ip_fw2.c revision 189288
1/*-
2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: head/sys/netinet/ip_fw2.c 189288 2009-03-02 22:11:48Z luigi $");
28
29#define        DEB(x)
30#define        DDB(x) x
31
32/*
33 * Implement IP packet firewall (new version)
34 */
35
36#if !defined(KLD_MODULE)
37#include "opt_ipfw.h"
38#include "opt_ipdivert.h"
39#include "opt_ipdn.h"
40#include "opt_inet.h"
41#ifndef INET
42#error IPFIREWALL requires INET.
43#endif /* INET */
44#endif
45#include "opt_inet6.h"
46#include "opt_ipsec.h"
47#include "opt_mac.h"
48#include "opt_route.h"
49
50#include <sys/param.h>
51#include <sys/systm.h>
52#include <sys/condvar.h>
53#include <sys/eventhandler.h>
54#include <sys/malloc.h>
55#include <sys/mbuf.h>
56#include <sys/kernel.h>
57#include <sys/lock.h>
58#include <sys/jail.h>
59#include <sys/module.h>
60#include <sys/priv.h>
61#include <sys/proc.h>
62#include <sys/rwlock.h>
63#include <sys/socket.h>
64#include <sys/socketvar.h>
65#include <sys/sysctl.h>
66#include <sys/syslog.h>
67#include <sys/ucred.h>
68#include <sys/vimage.h>
69#include <net/ethernet.h> /* for ETHERTYPE_IP */
70#include <net/if.h>
71#include <net/radix.h>
72#include <net/route.h>
73#include <net/pf_mtag.h>
74#include <net/vnet.h>
75
76#define	IPFW_INTERNAL	/* Access to protected data structures in ip_fw.h. */
77
78#include <netinet/in.h>
79#include <netinet/in_var.h>
80#include <netinet/in_pcb.h>
81#include <netinet/ip.h>
82#include <netinet/ip_var.h>
83#include <netinet/ip_icmp.h>
84#include <netinet/ip_fw.h>
85#include <netinet/ip_divert.h>
86#include <netinet/ip_dummynet.h>
87#include <netinet/ip_carp.h>
88#include <netinet/pim.h>
89#include <netinet/tcp_var.h>
90#include <netinet/udp.h>
91#include <netinet/udp_var.h>
92#include <netinet/sctp.h>
93#include <netinet/vinet.h>
94
95#include <netgraph/ng_ipfw.h>
96
97#include <netinet/ip6.h>
98#include <netinet/icmp6.h>
99#ifdef INET6
100#include <netinet6/scope6_var.h>
101#endif
102
103#include <machine/in_cksum.h>	/* XXX for in_cksum */
104
105#ifdef MAC
106#include <security/mac/mac_framework.h>
107#endif
108
109#ifndef VIMAGE
110#ifndef VIMAGE_GLOBALS
111struct vnet_ipfw vnet_ipfw_0;
112#endif
113#endif
114
115/*
116 * set_disable contains one bit per set value (0..31).
117 * If the bit is set, all rules with the corresponding set
118 * are disabled. Set RESVD_SET(31) is reserved for the default rule
119 * and rules that are not deleted by the flush command,
120 * and CANNOT be disabled.
121 * Rules in set RESVD_SET can only be deleted explicitly.
122 */
123#ifdef VIMAGE_GLOBALS
124static u_int32_t set_disable;
125static int fw_verbose;
126static struct callout ipfw_timeout;
127static int verbose_limit;
128#endif
129
130static uma_zone_t ipfw_dyn_rule_zone;
131
132/*
133 * Data structure to cache our ucred related
134 * information. This structure only gets used if
135 * the user specified UID/GID based constraints in
136 * a firewall rule.
137 */
138struct ip_fw_ugid {
139	gid_t		fw_groups[NGROUPS];
140	int		fw_ngroups;
141	uid_t		fw_uid;
142	int		fw_prid;
143};
144
145/*
146 * list of rules for layer 3
147 */
148#ifdef VIMAGE_GLOBALS
149struct ip_fw_chain layer3_chain;
150#endif
151
152MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
153MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
154#define IPFW_NAT_LOADED (ipfw_nat_ptr != NULL)
155ipfw_nat_t *ipfw_nat_ptr = NULL;
156ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
157ipfw_nat_cfg_t *ipfw_nat_del_ptr;
158ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
159ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
160
161struct table_entry {
162	struct radix_node	rn[2];
163	struct sockaddr_in	addr, mask;
164	u_int32_t		value;
165};
166
167#ifdef VIMAGE_GLOBALS
168static int autoinc_step;
169#endif
170
171extern int ipfw_chg_hook(SYSCTL_HANDLER_ARGS);
172
173#ifdef SYSCTL_NODE
174SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
175SYSCTL_V_PROC(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, enable,
176    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3, fw_enable, 0,
177    ipfw_chg_hook, "I", "Enable ipfw");
178SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, autoinc_step,
179    CTLFLAG_RW, autoinc_step, 0, "Rule number autincrement step");
180SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_fw, OID_AUTO, one_pass,
181    CTLFLAG_RW | CTLFLAG_SECURE3, fw_one_pass, 0,
182    "Only do a single pass through ipfw when using dummynet(4)");
183SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, verbose,
184    CTLFLAG_RW | CTLFLAG_SECURE3,
185    fw_verbose, 0, "Log matches to ipfw rules");
186SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, verbose_limit,
187    CTLFLAG_RW, verbose_limit, 0,
188    "Set upper limit of matches of ipfw rules logged");
189SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
190    NULL, IPFW_DEFAULT_RULE, "The default/max possible rule number.");
191SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, tables_max, CTLFLAG_RD,
192    NULL, IPFW_TABLES_MAX, "The maximum number of tables.");
193#endif /* SYSCTL_NODE */
194
195/*
196 * Description of dynamic rules.
197 *
198 * Dynamic rules are stored in lists accessed through a hash table
199 * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
200 * be modified through the sysctl variable dyn_buckets which is
201 * updated when the table becomes empty.
202 *
203 * XXX currently there is only one list, ipfw_dyn.
204 *
205 * When a packet is received, its address fields are first masked
206 * with the mask defined for the rule, then hashed, then matched
207 * against the entries in the corresponding list.
208 * Dynamic rules can be used for different purposes:
209 *  + stateful rules;
210 *  + enforcing limits on the number of sessions;
211 *  + in-kernel NAT (not implemented yet)
212 *
213 * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
214 * measured in seconds and depending on the flags.
215 *
216 * The total number of dynamic rules is stored in dyn_count.
217 * The max number of dynamic rules is dyn_max. When we reach
218 * the maximum number of rules we do not create anymore. This is
219 * done to avoid consuming too much memory, but also too much
220 * time when searching on each packet (ideally, we should try instead
221 * to put a limit on the length of the list on each bucket...).
222 *
223 * Each dynamic rule holds a pointer to the parent ipfw rule so
224 * we know what action to perform. Dynamic rules are removed when
225 * the parent rule is deleted. XXX we should make them survive.
226 *
227 * There are some limitations with dynamic rules -- we do not
228 * obey the 'randomized match', and we do not do multiple
229 * passes through the firewall. XXX check the latter!!!
230 */
231#ifdef VIMAGE_GLOBALS
232static ipfw_dyn_rule **ipfw_dyn_v;
233static u_int32_t dyn_buckets;
234static u_int32_t curr_dyn_buckets;
235#endif
236
237static struct mtx ipfw_dyn_mtx;		/* mutex guarding dynamic rules */
238#define	IPFW_DYN_LOCK_INIT() \
239	mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
240#define	IPFW_DYN_LOCK_DESTROY()	mtx_destroy(&ipfw_dyn_mtx)
241#define	IPFW_DYN_LOCK()		mtx_lock(&ipfw_dyn_mtx)
242#define	IPFW_DYN_UNLOCK()	mtx_unlock(&ipfw_dyn_mtx)
243#define	IPFW_DYN_LOCK_ASSERT()	mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
244
245/*
246 * Timeouts for various events in handing dynamic rules.
247 */
248#ifdef VIMAGE_GLOBALS
249static u_int32_t dyn_ack_lifetime;
250static u_int32_t dyn_syn_lifetime;
251static u_int32_t dyn_fin_lifetime;
252static u_int32_t dyn_rst_lifetime;
253static u_int32_t dyn_udp_lifetime;
254static u_int32_t dyn_short_lifetime;
255
256/*
257 * Keepalives are sent if dyn_keepalive is set. They are sent every
258 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
259 * seconds of lifetime of a rule.
260 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
261 * than dyn_keepalive_period.
262 */
263
264static u_int32_t dyn_keepalive_interval;
265static u_int32_t dyn_keepalive_period;
266static u_int32_t dyn_keepalive;
267
268static u_int32_t static_count;	/* # of static rules */
269static u_int32_t static_len;	/* size in bytes of static rules */
270static u_int32_t dyn_count;	/* # of dynamic rules */
271static u_int32_t dyn_max;	/* max # of dynamic rules */
272#endif /* VIMAGE_GLOBALS */
273
274#ifdef SYSCTL_NODE
275SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_buckets,
276    CTLFLAG_RW, dyn_buckets, 0, "Number of dyn. buckets");
277SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
278    CTLFLAG_RD, curr_dyn_buckets, 0, "Current Number of dyn. buckets");
279SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_count,
280    CTLFLAG_RD, dyn_count, 0, "Number of dyn. rules");
281SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_max,
282    CTLFLAG_RW, dyn_max, 0, "Max number of dyn. rules");
283SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, static_count,
284    CTLFLAG_RD, static_count, 0, "Number of static rules");
285SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
286    CTLFLAG_RW, dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
287SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
288    CTLFLAG_RW, dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
289SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
290    CTLFLAG_RW, dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
291SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
292    CTLFLAG_RW, dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
293SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
294    CTLFLAG_RW, dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
295SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
296    CTLFLAG_RW, dyn_short_lifetime, 0,
297    "Lifetime of dyn. rules for other situations");
298SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_keepalive,
299    CTLFLAG_RW, dyn_keepalive, 0, "Enable keepalives for dyn. rules");
300#endif /* SYSCTL_NODE */
301
302#ifdef INET6
303/*
304 * IPv6 specific variables
305 */
306#ifdef SYSCTL_NODE
307SYSCTL_DECL(_net_inet6_ip6);
308#endif /* SYSCTL_NODE */
309
310static struct sysctl_ctx_list ip6_fw_sysctl_ctx;
311static struct sysctl_oid *ip6_fw_sysctl_tree;
312#endif /* INET6 */
313
314#ifdef VIMAGE_GLOBALS
315static int fw_deny_unknown_exthdrs;
316#endif
317
318/*
319 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
320 * Other macros just cast void * into the appropriate type
321 */
322#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
323#define	TCP(p)		((struct tcphdr *)(p))
324#define	SCTP(p)		((struct sctphdr *)(p))
325#define	UDP(p)		((struct udphdr *)(p))
326#define	ICMP(p)		((struct icmphdr *)(p))
327#define	ICMP6(p)	((struct icmp6_hdr *)(p))
328
329static __inline int
330icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
331{
332	int type = icmp->icmp_type;
333
334	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
335}
336
337#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
338    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
339
340static int
341is_icmp_query(struct icmphdr *icmp)
342{
343	int type = icmp->icmp_type;
344
345	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
346}
347#undef TT
348
349/*
350 * The following checks use two arrays of 8 or 16 bits to store the
351 * bits that we want set or clear, respectively. They are in the
352 * low and high half of cmd->arg1 or cmd->d[0].
353 *
354 * We scan options and store the bits we find set. We succeed if
355 *
356 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
357 *
358 * The code is sometimes optimized not to store additional variables.
359 */
360
361static int
362flags_match(ipfw_insn *cmd, u_int8_t bits)
363{
364	u_char want_clear;
365	bits = ~bits;
366
367	if ( ((cmd->arg1 & 0xff) & bits) != 0)
368		return 0; /* some bits we want set were clear */
369	want_clear = (cmd->arg1 >> 8) & 0xff;
370	if ( (want_clear & bits) != want_clear)
371		return 0; /* some bits we want clear were set */
372	return 1;
373}
374
375static int
376ipopts_match(struct ip *ip, ipfw_insn *cmd)
377{
378	int optlen, bits = 0;
379	u_char *cp = (u_char *)(ip + 1);
380	int x = (ip->ip_hl << 2) - sizeof (struct ip);
381
382	for (; x > 0; x -= optlen, cp += optlen) {
383		int opt = cp[IPOPT_OPTVAL];
384
385		if (opt == IPOPT_EOL)
386			break;
387		if (opt == IPOPT_NOP)
388			optlen = 1;
389		else {
390			optlen = cp[IPOPT_OLEN];
391			if (optlen <= 0 || optlen > x)
392				return 0; /* invalid or truncated */
393		}
394		switch (opt) {
395
396		default:
397			break;
398
399		case IPOPT_LSRR:
400			bits |= IP_FW_IPOPT_LSRR;
401			break;
402
403		case IPOPT_SSRR:
404			bits |= IP_FW_IPOPT_SSRR;
405			break;
406
407		case IPOPT_RR:
408			bits |= IP_FW_IPOPT_RR;
409			break;
410
411		case IPOPT_TS:
412			bits |= IP_FW_IPOPT_TS;
413			break;
414		}
415	}
416	return (flags_match(cmd, bits));
417}
418
419static int
420tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
421{
422	int optlen, bits = 0;
423	u_char *cp = (u_char *)(tcp + 1);
424	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
425
426	for (; x > 0; x -= optlen, cp += optlen) {
427		int opt = cp[0];
428		if (opt == TCPOPT_EOL)
429			break;
430		if (opt == TCPOPT_NOP)
431			optlen = 1;
432		else {
433			optlen = cp[1];
434			if (optlen <= 0)
435				break;
436		}
437
438		switch (opt) {
439
440		default:
441			break;
442
443		case TCPOPT_MAXSEG:
444			bits |= IP_FW_TCPOPT_MSS;
445			break;
446
447		case TCPOPT_WINDOW:
448			bits |= IP_FW_TCPOPT_WINDOW;
449			break;
450
451		case TCPOPT_SACK_PERMITTED:
452		case TCPOPT_SACK:
453			bits |= IP_FW_TCPOPT_SACK;
454			break;
455
456		case TCPOPT_TIMESTAMP:
457			bits |= IP_FW_TCPOPT_TS;
458			break;
459
460		}
461	}
462	return (flags_match(cmd, bits));
463}
464
465static int
466iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
467{
468	if (ifp == NULL)	/* no iface with this packet, match fails */
469		return 0;
470	/* Check by name or by IP address */
471	if (cmd->name[0] != '\0') { /* match by name */
472		/* Check name */
473		if (cmd->p.glob) {
474			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
475				return(1);
476		} else {
477			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
478				return(1);
479		}
480	} else {
481		struct ifaddr *ia;
482
483		/* XXX lock? */
484		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
485			if (ia->ifa_addr->sa_family != AF_INET)
486				continue;
487			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
488			    (ia->ifa_addr))->sin_addr.s_addr)
489				return(1);	/* match */
490		}
491	}
492	return(0);	/* no match, fail ... */
493}
494
495/*
496 * The verify_path function checks if a route to the src exists and
497 * if it is reachable via ifp (when provided).
498 *
499 * The 'verrevpath' option checks that the interface that an IP packet
500 * arrives on is the same interface that traffic destined for the
501 * packet's source address would be routed out of.  The 'versrcreach'
502 * option just checks that the source address is reachable via any route
503 * (except default) in the routing table.  These two are a measure to block
504 * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
505 * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
506 * is purposely reminiscent of the Cisco IOS command,
507 *
508 *   ip verify unicast reverse-path
509 *   ip verify unicast source reachable-via any
510 *
511 * which implements the same functionality. But note that syntax is
512 * misleading. The check may be performed on all IP packets whether unicast,
513 * multicast, or broadcast.
514 */
515static int
516verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
517{
518	struct route ro;
519	struct sockaddr_in *dst;
520
521	bzero(&ro, sizeof(ro));
522
523	dst = (struct sockaddr_in *)&(ro.ro_dst);
524	dst->sin_family = AF_INET;
525	dst->sin_len = sizeof(*dst);
526	dst->sin_addr = src;
527	in_rtalloc_ign(&ro, 0, fib);
528
529	if (ro.ro_rt == NULL)
530		return 0;
531
532	/*
533	 * If ifp is provided, check for equality with rtentry.
534	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
535	 * in order to pass packets injected back by if_simloop():
536	 * if useloopback == 1 routing entry (via lo0) for our own address
537	 * may exist, so we need to handle routing assymetry.
538	 */
539	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
540		RTFREE(ro.ro_rt);
541		return 0;
542	}
543
544	/* if no ifp provided, check if rtentry is not default route */
545	if (ifp == NULL &&
546	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
547		RTFREE(ro.ro_rt);
548		return 0;
549	}
550
551	/* or if this is a blackhole/reject route */
552	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
553		RTFREE(ro.ro_rt);
554		return 0;
555	}
556
557	/* found valid route */
558	RTFREE(ro.ro_rt);
559	return 1;
560}
561
562#ifdef INET6
563/*
564 * ipv6 specific rules here...
565 */
566static __inline int
567icmp6type_match (int type, ipfw_insn_u32 *cmd)
568{
569	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
570}
571
572static int
573flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
574{
575	int i;
576	for (i=0; i <= cmd->o.arg1; ++i )
577		if (curr_flow == cmd->d[i] )
578			return 1;
579	return 0;
580}
581
582/* support for IP6_*_ME opcodes */
583static int
584search_ip6_addr_net (struct in6_addr * ip6_addr)
585{
586	INIT_VNET_NET(curvnet);
587	struct ifnet *mdc;
588	struct ifaddr *mdc2;
589	struct in6_ifaddr *fdm;
590	struct in6_addr copia;
591
592	TAILQ_FOREACH(mdc, &V_ifnet, if_link)
593		TAILQ_FOREACH(mdc2, &mdc->if_addrlist, ifa_list) {
594			if (mdc2->ifa_addr->sa_family == AF_INET6) {
595				fdm = (struct in6_ifaddr *)mdc2;
596				copia = fdm->ia_addr.sin6_addr;
597				/* need for leaving scope_id in the sock_addr */
598				in6_clearscope(&copia);
599				if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia))
600					return 1;
601			}
602		}
603	return 0;
604}
605
606static int
607verify_path6(struct in6_addr *src, struct ifnet *ifp)
608{
609	struct route_in6 ro;
610	struct sockaddr_in6 *dst;
611
612	bzero(&ro, sizeof(ro));
613
614	dst = (struct sockaddr_in6 * )&(ro.ro_dst);
615	dst->sin6_family = AF_INET6;
616	dst->sin6_len = sizeof(*dst);
617	dst->sin6_addr = *src;
618	/* XXX MRT 0 for ipv6 at this time */
619	rtalloc_ign((struct route *)&ro, 0);
620
621	if (ro.ro_rt == NULL)
622		return 0;
623
624	/*
625	 * if ifp is provided, check for equality with rtentry
626	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
627	 * to support the case of sending packets to an address of our own.
628	 * (where the former interface is the first argument of if_simloop()
629	 *  (=ifp), the latter is lo0)
630	 */
631	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
632		RTFREE(ro.ro_rt);
633		return 0;
634	}
635
636	/* if no ifp provided, check if rtentry is not default route */
637	if (ifp == NULL &&
638	    IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
639		RTFREE(ro.ro_rt);
640		return 0;
641	}
642
643	/* or if this is a blackhole/reject route */
644	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
645		RTFREE(ro.ro_rt);
646		return 0;
647	}
648
649	/* found valid route */
650	RTFREE(ro.ro_rt);
651	return 1;
652
653}
654static __inline int
655hash_packet6(struct ipfw_flow_id *id)
656{
657	u_int32_t i;
658	i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
659	    (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
660	    (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
661	    (id->src_ip6.__u6_addr.__u6_addr32[3]) ^
662	    (id->dst_port) ^ (id->src_port);
663	return i;
664}
665
666static int
667is_icmp6_query(int icmp6_type)
668{
669	if ((icmp6_type <= ICMP6_MAXTYPE) &&
670	    (icmp6_type == ICMP6_ECHO_REQUEST ||
671	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
672	    icmp6_type == ICMP6_WRUREQUEST ||
673	    icmp6_type == ICMP6_FQDN_QUERY ||
674	    icmp6_type == ICMP6_NI_QUERY))
675		return (1);
676
677	return (0);
678}
679
680static void
681send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
682{
683	struct mbuf *m;
684
685	m = args->m;
686	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
687		struct tcphdr *tcp;
688		tcp_seq ack, seq;
689		int flags;
690		struct {
691			struct ip6_hdr ip6;
692			struct tcphdr th;
693		} ti;
694		tcp = (struct tcphdr *)((char *)ip6 + hlen);
695
696		if ((tcp->th_flags & TH_RST) != 0) {
697			m_freem(m);
698			args->m = NULL;
699			return;
700		}
701
702		ti.ip6 = *ip6;
703		ti.th = *tcp;
704		ti.th.th_seq = ntohl(ti.th.th_seq);
705		ti.th.th_ack = ntohl(ti.th.th_ack);
706		ti.ip6.ip6_nxt = IPPROTO_TCP;
707
708		if (ti.th.th_flags & TH_ACK) {
709			ack = 0;
710			seq = ti.th.th_ack;
711			flags = TH_RST;
712		} else {
713			ack = ti.th.th_seq;
714			if ((m->m_flags & M_PKTHDR) != 0) {
715				/*
716				 * total new data to ACK is:
717				 * total packet length,
718				 * minus the header length,
719				 * minus the tcp header length.
720				 */
721				ack += m->m_pkthdr.len - hlen
722					- (ti.th.th_off << 2);
723			} else if (ip6->ip6_plen) {
724				ack += ntohs(ip6->ip6_plen) + sizeof(*ip6) -
725				    hlen - (ti.th.th_off << 2);
726			} else {
727				m_freem(m);
728				return;
729			}
730			if (tcp->th_flags & TH_SYN)
731				ack++;
732			seq = 0;
733			flags = TH_RST|TH_ACK;
734		}
735		bcopy(&ti, ip6, sizeof(ti));
736		/*
737		 * m is only used to recycle the mbuf
738		 * The data in it is never read so we don't need
739		 * to correct the offsets or anything
740		 */
741		tcp_respond(NULL, ip6, tcp, m, ack, seq, flags);
742	} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
743#if 0
744		/*
745		 * Unlike above, the mbufs need to line up with the ip6 hdr,
746		 * as the contents are read. We need to m_adj() the
747		 * needed amount.
748		 * The mbuf will however be thrown away so we can adjust it.
749		 * Remember we did an m_pullup on it already so we
750		 * can make some assumptions about contiguousness.
751		 */
752		if (args->L3offset)
753			m_adj(m, args->L3offset);
754#endif
755		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
756	} else
757		m_freem(m);
758
759	args->m = NULL;
760}
761
762#endif /* INET6 */
763
764#ifdef VIMAGE_GLOBALS
765static u_int64_t norule_counter;	/* counter for ipfw_log(NULL...) */
766#endif
767
768#define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
769#define SNP(buf) buf, sizeof(buf)
770
771/*
772 * We enter here when we have a rule with O_LOG.
773 * XXX this function alone takes about 2Kbytes of code!
774 */
775static void
776ipfw_log(struct ip_fw *f, u_int hlen, struct ip_fw_args *args,
777    struct mbuf *m, struct ifnet *oif, u_short offset, uint32_t tablearg,
778    struct ip *ip)
779{
780	INIT_VNET_IPFW(curvnet);
781	struct ether_header *eh = args->eh;
782	char *action;
783	int limit_reached = 0;
784	char action2[40], proto[128], fragment[32];
785
786	fragment[0] = '\0';
787	proto[0] = '\0';
788
789	if (f == NULL) {	/* bogus pkt */
790		if (V_verbose_limit != 0 && V_norule_counter >= V_verbose_limit)
791			return;
792		V_norule_counter++;
793		if (V_norule_counter == V_verbose_limit)
794			limit_reached = V_verbose_limit;
795		action = "Refuse";
796	} else {	/* O_LOG is the first action, find the real one */
797		ipfw_insn *cmd = ACTION_PTR(f);
798		ipfw_insn_log *l = (ipfw_insn_log *)cmd;
799
800		if (l->max_log != 0 && l->log_left == 0)
801			return;
802		l->log_left--;
803		if (l->log_left == 0)
804			limit_reached = l->max_log;
805		cmd += F_LEN(cmd);	/* point to first action */
806		if (cmd->opcode == O_ALTQ) {
807			ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
808
809			snprintf(SNPARGS(action2, 0), "Altq %d",
810				altq->qid);
811			cmd += F_LEN(cmd);
812		}
813		if (cmd->opcode == O_PROB)
814			cmd += F_LEN(cmd);
815
816		if (cmd->opcode == O_TAG)
817			cmd += F_LEN(cmd);
818
819		action = action2;
820		switch (cmd->opcode) {
821		case O_DENY:
822			action = "Deny";
823			break;
824
825		case O_REJECT:
826			if (cmd->arg1==ICMP_REJECT_RST)
827				action = "Reset";
828			else if (cmd->arg1==ICMP_UNREACH_HOST)
829				action = "Reject";
830			else
831				snprintf(SNPARGS(action2, 0), "Unreach %d",
832					cmd->arg1);
833			break;
834
835		case O_UNREACH6:
836			if (cmd->arg1==ICMP6_UNREACH_RST)
837				action = "Reset";
838			else
839				snprintf(SNPARGS(action2, 0), "Unreach %d",
840					cmd->arg1);
841			break;
842
843		case O_ACCEPT:
844			action = "Accept";
845			break;
846		case O_COUNT:
847			action = "Count";
848			break;
849		case O_DIVERT:
850			snprintf(SNPARGS(action2, 0), "Divert %d",
851				cmd->arg1);
852			break;
853		case O_TEE:
854			snprintf(SNPARGS(action2, 0), "Tee %d",
855				cmd->arg1);
856			break;
857		case O_SETFIB:
858			snprintf(SNPARGS(action2, 0), "SetFib %d",
859				cmd->arg1);
860			break;
861		case O_SKIPTO:
862			snprintf(SNPARGS(action2, 0), "SkipTo %d",
863				cmd->arg1);
864			break;
865		case O_PIPE:
866			snprintf(SNPARGS(action2, 0), "Pipe %d",
867				cmd->arg1);
868			break;
869		case O_QUEUE:
870			snprintf(SNPARGS(action2, 0), "Queue %d",
871				cmd->arg1);
872			break;
873		case O_FORWARD_IP: {
874			ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
875			int len;
876			struct in_addr dummyaddr;
877			if (sa->sa.sin_addr.s_addr == INADDR_ANY)
878				dummyaddr.s_addr = htonl(tablearg);
879			else
880				dummyaddr.s_addr = sa->sa.sin_addr.s_addr;
881
882			len = snprintf(SNPARGS(action2, 0), "Forward to %s",
883				inet_ntoa(dummyaddr));
884
885			if (sa->sa.sin_port)
886				snprintf(SNPARGS(action2, len), ":%d",
887				    sa->sa.sin_port);
888			}
889			break;
890		case O_NETGRAPH:
891			snprintf(SNPARGS(action2, 0), "Netgraph %d",
892				cmd->arg1);
893			break;
894		case O_NGTEE:
895			snprintf(SNPARGS(action2, 0), "Ngtee %d",
896				cmd->arg1);
897			break;
898		case O_NAT:
899			action = "Nat";
900 			break;
901		default:
902			action = "UNKNOWN";
903			break;
904		}
905	}
906
907	if (hlen == 0) {	/* non-ip */
908		snprintf(SNPARGS(proto, 0), "MAC");
909
910	} else {
911		int len;
912		char src[48], dst[48];
913		struct icmphdr *icmp;
914		struct tcphdr *tcp;
915		struct udphdr *udp;
916#ifdef INET6
917		struct ip6_hdr *ip6 = NULL;
918		struct icmp6_hdr *icmp6;
919#endif
920		src[0] = '\0';
921		dst[0] = '\0';
922#ifdef INET6
923		if (IS_IP6_FLOW_ID(&(args->f_id))) {
924			char ip6buf[INET6_ADDRSTRLEN];
925			snprintf(src, sizeof(src), "[%s]",
926			    ip6_sprintf(ip6buf, &args->f_id.src_ip6));
927			snprintf(dst, sizeof(dst), "[%s]",
928			    ip6_sprintf(ip6buf, &args->f_id.dst_ip6));
929
930			ip6 = (struct ip6_hdr *)ip;
931			tcp = (struct tcphdr *)(((char *)ip) + hlen);
932			udp = (struct udphdr *)(((char *)ip) + hlen);
933		} else
934#endif
935		{
936			tcp = L3HDR(struct tcphdr, ip);
937			udp = L3HDR(struct udphdr, ip);
938
939			inet_ntoa_r(ip->ip_src, src);
940			inet_ntoa_r(ip->ip_dst, dst);
941		}
942
943		switch (args->f_id.proto) {
944		case IPPROTO_TCP:
945			len = snprintf(SNPARGS(proto, 0), "TCP %s", src);
946			if (offset == 0)
947				snprintf(SNPARGS(proto, len), ":%d %s:%d",
948				    ntohs(tcp->th_sport),
949				    dst,
950				    ntohs(tcp->th_dport));
951			else
952				snprintf(SNPARGS(proto, len), " %s", dst);
953			break;
954
955		case IPPROTO_UDP:
956			len = snprintf(SNPARGS(proto, 0), "UDP %s", src);
957			if (offset == 0)
958				snprintf(SNPARGS(proto, len), ":%d %s:%d",
959				    ntohs(udp->uh_sport),
960				    dst,
961				    ntohs(udp->uh_dport));
962			else
963				snprintf(SNPARGS(proto, len), " %s", dst);
964			break;
965
966		case IPPROTO_ICMP:
967			icmp = L3HDR(struct icmphdr, ip);
968			if (offset == 0)
969				len = snprintf(SNPARGS(proto, 0),
970				    "ICMP:%u.%u ",
971				    icmp->icmp_type, icmp->icmp_code);
972			else
973				len = snprintf(SNPARGS(proto, 0), "ICMP ");
974			len += snprintf(SNPARGS(proto, len), "%s", src);
975			snprintf(SNPARGS(proto, len), " %s", dst);
976			break;
977#ifdef INET6
978		case IPPROTO_ICMPV6:
979			icmp6 = (struct icmp6_hdr *)(((char *)ip) + hlen);
980			if (offset == 0)
981				len = snprintf(SNPARGS(proto, 0),
982				    "ICMPv6:%u.%u ",
983				    icmp6->icmp6_type, icmp6->icmp6_code);
984			else
985				len = snprintf(SNPARGS(proto, 0), "ICMPv6 ");
986			len += snprintf(SNPARGS(proto, len), "%s", src);
987			snprintf(SNPARGS(proto, len), " %s", dst);
988			break;
989#endif
990		default:
991			len = snprintf(SNPARGS(proto, 0), "P:%d %s",
992			    args->f_id.proto, src);
993			snprintf(SNPARGS(proto, len), " %s", dst);
994			break;
995		}
996
997#ifdef INET6
998		if (IS_IP6_FLOW_ID(&(args->f_id))) {
999			if (offset & (IP6F_OFF_MASK | IP6F_MORE_FRAG))
1000				snprintf(SNPARGS(fragment, 0),
1001				    " (frag %08x:%d@%d%s)",
1002				    args->f_id.frag_id6,
1003				    ntohs(ip6->ip6_plen) - hlen,
1004				    ntohs(offset & IP6F_OFF_MASK) << 3,
1005				    (offset & IP6F_MORE_FRAG) ? "+" : "");
1006		} else
1007#endif
1008		{
1009			int ip_off, ip_len;
1010			if (eh != NULL) { /* layer 2 packets are as on the wire */
1011				ip_off = ntohs(ip->ip_off);
1012				ip_len = ntohs(ip->ip_len);
1013			} else {
1014				ip_off = ip->ip_off;
1015				ip_len = ip->ip_len;
1016			}
1017			if (ip_off & (IP_MF | IP_OFFMASK))
1018				snprintf(SNPARGS(fragment, 0),
1019				    " (frag %d:%d@%d%s)",
1020				    ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
1021				    offset << 3,
1022				    (ip_off & IP_MF) ? "+" : "");
1023		}
1024	}
1025	if (oif || m->m_pkthdr.rcvif)
1026		log(LOG_SECURITY | LOG_INFO,
1027		    "ipfw: %d %s %s %s via %s%s\n",
1028		    f ? f->rulenum : -1,
1029		    action, proto, oif ? "out" : "in",
1030		    oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
1031		    fragment);
1032	else
1033		log(LOG_SECURITY | LOG_INFO,
1034		    "ipfw: %d %s %s [no if info]%s\n",
1035		    f ? f->rulenum : -1,
1036		    action, proto, fragment);
1037	if (limit_reached)
1038		log(LOG_SECURITY | LOG_NOTICE,
1039		    "ipfw: limit %d reached on entry %d\n",
1040		    limit_reached, f ? f->rulenum : -1);
1041}
1042
1043/*
1044 * IMPORTANT: the hash function for dynamic rules must be commutative
1045 * in source and destination (ip,port), because rules are bidirectional
1046 * and we want to find both in the same bucket.
1047 */
1048static __inline int
1049hash_packet(struct ipfw_flow_id *id)
1050{
1051	INIT_VNET_IPFW(curvnet);
1052	u_int32_t i;
1053
1054#ifdef INET6
1055	if (IS_IP6_FLOW_ID(id))
1056		i = hash_packet6(id);
1057	else
1058#endif /* INET6 */
1059	i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
1060	i &= (V_curr_dyn_buckets - 1);
1061	return i;
1062}
1063
1064/**
1065 * unlink a dynamic rule from a chain. prev is a pointer to
1066 * the previous one, q is a pointer to the rule to delete,
1067 * head is a pointer to the head of the queue.
1068 * Modifies q and potentially also head.
1069 */
1070#define UNLINK_DYN_RULE(prev, head, q) {				\
1071	ipfw_dyn_rule *old_q = q;					\
1072									\
1073	/* remove a refcount to the parent */				\
1074	if (q->dyn_type == O_LIMIT)					\
1075		q->parent->count--;					\
1076	DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
1077		(q->id.src_ip), (q->id.src_port),			\
1078		(q->id.dst_ip), (q->id.dst_port), V_dyn_count-1 ); )	\
1079	if (prev != NULL)						\
1080		prev->next = q = q->next;				\
1081	else								\
1082		head = q = q->next;					\
1083	V_dyn_count--;							\
1084	uma_zfree(ipfw_dyn_rule_zone, old_q); }
1085
1086#define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
1087
1088/**
1089 * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
1090 *
1091 * If keep_me == NULL, rules are deleted even if not expired,
1092 * otherwise only expired rules are removed.
1093 *
1094 * The value of the second parameter is also used to point to identify
1095 * a rule we absolutely do not want to remove (e.g. because we are
1096 * holding a reference to it -- this is the case with O_LIMIT_PARENT
1097 * rules). The pointer is only used for comparison, so any non-null
1098 * value will do.
1099 */
1100static void
1101remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
1102{
1103	INIT_VNET_IPFW(curvnet);
1104	static u_int32_t last_remove = 0;
1105
1106#define FORCE (keep_me == NULL)
1107
1108	ipfw_dyn_rule *prev, *q;
1109	int i, pass = 0, max_pass = 0;
1110
1111	IPFW_DYN_LOCK_ASSERT();
1112
1113	if (V_ipfw_dyn_v == NULL || V_dyn_count == 0)
1114		return;
1115	/* do not expire more than once per second, it is useless */
1116	if (!FORCE && last_remove == time_uptime)
1117		return;
1118	last_remove = time_uptime;
1119
1120	/*
1121	 * because O_LIMIT refer to parent rules, during the first pass only
1122	 * remove child and mark any pending LIMIT_PARENT, and remove
1123	 * them in a second pass.
1124	 */
1125next_pass:
1126	for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1127		for (prev=NULL, q = V_ipfw_dyn_v[i] ; q ; ) {
1128			/*
1129			 * Logic can become complex here, so we split tests.
1130			 */
1131			if (q == keep_me)
1132				goto next;
1133			if (rule != NULL && rule != q->rule)
1134				goto next; /* not the one we are looking for */
1135			if (q->dyn_type == O_LIMIT_PARENT) {
1136				/*
1137				 * handle parent in the second pass,
1138				 * record we need one.
1139				 */
1140				max_pass = 1;
1141				if (pass == 0)
1142					goto next;
1143				if (FORCE && q->count != 0 ) {
1144					/* XXX should not happen! */
1145					printf("ipfw: OUCH! cannot remove rule,"
1146					     " count %d\n", q->count);
1147				}
1148			} else {
1149				if (!FORCE &&
1150				    !TIME_LEQ( q->expire, time_uptime ))
1151					goto next;
1152			}
1153             if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
1154                     UNLINK_DYN_RULE(prev, V_ipfw_dyn_v[i], q);
1155                     continue;
1156             }
1157next:
1158			prev=q;
1159			q=q->next;
1160		}
1161	}
1162	if (pass++ < max_pass)
1163		goto next_pass;
1164}
1165
1166
1167/**
1168 * lookup a dynamic rule.
1169 */
1170static ipfw_dyn_rule *
1171lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
1172    struct tcphdr *tcp)
1173{
1174	INIT_VNET_IPFW(curvnet);
1175	/*
1176	 * stateful ipfw extensions.
1177	 * Lookup into dynamic session queue
1178	 */
1179#define MATCH_REVERSE	0
1180#define MATCH_FORWARD	1
1181#define MATCH_NONE	2
1182#define MATCH_UNKNOWN	3
1183	int i, dir = MATCH_NONE;
1184	ipfw_dyn_rule *prev, *q=NULL;
1185
1186	IPFW_DYN_LOCK_ASSERT();
1187
1188	if (V_ipfw_dyn_v == NULL)
1189		goto done;	/* not found */
1190	i = hash_packet( pkt );
1191	for (prev=NULL, q = V_ipfw_dyn_v[i] ; q != NULL ; ) {
1192		if (q->dyn_type == O_LIMIT_PARENT && q->count)
1193			goto next;
1194		if (TIME_LEQ( q->expire, time_uptime)) { /* expire entry */
1195			UNLINK_DYN_RULE(prev, V_ipfw_dyn_v[i], q);
1196			continue;
1197		}
1198		if (pkt->proto == q->id.proto &&
1199		    q->dyn_type != O_LIMIT_PARENT) {
1200			if (IS_IP6_FLOW_ID(pkt)) {
1201			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1202				&(q->id.src_ip6)) &&
1203			    IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1204				&(q->id.dst_ip6)) &&
1205			    pkt->src_port == q->id.src_port &&
1206			    pkt->dst_port == q->id.dst_port ) {
1207				dir = MATCH_FORWARD;
1208				break;
1209			    }
1210			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1211				    &(q->id.dst_ip6)) &&
1212				IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1213				    &(q->id.src_ip6)) &&
1214				pkt->src_port == q->id.dst_port &&
1215				pkt->dst_port == q->id.src_port ) {
1216				    dir = MATCH_REVERSE;
1217				    break;
1218			    }
1219			} else {
1220			    if (pkt->src_ip == q->id.src_ip &&
1221				pkt->dst_ip == q->id.dst_ip &&
1222				pkt->src_port == q->id.src_port &&
1223				pkt->dst_port == q->id.dst_port ) {
1224				    dir = MATCH_FORWARD;
1225				    break;
1226			    }
1227			    if (pkt->src_ip == q->id.dst_ip &&
1228				pkt->dst_ip == q->id.src_ip &&
1229				pkt->src_port == q->id.dst_port &&
1230				pkt->dst_port == q->id.src_port ) {
1231				    dir = MATCH_REVERSE;
1232				    break;
1233			    }
1234			}
1235		}
1236next:
1237		prev = q;
1238		q = q->next;
1239	}
1240	if (q == NULL)
1241		goto done; /* q = NULL, not found */
1242
1243	if ( prev != NULL) { /* found and not in front */
1244		prev->next = q->next;
1245		q->next = V_ipfw_dyn_v[i];
1246		V_ipfw_dyn_v[i] = q;
1247	}
1248	if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
1249		u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
1250
1251#define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
1252#define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
1253		q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
1254		switch (q->state) {
1255		case TH_SYN:				/* opening */
1256			q->expire = time_uptime + V_dyn_syn_lifetime;
1257			break;
1258
1259		case BOTH_SYN:			/* move to established */
1260		case BOTH_SYN | TH_FIN :	/* one side tries to close */
1261		case BOTH_SYN | (TH_FIN << 8) :
1262 			if (tcp) {
1263#define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
1264			    u_int32_t ack = ntohl(tcp->th_ack);
1265			    if (dir == MATCH_FORWARD) {
1266				if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
1267				    q->ack_fwd = ack;
1268				else { /* ignore out-of-sequence */
1269				    break;
1270				}
1271			    } else {
1272				if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
1273				    q->ack_rev = ack;
1274				else { /* ignore out-of-sequence */
1275				    break;
1276				}
1277			    }
1278			}
1279			q->expire = time_uptime + V_dyn_ack_lifetime;
1280			break;
1281
1282		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
1283			if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
1284				V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
1285			q->expire = time_uptime + V_dyn_fin_lifetime;
1286			break;
1287
1288		default:
1289#if 0
1290			/*
1291			 * reset or some invalid combination, but can also
1292			 * occur if we use keep-state the wrong way.
1293			 */
1294			if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
1295				printf("invalid state: 0x%x\n", q->state);
1296#endif
1297			if (V_dyn_rst_lifetime >= V_dyn_keepalive_period)
1298				V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
1299			q->expire = time_uptime + V_dyn_rst_lifetime;
1300			break;
1301		}
1302	} else if (pkt->proto == IPPROTO_UDP) {
1303		q->expire = time_uptime + V_dyn_udp_lifetime;
1304	} else {
1305		/* other protocols */
1306		q->expire = time_uptime + V_dyn_short_lifetime;
1307	}
1308done:
1309	if (match_direction)
1310		*match_direction = dir;
1311	return q;
1312}
1313
1314static ipfw_dyn_rule *
1315lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
1316    struct tcphdr *tcp)
1317{
1318	ipfw_dyn_rule *q;
1319
1320	IPFW_DYN_LOCK();
1321	q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
1322	if (q == NULL)
1323		IPFW_DYN_UNLOCK();
1324	/* NB: return table locked when q is not NULL */
1325	return q;
1326}
1327
1328static void
1329realloc_dynamic_table(void)
1330{
1331	INIT_VNET_IPFW(curvnet);
1332	IPFW_DYN_LOCK_ASSERT();
1333
1334	/*
1335	 * Try reallocation, make sure we have a power of 2 and do
1336	 * not allow more than 64k entries. In case of overflow,
1337	 * default to 1024.
1338	 */
1339
1340	if (V_dyn_buckets > 65536)
1341		V_dyn_buckets = 1024;
1342	if ((V_dyn_buckets & (V_dyn_buckets-1)) != 0) { /* not a power of 2 */
1343		V_dyn_buckets = V_curr_dyn_buckets; /* reset */
1344		return;
1345	}
1346	V_curr_dyn_buckets = V_dyn_buckets;
1347	if (V_ipfw_dyn_v != NULL)
1348		free(V_ipfw_dyn_v, M_IPFW);
1349	for (;;) {
1350		V_ipfw_dyn_v = malloc(V_curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
1351		       M_IPFW, M_NOWAIT | M_ZERO);
1352		if (V_ipfw_dyn_v != NULL || V_curr_dyn_buckets <= 2)
1353			break;
1354		V_curr_dyn_buckets /= 2;
1355	}
1356}
1357
1358/**
1359 * Install state of type 'type' for a dynamic session.
1360 * The hash table contains two type of rules:
1361 * - regular rules (O_KEEP_STATE)
1362 * - rules for sessions with limited number of sess per user
1363 *   (O_LIMIT). When they are created, the parent is
1364 *   increased by 1, and decreased on delete. In this case,
1365 *   the third parameter is the parent rule and not the chain.
1366 * - "parent" rules for the above (O_LIMIT_PARENT).
1367 */
1368static ipfw_dyn_rule *
1369add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
1370{
1371	INIT_VNET_IPFW(curvnet);
1372	ipfw_dyn_rule *r;
1373	int i;
1374
1375	IPFW_DYN_LOCK_ASSERT();
1376
1377	if (V_ipfw_dyn_v == NULL ||
1378	    (V_dyn_count == 0 && V_dyn_buckets != V_curr_dyn_buckets)) {
1379		realloc_dynamic_table();
1380		if (V_ipfw_dyn_v == NULL)
1381			return NULL; /* failed ! */
1382	}
1383	i = hash_packet(id);
1384
1385	r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
1386	if (r == NULL) {
1387		printf ("ipfw: sorry cannot allocate state\n");
1388		return NULL;
1389	}
1390
1391	/* increase refcount on parent, and set pointer */
1392	if (dyn_type == O_LIMIT) {
1393		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
1394		if ( parent->dyn_type != O_LIMIT_PARENT)
1395			panic("invalid parent");
1396		parent->count++;
1397		r->parent = parent;
1398		rule = parent->rule;
1399	}
1400
1401	r->id = *id;
1402	r->expire = time_uptime + V_dyn_syn_lifetime;
1403	r->rule = rule;
1404	r->dyn_type = dyn_type;
1405	r->pcnt = r->bcnt = 0;
1406	r->count = 0;
1407
1408	r->bucket = i;
1409	r->next = V_ipfw_dyn_v[i];
1410	V_ipfw_dyn_v[i] = r;
1411	V_dyn_count++;
1412	DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1413	   dyn_type,
1414	   (r->id.src_ip), (r->id.src_port),
1415	   (r->id.dst_ip), (r->id.dst_port),
1416	   V_dyn_count ); )
1417	return r;
1418}
1419
1420/**
1421 * lookup dynamic parent rule using pkt and rule as search keys.
1422 * If the lookup fails, then install one.
1423 */
1424static ipfw_dyn_rule *
1425lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
1426{
1427	INIT_VNET_IPFW(curvnet);
1428	ipfw_dyn_rule *q;
1429	int i;
1430
1431	IPFW_DYN_LOCK_ASSERT();
1432
1433	if (V_ipfw_dyn_v) {
1434		int is_v6 = IS_IP6_FLOW_ID(pkt);
1435		i = hash_packet( pkt );
1436		for (q = V_ipfw_dyn_v[i] ; q != NULL ; q=q->next)
1437			if (q->dyn_type == O_LIMIT_PARENT &&
1438			    rule== q->rule &&
1439			    pkt->proto == q->id.proto &&
1440			    pkt->src_port == q->id.src_port &&
1441			    pkt->dst_port == q->id.dst_port &&
1442			    (
1443				(is_v6 &&
1444				 IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1445					&(q->id.src_ip6)) &&
1446				 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1447					&(q->id.dst_ip6))) ||
1448				(!is_v6 &&
1449				 pkt->src_ip == q->id.src_ip &&
1450				 pkt->dst_ip == q->id.dst_ip)
1451			    )
1452			) {
1453				q->expire = time_uptime + V_dyn_short_lifetime;
1454				DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
1455				return q;
1456			}
1457	}
1458	return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
1459}
1460
1461/**
1462 * Install dynamic state for rule type cmd->o.opcode
1463 *
1464 * Returns 1 (failure) if state is not installed because of errors or because
1465 * session limitations are enforced.
1466 */
1467static int
1468install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
1469    struct ip_fw_args *args, uint32_t tablearg)
1470{
1471	INIT_VNET_IPFW(curvnet);
1472	static int last_log;
1473	ipfw_dyn_rule *q;
1474	struct in_addr da;
1475	char src[48], dst[48];
1476
1477	src[0] = '\0';
1478	dst[0] = '\0';
1479
1480	DEB(
1481	printf("ipfw: %s: type %d 0x%08x %u -> 0x%08x %u\n",
1482	    __func__, cmd->o.opcode,
1483	    (args->f_id.src_ip), (args->f_id.src_port),
1484	    (args->f_id.dst_ip), (args->f_id.dst_port));
1485	)
1486
1487	IPFW_DYN_LOCK();
1488
1489	q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1490
1491	if (q != NULL) {	/* should never occur */
1492		if (last_log != time_uptime) {
1493			last_log = time_uptime;
1494			printf("ipfw: %s: entry already present, done\n",
1495			    __func__);
1496		}
1497		IPFW_DYN_UNLOCK();
1498		return (0);
1499	}
1500
1501	if (V_dyn_count >= V_dyn_max)
1502		/* Run out of slots, try to remove any expired rule. */
1503		remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
1504
1505	if (V_dyn_count >= V_dyn_max) {
1506		if (last_log != time_uptime) {
1507			last_log = time_uptime;
1508			printf("ipfw: %s: Too many dynamic rules\n", __func__);
1509		}
1510		IPFW_DYN_UNLOCK();
1511		return (1);	/* cannot install, notify caller */
1512	}
1513
1514	switch (cmd->o.opcode) {
1515	case O_KEEP_STATE:	/* bidir rule */
1516		add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
1517		break;
1518
1519	case O_LIMIT: {		/* limit number of sessions */
1520		struct ipfw_flow_id id;
1521		ipfw_dyn_rule *parent;
1522		uint32_t conn_limit;
1523		uint16_t limit_mask = cmd->limit_mask;
1524
1525		conn_limit = (cmd->conn_limit == IP_FW_TABLEARG) ?
1526		    tablearg : cmd->conn_limit;
1527
1528		DEB(
1529		if (cmd->conn_limit == IP_FW_TABLEARG)
1530			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
1531			    "(tablearg)\n", __func__, conn_limit);
1532		else
1533			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
1534			    __func__, conn_limit);
1535		)
1536
1537		id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
1538		id.proto = args->f_id.proto;
1539		id.addr_type = args->f_id.addr_type;
1540		id.fib = M_GETFIB(args->m);
1541
1542		if (IS_IP6_FLOW_ID (&(args->f_id))) {
1543			if (limit_mask & DYN_SRC_ADDR)
1544				id.src_ip6 = args->f_id.src_ip6;
1545			if (limit_mask & DYN_DST_ADDR)
1546				id.dst_ip6 = args->f_id.dst_ip6;
1547		} else {
1548			if (limit_mask & DYN_SRC_ADDR)
1549				id.src_ip = args->f_id.src_ip;
1550			if (limit_mask & DYN_DST_ADDR)
1551				id.dst_ip = args->f_id.dst_ip;
1552		}
1553		if (limit_mask & DYN_SRC_PORT)
1554			id.src_port = args->f_id.src_port;
1555		if (limit_mask & DYN_DST_PORT)
1556			id.dst_port = args->f_id.dst_port;
1557		if ((parent = lookup_dyn_parent(&id, rule)) == NULL) {
1558			printf("ipfw: %s: add parent failed\n", __func__);
1559			IPFW_DYN_UNLOCK();
1560			return (1);
1561		}
1562
1563		if (parent->count >= conn_limit) {
1564			/* See if we can remove some expired rule. */
1565			remove_dyn_rule(rule, parent);
1566			if (parent->count >= conn_limit) {
1567				if (V_fw_verbose && last_log != time_uptime) {
1568					last_log = time_uptime;
1569#ifdef INET6
1570					/*
1571					 * XXX IPv6 flows are not
1572					 * supported yet.
1573					 */
1574					if (IS_IP6_FLOW_ID(&(args->f_id))) {
1575						char ip6buf[INET6_ADDRSTRLEN];
1576						snprintf(src, sizeof(src),
1577						    "[%s]", ip6_sprintf(ip6buf,
1578							&args->f_id.src_ip6));
1579						snprintf(dst, sizeof(dst),
1580						    "[%s]", ip6_sprintf(ip6buf,
1581							&args->f_id.dst_ip6));
1582					} else
1583#endif
1584					{
1585						da.s_addr =
1586						    htonl(args->f_id.src_ip);
1587						inet_ntoa_r(da, src);
1588						da.s_addr =
1589						    htonl(args->f_id.dst_ip);
1590						inet_ntoa_r(da, dst);
1591					}
1592					log(LOG_SECURITY | LOG_DEBUG,
1593					    "ipfw: %d %s %s:%u -> %s:%u, %s\n",
1594					    parent->rule->rulenum,
1595					    "drop session",
1596					    src, (args->f_id.src_port),
1597					    dst, (args->f_id.dst_port),
1598					    "too many entries");
1599				}
1600				IPFW_DYN_UNLOCK();
1601				return (1);
1602			}
1603		}
1604		add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1605		break;
1606	}
1607	default:
1608		printf("ipfw: %s: unknown dynamic rule type %u\n",
1609		    __func__, cmd->o.opcode);
1610		IPFW_DYN_UNLOCK();
1611		return (1);
1612	}
1613
1614	/* XXX just set lifetime */
1615	lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1616
1617	IPFW_DYN_UNLOCK();
1618	return (0);
1619}
1620
1621/*
1622 * Generate a TCP packet, containing either a RST or a keepalive.
1623 * When flags & TH_RST, we are sending a RST packet, because of a
1624 * "reset" action matched the packet.
1625 * Otherwise we are sending a keepalive, and flags & TH_
1626 * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
1627 * so that MAC can label the reply appropriately.
1628 */
1629static struct mbuf *
1630send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
1631    u_int32_t ack, int flags)
1632{
1633	INIT_VNET_INET(curvnet);
1634	struct mbuf *m;
1635	struct ip *ip;
1636	struct tcphdr *tcp;
1637
1638	MGETHDR(m, M_DONTWAIT, MT_DATA);
1639	if (m == 0)
1640		return (NULL);
1641	m->m_pkthdr.rcvif = (struct ifnet *)0;
1642
1643	M_SETFIB(m, id->fib);
1644#ifdef MAC
1645	if (replyto != NULL)
1646		mac_netinet_firewall_reply(replyto, m);
1647	else
1648		mac_netinet_firewall_send(m);
1649#else
1650	(void)replyto;		/* don't warn about unused arg */
1651#endif
1652
1653	m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1654	m->m_data += max_linkhdr;
1655
1656	ip = mtod(m, struct ip *);
1657	bzero(ip, m->m_len);
1658	tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1659	ip->ip_p = IPPROTO_TCP;
1660	tcp->th_off = 5;
1661	/*
1662	 * Assume we are sending a RST (or a keepalive in the reverse
1663	 * direction), swap src and destination addresses and ports.
1664	 */
1665	ip->ip_src.s_addr = htonl(id->dst_ip);
1666	ip->ip_dst.s_addr = htonl(id->src_ip);
1667	tcp->th_sport = htons(id->dst_port);
1668	tcp->th_dport = htons(id->src_port);
1669	if (flags & TH_RST) {	/* we are sending a RST */
1670		if (flags & TH_ACK) {
1671			tcp->th_seq = htonl(ack);
1672			tcp->th_ack = htonl(0);
1673			tcp->th_flags = TH_RST;
1674		} else {
1675			if (flags & TH_SYN)
1676				seq++;
1677			tcp->th_seq = htonl(0);
1678			tcp->th_ack = htonl(seq);
1679			tcp->th_flags = TH_RST | TH_ACK;
1680		}
1681	} else {
1682		/*
1683		 * We are sending a keepalive. flags & TH_SYN determines
1684		 * the direction, forward if set, reverse if clear.
1685		 * NOTE: seq and ack are always assumed to be correct
1686		 * as set by the caller. This may be confusing...
1687		 */
1688		if (flags & TH_SYN) {
1689			/*
1690			 * we have to rewrite the correct addresses!
1691			 */
1692			ip->ip_dst.s_addr = htonl(id->dst_ip);
1693			ip->ip_src.s_addr = htonl(id->src_ip);
1694			tcp->th_dport = htons(id->dst_port);
1695			tcp->th_sport = htons(id->src_port);
1696		}
1697		tcp->th_seq = htonl(seq);
1698		tcp->th_ack = htonl(ack);
1699		tcp->th_flags = TH_ACK;
1700	}
1701	/*
1702	 * set ip_len to the payload size so we can compute
1703	 * the tcp checksum on the pseudoheader
1704	 * XXX check this, could save a couple of words ?
1705	 */
1706	ip->ip_len = htons(sizeof(struct tcphdr));
1707	tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1708	/*
1709	 * now fill fields left out earlier
1710	 */
1711	ip->ip_ttl = V_ip_defttl;
1712	ip->ip_len = m->m_pkthdr.len;
1713	m->m_flags |= M_SKIP_FIREWALL;
1714	return (m);
1715}
1716
1717/*
1718 * sends a reject message, consuming the mbuf passed as an argument.
1719 */
1720static void
1721send_reject(struct ip_fw_args *args, int code, int ip_len, struct ip *ip)
1722{
1723
1724#if 0
1725	/* XXX When ip is not guaranteed to be at mtod() we will
1726	 * need to account for this */
1727	 * The mbuf will however be thrown away so we can adjust it.
1728	 * Remember we did an m_pullup on it already so we
1729	 * can make some assumptions about contiguousness.
1730	 */
1731	if (args->L3offset)
1732		m_adj(m, args->L3offset);
1733#endif
1734	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1735		/* We need the IP header in host order for icmp_error(). */
1736		if (args->eh != NULL) {
1737			ip->ip_len = ntohs(ip->ip_len);
1738			ip->ip_off = ntohs(ip->ip_off);
1739		}
1740		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1741	} else if (args->f_id.proto == IPPROTO_TCP) {
1742		struct tcphdr *const tcp =
1743		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1744		if ( (tcp->th_flags & TH_RST) == 0) {
1745			struct mbuf *m;
1746			m = send_pkt(args->m, &(args->f_id),
1747				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
1748				tcp->th_flags | TH_RST);
1749			if (m != NULL)
1750				ip_output(m, NULL, NULL, 0, NULL, NULL);
1751		}
1752		m_freem(args->m);
1753	} else
1754		m_freem(args->m);
1755	args->m = NULL;
1756}
1757
1758/**
1759 *
1760 * Given an ip_fw *, lookup_next_rule will return a pointer
1761 * to the next rule, which can be either the jump
1762 * target (for skipto instructions) or the next one in the list (in
1763 * all other cases including a missing jump target).
1764 * The result is also written in the "next_rule" field of the rule.
1765 * Backward jumps are not allowed, so start looking from the next
1766 * rule...
1767 *
1768 * This never returns NULL -- in case we do not have an exact match,
1769 * the next rule is returned. When the ruleset is changed,
1770 * pointers are flushed so we are always correct.
1771 */
1772
1773static struct ip_fw *
1774lookup_next_rule(struct ip_fw *me, u_int32_t tablearg)
1775{
1776	struct ip_fw *rule = NULL;
1777	ipfw_insn *cmd;
1778	u_int16_t	rulenum;
1779
1780	/* look for action, in case it is a skipto */
1781	cmd = ACTION_PTR(me);
1782	if (cmd->opcode == O_LOG)
1783		cmd += F_LEN(cmd);
1784	if (cmd->opcode == O_ALTQ)
1785		cmd += F_LEN(cmd);
1786	if (cmd->opcode == O_TAG)
1787		cmd += F_LEN(cmd);
1788	if (cmd->opcode == O_SKIPTO ) {
1789		if (tablearg != 0) {
1790			rulenum = (u_int16_t)tablearg;
1791		} else {
1792			rulenum = cmd->arg1;
1793		}
1794		for (rule = me->next; rule ; rule = rule->next) {
1795			if (rule->rulenum >= rulenum) {
1796				break;
1797			}
1798		}
1799	}
1800	if (rule == NULL)			/* failure or not a skipto */
1801		rule = me->next;
1802	me->next_rule = rule;
1803	return rule;
1804}
1805
1806static int
1807add_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1808    uint8_t mlen, uint32_t value)
1809{
1810	INIT_VNET_IPFW(curvnet);
1811	struct radix_node_head *rnh;
1812	struct table_entry *ent;
1813	struct radix_node *rn;
1814
1815	if (tbl >= IPFW_TABLES_MAX)
1816		return (EINVAL);
1817	rnh = ch->tables[tbl];
1818	ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
1819	if (ent == NULL)
1820		return (ENOMEM);
1821	ent->value = value;
1822	ent->addr.sin_len = ent->mask.sin_len = 8;
1823	ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1824	ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
1825	IPFW_WLOCK(ch);
1826	rn = rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent);
1827	if (rn == NULL) {
1828		IPFW_WUNLOCK(ch);
1829		free(ent, M_IPFW_TBL);
1830		return (EEXIST);
1831	}
1832	IPFW_WUNLOCK(ch);
1833	return (0);
1834}
1835
1836static int
1837del_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1838    uint8_t mlen)
1839{
1840	struct radix_node_head *rnh;
1841	struct table_entry *ent;
1842	struct sockaddr_in sa, mask;
1843
1844	if (tbl >= IPFW_TABLES_MAX)
1845		return (EINVAL);
1846	rnh = ch->tables[tbl];
1847	sa.sin_len = mask.sin_len = 8;
1848	mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1849	sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
1850	IPFW_WLOCK(ch);
1851	ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
1852	if (ent == NULL) {
1853		IPFW_WUNLOCK(ch);
1854		return (ESRCH);
1855	}
1856	IPFW_WUNLOCK(ch);
1857	free(ent, M_IPFW_TBL);
1858	return (0);
1859}
1860
1861static int
1862flush_table_entry(struct radix_node *rn, void *arg)
1863{
1864	struct radix_node_head * const rnh = arg;
1865	struct table_entry *ent;
1866
1867	ent = (struct table_entry *)
1868	    rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
1869	if (ent != NULL)
1870		free(ent, M_IPFW_TBL);
1871	return (0);
1872}
1873
1874static int
1875flush_table(struct ip_fw_chain *ch, uint16_t tbl)
1876{
1877	struct radix_node_head *rnh;
1878
1879	IPFW_WLOCK_ASSERT(ch);
1880
1881	if (tbl >= IPFW_TABLES_MAX)
1882		return (EINVAL);
1883	rnh = ch->tables[tbl];
1884	KASSERT(rnh != NULL, ("NULL IPFW table"));
1885	rnh->rnh_walktree(rnh, flush_table_entry, rnh);
1886	return (0);
1887}
1888
1889static void
1890flush_tables(struct ip_fw_chain *ch)
1891{
1892	uint16_t tbl;
1893
1894	IPFW_WLOCK_ASSERT(ch);
1895
1896	for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
1897		flush_table(ch, tbl);
1898}
1899
1900static int
1901init_tables(struct ip_fw_chain *ch)
1902{
1903	int i;
1904	uint16_t j;
1905
1906	for (i = 0; i < IPFW_TABLES_MAX; i++) {
1907		if (!rn_inithead((void **)&ch->tables[i], 32)) {
1908			for (j = 0; j < i; j++) {
1909				(void) flush_table(ch, j);
1910			}
1911			return (ENOMEM);
1912		}
1913	}
1914	return (0);
1915}
1916
1917static int
1918lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1919    uint32_t *val)
1920{
1921	struct radix_node_head *rnh;
1922	struct table_entry *ent;
1923	struct sockaddr_in sa;
1924
1925	if (tbl >= IPFW_TABLES_MAX)
1926		return (0);
1927	rnh = ch->tables[tbl];
1928	sa.sin_len = 8;
1929	sa.sin_addr.s_addr = addr;
1930	ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
1931	if (ent != NULL) {
1932		*val = ent->value;
1933		return (1);
1934	}
1935	return (0);
1936}
1937
1938static int
1939count_table_entry(struct radix_node *rn, void *arg)
1940{
1941	u_int32_t * const cnt = arg;
1942
1943	(*cnt)++;
1944	return (0);
1945}
1946
1947static int
1948count_table(struct ip_fw_chain *ch, uint32_t tbl, uint32_t *cnt)
1949{
1950	struct radix_node_head *rnh;
1951
1952	if (tbl >= IPFW_TABLES_MAX)
1953		return (EINVAL);
1954	rnh = ch->tables[tbl];
1955	*cnt = 0;
1956	rnh->rnh_walktree(rnh, count_table_entry, cnt);
1957	return (0);
1958}
1959
1960static int
1961dump_table_entry(struct radix_node *rn, void *arg)
1962{
1963	struct table_entry * const n = (struct table_entry *)rn;
1964	ipfw_table * const tbl = arg;
1965	ipfw_table_entry *ent;
1966
1967	if (tbl->cnt == tbl->size)
1968		return (1);
1969	ent = &tbl->ent[tbl->cnt];
1970	ent->tbl = tbl->tbl;
1971	if (in_nullhost(n->mask.sin_addr))
1972		ent->masklen = 0;
1973	else
1974		ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
1975	ent->addr = n->addr.sin_addr.s_addr;
1976	ent->value = n->value;
1977	tbl->cnt++;
1978	return (0);
1979}
1980
1981static int
1982dump_table(struct ip_fw_chain *ch, ipfw_table *tbl)
1983{
1984	struct radix_node_head *rnh;
1985
1986	if (tbl->tbl >= IPFW_TABLES_MAX)
1987		return (EINVAL);
1988	rnh = ch->tables[tbl->tbl];
1989	tbl->cnt = 0;
1990	rnh->rnh_walktree(rnh, dump_table_entry, tbl);
1991	return (0);
1992}
1993
1994static void
1995fill_ugid_cache(struct inpcb *inp, struct ip_fw_ugid *ugp)
1996{
1997	struct ucred *cr;
1998
1999	cr = inp->inp_cred;
2000	ugp->fw_prid = jailed(cr) ? cr->cr_prison->pr_id : -1;
2001	ugp->fw_uid = cr->cr_uid;
2002	ugp->fw_ngroups = cr->cr_ngroups;
2003	bcopy(cr->cr_groups, ugp->fw_groups, sizeof(ugp->fw_groups));
2004}
2005
2006static int
2007check_uidgid(ipfw_insn_u32 *insn, int proto, struct ifnet *oif,
2008    struct in_addr dst_ip, u_int16_t dst_port, struct in_addr src_ip,
2009    u_int16_t src_port, struct ip_fw_ugid *ugp, int *ugid_lookupp,
2010    struct inpcb *inp)
2011{
2012	INIT_VNET_INET(curvnet);
2013	struct inpcbinfo *pi;
2014	int wildcard;
2015	struct inpcb *pcb;
2016	int match;
2017	gid_t *gp;
2018
2019	/*
2020	 * Check to see if the UDP or TCP stack supplied us with
2021	 * the PCB. If so, rather then holding a lock and looking
2022	 * up the PCB, we can use the one that was supplied.
2023	 */
2024	if (inp && *ugid_lookupp == 0) {
2025		INP_LOCK_ASSERT(inp);
2026		if (inp->inp_socket != NULL) {
2027			fill_ugid_cache(inp, ugp);
2028			*ugid_lookupp = 1;
2029		} else
2030			*ugid_lookupp = -1;
2031	}
2032	/*
2033	 * If we have already been here and the packet has no
2034	 * PCB entry associated with it, then we can safely
2035	 * assume that this is a no match.
2036	 */
2037	if (*ugid_lookupp == -1)
2038		return (0);
2039	if (proto == IPPROTO_TCP) {
2040		wildcard = 0;
2041		pi = &V_tcbinfo;
2042	} else if (proto == IPPROTO_UDP) {
2043		wildcard = INPLOOKUP_WILDCARD;
2044		pi = &V_udbinfo;
2045	} else
2046		return 0;
2047	match = 0;
2048	if (*ugid_lookupp == 0) {
2049		INP_INFO_RLOCK(pi);
2050		pcb =  (oif) ?
2051			in_pcblookup_hash(pi,
2052				dst_ip, htons(dst_port),
2053				src_ip, htons(src_port),
2054				wildcard, oif) :
2055			in_pcblookup_hash(pi,
2056				src_ip, htons(src_port),
2057				dst_ip, htons(dst_port),
2058				wildcard, NULL);
2059		if (pcb != NULL) {
2060			fill_ugid_cache(pcb, ugp);
2061			*ugid_lookupp = 1;
2062		}
2063		INP_INFO_RUNLOCK(pi);
2064		if (*ugid_lookupp == 0) {
2065			/*
2066			 * If the lookup did not yield any results, there
2067			 * is no sense in coming back and trying again. So
2068			 * we can set lookup to -1 and ensure that we wont
2069			 * bother the pcb system again.
2070			 */
2071			*ugid_lookupp = -1;
2072			return (0);
2073		}
2074	}
2075	if (insn->o.opcode == O_UID)
2076		match = (ugp->fw_uid == (uid_t)insn->d[0]);
2077	else if (insn->o.opcode == O_GID) {
2078		for (gp = ugp->fw_groups;
2079			gp < &ugp->fw_groups[ugp->fw_ngroups]; gp++)
2080			if (*gp == (gid_t)insn->d[0]) {
2081				match = 1;
2082				break;
2083			}
2084	} else if (insn->o.opcode == O_JAIL)
2085		match = (ugp->fw_prid == (int)insn->d[0]);
2086	return match;
2087}
2088
2089/*
2090 * The main check routine for the firewall.
2091 *
2092 * All arguments are in args so we can modify them and return them
2093 * back to the caller.
2094 *
2095 * Parameters:
2096 *
2097 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
2098 *		Starts with the IP header.
2099 *	args->eh (in)	Mac header if present, or NULL for layer3 packet.
2100 *	args->L3offset	Number of bytes bypassed if we came from L2.
2101 *			e.g. often sizeof(eh)  ** NOTYET **
2102 *	args->oif	Outgoing interface, or NULL if packet is incoming.
2103 *		The incoming interface is in the mbuf. (in)
2104 *	args->divert_rule (in/out)
2105 *		Skip up to the first rule past this rule number;
2106 *		upon return, non-zero port number for divert or tee.
2107 *
2108 *	args->rule	Pointer to the last matching rule (in/out)
2109 *	args->next_hop	Socket we are forwarding to (out).
2110 *	args->f_id	Addresses grabbed from the packet (out)
2111 * 	args->cookie	a cookie depending on rule action
2112 *
2113 * Return value:
2114 *
2115 *	IP_FW_PASS	the packet must be accepted
2116 *	IP_FW_DENY	the packet must be dropped
2117 *	IP_FW_DIVERT	divert packet, port in m_tag
2118 *	IP_FW_TEE	tee packet, port in m_tag
2119 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
2120 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
2121 *
2122 */
2123int
2124ipfw_chk(struct ip_fw_args *args)
2125{
2126	INIT_VNET_INET(curvnet);
2127	INIT_VNET_IPFW(curvnet);
2128
2129	/*
2130	 * Local variables holding state during the processing of a packet:
2131	 *
2132	 * IMPORTANT NOTE: to speed up the processing of rules, there
2133	 * are some assumption on the values of the variables, which
2134	 * are documented here. Should you change them, please check
2135	 * the implementation of the various instructions to make sure
2136	 * that they still work.
2137	 *
2138	 * args->eh	The MAC header. It is non-null for a layer2
2139	 *	packet, it is NULL for a layer-3 packet.
2140	 * **notyet**
2141	 * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
2142	 *
2143	 * m | args->m	Pointer to the mbuf, as received from the caller.
2144	 *	It may change if ipfw_chk() does an m_pullup, or if it
2145	 *	consumes the packet because it calls send_reject().
2146	 *	XXX This has to change, so that ipfw_chk() never modifies
2147	 *	or consumes the buffer.
2148	 * ip	is the beginning of the ip(4 or 6) header.
2149	 *	Calculated by adding the L3offset to the start of data.
2150	 *	(Until we start using L3offset, the packet is
2151	 *	supposed to start with the ip header).
2152	 */
2153	struct mbuf *m = args->m;
2154	struct ip *ip = mtod(m, struct ip *);
2155
2156	/*
2157	 * For rules which contain uid/gid or jail constraints, cache
2158	 * a copy of the users credentials after the pcb lookup has been
2159	 * executed. This will speed up the processing of rules with
2160	 * these types of constraints, as well as decrease contention
2161	 * on pcb related locks.
2162	 */
2163	struct ip_fw_ugid fw_ugid_cache;
2164	int ugid_lookup = 0;
2165
2166	/*
2167	 * divinput_flags	If non-zero, set to the IP_FW_DIVERT_*_FLAG
2168	 *	associated with a packet input on a divert socket.  This
2169	 *	will allow to distinguish traffic and its direction when
2170	 *	it originates from a divert socket.
2171	 */
2172	u_int divinput_flags = 0;
2173
2174	/*
2175	 * oif | args->oif	If NULL, ipfw_chk has been called on the
2176	 *	inbound path (ether_input, ip_input).
2177	 *	If non-NULL, ipfw_chk has been called on the outbound path
2178	 *	(ether_output, ip_output).
2179	 */
2180	struct ifnet *oif = args->oif;
2181
2182	struct ip_fw *f = NULL;		/* matching rule */
2183	int retval = 0;
2184
2185	/*
2186	 * hlen	The length of the IP header.
2187	 */
2188	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
2189
2190	/*
2191	 * offset	The offset of a fragment. offset != 0 means that
2192	 *	we have a fragment at this offset of an IPv4 packet.
2193	 *	offset == 0 means that (if this is an IPv4 packet)
2194	 *	this is the first or only fragment.
2195	 *	For IPv6 offset == 0 means there is no Fragment Header.
2196	 *	If offset != 0 for IPv6 always use correct mask to
2197	 *	get the correct offset because we add IP6F_MORE_FRAG
2198	 *	to be able to dectect the first fragment which would
2199	 *	otherwise have offset = 0.
2200	 */
2201	u_short offset = 0;
2202
2203	/*
2204	 * Local copies of addresses. They are only valid if we have
2205	 * an IP packet.
2206	 *
2207	 * proto	The protocol. Set to 0 for non-ip packets,
2208	 *	or to the protocol read from the packet otherwise.
2209	 *	proto != 0 means that we have an IPv4 packet.
2210	 *
2211	 * src_port, dst_port	port numbers, in HOST format. Only
2212	 *	valid for TCP and UDP packets.
2213	 *
2214	 * src_ip, dst_ip	ip addresses, in NETWORK format.
2215	 *	Only valid for IPv4 packets.
2216	 */
2217	u_int8_t proto;
2218	u_int16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
2219	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
2220	u_int16_t ip_len=0;
2221	int pktlen;
2222	u_int16_t	etype = 0;	/* Host order stored ether type */
2223
2224	/*
2225	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
2226	 * 	MATCH_NONE when checked and not matched (q = NULL),
2227	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
2228	 */
2229	int dyn_dir = MATCH_UNKNOWN;
2230	ipfw_dyn_rule *q = NULL;
2231	struct ip_fw_chain *chain = &V_layer3_chain;
2232	struct m_tag *mtag;
2233
2234	/*
2235	 * We store in ulp a pointer to the upper layer protocol header.
2236	 * In the ipv4 case this is easy to determine from the header,
2237	 * but for ipv6 we might have some additional headers in the middle.
2238	 * ulp is NULL if not found.
2239	 */
2240	void *ulp = NULL;		/* upper layer protocol pointer. */
2241	/* XXX ipv6 variables */
2242	int is_ipv6 = 0;
2243	u_int16_t ext_hd = 0;	/* bits vector for extension header filtering */
2244	/* end of ipv6 variables */
2245	int is_ipv4 = 0;
2246
2247	if (m->m_flags & M_SKIP_FIREWALL)
2248		return (IP_FW_PASS);	/* accept */
2249
2250	dst_ip.s_addr = 0;		/* make sure it is initialized */
2251	pktlen = m->m_pkthdr.len;
2252	args->f_id.fib = M_GETFIB(m); /* note mbuf not altered) */
2253	proto = args->f_id.proto = 0;	/* mark f_id invalid */
2254		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
2255
2256/*
2257 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
2258 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
2259 * pointer might become stale after other pullups (but we never use it
2260 * this way).
2261 */
2262#define PULLUP_TO(len, p, T)						\
2263do {									\
2264	int x = (len) + sizeof(T);					\
2265	if ((m)->m_len < x) {						\
2266		args->m = m = m_pullup(m, x);				\
2267		if (m == NULL)						\
2268			goto pullup_failed;				\
2269	}								\
2270	p = (mtod(m, char *) + (len));					\
2271} while (0)
2272
2273	/*
2274	 * if we have an ether header,
2275	 */
2276	if (args->eh)
2277		etype = ntohs(args->eh->ether_type);
2278
2279	/* Identify IP packets and fill up variables. */
2280	if (pktlen >= sizeof(struct ip6_hdr) &&
2281	    (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
2282		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
2283		is_ipv6 = 1;
2284		args->f_id.addr_type = 6;
2285		hlen = sizeof(struct ip6_hdr);
2286		proto = ip6->ip6_nxt;
2287
2288		/* Search extension headers to find upper layer protocols */
2289		while (ulp == NULL) {
2290			switch (proto) {
2291			case IPPROTO_ICMPV6:
2292				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
2293				args->f_id.flags = ICMP6(ulp)->icmp6_type;
2294				break;
2295
2296			case IPPROTO_TCP:
2297				PULLUP_TO(hlen, ulp, struct tcphdr);
2298				dst_port = TCP(ulp)->th_dport;
2299				src_port = TCP(ulp)->th_sport;
2300				args->f_id.flags = TCP(ulp)->th_flags;
2301				break;
2302
2303			case IPPROTO_SCTP:
2304				PULLUP_TO(hlen, ulp, struct sctphdr);
2305				src_port = SCTP(ulp)->src_port;
2306				dst_port = SCTP(ulp)->dest_port;
2307				break;
2308
2309			case IPPROTO_UDP:
2310				PULLUP_TO(hlen, ulp, struct udphdr);
2311				dst_port = UDP(ulp)->uh_dport;
2312				src_port = UDP(ulp)->uh_sport;
2313				break;
2314
2315			case IPPROTO_HOPOPTS:	/* RFC 2460 */
2316				PULLUP_TO(hlen, ulp, struct ip6_hbh);
2317				ext_hd |= EXT_HOPOPTS;
2318				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2319				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2320				ulp = NULL;
2321				break;
2322
2323			case IPPROTO_ROUTING:	/* RFC 2460 */
2324				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
2325				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
2326				case 0:
2327					ext_hd |= EXT_RTHDR0;
2328					break;
2329				case 2:
2330					ext_hd |= EXT_RTHDR2;
2331					break;
2332				default:
2333					printf("IPFW2: IPV6 - Unknown Routing "
2334					    "Header type(%d)\n",
2335					    ((struct ip6_rthdr *)ulp)->ip6r_type);
2336					if (V_fw_deny_unknown_exthdrs)
2337					    return (IP_FW_DENY);
2338					break;
2339				}
2340				ext_hd |= EXT_ROUTING;
2341				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
2342				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
2343				ulp = NULL;
2344				break;
2345
2346			case IPPROTO_FRAGMENT:	/* RFC 2460 */
2347				PULLUP_TO(hlen, ulp, struct ip6_frag);
2348				ext_hd |= EXT_FRAGMENT;
2349				hlen += sizeof (struct ip6_frag);
2350				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
2351				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
2352					IP6F_OFF_MASK;
2353				/* Add IP6F_MORE_FRAG for offset of first
2354				 * fragment to be != 0. */
2355				offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
2356					IP6F_MORE_FRAG;
2357				if (offset == 0) {
2358					printf("IPFW2: IPV6 - Invalid Fragment "
2359					    "Header\n");
2360					if (V_fw_deny_unknown_exthdrs)
2361					    return (IP_FW_DENY);
2362					break;
2363				}
2364				args->f_id.frag_id6 =
2365				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
2366				ulp = NULL;
2367				break;
2368
2369			case IPPROTO_DSTOPTS:	/* RFC 2460 */
2370				PULLUP_TO(hlen, ulp, struct ip6_hbh);
2371				ext_hd |= EXT_DSTOPTS;
2372				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2373				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2374				ulp = NULL;
2375				break;
2376
2377			case IPPROTO_AH:	/* RFC 2402 */
2378				PULLUP_TO(hlen, ulp, struct ip6_ext);
2379				ext_hd |= EXT_AH;
2380				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
2381				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
2382				ulp = NULL;
2383				break;
2384
2385			case IPPROTO_ESP:	/* RFC 2406 */
2386				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
2387				/* Anything past Seq# is variable length and
2388				 * data past this ext. header is encrypted. */
2389				ext_hd |= EXT_ESP;
2390				break;
2391
2392			case IPPROTO_NONE:	/* RFC 2460 */
2393				/*
2394				 * Packet ends here, and IPv6 header has
2395				 * already been pulled up. If ip6e_len!=0
2396				 * then octets must be ignored.
2397				 */
2398				ulp = ip; /* non-NULL to get out of loop. */
2399				break;
2400
2401			case IPPROTO_OSPFIGP:
2402				/* XXX OSPF header check? */
2403				PULLUP_TO(hlen, ulp, struct ip6_ext);
2404				break;
2405
2406			case IPPROTO_PIM:
2407				/* XXX PIM header check? */
2408				PULLUP_TO(hlen, ulp, struct pim);
2409				break;
2410
2411			case IPPROTO_CARP:
2412				PULLUP_TO(hlen, ulp, struct carp_header);
2413				if (((struct carp_header *)ulp)->carp_version !=
2414				    CARP_VERSION)
2415					return (IP_FW_DENY);
2416				if (((struct carp_header *)ulp)->carp_type !=
2417				    CARP_ADVERTISEMENT)
2418					return (IP_FW_DENY);
2419				break;
2420
2421			case IPPROTO_IPV6:	/* RFC 2893 */
2422				PULLUP_TO(hlen, ulp, struct ip6_hdr);
2423				break;
2424
2425			case IPPROTO_IPV4:	/* RFC 2893 */
2426				PULLUP_TO(hlen, ulp, struct ip);
2427				break;
2428
2429			default:
2430				printf("IPFW2: IPV6 - Unknown Extension "
2431				    "Header(%d), ext_hd=%x\n", proto, ext_hd);
2432				if (V_fw_deny_unknown_exthdrs)
2433				    return (IP_FW_DENY);
2434				PULLUP_TO(hlen, ulp, struct ip6_ext);
2435				break;
2436			} /*switch */
2437		}
2438		ip = mtod(m, struct ip *);
2439		ip6 = (struct ip6_hdr *)ip;
2440		args->f_id.src_ip6 = ip6->ip6_src;
2441		args->f_id.dst_ip6 = ip6->ip6_dst;
2442		args->f_id.src_ip = 0;
2443		args->f_id.dst_ip = 0;
2444		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
2445	} else if (pktlen >= sizeof(struct ip) &&
2446	    (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
2447	    	is_ipv4 = 1;
2448		hlen = ip->ip_hl << 2;
2449		args->f_id.addr_type = 4;
2450
2451		/*
2452		 * Collect parameters into local variables for faster matching.
2453		 */
2454		proto = ip->ip_p;
2455		src_ip = ip->ip_src;
2456		dst_ip = ip->ip_dst;
2457		if (args->eh != NULL) { /* layer 2 packets are as on the wire */
2458			offset = ntohs(ip->ip_off) & IP_OFFMASK;
2459			ip_len = ntohs(ip->ip_len);
2460		} else {
2461			offset = ip->ip_off & IP_OFFMASK;
2462			ip_len = ip->ip_len;
2463		}
2464		pktlen = ip_len < pktlen ? ip_len : pktlen;
2465
2466		if (offset == 0) {
2467			switch (proto) {
2468			case IPPROTO_TCP:
2469				PULLUP_TO(hlen, ulp, struct tcphdr);
2470				dst_port = TCP(ulp)->th_dport;
2471				src_port = TCP(ulp)->th_sport;
2472				args->f_id.flags = TCP(ulp)->th_flags;
2473				break;
2474
2475			case IPPROTO_UDP:
2476				PULLUP_TO(hlen, ulp, struct udphdr);
2477				dst_port = UDP(ulp)->uh_dport;
2478				src_port = UDP(ulp)->uh_sport;
2479				break;
2480
2481			case IPPROTO_ICMP:
2482				PULLUP_TO(hlen, ulp, struct icmphdr);
2483				args->f_id.flags = ICMP(ulp)->icmp_type;
2484				break;
2485
2486			default:
2487				break;
2488			}
2489		}
2490
2491		ip = mtod(m, struct ip *);
2492		args->f_id.src_ip = ntohl(src_ip.s_addr);
2493		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
2494	}
2495#undef PULLUP_TO
2496	if (proto) { /* we may have port numbers, store them */
2497		args->f_id.proto = proto;
2498		args->f_id.src_port = src_port = ntohs(src_port);
2499		args->f_id.dst_port = dst_port = ntohs(dst_port);
2500	}
2501
2502	IPFW_RLOCK(chain);
2503	mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
2504	if (args->rule) {
2505		/*
2506		 * Packet has already been tagged. Look for the next rule
2507		 * to restart processing.
2508		 *
2509		 * If fw_one_pass != 0 then just accept it.
2510		 * XXX should not happen here, but optimized out in
2511		 * the caller.
2512		 */
2513		if (V_fw_one_pass) {
2514			IPFW_RUNLOCK(chain);
2515			return (IP_FW_PASS);
2516		}
2517
2518		f = args->rule->next_rule;
2519		if (f == NULL)
2520			f = lookup_next_rule(args->rule, 0);
2521	} else {
2522		/*
2523		 * Find the starting rule. It can be either the first
2524		 * one, or the one after divert_rule if asked so.
2525		 */
2526		int skipto = mtag ? divert_cookie(mtag) : 0;
2527
2528		f = chain->rules;
2529		if (args->eh == NULL && skipto != 0) {
2530			if (skipto >= IPFW_DEFAULT_RULE) {
2531				IPFW_RUNLOCK(chain);
2532				return (IP_FW_DENY); /* invalid */
2533			}
2534			while (f && f->rulenum <= skipto)
2535				f = f->next;
2536			if (f == NULL) {	/* drop packet */
2537				IPFW_RUNLOCK(chain);
2538				return (IP_FW_DENY);
2539			}
2540		}
2541	}
2542	/* reset divert rule to avoid confusion later */
2543	if (mtag) {
2544		divinput_flags = divert_info(mtag) &
2545		    (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
2546		m_tag_delete(m, mtag);
2547	}
2548
2549	/*
2550	 * Now scan the rules, and parse microinstructions for each rule.
2551	 */
2552	for (; f; f = f->next) {
2553		ipfw_insn *cmd;
2554		uint32_t tablearg = 0;
2555		int l, cmdlen, skip_or; /* skip rest of OR block */
2556
2557again:
2558		if (V_set_disable & (1 << f->set) )
2559			continue;
2560
2561		skip_or = 0;
2562		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
2563		    l -= cmdlen, cmd += cmdlen) {
2564			int match;
2565
2566			/*
2567			 * check_body is a jump target used when we find a
2568			 * CHECK_STATE, and need to jump to the body of
2569			 * the target rule.
2570			 */
2571
2572check_body:
2573			cmdlen = F_LEN(cmd);
2574			/*
2575			 * An OR block (insn_1 || .. || insn_n) has the
2576			 * F_OR bit set in all but the last instruction.
2577			 * The first match will set "skip_or", and cause
2578			 * the following instructions to be skipped until
2579			 * past the one with the F_OR bit clear.
2580			 */
2581			if (skip_or) {		/* skip this instruction */
2582				if ((cmd->len & F_OR) == 0)
2583					skip_or = 0;	/* next one is good */
2584				continue;
2585			}
2586			match = 0; /* set to 1 if we succeed */
2587
2588			switch (cmd->opcode) {
2589			/*
2590			 * The first set of opcodes compares the packet's
2591			 * fields with some pattern, setting 'match' if a
2592			 * match is found. At the end of the loop there is
2593			 * logic to deal with F_NOT and F_OR flags associated
2594			 * with the opcode.
2595			 */
2596			case O_NOP:
2597				match = 1;
2598				break;
2599
2600			case O_FORWARD_MAC:
2601				printf("ipfw: opcode %d unimplemented\n",
2602				    cmd->opcode);
2603				break;
2604
2605			case O_GID:
2606			case O_UID:
2607			case O_JAIL:
2608				/*
2609				 * We only check offset == 0 && proto != 0,
2610				 * as this ensures that we have a
2611				 * packet with the ports info.
2612				 */
2613				if (offset!=0)
2614					break;
2615				if (is_ipv6) /* XXX to be fixed later */
2616					break;
2617				if (proto == IPPROTO_TCP ||
2618				    proto == IPPROTO_UDP)
2619					match = check_uidgid(
2620						    (ipfw_insn_u32 *)cmd,
2621						    proto, oif,
2622						    dst_ip, dst_port,
2623						    src_ip, src_port, &fw_ugid_cache,
2624						    &ugid_lookup, args->inp);
2625				break;
2626
2627			case O_RECV:
2628				match = iface_match(m->m_pkthdr.rcvif,
2629				    (ipfw_insn_if *)cmd);
2630				break;
2631
2632			case O_XMIT:
2633				match = iface_match(oif, (ipfw_insn_if *)cmd);
2634				break;
2635
2636			case O_VIA:
2637				match = iface_match(oif ? oif :
2638				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
2639				break;
2640
2641			case O_MACADDR2:
2642				if (args->eh != NULL) {	/* have MAC header */
2643					u_int32_t *want = (u_int32_t *)
2644						((ipfw_insn_mac *)cmd)->addr;
2645					u_int32_t *mask = (u_int32_t *)
2646						((ipfw_insn_mac *)cmd)->mask;
2647					u_int32_t *hdr = (u_int32_t *)args->eh;
2648
2649					match =
2650					    ( want[0] == (hdr[0] & mask[0]) &&
2651					      want[1] == (hdr[1] & mask[1]) &&
2652					      want[2] == (hdr[2] & mask[2]) );
2653				}
2654				break;
2655
2656			case O_MAC_TYPE:
2657				if (args->eh != NULL) {
2658					u_int16_t *p =
2659					    ((ipfw_insn_u16 *)cmd)->ports;
2660					int i;
2661
2662					for (i = cmdlen - 1; !match && i>0;
2663					    i--, p += 2)
2664						match = (etype >= p[0] &&
2665						    etype <= p[1]);
2666				}
2667				break;
2668
2669			case O_FRAG:
2670				match = (offset != 0);
2671				break;
2672
2673			case O_IN:	/* "out" is "not in" */
2674				match = (oif == NULL);
2675				break;
2676
2677			case O_LAYER2:
2678				match = (args->eh != NULL);
2679				break;
2680
2681			case O_DIVERTED:
2682				match = (cmd->arg1 & 1 && divinput_flags &
2683				    IP_FW_DIVERT_LOOPBACK_FLAG) ||
2684					(cmd->arg1 & 2 && divinput_flags &
2685				    IP_FW_DIVERT_OUTPUT_FLAG);
2686				break;
2687
2688			case O_PROTO:
2689				/*
2690				 * We do not allow an arg of 0 so the
2691				 * check of "proto" only suffices.
2692				 */
2693				match = (proto == cmd->arg1);
2694				break;
2695
2696			case O_IP_SRC:
2697				match = is_ipv4 &&
2698				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2699				    src_ip.s_addr);
2700				break;
2701
2702			case O_IP_SRC_LOOKUP:
2703			case O_IP_DST_LOOKUP:
2704				if (is_ipv4) {
2705				    uint32_t a =
2706					(cmd->opcode == O_IP_DST_LOOKUP) ?
2707					    dst_ip.s_addr : src_ip.s_addr;
2708				    uint32_t v = 0;
2709
2710				    match = lookup_table(chain, cmd->arg1, a,
2711					&v);
2712				    if (!match)
2713					break;
2714				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2715					match =
2716					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
2717				    else
2718					tablearg = v;
2719				}
2720				break;
2721
2722			case O_IP_SRC_MASK:
2723			case O_IP_DST_MASK:
2724				if (is_ipv4) {
2725				    uint32_t a =
2726					(cmd->opcode == O_IP_DST_MASK) ?
2727					    dst_ip.s_addr : src_ip.s_addr;
2728				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2729				    int i = cmdlen-1;
2730
2731				    for (; !match && i>0; i-= 2, p+= 2)
2732					match = (p[0] == (a & p[1]));
2733				}
2734				break;
2735
2736			case O_IP_SRC_ME:
2737				if (is_ipv4) {
2738					struct ifnet *tif;
2739
2740					INADDR_TO_IFP(src_ip, tif);
2741					match = (tif != NULL);
2742				}
2743				break;
2744
2745			case O_IP_DST_SET:
2746			case O_IP_SRC_SET:
2747				if (is_ipv4) {
2748					u_int32_t *d = (u_int32_t *)(cmd+1);
2749					u_int32_t addr =
2750					    cmd->opcode == O_IP_DST_SET ?
2751						args->f_id.dst_ip :
2752						args->f_id.src_ip;
2753
2754					    if (addr < d[0])
2755						    break;
2756					    addr -= d[0]; /* subtract base */
2757					    match = (addr < cmd->arg1) &&
2758						( d[ 1 + (addr>>5)] &
2759						  (1<<(addr & 0x1f)) );
2760				}
2761				break;
2762
2763			case O_IP_DST:
2764				match = is_ipv4 &&
2765				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2766				    dst_ip.s_addr);
2767				break;
2768
2769			case O_IP_DST_ME:
2770				if (is_ipv4) {
2771					struct ifnet *tif;
2772
2773					INADDR_TO_IFP(dst_ip, tif);
2774					match = (tif != NULL);
2775				}
2776				break;
2777
2778			case O_IP_SRCPORT:
2779			case O_IP_DSTPORT:
2780				/*
2781				 * offset == 0 && proto != 0 is enough
2782				 * to guarantee that we have a
2783				 * packet with port info.
2784				 */
2785				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
2786				    && offset == 0) {
2787					u_int16_t x =
2788					    (cmd->opcode == O_IP_SRCPORT) ?
2789						src_port : dst_port ;
2790					u_int16_t *p =
2791					    ((ipfw_insn_u16 *)cmd)->ports;
2792					int i;
2793
2794					for (i = cmdlen - 1; !match && i>0;
2795					    i--, p += 2)
2796						match = (x>=p[0] && x<=p[1]);
2797				}
2798				break;
2799
2800			case O_ICMPTYPE:
2801				match = (offset == 0 && proto==IPPROTO_ICMP &&
2802				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2803				break;
2804
2805#ifdef INET6
2806			case O_ICMP6TYPE:
2807				match = is_ipv6 && offset == 0 &&
2808				    proto==IPPROTO_ICMPV6 &&
2809				    icmp6type_match(
2810					ICMP6(ulp)->icmp6_type,
2811					(ipfw_insn_u32 *)cmd);
2812				break;
2813#endif /* INET6 */
2814
2815			case O_IPOPT:
2816				match = (is_ipv4 &&
2817				    ipopts_match(ip, cmd) );
2818				break;
2819
2820			case O_IPVER:
2821				match = (is_ipv4 &&
2822				    cmd->arg1 == ip->ip_v);
2823				break;
2824
2825			case O_IPID:
2826			case O_IPLEN:
2827			case O_IPTTL:
2828				if (is_ipv4) {	/* only for IP packets */
2829				    uint16_t x;
2830				    uint16_t *p;
2831				    int i;
2832
2833				    if (cmd->opcode == O_IPLEN)
2834					x = ip_len;
2835				    else if (cmd->opcode == O_IPTTL)
2836					x = ip->ip_ttl;
2837				    else /* must be IPID */
2838					x = ntohs(ip->ip_id);
2839				    if (cmdlen == 1) {
2840					match = (cmd->arg1 == x);
2841					break;
2842				    }
2843				    /* otherwise we have ranges */
2844				    p = ((ipfw_insn_u16 *)cmd)->ports;
2845				    i = cmdlen - 1;
2846				    for (; !match && i>0; i--, p += 2)
2847					match = (x >= p[0] && x <= p[1]);
2848				}
2849				break;
2850
2851			case O_IPPRECEDENCE:
2852				match = (is_ipv4 &&
2853				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
2854				break;
2855
2856			case O_IPTOS:
2857				match = (is_ipv4 &&
2858				    flags_match(cmd, ip->ip_tos));
2859				break;
2860
2861			case O_TCPDATALEN:
2862				if (proto == IPPROTO_TCP && offset == 0) {
2863				    struct tcphdr *tcp;
2864				    uint16_t x;
2865				    uint16_t *p;
2866				    int i;
2867
2868				    tcp = TCP(ulp);
2869				    x = ip_len -
2870					((ip->ip_hl + tcp->th_off) << 2);
2871				    if (cmdlen == 1) {
2872					match = (cmd->arg1 == x);
2873					break;
2874				    }
2875				    /* otherwise we have ranges */
2876				    p = ((ipfw_insn_u16 *)cmd)->ports;
2877				    i = cmdlen - 1;
2878				    for (; !match && i>0; i--, p += 2)
2879					match = (x >= p[0] && x <= p[1]);
2880				}
2881				break;
2882
2883			case O_TCPFLAGS:
2884				match = (proto == IPPROTO_TCP && offset == 0 &&
2885				    flags_match(cmd, TCP(ulp)->th_flags));
2886				break;
2887
2888			case O_TCPOPTS:
2889				match = (proto == IPPROTO_TCP && offset == 0 &&
2890				    tcpopts_match(TCP(ulp), cmd));
2891				break;
2892
2893			case O_TCPSEQ:
2894				match = (proto == IPPROTO_TCP && offset == 0 &&
2895				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2896					TCP(ulp)->th_seq);
2897				break;
2898
2899			case O_TCPACK:
2900				match = (proto == IPPROTO_TCP && offset == 0 &&
2901				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2902					TCP(ulp)->th_ack);
2903				break;
2904
2905			case O_TCPWIN:
2906				match = (proto == IPPROTO_TCP && offset == 0 &&
2907				    cmd->arg1 == TCP(ulp)->th_win);
2908				break;
2909
2910			case O_ESTAB:
2911				/* reject packets which have SYN only */
2912				/* XXX should i also check for TH_ACK ? */
2913				match = (proto == IPPROTO_TCP && offset == 0 &&
2914				    (TCP(ulp)->th_flags &
2915				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2916				break;
2917
2918			case O_ALTQ: {
2919				struct pf_mtag *at;
2920				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2921
2922				match = 1;
2923				at = pf_find_mtag(m);
2924				if (at != NULL && at->qid != 0)
2925					break;
2926				at = pf_get_mtag(m);
2927				if (at == NULL) {
2928					/*
2929					 * Let the packet fall back to the
2930					 * default ALTQ.
2931					 */
2932					break;
2933				}
2934				at->qid = altq->qid;
2935				if (is_ipv4)
2936					at->af = AF_INET;
2937				else
2938					at->af = AF_LINK;
2939				at->hdr = ip;
2940				break;
2941			}
2942
2943			case O_LOG:
2944				if (V_fw_verbose)
2945					ipfw_log(f, hlen, args, m,
2946					    oif, offset, tablearg, ip);
2947				match = 1;
2948				break;
2949
2950			case O_PROB:
2951				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2952				break;
2953
2954			case O_VERREVPATH:
2955				/* Outgoing packets automatically pass/match */
2956				match = ((oif != NULL) ||
2957				    (m->m_pkthdr.rcvif == NULL) ||
2958				    (
2959#ifdef INET6
2960				    is_ipv6 ?
2961					verify_path6(&(args->f_id.src_ip6),
2962					    m->m_pkthdr.rcvif) :
2963#endif
2964				    verify_path(src_ip, m->m_pkthdr.rcvif,
2965				        args->f_id.fib)));
2966				break;
2967
2968			case O_VERSRCREACH:
2969				/* Outgoing packets automatically pass/match */
2970				match = (hlen > 0 && ((oif != NULL) ||
2971#ifdef INET6
2972				    is_ipv6 ?
2973				        verify_path6(&(args->f_id.src_ip6),
2974				            NULL) :
2975#endif
2976				    verify_path(src_ip, NULL, args->f_id.fib)));
2977				break;
2978
2979			case O_ANTISPOOF:
2980				/* Outgoing packets automatically pass/match */
2981				if (oif == NULL && hlen > 0 &&
2982				    (  (is_ipv4 && in_localaddr(src_ip))
2983#ifdef INET6
2984				    || (is_ipv6 &&
2985				        in6_localaddr(&(args->f_id.src_ip6)))
2986#endif
2987				    ))
2988					match =
2989#ifdef INET6
2990					    is_ipv6 ? verify_path6(
2991					        &(args->f_id.src_ip6),
2992					        m->m_pkthdr.rcvif) :
2993#endif
2994					    verify_path(src_ip,
2995					    	m->m_pkthdr.rcvif,
2996					        args->f_id.fib);
2997				else
2998					match = 1;
2999				break;
3000
3001			case O_IPSEC:
3002#ifdef IPSEC
3003				match = (m_tag_find(m,
3004				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
3005#endif
3006				/* otherwise no match */
3007				break;
3008
3009#ifdef INET6
3010			case O_IP6_SRC:
3011				match = is_ipv6 &&
3012				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
3013				    &((ipfw_insn_ip6 *)cmd)->addr6);
3014				break;
3015
3016			case O_IP6_DST:
3017				match = is_ipv6 &&
3018				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
3019				    &((ipfw_insn_ip6 *)cmd)->addr6);
3020				break;
3021			case O_IP6_SRC_MASK:
3022			case O_IP6_DST_MASK:
3023				if (is_ipv6) {
3024					int i = cmdlen - 1;
3025					struct in6_addr p;
3026					struct in6_addr *d =
3027					    &((ipfw_insn_ip6 *)cmd)->addr6;
3028
3029					for (; !match && i > 0; d += 2,
3030					    i -= F_INSN_SIZE(struct in6_addr)
3031					    * 2) {
3032						p = (cmd->opcode ==
3033						    O_IP6_SRC_MASK) ?
3034						    args->f_id.src_ip6:
3035						    args->f_id.dst_ip6;
3036						APPLY_MASK(&p, &d[1]);
3037						match =
3038						    IN6_ARE_ADDR_EQUAL(&d[0],
3039						    &p);
3040					}
3041				}
3042				break;
3043
3044			case O_IP6_SRC_ME:
3045				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
3046				break;
3047
3048			case O_IP6_DST_ME:
3049				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
3050				break;
3051
3052			case O_FLOW6ID:
3053				match = is_ipv6 &&
3054				    flow6id_match(args->f_id.flow_id6,
3055				    (ipfw_insn_u32 *) cmd);
3056				break;
3057
3058			case O_EXT_HDR:
3059				match = is_ipv6 &&
3060				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
3061				break;
3062
3063			case O_IP6:
3064				match = is_ipv6;
3065				break;
3066#endif
3067
3068			case O_IP4:
3069				match = is_ipv4;
3070				break;
3071
3072			case O_TAG: {
3073				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
3074				    tablearg : cmd->arg1;
3075
3076				/* Packet is already tagged with this tag? */
3077				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
3078
3079				/* We have `untag' action when F_NOT flag is
3080				 * present. And we must remove this mtag from
3081				 * mbuf and reset `match' to zero (`match' will
3082				 * be inversed later).
3083				 * Otherwise we should allocate new mtag and
3084				 * push it into mbuf.
3085				 */
3086				if (cmd->len & F_NOT) { /* `untag' action */
3087					if (mtag != NULL)
3088						m_tag_delete(m, mtag);
3089				} else if (mtag == NULL) {
3090					if ((mtag = m_tag_alloc(MTAG_IPFW,
3091					    tag, 0, M_NOWAIT)) != NULL)
3092						m_tag_prepend(m, mtag);
3093				}
3094				match = (cmd->len & F_NOT) ? 0: 1;
3095				break;
3096			}
3097
3098			case O_FIB: /* try match the specified fib */
3099				if (args->f_id.fib == cmd->arg1)
3100					match = 1;
3101				break;
3102
3103			case O_TAGGED: {
3104				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
3105				    tablearg : cmd->arg1;
3106
3107				if (cmdlen == 1) {
3108					match = m_tag_locate(m, MTAG_IPFW,
3109					    tag, NULL) != NULL;
3110					break;
3111				}
3112
3113				/* we have ranges */
3114				for (mtag = m_tag_first(m);
3115				    mtag != NULL && !match;
3116				    mtag = m_tag_next(m, mtag)) {
3117					uint16_t *p;
3118					int i;
3119
3120					if (mtag->m_tag_cookie != MTAG_IPFW)
3121						continue;
3122
3123					p = ((ipfw_insn_u16 *)cmd)->ports;
3124					i = cmdlen - 1;
3125					for(; !match && i > 0; i--, p += 2)
3126						match =
3127						    mtag->m_tag_id >= p[0] &&
3128						    mtag->m_tag_id <= p[1];
3129				}
3130				break;
3131			}
3132
3133			/*
3134			 * The second set of opcodes represents 'actions',
3135			 * i.e. the terminal part of a rule once the packet
3136			 * matches all previous patterns.
3137			 * Typically there is only one action for each rule,
3138			 * and the opcode is stored at the end of the rule
3139			 * (but there are exceptions -- see below).
3140			 *
3141			 * In general, here we set retval and terminate the
3142			 * outer loop (would be a 'break 3' in some language,
3143			 * but we need to do a 'goto done').
3144			 *
3145			 * Exceptions:
3146			 * O_COUNT and O_SKIPTO actions:
3147			 *   instead of terminating, we jump to the next rule
3148			 *   ('goto next_rule', equivalent to a 'break 2'),
3149			 *   or to the SKIPTO target ('goto again' after
3150			 *   having set f, cmd and l), respectively.
3151			 *
3152			 * O_TAG, O_LOG and O_ALTQ action parameters:
3153			 *   perform some action and set match = 1;
3154			 *
3155			 * O_LIMIT and O_KEEP_STATE: these opcodes are
3156			 *   not real 'actions', and are stored right
3157			 *   before the 'action' part of the rule.
3158			 *   These opcodes try to install an entry in the
3159			 *   state tables; if successful, we continue with
3160			 *   the next opcode (match=1; break;), otherwise
3161			 *   the packet *   must be dropped
3162			 *   ('goto done' after setting retval);
3163			 *
3164			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
3165			 *   cause a lookup of the state table, and a jump
3166			 *   to the 'action' part of the parent rule
3167			 *   ('goto check_body') if an entry is found, or
3168			 *   (CHECK_STATE only) a jump to the next rule if
3169			 *   the entry is not found ('goto next_rule').
3170			 *   The result of the lookup is cached to make
3171			 *   further instances of these opcodes are
3172			 *   effectively NOPs.
3173			 */
3174			case O_LIMIT:
3175			case O_KEEP_STATE:
3176				if (install_state(f,
3177				    (ipfw_insn_limit *)cmd, args, tablearg)) {
3178					retval = IP_FW_DENY;
3179					goto done; /* error/limit violation */
3180				}
3181				match = 1;
3182				break;
3183
3184			case O_PROBE_STATE:
3185			case O_CHECK_STATE:
3186				/*
3187				 * dynamic rules are checked at the first
3188				 * keep-state or check-state occurrence,
3189				 * with the result being stored in dyn_dir.
3190				 * The compiler introduces a PROBE_STATE
3191				 * instruction for us when we have a
3192				 * KEEP_STATE (because PROBE_STATE needs
3193				 * to be run first).
3194				 */
3195				if (dyn_dir == MATCH_UNKNOWN &&
3196				    (q = lookup_dyn_rule(&args->f_id,
3197				     &dyn_dir, proto == IPPROTO_TCP ?
3198					TCP(ulp) : NULL))
3199					!= NULL) {
3200					/*
3201					 * Found dynamic entry, update stats
3202					 * and jump to the 'action' part of
3203					 * the parent rule.
3204					 */
3205					q->pcnt++;
3206					q->bcnt += pktlen;
3207					f = q->rule;
3208					cmd = ACTION_PTR(f);
3209					l = f->cmd_len - f->act_ofs;
3210					IPFW_DYN_UNLOCK();
3211					goto check_body;
3212				}
3213				/*
3214				 * Dynamic entry not found. If CHECK_STATE,
3215				 * skip to next rule, if PROBE_STATE just
3216				 * ignore and continue with next opcode.
3217				 */
3218				if (cmd->opcode == O_CHECK_STATE)
3219					goto next_rule;
3220				match = 1;
3221				break;
3222
3223			case O_ACCEPT:
3224				retval = 0;	/* accept */
3225				goto done;
3226
3227			case O_PIPE:
3228			case O_QUEUE:
3229				args->rule = f; /* report matching rule */
3230				if (cmd->arg1 == IP_FW_TABLEARG)
3231					args->cookie = tablearg;
3232				else
3233					args->cookie = cmd->arg1;
3234				retval = IP_FW_DUMMYNET;
3235				goto done;
3236
3237			case O_DIVERT:
3238			case O_TEE: {
3239				struct divert_tag *dt;
3240
3241				if (args->eh) /* not on layer 2 */
3242					break;
3243				mtag = m_tag_get(PACKET_TAG_DIVERT,
3244						sizeof(struct divert_tag),
3245						M_NOWAIT);
3246				if (mtag == NULL) {
3247					/* XXX statistic */
3248					/* drop packet */
3249					IPFW_RUNLOCK(chain);
3250					return (IP_FW_DENY);
3251				}
3252				dt = (struct divert_tag *)(mtag+1);
3253				dt->cookie = f->rulenum;
3254				if (cmd->arg1 == IP_FW_TABLEARG)
3255					dt->info = tablearg;
3256				else
3257					dt->info = cmd->arg1;
3258				m_tag_prepend(m, mtag);
3259				retval = (cmd->opcode == O_DIVERT) ?
3260				    IP_FW_DIVERT : IP_FW_TEE;
3261				goto done;
3262			}
3263			case O_COUNT:
3264			case O_SKIPTO:
3265				f->pcnt++;	/* update stats */
3266				f->bcnt += pktlen;
3267				f->timestamp = time_uptime;
3268				if (cmd->opcode == O_COUNT)
3269					goto next_rule;
3270				/* handle skipto */
3271				if (cmd->arg1 == IP_FW_TABLEARG) {
3272					f = lookup_next_rule(f, tablearg);
3273				} else {
3274					if (f->next_rule == NULL)
3275						lookup_next_rule(f, 0);
3276					f = f->next_rule;
3277				}
3278				goto again;
3279
3280			case O_REJECT:
3281				/*
3282				 * Drop the packet and send a reject notice
3283				 * if the packet is not ICMP (or is an ICMP
3284				 * query), and it is not multicast/broadcast.
3285				 */
3286				if (hlen > 0 && is_ipv4 && offset == 0 &&
3287				    (proto != IPPROTO_ICMP ||
3288				     is_icmp_query(ICMP(ulp))) &&
3289				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3290				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
3291					send_reject(args, cmd->arg1, ip_len, ip);
3292					m = args->m;
3293				}
3294				/* FALLTHROUGH */
3295#ifdef INET6
3296			case O_UNREACH6:
3297				if (hlen > 0 && is_ipv6 &&
3298				    ((offset & IP6F_OFF_MASK) == 0) &&
3299				    (proto != IPPROTO_ICMPV6 ||
3300				     (is_icmp6_query(args->f_id.flags) == 1)) &&
3301				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3302				    !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
3303					send_reject6(
3304					    args, cmd->arg1, hlen,
3305					    (struct ip6_hdr *)ip);
3306					m = args->m;
3307				}
3308				/* FALLTHROUGH */
3309#endif
3310			case O_DENY:
3311				retval = IP_FW_DENY;
3312				goto done;
3313
3314			case O_FORWARD_IP: {
3315				struct sockaddr_in *sa;
3316				sa = &(((ipfw_insn_sa *)cmd)->sa);
3317				if (args->eh)	/* not valid on layer2 pkts */
3318					break;
3319				if (!q || dyn_dir == MATCH_FORWARD) {
3320					if (sa->sin_addr.s_addr == INADDR_ANY) {
3321						bcopy(sa, &args->hopstore,
3322							sizeof(*sa));
3323						args->hopstore.sin_addr.s_addr =
3324						    htonl(tablearg);
3325						args->next_hop =
3326						    &args->hopstore;
3327					} else {
3328						args->next_hop = sa;
3329					}
3330				}
3331				retval = IP_FW_PASS;
3332			    }
3333			    goto done;
3334
3335			case O_NETGRAPH:
3336			case O_NGTEE:
3337				args->rule = f;	/* report matching rule */
3338				if (cmd->arg1 == IP_FW_TABLEARG)
3339					args->cookie = tablearg;
3340				else
3341					args->cookie = cmd->arg1;
3342				retval = (cmd->opcode == O_NETGRAPH) ?
3343				    IP_FW_NETGRAPH : IP_FW_NGTEE;
3344				goto done;
3345
3346			case O_SETFIB:
3347				f->pcnt++;	/* update stats */
3348				f->bcnt += pktlen;
3349				f->timestamp = time_uptime;
3350				M_SETFIB(m, cmd->arg1);
3351				args->f_id.fib = cmd->arg1;
3352				goto next_rule;
3353
3354			case O_NAT: {
3355                        	struct cfg_nat *t;
3356                        	int nat_id;
3357
3358 				if (IPFW_NAT_LOADED) {
3359					args->rule = f; /* Report matching rule. */
3360					t = ((ipfw_insn_nat *)cmd)->nat;
3361					if (t == NULL) {
3362						nat_id = (cmd->arg1 == IP_FW_TABLEARG) ?
3363						    tablearg : cmd->arg1;
3364						LOOKUP_NAT(V_layer3_chain, nat_id, t);
3365						if (t == NULL) {
3366							retval = IP_FW_DENY;
3367							goto done;
3368						}
3369						if (cmd->arg1 != IP_FW_TABLEARG)
3370							((ipfw_insn_nat *)cmd)->nat = t;
3371					}
3372					retval = ipfw_nat_ptr(args, t, m);
3373				} else
3374					retval = IP_FW_DENY;
3375				goto done;
3376			}
3377
3378			default:
3379				panic("-- unknown opcode %d\n", cmd->opcode);
3380			} /* end of switch() on opcodes */
3381
3382			if (cmd->len & F_NOT)
3383				match = !match;
3384
3385			if (match) {
3386				if (cmd->len & F_OR)
3387					skip_or = 1;
3388			} else {
3389				if (!(cmd->len & F_OR)) /* not an OR block, */
3390					break;		/* try next rule    */
3391			}
3392
3393		}	/* end of inner for, scan opcodes */
3394
3395next_rule:;		/* try next rule		*/
3396
3397	}		/* end of outer for, scan rules */
3398	printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3399	IPFW_RUNLOCK(chain);
3400	return (IP_FW_DENY);
3401
3402done:
3403	/* Update statistics */
3404	f->pcnt++;
3405	f->bcnt += pktlen;
3406	f->timestamp = time_uptime;
3407	IPFW_RUNLOCK(chain);
3408	return (retval);
3409
3410pullup_failed:
3411	if (V_fw_verbose)
3412		printf("ipfw: pullup failed\n");
3413	return (IP_FW_DENY);
3414}
3415
3416/*
3417 * When a rule is added/deleted, clear the next_rule pointers in all rules.
3418 * These will be reconstructed on the fly as packets are matched.
3419 */
3420static void
3421flush_rule_ptrs(struct ip_fw_chain *chain)
3422{
3423	struct ip_fw *rule;
3424
3425	IPFW_WLOCK_ASSERT(chain);
3426
3427	for (rule = chain->rules; rule; rule = rule->next)
3428		rule->next_rule = NULL;
3429}
3430
3431/*
3432 * Add a new rule to the list. Copy the rule into a malloc'ed area, then
3433 * possibly create a rule number and add the rule to the list.
3434 * Update the rule_number in the input struct so the caller knows it as well.
3435 */
3436static int
3437add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
3438{
3439	INIT_VNET_IPFW(curvnet);
3440	struct ip_fw *rule, *f, *prev;
3441	int l = RULESIZE(input_rule);
3442
3443	if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
3444		return (EINVAL);
3445
3446	rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
3447	if (rule == NULL)
3448		return (ENOSPC);
3449
3450	bcopy(input_rule, rule, l);
3451
3452	rule->next = NULL;
3453	rule->next_rule = NULL;
3454
3455	rule->pcnt = 0;
3456	rule->bcnt = 0;
3457	rule->timestamp = 0;
3458
3459	IPFW_WLOCK(chain);
3460
3461	if (chain->rules == NULL) {	/* default rule */
3462		chain->rules = rule;
3463		goto done;
3464        }
3465
3466	/*
3467	 * If rulenum is 0, find highest numbered rule before the
3468	 * default rule, and add autoinc_step
3469	 */
3470	if (V_autoinc_step < 1)
3471		V_autoinc_step = 1;
3472	else if (V_autoinc_step > 1000)
3473		V_autoinc_step = 1000;
3474	if (rule->rulenum == 0) {
3475		/*
3476		 * locate the highest numbered rule before default
3477		 */
3478		for (f = chain->rules; f; f = f->next) {
3479			if (f->rulenum == IPFW_DEFAULT_RULE)
3480				break;
3481			rule->rulenum = f->rulenum;
3482		}
3483		if (rule->rulenum < IPFW_DEFAULT_RULE - V_autoinc_step)
3484			rule->rulenum += V_autoinc_step;
3485		input_rule->rulenum = rule->rulenum;
3486	}
3487
3488	/*
3489	 * Now insert the new rule in the right place in the sorted list.
3490	 */
3491	for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
3492		if (f->rulenum > rule->rulenum) { /* found the location */
3493			if (prev) {
3494				rule->next = f;
3495				prev->next = rule;
3496			} else { /* head insert */
3497				rule->next = chain->rules;
3498				chain->rules = rule;
3499			}
3500			break;
3501		}
3502	}
3503	flush_rule_ptrs(chain);
3504done:
3505	V_static_count++;
3506	V_static_len += l;
3507	IPFW_WUNLOCK(chain);
3508	DEB(printf("ipfw: installed rule %d, static count now %d\n",
3509		rule->rulenum, V_static_count);)
3510	return (0);
3511}
3512
3513/**
3514 * Remove a static rule (including derived * dynamic rules)
3515 * and place it on the ``reap list'' for later reclamation.
3516 * The caller is in charge of clearing rule pointers to avoid
3517 * dangling pointers.
3518 * @return a pointer to the next entry.
3519 * Arguments are not checked, so they better be correct.
3520 */
3521static struct ip_fw *
3522remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule,
3523    struct ip_fw *prev)
3524{
3525	INIT_VNET_IPFW(curvnet);
3526	struct ip_fw *n;
3527	int l = RULESIZE(rule);
3528
3529	IPFW_WLOCK_ASSERT(chain);
3530
3531	n = rule->next;
3532	IPFW_DYN_LOCK();
3533	remove_dyn_rule(rule, NULL /* force removal */);
3534	IPFW_DYN_UNLOCK();
3535	if (prev == NULL)
3536		chain->rules = n;
3537	else
3538		prev->next = n;
3539	V_static_count--;
3540	V_static_len -= l;
3541
3542	rule->next = chain->reap;
3543	chain->reap = rule;
3544
3545	return n;
3546}
3547
3548/**
3549 * Reclaim storage associated with a list of rules.  This is
3550 * typically the list created using remove_rule.
3551 */
3552static void
3553reap_rules(struct ip_fw *head)
3554{
3555	struct ip_fw *rule;
3556
3557	while ((rule = head) != NULL) {
3558		head = head->next;
3559		if (DUMMYNET_LOADED)
3560			ip_dn_ruledel_ptr(rule);
3561		free(rule, M_IPFW);
3562	}
3563}
3564
3565/*
3566 * Remove all rules from a chain (except rules in set RESVD_SET
3567 * unless kill_default = 1).  The caller is responsible for
3568 * reclaiming storage for the rules left in chain->reap.
3569 */
3570static void
3571free_chain(struct ip_fw_chain *chain, int kill_default)
3572{
3573	struct ip_fw *prev, *rule;
3574
3575	IPFW_WLOCK_ASSERT(chain);
3576
3577	flush_rule_ptrs(chain); /* more efficient to do outside the loop */
3578	for (prev = NULL, rule = chain->rules; rule ; )
3579		if (kill_default || rule->set != RESVD_SET)
3580			rule = remove_rule(chain, rule, prev);
3581		else {
3582			prev = rule;
3583			rule = rule->next;
3584		}
3585}
3586
3587/**
3588 * Remove all rules with given number, and also do set manipulation.
3589 * Assumes chain != NULL && *chain != NULL.
3590 *
3591 * The argument is an u_int32_t. The low 16 bit are the rule or set number,
3592 * the next 8 bits are the new set, the top 8 bits are the command:
3593 *
3594 *	0	delete rules with given number
3595 *	1	delete rules with given set number
3596 *	2	move rules with given number to new set
3597 *	3	move rules with given set number to new set
3598 *	4	swap sets with given numbers
3599 *	5	delete rules with given number and with given set number
3600 */
3601static int
3602del_entry(struct ip_fw_chain *chain, u_int32_t arg)
3603{
3604	struct ip_fw *prev = NULL, *rule;
3605	u_int16_t rulenum;	/* rule or old_set */
3606	u_int8_t cmd, new_set;
3607
3608	rulenum = arg & 0xffff;
3609	cmd = (arg >> 24) & 0xff;
3610	new_set = (arg >> 16) & 0xff;
3611
3612	if (cmd > 5 || new_set > RESVD_SET)
3613		return EINVAL;
3614	if (cmd == 0 || cmd == 2 || cmd == 5) {
3615		if (rulenum >= IPFW_DEFAULT_RULE)
3616			return EINVAL;
3617	} else {
3618		if (rulenum > RESVD_SET)	/* old_set */
3619			return EINVAL;
3620	}
3621
3622	IPFW_WLOCK(chain);
3623	rule = chain->rules;
3624	chain->reap = NULL;
3625	switch (cmd) {
3626	case 0:	/* delete rules with given number */
3627		/*
3628		 * locate first rule to delete
3629		 */
3630		for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3631			;
3632		if (rule->rulenum != rulenum) {
3633			IPFW_WUNLOCK(chain);
3634			return EINVAL;
3635		}
3636
3637		/*
3638		 * flush pointers outside the loop, then delete all matching
3639		 * rules. prev remains the same throughout the cycle.
3640		 */
3641		flush_rule_ptrs(chain);
3642		while (rule->rulenum == rulenum)
3643			rule = remove_rule(chain, rule, prev);
3644		break;
3645
3646	case 1:	/* delete all rules with given set number */
3647		flush_rule_ptrs(chain);
3648		rule = chain->rules;
3649		while (rule->rulenum < IPFW_DEFAULT_RULE)
3650			if (rule->set == rulenum)
3651				rule = remove_rule(chain, rule, prev);
3652			else {
3653				prev = rule;
3654				rule = rule->next;
3655			}
3656		break;
3657
3658	case 2:	/* move rules with given number to new set */
3659		rule = chain->rules;
3660		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3661			if (rule->rulenum == rulenum)
3662				rule->set = new_set;
3663		break;
3664
3665	case 3: /* move rules with given set number to new set */
3666		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3667			if (rule->set == rulenum)
3668				rule->set = new_set;
3669		break;
3670
3671	case 4: /* swap two sets */
3672		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3673			if (rule->set == rulenum)
3674				rule->set = new_set;
3675			else if (rule->set == new_set)
3676				rule->set = rulenum;
3677		break;
3678	case 5: /* delete rules with given number and with given set number.
3679		 * rulenum - given rule number;
3680		 * new_set - given set number.
3681		 */
3682		for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3683			;
3684		if (rule->rulenum != rulenum) {
3685			IPFW_WUNLOCK(chain);
3686			return (EINVAL);
3687		}
3688		flush_rule_ptrs(chain);
3689		while (rule->rulenum == rulenum) {
3690			if (rule->set == new_set)
3691				rule = remove_rule(chain, rule, prev);
3692			else {
3693				prev = rule;
3694				rule = rule->next;
3695			}
3696		}
3697	}
3698	/*
3699	 * Look for rules to reclaim.  We grab the list before
3700	 * releasing the lock then reclaim them w/o the lock to
3701	 * avoid a LOR with dummynet.
3702	 */
3703	rule = chain->reap;
3704	chain->reap = NULL;
3705	IPFW_WUNLOCK(chain);
3706	if (rule)
3707		reap_rules(rule);
3708	return 0;
3709}
3710
3711/*
3712 * Clear counters for a specific rule.
3713 * The enclosing "table" is assumed locked.
3714 */
3715static void
3716clear_counters(struct ip_fw *rule, int log_only)
3717{
3718	ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
3719
3720	if (log_only == 0) {
3721		rule->bcnt = rule->pcnt = 0;
3722		rule->timestamp = 0;
3723	}
3724	if (l->o.opcode == O_LOG)
3725		l->log_left = l->max_log;
3726}
3727
3728/**
3729 * Reset some or all counters on firewall rules.
3730 * The argument `arg' is an u_int32_t. The low 16 bit are the rule number,
3731 * the next 8 bits are the set number, the top 8 bits are the command:
3732 *	0	work with rules from all set's;
3733 *	1	work with rules only from specified set.
3734 * Specified rule number is zero if we want to clear all entries.
3735 * log_only is 1 if we only want to reset logs, zero otherwise.
3736 */
3737static int
3738zero_entry(struct ip_fw_chain *chain, u_int32_t arg, int log_only)
3739{
3740	INIT_VNET_IPFW(curvnet);
3741	struct ip_fw *rule;
3742	char *msg;
3743
3744	uint16_t rulenum = arg & 0xffff;
3745	uint8_t set = (arg >> 16) & 0xff;
3746	uint8_t cmd = (arg >> 24) & 0xff;
3747
3748	if (cmd > 1)
3749		return (EINVAL);
3750	if (cmd == 1 && set > RESVD_SET)
3751		return (EINVAL);
3752
3753	IPFW_WLOCK(chain);
3754	if (rulenum == 0) {
3755		V_norule_counter = 0;
3756		for (rule = chain->rules; rule; rule = rule->next) {
3757			/* Skip rules from another set. */
3758			if (cmd == 1 && rule->set != set)
3759				continue;
3760			clear_counters(rule, log_only);
3761		}
3762		msg = log_only ? "All logging counts reset" :
3763		    "Accounting cleared";
3764	} else {
3765		int cleared = 0;
3766		/*
3767		 * We can have multiple rules with the same number, so we
3768		 * need to clear them all.
3769		 */
3770		for (rule = chain->rules; rule; rule = rule->next)
3771			if (rule->rulenum == rulenum) {
3772				while (rule && rule->rulenum == rulenum) {
3773					if (cmd == 0 || rule->set == set)
3774						clear_counters(rule, log_only);
3775					rule = rule->next;
3776				}
3777				cleared = 1;
3778				break;
3779			}
3780		if (!cleared) {	/* we did not find any matching rules */
3781			IPFW_WUNLOCK(chain);
3782			return (EINVAL);
3783		}
3784		msg = log_only ? "logging count reset" : "cleared";
3785	}
3786	IPFW_WUNLOCK(chain);
3787
3788	if (V_fw_verbose) {
3789		int lev = LOG_SECURITY | LOG_NOTICE;
3790
3791		if (rulenum)
3792			log(lev, "ipfw: Entry %d %s.\n", rulenum, msg);
3793		else
3794			log(lev, "ipfw: %s.\n", msg);
3795	}
3796	return (0);
3797}
3798
3799/*
3800 * Check validity of the structure before insert.
3801 * Fortunately rules are simple, so this mostly need to check rule sizes.
3802 */
3803static int
3804check_ipfw_struct(struct ip_fw *rule, int size)
3805{
3806	int l, cmdlen = 0;
3807	int have_action=0;
3808	ipfw_insn *cmd;
3809
3810	if (size < sizeof(*rule)) {
3811		printf("ipfw: rule too short\n");
3812		return (EINVAL);
3813	}
3814	/* first, check for valid size */
3815	l = RULESIZE(rule);
3816	if (l != size) {
3817		printf("ipfw: size mismatch (have %d want %d)\n", size, l);
3818		return (EINVAL);
3819	}
3820	if (rule->act_ofs >= rule->cmd_len) {
3821		printf("ipfw: bogus action offset (%u > %u)\n",
3822		    rule->act_ofs, rule->cmd_len - 1);
3823		return (EINVAL);
3824	}
3825	/*
3826	 * Now go for the individual checks. Very simple ones, basically only
3827	 * instruction sizes.
3828	 */
3829	for (l = rule->cmd_len, cmd = rule->cmd ;
3830			l > 0 ; l -= cmdlen, cmd += cmdlen) {
3831		cmdlen = F_LEN(cmd);
3832		if (cmdlen > l) {
3833			printf("ipfw: opcode %d size truncated\n",
3834			    cmd->opcode);
3835			return EINVAL;
3836		}
3837		DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
3838		switch (cmd->opcode) {
3839		case O_PROBE_STATE:
3840		case O_KEEP_STATE:
3841		case O_PROTO:
3842		case O_IP_SRC_ME:
3843		case O_IP_DST_ME:
3844		case O_LAYER2:
3845		case O_IN:
3846		case O_FRAG:
3847		case O_DIVERTED:
3848		case O_IPOPT:
3849		case O_IPTOS:
3850		case O_IPPRECEDENCE:
3851		case O_IPVER:
3852		case O_TCPWIN:
3853		case O_TCPFLAGS:
3854		case O_TCPOPTS:
3855		case O_ESTAB:
3856		case O_VERREVPATH:
3857		case O_VERSRCREACH:
3858		case O_ANTISPOOF:
3859		case O_IPSEC:
3860#ifdef INET6
3861		case O_IP6_SRC_ME:
3862		case O_IP6_DST_ME:
3863		case O_EXT_HDR:
3864		case O_IP6:
3865#endif
3866		case O_IP4:
3867		case O_TAG:
3868			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3869				goto bad_size;
3870			break;
3871
3872		case O_FIB:
3873			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3874				goto bad_size;
3875			if (cmd->arg1 >= rt_numfibs) {
3876				printf("ipfw: invalid fib number %d\n",
3877					cmd->arg1);
3878				return EINVAL;
3879			}
3880			break;
3881
3882		case O_SETFIB:
3883			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3884				goto bad_size;
3885			if (cmd->arg1 >= rt_numfibs) {
3886				printf("ipfw: invalid fib number %d\n",
3887					cmd->arg1);
3888				return EINVAL;
3889			}
3890			goto check_action;
3891
3892		case O_UID:
3893		case O_GID:
3894		case O_JAIL:
3895		case O_IP_SRC:
3896		case O_IP_DST:
3897		case O_TCPSEQ:
3898		case O_TCPACK:
3899		case O_PROB:
3900		case O_ICMPTYPE:
3901			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3902				goto bad_size;
3903			break;
3904
3905		case O_LIMIT:
3906			if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
3907				goto bad_size;
3908			break;
3909
3910		case O_LOG:
3911			if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
3912				goto bad_size;
3913
3914			((ipfw_insn_log *)cmd)->log_left =
3915			    ((ipfw_insn_log *)cmd)->max_log;
3916
3917			break;
3918
3919		case O_IP_SRC_MASK:
3920		case O_IP_DST_MASK:
3921			/* only odd command lengths */
3922			if ( !(cmdlen & 1) || cmdlen > 31)
3923				goto bad_size;
3924			break;
3925
3926		case O_IP_SRC_SET:
3927		case O_IP_DST_SET:
3928			if (cmd->arg1 == 0 || cmd->arg1 > 256) {
3929				printf("ipfw: invalid set size %d\n",
3930					cmd->arg1);
3931				return EINVAL;
3932			}
3933			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3934			    (cmd->arg1+31)/32 )
3935				goto bad_size;
3936			break;
3937
3938		case O_IP_SRC_LOOKUP:
3939		case O_IP_DST_LOOKUP:
3940			if (cmd->arg1 >= IPFW_TABLES_MAX) {
3941				printf("ipfw: invalid table number %d\n",
3942				    cmd->arg1);
3943				return (EINVAL);
3944			}
3945			if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
3946			    cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3947				goto bad_size;
3948			break;
3949
3950		case O_MACADDR2:
3951			if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
3952				goto bad_size;
3953			break;
3954
3955		case O_NOP:
3956		case O_IPID:
3957		case O_IPTTL:
3958		case O_IPLEN:
3959		case O_TCPDATALEN:
3960		case O_TAGGED:
3961			if (cmdlen < 1 || cmdlen > 31)
3962				goto bad_size;
3963			break;
3964
3965		case O_MAC_TYPE:
3966		case O_IP_SRCPORT:
3967		case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
3968			if (cmdlen < 2 || cmdlen > 31)
3969				goto bad_size;
3970			break;
3971
3972		case O_RECV:
3973		case O_XMIT:
3974		case O_VIA:
3975			if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
3976				goto bad_size;
3977			break;
3978
3979		case O_ALTQ:
3980			if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
3981				goto bad_size;
3982			break;
3983
3984		case O_PIPE:
3985		case O_QUEUE:
3986			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3987				goto bad_size;
3988			goto check_action;
3989
3990		case O_FORWARD_IP:
3991#ifdef	IPFIREWALL_FORWARD
3992			if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
3993				goto bad_size;
3994			goto check_action;
3995#else
3996			return EINVAL;
3997#endif
3998
3999		case O_DIVERT:
4000		case O_TEE:
4001			if (ip_divert_ptr == NULL)
4002				return EINVAL;
4003			else
4004				goto check_size;
4005		case O_NETGRAPH:
4006		case O_NGTEE:
4007			if (!NG_IPFW_LOADED)
4008				return EINVAL;
4009			else
4010				goto check_size;
4011		case O_NAT:
4012			if (!IPFW_NAT_LOADED)
4013				return EINVAL;
4014			if (cmdlen != F_INSN_SIZE(ipfw_insn_nat))
4015 				goto bad_size;
4016 			goto check_action;
4017		case O_FORWARD_MAC: /* XXX not implemented yet */
4018		case O_CHECK_STATE:
4019		case O_COUNT:
4020		case O_ACCEPT:
4021		case O_DENY:
4022		case O_REJECT:
4023#ifdef INET6
4024		case O_UNREACH6:
4025#endif
4026		case O_SKIPTO:
4027check_size:
4028			if (cmdlen != F_INSN_SIZE(ipfw_insn))
4029				goto bad_size;
4030check_action:
4031			if (have_action) {
4032				printf("ipfw: opcode %d, multiple actions"
4033					" not allowed\n",
4034					cmd->opcode);
4035				return EINVAL;
4036			}
4037			have_action = 1;
4038			if (l != cmdlen) {
4039				printf("ipfw: opcode %d, action must be"
4040					" last opcode\n",
4041					cmd->opcode);
4042				return EINVAL;
4043			}
4044			break;
4045#ifdef INET6
4046		case O_IP6_SRC:
4047		case O_IP6_DST:
4048			if (cmdlen != F_INSN_SIZE(struct in6_addr) +
4049			    F_INSN_SIZE(ipfw_insn))
4050				goto bad_size;
4051			break;
4052
4053		case O_FLOW6ID:
4054			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
4055			    ((ipfw_insn_u32 *)cmd)->o.arg1)
4056				goto bad_size;
4057			break;
4058
4059		case O_IP6_SRC_MASK:
4060		case O_IP6_DST_MASK:
4061			if ( !(cmdlen & 1) || cmdlen > 127)
4062				goto bad_size;
4063			break;
4064		case O_ICMP6TYPE:
4065			if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
4066				goto bad_size;
4067			break;
4068#endif
4069
4070		default:
4071			switch (cmd->opcode) {
4072#ifndef INET6
4073			case O_IP6_SRC_ME:
4074			case O_IP6_DST_ME:
4075			case O_EXT_HDR:
4076			case O_IP6:
4077			case O_UNREACH6:
4078			case O_IP6_SRC:
4079			case O_IP6_DST:
4080			case O_FLOW6ID:
4081			case O_IP6_SRC_MASK:
4082			case O_IP6_DST_MASK:
4083			case O_ICMP6TYPE:
4084				printf("ipfw: no IPv6 support in kernel\n");
4085				return EPROTONOSUPPORT;
4086#endif
4087			default:
4088				printf("ipfw: opcode %d, unknown opcode\n",
4089					cmd->opcode);
4090				return EINVAL;
4091			}
4092		}
4093	}
4094	if (have_action == 0) {
4095		printf("ipfw: missing action\n");
4096		return EINVAL;
4097	}
4098	return 0;
4099
4100bad_size:
4101	printf("ipfw: opcode %d size %d wrong\n",
4102		cmd->opcode, cmdlen);
4103	return EINVAL;
4104}
4105
4106/*
4107 * Copy the static and dynamic rules to the supplied buffer
4108 * and return the amount of space actually used.
4109 */
4110static size_t
4111ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
4112{
4113	INIT_VNET_IPFW(curvnet);
4114	char *bp = buf;
4115	char *ep = bp + space;
4116	struct ip_fw *rule;
4117	int i;
4118	time_t	boot_seconds;
4119
4120        boot_seconds = boottime.tv_sec;
4121	/* XXX this can take a long time and locking will block packet flow */
4122	IPFW_RLOCK(chain);
4123	for (rule = chain->rules; rule ; rule = rule->next) {
4124		/*
4125		 * Verify the entry fits in the buffer in case the
4126		 * rules changed between calculating buffer space and
4127		 * now.  This would be better done using a generation
4128		 * number but should suffice for now.
4129		 */
4130		i = RULESIZE(rule);
4131		if (bp + i <= ep) {
4132			bcopy(rule, bp, i);
4133			/*
4134			 * XXX HACK. Store the disable mask in the "next"
4135			 * pointer in a wild attempt to keep the ABI the same.
4136			 * Why do we do this on EVERY rule?
4137			 */
4138			bcopy(&V_set_disable,
4139			    &(((struct ip_fw *)bp)->next_rule),
4140			    sizeof(V_set_disable));
4141			if (((struct ip_fw *)bp)->timestamp)
4142				((struct ip_fw *)bp)->timestamp += boot_seconds;
4143			bp += i;
4144		}
4145	}
4146	IPFW_RUNLOCK(chain);
4147	if (V_ipfw_dyn_v) {
4148		ipfw_dyn_rule *p, *last = NULL;
4149
4150		IPFW_DYN_LOCK();
4151		for (i = 0 ; i < V_curr_dyn_buckets; i++)
4152			for (p = V_ipfw_dyn_v[i] ; p != NULL; p = p->next) {
4153				if (bp + sizeof *p <= ep) {
4154					ipfw_dyn_rule *dst =
4155						(ipfw_dyn_rule *)bp;
4156					bcopy(p, dst, sizeof *p);
4157					bcopy(&(p->rule->rulenum), &(dst->rule),
4158					    sizeof(p->rule->rulenum));
4159					/*
4160					 * store set number into high word of
4161					 * dst->rule pointer.
4162					 */
4163					bcopy(&(p->rule->set),
4164					    (char *)&dst->rule +
4165					    sizeof(p->rule->rulenum),
4166					    sizeof(p->rule->set));
4167					/*
4168					 * store a non-null value in "next".
4169					 * The userland code will interpret a
4170					 * NULL here as a marker
4171					 * for the last dynamic rule.
4172					 */
4173					bcopy(&dst, &dst->next, sizeof(dst));
4174					last = dst;
4175					dst->expire =
4176					    TIME_LEQ(dst->expire, time_uptime) ?
4177						0 : dst->expire - time_uptime ;
4178					bp += sizeof(ipfw_dyn_rule);
4179				}
4180			}
4181		IPFW_DYN_UNLOCK();
4182		if (last != NULL) /* mark last dynamic rule */
4183			bzero(&last->next, sizeof(last));
4184	}
4185	return (bp - (char *)buf);
4186}
4187
4188
4189/**
4190 * {set|get}sockopt parser.
4191 */
4192static int
4193ipfw_ctl(struct sockopt *sopt)
4194{
4195#define	RULE_MAXSIZE	(256*sizeof(u_int32_t))
4196	INIT_VNET_IPFW(curvnet);
4197	int error;
4198	size_t size;
4199	struct ip_fw *buf, *rule;
4200	u_int32_t rulenum[2];
4201
4202	error = priv_check(sopt->sopt_td, PRIV_NETINET_IPFW);
4203	if (error)
4204		return (error);
4205
4206	/*
4207	 * Disallow modifications in really-really secure mode, but still allow
4208	 * the logging counters to be reset.
4209	 */
4210	if (sopt->sopt_name == IP_FW_ADD ||
4211	    (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
4212		error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
4213		if (error)
4214			return (error);
4215	}
4216
4217	error = 0;
4218
4219	switch (sopt->sopt_name) {
4220	case IP_FW_GET:
4221		/*
4222		 * pass up a copy of the current rules. Static rules
4223		 * come first (the last of which has number IPFW_DEFAULT_RULE),
4224		 * followed by a possibly empty list of dynamic rule.
4225		 * The last dynamic rule has NULL in the "next" field.
4226		 *
4227		 * Note that the calculated size is used to bound the
4228		 * amount of data returned to the user.  The rule set may
4229		 * change between calculating the size and returning the
4230		 * data in which case we'll just return what fits.
4231		 */
4232		size = V_static_len;	/* size of static rules */
4233		if (V_ipfw_dyn_v)		/* add size of dyn.rules */
4234			size += (V_dyn_count * sizeof(ipfw_dyn_rule));
4235
4236		/*
4237		 * XXX todo: if the user passes a short length just to know
4238		 * how much room is needed, do not bother filling up the
4239		 * buffer, just jump to the sooptcopyout.
4240		 */
4241		buf = malloc(size, M_TEMP, M_WAITOK);
4242		error = sooptcopyout(sopt, buf,
4243				ipfw_getrules(&V_layer3_chain, buf, size));
4244		free(buf, M_TEMP);
4245		break;
4246
4247	case IP_FW_FLUSH:
4248		/*
4249		 * Normally we cannot release the lock on each iteration.
4250		 * We could do it here only because we start from the head all
4251		 * the times so there is no risk of missing some entries.
4252		 * On the other hand, the risk is that we end up with
4253		 * a very inconsistent ruleset, so better keep the lock
4254		 * around the whole cycle.
4255		 *
4256		 * XXX this code can be improved by resetting the head of
4257		 * the list to point to the default rule, and then freeing
4258		 * the old list without the need for a lock.
4259		 */
4260
4261		IPFW_WLOCK(&V_layer3_chain);
4262		V_layer3_chain.reap = NULL;
4263		free_chain(&V_layer3_chain, 0 /* keep default rule */);
4264		rule = V_layer3_chain.reap;
4265		V_layer3_chain.reap = NULL;
4266		IPFW_WUNLOCK(&V_layer3_chain);
4267		if (rule != NULL)
4268			reap_rules(rule);
4269		break;
4270
4271	case IP_FW_ADD:
4272		rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
4273		error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
4274			sizeof(struct ip_fw) );
4275		if (error == 0)
4276			error = check_ipfw_struct(rule, sopt->sopt_valsize);
4277		if (error == 0) {
4278			error = add_rule(&V_layer3_chain, rule);
4279			size = RULESIZE(rule);
4280			if (!error && sopt->sopt_dir == SOPT_GET)
4281				error = sooptcopyout(sopt, rule, size);
4282		}
4283		free(rule, M_TEMP);
4284		break;
4285
4286	case IP_FW_DEL:
4287		/*
4288		 * IP_FW_DEL is used for deleting single rules or sets,
4289		 * and (ab)used to atomically manipulate sets. Argument size
4290		 * is used to distinguish between the two:
4291		 *    sizeof(u_int32_t)
4292		 *	delete single rule or set of rules,
4293		 *	or reassign rules (or sets) to a different set.
4294		 *    2*sizeof(u_int32_t)
4295		 *	atomic disable/enable sets.
4296		 *	first u_int32_t contains sets to be disabled,
4297		 *	second u_int32_t contains sets to be enabled.
4298		 */
4299		error = sooptcopyin(sopt, rulenum,
4300			2*sizeof(u_int32_t), sizeof(u_int32_t));
4301		if (error)
4302			break;
4303		size = sopt->sopt_valsize;
4304		if (size == sizeof(u_int32_t))	/* delete or reassign */
4305			error = del_entry(&V_layer3_chain, rulenum[0]);
4306		else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
4307			V_set_disable =
4308			    (V_set_disable | rulenum[0]) & ~rulenum[1] &
4309			    ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
4310		else
4311			error = EINVAL;
4312		break;
4313
4314	case IP_FW_ZERO:
4315	case IP_FW_RESETLOG: /* argument is an u_int_32, the rule number */
4316		rulenum[0] = 0;
4317		if (sopt->sopt_val != 0) {
4318		    error = sooptcopyin(sopt, rulenum,
4319			    sizeof(u_int32_t), sizeof(u_int32_t));
4320		    if (error)
4321			break;
4322		}
4323		error = zero_entry(&V_layer3_chain, rulenum[0],
4324			sopt->sopt_name == IP_FW_RESETLOG);
4325		break;
4326
4327	case IP_FW_TABLE_ADD:
4328		{
4329			ipfw_table_entry ent;
4330
4331			error = sooptcopyin(sopt, &ent,
4332			    sizeof(ent), sizeof(ent));
4333			if (error)
4334				break;
4335			error = add_table_entry(&V_layer3_chain, ent.tbl,
4336			    ent.addr, ent.masklen, ent.value);
4337		}
4338		break;
4339
4340	case IP_FW_TABLE_DEL:
4341		{
4342			ipfw_table_entry ent;
4343
4344			error = sooptcopyin(sopt, &ent,
4345			    sizeof(ent), sizeof(ent));
4346			if (error)
4347				break;
4348			error = del_table_entry(&V_layer3_chain, ent.tbl,
4349			    ent.addr, ent.masklen);
4350		}
4351		break;
4352
4353	case IP_FW_TABLE_FLUSH:
4354		{
4355			u_int16_t tbl;
4356
4357			error = sooptcopyin(sopt, &tbl,
4358			    sizeof(tbl), sizeof(tbl));
4359			if (error)
4360				break;
4361			IPFW_WLOCK(&V_layer3_chain);
4362			error = flush_table(&V_layer3_chain, tbl);
4363			IPFW_WUNLOCK(&V_layer3_chain);
4364		}
4365		break;
4366
4367	case IP_FW_TABLE_GETSIZE:
4368		{
4369			u_int32_t tbl, cnt;
4370
4371			if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
4372			    sizeof(tbl))))
4373				break;
4374			IPFW_RLOCK(&V_layer3_chain);
4375			error = count_table(&V_layer3_chain, tbl, &cnt);
4376			IPFW_RUNLOCK(&V_layer3_chain);
4377			if (error)
4378				break;
4379			error = sooptcopyout(sopt, &cnt, sizeof(cnt));
4380		}
4381		break;
4382
4383	case IP_FW_TABLE_LIST:
4384		{
4385			ipfw_table *tbl;
4386
4387			if (sopt->sopt_valsize < sizeof(*tbl)) {
4388				error = EINVAL;
4389				break;
4390			}
4391			size = sopt->sopt_valsize;
4392			tbl = malloc(size, M_TEMP, M_WAITOK);
4393			error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
4394			if (error) {
4395				free(tbl, M_TEMP);
4396				break;
4397			}
4398			tbl->size = (size - sizeof(*tbl)) /
4399			    sizeof(ipfw_table_entry);
4400			IPFW_RLOCK(&V_layer3_chain);
4401			error = dump_table(&V_layer3_chain, tbl);
4402			IPFW_RUNLOCK(&V_layer3_chain);
4403			if (error) {
4404				free(tbl, M_TEMP);
4405				break;
4406			}
4407			error = sooptcopyout(sopt, tbl, size);
4408			free(tbl, M_TEMP);
4409		}
4410		break;
4411
4412	case IP_FW_NAT_CFG:
4413		if (IPFW_NAT_LOADED)
4414			error = ipfw_nat_cfg_ptr(sopt);
4415		else {
4416			printf("IP_FW_NAT_CFG: %s\n",
4417			    "ipfw_nat not present, please load it");
4418			error = EINVAL;
4419		}
4420		break;
4421
4422	case IP_FW_NAT_DEL:
4423		if (IPFW_NAT_LOADED)
4424			error = ipfw_nat_del_ptr(sopt);
4425		else {
4426			printf("IP_FW_NAT_DEL: %s\n",
4427			    "ipfw_nat not present, please load it");
4428			error = EINVAL;
4429		}
4430		break;
4431
4432	case IP_FW_NAT_GET_CONFIG:
4433		if (IPFW_NAT_LOADED)
4434			error = ipfw_nat_get_cfg_ptr(sopt);
4435		else {
4436			printf("IP_FW_NAT_GET_CFG: %s\n",
4437			    "ipfw_nat not present, please load it");
4438			error = EINVAL;
4439		}
4440		break;
4441
4442	case IP_FW_NAT_GET_LOG:
4443		if (IPFW_NAT_LOADED)
4444			error = ipfw_nat_get_log_ptr(sopt);
4445		else {
4446			printf("IP_FW_NAT_GET_LOG: %s\n",
4447			    "ipfw_nat not present, please load it");
4448			error = EINVAL;
4449		}
4450		break;
4451
4452	default:
4453		printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
4454		error = EINVAL;
4455	}
4456
4457	return (error);
4458#undef RULE_MAXSIZE
4459}
4460
4461/**
4462 * dummynet needs a reference to the default rule, because rules can be
4463 * deleted while packets hold a reference to them. When this happens,
4464 * dummynet changes the reference to the default rule (it could well be a
4465 * NULL pointer, but this way we do not need to check for the special
4466 * case, plus here he have info on the default behaviour).
4467 */
4468struct ip_fw *ip_fw_default_rule;
4469
4470/*
4471 * This procedure is only used to handle keepalives. It is invoked
4472 * every dyn_keepalive_period
4473 */
4474static void
4475ipfw_tick(void * __unused unused)
4476{
4477	struct mbuf *m0, *m, *mnext, **mtailp;
4478	int i;
4479	ipfw_dyn_rule *q;
4480
4481	if (V_dyn_keepalive == 0 || V_ipfw_dyn_v == NULL || V_dyn_count == 0)
4482		goto done;
4483
4484	/*
4485	 * We make a chain of packets to go out here -- not deferring
4486	 * until after we drop the IPFW dynamic rule lock would result
4487	 * in a lock order reversal with the normal packet input -> ipfw
4488	 * call stack.
4489	 */
4490	m0 = NULL;
4491	mtailp = &m0;
4492	IPFW_DYN_LOCK();
4493	for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
4494		for (q = V_ipfw_dyn_v[i] ; q ; q = q->next ) {
4495			if (q->dyn_type == O_LIMIT_PARENT)
4496				continue;
4497			if (q->id.proto != IPPROTO_TCP)
4498				continue;
4499			if ( (q->state & BOTH_SYN) != BOTH_SYN)
4500				continue;
4501			if (TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
4502			    q->expire))
4503				continue;	/* too early */
4504			if (TIME_LEQ(q->expire, time_uptime))
4505				continue;	/* too late, rule expired */
4506
4507			*mtailp = send_pkt(NULL, &(q->id), q->ack_rev - 1,
4508				q->ack_fwd, TH_SYN);
4509			if (*mtailp != NULL)
4510				mtailp = &(*mtailp)->m_nextpkt;
4511			*mtailp = send_pkt(NULL, &(q->id), q->ack_fwd - 1,
4512				q->ack_rev, 0);
4513			if (*mtailp != NULL)
4514				mtailp = &(*mtailp)->m_nextpkt;
4515		}
4516	}
4517	IPFW_DYN_UNLOCK();
4518	for (m = mnext = m0; m != NULL; m = mnext) {
4519		mnext = m->m_nextpkt;
4520		m->m_nextpkt = NULL;
4521		ip_output(m, NULL, NULL, 0, NULL, NULL);
4522	}
4523done:
4524	callout_reset(&V_ipfw_timeout, V_dyn_keepalive_period * hz,
4525		      ipfw_tick, NULL);
4526}
4527
4528int
4529ipfw_init(void)
4530{
4531	INIT_VNET_IPFW(curvnet);
4532	struct ip_fw default_rule;
4533	int error;
4534
4535	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
4536
4537	V_ipfw_dyn_v = NULL;
4538	V_dyn_buckets = 256;	/* must be power of 2 */
4539	V_curr_dyn_buckets = 256; /* must be power of 2 */
4540
4541	V_dyn_ack_lifetime = 300;
4542	V_dyn_syn_lifetime = 20;
4543	V_dyn_fin_lifetime = 1;
4544	V_dyn_rst_lifetime = 1;
4545	V_dyn_udp_lifetime = 10;
4546	V_dyn_short_lifetime = 5;
4547
4548	V_dyn_keepalive_interval = 20;
4549	V_dyn_keepalive_period = 5;
4550	V_dyn_keepalive = 1;	/* do send keepalives */
4551
4552	V_dyn_max = 4096;	/* max # of dynamic rules */
4553
4554	V_fw_deny_unknown_exthdrs = 1;
4555
4556#ifdef INET6
4557	/* Setup IPv6 fw sysctl tree. */
4558	sysctl_ctx_init(&ip6_fw_sysctl_ctx);
4559	ip6_fw_sysctl_tree = SYSCTL_ADD_NODE(&ip6_fw_sysctl_ctx,
4560	    SYSCTL_STATIC_CHILDREN(_net_inet6_ip6), OID_AUTO, "fw",
4561	    CTLFLAG_RW | CTLFLAG_SECURE, 0, "Firewall");
4562	SYSCTL_ADD_PROC(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4563	    OID_AUTO, "enable", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3,
4564	    &V_fw6_enable, 0, ipfw_chg_hook, "I", "Enable ipfw+6");
4565	SYSCTL_ADD_INT(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4566	    OID_AUTO, "deny_unknown_exthdrs", CTLFLAG_RW | CTLFLAG_SECURE,
4567	    &V_fw_deny_unknown_exthdrs, 0,
4568	    "Deny packets with unknown IPv6 Extension Headers");
4569#endif
4570
4571	V_layer3_chain.rules = NULL;
4572	IPFW_LOCK_INIT(&V_layer3_chain);
4573	ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule",
4574	    sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
4575	    UMA_ALIGN_PTR, 0);
4576	IPFW_DYN_LOCK_INIT();
4577	callout_init(&V_ipfw_timeout, CALLOUT_MPSAFE);
4578
4579	bzero(&default_rule, sizeof default_rule);
4580
4581	default_rule.act_ofs = 0;
4582	default_rule.rulenum = IPFW_DEFAULT_RULE;
4583	default_rule.cmd_len = 1;
4584	default_rule.set = RESVD_SET;
4585
4586	default_rule.cmd[0].len = 1;
4587	default_rule.cmd[0].opcode =
4588#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
4589				1 ? O_ACCEPT :
4590#endif
4591				O_DENY;
4592
4593	error = add_rule(&V_layer3_chain, &default_rule);
4594	if (error != 0) {
4595		printf("ipfw2: error %u initializing default rule "
4596			"(support disabled)\n", error);
4597		IPFW_DYN_LOCK_DESTROY();
4598		IPFW_LOCK_DESTROY(&V_layer3_chain);
4599		uma_zdestroy(ipfw_dyn_rule_zone);
4600		return (error);
4601	}
4602
4603	ip_fw_default_rule = V_layer3_chain.rules;
4604	printf("ipfw2 "
4605#ifdef INET6
4606		"(+ipv6) "
4607#endif
4608		"initialized, divert %s, nat %s, "
4609		"rule-based forwarding "
4610#ifdef IPFIREWALL_FORWARD
4611		"enabled, "
4612#else
4613		"disabled, "
4614#endif
4615		"default to %s, logging ",
4616#ifdef IPDIVERT
4617		"enabled",
4618#else
4619		"loadable",
4620#endif
4621#ifdef IPFIREWALL_NAT
4622		"enabled",
4623#else
4624		"loadable",
4625#endif
4626
4627		default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
4628
4629#ifdef IPFIREWALL_VERBOSE
4630	V_fw_verbose = 1;
4631#endif
4632#ifdef IPFIREWALL_VERBOSE_LIMIT
4633	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
4634#endif
4635	if (V_fw_verbose == 0)
4636		printf("disabled\n");
4637	else if (V_verbose_limit == 0)
4638		printf("unlimited\n");
4639	else
4640		printf("limited to %d packets/entry by default\n",
4641		    V_verbose_limit);
4642
4643	error = init_tables(&V_layer3_chain);
4644	if (error) {
4645		IPFW_DYN_LOCK_DESTROY();
4646		IPFW_LOCK_DESTROY(&V_layer3_chain);
4647		uma_zdestroy(ipfw_dyn_rule_zone);
4648		return (error);
4649	}
4650	ip_fw_ctl_ptr = ipfw_ctl;
4651	ip_fw_chk_ptr = ipfw_chk;
4652	callout_reset(&V_ipfw_timeout, hz, ipfw_tick, NULL);
4653	LIST_INIT(&V_layer3_chain.nat);
4654	return (0);
4655}
4656
4657void
4658ipfw_destroy(void)
4659{
4660	struct ip_fw *reap;
4661
4662	ip_fw_chk_ptr = NULL;
4663	ip_fw_ctl_ptr = NULL;
4664	callout_drain(&V_ipfw_timeout);
4665	IPFW_WLOCK(&V_layer3_chain);
4666	flush_tables(&V_layer3_chain);
4667	V_layer3_chain.reap = NULL;
4668	free_chain(&V_layer3_chain, 1 /* kill default rule */);
4669	reap = V_layer3_chain.reap, V_layer3_chain.reap = NULL;
4670	IPFW_WUNLOCK(&V_layer3_chain);
4671	if (reap != NULL)
4672		reap_rules(reap);
4673	IPFW_DYN_LOCK_DESTROY();
4674	uma_zdestroy(ipfw_dyn_rule_zone);
4675	if (V_ipfw_dyn_v != NULL)
4676		free(V_ipfw_dyn_v, M_IPFW);
4677	IPFW_LOCK_DESTROY(&V_layer3_chain);
4678
4679#ifdef INET6
4680	/* Free IPv6 fw sysctl tree. */
4681	sysctl_ctx_free(&ip6_fw_sysctl_ctx);
4682#endif
4683
4684	printf("IP firewall unloaded\n");
4685}
4686