_pullup(m, x);				\
2285		if (m == NULL)						\
2286			goto pullup_failed;				\
2287	}								\
2288	p = (mtod(m, char *) + (len));					\
2289} while (0)
2290
2291	/*
2292	 * if we have an ether header,
2293	 */
2294	if (args->eh)
2295		etype = ntohs(args->eh->ether_type);
2296
2297	/* Identify IP packets and fill up variables. */
2298	if (pktlen >= sizeof(struct ip6_hdr) &&
2299	    (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
2300		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
2301		is_ipv6 = 1;
2302		args->f_id.addr_type = 6;
2303		hlen = sizeof(struct ip6_hdr);
2304		proto = ip6->ip6_nxt;
2305
2306		/* Search extension headers to find upper layer protocols */
2307		while (ulp == NULL) {
2308			switch (proto) {
2309			case IPPROTO_ICMPV6:
2310				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
2311				args->f_id.flags = ICMP6(ulp)->icmp6_type;
2312				break;
2313
2314			case IPPROTO_TCP:
2315				PULLUP_TO(hlen, ulp, struct tcphdr);
2316				dst_port = TCP(ulp)->th_dport;
2317				src_port = TCP(ulp)->th_sport;
2318				args->f_id.flags = TCP(ulp)->th_flags;
2319				break;
2320
2321			case IPPROTO_SCTP:
2322				PULLUP_TO(hlen, ulp, struct sctphdr);
2323				src_port = SCTP(ulp)->src_port;
2324				dst_port = SCTP(ulp)->dest_port;
2325				break;
2326
2327			case IPPROTO_UDP:
2328				PULLUP_TO(hlen, ulp, struct udphdr);
2329				dst_port = UDP(ulp)->uh_dport;
2330				src_port = UDP(ulp)->uh_sport;
2331				break;
2332
2333			case IPPROTO_HOPOPTS:	/* RFC 2460 */
2334				PULLUP_TO(hlen, ulp, struct ip6_hbh);
2335				ext_hd |= EXT_HOPOPTS;
2336				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2337				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2338				ulp = NULL;
2339				break;
2340
2341			case IPPROTO_ROUTING:	/* RFC 2460 */
2342				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
2343				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
2344				case 0:
2345					ext_hd |= EXT_RTHDR0;
2346					break;
2347				case 2:
2348					ext_hd |= EXT_RTHDR2;
2349					break;
2350				default:
2351					printf("IPFW2: IPV6 - Unknown Routing "
2352					    "Header type(%d)\n",
2353					    ((struct ip6_rthdr *)ulp)->ip6r_type);
2354					if (V_fw_deny_unknown_exthdrs)
2355					    return (IP_FW_DENY);
2356					break;
2357				}
2358				ext_hd |= EXT_ROUTING;
2359				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
2360				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
2361				ulp = NULL;
2362				break;
2363
2364			case IPPROTO_FRAGMENT:	/* RFC 2460 */
2365				PULLUP_TO(hlen, ulp, struct ip6_frag);
2366				ext_hd |= EXT_FRAGMENT;
2367				hlen += sizeof (struct ip6_frag);
2368				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
2369				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
2370					IP6F_OFF_MASK;
2371				/* Add IP6F_MORE_FRAG for offset of first
2372				 * fragment to be != 0. */
2373				offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
2374					IP6F_MORE_FRAG;
2375				if (offset == 0) {
2376					printf("IPFW2: IPV6 - Invalid Fragment "
2377					    "Header\n");
2378					if (V_fw_deny_unknown_exthdrs)
2379					    return (IP_FW_DENY);
2380					break;
2381				}
2382				args->f_id.frag_id6 =
2383				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
2384				ulp = NULL;
2385				break;
2386
2387			case IPPROTO_DSTOPTS:	/* RFC 2460 */
2388				PULLUP_TO(hlen, ulp, struct ip6_hbh);
2389				ext_hd |= EXT_DSTOPTS;
2390				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2391				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2392				ulp = NULL;
2393				break;
2394
2395			case IPPROTO_AH:	/* RFC 2402 */
2396				PULLUP_TO(hlen, ulp, struct ip6_ext);
2397				ext_hd |= EXT_AH;
2398				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
2399				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
2400				ulp = NULL;
2401				break;
2402
2403			case IPPROTO_ESP:	/* RFC 2406 */
2404				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
2405				/* Anything past Seq# is variable length and
2406				 * data past this ext. header is encrypted. */
2407				ext_hd |= EXT_ESP;
2408				break;
2409
2410			case IPPROTO_NONE:	/* RFC 2460 */
2411				/*
2412				 * Packet ends here, and IPv6 header has
2413				 * already been pulled up. If ip6e_len!=0
2414				 * then octets must be ignored.
2415				 */
2416				ulp = ip; /* non-NULL to get out of loop. */
2417				break;
2418
2419			case IPPROTO_OSPFIGP:
2420				/* XXX OSPF header check? */
2421				PULLUP_TO(hlen, ulp, struct ip6_ext);
2422				break;
2423
2424			case IPPROTO_PIM:
2425				/* XXX PIM header check? */
2426				PULLUP_TO(hlen, ulp, struct pim);
2427				break;
2428
2429			case IPPROTO_CARP:
2430				PULLUP_TO(hlen, ulp, struct carp_header);
2431				if (((struct carp_header *)ulp)->carp_version !=
2432				    CARP_VERSION)
2433					return (IP_FW_DENY);
2434				if (((struct carp_header *)ulp)->carp_type !=
2435				    CARP_ADVERTISEMENT)
2436					return (IP_FW_DENY);
2437				break;
2438
2439			case IPPROTO_IPV6:	/* RFC 2893 */
2440				PULLUP_TO(hlen, ulp, struct ip6_hdr);
2441				break;
2442
2443			case IPPROTO_IPV4:	/* RFC 2893 */
2444				PULLUP_TO(hlen, ulp, struct ip);
2445				break;
2446
2447			default:
2448				printf("IPFW2: IPV6 - Unknown Extension "
2449				    "Header(%d), ext_hd=%x\n", proto, ext_hd);
2450				if (V_fw_deny_unknown_exthdrs)
2451				    return (IP_FW_DENY);
2452				PULLUP_TO(hlen, ulp, struct ip6_ext);
2453				break;
2454			} /*switch */
2455		}
2456		ip = mtod(m, struct ip *);
2457		ip6 = (struct ip6_hdr *)ip;
2458		args->f_id.src_ip6 = ip6->ip6_src;
2459		args->f_id.dst_ip6 = ip6->ip6_dst;
2460		args->f_id.src_ip = 0;
2461		args->f_id.dst_ip = 0;
2462		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
2463	} else if (pktlen >= sizeof(struct ip) &&
2464	    (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
2465	    	is_ipv4 = 1;
2466		hlen = ip->ip_hl << 2;
2467		args->f_id.addr_type = 4;
2468
2469		/*
2470		 * Collect parameters into local variables for faster matching.
2471		 */
2472		proto = ip->ip_p;
2473		src_ip = ip->ip_src;
2474		dst_ip = ip->ip_dst;
2475		if (args->eh != NULL) { /* layer 2 packets are as on the wire */
2476			offset = ntohs(ip->ip_off) & IP_OFFMASK;
2477			ip_len = ntohs(ip->ip_len);
2478		} else {
2479			offset = ip->ip_off & IP_OFFMASK;
2480			ip_len = ip->ip_len;
2481		}
2482		pktlen = ip_len < pktlen ? ip_len : pktlen;
2483
2484		if (offset == 0) {
2485			switch (proto) {
2486			case IPPROTO_TCP:
2487				PULLUP_TO(hlen, ulp, struct tcphdr);
2488				dst_port = TCP(ulp)->th_dport;
2489				src_port = TCP(ulp)->th_sport;
2490				args->f_id.flags = TCP(ulp)->th_flags;
2491				break;
2492
2493			case IPPROTO_UDP:
2494				PULLUP_TO(hlen, ulp, struct udphdr);
2495				dst_port = UDP(ulp)->uh_dport;
2496				src_port = UDP(ulp)->uh_sport;
2497				break;
2498
2499			case IPPROTO_ICMP:
2500				PULLUP_TO(hlen, ulp, struct icmphdr);
2501				args->f_id.flags = ICMP(ulp)->icmp_type;
2502				break;
2503
2504			default:
2505				break;
2506			}
2507		}
2508
2509		ip = mtod(m, struct ip *);
2510		args->f_id.src_ip = ntohl(src_ip.s_addr);
2511		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
2512	}
2513#undef PULLUP_TO
2514	if (proto) { /* we may have port numbers, store them */
2515		args->f_id.proto = proto;
2516		args->f_id.src_port = src_port = ntohs(src_port);
2517		args->f_id.dst_port = dst_port = ntohs(dst_port);
2518	}
2519
2520	IPFW_RLOCK(chain);
2521	mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
2522	if (args->rule) {
2523		/*
2524		 * Packet has already been tagged. Look for the next rule
2525		 * to restart processing. Make sure that args->rule still
2526		 * exists and not changed.
2527		 */
2528		if (chain->id != args->chain_id) {
2529			for (f = chain->rules; f != NULL; f = f->next)
2530				if (f == args->rule && f->id == args->rule_id)
2531					break;
2532
2533			if (f != NULL)
2534				f = f->next_rule;
2535			else
2536				f = ip_fw_default_rule;
2537		} else
2538			f = args->rule->next_rule;
2539
2540		if (f == NULL)
2541			f = lookup_next_rule(args->rule, 0);
2542	} else {
2543		/*
2544		 * Find the starting rule. It can be either the first
2545		 * one, or the one after divert_rule if asked so.
2546		 */
2547		int skipto = mtag ? divert_cookie(mtag) : 0;
2548
2549		f = chain->rules;
2550		if (args->eh == NULL && skipto != 0) {
2551			if (skipto >= IPFW_DEFAULT_RULE) {
2552				IPFW_RUNLOCK(chain);
2553				return (IP_FW_DENY); /* invalid */
2554			}
2555			while (f && f->rulenum <= skipto)
2556				f = f->next;
2557			if (f == NULL) {	/* drop packet */
2558				IPFW_RUNLOCK(chain);
2559				return (IP_FW_DENY);
2560			}
2561		}
2562	}
2563	/* reset divert rule to avoid confusion later */
2564	if (mtag) {
2565		divinput_flags = divert_info(mtag) &
2566		    (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
2567		m_tag_delete(m, mtag);
2568	}
2569
2570	/*
2571	 * Now scan the rules, and parse microinstructions for each rule.
2572	 */
2573	for (; f; f = f->next) {
2574		ipfw_insn *cmd;
2575		uint32_t tablearg = 0;
2576		int l, cmdlen, skip_or; /* skip rest of OR block */
2577
2578again:
2579		if (V_set_disable & (1 << f->set) )
2580			continue;
2581
2582		skip_or = 0;
2583		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
2584		    l -= cmdlen, cmd += cmdlen) {
2585			int match;
2586
2587			/*
2588			 * check_body is a jump target used when we find a
2589			 * CHECK_STATE, and need to jump to the body of
2590			 * the target rule.
2591			 */
2592
2593check_body:
2594			cmdlen = F_LEN(cmd);
2595			/*
2596			 * An OR block (insn_1 || .. || insn_n) has the
2597			 * F_OR bit set in all but the last instruction.
2598			 * The first match will set "skip_or", and cause
2599			 * the following instructions to be skipped until
2600			 * past the one with the F_OR bit clear.
2601			 */
2602			if (skip_or) {		/* skip this instruction */
2603				if ((cmd->len & F_OR) == 0)
2604					skip_or = 0;	/* next one is good */
2605				continue;
2606			}
2607			match = 0; /* set to 1 if we succeed */
2608
2609			switch (cmd->opcode) {
2610			/*
2611			 * The first set of opcodes compares the packet's
2612			 * fields with some pattern, setting 'match' if a
2613			 * match is found. At the end of the loop there is
2614			 * logic to deal with F_NOT and F_OR flags associated
2615			 * with the opcode.
2616			 */
2617			case O_NOP:
2618				match = 1;
2619				break;
2620
2621			case O_FORWARD_MAC:
2622				printf("ipfw: opcode %d unimplemented\n",
2623				    cmd->opcode);
2624				break;
2625
2626			case O_GID:
2627			case O_UID:
2628			case O_JAIL:
2629				/*
2630				 * We only check offset == 0 && proto != 0,
2631				 * as this ensures that we have a
2632				 * packet with the ports info.
2633				 */
2634				if (offset!=0)
2635					break;
2636				if (is_ipv6) /* XXX to be fixed later */
2637					break;
2638				if (proto == IPPROTO_TCP ||
2639				    proto == IPPROTO_UDP)
2640					match = check_uidgid(
2641						    (ipfw_insn_u32 *)cmd,
2642						    proto, oif,
2643						    dst_ip, dst_port,
2644						    src_ip, src_port, &fw_ugid_cache,
2645						    &ugid_lookup, args->inp);
2646				break;
2647
2648			case O_RECV:
2649				match = iface_match(m->m_pkthdr.rcvif,
2650				    (ipfw_insn_if *)cmd);
2651				break;
2652
2653			case O_XMIT:
2654				match = iface_match(oif, (ipfw_insn_if *)cmd);
2655				break;
2656
2657			case O_VIA:
2658				match = iface_match(oif ? oif :
2659				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
2660				break;
2661
2662			case O_MACADDR2:
2663				if (args->eh != NULL) {	/* have MAC header */
2664					u_int32_t *want = (u_int32_t *)
2665						((ipfw_insn_mac *)cmd)->addr;
2666					u_int32_t *mask = (u_int32_t *)
2667						((ipfw_insn_mac *)cmd)->mask;
2668					u_int32_t *hdr = (u_int32_t *)args->eh;
2669
2670					match =
2671					    ( want[0] == (hdr[0] & mask[0]) &&
2672					      want[1] == (hdr[1] & mask[1]) &&
2673					      want[2] == (hdr[2] & mask[2]) );
2674				}
2675				break;
2676
2677			case O_MAC_TYPE:
2678				if (args->eh != NULL) {
2679					u_int16_t *p =
2680					    ((ipfw_insn_u16 *)cmd)->ports;
2681					int i;
2682
2683					for (i = cmdlen - 1; !match && i>0;
2684					    i--, p += 2)
2685						match = (etype >= p[0] &&
2686						    etype <= p[1]);
2687				}
2688				break;
2689
2690			case O_FRAG:
2691				match = (offset != 0);
2692				break;
2693
2694			case O_IN:	/* "out" is "not in" */
2695				match = (oif == NULL);
2696				break;
2697
2698			case O_LAYER2:
2699				match = (args->eh != NULL);
2700				break;
2701
2702			case O_DIVERTED:
2703				match = (cmd->arg1 & 1 && divinput_flags &
2704				    IP_FW_DIVERT_LOOPBACK_FLAG) ||
2705					(cmd->arg1 & 2 && divinput_flags &
2706				    IP_FW_DIVERT_OUTPUT_FLAG);
2707				break;
2708
2709			case O_PROTO:
2710				/*
2711				 * We do not allow an arg of 0 so the
2712				 * check of "proto" only suffices.
2713				 */
2714				match = (proto == cmd->arg1);
2715				break;
2716
2717			case O_IP_SRC:
2718				match = is_ipv4 &&
2719				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2720				    src_ip.s_addr);
2721				break;
2722
2723			case O_IP_SRC_LOOKUP:
2724			case O_IP_DST_LOOKUP:
2725				if (is_ipv4) {
2726				    uint32_t a =
2727					(cmd->opcode == O_IP_DST_LOOKUP) ?
2728					    dst_ip.s_addr : src_ip.s_addr;
2729				    uint32_t v = 0;
2730
2731				    match = lookup_table(chain, cmd->arg1, a,
2732					&v);
2733				    if (!match)
2734					break;
2735				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2736					match =
2737					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
2738				    else
2739					tablearg = v;
2740				}
2741				break;
2742
2743			case O_IP_SRC_MASK:
2744			case O_IP_DST_MASK:
2745				if (is_ipv4) {
2746				    uint32_t a =
2747					(cmd->opcode == O_IP_DST_MASK) ?
2748					    dst_ip.s_addr : src_ip.s_addr;
2749				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2750				    int i = cmdlen-1;
2751
2752				    for (; !match && i>0; i-= 2, p+= 2)
2753					match = (p[0] == (a & p[1]));
2754				}
2755				break;
2756
2757			case O_IP_SRC_ME:
2758				if (is_ipv4) {
2759					struct ifnet *tif;
2760
2761					INADDR_TO_IFP(src_ip, tif);
2762					match = (tif != NULL);
2763				}
2764				break;
2765
2766			case O_IP_DST_SET:
2767			case O_IP_SRC_SET:
2768				if (is_ipv4) {
2769					u_int32_t *d = (u_int32_t *)(cmd+1);
2770					u_int32_t addr =
2771					    cmd->opcode == O_IP_DST_SET ?
2772						args->f_id.dst_ip :
2773						args->f_id.src_ip;
2774
2775					    if (addr < d[0])
2776						    break;
2777					    addr -= d[0]; /* subtract base */
2778					    match = (addr < cmd->arg1) &&
2779						( d[ 1 + (addr>>5)] &
2780						  (1<<(addr & 0x1f)) );
2781				}
2782				break;
2783
2784			case O_IP_DST:
2785				match = is_ipv4 &&
2786				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2787				    dst_ip.s_addr);
2788				break;
2789
2790			case O_IP_DST_ME:
2791				if (is_ipv4) {
2792					struct ifnet *tif;
2793
2794					INADDR_TO_IFP(dst_ip, tif);
2795					match = (tif != NULL);
2796				}
2797				break;
2798
2799			case O_IP_SRCPORT:
2800			case O_IP_DSTPORT:
2801				/*
2802				 * offset == 0 && proto != 0 is enough
2803				 * to guarantee that we have a
2804				 * packet with port info.
2805				 */
2806				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
2807				    && offset == 0) {
2808					u_int16_t x =
2809					    (cmd->opcode == O_IP_SRCPORT) ?
2810						src_port : dst_port ;
2811					u_int16_t *p =
2812					    ((ipfw_insn_u16 *)cmd)->ports;
2813					int i;
2814
2815					for (i = cmdlen - 1; !match && i>0;
2816					    i--, p += 2)
2817						match = (x>=p[0] && x<=p[1]);
2818				}
2819				break;
2820
2821			case O_ICMPTYPE:
2822				match = (offset == 0 && proto==IPPROTO_ICMP &&
2823				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2824				break;
2825
2826#ifdef INET6
2827			case O_ICMP6TYPE:
2828				match = is_ipv6 && offset == 0 &&
2829				    proto==IPPROTO_ICMPV6 &&
2830				    icmp6type_match(
2831					ICMP6(ulp)->icmp6_type,
2832					(ipfw_insn_u32 *)cmd);
2833				break;
2834#endif /* INET6 */
2835
2836			case O_IPOPT:
2837				match = (is_ipv4 &&
2838				    ipopts_match(ip, cmd) );
2839				break;
2840
2841			case O_IPVER:
2842				match = (is_ipv4 &&
2843				    cmd->arg1 == ip->ip_v);
2844				break;
2845
2846			case O_IPID:
2847			case O_IPLEN:
2848			case O_IPTTL:
2849				if (is_ipv4) {	/* only for IP packets */
2850				    uint16_t x;
2851				    uint16_t *p;
2852				    int i;
2853
2854				    if (cmd->opcode == O_IPLEN)
2855					x = ip_len;
2856				    else if (cmd->opcode == O_IPTTL)
2857					x = ip->ip_ttl;
2858				    else /* must be IPID */
2859					x = ntohs(ip->ip_id);
2860				    if (cmdlen == 1) {
2861					match = (cmd->arg1 == x);
2862					break;
2863				    }
2864				    /* otherwise we have ranges */
2865				    p = ((ipfw_insn_u16 *)cmd)->ports;
2866				    i = cmdlen - 1;
2867				    for (; !match && i>0; i--, p += 2)
2868					match = (x >= p[0] && x <= p[1]);
2869				}
2870				break;
2871
2872			case O_IPPRECEDENCE:
2873				match = (is_ipv4 &&
2874				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
2875				break;
2876
2877			case O_IPTOS:
2878				match = (is_ipv4 &&
2879				    flags_match(cmd, ip->ip_tos));
2880				break;
2881
2882			case O_TCPDATALEN:
2883				if (proto == IPPROTO_TCP && offset == 0) {
2884				    struct tcphdr *tcp;
2885				    uint16_t x;
2886				    uint16_t *p;
2887				    int i;
2888
2889				    tcp = TCP(ulp);
2890				    x = ip_len -
2891					((ip->ip_hl + tcp->th_off) << 2);
2892				    if (cmdlen == 1) {
2893					match = (cmd->arg1 == x);
2894					break;
2895				    }
2896				    /* otherwise we have ranges */
2897				    p = ((ipfw_insn_u16 *)cmd)->ports;
2898				    i = cmdlen - 1;
2899				    for (; !match && i>0; i--, p += 2)
2900					match = (x >= p[0] && x <= p[1]);
2901				}
2902				break;
2903
2904			case O_TCPFLAGS:
2905				match = (proto == IPPROTO_TCP && offset == 0 &&
2906				    flags_match(cmd, TCP(ulp)->th_flags));
2907				break;
2908
2909			case O_TCPOPTS:
2910				match = (proto == IPPROTO_TCP && offset == 0 &&
2911				    tcpopts_match(TCP(ulp), cmd));
2912				break;
2913
2914			case O_TCPSEQ:
2915				match = (proto == IPPROTO_TCP && offset == 0 &&
2916				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2917					TCP(ulp)->th_seq);
2918				break;
2919
2920			case O_TCPACK:
2921				match = (proto == IPPROTO_TCP && offset == 0 &&
2922				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2923					TCP(ulp)->th_ack);
2924				break;
2925
2926			case O_TCPWIN:
2927				match = (proto == IPPROTO_TCP && offset == 0 &&
2928				    cmd->arg1 == TCP(ulp)->th_win);
2929				break;
2930
2931			case O_ESTAB:
2932				/* reject packets which have SYN only */
2933				/* XXX should i also check for TH_ACK ? */
2934				match = (proto == IPPROTO_TCP && offset == 0 &&
2935				    (TCP(ulp)->th_flags &
2936				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2937				break;
2938
2939			case O_ALTQ: {
2940				struct pf_mtag *at;
2941				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2942
2943				match = 1;
2944				at = pf_find_mtag(m);
2945				if (at != NULL && at->qid != 0)
2946					break;
2947				at = pf_get_mtag(m);
2948				if (at == NULL) {
2949					/*
2950					 * Let the packet fall back to the
2951					 * default ALTQ.
2952					 */
2953					break;
2954				}
2955				at->qid = altq->qid;
2956				if (is_ipv4)
2957					at->af = AF_INET;
2958				else
2959					at->af = AF_LINK;
2960				at->hdr = ip;
2961				break;
2962			}
2963
2964			case O_LOG:
2965				if (V_fw_verbose)
2966					ipfw_log(f, hlen, args, m,
2967					    oif, offset, tablearg, ip);
2968				match = 1;
2969				break;
2970
2971			case O_PROB:
2972				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2973				break;
2974
2975			case O_VERREVPATH:
2976				/* Outgoing packets automatically pass/match */
2977				match = ((oif != NULL) ||
2978				    (m->m_pkthdr.rcvif == NULL) ||
2979				    (
2980#ifdef INET6
2981				    is_ipv6 ?
2982					verify_path6(&(args->f_id.src_ip6),
2983					    m->m_pkthdr.rcvif) :
2984#endif
2985				    verify_path(src_ip, m->m_pkthdr.rcvif,
2986				        args->f_id.fib)));
2987				break;
2988
2989			case O_VERSRCREACH:
2990				/* Outgoing packets automatically pass/match */
2991				match = (hlen > 0 && ((oif != NULL) ||
2992#ifdef INET6
2993				    is_ipv6 ?
2994				        verify_path6(&(args->f_id.src_ip6),
2995				            NULL) :
2996#endif
2997				    verify_path(src_ip, NULL, args->f_id.fib)));
2998				break;
2999
3000			case O_ANTISPOOF:
3001				/* Outgoing packets automatically pass/match */
3002				if (oif == NULL && hlen > 0 &&
3003				    (  (is_ipv4 && in_localaddr(src_ip))
3004#ifdef INET6
3005				    || (is_ipv6 &&
3006				        in6_localaddr(&(args->f_id.src_ip6)))
3007#endif
3008				    ))
3009					match =
3010#ifdef INET6
3011					    is_ipv6 ? verify_path6(
3012					        &(args->f_id.src_ip6),
3013					        m->m_pkthdr.rcvif) :
3014#endif
3015					    verify_path(src_ip,
3016					    	m->m_pkthdr.rcvif,
3017					        args->f_id.fib);
3018				else
3019					match = 1;
3020				break;
3021
3022			case O_IPSEC:
3023#ifdef IPSEC
3024				match = (m_tag_find(m,
3025				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
3026#endif
3027				/* otherwise no match */
3028				break;
3029
3030#ifdef INET6
3031			case O_IP6_SRC:
3032				match = is_ipv6 &&
3033				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
3034				    &((ipfw_insn_ip6 *)cmd)->addr6);
3035				break;
3036
3037			case O_IP6_DST:
3038				match = is_ipv6 &&
3039				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
3040				    &((ipfw_insn_ip6 *)cmd)->addr6);
3041				break;
3042			case O_IP6_SRC_MASK:
3043			case O_IP6_DST_MASK:
3044				if (is_ipv6) {
3045					int i = cmdlen - 1;
3046					struct in6_addr p;
3047					struct in6_addr *d =
3048					    &((ipfw_insn_ip6 *)cmd)->addr6;
3049
3050					for (; !match && i > 0; d += 2,
3051					    i -= F_INSN_SIZE(struct in6_addr)
3052					    * 2) {
3053						p = (cmd->opcode ==
3054						    O_IP6_SRC_MASK) ?
3055						    args->f_id.src_ip6:
3056						    args->f_id.dst_ip6;
3057						APPLY_MASK(&p, &d[1]);
3058						match =
3059						    IN6_ARE_ADDR_EQUAL(&d[0],
3060						    &p);
3061					}
3062				}
3063				break;
3064
3065			case O_IP6_SRC_ME:
3066				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
3067				break;
3068
3069			case O_IP6_DST_ME:
3070				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
3071				break;
3072
3073			case O_FLOW6ID:
3074				match = is_ipv6 &&
3075				    flow6id_match(args->f_id.flow_id6,
3076				    (ipfw_insn_u32 *) cmd);
3077				break;
3078
3079			case O_EXT_HDR:
3080				match = is_ipv6 &&
3081				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
3082				break;
3083
3084			case O_IP6:
3085				match = is_ipv6;
3086				break;
3087#endif
3088
3089			case O_IP4:
3090				match = is_ipv4;
3091				break;
3092
3093			case O_TAG: {
3094				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
3095				    tablearg : cmd->arg1;
3096
3097				/* Packet is already tagged with this tag? */
3098				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
3099
3100				/* We have `untag' action when F_NOT flag is
3101				 * present. And we must remove this mtag from
3102				 * mbuf and reset `match' to zero (`match' will
3103				 * be inversed later).
3104				 * Otherwise we should allocate new mtag and
3105				 * push it into mbuf.
3106				 */
3107				if (cmd->len & F_NOT) { /* `untag' action */
3108					if (mtag != NULL)
3109						m_tag_delete(m, mtag);
3110				} else if (mtag == NULL) {
3111					if ((mtag = m_tag_alloc(MTAG_IPFW,
3112					    tag, 0, M_NOWAIT)) != NULL)
3113						m_tag_prepend(m, mtag);
3114				}
3115				match = (cmd->len & F_NOT) ? 0: 1;
3116				break;
3117			}
3118
3119			case O_FIB: /* try match the specified fib */
3120				if (args->f_id.fib == cmd->arg1)
3121					match = 1;
3122				break;
3123
3124			case O_TAGGED: {
3125				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
3126				    tablearg : cmd->arg1;
3127
3128				if (cmdlen == 1) {
3129					match = m_tag_locate(m, MTAG_IPFW,
3130					    tag, NULL) != NULL;
3131					break;
3132				}
3133
3134				/* we have ranges */
3135				for (mtag = m_tag_first(m);
3136				    mtag != NULL && !match;
3137				    mtag = m_tag_next(m, mtag)) {
3138					uint16_t *p;
3139					int i;
3140
3141					if (mtag->m_tag_cookie != MTAG_IPFW)
3142						continue;
3143
3144					p = ((ipfw_insn_u16 *)cmd)->ports;
3145					i = cmdlen - 1;
3146					for(; !match && i > 0; i--, p += 2)
3147						match =
3148						    mtag->m_tag_id >= p[0] &&
3149						    mtag->m_tag_id <= p[1];
3150				}
3151				break;
3152			}
3153
3154			/*
3155			 * The second set of opcodes represents 'actions',
3156			 * i.e. the terminal part of a rule once the packet
3157			 * matches all previous patterns.
3158			 * Typically there is only one action for each rule,
3159			 * and the opcode is stored at the end of the rule
3160			 * (but there are exceptions -- see below).
3161			 *
3162			 * In general, here we set retval and terminate the
3163			 * outer loop (would be a 'break 3' in some language,
3164			 * but we need to do a 'goto done').
3165			 *
3166			 * Exceptions:
3167			 * O_COUNT and O_SKIPTO actions:
3168			 *   instead of terminating, we jump to the next rule
3169			 *   ('goto next_rule', equivalent to a 'break 2'),
3170			 *   or to the SKIPTO target ('goto again' after
3171			 *   having set f, cmd and l), respectively.
3172			 *
3173			 * O_TAG, O_LOG and O_ALTQ action parameters:
3174			 *   perform some action and set match = 1;
3175			 *
3176			 * O_LIMIT and O_KEEP_STATE: these opcodes are
3177			 *   not real 'actions', and are stored right
3178			 *   before the 'action' part of the rule.
3179			 *   These opcodes try to install an entry in the
3180			 *   state tables; if successful, we continue with
3181			 *   the next opcode (match=1; break;), otherwise
3182			 *   the packet *   must be dropped
3183			 *   ('goto done' after setting retval);
3184			 *
3185			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
3186			 *   cause a lookup of the state table, and a jump
3187			 *   to the 'action' part of the parent rule
3188			 *   ('goto check_body') if an entry is found, or
3189			 *   (CHECK_STATE only) a jump to the next rule if
3190			 *   the entry is not found ('goto next_rule').
3191			 *   The result of the lookup is cached to make
3192			 *   further instances of these opcodes are
3193			 *   effectively NOPs.
3194			 */
3195			case O_LIMIT:
3196			case O_KEEP_STATE:
3197				if (install_state(f,
3198				    (ipfw_insn_limit *)cmd, args, tablearg)) {
3199					retval = IP_FW_DENY;
3200					goto done; /* error/limit violation */
3201				}
3202				match = 1;
3203				break;
3204
3205			case O_PROBE_STATE:
3206			case O_CHECK_STATE:
3207				/*
3208				 * dynamic rules are checked at the first
3209				 * keep-state or check-state occurrence,
3210				 * with the result being stored in dyn_dir.
3211				 * The compiler introduces a PROBE_STATE
3212				 * instruction for us when we have a
3213				 * KEEP_STATE (because PROBE_STATE needs
3214				 * to be run first).
3215				 */
3216				if (dyn_dir == MATCH_UNKNOWN &&
3217				    (q = lookup_dyn_rule(&args->f_id,
3218				     &dyn_dir, proto == IPPROTO_TCP ?
3219					TCP(ulp) : NULL))
3220					!= NULL) {
3221					/*
3222					 * Found dynamic entry, update stats
3223					 * and jump to the 'action' part of
3224					 * the parent rule.
3225					 */
3226					q->pcnt++;
3227					q->bcnt += pktlen;
3228					f = q->rule;
3229					cmd = ACTION_PTR(f);
3230					l = f->cmd_len - f->act_ofs;
3231					IPFW_DYN_UNLOCK();
3232					goto check_body;
3233				}
3234				/*
3235				 * Dynamic entry not found. If CHECK_STATE,
3236				 * skip to next rule, if PROBE_STATE just
3237				 * ignore and continue with next opcode.
3238				 */
3239				if (cmd->opcode == O_CHECK_STATE)
3240					goto next_rule;
3241				match = 1;
3242				break;
3243
3244			case O_ACCEPT:
3245				retval = 0;	/* accept */
3246				goto done;
3247
3248			case O_PIPE:
3249			case O_QUEUE:
3250				args->rule = f; /* report matching rule */
3251				args->rule_id = f->id;
3252				args->chain_id = chain->id;
3253				if (cmd->arg1 == IP_FW_TABLEARG)
3254					args->cookie = tablearg;
3255				else
3256					args->cookie = cmd->arg1;
3257				retval = IP_FW_DUMMYNET;
3258				goto done;
3259
3260			case O_DIVERT:
3261			case O_TEE: {
3262				struct divert_tag *dt;
3263
3264				if (args->eh) /* not on layer 2 */
3265					break;
3266				mtag = m_tag_get(PACKET_TAG_DIVERT,
3267						sizeof(struct divert_tag),
3268						M_NOWAIT);
3269				if (mtag == NULL) {
3270					/* XXX statistic */
3271					/* drop packet */
3272					IPFW_RUNLOCK(chain);
3273					return (IP_FW_DENY);
3274				}
3275				dt = (struct divert_tag *)(mtag+1);
3276				dt->cookie = f->rulenum;
3277				if (cmd->arg1 == IP_FW_TABLEARG)
3278					dt->info = tablearg;
3279				else
3280					dt->info = cmd->arg1;
3281				m_tag_prepend(m, mtag);
3282				retval = (cmd->opcode == O_DIVERT) ?
3283				    IP_FW_DIVERT : IP_FW_TEE;
3284				goto done;
3285			}
3286			case O_COUNT:
3287			case O_SKIPTO:
3288				f->pcnt++;	/* update stats */
3289				f->bcnt += pktlen;
3290				f->timestamp = time_uptime;
3291				if (cmd->opcode == O_COUNT)
3292					goto next_rule;
3293				/* handle skipto */
3294				if (cmd->arg1 == IP_FW_TABLEARG) {
3295					f = lookup_next_rule(f, tablearg);
3296				} else {
3297					if (f->next_rule == NULL)
3298						lookup_next_rule(f, 0);
3299					f = f->next_rule;
3300				}
3301				goto again;
3302
3303			case O_REJECT:
3304				/*
3305				 * Drop the packet and send a reject notice
3306				 * if the packet is not ICMP (or is an ICMP
3307				 * query), and it is not multicast/broadcast.
3308				 */
3309				if (hlen > 0 && is_ipv4 && offset == 0 &&
3310				    (proto != IPPROTO_ICMP ||
3311				     is_icmp_query(ICMP(ulp))) &&
3312				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3313				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
3314					send_reject(args, cmd->arg1, ip_len, ip);
3315					m = args->m;
3316				}
3317				/* FALLTHROUGH */
3318#ifdef INET6
3319			case O_UNREACH6:
3320				if (hlen > 0 && is_ipv6 &&
3321				    ((offset & IP6F_OFF_MASK) == 0) &&
3322				    (proto != IPPROTO_ICMPV6 ||
3323				     (is_icmp6_query(args->f_id.flags) == 1)) &&
3324				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3325				    !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
3326					send_reject6(
3327					    args, cmd->arg1, hlen,
3328					    (struct ip6_hdr *)ip);
3329					m = args->m;
3330				}
3331				/* FALLTHROUGH */
3332#endif
3333			case O_DENY:
3334				retval = IP_FW_DENY;
3335				goto done;
3336
3337			case O_FORWARD_IP: {
3338				struct sockaddr_in *sa;
3339				sa = &(((ipfw_insn_sa *)cmd)->sa);
3340				if (args->eh)	/* not valid on layer2 pkts */
3341					break;
3342				if (!q || dyn_dir == MATCH_FORWARD) {
3343					if (sa->sin_addr.s_addr == INADDR_ANY) {
3344						bcopy(sa, &args->hopstore,
3345							sizeof(*sa));
3346						args->hopstore.sin_addr.s_addr =
3347						    htonl(tablearg);
3348						args->next_hop =
3349						    &args->hopstore;
3350					} else {
3351						args->next_hop = sa;
3352					}
3353				}
3354				retval = IP_FW_PASS;
3355			    }
3356			    goto done;
3357
3358			case O_NETGRAPH:
3359			case O_NGTEE:
3360				args->rule = f;	/* report matching rule */
3361				args->rule_id = f->id;
3362				args->chain_id = chain->id;
3363				if (cmd->arg1 == IP_FW_TABLEARG)
3364					args->cookie = tablearg;
3365				else
3366					args->cookie = cmd->arg1;
3367				retval = (cmd->opcode == O_NETGRAPH) ?
3368				    IP_FW_NETGRAPH : IP_FW_NGTEE;
3369				goto done;
3370
3371			case O_SETFIB:
3372				f->pcnt++;	/* update stats */
3373				f->bcnt += pktlen;
3374				f->timestamp = time_uptime;
3375				M_SETFIB(m, cmd->arg1);
3376				args->f_id.fib = cmd->arg1;
3377				goto next_rule;
3378
3379			case O_NAT: {
3380                        	struct cfg_nat *t;
3381                        	int nat_id;
3382
3383 				if (IPFW_NAT_LOADED) {
3384					args->rule = f; /* Report matching rule. */
3385					args->rule_id = f->id;
3386					args->chain_id = chain->id;
3387					t = ((ipfw_insn_nat *)cmd)->nat;
3388					if (t == NULL) {
3389						nat_id = (cmd->arg1 == IP_FW_TABLEARG) ?
3390						    tablearg : cmd->arg1;
3391						LOOKUP_NAT(V_layer3_chain, nat_id, t);
3392						if (t == NULL) {
3393							retval = IP_FW_DENY;
3394							goto done;
3395						}
3396						if (cmd->arg1 != IP_FW_TABLEARG)
3397							((ipfw_insn_nat *)cmd)->nat = t;
3398					}
3399					retval = ipfw_nat_ptr(args, t, m);
3400				} else
3401					retval = IP_FW_DENY;
3402				goto done;
3403			}
3404
3405			case O_REASS: {
3406				int ip_off;
3407
3408				f->pcnt++;
3409				f->bcnt += pktlen;
3410				ip_off = (args->eh != NULL) ? ntohs(ip->ip_off) : ip->ip_off;
3411				if (ip_off & (IP_MF | IP_OFFMASK)) {
3412					/*
3413					 * ip_reass() expects len & off in host
3414					 * byte order: fix them in case we come
3415					 * from layer2.
3416					 */
3417					if (args->eh != NULL) {
3418						ip->ip_len = ntohs(ip->ip_len);
3419						ip->ip_off = ntohs(ip->ip_off);
3420					}
3421
3422					m = ip_reass(m);
3423					args->m = m;
3424
3425					/*
3426					 * IP header checksum fixup after
3427					 * reassembly and leave header
3428					 * in network byte order.
3429					 */
3430					if (m != NULL) {
3431						int hlen;
3432
3433						ip = mtod(m, struct ip *);
3434						hlen = ip->ip_hl << 2;
3435						/* revert len & off for layer2 pkts */
3436						if (args->eh != NULL)
3437							ip->ip_len = htons(ip->ip_len);
3438						ip->ip_sum = 0;
3439						if (hlen == sizeof(struct ip))
3440							ip->ip_sum = in_cksum_hdr(ip);
3441						else
3442							ip->ip_sum = in_cksum(m, hlen);
3443						retval = IP_FW_REASS;
3444						args->rule = f;
3445						args->rule_id = f->id;
3446						args->chain_id = chain->id;
3447						goto done;
3448					} else {
3449						retval = IP_FW_DENY;
3450						goto done;
3451					}
3452				}
3453				goto next_rule;
3454			}
3455
3456			default:
3457				panic("-- unknown opcode %d\n", cmd->opcode);
3458			} /* end of switch() on opcodes */
3459
3460			if (cmd->len & F_NOT)
3461				match = !match;
3462
3463			if (match) {
3464				if (cmd->len & F_OR)
3465					skip_or = 1;
3466			} else {
3467				if (!(cmd->len & F_OR)) /* not an OR block, */
3468					break;		/* try next rule    */
3469			}
3470
3471		}	/* end of inner for, scan opcodes */
3472
3473next_rule:;		/* try next rule		*/
3474
3475	}		/* end of outer for, scan rules */
3476	printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3477	IPFW_RUNLOCK(chain);
3478	return (IP_FW_DENY);
3479
3480done:
3481	/* Update statistics */
3482	f->pcnt++;
3483	f->bcnt += pktlen;
3484	f->timestamp = time_uptime;
3485	IPFW_RUNLOCK(chain);
3486	return (retval);
3487
3488pullup_failed:
3489	if (V_fw_verbose)
3490		printf("ipfw: pullup failed\n");
3491	return (IP_FW_DENY);
3492}
3493
3494/*
3495 * When a rule is added/deleted, clear the next_rule pointers in all rules.
3496 * These will be reconstructed on the fly as packets are matched.
3497 */
3498static void
3499flush_rule_ptrs(struct ip_fw_chain *chain)
3500{
3501	struct ip_fw *rule;
3502
3503	IPFW_WLOCK_ASSERT(chain);
3504
3505	chain->id++;
3506
3507	for (rule = chain->rules; rule; rule = rule->next)
3508		rule->next_rule = NULL;
3509}
3510
3511/*
3512 * Add a new rule to the list. Copy the rule into a malloc'ed area, then
3513 * possibly create a rule number and add the rule to the list.
3514 * Update the rule_number in the input struct so the caller knows it as well.
3515 */
3516static int
3517add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
3518{
3519	INIT_VNET_IPFW(curvnet);
3520	struct ip_fw *rule, *f, *prev;
3521	int l = RULESIZE(input_rule);
3522
3523	if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
3524		return (EINVAL);
3525
3526	rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
3527	if (rule == NULL)
3528		return (ENOSPC);
3529
3530	bcopy(input_rule, rule, l);
3531
3532	rule->next = NULL;
3533	rule->next_rule = NULL;
3534
3535	rule->pcnt = 0;
3536	rule->bcnt = 0;
3537	rule->timestamp = 0;
3538
3539	IPFW_WLOCK(chain);
3540
3541	if (chain->rules == NULL) {	/* default rule */
3542		chain->rules = rule;
3543		rule->id = ++chain->id;
3544		goto done;
3545        }
3546
3547	/*
3548	 * If rulenum is 0, find highest numbered rule before the
3549	 * default rule, and add autoinc_step
3550	 */
3551	if (V_autoinc_step < 1)
3552		V_autoinc_step = 1;
3553	else if (V_autoinc_step > 1000)
3554		V_autoinc_step = 1000;
3555	if (rule->rulenum == 0) {
3556		/*
3557		 * locate the highest numbered rule before default
3558		 */
3559		for (f = chain->rules; f; f = f->next) {
3560			if (f->rulenum == IPFW_DEFAULT_RULE)
3561				break;
3562			rule->rulenum = f->rulenum;
3563		}
3564		if (rule->rulenum < IPFW_DEFAULT_RULE - V_autoinc_step)
3565			rule->rulenum += V_autoinc_step;
3566		input_rule->rulenum = rule->rulenum;
3567	}
3568
3569	/*
3570	 * Now insert the new rule in the right place in the sorted list.
3571	 */
3572	for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
3573		if (f->rulenum > rule->rulenum) { /* found the location */
3574			if (prev) {
3575				rule->next = f;
3576				prev->next = rule;
3577			} else { /* head insert */
3578				rule->next = chain->rules;
3579				chain->rules = rule;
3580			}
3581			break;
3582		}
3583	}
3584	flush_rule_ptrs(chain);
3585	/* chain->id incremented inside flush_rule_ptrs() */
3586	rule->id = chain->id;
3587done:
3588	V_static_count++;
3589	V_static_len += l;
3590	IPFW_WUNLOCK(chain);
3591	DEB(printf("ipfw: installed rule %d, static count now %d\n",
3592		rule->rulenum, V_static_count);)
3593	return (0);
3594}
3595
3596/**
3597 * Remove a static rule (including derived * dynamic rules)
3598 * and place it on the ``reap list'' for later reclamation.
3599 * The caller is in charge of clearing rule pointers to avoid
3600 * dangling pointers.
3601 * @return a pointer to the next entry.
3602 * Arguments are not checked, so they better be correct.
3603 */
3604static struct ip_fw *
3605remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule,
3606    struct ip_fw *prev)
3607{
3608	INIT_VNET_IPFW(curvnet);
3609	struct ip_fw *n;
3610	int l = RULESIZE(rule);
3611
3612	IPFW_WLOCK_ASSERT(chain);
3613
3614	n = rule->next;
3615	IPFW_DYN_LOCK();
3616	remove_dyn_rule(rule, NULL /* force removal */);
3617	IPFW_DYN_UNLOCK();
3618	if (prev == NULL)
3619		chain->rules = n;
3620	else
3621		prev->next = n;
3622	V_static_count--;
3623	V_static_len -= l;
3624
3625	rule->next = chain->reap;
3626	chain->reap = rule;
3627
3628	return n;
3629}
3630
3631/*
3632 * Reclaim storage associated with a list of rules.  This is
3633 * typically the list created using remove_rule.
3634 * A NULL pointer on input is handled correctly.
3635 */
3636static void
3637reap_rules(struct ip_fw *head)
3638{
3639	struct ip_fw *rule;
3640
3641	while ((rule = head) != NULL) {
3642		head = head->next;
3643		free(rule, M_IPFW);
3644	}
3645}
3646
3647/*
3648 * Remove all rules from a chain (except rules in set RESVD_SET
3649 * unless kill_default = 1).  The caller is responsible for
3650 * reclaiming storage for the rules left in chain->reap.
3651 */
3652static void
3653free_chain(struct ip_fw_chain *chain, int kill_default)
3654{
3655	struct ip_fw *prev, *rule;
3656
3657	IPFW_WLOCK_ASSERT(chain);
3658
3659	chain->reap = NULL;
3660	flush_rule_ptrs(chain); /* more efficient to do outside the loop */
3661	for (prev = NULL, rule = chain->rules; rule ; )
3662		if (kill_default || rule->set != RESVD_SET)
3663			rule = remove_rule(chain, rule, prev);
3664		else {
3665			prev = rule;
3666			rule = rule->next;
3667		}
3668}
3669
3670/**
3671 * Remove all rules with given number, and also do set manipulation.
3672 * Assumes chain != NULL && *chain != NULL.
3673 *
3674 * The argument is an u_int32_t. The low 16 bit are the rule or set number,
3675 * the next 8 bits are the new set, the top 8 bits are the command:
3676 *
3677 *	0	delete rules with given number
3678 *	1	delete rules with given set number
3679 *	2	move rules with given number to new set
3680 *	3	move rules with given set number to new set
3681 *	4	swap sets with given numbers
3682 *	5	delete rules with given number and with given set number
3683 */
3684static int
3685del_entry(struct ip_fw_chain *chain, u_int32_t arg)
3686{
3687	struct ip_fw *prev = NULL, *rule;
3688	u_int16_t rulenum;	/* rule or old_set */
3689	u_int8_t cmd, new_set;
3690
3691	rulenum = arg & 0xffff;
3692	cmd = (arg >> 24) & 0xff;
3693	new_set = (arg >> 16) & 0xff;
3694
3695	if (cmd > 5 || new_set > RESVD_SET)
3696		return EINVAL;
3697	if (cmd == 0 || cmd == 2 || cmd == 5) {
3698		if (rulenum >= IPFW_DEFAULT_RULE)
3699			return EINVAL;
3700	} else {
3701		if (rulenum > RESVD_SET)	/* old_set */
3702			return EINVAL;
3703	}
3704
3705	IPFW_WLOCK(chain);
3706	rule = chain->rules;	/* common starting point */
3707	chain->reap = NULL;	/* prepare for deletions */
3708	switch (cmd) {
3709	case 0:	/* delete rules with given number */
3710		/*
3711		 * locate first rule to delete
3712		 */
3713		for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3714			;
3715		if (rule->rulenum != rulenum) {
3716			IPFW_WUNLOCK(chain);
3717			return EINVAL;
3718		}
3719
3720		/*
3721		 * flush pointers outside the loop, then delete all matching
3722		 * rules. prev remains the same throughout the cycle.
3723		 */
3724		flush_rule_ptrs(chain);
3725		while (rule->rulenum == rulenum)
3726			rule = remove_rule(chain, rule, prev);
3727		break;
3728
3729	case 1:	/* delete all rules with given set number */
3730		flush_rule_ptrs(chain);
3731		while (rule->rulenum < IPFW_DEFAULT_RULE) {
3732			if (rule->set == rulenum)
3733				rule = remove_rule(chain, rule, prev);
3734			else {
3735				prev = rule;
3736				rule = rule->next;
3737			}
3738		}
3739		break;
3740
3741	case 2:	/* move rules with given number to new set */
3742		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3743			if (rule->rulenum == rulenum)
3744				rule->set = new_set;
3745		break;
3746
3747	case 3: /* move rules with given set number to new set */
3748		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3749			if (rule->set == rulenum)
3750				rule->set = new_set;
3751		break;
3752
3753	case 4: /* swap two sets */
3754		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3755			if (rule->set == rulenum)
3756				rule->set = new_set;
3757			else if (rule->set == new_set)
3758				rule->set = rulenum;
3759		break;
3760
3761	case 5: /* delete rules with given number and with given set number.
3762		 * rulenum - given rule number;
3763		 * new_set - given set number.
3764		 */
3765		for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3766			;
3767		if (rule->rulenum != rulenum) {
3768			IPFW_WUNLOCK(chain);
3769			return (EINVAL);
3770		}
3771		flush_rule_ptrs(chain);
3772		while (rule->rulenum == rulenum) {
3773			if (rule->set == new_set)
3774				rule = remove_rule(chain, rule, prev);
3775			else {
3776				prev = rule;
3777				rule = rule->next;
3778			}
3779		}
3780	}
3781	/*
3782	 * Look for rules to reclaim.  We grab the list before
3783	 * releasing the lock then reclaim them w/o the lock to
3784	 * avoid a LOR with dummynet.
3785	 */
3786	rule = chain->reap;
3787	IPFW_WUNLOCK(chain);
3788	reap_rules(rule);
3789	return 0;
3790}
3791
3792/*
3793 * Clear counters for a specific rule.
3794 * The enclosing "table" is assumed locked.
3795 */
3796static void
3797clear_counters(struct ip_fw *rule, int log_only)
3798{
3799	ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
3800
3801	if (log_only == 0) {
3802		rule->bcnt = rule->pcnt = 0;
3803		rule->timestamp = 0;
3804	}
3805	if (l->o.opcode == O_LOG)
3806		l->log_left = l->max_log;
3807}
3808
3809/**
3810 * Reset some or all counters on firewall rules.
3811 * The argument `arg' is an u_int32_t. The low 16 bit are the rule number,
3812 * the next 8 bits are the set number, the top 8 bits are the command:
3813 *	0	work with rules from all set's;
3814 *	1	work with rules only from specified set.
3815 * Specified rule number is zero if we want to clear all entries.
3816 * log_only is 1 if we only want to reset logs, zero otherwise.
3817 */
3818static int
3819zero_entry(struct ip_fw_chain *chain, u_int32_t arg, int log_only)
3820{
3821	INIT_VNET_IPFW(curvnet);
3822	struct ip_fw *rule;
3823	char *msg;
3824
3825	uint16_t rulenum = arg & 0xffff;
3826	uint8_t set = (arg >> 16) & 0xff;
3827	uint8_t cmd = (arg >> 24) & 0xff;
3828
3829	if (cmd > 1)
3830		return (EINVAL);
3831	if (cmd == 1 && set > RESVD_SET)
3832		return (EINVAL);
3833
3834	IPFW_WLOCK(chain);
3835	if (rulenum == 0) {
3836		V_norule_counter = 0;
3837		for (rule = chain->rules; rule; rule = rule->next) {
3838			/* Skip rules from another set. */
3839			if (cmd == 1 && rule->set != set)
3840				continue;
3841			clear_counters(rule, log_only);
3842		}
3843		msg = log_only ? "All logging counts reset" :
3844		    "Accounting cleared";
3845	} else {
3846		int cleared = 0;
3847		/*
3848		 * We can have multiple rules with the same number, so we
3849		 * need to clear them all.
3850		 */
3851		for (rule = chain->rules; rule; rule = rule->next)
3852			if (rule->rulenum == rulenum) {
3853				while (rule && rule->rulenum == rulenum) {
3854					if (cmd == 0 || rule->set == set)
3855						clear_counters(rule, log_only);
3856					rule = rule->next;
3857				}
3858				cleared = 1;
3859				break;
3860			}
3861		if (!cleared) {	/* we did not find any matching rules */
3862			IPFW_WUNLOCK(chain);
3863			return (EINVAL);
3864		}
3865		msg = log_only ? "logging count reset" : "cleared";
3866	}
3867	IPFW_WUNLOCK(chain);
3868
3869	if (V_fw_verbose) {
3870		int lev = LOG_SECURITY | LOG_NOTICE;
3871
3872		if (rulenum)
3873			log(lev, "ipfw: Entry %d %s.\n", rulenum, msg);
3874		else
3875			log(lev, "ipfw: %s.\n", msg);
3876	}
3877	return (0);
3878}
3879
3880/*
3881 * Check validity of the structure before insert.
3882 * Fortunately rules are simple, so this mostly need to check rule sizes.
3883 */
3884static int
3885check_ipfw_struct(struct ip_fw *rule, int size)
3886{
3887	int l, cmdlen = 0;
3888	int have_action=0;
3889	ipfw_insn *cmd;
3890
3891	if (size < sizeof(*rule)) {
3892		printf("ipfw: rule too short\n");
3893		return (EINVAL);
3894	}
3895	/* first, check for valid size */
3896	l = RULESIZE(rule);
3897	if (l != size) {
3898		printf("ipfw: size mismatch (have %d want %d)\n", size, l);
3899		return (EINVAL);
3900	}
3901	if (rule->act_ofs >= rule->cmd_len) {
3902		printf("ipfw: bogus action offset (%u > %u)\n",
3903		    rule->act_ofs, rule->cmd_len - 1);
3904		return (EINVAL);
3905	}
3906	/*
3907	 * Now go for the individual checks. Very simple ones, basically only
3908	 * instruction sizes.
3909	 */
3910	for (l = rule->cmd_len, cmd = rule->cmd ;
3911			l > 0 ; l -= cmdlen, cmd += cmdlen) {
3912		cmdlen = F_LEN(cmd);
3913		if (cmdlen > l) {
3914			printf("ipfw: opcode %d size truncated\n",
3915			    cmd->opcode);
3916			return EINVAL;
3917		}
3918		DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
3919		switch (cmd->opcode) {
3920		case O_PROBE_STATE:
3921		case O_KEEP_STATE:
3922		case O_PROTO:
3923		case O_IP_SRC_ME:
3924		case O_IP_DST_ME:
3925		case O_LAYER2:
3926		case O_IN:
3927		case O_FRAG:
3928		case O_DIVERTED:
3929		case O_IPOPT:
3930		case O_IPTOS:
3931		case O_IPPRECEDENCE:
3932		case O_IPVER:
3933		case O_TCPWIN:
3934		case O_TCPFLAGS:
3935		case O_TCPOPTS:
3936		case O_ESTAB:
3937		case O_VERREVPATH:
3938		case O_VERSRCREACH:
3939		case O_ANTISPOOF:
3940		case O_IPSEC:
3941#ifdef INET6
3942		case O_IP6_SRC_ME:
3943		case O_IP6_DST_ME:
3944		case O_EXT_HDR:
3945		case O_IP6:
3946#endif
3947		case O_IP4:
3948		case O_TAG:
3949			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3950				goto bad_size;
3951			break;
3952
3953		case O_FIB:
3954			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3955				goto bad_size;
3956			if (cmd->arg1 >= rt_numfibs) {
3957				printf("ipfw: invalid fib number %d\n",
3958					cmd->arg1);
3959				return EINVAL;
3960			}
3961			break;
3962
3963		case O_SETFIB:
3964			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3965				goto bad_size;
3966			if (cmd->arg1 >= rt_numfibs) {
3967				printf("ipfw: invalid fib number %d\n",
3968					cmd->arg1);
3969				return EINVAL;
3970			}
3971			goto check_action;
3972
3973		case O_UID:
3974		case O_GID:
3975		case O_JAIL:
3976		case O_IP_SRC:
3977		case O_IP_DST:
3978		case O_TCPSEQ:
3979		case O_TCPACK:
3980		case O_PROB:
3981		case O_ICMPTYPE:
3982			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3983				goto bad_size;
3984			break;
3985
3986		case O_LIMIT:
3987			if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
3988				goto bad_size;
3989			break;
3990
3991		case O_LOG:
3992			if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
3993				goto bad_size;
3994
3995			((ipfw_insn_log *)cmd)->log_left =
3996			    ((ipfw_insn_log *)cmd)->max_log;
3997
3998			break;
3999
4000		case O_IP_SRC_MASK:
4001		case O_IP_DST_MASK:
4002			/* only odd command lengths */
4003			if ( !(cmdlen & 1) || cmdlen > 31)
4004				goto bad_size;
4005			break;
4006
4007		case O_IP_SRC_SET:
4008		case O_IP_DST_SET:
4009			if (cmd->arg1 == 0 || cmd->arg1 > 256) {
4010				printf("ipfw: invalid set size %d\n",
4011					cmd->arg1);
4012				return EINVAL;
4013			}
4014			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
4015			    (cmd->arg1+31)/32 )
4016				goto bad_size;
4017			break;
4018
4019		case O_IP_SRC_LOOKUP:
4020		case O_IP_DST_LOOKUP:
4021			if (cmd->arg1 >= IPFW_TABLES_MAX) {
4022				printf("ipfw: invalid table number %d\n",
4023				    cmd->arg1);
4024				return (EINVAL);
4025			}
4026			if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
4027			    cmdlen != F_INSN_SIZE(ipfw_insn_u32))
4028				goto bad_size;
4029			break;
4030
4031		case O_MACADDR2:
4032			if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
4033				goto bad_size;
4034			break;
4035
4036		case O_NOP:
4037		case O_IPID:
4038		case O_IPTTL:
4039		case O_IPLEN:
4040		case O_TCPDATALEN:
4041		case O_TAGGED:
4042			if (cmdlen < 1 || cmdlen > 31)
4043				goto bad_size;
4044			break;
4045
4046		case O_MAC_TYPE:
4047		case O_IP_SRCPORT:
4048		case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
4049			if (cmdlen < 2 || cmdlen > 31)
4050				goto bad_size;
4051			break;
4052
4053		case O_RECV:
4054		case O_XMIT:
4055		case O_VIA:
4056			if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
4057				goto bad_size;
4058			break;
4059
4060		case O_ALTQ:
4061			if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
4062				goto bad_size;
4063			break;
4064
4065		case O_PIPE:
4066		case O_QUEUE:
4067			if (cmdlen != F_INSN_SIZE(ipfw_insn))
4068				goto bad_size;
4069			goto check_action;
4070
4071		case O_FORWARD_IP:
4072#ifdef	IPFIREWALL_FORWARD
4073			if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
4074				goto bad_size;
4075			goto check_action;
4076#else
4077			return EINVAL;
4078#endif
4079
4080		case O_DIVERT:
4081		case O_TEE:
4082			if (ip_divert_ptr == NULL)
4083				return EINVAL;
4084			else
4085				goto check_size;
4086		case O_NETGRAPH:
4087		case O_NGTEE:
4088			if (!NG_IPFW_LOADED)
4089				return EINVAL;
4090			else
4091				goto check_size;
4092		case O_NAT:
4093			if (!IPFW_NAT_LOADED)
4094				return EINVAL;
4095			if (cmdlen != F_INSN_SIZE(ipfw_insn_nat))
4096 				goto bad_size;
4097 			goto check_action;
4098		case O_FORWARD_MAC: /* XXX not implemented yet */
4099		case O_CHECK_STATE:
4100		case O_COUNT:
4101		case O_ACCEPT:
4102		case O_DENY:
4103		case O_REJECT:
4104#ifdef INET6
4105		case O_UNREACH6:
4106#endif
4107		case O_SKIPTO:
4108		case O_REASS:
4109check_size:
4110			if (cmdlen != F_INSN_SIZE(ipfw_insn))
4111				goto bad_size;
4112check_action:
4113			if (have_action) {
4114				printf("ipfw: opcode %d, multiple actions"
4115					" not allowed\n",
4116					cmd->opcode);
4117				return EINVAL;
4118			}
4119			have_action = 1;
4120			if (l != cmdlen) {
4121				printf("ipfw: opcode %d, action must be"
4122					" last opcode\n",
4123					cmd->opcode);
4124				return EINVAL;
4125			}
4126			break;
4127#ifdef INET6
4128		case O_IP6_SRC:
4129		case O_IP6_DST:
4130			if (cmdlen != F_INSN_SIZE(struct in6_addr) +
4131			    F_INSN_SIZE(ipfw_insn))
4132				goto bad_size;
4133			break;
4134
4135		case O_FLOW6ID:
4136			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
4137			    ((ipfw_insn_u32 *)cmd)->o.arg1)
4138				goto bad_size;
4139			break;
4140
4141		case O_IP6_SRC_MASK:
4142		case O_IP6_DST_MASK:
4143			if ( !(cmdlen & 1) || cmdlen > 127)
4144				goto bad_size;
4145			break;
4146		case O_ICMP6TYPE:
4147			if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
4148				goto bad_size;
4149			break;
4150#endif
4151
4152		default:
4153			switch (cmd->opcode) {
4154#ifndef INET6
4155			case O_IP6_SRC_ME:
4156			case O_IP6_DST_ME:
4157			case O_EXT_HDR:
4158			case O_IP6:
4159			case O_UNREACH6:
4160			case O_IP6_SRC:
4161			case O_IP6_DST:
4162			case O_FLOW6ID:
4163			case O_IP6_SRC_MASK:
4164			case O_IP6_DST_MASK:
4165			case O_ICMP6TYPE:
4166				printf("ipfw: no IPv6 support in kernel\n");
4167				return EPROTONOSUPPORT;
4168#endif
4169			default:
4170				printf("ipfw: opcode %d, unknown opcode\n",
4171					cmd->opcode);
4172				return EINVAL;
4173			}
4174		}
4175	}
4176	if (have_action == 0) {
4177		printf("ipfw: missing action\n");
4178		return EINVAL;
4179	}
4180	return 0;
4181
4182bad_size:
4183	printf("ipfw: opcode %d size %d wrong\n",
4184		cmd->opcode, cmdlen);
4185	return EINVAL;
4186}
4187
4188/*
4189 * Copy the static and dynamic rules to the supplied buffer
4190 * and return the amount of space actually used.
4191 */
4192static size_t
4193ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
4194{
4195	INIT_VNET_IPFW(curvnet);
4196	char *bp = buf;
4197	char *ep = bp + space;
4198	struct ip_fw *rule;
4199	int i;
4200	time_t	boot_seconds;
4201
4202        boot_seconds = boottime.tv_sec;
4203	/* XXX this can take a long time and locking will block packet flow */
4204	IPFW_RLOCK(chain);
4205	for (rule = chain->rules; rule ; rule = rule->next) {
4206		/*
4207		 * Verify the entry fits in the buffer in case the
4208		 * rules changed between calculating buffer space and
4209		 * now.  This would be better done using a generation
4210		 * number but should suffice for now.
4211		 */
4212		i = RULESIZE(rule);
4213		if (bp + i <= ep) {
4214			bcopy(rule, bp, i);
4215			/*
4216			 * XXX HACK. Store the disable mask in the "next"
4217			 * pointer in a wild attempt to keep the ABI the same.
4218			 * Why do we do this on EVERY rule?
4219			 */
4220			bcopy(&V_set_disable,
4221			    &(((struct ip_fw *)bp)->next_rule),
4222			    sizeof(V_set_disable));
4223			if (((struct ip_fw *)bp)->timestamp)
4224				((struct ip_fw *)bp)->timestamp += boot_seconds;
4225			bp += i;
4226		}
4227	}
4228	IPFW_RUNLOCK(chain);
4229	if (V_ipfw_dyn_v) {
4230		ipfw_dyn_rule *p, *last = NULL;
4231
4232		IPFW_DYN_LOCK();
4233		for (i = 0 ; i < V_curr_dyn_buckets; i++)
4234			for (p = V_ipfw_dyn_v[i] ; p != NULL; p = p->next) {
4235				if (bp + sizeof *p <= ep) {
4236					ipfw_dyn_rule *dst =
4237						(ipfw_dyn_rule *)bp;
4238					bcopy(p, dst, sizeof *p);
4239					bcopy(&(p->rule->rulenum), &(dst->rule),
4240					    sizeof(p->rule->rulenum));
4241					/*
4242					 * store set number into high word of
4243					 * dst->rule pointer.
4244					 */
4245					bcopy(&(p->rule->set),
4246					    (char *)&dst->rule +
4247					    sizeof(p->rule->rulenum),
4248					    sizeof(p->rule->set));
4249					/*
4250					 * store a non-null value in "next".
4251					 * The userland code will interpret a
4252					 * NULL here as a marker
4253					 * for the last dynamic rule.
4254					 */
4255					bcopy(&dst, &dst->next, sizeof(dst));
4256					last = dst;
4257					dst->expire =
4258					    TIME_LEQ(dst->expire, time_uptime) ?
4259						0 : dst->expire - time_uptime ;
4260					bp += sizeof(ipfw_dyn_rule);
4261				}
4262			}
4263		IPFW_DYN_UNLOCK();
4264		if (last != NULL) /* mark last dynamic rule */
4265			bzero(&last->next, sizeof(last));
4266	}
4267	return (bp - (char *)buf);
4268}
4269
4270
4271/**
4272 * {set|get}sockopt parser.
4273 */
4274static int
4275ipfw_ctl(struct sockopt *sopt)
4276{
4277#define	RULE_MAXSIZE	(256*sizeof(u_int32_t))
4278	INIT_VNET_IPFW(curvnet);
4279	int error;
4280	size_t size;
4281	struct ip_fw *buf, *rule;
4282	u_int32_t rulenum[2];
4283
4284	error = priv_check(sopt->sopt_td, PRIV_NETINET_IPFW);
4285	if (error)
4286		return (error);
4287
4288	/*
4289	 * Disallow modifications in really-really secure mode, but still allow
4290	 * the logging counters to be reset.
4291	 */
4292	if (sopt->sopt_name == IP_FW_ADD ||
4293	    (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
4294		error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
4295		if (error)
4296			return (error);
4297	}
4298
4299	error = 0;
4300
4301	switch (sopt->sopt_name) {
4302	case IP_FW_GET:
4303		/*
4304		 * pass up a copy of the current rules. Static rules
4305		 * come first (the last of which has number IPFW_DEFAULT_RULE),
4306		 * followed by a possibly empty list of dynamic rule.
4307		 * The last dynamic rule has NULL in the "next" field.
4308		 *
4309		 * Note that the calculated size is used to bound the
4310		 * amount of data returned to the user.  The rule set may
4311		 * change between calculating the size and returning the
4312		 * data in which case we'll just return what fits.
4313		 */
4314		size = V_static_len;	/* size of static rules */
4315		if (V_ipfw_dyn_v)		/* add size of dyn.rules */
4316			size += (V_dyn_count * sizeof(ipfw_dyn_rule));
4317
4318		if (size >= sopt->sopt_valsize)
4319			break;
4320		/*
4321		 * XXX todo: if the user passes a short length just to know
4322		 * how much room is needed, do not bother filling up the
4323		 * buffer, just jump to the sooptcopyout.
4324		 */
4325		buf = malloc(size, M_TEMP, M_WAITOK);
4326		error = sooptcopyout(sopt, buf,
4327				ipfw_getrules(&V_layer3_chain, buf, size));
4328		free(buf, M_TEMP);
4329		break;
4330
4331	case IP_FW_FLUSH:
4332		/*
4333		 * Normally we cannot release the lock on each iteration.
4334		 * We could do it here only because we start from the head all
4335		 * the times so there is no risk of missing some entries.
4336		 * On the other hand, the risk is that we end up with
4337		 * a very inconsistent ruleset, so better keep the lock
4338		 * around the whole cycle.
4339		 *
4340		 * XXX this code can be improved by resetting the head of
4341		 * the list to point to the default rule, and then freeing
4342		 * the old list without the need for a lock.
4343		 */
4344
4345		IPFW_WLOCK(&V_layer3_chain);
4346		free_chain(&V_layer3_chain, 0 /* keep default rule */);
4347		rule = V_layer3_chain.reap;
4348		IPFW_WUNLOCK(&V_layer3_chain);
4349		reap_rules(rule);
4350		break;
4351
4352	case IP_FW_ADD:
4353		rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
4354		error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
4355			sizeof(struct ip_fw) );
4356		if (error == 0)
4357			error = check_ipfw_struct(rule, sopt->sopt_valsize);
4358		if (error == 0) {
4359			error = add_rule(&V_layer3_chain, rule);
4360			size = RULESIZE(rule);
4361			if (!error && sopt->sopt_dir == SOPT_GET)
4362				error = sooptcopyout(sopt, rule, size);
4363		}
4364		free(rule, M_TEMP);
4365		break;
4366
4367	case IP_FW_DEL:
4368		/*
4369		 * IP_FW_DEL is used for deleting single rules or sets,
4370		 * and (ab)used to atomically manipulate sets. Argument size
4371		 * is used to distinguish between the two:
4372		 *    sizeof(u_int32_t)
4373		 *	delete single rule or set of rules,
4374		 *	or reassign rules (or sets) to a different set.
4375		 *    2*sizeof(u_int32_t)
4376		 *	atomic disable/enable sets.
4377		 *	first u_int32_t contains sets to be disabled,
4378		 *	second u_int32_t contains sets to be enabled.
4379		 */
4380		error = sooptcopyin(sopt, rulenum,
4381			2*sizeof(u_int32_t), sizeof(u_int32_t));
4382		if (error)
4383			break;
4384		size = sopt->sopt_valsize;
4385		if (size == sizeof(u_int32_t))	/* delete or reassign */
4386			error = del_entry(&V_layer3_chain, rulenum[0]);
4387		else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
4388			V_set_disable =
4389			    (V_set_disable | rulenum[0]) & ~rulenum[1] &
4390			    ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
4391		else
4392			error = EINVAL;
4393		break;
4394
4395	case IP_FW_ZERO:
4396	case IP_FW_RESETLOG: /* argument is an u_int_32, the rule number */
4397		rulenum[0] = 0;
4398		if (sopt->sopt_val != 0) {
4399		    error = sooptcopyin(sopt, rulenum,
4400			    sizeof(u_int32_t), sizeof(u_int32_t));
4401		    if (error)
4402			break;
4403		}
4404		error = zero_entry(&V_layer3_chain, rulenum[0],
4405			sopt->sopt_name == IP_FW_RESETLOG);
4406		break;
4407
4408	case IP_FW_TABLE_ADD:
4409		{
4410			ipfw_table_entry ent;
4411
4412			error = sooptcopyin(sopt, &ent,
4413			    sizeof(ent), sizeof(ent));
4414			if (error)
4415				break;
4416			error = add_table_entry(&V_layer3_chain, ent.tbl,
4417			    ent.addr, ent.masklen, ent.value);
4418		}
4419		break;
4420
4421	case IP_FW_TABLE_DEL:
4422		{
4423			ipfw_table_entry ent;
4424
4425			error = sooptcopyin(sopt, &ent,
4426			    sizeof(ent), sizeof(ent));
4427			if (error)
4428				break;
4429			error = del_table_entry(&V_layer3_chain, ent.tbl,
4430			    ent.addr, ent.masklen);
4431		}
4432		break;
4433
4434	case IP_FW_TABLE_FLUSH:
4435		{
4436			u_int16_t tbl;
4437
4438			error = sooptcopyin(sopt, &tbl,
4439			    sizeof(tbl), sizeof(tbl));
4440			if (error)
4441				break;
4442			IPFW_WLOCK(&V_layer3_chain);
4443			error = flush_table(&V_layer3_chain, tbl);
4444			IPFW_WUNLOCK(&V_layer3_chain);
4445		}
4446		break;
4447
4448	case IP_FW_TABLE_GETSIZE:
4449		{
4450			u_int32_t tbl, cnt;
4451
4452			if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
4453			    sizeof(tbl))))
4454				break;
4455			IPFW_RLOCK(&V_layer3_chain);
4456			error = count_table(&V_layer3_chain, tbl, &cnt);
4457			IPFW_RUNLOCK(&V_layer3_chain);
4458			if (error)
4459				break;
4460			error = sooptcopyout(sopt, &cnt, sizeof(cnt));
4461		}
4462		break;
4463
4464	case IP_FW_TABLE_LIST:
4465		{
4466			ipfw_table *tbl;
4467
4468			if (sopt->sopt_valsize < sizeof(*tbl)) {
4469				error = EINVAL;
4470				break;
4471			}
4472			size = sopt->sopt_valsize;
4473			tbl = malloc(size, M_TEMP, M_WAITOK);
4474			error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
4475			if (error) {
4476				free(tbl, M_TEMP);
4477				break;
4478			}
4479			tbl->size = (size - sizeof(*tbl)) /
4480			    sizeof(ipfw_table_entry);
4481			IPFW_RLOCK(&V_layer3_chain);
4482			error = dump_table(&V_layer3_chain, tbl);
4483			IPFW_RUNLOCK(&V_layer3_chain);
4484			if (error) {
4485				free(tbl, M_TEMP);
4486				break;
4487			}
4488			error = sooptcopyout(sopt, tbl, size);
4489			free(tbl, M_TEMP);
4490		}
4491		break;
4492
4493	case IP_FW_NAT_CFG:
4494		if (IPFW_NAT_LOADED)
4495			error = ipfw_nat_cfg_ptr(sopt);
4496		else {
4497			printf("IP_FW_NAT_CFG: %s\n",
4498			    "ipfw_nat not present, please load it");
4499			error = EINVAL;
4500		}
4501		break;
4502
4503	case IP_FW_NAT_DEL:
4504		if (IPFW_NAT_LOADED)
4505			error = ipfw_nat_del_ptr(sopt);
4506		else {
4507			printf("IP_FW_NAT_DEL: %s\n",
4508			    "ipfw_nat not present, please load it");
4509			error = EINVAL;
4510		}
4511		break;
4512
4513	case IP_FW_NAT_GET_CONFIG:
4514		if (IPFW_NAT_LOADED)
4515			error = ipfw_nat_get_cfg_ptr(sopt);
4516		else {
4517			printf("IP_FW_NAT_GET_CFG: %s\n",
4518			    "ipfw_nat not present, please load it");
4519			error = EINVAL;
4520		}
4521		break;
4522
4523	case IP_FW_NAT_GET_LOG:
4524		if (IPFW_NAT_LOADED)
4525			error = ipfw_nat_get_log_ptr(sopt);
4526		else {
4527			printf("IP_FW_NAT_GET_LOG: %s\n",
4528			    "ipfw_nat not present, please load it");
4529			error = EINVAL;
4530		}
4531		break;
4532
4533	default:
4534		printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
4535		error = EINVAL;
4536	}
4537
4538	return (error);
4539#undef RULE_MAXSIZE
4540}
4541
4542/*
4543 * This procedure is only used to handle keepalives. It is invoked
4544 * every dyn_keepalive_period
4545 */
4546static void
4547ipfw_tick(void * __unused unused)
4548{
4549	INIT_VNET_IPFW(curvnet);
4550	struct mbuf *m0, *m, *mnext, **mtailp;
4551	int i;
4552	ipfw_dyn_rule *q;
4553
4554	if (V_dyn_keepalive == 0 || V_ipfw_dyn_v == NULL || V_dyn_count == 0)
4555		goto done;
4556
4557	/*
4558	 * We make a chain of packets to go out here -- not deferring
4559	 * until after we drop the IPFW dynamic rule lock would result
4560	 * in a lock order reversal with the normal packet input -> ipfw
4561	 * call stack.
4562	 */
4563	m0 = NULL;
4564	mtailp = &m0;
4565	IPFW_DYN_LOCK();
4566	for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
4567		for (q = V_ipfw_dyn_v[i] ; q ; q = q->next ) {
4568			if (q->dyn_type == O_LIMIT_PARENT)
4569				continue;
4570			if (q->id.proto != IPPROTO_TCP)
4571				continue;
4572			if ( (q->state & BOTH_SYN) != BOTH_SYN)
4573				continue;
4574			if (TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
4575			    q->expire))
4576				continue;	/* too early */
4577			if (TIME_LEQ(q->expire, time_uptime))
4578				continue;	/* too late, rule expired */
4579
4580			*mtailp = send_pkt(NULL, &(q->id), q->ack_rev - 1,
4581				q->ack_fwd, TH_SYN);
4582			if (*mtailp != NULL)
4583				mtailp = &(*mtailp)->m_nextpkt;
4584			*mtailp = send_pkt(NULL, &(q->id), q->ack_fwd - 1,
4585				q->ack_rev, 0);
4586			if (*mtailp != NULL)
4587				mtailp = &(*mtailp)->m_nextpkt;
4588		}
4589	}
4590	IPFW_DYN_UNLOCK();
4591	for (m = mnext = m0; m != NULL; m = mnext) {
4592		mnext = m->m_nextpkt;
4593		m->m_nextpkt = NULL;
4594		ip_output(m, NULL, NULL, 0, NULL, NULL);
4595	}
4596done:
4597	callout_reset(&V_ipfw_timeout, V_dyn_keepalive_period * hz,
4598		      ipfw_tick, NULL);
4599}
4600
4601int
4602ipfw_init(void)
4603{
4604	INIT_VNET_IPFW(curvnet);
4605	struct ip_fw default_rule;
4606	int error;
4607
4608	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
4609
4610	V_ipfw_dyn_v = NULL;
4611	V_dyn_buckets = 256;	/* must be power of 2 */
4612	V_curr_dyn_buckets = 256; /* must be power of 2 */
4613
4614	V_dyn_ack_lifetime = 300;
4615	V_dyn_syn_lifetime = 20;
4616	V_dyn_fin_lifetime = 1;
4617	V_dyn_rst_lifetime = 1;
4618	V_dyn_udp_lifetime = 10;
4619	V_dyn_short_lifetime = 5;
4620
4621	V_dyn_keepalive_interval = 20;
4622	V_dyn_keepalive_period = 5;
4623	V_dyn_keepalive = 1;	/* do send keepalives */
4624
4625	V_dyn_max = 4096;	/* max # of dynamic rules */
4626
4627	V_fw_deny_unknown_exthdrs = 1;
4628
4629#ifdef INET6
4630	/* Setup IPv6 fw sysctl tree. */
4631	sysctl_ctx_init(&ip6_fw_sysctl_ctx);
4632	ip6_fw_sysctl_tree = SYSCTL_ADD_NODE(&ip6_fw_sysctl_ctx,
4633	    SYSCTL_STATIC_CHILDREN(_net_inet6_ip6), OID_AUTO, "fw",
4634	    CTLFLAG_RW | CTLFLAG_SECURE, 0, "Firewall");
4635	SYSCTL_ADD_PROC(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4636	    OID_AUTO, "enable", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3,
4637	    &V_fw6_enable, 0, ipfw_chg_hook, "I", "Enable ipfw+6");
4638	SYSCTL_ADD_INT(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4639	    OID_AUTO, "deny_unknown_exthdrs", CTLFLAG_RW | CTLFLAG_SECURE,
4640	    &V_fw_deny_unknown_exthdrs, 0,
4641	    "Deny packets with unknown IPv6 Extension Headers");
4642#endif
4643
4644	V_layer3_chain.rules = NULL;
4645	IPFW_LOCK_INIT(&V_layer3_chain);
4646	ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule",
4647	    sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
4648	    UMA_ALIGN_PTR, 0);
4649	IPFW_DYN_LOCK_INIT();
4650	callout_init(&V_ipfw_timeout, CALLOUT_MPSAFE);
4651
4652	bzero(&default_rule, sizeof default_rule);
4653
4654	default_rule.act_ofs = 0;
4655	default_rule.rulenum = IPFW_DEFAULT_RULE;
4656	default_rule.cmd_len = 1;
4657	default_rule.set = RESVD_SET;
4658
4659	default_rule.cmd[0].len = 1;
4660	default_rule.cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
4661
4662	error = add_rule(&V_layer3_chain, &default_rule);
4663	if (error != 0) {
4664		printf("ipfw2: error %u initializing default rule "
4665			"(support disabled)\n", error);
4666		IPFW_DYN_LOCK_DESTROY();
4667		IPFW_LOCK_DESTROY(&V_layer3_chain);
4668		uma_zdestroy(ipfw_dyn_rule_zone);
4669		return (error);
4670	}
4671
4672	ip_fw_default_rule = V_layer3_chain.rules;
4673	printf("ipfw2 "
4674#ifdef INET6
4675		"(+ipv6) "
4676#endif
4677		"initialized, divert %s, nat %s, "
4678		"rule-based forwarding "
4679#ifdef IPFIREWALL_FORWARD
4680		"enabled, "
4681#else
4682		"disabled, "
4683#endif
4684		"default to %s, logging ",
4685#ifdef IPDIVERT
4686		"enabled",
4687#else
4688		"loadable",
4689#endif
4690#ifdef IPFIREWALL_NAT
4691		"enabled",
4692#else
4693		"loadable",
4694#endif
4695
4696		default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
4697
4698#ifdef IPFIREWALL_VERBOSE
4699	V_fw_verbose = 1;
4700#endif
4701#ifdef IPFIREWALL_VERBOSE_LIMIT
4702	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
4703#endif
4704	if (V_fw_verbose == 0)
4705		printf("disabled\n");
4706	else if (V_verbose_limit == 0)
4707		printf("unlimited\n");
4708	else
4709		printf("limited to %d packets/entry by default\n",
4710		    V_verbose_limit);
4711
4712	error = init_tables(&V_layer3_chain);
4713	if (error) {
4714		IPFW_DYN_LOCK_DESTROY();
4715		IPFW_LOCK_DESTROY(&V_layer3_chain);
4716		uma_zdestroy(ipfw_dyn_rule_zone);
4717		return (error);
4718	}
4719	ip_fw_ctl_ptr = ipfw_ctl;
4720	ip_fw_chk_ptr = ipfw_chk;
4721	callout_reset(&V_ipfw_timeout, hz, ipfw_tick, NULL);
4722	LIST_INIT(&V_layer3_chain.nat);
4723	return (0);
4724}
4725
4726void
4727ipfw_destroy(void)
4728{
4729	INIT_VNET_IPFW(curvnet);
4730	struct ip_fw *reap;
4731
4732	ip_fw_chk_ptr = NULL;
4733	ip_fw_ctl_ptr = NULL;
4734	callout_drain(&V_ipfw_timeout);
4735	IPFW_WLOCK(&V_layer3_chain);
4736	flush_tables(&V_layer3_chain);
4737	free_chain(&V_layer3_chain, 1 /* kill default rule */);
4738	reap = V_layer3_chain.reap;
4739	IPFW_WUNLOCK(&V_layer3_chain);
4740	reap_rules(reap);
4741	IPFW_DYN_LOCK_DESTROY();
4742	uma_zdestroy(ipfw_dyn_rule_zone);
4743	if (V_ipfw_dyn_v != NULL)
4744		free(V_ipfw_dyn_v, M_IPFW);
4745	IPFW_LOCK_DESTROY(&V_layer3_chain);
4746
4747#ifdef INET6
4748	/* Free IPv6 fw sysctl tree. */
4749	sysctl_ctx_free(&ip6_fw_sysctl_ctx);
4750#endif
4751
4752	printf("IP firewall unloaded\n");
4753}
4754