ip_fw2.c revision 186054
1/*-
2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: head/sys/netinet/ip_fw2.c 186054 2008-12-13 20:34:41Z kmacy $");
28
29#define        DEB(x)
30#define        DDB(x) x
31
32/*
33 * Implement IP packet firewall (new version)
34 */
35
36#if !defined(KLD_MODULE)
37#include "opt_ipfw.h"
38#include "opt_ipdivert.h"
39#include "opt_ipdn.h"
40#include "opt_inet.h"
41#ifndef INET
42#error IPFIREWALL requires INET.
43#endif /* INET */
44#endif
45#include "opt_inet6.h"
46#include "opt_ipsec.h"
47#include "opt_mac.h"
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/condvar.h>
52#include <sys/eventhandler.h>
53#include <sys/malloc.h>
54#include <sys/mbuf.h>
55#include <sys/kernel.h>
56#include <sys/lock.h>
57#include <sys/jail.h>
58#include <sys/module.h>
59#include <sys/priv.h>
60#include <sys/proc.h>
61#include <sys/rwlock.h>
62#include <sys/socket.h>
63#include <sys/socketvar.h>
64#include <sys/sysctl.h>
65#include <sys/syslog.h>
66#include <sys/ucred.h>
67#include <sys/vimage.h>
68#include <net/if.h>
69#include <net/radix.h>
70#include <net/route.h>
71#include <net/pf_mtag.h>
72#include <net/vnet.h>
73
74#define	IPFW_INTERNAL	/* Access to protected data structures in ip_fw.h. */
75
76#include <netinet/in.h>
77#include <netinet/in_systm.h>
78#include <netinet/in_var.h>
79#include <netinet/in_pcb.h>
80#include <netinet/ip.h>
81#include <netinet/ip_var.h>
82#include <netinet/ip_icmp.h>
83#include <netinet/ip_fw.h>
84#include <netinet/ip_divert.h>
85#include <netinet/ip_dummynet.h>
86#include <netinet/ip_carp.h>
87#include <netinet/pim.h>
88#include <netinet/tcp.h>
89#include <netinet/tcp_timer.h>
90#include <netinet/tcp_var.h>
91#include <netinet/tcpip.h>
92#include <netinet/udp.h>
93#include <netinet/udp_var.h>
94#include <netinet/sctp.h>
95#include <netinet/vinet.h>
96
97#include <netgraph/ng_ipfw.h>
98
99#include <altq/if_altq.h>
100
101#include <netinet/ip6.h>
102#include <netinet/icmp6.h>
103#ifdef INET6
104#include <netinet6/scope6_var.h>
105#endif
106
107#include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
108
109#include <machine/in_cksum.h>	/* XXX for in_cksum */
110
111#include <security/mac/mac_framework.h>
112
113#ifndef VIMAGE
114#ifndef VIMAGE_GLOBALS
115struct vnet_ipfw vnet_ipfw_0;
116#endif
117#endif
118
119/*
120 * set_disable contains one bit per set value (0..31).
121 * If the bit is set, all rules with the corresponding set
122 * are disabled. Set RESVD_SET(31) is reserved for the default rule
123 * and rules that are not deleted by the flush command,
124 * and CANNOT be disabled.
125 * Rules in set RESVD_SET can only be deleted explicitly.
126 */
127#ifdef VIMAGE_GLOBALS
128static u_int32_t set_disable;
129static int fw_verbose;
130static struct callout ipfw_timeout;
131static int verbose_limit;
132#endif
133
134static uma_zone_t ipfw_dyn_rule_zone;
135
136/*
137 * Data structure to cache our ucred related
138 * information. This structure only gets used if
139 * the user specified UID/GID based constraints in
140 * a firewall rule.
141 */
142struct ip_fw_ugid {
143	gid_t		fw_groups[NGROUPS];
144	int		fw_ngroups;
145	uid_t		fw_uid;
146	int		fw_prid;
147};
148
149/*
150 * list of rules for layer 3
151 */
152#ifdef VIMAGE_GLOBALS
153struct ip_fw_chain layer3_chain;
154#endif
155
156MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
157MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
158#define IPFW_NAT_LOADED (ipfw_nat_ptr != NULL)
159ipfw_nat_t *ipfw_nat_ptr = NULL;
160ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
161ipfw_nat_cfg_t *ipfw_nat_del_ptr;
162ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
163ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
164
165struct table_entry {
166	struct radix_node	rn[2];
167	struct sockaddr_in	addr, mask;
168	u_int32_t		value;
169};
170
171#ifdef VIMAGE_GLOBALS
172static int fw_debug;
173static int autoinc_step;
174#endif
175
176extern int ipfw_chg_hook(SYSCTL_HANDLER_ARGS);
177
178#ifdef SYSCTL_NODE
179SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
180SYSCTL_V_PROC(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, enable,
181    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3, fw_enable, 0,
182    ipfw_chg_hook, "I", "Enable ipfw");
183SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, autoinc_step,
184    CTLFLAG_RW, autoinc_step, 0, "Rule number autincrement step");
185SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_fw, OID_AUTO, one_pass,
186    CTLFLAG_RW | CTLFLAG_SECURE3, fw_one_pass, 0,
187    "Only do a single pass through ipfw when using dummynet(4)");
188SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
189    fw_debug, 0, "Enable printing of debug ip_fw statements");
190SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, verbose,
191    CTLFLAG_RW | CTLFLAG_SECURE3,
192    fw_verbose, 0, "Log matches to ipfw rules");
193SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, verbose_limit,
194    CTLFLAG_RW, verbose_limit, 0,
195    "Set upper limit of matches of ipfw rules logged");
196SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
197    NULL, IPFW_DEFAULT_RULE, "The default/max possible rule number.");
198SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, tables_max, CTLFLAG_RD,
199    NULL, IPFW_TABLES_MAX, "The maximum number of tables.");
200
201/*
202 * Description of dynamic rules.
203 *
204 * Dynamic rules are stored in lists accessed through a hash table
205 * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
206 * be modified through the sysctl variable dyn_buckets which is
207 * updated when the table becomes empty.
208 *
209 * XXX currently there is only one list, ipfw_dyn.
210 *
211 * When a packet is received, its address fields are first masked
212 * with the mask defined for the rule, then hashed, then matched
213 * against the entries in the corresponding list.
214 * Dynamic rules can be used for different purposes:
215 *  + stateful rules;
216 *  + enforcing limits on the number of sessions;
217 *  + in-kernel NAT (not implemented yet)
218 *
219 * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
220 * measured in seconds and depending on the flags.
221 *
222 * The total number of dynamic rules is stored in dyn_count.
223 * The max number of dynamic rules is dyn_max. When we reach
224 * the maximum number of rules we do not create anymore. This is
225 * done to avoid consuming too much memory, but also too much
226 * time when searching on each packet (ideally, we should try instead
227 * to put a limit on the length of the list on each bucket...).
228 *
229 * Each dynamic rule holds a pointer to the parent ipfw rule so
230 * we know what action to perform. Dynamic rules are removed when
231 * the parent rule is deleted. XXX we should make them survive.
232 *
233 * There are some limitations with dynamic rules -- we do not
234 * obey the 'randomized match', and we do not do multiple
235 * passes through the firewall. XXX check the latter!!!
236 */
237#ifdef VIMAGE_GLOBALS
238static ipfw_dyn_rule **ipfw_dyn_v;
239static u_int32_t dyn_buckets;
240static u_int32_t curr_dyn_buckets;
241#endif
242
243static struct mtx ipfw_dyn_mtx;		/* mutex guarding dynamic rules */
244#define	IPFW_DYN_LOCK_INIT() \
245	mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
246#define	IPFW_DYN_LOCK_DESTROY()	mtx_destroy(&ipfw_dyn_mtx)
247#define	IPFW_DYN_LOCK()		mtx_lock(&ipfw_dyn_mtx)
248#define	IPFW_DYN_UNLOCK()	mtx_unlock(&ipfw_dyn_mtx)
249#define	IPFW_DYN_LOCK_ASSERT()	mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
250
251/*
252 * Timeouts for various events in handing dynamic rules.
253 */
254#ifdef VIMAGE_GLOBALS
255static u_int32_t dyn_ack_lifetime;
256static u_int32_t dyn_syn_lifetime;
257static u_int32_t dyn_fin_lifetime;
258static u_int32_t dyn_rst_lifetime;
259static u_int32_t dyn_udp_lifetime;
260static u_int32_t dyn_short_lifetime;
261
262/*
263 * Keepalives are sent if dyn_keepalive is set. They are sent every
264 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
265 * seconds of lifetime of a rule.
266 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
267 * than dyn_keepalive_period.
268 */
269
270static u_int32_t dyn_keepalive_interval;
271static u_int32_t dyn_keepalive_period;
272static u_int32_t dyn_keepalive;
273
274static u_int32_t static_count;	/* # of static rules */
275static u_int32_t static_len;	/* size in bytes of static rules */
276static u_int32_t dyn_count;	/* # of dynamic rules */
277static u_int32_t dyn_max;	/* max # of dynamic rules */
278#endif /* VIMAGE_GLOBALS */
279
280SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_buckets,
281    CTLFLAG_RW, dyn_buckets, 0, "Number of dyn. buckets");
282SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
283    CTLFLAG_RD, curr_dyn_buckets, 0, "Current Number of dyn. buckets");
284SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_count,
285    CTLFLAG_RD, dyn_count, 0, "Number of dyn. rules");
286SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_max,
287    CTLFLAG_RW, dyn_max, 0, "Max number of dyn. rules");
288SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, static_count,
289    CTLFLAG_RD, static_count, 0, "Number of static rules");
290SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
291    CTLFLAG_RW, dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
292SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
293    CTLFLAG_RW, dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
294SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
295    CTLFLAG_RW, dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
296SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
297    CTLFLAG_RW, dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
298SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
299    CTLFLAG_RW, dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
300SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
301    CTLFLAG_RW, dyn_short_lifetime, 0,
302    "Lifetime of dyn. rules for other situations");
303SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_keepalive,
304    CTLFLAG_RW, dyn_keepalive, 0, "Enable keepalives for dyn. rules");
305
306
307#ifdef INET6
308/*
309 * IPv6 specific variables
310 */
311SYSCTL_DECL(_net_inet6_ip6);
312
313static struct sysctl_ctx_list ip6_fw_sysctl_ctx;
314static struct sysctl_oid *ip6_fw_sysctl_tree;
315#endif /* INET6 */
316#endif /* SYSCTL_NODE */
317
318#ifdef VIMAGE_GLOBALS
319static int fw_deny_unknown_exthdrs;
320#endif
321
322/*
323 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
324 * Other macros just cast void * into the appropriate type
325 */
326#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
327#define	TCP(p)		((struct tcphdr *)(p))
328#define	SCTP(p)		((struct sctphdr *)(p))
329#define	UDP(p)		((struct udphdr *)(p))
330#define	ICMP(p)		((struct icmphdr *)(p))
331#define	ICMP6(p)	((struct icmp6_hdr *)(p))
332
333static __inline int
334icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
335{
336	int type = icmp->icmp_type;
337
338	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
339}
340
341#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
342    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
343
344static int
345is_icmp_query(struct icmphdr *icmp)
346{
347	int type = icmp->icmp_type;
348
349	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
350}
351#undef TT
352
353/*
354 * The following checks use two arrays of 8 or 16 bits to store the
355 * bits that we want set or clear, respectively. They are in the
356 * low and high half of cmd->arg1 or cmd->d[0].
357 *
358 * We scan options and store the bits we find set. We succeed if
359 *
360 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
361 *
362 * The code is sometimes optimized not to store additional variables.
363 */
364
365static int
366flags_match(ipfw_insn *cmd, u_int8_t bits)
367{
368	u_char want_clear;
369	bits = ~bits;
370
371	if ( ((cmd->arg1 & 0xff) & bits) != 0)
372		return 0; /* some bits we want set were clear */
373	want_clear = (cmd->arg1 >> 8) & 0xff;
374	if ( (want_clear & bits) != want_clear)
375		return 0; /* some bits we want clear were set */
376	return 1;
377}
378
379static int
380ipopts_match(struct ip *ip, ipfw_insn *cmd)
381{
382	int optlen, bits = 0;
383	u_char *cp = (u_char *)(ip + 1);
384	int x = (ip->ip_hl << 2) - sizeof (struct ip);
385
386	for (; x > 0; x -= optlen, cp += optlen) {
387		int opt = cp[IPOPT_OPTVAL];
388
389		if (opt == IPOPT_EOL)
390			break;
391		if (opt == IPOPT_NOP)
392			optlen = 1;
393		else {
394			optlen = cp[IPOPT_OLEN];
395			if (optlen <= 0 || optlen > x)
396				return 0; /* invalid or truncated */
397		}
398		switch (opt) {
399
400		default:
401			break;
402
403		case IPOPT_LSRR:
404			bits |= IP_FW_IPOPT_LSRR;
405			break;
406
407		case IPOPT_SSRR:
408			bits |= IP_FW_IPOPT_SSRR;
409			break;
410
411		case IPOPT_RR:
412			bits |= IP_FW_IPOPT_RR;
413			break;
414
415		case IPOPT_TS:
416			bits |= IP_FW_IPOPT_TS;
417			break;
418		}
419	}
420	return (flags_match(cmd, bits));
421}
422
423static int
424tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
425{
426	int optlen, bits = 0;
427	u_char *cp = (u_char *)(tcp + 1);
428	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
429
430	for (; x > 0; x -= optlen, cp += optlen) {
431		int opt = cp[0];
432		if (opt == TCPOPT_EOL)
433			break;
434		if (opt == TCPOPT_NOP)
435			optlen = 1;
436		else {
437			optlen = cp[1];
438			if (optlen <= 0)
439				break;
440		}
441
442		switch (opt) {
443
444		default:
445			break;
446
447		case TCPOPT_MAXSEG:
448			bits |= IP_FW_TCPOPT_MSS;
449			break;
450
451		case TCPOPT_WINDOW:
452			bits |= IP_FW_TCPOPT_WINDOW;
453			break;
454
455		case TCPOPT_SACK_PERMITTED:
456		case TCPOPT_SACK:
457			bits |= IP_FW_TCPOPT_SACK;
458			break;
459
460		case TCPOPT_TIMESTAMP:
461			bits |= IP_FW_TCPOPT_TS;
462			break;
463
464		}
465	}
466	return (flags_match(cmd, bits));
467}
468
469static int
470iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
471{
472	if (ifp == NULL)	/* no iface with this packet, match fails */
473		return 0;
474	/* Check by name or by IP address */
475	if (cmd->name[0] != '\0') { /* match by name */
476		/* Check name */
477		if (cmd->p.glob) {
478			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
479				return(1);
480		} else {
481			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
482				return(1);
483		}
484	} else {
485		struct ifaddr *ia;
486
487		/* XXX lock? */
488		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
489			if (ia->ifa_addr->sa_family != AF_INET)
490				continue;
491			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
492			    (ia->ifa_addr))->sin_addr.s_addr)
493				return(1);	/* match */
494		}
495	}
496	return(0);	/* no match, fail ... */
497}
498
499/*
500 * The verify_path function checks if a route to the src exists and
501 * if it is reachable via ifp (when provided).
502 *
503 * The 'verrevpath' option checks that the interface that an IP packet
504 * arrives on is the same interface that traffic destined for the
505 * packet's source address would be routed out of.  The 'versrcreach'
506 * option just checks that the source address is reachable via any route
507 * (except default) in the routing table.  These two are a measure to block
508 * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
509 * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
510 * is purposely reminiscent of the Cisco IOS command,
511 *
512 *   ip verify unicast reverse-path
513 *   ip verify unicast source reachable-via any
514 *
515 * which implements the same functionality. But note that syntax is
516 * misleading. The check may be performed on all IP packets whether unicast,
517 * multicast, or broadcast.
518 */
519static int
520verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
521{
522	struct route ro;
523	struct sockaddr_in *dst;
524
525	bzero(&ro, sizeof(ro));
526
527	dst = (struct sockaddr_in *)&(ro.ro_dst);
528	dst->sin_family = AF_INET;
529	dst->sin_len = sizeof(*dst);
530	dst->sin_addr = src;
531	in_rtalloc_ign(&ro, RTF_CLONING, fib);
532
533	if (ro.ro_rt == NULL)
534		return 0;
535
536	/*
537	 * If ifp is provided, check for equality with rtentry.
538	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
539	 * in order to pass packets injected back by if_simloop():
540	 * if useloopback == 1 routing entry (via lo0) for our own address
541	 * may exist, so we need to handle routing assymetry.
542	 */
543	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
544		RTFREE(ro.ro_rt);
545		return 0;
546	}
547
548	/* if no ifp provided, check if rtentry is not default route */
549	if (ifp == NULL &&
550	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
551		RTFREE(ro.ro_rt);
552		return 0;
553	}
554
555	/* or if this is a blackhole/reject route */
556	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
557		RTFREE(ro.ro_rt);
558		return 0;
559	}
560
561	/* found valid route */
562	RTFREE(ro.ro_rt);
563	return 1;
564}
565
566#ifdef INET6
567/*
568 * ipv6 specific rules here...
569 */
570static __inline int
571icmp6type_match (int type, ipfw_insn_u32 *cmd)
572{
573	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
574}
575
576static int
577flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
578{
579	int i;
580	for (i=0; i <= cmd->o.arg1; ++i )
581		if (curr_flow == cmd->d[i] )
582			return 1;
583	return 0;
584}
585
586/* support for IP6_*_ME opcodes */
587static int
588search_ip6_addr_net (struct in6_addr * ip6_addr)
589{
590	INIT_VNET_NET(curvnet);
591	struct ifnet *mdc;
592	struct ifaddr *mdc2;
593	struct in6_ifaddr *fdm;
594	struct in6_addr copia;
595
596	TAILQ_FOREACH(mdc, &V_ifnet, if_link)
597		TAILQ_FOREACH(mdc2, &mdc->if_addrlist, ifa_list) {
598			if (mdc2->ifa_addr->sa_family == AF_INET6) {
599				fdm = (struct in6_ifaddr *)mdc2;
600				copia = fdm->ia_addr.sin6_addr;
601				/* need for leaving scope_id in the sock_addr */
602				in6_clearscope(&copia);
603				if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia))
604					return 1;
605			}
606		}
607	return 0;
608}
609
610static int
611verify_path6(struct in6_addr *src, struct ifnet *ifp)
612{
613	struct route_in6 ro;
614	struct sockaddr_in6 *dst;
615
616	bzero(&ro, sizeof(ro));
617
618	dst = (struct sockaddr_in6 * )&(ro.ro_dst);
619	dst->sin6_family = AF_INET6;
620	dst->sin6_len = sizeof(*dst);
621	dst->sin6_addr = *src;
622	/* XXX MRT 0 for ipv6 at this time */
623	rtalloc_ign((struct route *)&ro, RTF_CLONING);
624
625	if (ro.ro_rt == NULL)
626		return 0;
627
628	/*
629	 * if ifp is provided, check for equality with rtentry
630	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
631	 * to support the case of sending packets to an address of our own.
632	 * (where the former interface is the first argument of if_simloop()
633	 *  (=ifp), the latter is lo0)
634	 */
635	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
636		RTFREE(ro.ro_rt);
637		return 0;
638	}
639
640	/* if no ifp provided, check if rtentry is not default route */
641	if (ifp == NULL &&
642	    IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
643		RTFREE(ro.ro_rt);
644		return 0;
645	}
646
647	/* or if this is a blackhole/reject route */
648	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
649		RTFREE(ro.ro_rt);
650		return 0;
651	}
652
653	/* found valid route */
654	RTFREE(ro.ro_rt);
655	return 1;
656
657}
658static __inline int
659hash_packet6(struct ipfw_flow_id *id)
660{
661	u_int32_t i;
662	i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
663	    (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
664	    (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
665	    (id->src_ip6.__u6_addr.__u6_addr32[3]) ^
666	    (id->dst_port) ^ (id->src_port);
667	return i;
668}
669
670static int
671is_icmp6_query(int icmp6_type)
672{
673	if ((icmp6_type <= ICMP6_MAXTYPE) &&
674	    (icmp6_type == ICMP6_ECHO_REQUEST ||
675	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
676	    icmp6_type == ICMP6_WRUREQUEST ||
677	    icmp6_type == ICMP6_FQDN_QUERY ||
678	    icmp6_type == ICMP6_NI_QUERY))
679		return (1);
680
681	return (0);
682}
683
684static void
685send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
686{
687	struct mbuf *m;
688
689	m = args->m;
690	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
691		struct tcphdr *tcp;
692		tcp_seq ack, seq;
693		int flags;
694		struct {
695			struct ip6_hdr ip6;
696			struct tcphdr th;
697		} ti;
698		tcp = (struct tcphdr *)((char *)ip6 + hlen);
699
700		if ((tcp->th_flags & TH_RST) != 0) {
701			m_freem(m);
702			args->m = NULL;
703			return;
704		}
705
706		ti.ip6 = *ip6;
707		ti.th = *tcp;
708		ti.th.th_seq = ntohl(ti.th.th_seq);
709		ti.th.th_ack = ntohl(ti.th.th_ack);
710		ti.ip6.ip6_nxt = IPPROTO_TCP;
711
712		if (ti.th.th_flags & TH_ACK) {
713			ack = 0;
714			seq = ti.th.th_ack;
715			flags = TH_RST;
716		} else {
717			ack = ti.th.th_seq;
718			if ((m->m_flags & M_PKTHDR) != 0) {
719				/*
720				 * total new data to ACK is:
721				 * total packet length,
722				 * minus the header length,
723				 * minus the tcp header length.
724				 */
725				ack += m->m_pkthdr.len - hlen
726					- (ti.th.th_off << 2);
727			} else if (ip6->ip6_plen) {
728				ack += ntohs(ip6->ip6_plen) + sizeof(*ip6) -
729				    hlen - (ti.th.th_off << 2);
730			} else {
731				m_freem(m);
732				return;
733			}
734			if (tcp->th_flags & TH_SYN)
735				ack++;
736			seq = 0;
737			flags = TH_RST|TH_ACK;
738		}
739		bcopy(&ti, ip6, sizeof(ti));
740		/*
741		 * m is only used to recycle the mbuf
742		 * The data in it is never read so we don't need
743		 * to correct the offsets or anything
744		 */
745		tcp_respond(NULL, ip6, tcp, m, ack, seq, flags);
746	} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
747#if 0
748		/*
749		 * Unlike above, the mbufs need to line up with the ip6 hdr,
750		 * as the contents are read. We need to m_adj() the
751		 * needed amount.
752		 * The mbuf will however be thrown away so we can adjust it.
753		 * Remember we did an m_pullup on it already so we
754		 * can make some assumptions about contiguousness.
755		 */
756		if (args->L3offset)
757			m_adj(m, args->L3offset);
758#endif
759		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
760	} else
761		m_freem(m);
762
763	args->m = NULL;
764}
765
766#endif /* INET6 */
767
768#ifdef VIMAGE_GLOBALS
769static u_int64_t norule_counter;	/* counter for ipfw_log(NULL...) */
770#endif
771
772#define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
773#define SNP(buf) buf, sizeof(buf)
774
775/*
776 * We enter here when we have a rule with O_LOG.
777 * XXX this function alone takes about 2Kbytes of code!
778 */
779static void
780ipfw_log(struct ip_fw *f, u_int hlen, struct ip_fw_args *args,
781    struct mbuf *m, struct ifnet *oif, u_short offset, uint32_t tablearg,
782    struct ip *ip)
783{
784	INIT_VNET_IPFW(curvnet);
785	struct ether_header *eh = args->eh;
786	char *action;
787	int limit_reached = 0;
788	char action2[40], proto[128], fragment[32];
789
790	fragment[0] = '\0';
791	proto[0] = '\0';
792
793	if (f == NULL) {	/* bogus pkt */
794		if (V_verbose_limit != 0 && V_norule_counter >= V_verbose_limit)
795			return;
796		V_norule_counter++;
797		if (V_norule_counter == V_verbose_limit)
798			limit_reached = V_verbose_limit;
799		action = "Refuse";
800	} else {	/* O_LOG is the first action, find the real one */
801		ipfw_insn *cmd = ACTION_PTR(f);
802		ipfw_insn_log *l = (ipfw_insn_log *)cmd;
803
804		if (l->max_log != 0 && l->log_left == 0)
805			return;
806		l->log_left--;
807		if (l->log_left == 0)
808			limit_reached = l->max_log;
809		cmd += F_LEN(cmd);	/* point to first action */
810		if (cmd->opcode == O_ALTQ) {
811			ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
812
813			snprintf(SNPARGS(action2, 0), "Altq %d",
814				altq->qid);
815			cmd += F_LEN(cmd);
816		}
817		if (cmd->opcode == O_PROB)
818			cmd += F_LEN(cmd);
819
820		if (cmd->opcode == O_TAG)
821			cmd += F_LEN(cmd);
822
823		action = action2;
824		switch (cmd->opcode) {
825		case O_DENY:
826			action = "Deny";
827			break;
828
829		case O_REJECT:
830			if (cmd->arg1==ICMP_REJECT_RST)
831				action = "Reset";
832			else if (cmd->arg1==ICMP_UNREACH_HOST)
833				action = "Reject";
834			else
835				snprintf(SNPARGS(action2, 0), "Unreach %d",
836					cmd->arg1);
837			break;
838
839		case O_UNREACH6:
840			if (cmd->arg1==ICMP6_UNREACH_RST)
841				action = "Reset";
842			else
843				snprintf(SNPARGS(action2, 0), "Unreach %d",
844					cmd->arg1);
845			break;
846
847		case O_ACCEPT:
848			action = "Accept";
849			break;
850		case O_COUNT:
851			action = "Count";
852			break;
853		case O_DIVERT:
854			snprintf(SNPARGS(action2, 0), "Divert %d",
855				cmd->arg1);
856			break;
857		case O_TEE:
858			snprintf(SNPARGS(action2, 0), "Tee %d",
859				cmd->arg1);
860			break;
861		case O_SETFIB:
862			snprintf(SNPARGS(action2, 0), "SetFib %d",
863				cmd->arg1);
864			break;
865		case O_SKIPTO:
866			snprintf(SNPARGS(action2, 0), "SkipTo %d",
867				cmd->arg1);
868			break;
869		case O_PIPE:
870			snprintf(SNPARGS(action2, 0), "Pipe %d",
871				cmd->arg1);
872			break;
873		case O_QUEUE:
874			snprintf(SNPARGS(action2, 0), "Queue %d",
875				cmd->arg1);
876			break;
877		case O_FORWARD_IP: {
878			ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
879			int len;
880			struct in_addr dummyaddr;
881			if (sa->sa.sin_addr.s_addr == INADDR_ANY)
882				dummyaddr.s_addr = htonl(tablearg);
883			else
884				dummyaddr.s_addr = sa->sa.sin_addr.s_addr;
885
886			len = snprintf(SNPARGS(action2, 0), "Forward to %s",
887				inet_ntoa(dummyaddr));
888
889			if (sa->sa.sin_port)
890				snprintf(SNPARGS(action2, len), ":%d",
891				    sa->sa.sin_port);
892			}
893			break;
894		case O_NETGRAPH:
895			snprintf(SNPARGS(action2, 0), "Netgraph %d",
896				cmd->arg1);
897			break;
898		case O_NGTEE:
899			snprintf(SNPARGS(action2, 0), "Ngtee %d",
900				cmd->arg1);
901			break;
902		case O_NAT:
903			action = "Nat";
904 			break;
905		default:
906			action = "UNKNOWN";
907			break;
908		}
909	}
910
911	if (hlen == 0) {	/* non-ip */
912		snprintf(SNPARGS(proto, 0), "MAC");
913
914	} else {
915		int len;
916		char src[48], dst[48];
917		struct icmphdr *icmp;
918		struct tcphdr *tcp;
919		struct udphdr *udp;
920#ifdef INET6
921		struct ip6_hdr *ip6 = NULL;
922		struct icmp6_hdr *icmp6;
923#endif
924		src[0] = '\0';
925		dst[0] = '\0';
926#ifdef INET6
927		if (IS_IP6_FLOW_ID(&(args->f_id))) {
928			char ip6buf[INET6_ADDRSTRLEN];
929			snprintf(src, sizeof(src), "[%s]",
930			    ip6_sprintf(ip6buf, &args->f_id.src_ip6));
931			snprintf(dst, sizeof(dst), "[%s]",
932			    ip6_sprintf(ip6buf, &args->f_id.dst_ip6));
933
934			ip6 = (struct ip6_hdr *)ip;
935			tcp = (struct tcphdr *)(((char *)ip) + hlen);
936			udp = (struct udphdr *)(((char *)ip) + hlen);
937		} else
938#endif
939		{
940			tcp = L3HDR(struct tcphdr, ip);
941			udp = L3HDR(struct udphdr, ip);
942
943			inet_ntoa_r(ip->ip_src, src);
944			inet_ntoa_r(ip->ip_dst, dst);
945		}
946
947		switch (args->f_id.proto) {
948		case IPPROTO_TCP:
949			len = snprintf(SNPARGS(proto, 0), "TCP %s", src);
950			if (offset == 0)
951				snprintf(SNPARGS(proto, len), ":%d %s:%d",
952				    ntohs(tcp->th_sport),
953				    dst,
954				    ntohs(tcp->th_dport));
955			else
956				snprintf(SNPARGS(proto, len), " %s", dst);
957			break;
958
959		case IPPROTO_UDP:
960			len = snprintf(SNPARGS(proto, 0), "UDP %s", src);
961			if (offset == 0)
962				snprintf(SNPARGS(proto, len), ":%d %s:%d",
963				    ntohs(udp->uh_sport),
964				    dst,
965				    ntohs(udp->uh_dport));
966			else
967				snprintf(SNPARGS(proto, len), " %s", dst);
968			break;
969
970		case IPPROTO_ICMP:
971			icmp = L3HDR(struct icmphdr, ip);
972			if (offset == 0)
973				len = snprintf(SNPARGS(proto, 0),
974				    "ICMP:%u.%u ",
975				    icmp->icmp_type, icmp->icmp_code);
976			else
977				len = snprintf(SNPARGS(proto, 0), "ICMP ");
978			len += snprintf(SNPARGS(proto, len), "%s", src);
979			snprintf(SNPARGS(proto, len), " %s", dst);
980			break;
981#ifdef INET6
982		case IPPROTO_ICMPV6:
983			icmp6 = (struct icmp6_hdr *)(((char *)ip) + hlen);
984			if (offset == 0)
985				len = snprintf(SNPARGS(proto, 0),
986				    "ICMPv6:%u.%u ",
987				    icmp6->icmp6_type, icmp6->icmp6_code);
988			else
989				len = snprintf(SNPARGS(proto, 0), "ICMPv6 ");
990			len += snprintf(SNPARGS(proto, len), "%s", src);
991			snprintf(SNPARGS(proto, len), " %s", dst);
992			break;
993#endif
994		default:
995			len = snprintf(SNPARGS(proto, 0), "P:%d %s",
996			    args->f_id.proto, src);
997			snprintf(SNPARGS(proto, len), " %s", dst);
998			break;
999		}
1000
1001#ifdef INET6
1002		if (IS_IP6_FLOW_ID(&(args->f_id))) {
1003			if (offset & (IP6F_OFF_MASK | IP6F_MORE_FRAG))
1004				snprintf(SNPARGS(fragment, 0),
1005				    " (frag %08x:%d@%d%s)",
1006				    args->f_id.frag_id6,
1007				    ntohs(ip6->ip6_plen) - hlen,
1008				    ntohs(offset & IP6F_OFF_MASK) << 3,
1009				    (offset & IP6F_MORE_FRAG) ? "+" : "");
1010		} else
1011#endif
1012		{
1013			int ip_off, ip_len;
1014			if (eh != NULL) { /* layer 2 packets are as on the wire */
1015				ip_off = ntohs(ip->ip_off);
1016				ip_len = ntohs(ip->ip_len);
1017			} else {
1018				ip_off = ip->ip_off;
1019				ip_len = ip->ip_len;
1020			}
1021			if (ip_off & (IP_MF | IP_OFFMASK))
1022				snprintf(SNPARGS(fragment, 0),
1023				    " (frag %d:%d@%d%s)",
1024				    ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
1025				    offset << 3,
1026				    (ip_off & IP_MF) ? "+" : "");
1027		}
1028	}
1029	if (oif || m->m_pkthdr.rcvif)
1030		log(LOG_SECURITY | LOG_INFO,
1031		    "ipfw: %d %s %s %s via %s%s\n",
1032		    f ? f->rulenum : -1,
1033		    action, proto, oif ? "out" : "in",
1034		    oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
1035		    fragment);
1036	else
1037		log(LOG_SECURITY | LOG_INFO,
1038		    "ipfw: %d %s %s [no if info]%s\n",
1039		    f ? f->rulenum : -1,
1040		    action, proto, fragment);
1041	if (limit_reached)
1042		log(LOG_SECURITY | LOG_NOTICE,
1043		    "ipfw: limit %d reached on entry %d\n",
1044		    limit_reached, f ? f->rulenum : -1);
1045}
1046
1047/*
1048 * IMPORTANT: the hash function for dynamic rules must be commutative
1049 * in source and destination (ip,port), because rules are bidirectional
1050 * and we want to find both in the same bucket.
1051 */
1052static __inline int
1053hash_packet(struct ipfw_flow_id *id)
1054{
1055	INIT_VNET_IPFW(curvnet);
1056	u_int32_t i;
1057
1058#ifdef INET6
1059	if (IS_IP6_FLOW_ID(id))
1060		i = hash_packet6(id);
1061	else
1062#endif /* INET6 */
1063	i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
1064	i &= (V_curr_dyn_buckets - 1);
1065	return i;
1066}
1067
1068/**
1069 * unlink a dynamic rule from a chain. prev is a pointer to
1070 * the previous one, q is a pointer to the rule to delete,
1071 * head is a pointer to the head of the queue.
1072 * Modifies q and potentially also head.
1073 */
1074#define UNLINK_DYN_RULE(prev, head, q) {				\
1075	ipfw_dyn_rule *old_q = q;					\
1076									\
1077	/* remove a refcount to the parent */				\
1078	if (q->dyn_type == O_LIMIT)					\
1079		q->parent->count--;					\
1080	DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
1081		(q->id.src_ip), (q->id.src_port),			\
1082		(q->id.dst_ip), (q->id.dst_port), V_dyn_count-1 ); )	\
1083	if (prev != NULL)						\
1084		prev->next = q = q->next;				\
1085	else								\
1086		head = q = q->next;					\
1087	V_dyn_count--;							\
1088	uma_zfree(ipfw_dyn_rule_zone, old_q); }
1089
1090#define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
1091
1092/**
1093 * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
1094 *
1095 * If keep_me == NULL, rules are deleted even if not expired,
1096 * otherwise only expired rules are removed.
1097 *
1098 * The value of the second parameter is also used to point to identify
1099 * a rule we absolutely do not want to remove (e.g. because we are
1100 * holding a reference to it -- this is the case with O_LIMIT_PARENT
1101 * rules). The pointer is only used for comparison, so any non-null
1102 * value will do.
1103 */
1104static void
1105remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
1106{
1107	INIT_VNET_IPFW(curvnet);
1108	static u_int32_t last_remove = 0;
1109
1110#define FORCE (keep_me == NULL)
1111
1112	ipfw_dyn_rule *prev, *q;
1113	int i, pass = 0, max_pass = 0;
1114
1115	IPFW_DYN_LOCK_ASSERT();
1116
1117	if (V_ipfw_dyn_v == NULL || V_dyn_count == 0)
1118		return;
1119	/* do not expire more than once per second, it is useless */
1120	if (!FORCE && last_remove == time_uptime)
1121		return;
1122	last_remove = time_uptime;
1123
1124	/*
1125	 * because O_LIMIT refer to parent rules, during the first pass only
1126	 * remove child and mark any pending LIMIT_PARENT, and remove
1127	 * them in a second pass.
1128	 */
1129next_pass:
1130	for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1131		for (prev=NULL, q = V_ipfw_dyn_v[i] ; q ; ) {
1132			/*
1133			 * Logic can become complex here, so we split tests.
1134			 */
1135			if (q == keep_me)
1136				goto next;
1137			if (rule != NULL && rule != q->rule)
1138				goto next; /* not the one we are looking for */
1139			if (q->dyn_type == O_LIMIT_PARENT) {
1140				/*
1141				 * handle parent in the second pass,
1142				 * record we need one.
1143				 */
1144				max_pass = 1;
1145				if (pass == 0)
1146					goto next;
1147				if (FORCE && q->count != 0 ) {
1148					/* XXX should not happen! */
1149					printf("ipfw: OUCH! cannot remove rule,"
1150					     " count %d\n", q->count);
1151				}
1152			} else {
1153				if (!FORCE &&
1154				    !TIME_LEQ( q->expire, time_uptime ))
1155					goto next;
1156			}
1157             if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
1158                     UNLINK_DYN_RULE(prev, V_ipfw_dyn_v[i], q);
1159                     continue;
1160             }
1161next:
1162			prev=q;
1163			q=q->next;
1164		}
1165	}
1166	if (pass++ < max_pass)
1167		goto next_pass;
1168}
1169
1170
1171/**
1172 * lookup a dynamic rule.
1173 */
1174static ipfw_dyn_rule *
1175lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
1176    struct tcphdr *tcp)
1177{
1178	INIT_VNET_IPFW(curvnet);
1179	/*
1180	 * stateful ipfw extensions.
1181	 * Lookup into dynamic session queue
1182	 */
1183#define MATCH_REVERSE	0
1184#define MATCH_FORWARD	1
1185#define MATCH_NONE	2
1186#define MATCH_UNKNOWN	3
1187	int i, dir = MATCH_NONE;
1188	ipfw_dyn_rule *prev, *q=NULL;
1189
1190	IPFW_DYN_LOCK_ASSERT();
1191
1192	if (V_ipfw_dyn_v == NULL)
1193		goto done;	/* not found */
1194	i = hash_packet( pkt );
1195	for (prev=NULL, q = V_ipfw_dyn_v[i] ; q != NULL ; ) {
1196		if (q->dyn_type == O_LIMIT_PARENT && q->count)
1197			goto next;
1198		if (TIME_LEQ( q->expire, time_uptime)) { /* expire entry */
1199			UNLINK_DYN_RULE(prev, V_ipfw_dyn_v[i], q);
1200			continue;
1201		}
1202		if (pkt->proto == q->id.proto &&
1203		    q->dyn_type != O_LIMIT_PARENT) {
1204			if (IS_IP6_FLOW_ID(pkt)) {
1205			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1206				&(q->id.src_ip6)) &&
1207			    IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1208				&(q->id.dst_ip6)) &&
1209			    pkt->src_port == q->id.src_port &&
1210			    pkt->dst_port == q->id.dst_port ) {
1211				dir = MATCH_FORWARD;
1212				break;
1213			    }
1214			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1215				    &(q->id.dst_ip6)) &&
1216				IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1217				    &(q->id.src_ip6)) &&
1218				pkt->src_port == q->id.dst_port &&
1219				pkt->dst_port == q->id.src_port ) {
1220				    dir = MATCH_REVERSE;
1221				    break;
1222			    }
1223			} else {
1224			    if (pkt->src_ip == q->id.src_ip &&
1225				pkt->dst_ip == q->id.dst_ip &&
1226				pkt->src_port == q->id.src_port &&
1227				pkt->dst_port == q->id.dst_port ) {
1228				    dir = MATCH_FORWARD;
1229				    break;
1230			    }
1231			    if (pkt->src_ip == q->id.dst_ip &&
1232				pkt->dst_ip == q->id.src_ip &&
1233				pkt->src_port == q->id.dst_port &&
1234				pkt->dst_port == q->id.src_port ) {
1235				    dir = MATCH_REVERSE;
1236				    break;
1237			    }
1238			}
1239		}
1240next:
1241		prev = q;
1242		q = q->next;
1243	}
1244	if (q == NULL)
1245		goto done; /* q = NULL, not found */
1246
1247	if ( prev != NULL) { /* found and not in front */
1248		prev->next = q->next;
1249		q->next = V_ipfw_dyn_v[i];
1250		V_ipfw_dyn_v[i] = q;
1251	}
1252	if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
1253		u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
1254
1255#define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
1256#define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
1257		q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
1258		switch (q->state) {
1259		case TH_SYN:				/* opening */
1260			q->expire = time_uptime + V_dyn_syn_lifetime;
1261			break;
1262
1263		case BOTH_SYN:			/* move to established */
1264		case BOTH_SYN | TH_FIN :	/* one side tries to close */
1265		case BOTH_SYN | (TH_FIN << 8) :
1266 			if (tcp) {
1267#define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
1268			    u_int32_t ack = ntohl(tcp->th_ack);
1269			    if (dir == MATCH_FORWARD) {
1270				if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
1271				    q->ack_fwd = ack;
1272				else { /* ignore out-of-sequence */
1273				    break;
1274				}
1275			    } else {
1276				if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
1277				    q->ack_rev = ack;
1278				else { /* ignore out-of-sequence */
1279				    break;
1280				}
1281			    }
1282			}
1283			q->expire = time_uptime + V_dyn_ack_lifetime;
1284			break;
1285
1286		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
1287			if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
1288				V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
1289			q->expire = time_uptime + V_dyn_fin_lifetime;
1290			break;
1291
1292		default:
1293#if 0
1294			/*
1295			 * reset or some invalid combination, but can also
1296			 * occur if we use keep-state the wrong way.
1297			 */
1298			if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
1299				printf("invalid state: 0x%x\n", q->state);
1300#endif
1301			if (V_dyn_rst_lifetime >= V_dyn_keepalive_period)
1302				V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
1303			q->expire = time_uptime + V_dyn_rst_lifetime;
1304			break;
1305		}
1306	} else if (pkt->proto == IPPROTO_UDP) {
1307		q->expire = time_uptime + V_dyn_udp_lifetime;
1308	} else {
1309		/* other protocols */
1310		q->expire = time_uptime + V_dyn_short_lifetime;
1311	}
1312done:
1313	if (match_direction)
1314		*match_direction = dir;
1315	return q;
1316}
1317
1318static ipfw_dyn_rule *
1319lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
1320    struct tcphdr *tcp)
1321{
1322	ipfw_dyn_rule *q;
1323
1324	IPFW_DYN_LOCK();
1325	q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
1326	if (q == NULL)
1327		IPFW_DYN_UNLOCK();
1328	/* NB: return table locked when q is not NULL */
1329	return q;
1330}
1331
1332static void
1333realloc_dynamic_table(void)
1334{
1335	INIT_VNET_IPFW(curvnet);
1336	IPFW_DYN_LOCK_ASSERT();
1337
1338	/*
1339	 * Try reallocation, make sure we have a power of 2 and do
1340	 * not allow more than 64k entries. In case of overflow,
1341	 * default to 1024.
1342	 */
1343
1344	if (V_dyn_buckets > 65536)
1345		V_dyn_buckets = 1024;
1346	if ((V_dyn_buckets & (V_dyn_buckets-1)) != 0) { /* not a power of 2 */
1347		V_dyn_buckets = V_curr_dyn_buckets; /* reset */
1348		return;
1349	}
1350	V_curr_dyn_buckets = V_dyn_buckets;
1351	if (V_ipfw_dyn_v != NULL)
1352		free(V_ipfw_dyn_v, M_IPFW);
1353	for (;;) {
1354		V_ipfw_dyn_v = malloc(V_curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
1355		       M_IPFW, M_NOWAIT | M_ZERO);
1356		if (V_ipfw_dyn_v != NULL || V_curr_dyn_buckets <= 2)
1357			break;
1358		V_curr_dyn_buckets /= 2;
1359	}
1360}
1361
1362/**
1363 * Install state of type 'type' for a dynamic session.
1364 * The hash table contains two type of rules:
1365 * - regular rules (O_KEEP_STATE)
1366 * - rules for sessions with limited number of sess per user
1367 *   (O_LIMIT). When they are created, the parent is
1368 *   increased by 1, and decreased on delete. In this case,
1369 *   the third parameter is the parent rule and not the chain.
1370 * - "parent" rules for the above (O_LIMIT_PARENT).
1371 */
1372static ipfw_dyn_rule *
1373add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
1374{
1375	INIT_VNET_IPFW(curvnet);
1376	ipfw_dyn_rule *r;
1377	int i;
1378
1379	IPFW_DYN_LOCK_ASSERT();
1380
1381	if (V_ipfw_dyn_v == NULL ||
1382	    (V_dyn_count == 0 && V_dyn_buckets != V_curr_dyn_buckets)) {
1383		realloc_dynamic_table();
1384		if (V_ipfw_dyn_v == NULL)
1385			return NULL; /* failed ! */
1386	}
1387	i = hash_packet(id);
1388
1389	r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
1390	if (r == NULL) {
1391		printf ("ipfw: sorry cannot allocate state\n");
1392		return NULL;
1393	}
1394
1395	/* increase refcount on parent, and set pointer */
1396	if (dyn_type == O_LIMIT) {
1397		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
1398		if ( parent->dyn_type != O_LIMIT_PARENT)
1399			panic("invalid parent");
1400		parent->count++;
1401		r->parent = parent;
1402		rule = parent->rule;
1403	}
1404
1405	r->id = *id;
1406	r->expire = time_uptime + V_dyn_syn_lifetime;
1407	r->rule = rule;
1408	r->dyn_type = dyn_type;
1409	r->pcnt = r->bcnt = 0;
1410	r->count = 0;
1411
1412	r->bucket = i;
1413	r->next = V_ipfw_dyn_v[i];
1414	V_ipfw_dyn_v[i] = r;
1415	V_dyn_count++;
1416	DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1417	   dyn_type,
1418	   (r->id.src_ip), (r->id.src_port),
1419	   (r->id.dst_ip), (r->id.dst_port),
1420	   V_dyn_count ); )
1421	return r;
1422}
1423
1424/**
1425 * lookup dynamic parent rule using pkt and rule as search keys.
1426 * If the lookup fails, then install one.
1427 */
1428static ipfw_dyn_rule *
1429lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
1430{
1431	INIT_VNET_IPFW(curvnet);
1432	ipfw_dyn_rule *q;
1433	int i;
1434
1435	IPFW_DYN_LOCK_ASSERT();
1436
1437	if (V_ipfw_dyn_v) {
1438		int is_v6 = IS_IP6_FLOW_ID(pkt);
1439		i = hash_packet( pkt );
1440		for (q = V_ipfw_dyn_v[i] ; q != NULL ; q=q->next)
1441			if (q->dyn_type == O_LIMIT_PARENT &&
1442			    rule== q->rule &&
1443			    pkt->proto == q->id.proto &&
1444			    pkt->src_port == q->id.src_port &&
1445			    pkt->dst_port == q->id.dst_port &&
1446			    (
1447				(is_v6 &&
1448				 IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1449					&(q->id.src_ip6)) &&
1450				 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1451					&(q->id.dst_ip6))) ||
1452				(!is_v6 &&
1453				 pkt->src_ip == q->id.src_ip &&
1454				 pkt->dst_ip == q->id.dst_ip)
1455			    )
1456			) {
1457				q->expire = time_uptime + V_dyn_short_lifetime;
1458				DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
1459				return q;
1460			}
1461	}
1462	return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
1463}
1464
1465/**
1466 * Install dynamic state for rule type cmd->o.opcode
1467 *
1468 * Returns 1 (failure) if state is not installed because of errors or because
1469 * session limitations are enforced.
1470 */
1471static int
1472install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
1473    struct ip_fw_args *args, uint32_t tablearg)
1474{
1475	INIT_VNET_IPFW(curvnet);
1476	static int last_log;
1477	ipfw_dyn_rule *q;
1478	struct in_addr da;
1479	char src[48], dst[48];
1480
1481	src[0] = '\0';
1482	dst[0] = '\0';
1483
1484	DEB(
1485	printf("ipfw: %s: type %d 0x%08x %u -> 0x%08x %u\n",
1486	    __func__, cmd->o.opcode,
1487	    (args->f_id.src_ip), (args->f_id.src_port),
1488	    (args->f_id.dst_ip), (args->f_id.dst_port));
1489	)
1490
1491	IPFW_DYN_LOCK();
1492
1493	q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1494
1495	if (q != NULL) {	/* should never occur */
1496		if (last_log != time_uptime) {
1497			last_log = time_uptime;
1498			printf("ipfw: %s: entry already present, done\n",
1499			    __func__);
1500		}
1501		IPFW_DYN_UNLOCK();
1502		return (0);
1503	}
1504
1505	if (V_dyn_count >= V_dyn_max)
1506		/* Run out of slots, try to remove any expired rule. */
1507		remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
1508
1509	if (V_dyn_count >= V_dyn_max) {
1510		if (last_log != time_uptime) {
1511			last_log = time_uptime;
1512			printf("ipfw: %s: Too many dynamic rules\n", __func__);
1513		}
1514		IPFW_DYN_UNLOCK();
1515		return (1);	/* cannot install, notify caller */
1516	}
1517
1518	switch (cmd->o.opcode) {
1519	case O_KEEP_STATE:	/* bidir rule */
1520		add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
1521		break;
1522
1523	case O_LIMIT: {		/* limit number of sessions */
1524		struct ipfw_flow_id id;
1525		ipfw_dyn_rule *parent;
1526		uint32_t conn_limit;
1527		uint16_t limit_mask = cmd->limit_mask;
1528
1529		conn_limit = (cmd->conn_limit == IP_FW_TABLEARG) ?
1530		    tablearg : cmd->conn_limit;
1531
1532		DEB(
1533		if (cmd->conn_limit == IP_FW_TABLEARG)
1534			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
1535			    "(tablearg)\n", __func__, conn_limit);
1536		else
1537			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
1538			    __func__, conn_limit);
1539		)
1540
1541		id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
1542		id.proto = args->f_id.proto;
1543		id.addr_type = args->f_id.addr_type;
1544		id.fib = M_GETFIB(args->m);
1545
1546		if (IS_IP6_FLOW_ID (&(args->f_id))) {
1547			if (limit_mask & DYN_SRC_ADDR)
1548				id.src_ip6 = args->f_id.src_ip6;
1549			if (limit_mask & DYN_DST_ADDR)
1550				id.dst_ip6 = args->f_id.dst_ip6;
1551		} else {
1552			if (limit_mask & DYN_SRC_ADDR)
1553				id.src_ip = args->f_id.src_ip;
1554			if (limit_mask & DYN_DST_ADDR)
1555				id.dst_ip = args->f_id.dst_ip;
1556		}
1557		if (limit_mask & DYN_SRC_PORT)
1558			id.src_port = args->f_id.src_port;
1559		if (limit_mask & DYN_DST_PORT)
1560			id.dst_port = args->f_id.dst_port;
1561		if ((parent = lookup_dyn_parent(&id, rule)) == NULL) {
1562			printf("ipfw: %s: add parent failed\n", __func__);
1563			IPFW_DYN_UNLOCK();
1564			return (1);
1565		}
1566
1567		if (parent->count >= conn_limit) {
1568			/* See if we can remove some expired rule. */
1569			remove_dyn_rule(rule, parent);
1570			if (parent->count >= conn_limit) {
1571				if (V_fw_verbose && last_log != time_uptime) {
1572					last_log = time_uptime;
1573#ifdef INET6
1574					/*
1575					 * XXX IPv6 flows are not
1576					 * supported yet.
1577					 */
1578					if (IS_IP6_FLOW_ID(&(args->f_id))) {
1579						char ip6buf[INET6_ADDRSTRLEN];
1580						snprintf(src, sizeof(src),
1581						    "[%s]", ip6_sprintf(ip6buf,
1582							&args->f_id.src_ip6));
1583						snprintf(dst, sizeof(dst),
1584						    "[%s]", ip6_sprintf(ip6buf,
1585							&args->f_id.dst_ip6));
1586					} else
1587#endif
1588					{
1589						da.s_addr =
1590						    htonl(args->f_id.src_ip);
1591						inet_ntoa_r(da, src);
1592						da.s_addr =
1593						    htonl(args->f_id.dst_ip);
1594						inet_ntoa_r(da, dst);
1595					}
1596					log(LOG_SECURITY | LOG_DEBUG,
1597					    "ipfw: %d %s %s:%u -> %s:%u, %s\n",
1598					    parent->rule->rulenum,
1599					    "drop session",
1600					    src, (args->f_id.src_port),
1601					    dst, (args->f_id.dst_port),
1602					    "too many entries");
1603				}
1604				IPFW_DYN_UNLOCK();
1605				return (1);
1606			}
1607		}
1608		add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1609		break;
1610	}
1611	default:
1612		printf("ipfw: %s: unknown dynamic rule type %u\n",
1613		    __func__, cmd->o.opcode);
1614		IPFW_DYN_UNLOCK();
1615		return (1);
1616	}
1617
1618	/* XXX just set lifetime */
1619	lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1620
1621	IPFW_DYN_UNLOCK();
1622	return (0);
1623}
1624
1625/*
1626 * Generate a TCP packet, containing either a RST or a keepalive.
1627 * When flags & TH_RST, we are sending a RST packet, because of a
1628 * "reset" action matched the packet.
1629 * Otherwise we are sending a keepalive, and flags & TH_
1630 * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
1631 * so that MAC can label the reply appropriately.
1632 */
1633static struct mbuf *
1634send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
1635    u_int32_t ack, int flags)
1636{
1637	INIT_VNET_INET(curvnet);
1638	struct mbuf *m;
1639	struct ip *ip;
1640	struct tcphdr *tcp;
1641
1642	MGETHDR(m, M_DONTWAIT, MT_DATA);
1643	if (m == 0)
1644		return (NULL);
1645	m->m_pkthdr.rcvif = (struct ifnet *)0;
1646
1647	M_SETFIB(m, id->fib);
1648#ifdef MAC
1649	if (replyto != NULL)
1650		mac_netinet_firewall_reply(replyto, m);
1651	else
1652		mac_netinet_firewall_send(m);
1653#else
1654	(void)replyto;		/* don't warn about unused arg */
1655#endif
1656
1657	m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1658	m->m_data += max_linkhdr;
1659
1660	ip = mtod(m, struct ip *);
1661	bzero(ip, m->m_len);
1662	tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1663	ip->ip_p = IPPROTO_TCP;
1664	tcp->th_off = 5;
1665	/*
1666	 * Assume we are sending a RST (or a keepalive in the reverse
1667	 * direction), swap src and destination addresses and ports.
1668	 */
1669	ip->ip_src.s_addr = htonl(id->dst_ip);
1670	ip->ip_dst.s_addr = htonl(id->src_ip);
1671	tcp->th_sport = htons(id->dst_port);
1672	tcp->th_dport = htons(id->src_port);
1673	if (flags & TH_RST) {	/* we are sending a RST */
1674		if (flags & TH_ACK) {
1675			tcp->th_seq = htonl(ack);
1676			tcp->th_ack = htonl(0);
1677			tcp->th_flags = TH_RST;
1678		} else {
1679			if (flags & TH_SYN)
1680				seq++;
1681			tcp->th_seq = htonl(0);
1682			tcp->th_ack = htonl(seq);
1683			tcp->th_flags = TH_RST | TH_ACK;
1684		}
1685	} else {
1686		/*
1687		 * We are sending a keepalive. flags & TH_SYN determines
1688		 * the direction, forward if set, reverse if clear.
1689		 * NOTE: seq and ack are always assumed to be correct
1690		 * as set by the caller. This may be confusing...
1691		 */
1692		if (flags & TH_SYN) {
1693			/*
1694			 * we have to rewrite the correct addresses!
1695			 */
1696			ip->ip_dst.s_addr = htonl(id->dst_ip);
1697			ip->ip_src.s_addr = htonl(id->src_ip);
1698			tcp->th_dport = htons(id->dst_port);
1699			tcp->th_sport = htons(id->src_port);
1700		}
1701		tcp->th_seq = htonl(seq);
1702		tcp->th_ack = htonl(ack);
1703		tcp->th_flags = TH_ACK;
1704	}
1705	/*
1706	 * set ip_len to the payload size so we can compute
1707	 * the tcp checksum on the pseudoheader
1708	 * XXX check this, could save a couple of words ?
1709	 */
1710	ip->ip_len = htons(sizeof(struct tcphdr));
1711	tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1712	/*
1713	 * now fill fields left out earlier
1714	 */
1715	ip->ip_ttl = V_ip_defttl;
1716	ip->ip_len = m->m_pkthdr.len;
1717	m->m_flags |= M_SKIP_FIREWALL;
1718	return (m);
1719}
1720
1721/*
1722 * sends a reject message, consuming the mbuf passed as an argument.
1723 */
1724static void
1725send_reject(struct ip_fw_args *args, int code, int ip_len, struct ip *ip)
1726{
1727
1728#if 0
1729	/* XXX When ip is not guaranteed to be at mtod() we will
1730	 * need to account for this */
1731	 * The mbuf will however be thrown away so we can adjust it.
1732	 * Remember we did an m_pullup on it already so we
1733	 * can make some assumptions about contiguousness.
1734	 */
1735	if (args->L3offset)
1736		m_adj(m, args->L3offset);
1737#endif
1738	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1739		/* We need the IP header in host order for icmp_error(). */
1740		if (args->eh != NULL) {
1741			ip->ip_len = ntohs(ip->ip_len);
1742			ip->ip_off = ntohs(ip->ip_off);
1743		}
1744		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1745	} else if (args->f_id.proto == IPPROTO_TCP) {
1746		struct tcphdr *const tcp =
1747		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1748		if ( (tcp->th_flags & TH_RST) == 0) {
1749			struct mbuf *m;
1750			m = send_pkt(args->m, &(args->f_id),
1751				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
1752				tcp->th_flags | TH_RST);
1753			if (m != NULL)
1754				ip_output(m, NULL, NULL, 0, NULL, NULL);
1755		}
1756		m_freem(args->m);
1757	} else
1758		m_freem(args->m);
1759	args->m = NULL;
1760}
1761
1762/**
1763 *
1764 * Given an ip_fw *, lookup_next_rule will return a pointer
1765 * to the next rule, which can be either the jump
1766 * target (for skipto instructions) or the next one in the list (in
1767 * all other cases including a missing jump target).
1768 * The result is also written in the "next_rule" field of the rule.
1769 * Backward jumps are not allowed, so start looking from the next
1770 * rule...
1771 *
1772 * This never returns NULL -- in case we do not have an exact match,
1773 * the next rule is returned. When the ruleset is changed,
1774 * pointers are flushed so we are always correct.
1775 */
1776
1777static struct ip_fw *
1778lookup_next_rule(struct ip_fw *me, u_int32_t tablearg)
1779{
1780	struct ip_fw *rule = NULL;
1781	ipfw_insn *cmd;
1782	u_int16_t	rulenum;
1783
1784	/* look for action, in case it is a skipto */
1785	cmd = ACTION_PTR(me);
1786	if (cmd->opcode == O_LOG)
1787		cmd += F_LEN(cmd);
1788	if (cmd->opcode == O_ALTQ)
1789		cmd += F_LEN(cmd);
1790	if (cmd->opcode == O_TAG)
1791		cmd += F_LEN(cmd);
1792	if (cmd->opcode == O_SKIPTO ) {
1793		if (tablearg != 0) {
1794			rulenum = (u_int16_t)tablearg;
1795		} else {
1796			rulenum = cmd->arg1;
1797		}
1798		for (rule = me->next; rule ; rule = rule->next) {
1799			if (rule->rulenum >= rulenum) {
1800				break;
1801			}
1802		}
1803	}
1804	if (rule == NULL)			/* failure or not a skipto */
1805		rule = me->next;
1806	me->next_rule = rule;
1807	return rule;
1808}
1809
1810static int
1811add_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1812    uint8_t mlen, uint32_t value)
1813{
1814	INIT_VNET_IPFW(curvnet);
1815	struct radix_node_head *rnh;
1816	struct table_entry *ent;
1817	struct radix_node *rn;
1818
1819	if (tbl >= IPFW_TABLES_MAX)
1820		return (EINVAL);
1821	rnh = ch->tables[tbl];
1822	ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
1823	if (ent == NULL)
1824		return (ENOMEM);
1825	ent->value = value;
1826	ent->addr.sin_len = ent->mask.sin_len = 8;
1827	ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1828	ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
1829	IPFW_WLOCK(ch);
1830	RADIX_NODE_HEAD_LOCK(rnh);
1831	rn = rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent);
1832	RADIX_NODE_HEAD_UNLOCK(rnh);
1833	if (rn == NULL) {
1834		IPFW_WUNLOCK(ch);
1835		free(ent, M_IPFW_TBL);
1836		return (EEXIST);
1837	}
1838	IPFW_WUNLOCK(ch);
1839	return (0);
1840}
1841
1842static int
1843del_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1844    uint8_t mlen)
1845{
1846	struct radix_node_head *rnh;
1847	struct table_entry *ent;
1848	struct sockaddr_in sa, mask;
1849
1850	if (tbl >= IPFW_TABLES_MAX)
1851		return (EINVAL);
1852	rnh = ch->tables[tbl];
1853	sa.sin_len = mask.sin_len = 8;
1854	mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1855	sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
1856	IPFW_WLOCK(ch);
1857	ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
1858	if (ent == NULL) {
1859		IPFW_WUNLOCK(ch);
1860		return (ESRCH);
1861	}
1862	IPFW_WUNLOCK(ch);
1863	free(ent, M_IPFW_TBL);
1864	return (0);
1865}
1866
1867static int
1868flush_table_entry(struct radix_node *rn, void *arg)
1869{
1870	struct radix_node_head * const rnh = arg;
1871	struct table_entry *ent;
1872
1873	ent = (struct table_entry *)
1874	    rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
1875	if (ent != NULL)
1876		free(ent, M_IPFW_TBL);
1877	return (0);
1878}
1879
1880static int
1881flush_table(struct ip_fw_chain *ch, uint16_t tbl)
1882{
1883	struct radix_node_head *rnh;
1884
1885	IPFW_WLOCK_ASSERT(ch);
1886
1887	if (tbl >= IPFW_TABLES_MAX)
1888		return (EINVAL);
1889	rnh = ch->tables[tbl];
1890	KASSERT(rnh != NULL, ("NULL IPFW table"));
1891	rnh->rnh_walktree(rnh, flush_table_entry, rnh);
1892	return (0);
1893}
1894
1895static void
1896flush_tables(struct ip_fw_chain *ch)
1897{
1898	uint16_t tbl;
1899
1900	IPFW_WLOCK_ASSERT(ch);
1901
1902	for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
1903		flush_table(ch, tbl);
1904}
1905
1906static int
1907init_tables(struct ip_fw_chain *ch)
1908{
1909	int i;
1910	uint16_t j;
1911
1912	for (i = 0; i < IPFW_TABLES_MAX; i++) {
1913		if (!rn_inithead((void **)&ch->tables[i], 32)) {
1914			for (j = 0; j < i; j++) {
1915				(void) flush_table(ch, j);
1916			}
1917			return (ENOMEM);
1918		}
1919	}
1920	return (0);
1921}
1922
1923static int
1924lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1925    uint32_t *val)
1926{
1927	struct radix_node_head *rnh;
1928	struct table_entry *ent;
1929	struct sockaddr_in sa;
1930
1931	if (tbl >= IPFW_TABLES_MAX)
1932		return (0);
1933	rnh = ch->tables[tbl];
1934	sa.sin_len = 8;
1935	sa.sin_addr.s_addr = addr;
1936	ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
1937	if (ent != NULL) {
1938		*val = ent->value;
1939		return (1);
1940	}
1941	return (0);
1942}
1943
1944static int
1945count_table_entry(struct radix_node *rn, void *arg)
1946{
1947	u_int32_t * const cnt = arg;
1948
1949	(*cnt)++;
1950	return (0);
1951}
1952
1953static int
1954count_table(struct ip_fw_chain *ch, uint32_t tbl, uint32_t *cnt)
1955{
1956	struct radix_node_head *rnh;
1957
1958	if (tbl >= IPFW_TABLES_MAX)
1959		return (EINVAL);
1960	rnh = ch->tables[tbl];
1961	*cnt = 0;
1962	rnh->rnh_walktree(rnh, count_table_entry, cnt);
1963	return (0);
1964}
1965
1966static int
1967dump_table_entry(struct radix_node *rn, void *arg)
1968{
1969	struct table_entry * const n = (struct table_entry *)rn;
1970	ipfw_table * const tbl = arg;
1971	ipfw_table_entry *ent;
1972
1973	if (tbl->cnt == tbl->size)
1974		return (1);
1975	ent = &tbl->ent[tbl->cnt];
1976	ent->tbl = tbl->tbl;
1977	if (in_nullhost(n->mask.sin_addr))
1978		ent->masklen = 0;
1979	else
1980		ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
1981	ent->addr = n->addr.sin_addr.s_addr;
1982	ent->value = n->value;
1983	tbl->cnt++;
1984	return (0);
1985}
1986
1987static int
1988dump_table(struct ip_fw_chain *ch, ipfw_table *tbl)
1989{
1990	struct radix_node_head *rnh;
1991
1992	if (tbl->tbl >= IPFW_TABLES_MAX)
1993		return (EINVAL);
1994	rnh = ch->tables[tbl->tbl];
1995	tbl->cnt = 0;
1996	rnh->rnh_walktree(rnh, dump_table_entry, tbl);
1997	return (0);
1998}
1999
2000static void
2001fill_ugid_cache(struct inpcb *inp, struct ip_fw_ugid *ugp)
2002{
2003	struct ucred *cr;
2004
2005	cr = inp->inp_cred;
2006	ugp->fw_prid = jailed(cr) ? cr->cr_prison->pr_id : -1;
2007	ugp->fw_uid = cr->cr_uid;
2008	ugp->fw_ngroups = cr->cr_ngroups;
2009	bcopy(cr->cr_groups, ugp->fw_groups, sizeof(ugp->fw_groups));
2010}
2011
2012static int
2013check_uidgid(ipfw_insn_u32 *insn, int proto, struct ifnet *oif,
2014    struct in_addr dst_ip, u_int16_t dst_port, struct in_addr src_ip,
2015    u_int16_t src_port, struct ip_fw_ugid *ugp, int *ugid_lookupp,
2016    struct inpcb *inp)
2017{
2018	INIT_VNET_INET(curvnet);
2019	struct inpcbinfo *pi;
2020	int wildcard;
2021	struct inpcb *pcb;
2022	int match;
2023	gid_t *gp;
2024
2025	/*
2026	 * Check to see if the UDP or TCP stack supplied us with
2027	 * the PCB. If so, rather then holding a lock and looking
2028	 * up the PCB, we can use the one that was supplied.
2029	 */
2030	if (inp && *ugid_lookupp == 0) {
2031		INP_LOCK_ASSERT(inp);
2032		if (inp->inp_socket != NULL) {
2033			fill_ugid_cache(inp, ugp);
2034			*ugid_lookupp = 1;
2035		} else
2036			*ugid_lookupp = -1;
2037	}
2038	/*
2039	 * If we have already been here and the packet has no
2040	 * PCB entry associated with it, then we can safely
2041	 * assume that this is a no match.
2042	 */
2043	if (*ugid_lookupp == -1)
2044		return (0);
2045	if (proto == IPPROTO_TCP) {
2046		wildcard = 0;
2047		pi = &V_tcbinfo;
2048	} else if (proto == IPPROTO_UDP) {
2049		wildcard = INPLOOKUP_WILDCARD;
2050		pi = &V_udbinfo;
2051	} else
2052		return 0;
2053	match = 0;
2054	if (*ugid_lookupp == 0) {
2055		INP_INFO_RLOCK(pi);
2056		pcb =  (oif) ?
2057			in_pcblookup_hash(pi,
2058				dst_ip, htons(dst_port),
2059				src_ip, htons(src_port),
2060				wildcard, oif) :
2061			in_pcblookup_hash(pi,
2062				src_ip, htons(src_port),
2063				dst_ip, htons(dst_port),
2064				wildcard, NULL);
2065		if (pcb != NULL) {
2066			fill_ugid_cache(pcb, ugp);
2067			*ugid_lookupp = 1;
2068		}
2069		INP_INFO_RUNLOCK(pi);
2070		if (*ugid_lookupp == 0) {
2071			/*
2072			 * If the lookup did not yield any results, there
2073			 * is no sense in coming back and trying again. So
2074			 * we can set lookup to -1 and ensure that we wont
2075			 * bother the pcb system again.
2076			 */
2077			*ugid_lookupp = -1;
2078			return (0);
2079		}
2080	}
2081	if (insn->o.opcode == O_UID)
2082		match = (ugp->fw_uid == (uid_t)insn->d[0]);
2083	else if (insn->o.opcode == O_GID) {
2084		for (gp = ugp->fw_groups;
2085			gp < &ugp->fw_groups[ugp->fw_ngroups]; gp++)
2086			if (*gp == (gid_t)insn->d[0]) {
2087				match = 1;
2088				break;
2089			}
2090	} else if (insn->o.opcode == O_JAIL)
2091		match = (ugp->fw_prid == (int)insn->d[0]);
2092	return match;
2093}
2094
2095/*
2096 * The main check routine for the firewall.
2097 *
2098 * All arguments are in args so we can modify them and return them
2099 * back to the caller.
2100 *
2101 * Parameters:
2102 *
2103 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
2104 *		Starts with the IP header.
2105 *	args->eh (in)	Mac header if present, or NULL for layer3 packet.
2106 *	args->L3offset	Number of bytes bypassed if we came from L2.
2107 *			e.g. often sizeof(eh)  ** NOTYET **
2108 *	args->oif	Outgoing interface, or NULL if packet is incoming.
2109 *		The incoming interface is in the mbuf. (in)
2110 *	args->divert_rule (in/out)
2111 *		Skip up to the first rule past this rule number;
2112 *		upon return, non-zero port number for divert or tee.
2113 *
2114 *	args->rule	Pointer to the last matching rule (in/out)
2115 *	args->next_hop	Socket we are forwarding to (out).
2116 *	args->f_id	Addresses grabbed from the packet (out)
2117 * 	args->cookie	a cookie depending on rule action
2118 *
2119 * Return value:
2120 *
2121 *	IP_FW_PASS	the packet must be accepted
2122 *	IP_FW_DENY	the packet must be dropped
2123 *	IP_FW_DIVERT	divert packet, port in m_tag
2124 *	IP_FW_TEE	tee packet, port in m_tag
2125 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
2126 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
2127 *
2128 */
2129int
2130ipfw_chk(struct ip_fw_args *args)
2131{
2132	INIT_VNET_INET(curvnet);
2133	INIT_VNET_IPFW(curvnet);
2134
2135	/*
2136	 * Local variables holding state during the processing of a packet:
2137	 *
2138	 * IMPORTANT NOTE: to speed up the processing of rules, there
2139	 * are some assumption on the values of the variables, which
2140	 * are documented here. Should you change them, please check
2141	 * the implementation of the various instructions to make sure
2142	 * that they still work.
2143	 *
2144	 * args->eh	The MAC header. It is non-null for a layer2
2145	 *	packet, it is NULL for a layer-3 packet.
2146	 * **notyet**
2147	 * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
2148	 *
2149	 * m | args->m	Pointer to the mbuf, as received from the caller.
2150	 *	It may change if ipfw_chk() does an m_pullup, or if it
2151	 *	consumes the packet because it calls send_reject().
2152	 *	XXX This has to change, so that ipfw_chk() never modifies
2153	 *	or consumes the buffer.
2154	 * ip	is the beginning of the ip(4 or 6) header.
2155	 *	Calculated by adding the L3offset to the start of data.
2156	 *	(Until we start using L3offset, the packet is
2157	 *	supposed to start with the ip header).
2158	 */
2159	struct mbuf *m = args->m;
2160	struct ip *ip = mtod(m, struct ip *);
2161
2162	/*
2163	 * For rules which contain uid/gid or jail constraints, cache
2164	 * a copy of the users credentials after the pcb lookup has been
2165	 * executed. This will speed up the processing of rules with
2166	 * these types of constraints, as well as decrease contention
2167	 * on pcb related locks.
2168	 */
2169	struct ip_fw_ugid fw_ugid_cache;
2170	int ugid_lookup = 0;
2171
2172	/*
2173	 * divinput_flags	If non-zero, set to the IP_FW_DIVERT_*_FLAG
2174	 *	associated with a packet input on a divert socket.  This
2175	 *	will allow to distinguish traffic and its direction when
2176	 *	it originates from a divert socket.
2177	 */
2178	u_int divinput_flags = 0;
2179
2180	/*
2181	 * oif | args->oif	If NULL, ipfw_chk has been called on the
2182	 *	inbound path (ether_input, ip_input).
2183	 *	If non-NULL, ipfw_chk has been called on the outbound path
2184	 *	(ether_output, ip_output).
2185	 */
2186	struct ifnet *oif = args->oif;
2187
2188	struct ip_fw *f = NULL;		/* matching rule */
2189	int retval = 0;
2190
2191	/*
2192	 * hlen	The length of the IP header.
2193	 */
2194	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
2195
2196	/*
2197	 * offset	The offset of a fragment. offset != 0 means that
2198	 *	we have a fragment at this offset of an IPv4 packet.
2199	 *	offset == 0 means that (if this is an IPv4 packet)
2200	 *	this is the first or only fragment.
2201	 *	For IPv6 offset == 0 means there is no Fragment Header.
2202	 *	If offset != 0 for IPv6 always use correct mask to
2203	 *	get the correct offset because we add IP6F_MORE_FRAG
2204	 *	to be able to dectect the first fragment which would
2205	 *	otherwise have offset = 0.
2206	 */
2207	u_short offset = 0;
2208
2209	/*
2210	 * Local copies of addresses. They are only valid if we have
2211	 * an IP packet.
2212	 *
2213	 * proto	The protocol. Set to 0 for non-ip packets,
2214	 *	or to the protocol read from the packet otherwise.
2215	 *	proto != 0 means that we have an IPv4 packet.
2216	 *
2217	 * src_port, dst_port	port numbers, in HOST format. Only
2218	 *	valid for TCP and UDP packets.
2219	 *
2220	 * src_ip, dst_ip	ip addresses, in NETWORK format.
2221	 *	Only valid for IPv4 packets.
2222	 */
2223	u_int8_t proto;
2224	u_int16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
2225	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
2226	u_int16_t ip_len=0;
2227	int pktlen;
2228	u_int16_t	etype = 0;	/* Host order stored ether type */
2229
2230	/*
2231	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
2232	 * 	MATCH_NONE when checked and not matched (q = NULL),
2233	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
2234	 */
2235	int dyn_dir = MATCH_UNKNOWN;
2236	ipfw_dyn_rule *q = NULL;
2237	struct ip_fw_chain *chain = &V_layer3_chain;
2238	struct m_tag *mtag;
2239
2240	/*
2241	 * We store in ulp a pointer to the upper layer protocol header.
2242	 * In the ipv4 case this is easy to determine from the header,
2243	 * but for ipv6 we might have some additional headers in the middle.
2244	 * ulp is NULL if not found.
2245	 */
2246	void *ulp = NULL;		/* upper layer protocol pointer. */
2247	/* XXX ipv6 variables */
2248	int is_ipv6 = 0;
2249	u_int16_t ext_hd = 0;	/* bits vector for extension header filtering */
2250	/* end of ipv6 variables */
2251	int is_ipv4 = 0;
2252
2253	if (m->m_flags & M_SKIP_FIREWALL)
2254		return (IP_FW_PASS);	/* accept */
2255
2256	pktlen = m->m_pkthdr.len;
2257	args->f_id.fib = M_GETFIB(m); /* note mbuf not altered) */
2258	proto = args->f_id.proto = 0;	/* mark f_id invalid */
2259		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
2260
2261/*
2262 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
2263 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
2264 * pointer might become stale after other pullups (but we never use it
2265 * this way).
2266 */
2267#define PULLUP_TO(len, p, T)						\
2268do {									\
2269	int x = (len) + sizeof(T);					\
2270	if ((m)->m_len < x) {						\
2271		args->m = m = m_pullup(m, x);				\
2272		if (m == NULL)						\
2273			goto pullup_failed;				\
2274	}								\
2275	p = (mtod(m, char *) + (len));					\
2276} while (0)
2277
2278	/*
2279	 * if we have an ether header,
2280	 */
2281	if (args->eh)
2282		etype = ntohs(args->eh->ether_type);
2283
2284	/* Identify IP packets and fill up variables. */
2285	if (pktlen >= sizeof(struct ip6_hdr) &&
2286	    (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
2287		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
2288		is_ipv6 = 1;
2289		args->f_id.addr_type = 6;
2290		hlen = sizeof(struct ip6_hdr);
2291		proto = ip6->ip6_nxt;
2292
2293		/* Search extension headers to find upper layer protocols */
2294		while (ulp == NULL) {
2295			switch (proto) {
2296			case IPPROTO_ICMPV6:
2297				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
2298				args->f_id.flags = ICMP6(ulp)->icmp6_type;
2299				break;
2300
2301			case IPPROTO_TCP:
2302				PULLUP_TO(hlen, ulp, struct tcphdr);
2303				dst_port = TCP(ulp)->th_dport;
2304				src_port = TCP(ulp)->th_sport;
2305				args->f_id.flags = TCP(ulp)->th_flags;
2306				break;
2307
2308			case IPPROTO_SCTP:
2309				PULLUP_TO(hlen, ulp, struct sctphdr);
2310				src_port = SCTP(ulp)->src_port;
2311				dst_port = SCTP(ulp)->dest_port;
2312				break;
2313
2314			case IPPROTO_UDP:
2315				PULLUP_TO(hlen, ulp, struct udphdr);
2316				dst_port = UDP(ulp)->uh_dport;
2317				src_port = UDP(ulp)->uh_sport;
2318				break;
2319
2320			case IPPROTO_HOPOPTS:	/* RFC 2460 */
2321				PULLUP_TO(hlen, ulp, struct ip6_hbh);
2322				ext_hd |= EXT_HOPOPTS;
2323				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2324				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2325				ulp = NULL;
2326				break;
2327
2328			case IPPROTO_ROUTING:	/* RFC 2460 */
2329				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
2330				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
2331				case 0:
2332					ext_hd |= EXT_RTHDR0;
2333					break;
2334				case 2:
2335					ext_hd |= EXT_RTHDR2;
2336					break;
2337				default:
2338					printf("IPFW2: IPV6 - Unknown Routing "
2339					    "Header type(%d)\n",
2340					    ((struct ip6_rthdr *)ulp)->ip6r_type);
2341					if (V_fw_deny_unknown_exthdrs)
2342					    return (IP_FW_DENY);
2343					break;
2344				}
2345				ext_hd |= EXT_ROUTING;
2346				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
2347				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
2348				ulp = NULL;
2349				break;
2350
2351			case IPPROTO_FRAGMENT:	/* RFC 2460 */
2352				PULLUP_TO(hlen, ulp, struct ip6_frag);
2353				ext_hd |= EXT_FRAGMENT;
2354				hlen += sizeof (struct ip6_frag);
2355				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
2356				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
2357					IP6F_OFF_MASK;
2358				/* Add IP6F_MORE_FRAG for offset of first
2359				 * fragment to be != 0. */
2360				offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
2361					IP6F_MORE_FRAG;
2362				if (offset == 0) {
2363					printf("IPFW2: IPV6 - Invalid Fragment "
2364					    "Header\n");
2365					if (V_fw_deny_unknown_exthdrs)
2366					    return (IP_FW_DENY);
2367					break;
2368				}
2369				args->f_id.frag_id6 =
2370				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
2371				ulp = NULL;
2372				break;
2373
2374			case IPPROTO_DSTOPTS:	/* RFC 2460 */
2375				PULLUP_TO(hlen, ulp, struct ip6_hbh);
2376				ext_hd |= EXT_DSTOPTS;
2377				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2378				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2379				ulp = NULL;
2380				break;
2381
2382			case IPPROTO_AH:	/* RFC 2402 */
2383				PULLUP_TO(hlen, ulp, struct ip6_ext);
2384				ext_hd |= EXT_AH;
2385				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
2386				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
2387				ulp = NULL;
2388				break;
2389
2390			case IPPROTO_ESP:	/* RFC 2406 */
2391				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
2392				/* Anything past Seq# is variable length and
2393				 * data past this ext. header is encrypted. */
2394				ext_hd |= EXT_ESP;
2395				break;
2396
2397			case IPPROTO_NONE:	/* RFC 2460 */
2398				/*
2399				 * Packet ends here, and IPv6 header has
2400				 * already been pulled up. If ip6e_len!=0
2401				 * then octets must be ignored.
2402				 */
2403				ulp = ip; /* non-NULL to get out of loop. */
2404				break;
2405
2406			case IPPROTO_OSPFIGP:
2407				/* XXX OSPF header check? */
2408				PULLUP_TO(hlen, ulp, struct ip6_ext);
2409				break;
2410
2411			case IPPROTO_PIM:
2412				/* XXX PIM header check? */
2413				PULLUP_TO(hlen, ulp, struct pim);
2414				break;
2415
2416			case IPPROTO_CARP:
2417				PULLUP_TO(hlen, ulp, struct carp_header);
2418				if (((struct carp_header *)ulp)->carp_version !=
2419				    CARP_VERSION)
2420					return (IP_FW_DENY);
2421				if (((struct carp_header *)ulp)->carp_type !=
2422				    CARP_ADVERTISEMENT)
2423					return (IP_FW_DENY);
2424				break;
2425
2426			case IPPROTO_IPV6:	/* RFC 2893 */
2427				PULLUP_TO(hlen, ulp, struct ip6_hdr);
2428				break;
2429
2430			case IPPROTO_IPV4:	/* RFC 2893 */
2431				PULLUP_TO(hlen, ulp, struct ip);
2432				break;
2433
2434			default:
2435				printf("IPFW2: IPV6 - Unknown Extension "
2436				    "Header(%d), ext_hd=%x\n", proto, ext_hd);
2437				if (V_fw_deny_unknown_exthdrs)
2438				    return (IP_FW_DENY);
2439				PULLUP_TO(hlen, ulp, struct ip6_ext);
2440				break;
2441			} /*switch */
2442		}
2443		ip = mtod(m, struct ip *);
2444		ip6 = (struct ip6_hdr *)ip;
2445		args->f_id.src_ip6 = ip6->ip6_src;
2446		args->f_id.dst_ip6 = ip6->ip6_dst;
2447		args->f_id.src_ip = 0;
2448		args->f_id.dst_ip = 0;
2449		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
2450	} else if (pktlen >= sizeof(struct ip) &&
2451	    (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
2452	    	is_ipv4 = 1;
2453		hlen = ip->ip_hl << 2;
2454		args->f_id.addr_type = 4;
2455
2456		/*
2457		 * Collect parameters into local variables for faster matching.
2458		 */
2459		proto = ip->ip_p;
2460		src_ip = ip->ip_src;
2461		dst_ip = ip->ip_dst;
2462		if (args->eh != NULL) { /* layer 2 packets are as on the wire */
2463			offset = ntohs(ip->ip_off) & IP_OFFMASK;
2464			ip_len = ntohs(ip->ip_len);
2465		} else {
2466			offset = ip->ip_off & IP_OFFMASK;
2467			ip_len = ip->ip_len;
2468		}
2469		pktlen = ip_len < pktlen ? ip_len : pktlen;
2470
2471		if (offset == 0) {
2472			switch (proto) {
2473			case IPPROTO_TCP:
2474				PULLUP_TO(hlen, ulp, struct tcphdr);
2475				dst_port = TCP(ulp)->th_dport;
2476				src_port = TCP(ulp)->th_sport;
2477				args->f_id.flags = TCP(ulp)->th_flags;
2478				break;
2479
2480			case IPPROTO_UDP:
2481				PULLUP_TO(hlen, ulp, struct udphdr);
2482				dst_port = UDP(ulp)->uh_dport;
2483				src_port = UDP(ulp)->uh_sport;
2484				break;
2485
2486			case IPPROTO_ICMP:
2487				PULLUP_TO(hlen, ulp, struct icmphdr);
2488				args->f_id.flags = ICMP(ulp)->icmp_type;
2489				break;
2490
2491			default:
2492				break;
2493			}
2494		}
2495
2496		ip = mtod(m, struct ip *);
2497		args->f_id.src_ip = ntohl(src_ip.s_addr);
2498		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
2499	}
2500#undef PULLUP_TO
2501	if (proto) { /* we may have port numbers, store them */
2502		args->f_id.proto = proto;
2503		args->f_id.src_port = src_port = ntohs(src_port);
2504		args->f_id.dst_port = dst_port = ntohs(dst_port);
2505	}
2506
2507	IPFW_RLOCK(chain);
2508	mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
2509	if (args->rule) {
2510		/*
2511		 * Packet has already been tagged. Look for the next rule
2512		 * to restart processing.
2513		 *
2514		 * If fw_one_pass != 0 then just accept it.
2515		 * XXX should not happen here, but optimized out in
2516		 * the caller.
2517		 */
2518		if (V_fw_one_pass) {
2519			IPFW_RUNLOCK(chain);
2520			return (IP_FW_PASS);
2521		}
2522
2523		f = args->rule->next_rule;
2524		if (f == NULL)
2525			f = lookup_next_rule(args->rule, 0);
2526	} else {
2527		/*
2528		 * Find the starting rule. It can be either the first
2529		 * one, or the one after divert_rule if asked so.
2530		 */
2531		int skipto = mtag ? divert_cookie(mtag) : 0;
2532
2533		f = chain->rules;
2534		if (args->eh == NULL && skipto != 0) {
2535			if (skipto >= IPFW_DEFAULT_RULE) {
2536				IPFW_RUNLOCK(chain);
2537				return (IP_FW_DENY); /* invalid */
2538			}
2539			while (f && f->rulenum <= skipto)
2540				f = f->next;
2541			if (f == NULL) {	/* drop packet */
2542				IPFW_RUNLOCK(chain);
2543				return (IP_FW_DENY);
2544			}
2545		}
2546	}
2547	/* reset divert rule to avoid confusion later */
2548	if (mtag) {
2549		divinput_flags = divert_info(mtag) &
2550		    (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
2551		m_tag_delete(m, mtag);
2552	}
2553
2554	/*
2555	 * Now scan the rules, and parse microinstructions for each rule.
2556	 */
2557	for (; f; f = f->next) {
2558		ipfw_insn *cmd;
2559		uint32_t tablearg = 0;
2560		int l, cmdlen, skip_or; /* skip rest of OR block */
2561
2562again:
2563		if (V_set_disable & (1 << f->set) )
2564			continue;
2565
2566		skip_or = 0;
2567		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
2568		    l -= cmdlen, cmd += cmdlen) {
2569			int match;
2570
2571			/*
2572			 * check_body is a jump target used when we find a
2573			 * CHECK_STATE, and need to jump to the body of
2574			 * the target rule.
2575			 */
2576
2577check_body:
2578			cmdlen = F_LEN(cmd);
2579			/*
2580			 * An OR block (insn_1 || .. || insn_n) has the
2581			 * F_OR bit set in all but the last instruction.
2582			 * The first match will set "skip_or", and cause
2583			 * the following instructions to be skipped until
2584			 * past the one with the F_OR bit clear.
2585			 */
2586			if (skip_or) {		/* skip this instruction */
2587				if ((cmd->len & F_OR) == 0)
2588					skip_or = 0;	/* next one is good */
2589				continue;
2590			}
2591			match = 0; /* set to 1 if we succeed */
2592
2593			switch (cmd->opcode) {
2594			/*
2595			 * The first set of opcodes compares the packet's
2596			 * fields with some pattern, setting 'match' if a
2597			 * match is found. At the end of the loop there is
2598			 * logic to deal with F_NOT and F_OR flags associated
2599			 * with the opcode.
2600			 */
2601			case O_NOP:
2602				match = 1;
2603				break;
2604
2605			case O_FORWARD_MAC:
2606				printf("ipfw: opcode %d unimplemented\n",
2607				    cmd->opcode);
2608				break;
2609
2610			case O_GID:
2611			case O_UID:
2612			case O_JAIL:
2613				/*
2614				 * We only check offset == 0 && proto != 0,
2615				 * as this ensures that we have a
2616				 * packet with the ports info.
2617				 */
2618				if (offset!=0)
2619					break;
2620				if (is_ipv6) /* XXX to be fixed later */
2621					break;
2622				if (proto == IPPROTO_TCP ||
2623				    proto == IPPROTO_UDP)
2624					match = check_uidgid(
2625						    (ipfw_insn_u32 *)cmd,
2626						    proto, oif,
2627						    dst_ip, dst_port,
2628						    src_ip, src_port, &fw_ugid_cache,
2629						    &ugid_lookup, args->inp);
2630				break;
2631
2632			case O_RECV:
2633				match = iface_match(m->m_pkthdr.rcvif,
2634				    (ipfw_insn_if *)cmd);
2635				break;
2636
2637			case O_XMIT:
2638				match = iface_match(oif, (ipfw_insn_if *)cmd);
2639				break;
2640
2641			case O_VIA:
2642				match = iface_match(oif ? oif :
2643				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
2644				break;
2645
2646			case O_MACADDR2:
2647				if (args->eh != NULL) {	/* have MAC header */
2648					u_int32_t *want = (u_int32_t *)
2649						((ipfw_insn_mac *)cmd)->addr;
2650					u_int32_t *mask = (u_int32_t *)
2651						((ipfw_insn_mac *)cmd)->mask;
2652					u_int32_t *hdr = (u_int32_t *)args->eh;
2653
2654					match =
2655					    ( want[0] == (hdr[0] & mask[0]) &&
2656					      want[1] == (hdr[1] & mask[1]) &&
2657					      want[2] == (hdr[2] & mask[2]) );
2658				}
2659				break;
2660
2661			case O_MAC_TYPE:
2662				if (args->eh != NULL) {
2663					u_int16_t *p =
2664					    ((ipfw_insn_u16 *)cmd)->ports;
2665					int i;
2666
2667					for (i = cmdlen - 1; !match && i>0;
2668					    i--, p += 2)
2669						match = (etype >= p[0] &&
2670						    etype <= p[1]);
2671				}
2672				break;
2673
2674			case O_FRAG:
2675				match = (offset != 0);
2676				break;
2677
2678			case O_IN:	/* "out" is "not in" */
2679				match = (oif == NULL);
2680				break;
2681
2682			case O_LAYER2:
2683				match = (args->eh != NULL);
2684				break;
2685
2686			case O_DIVERTED:
2687				match = (cmd->arg1 & 1 && divinput_flags &
2688				    IP_FW_DIVERT_LOOPBACK_FLAG) ||
2689					(cmd->arg1 & 2 && divinput_flags &
2690				    IP_FW_DIVERT_OUTPUT_FLAG);
2691				break;
2692
2693			case O_PROTO:
2694				/*
2695				 * We do not allow an arg of 0 so the
2696				 * check of "proto" only suffices.
2697				 */
2698				match = (proto == cmd->arg1);
2699				break;
2700
2701			case O_IP_SRC:
2702				match = is_ipv4 &&
2703				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2704				    src_ip.s_addr);
2705				break;
2706
2707			case O_IP_SRC_LOOKUP:
2708			case O_IP_DST_LOOKUP:
2709				if (is_ipv4) {
2710				    uint32_t a =
2711					(cmd->opcode == O_IP_DST_LOOKUP) ?
2712					    dst_ip.s_addr : src_ip.s_addr;
2713				    uint32_t v;
2714
2715				    match = lookup_table(chain, cmd->arg1, a,
2716					&v);
2717				    if (!match)
2718					break;
2719				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2720					match =
2721					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
2722				    else
2723					tablearg = v;
2724				}
2725				break;
2726
2727			case O_IP_SRC_MASK:
2728			case O_IP_DST_MASK:
2729				if (is_ipv4) {
2730				    uint32_t a =
2731					(cmd->opcode == O_IP_DST_MASK) ?
2732					    dst_ip.s_addr : src_ip.s_addr;
2733				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2734				    int i = cmdlen-1;
2735
2736				    for (; !match && i>0; i-= 2, p+= 2)
2737					match = (p[0] == (a & p[1]));
2738				}
2739				break;
2740
2741			case O_IP_SRC_ME:
2742				if (is_ipv4) {
2743					struct ifnet *tif;
2744
2745					INADDR_TO_IFP(src_ip, tif);
2746					match = (tif != NULL);
2747				}
2748				break;
2749
2750			case O_IP_DST_SET:
2751			case O_IP_SRC_SET:
2752				if (is_ipv4) {
2753					u_int32_t *d = (u_int32_t *)(cmd+1);
2754					u_int32_t addr =
2755					    cmd->opcode == O_IP_DST_SET ?
2756						args->f_id.dst_ip :
2757						args->f_id.src_ip;
2758
2759					    if (addr < d[0])
2760						    break;
2761					    addr -= d[0]; /* subtract base */
2762					    match = (addr < cmd->arg1) &&
2763						( d[ 1 + (addr>>5)] &
2764						  (1<<(addr & 0x1f)) );
2765				}
2766				break;
2767
2768			case O_IP_DST:
2769				match = is_ipv4 &&
2770				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2771				    dst_ip.s_addr);
2772				break;
2773
2774			case O_IP_DST_ME:
2775				if (is_ipv4) {
2776					struct ifnet *tif;
2777
2778					INADDR_TO_IFP(dst_ip, tif);
2779					match = (tif != NULL);
2780				}
2781				break;
2782
2783			case O_IP_SRCPORT:
2784			case O_IP_DSTPORT:
2785				/*
2786				 * offset == 0 && proto != 0 is enough
2787				 * to guarantee that we have a
2788				 * packet with port info.
2789				 */
2790				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
2791				    && offset == 0) {
2792					u_int16_t x =
2793					    (cmd->opcode == O_IP_SRCPORT) ?
2794						src_port : dst_port ;
2795					u_int16_t *p =
2796					    ((ipfw_insn_u16 *)cmd)->ports;
2797					int i;
2798
2799					for (i = cmdlen - 1; !match && i>0;
2800					    i--, p += 2)
2801						match = (x>=p[0] && x<=p[1]);
2802				}
2803				break;
2804
2805			case O_ICMPTYPE:
2806				match = (offset == 0 && proto==IPPROTO_ICMP &&
2807				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2808				break;
2809
2810#ifdef INET6
2811			case O_ICMP6TYPE:
2812				match = is_ipv6 && offset == 0 &&
2813				    proto==IPPROTO_ICMPV6 &&
2814				    icmp6type_match(
2815					ICMP6(ulp)->icmp6_type,
2816					(ipfw_insn_u32 *)cmd);
2817				break;
2818#endif /* INET6 */
2819
2820			case O_IPOPT:
2821				match = (is_ipv4 &&
2822				    ipopts_match(ip, cmd) );
2823				break;
2824
2825			case O_IPVER:
2826				match = (is_ipv4 &&
2827				    cmd->arg1 == ip->ip_v);
2828				break;
2829
2830			case O_IPID:
2831			case O_IPLEN:
2832			case O_IPTTL:
2833				if (is_ipv4) {	/* only for IP packets */
2834				    uint16_t x;
2835				    uint16_t *p;
2836				    int i;
2837
2838				    if (cmd->opcode == O_IPLEN)
2839					x = ip_len;
2840				    else if (cmd->opcode == O_IPTTL)
2841					x = ip->ip_ttl;
2842				    else /* must be IPID */
2843					x = ntohs(ip->ip_id);
2844				    if (cmdlen == 1) {
2845					match = (cmd->arg1 == x);
2846					break;
2847				    }
2848				    /* otherwise we have ranges */
2849				    p = ((ipfw_insn_u16 *)cmd)->ports;
2850				    i = cmdlen - 1;
2851				    for (; !match && i>0; i--, p += 2)
2852					match = (x >= p[0] && x <= p[1]);
2853				}
2854				break;
2855
2856			case O_IPPRECEDENCE:
2857				match = (is_ipv4 &&
2858				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
2859				break;
2860
2861			case O_IPTOS:
2862				match = (is_ipv4 &&
2863				    flags_match(cmd, ip->ip_tos));
2864				break;
2865
2866			case O_TCPDATALEN:
2867				if (proto == IPPROTO_TCP && offset == 0) {
2868				    struct tcphdr *tcp;
2869				    uint16_t x;
2870				    uint16_t *p;
2871				    int i;
2872
2873				    tcp = TCP(ulp);
2874				    x = ip_len -
2875					((ip->ip_hl + tcp->th_off) << 2);
2876				    if (cmdlen == 1) {
2877					match = (cmd->arg1 == x);
2878					break;
2879				    }
2880				    /* otherwise we have ranges */
2881				    p = ((ipfw_insn_u16 *)cmd)->ports;
2882				    i = cmdlen - 1;
2883				    for (; !match && i>0; i--, p += 2)
2884					match = (x >= p[0] && x <= p[1]);
2885				}
2886				break;
2887
2888			case O_TCPFLAGS:
2889				match = (proto == IPPROTO_TCP && offset == 0 &&
2890				    flags_match(cmd, TCP(ulp)->th_flags));
2891				break;
2892
2893			case O_TCPOPTS:
2894				match = (proto == IPPROTO_TCP && offset == 0 &&
2895				    tcpopts_match(TCP(ulp), cmd));
2896				break;
2897
2898			case O_TCPSEQ:
2899				match = (proto == IPPROTO_TCP && offset == 0 &&
2900				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2901					TCP(ulp)->th_seq);
2902				break;
2903
2904			case O_TCPACK:
2905				match = (proto == IPPROTO_TCP && offset == 0 &&
2906				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2907					TCP(ulp)->th_ack);
2908				break;
2909
2910			case O_TCPWIN:
2911				match = (proto == IPPROTO_TCP && offset == 0 &&
2912				    cmd->arg1 == TCP(ulp)->th_win);
2913				break;
2914
2915			case O_ESTAB:
2916				/* reject packets which have SYN only */
2917				/* XXX should i also check for TH_ACK ? */
2918				match = (proto == IPPROTO_TCP && offset == 0 &&
2919				    (TCP(ulp)->th_flags &
2920				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2921				break;
2922
2923			case O_ALTQ: {
2924				struct pf_mtag *at;
2925				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2926
2927				match = 1;
2928				at = pf_find_mtag(m);
2929				if (at != NULL && at->qid != 0)
2930					break;
2931				at = pf_get_mtag(m);
2932				if (at == NULL) {
2933					/*
2934					 * Let the packet fall back to the
2935					 * default ALTQ.
2936					 */
2937					break;
2938				}
2939				at->qid = altq->qid;
2940				if (is_ipv4)
2941					at->af = AF_INET;
2942				else
2943					at->af = AF_LINK;
2944				at->hdr = ip;
2945				break;
2946			}
2947
2948			case O_LOG:
2949				if (V_fw_verbose)
2950					ipfw_log(f, hlen, args, m,
2951					    oif, offset, tablearg, ip);
2952				match = 1;
2953				break;
2954
2955			case O_PROB:
2956				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2957				break;
2958
2959			case O_VERREVPATH:
2960				/* Outgoing packets automatically pass/match */
2961				match = ((oif != NULL) ||
2962				    (m->m_pkthdr.rcvif == NULL) ||
2963				    (
2964#ifdef INET6
2965				    is_ipv6 ?
2966					verify_path6(&(args->f_id.src_ip6),
2967					    m->m_pkthdr.rcvif) :
2968#endif
2969				    verify_path(src_ip, m->m_pkthdr.rcvif,
2970				        args->f_id.fib)));
2971				break;
2972
2973			case O_VERSRCREACH:
2974				/* Outgoing packets automatically pass/match */
2975				match = (hlen > 0 && ((oif != NULL) ||
2976#ifdef INET6
2977				    is_ipv6 ?
2978				        verify_path6(&(args->f_id.src_ip6),
2979				            NULL) :
2980#endif
2981				    verify_path(src_ip, NULL, args->f_id.fib)));
2982				break;
2983
2984			case O_ANTISPOOF:
2985				/* Outgoing packets automatically pass/match */
2986				if (oif == NULL && hlen > 0 &&
2987				    (  (is_ipv4 && in_localaddr(src_ip))
2988#ifdef INET6
2989				    || (is_ipv6 &&
2990				        in6_localaddr(&(args->f_id.src_ip6)))
2991#endif
2992				    ))
2993					match =
2994#ifdef INET6
2995					    is_ipv6 ? verify_path6(
2996					        &(args->f_id.src_ip6),
2997					        m->m_pkthdr.rcvif) :
2998#endif
2999					    verify_path(src_ip,
3000					    	m->m_pkthdr.rcvif,
3001					        args->f_id.fib);
3002				else
3003					match = 1;
3004				break;
3005
3006			case O_IPSEC:
3007#ifdef IPSEC
3008				match = (m_tag_find(m,
3009				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
3010#endif
3011				/* otherwise no match */
3012				break;
3013
3014#ifdef INET6
3015			case O_IP6_SRC:
3016				match = is_ipv6 &&
3017				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
3018				    &((ipfw_insn_ip6 *)cmd)->addr6);
3019				break;
3020
3021			case O_IP6_DST:
3022				match = is_ipv6 &&
3023				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
3024				    &((ipfw_insn_ip6 *)cmd)->addr6);
3025				break;
3026			case O_IP6_SRC_MASK:
3027			case O_IP6_DST_MASK:
3028				if (is_ipv6) {
3029					int i = cmdlen - 1;
3030					struct in6_addr p;
3031					struct in6_addr *d =
3032					    &((ipfw_insn_ip6 *)cmd)->addr6;
3033
3034					for (; !match && i > 0; d += 2,
3035					    i -= F_INSN_SIZE(struct in6_addr)
3036					    * 2) {
3037						p = (cmd->opcode ==
3038						    O_IP6_SRC_MASK) ?
3039						    args->f_id.src_ip6:
3040						    args->f_id.dst_ip6;
3041						APPLY_MASK(&p, &d[1]);
3042						match =
3043						    IN6_ARE_ADDR_EQUAL(&d[0],
3044						    &p);
3045					}
3046				}
3047				break;
3048
3049			case O_IP6_SRC_ME:
3050				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
3051				break;
3052
3053			case O_IP6_DST_ME:
3054				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
3055				break;
3056
3057			case O_FLOW6ID:
3058				match = is_ipv6 &&
3059				    flow6id_match(args->f_id.flow_id6,
3060				    (ipfw_insn_u32 *) cmd);
3061				break;
3062
3063			case O_EXT_HDR:
3064				match = is_ipv6 &&
3065				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
3066				break;
3067
3068			case O_IP6:
3069				match = is_ipv6;
3070				break;
3071#endif
3072
3073			case O_IP4:
3074				match = is_ipv4;
3075				break;
3076
3077			case O_TAG: {
3078				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
3079				    tablearg : cmd->arg1;
3080
3081				/* Packet is already tagged with this tag? */
3082				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
3083
3084				/* We have `untag' action when F_NOT flag is
3085				 * present. And we must remove this mtag from
3086				 * mbuf and reset `match' to zero (`match' will
3087				 * be inversed later).
3088				 * Otherwise we should allocate new mtag and
3089				 * push it into mbuf.
3090				 */
3091				if (cmd->len & F_NOT) { /* `untag' action */
3092					if (mtag != NULL)
3093						m_tag_delete(m, mtag);
3094				} else if (mtag == NULL) {
3095					if ((mtag = m_tag_alloc(MTAG_IPFW,
3096					    tag, 0, M_NOWAIT)) != NULL)
3097						m_tag_prepend(m, mtag);
3098				}
3099				match = (cmd->len & F_NOT) ? 0: 1;
3100				break;
3101			}
3102
3103			case O_FIB: /* try match the specified fib */
3104				if (args->f_id.fib == cmd->arg1)
3105					match = 1;
3106				break;
3107
3108			case O_TAGGED: {
3109				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
3110				    tablearg : cmd->arg1;
3111
3112				if (cmdlen == 1) {
3113					match = m_tag_locate(m, MTAG_IPFW,
3114					    tag, NULL) != NULL;
3115					break;
3116				}
3117
3118				/* we have ranges */
3119				for (mtag = m_tag_first(m);
3120				    mtag != NULL && !match;
3121				    mtag = m_tag_next(m, mtag)) {
3122					uint16_t *p;
3123					int i;
3124
3125					if (mtag->m_tag_cookie != MTAG_IPFW)
3126						continue;
3127
3128					p = ((ipfw_insn_u16 *)cmd)->ports;
3129					i = cmdlen - 1;
3130					for(; !match && i > 0; i--, p += 2)
3131						match =
3132						    mtag->m_tag_id >= p[0] &&
3133						    mtag->m_tag_id <= p[1];
3134				}
3135				break;
3136			}
3137
3138			/*
3139			 * The second set of opcodes represents 'actions',
3140			 * i.e. the terminal part of a rule once the packet
3141			 * matches all previous patterns.
3142			 * Typically there is only one action for each rule,
3143			 * and the opcode is stored at the end of the rule
3144			 * (but there are exceptions -- see below).
3145			 *
3146			 * In general, here we set retval and terminate the
3147			 * outer loop (would be a 'break 3' in some language,
3148			 * but we need to do a 'goto done').
3149			 *
3150			 * Exceptions:
3151			 * O_COUNT and O_SKIPTO actions:
3152			 *   instead of terminating, we jump to the next rule
3153			 *   ('goto next_rule', equivalent to a 'break 2'),
3154			 *   or to the SKIPTO target ('goto again' after
3155			 *   having set f, cmd and l), respectively.
3156			 *
3157			 * O_TAG, O_LOG and O_ALTQ action parameters:
3158			 *   perform some action and set match = 1;
3159			 *
3160			 * O_LIMIT and O_KEEP_STATE: these opcodes are
3161			 *   not real 'actions', and are stored right
3162			 *   before the 'action' part of the rule.
3163			 *   These opcodes try to install an entry in the
3164			 *   state tables; if successful, we continue with
3165			 *   the next opcode (match=1; break;), otherwise
3166			 *   the packet *   must be dropped
3167			 *   ('goto done' after setting retval);
3168			 *
3169			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
3170			 *   cause a lookup of the state table, and a jump
3171			 *   to the 'action' part of the parent rule
3172			 *   ('goto check_body') if an entry is found, or
3173			 *   (CHECK_STATE only) a jump to the next rule if
3174			 *   the entry is not found ('goto next_rule').
3175			 *   The result of the lookup is cached to make
3176			 *   further instances of these opcodes are
3177			 *   effectively NOPs.
3178			 */
3179			case O_LIMIT:
3180			case O_KEEP_STATE:
3181				if (install_state(f,
3182				    (ipfw_insn_limit *)cmd, args, tablearg)) {
3183					retval = IP_FW_DENY;
3184					goto done; /* error/limit violation */
3185				}
3186				match = 1;
3187				break;
3188
3189			case O_PROBE_STATE:
3190			case O_CHECK_STATE:
3191				/*
3192				 * dynamic rules are checked at the first
3193				 * keep-state or check-state occurrence,
3194				 * with the result being stored in dyn_dir.
3195				 * The compiler introduces a PROBE_STATE
3196				 * instruction for us when we have a
3197				 * KEEP_STATE (because PROBE_STATE needs
3198				 * to be run first).
3199				 */
3200				if (dyn_dir == MATCH_UNKNOWN &&
3201				    (q = lookup_dyn_rule(&args->f_id,
3202				     &dyn_dir, proto == IPPROTO_TCP ?
3203					TCP(ulp) : NULL))
3204					!= NULL) {
3205					/*
3206					 * Found dynamic entry, update stats
3207					 * and jump to the 'action' part of
3208					 * the parent rule.
3209					 */
3210					q->pcnt++;
3211					q->bcnt += pktlen;
3212					f = q->rule;
3213					cmd = ACTION_PTR(f);
3214					l = f->cmd_len - f->act_ofs;
3215					IPFW_DYN_UNLOCK();
3216					goto check_body;
3217				}
3218				/*
3219				 * Dynamic entry not found. If CHECK_STATE,
3220				 * skip to next rule, if PROBE_STATE just
3221				 * ignore and continue with next opcode.
3222				 */
3223				if (cmd->opcode == O_CHECK_STATE)
3224					goto next_rule;
3225				match = 1;
3226				break;
3227
3228			case O_ACCEPT:
3229				retval = 0;	/* accept */
3230				goto done;
3231
3232			case O_PIPE:
3233			case O_QUEUE:
3234				args->rule = f; /* report matching rule */
3235				if (cmd->arg1 == IP_FW_TABLEARG)
3236					args->cookie = tablearg;
3237				else
3238					args->cookie = cmd->arg1;
3239				retval = IP_FW_DUMMYNET;
3240				goto done;
3241
3242			case O_DIVERT:
3243			case O_TEE: {
3244				struct divert_tag *dt;
3245
3246				if (args->eh) /* not on layer 2 */
3247					break;
3248				mtag = m_tag_get(PACKET_TAG_DIVERT,
3249						sizeof(struct divert_tag),
3250						M_NOWAIT);
3251				if (mtag == NULL) {
3252					/* XXX statistic */
3253					/* drop packet */
3254					IPFW_RUNLOCK(chain);
3255					return (IP_FW_DENY);
3256				}
3257				dt = (struct divert_tag *)(mtag+1);
3258				dt->cookie = f->rulenum;
3259				if (cmd->arg1 == IP_FW_TABLEARG)
3260					dt->info = tablearg;
3261				else
3262					dt->info = cmd->arg1;
3263				m_tag_prepend(m, mtag);
3264				retval = (cmd->opcode == O_DIVERT) ?
3265				    IP_FW_DIVERT : IP_FW_TEE;
3266				goto done;
3267			}
3268			case O_COUNT:
3269			case O_SKIPTO:
3270				f->pcnt++;	/* update stats */
3271				f->bcnt += pktlen;
3272				f->timestamp = time_uptime;
3273				if (cmd->opcode == O_COUNT)
3274					goto next_rule;
3275				/* handle skipto */
3276				if (cmd->arg1 == IP_FW_TABLEARG) {
3277					f = lookup_next_rule(f, tablearg);
3278				} else {
3279					if (f->next_rule == NULL)
3280						lookup_next_rule(f, 0);
3281					f = f->next_rule;
3282				}
3283				goto again;
3284
3285			case O_REJECT:
3286				/*
3287				 * Drop the packet and send a reject notice
3288				 * if the packet is not ICMP (or is an ICMP
3289				 * query), and it is not multicast/broadcast.
3290				 */
3291				if (hlen > 0 && is_ipv4 && offset == 0 &&
3292				    (proto != IPPROTO_ICMP ||
3293				     is_icmp_query(ICMP(ulp))) &&
3294				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3295				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
3296					send_reject(args, cmd->arg1, ip_len, ip);
3297					m = args->m;
3298				}
3299				/* FALLTHROUGH */
3300#ifdef INET6
3301			case O_UNREACH6:
3302				if (hlen > 0 && is_ipv6 &&
3303				    ((offset & IP6F_OFF_MASK) == 0) &&
3304				    (proto != IPPROTO_ICMPV6 ||
3305				     (is_icmp6_query(args->f_id.flags) == 1)) &&
3306				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3307				    !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
3308					send_reject6(
3309					    args, cmd->arg1, hlen,
3310					    (struct ip6_hdr *)ip);
3311					m = args->m;
3312				}
3313				/* FALLTHROUGH */
3314#endif
3315			case O_DENY:
3316				retval = IP_FW_DENY;
3317				goto done;
3318
3319			case O_FORWARD_IP: {
3320				struct sockaddr_in *sa;
3321				sa = &(((ipfw_insn_sa *)cmd)->sa);
3322				if (args->eh)	/* not valid on layer2 pkts */
3323					break;
3324				if (!q || dyn_dir == MATCH_FORWARD) {
3325					if (sa->sin_addr.s_addr == INADDR_ANY) {
3326						bcopy(sa, &args->hopstore,
3327							sizeof(*sa));
3328						args->hopstore.sin_addr.s_addr =
3329						    htonl(tablearg);
3330						args->next_hop =
3331						    &args->hopstore;
3332					} else {
3333						args->next_hop = sa;
3334					}
3335				}
3336				retval = IP_FW_PASS;
3337			    }
3338			    goto done;
3339
3340			case O_NETGRAPH:
3341			case O_NGTEE:
3342				args->rule = f;	/* report matching rule */
3343				if (cmd->arg1 == IP_FW_TABLEARG)
3344					args->cookie = tablearg;
3345				else
3346					args->cookie = cmd->arg1;
3347				retval = (cmd->opcode == O_NETGRAPH) ?
3348				    IP_FW_NETGRAPH : IP_FW_NGTEE;
3349				goto done;
3350
3351			case O_SETFIB:
3352				f->pcnt++;	/* update stats */
3353				f->bcnt += pktlen;
3354				f->timestamp = time_uptime;
3355				M_SETFIB(m, cmd->arg1);
3356				args->f_id.fib = cmd->arg1;
3357				goto next_rule;
3358
3359			case O_NAT: {
3360                        	struct cfg_nat *t;
3361                        	int nat_id;
3362
3363 				if (IPFW_NAT_LOADED) {
3364					args->rule = f; /* Report matching rule. */
3365					t = ((ipfw_insn_nat *)cmd)->nat;
3366					if (t == NULL) {
3367						nat_id = (cmd->arg1 == IP_FW_TABLEARG) ?
3368						    tablearg : cmd->arg1;
3369						LOOKUP_NAT(V_layer3_chain, nat_id, t);
3370						if (t == NULL) {
3371							retval = IP_FW_DENY;
3372							goto done;
3373						}
3374						if (cmd->arg1 != IP_FW_TABLEARG)
3375							((ipfw_insn_nat *)cmd)->nat = t;
3376					}
3377					retval = ipfw_nat_ptr(args, t, m);
3378				} else
3379					retval = IP_FW_DENY;
3380				goto done;
3381			}
3382
3383			default:
3384				panic("-- unknown opcode %d\n", cmd->opcode);
3385			} /* end of switch() on opcodes */
3386
3387			if (cmd->len & F_NOT)
3388				match = !match;
3389
3390			if (match) {
3391				if (cmd->len & F_OR)
3392					skip_or = 1;
3393			} else {
3394				if (!(cmd->len & F_OR)) /* not an OR block, */
3395					break;		/* try next rule    */
3396			}
3397
3398		}	/* end of inner for, scan opcodes */
3399
3400next_rule:;		/* try next rule		*/
3401
3402	}		/* end of outer for, scan rules */
3403	printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3404	IPFW_RUNLOCK(chain);
3405	return (IP_FW_DENY);
3406
3407done:
3408	/* Update statistics */
3409	f->pcnt++;
3410	f->bcnt += pktlen;
3411	f->timestamp = time_uptime;
3412	IPFW_RUNLOCK(chain);
3413	return (retval);
3414
3415pullup_failed:
3416	if (V_fw_verbose)
3417		printf("ipfw: pullup failed\n");
3418	return (IP_FW_DENY);
3419}
3420
3421/*
3422 * When a rule is added/deleted, clear the next_rule pointers in all rules.
3423 * These will be reconstructed on the fly as packets are matched.
3424 */
3425static void
3426flush_rule_ptrs(struct ip_fw_chain *chain)
3427{
3428	struct ip_fw *rule;
3429
3430	IPFW_WLOCK_ASSERT(chain);
3431
3432	for (rule = chain->rules; rule; rule = rule->next)
3433		rule->next_rule = NULL;
3434}
3435
3436/*
3437 * Add a new rule to the list. Copy the rule into a malloc'ed area, then
3438 * possibly create a rule number and add the rule to the list.
3439 * Update the rule_number in the input struct so the caller knows it as well.
3440 */
3441static int
3442add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
3443{
3444	INIT_VNET_IPFW(curvnet);
3445	struct ip_fw *rule, *f, *prev;
3446	int l = RULESIZE(input_rule);
3447
3448	if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
3449		return (EINVAL);
3450
3451	rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
3452	if (rule == NULL)
3453		return (ENOSPC);
3454
3455	bcopy(input_rule, rule, l);
3456
3457	rule->next = NULL;
3458	rule->next_rule = NULL;
3459
3460	rule->pcnt = 0;
3461	rule->bcnt = 0;
3462	rule->timestamp = 0;
3463
3464	IPFW_WLOCK(chain);
3465
3466	if (chain->rules == NULL) {	/* default rule */
3467		chain->rules = rule;
3468		goto done;
3469        }
3470
3471	/*
3472	 * If rulenum is 0, find highest numbered rule before the
3473	 * default rule, and add autoinc_step
3474	 */
3475	if (V_autoinc_step < 1)
3476		V_autoinc_step = 1;
3477	else if (V_autoinc_step > 1000)
3478		V_autoinc_step = 1000;
3479	if (rule->rulenum == 0) {
3480		/*
3481		 * locate the highest numbered rule before default
3482		 */
3483		for (f = chain->rules; f; f = f->next) {
3484			if (f->rulenum == IPFW_DEFAULT_RULE)
3485				break;
3486			rule->rulenum = f->rulenum;
3487		}
3488		if (rule->rulenum < IPFW_DEFAULT_RULE - V_autoinc_step)
3489			rule->rulenum += V_autoinc_step;
3490		input_rule->rulenum = rule->rulenum;
3491	}
3492
3493	/*
3494	 * Now insert the new rule in the right place in the sorted list.
3495	 */
3496	for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
3497		if (f->rulenum > rule->rulenum) { /* found the location */
3498			if (prev) {
3499				rule->next = f;
3500				prev->next = rule;
3501			} else { /* head insert */
3502				rule->next = chain->rules;
3503				chain->rules = rule;
3504			}
3505			break;
3506		}
3507	}
3508	flush_rule_ptrs(chain);
3509done:
3510	V_static_count++;
3511	V_static_len += l;
3512	IPFW_WUNLOCK(chain);
3513	DEB(printf("ipfw: installed rule %d, static count now %d\n",
3514		rule->rulenum, V_static_count);)
3515	return (0);
3516}
3517
3518/**
3519 * Remove a static rule (including derived * dynamic rules)
3520 * and place it on the ``reap list'' for later reclamation.
3521 * The caller is in charge of clearing rule pointers to avoid
3522 * dangling pointers.
3523 * @return a pointer to the next entry.
3524 * Arguments are not checked, so they better be correct.
3525 */
3526static struct ip_fw *
3527remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule,
3528    struct ip_fw *prev)
3529{
3530	INIT_VNET_IPFW(curvnet);
3531	struct ip_fw *n;
3532	int l = RULESIZE(rule);
3533
3534	IPFW_WLOCK_ASSERT(chain);
3535
3536	n = rule->next;
3537	IPFW_DYN_LOCK();
3538	remove_dyn_rule(rule, NULL /* force removal */);
3539	IPFW_DYN_UNLOCK();
3540	if (prev == NULL)
3541		chain->rules = n;
3542	else
3543		prev->next = n;
3544	V_static_count--;
3545	V_static_len -= l;
3546
3547	rule->next = chain->reap;
3548	chain->reap = rule;
3549
3550	return n;
3551}
3552
3553/**
3554 * Reclaim storage associated with a list of rules.  This is
3555 * typically the list created using remove_rule.
3556 */
3557static void
3558reap_rules(struct ip_fw *head)
3559{
3560	struct ip_fw *rule;
3561
3562	while ((rule = head) != NULL) {
3563		head = head->next;
3564		if (DUMMYNET_LOADED)
3565			ip_dn_ruledel_ptr(rule);
3566		free(rule, M_IPFW);
3567	}
3568}
3569
3570/*
3571 * Remove all rules from a chain (except rules in set RESVD_SET
3572 * unless kill_default = 1).  The caller is responsible for
3573 * reclaiming storage for the rules left in chain->reap.
3574 */
3575static void
3576free_chain(struct ip_fw_chain *chain, int kill_default)
3577{
3578	struct ip_fw *prev, *rule;
3579
3580	IPFW_WLOCK_ASSERT(chain);
3581
3582	flush_rule_ptrs(chain); /* more efficient to do outside the loop */
3583	for (prev = NULL, rule = chain->rules; rule ; )
3584		if (kill_default || rule->set != RESVD_SET)
3585			rule = remove_rule(chain, rule, prev);
3586		else {
3587			prev = rule;
3588			rule = rule->next;
3589		}
3590}
3591
3592/**
3593 * Remove all rules with given number, and also do set manipulation.
3594 * Assumes chain != NULL && *chain != NULL.
3595 *
3596 * The argument is an u_int32_t. The low 16 bit are the rule or set number,
3597 * the next 8 bits are the new set, the top 8 bits are the command:
3598 *
3599 *	0	delete rules with given number
3600 *	1	delete rules with given set number
3601 *	2	move rules with given number to new set
3602 *	3	move rules with given set number to new set
3603 *	4	swap sets with given numbers
3604 *	5	delete rules with given number and with given set number
3605 */
3606static int
3607del_entry(struct ip_fw_chain *chain, u_int32_t arg)
3608{
3609	struct ip_fw *prev = NULL, *rule;
3610	u_int16_t rulenum;	/* rule or old_set */
3611	u_int8_t cmd, new_set;
3612
3613	rulenum = arg & 0xffff;
3614	cmd = (arg >> 24) & 0xff;
3615	new_set = (arg >> 16) & 0xff;
3616
3617	if (cmd > 5 || new_set > RESVD_SET)
3618		return EINVAL;
3619	if (cmd == 0 || cmd == 2 || cmd == 5) {
3620		if (rulenum >= IPFW_DEFAULT_RULE)
3621			return EINVAL;
3622	} else {
3623		if (rulenum > RESVD_SET)	/* old_set */
3624			return EINVAL;
3625	}
3626
3627	IPFW_WLOCK(chain);
3628	rule = chain->rules;
3629	chain->reap = NULL;
3630	switch (cmd) {
3631	case 0:	/* delete rules with given number */
3632		/*
3633		 * locate first rule to delete
3634		 */
3635		for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3636			;
3637		if (rule->rulenum != rulenum) {
3638			IPFW_WUNLOCK(chain);
3639			return EINVAL;
3640		}
3641
3642		/*
3643		 * flush pointers outside the loop, then delete all matching
3644		 * rules. prev remains the same throughout the cycle.
3645		 */
3646		flush_rule_ptrs(chain);
3647		while (rule->rulenum == rulenum)
3648			rule = remove_rule(chain, rule, prev);
3649		break;
3650
3651	case 1:	/* delete all rules with given set number */
3652		flush_rule_ptrs(chain);
3653		rule = chain->rules;
3654		while (rule->rulenum < IPFW_DEFAULT_RULE)
3655			if (rule->set == rulenum)
3656				rule = remove_rule(chain, rule, prev);
3657			else {
3658				prev = rule;
3659				rule = rule->next;
3660			}
3661		break;
3662
3663	case 2:	/* move rules with given number to new set */
3664		rule = chain->rules;
3665		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3666			if (rule->rulenum == rulenum)
3667				rule->set = new_set;
3668		break;
3669
3670	case 3: /* move rules with given set number to new set */
3671		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3672			if (rule->set == rulenum)
3673				rule->set = new_set;
3674		break;
3675
3676	case 4: /* swap two sets */
3677		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3678			if (rule->set == rulenum)
3679				rule->set = new_set;
3680			else if (rule->set == new_set)
3681				rule->set = rulenum;
3682		break;
3683	case 5: /* delete rules with given number and with given set number.
3684		 * rulenum - given rule number;
3685		 * new_set - given set number.
3686		 */
3687		for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3688			;
3689		if (rule->rulenum != rulenum) {
3690			IPFW_WUNLOCK(chain);
3691			return (EINVAL);
3692		}
3693		flush_rule_ptrs(chain);
3694		while (rule->rulenum == rulenum) {
3695			if (rule->set == new_set)
3696				rule = remove_rule(chain, rule, prev);
3697			else {
3698				prev = rule;
3699				rule = rule->next;
3700			}
3701		}
3702	}
3703	/*
3704	 * Look for rules to reclaim.  We grab the list before
3705	 * releasing the lock then reclaim them w/o the lock to
3706	 * avoid a LOR with dummynet.
3707	 */
3708	rule = chain->reap;
3709	chain->reap = NULL;
3710	IPFW_WUNLOCK(chain);
3711	if (rule)
3712		reap_rules(rule);
3713	return 0;
3714}
3715
3716/*
3717 * Clear counters for a specific rule.
3718 * The enclosing "table" is assumed locked.
3719 */
3720static void
3721clear_counters(struct ip_fw *rule, int log_only)
3722{
3723	ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
3724
3725	if (log_only == 0) {
3726		rule->bcnt = rule->pcnt = 0;
3727		rule->timestamp = 0;
3728	}
3729	if (l->o.opcode == O_LOG)
3730		l->log_left = l->max_log;
3731}
3732
3733/**
3734 * Reset some or all counters on firewall rules.
3735 * The argument `arg' is an u_int32_t. The low 16 bit are the rule number,
3736 * the next 8 bits are the set number, the top 8 bits are the command:
3737 *	0	work with rules from all set's;
3738 *	1	work with rules only from specified set.
3739 * Specified rule number is zero if we want to clear all entries.
3740 * log_only is 1 if we only want to reset logs, zero otherwise.
3741 */
3742static int
3743zero_entry(struct ip_fw_chain *chain, u_int32_t arg, int log_only)
3744{
3745	INIT_VNET_IPFW(curvnet);
3746	struct ip_fw *rule;
3747	char *msg;
3748
3749	uint16_t rulenum = arg & 0xffff;
3750	uint8_t set = (arg >> 16) & 0xff;
3751	uint8_t cmd = (arg >> 24) & 0xff;
3752
3753	if (cmd > 1)
3754		return (EINVAL);
3755	if (cmd == 1 && set > RESVD_SET)
3756		return (EINVAL);
3757
3758	IPFW_WLOCK(chain);
3759	if (rulenum == 0) {
3760		V_norule_counter = 0;
3761		for (rule = chain->rules; rule; rule = rule->next) {
3762			/* Skip rules from another set. */
3763			if (cmd == 1 && rule->set != set)
3764				continue;
3765			clear_counters(rule, log_only);
3766		}
3767		msg = log_only ? "ipfw: All logging counts reset.\n" :
3768		    "ipfw: Accounting cleared.\n";
3769	} else {
3770		int cleared = 0;
3771		/*
3772		 * We can have multiple rules with the same number, so we
3773		 * need to clear them all.
3774		 */
3775		for (rule = chain->rules; rule; rule = rule->next)
3776			if (rule->rulenum == rulenum) {
3777				while (rule && rule->rulenum == rulenum) {
3778					if (cmd == 0 || rule->set == set)
3779						clear_counters(rule, log_only);
3780					rule = rule->next;
3781				}
3782				cleared = 1;
3783				break;
3784			}
3785		if (!cleared) {	/* we did not find any matching rules */
3786			IPFW_WUNLOCK(chain);
3787			return (EINVAL);
3788		}
3789		msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
3790		    "ipfw: Entry %d cleared.\n";
3791	}
3792	IPFW_WUNLOCK(chain);
3793
3794	if (V_fw_verbose)
3795		log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
3796	return (0);
3797}
3798
3799/*
3800 * Check validity of the structure before insert.
3801 * Fortunately rules are simple, so this mostly need to check rule sizes.
3802 */
3803static int
3804check_ipfw_struct(struct ip_fw *rule, int size)
3805{
3806	int l, cmdlen = 0;
3807	int have_action=0;
3808	ipfw_insn *cmd;
3809
3810	if (size < sizeof(*rule)) {
3811		printf("ipfw: rule too short\n");
3812		return (EINVAL);
3813	}
3814	/* first, check for valid size */
3815	l = RULESIZE(rule);
3816	if (l != size) {
3817		printf("ipfw: size mismatch (have %d want %d)\n", size, l);
3818		return (EINVAL);
3819	}
3820	if (rule->act_ofs >= rule->cmd_len) {
3821		printf("ipfw: bogus action offset (%u > %u)\n",
3822		    rule->act_ofs, rule->cmd_len - 1);
3823		return (EINVAL);
3824	}
3825	/*
3826	 * Now go for the individual checks. Very simple ones, basically only
3827	 * instruction sizes.
3828	 */
3829	for (l = rule->cmd_len, cmd = rule->cmd ;
3830			l > 0 ; l -= cmdlen, cmd += cmdlen) {
3831		cmdlen = F_LEN(cmd);
3832		if (cmdlen > l) {
3833			printf("ipfw: opcode %d size truncated\n",
3834			    cmd->opcode);
3835			return EINVAL;
3836		}
3837		DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
3838		switch (cmd->opcode) {
3839		case O_PROBE_STATE:
3840		case O_KEEP_STATE:
3841		case O_PROTO:
3842		case O_IP_SRC_ME:
3843		case O_IP_DST_ME:
3844		case O_LAYER2:
3845		case O_IN:
3846		case O_FRAG:
3847		case O_DIVERTED:
3848		case O_IPOPT:
3849		case O_IPTOS:
3850		case O_IPPRECEDENCE:
3851		case O_IPVER:
3852		case O_TCPWIN:
3853		case O_TCPFLAGS:
3854		case O_TCPOPTS:
3855		case O_ESTAB:
3856		case O_VERREVPATH:
3857		case O_VERSRCREACH:
3858		case O_ANTISPOOF:
3859		case O_IPSEC:
3860#ifdef INET6
3861		case O_IP6_SRC_ME:
3862		case O_IP6_DST_ME:
3863		case O_EXT_HDR:
3864		case O_IP6:
3865#endif
3866		case O_IP4:
3867		case O_TAG:
3868			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3869				goto bad_size;
3870			break;
3871
3872		case O_FIB:
3873			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3874				goto bad_size;
3875			if (cmd->arg1 >= rt_numfibs) {
3876				printf("ipfw: invalid fib number %d\n",
3877					cmd->arg1);
3878				return EINVAL;
3879			}
3880			break;
3881
3882		case O_SETFIB:
3883			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3884				goto bad_size;
3885			if (cmd->arg1 >= rt_numfibs) {
3886				printf("ipfw: invalid fib number %d\n",
3887					cmd->arg1);
3888				return EINVAL;
3889			}
3890			goto check_action;
3891
3892		case O_UID:
3893		case O_GID:
3894		case O_JAIL:
3895		case O_IP_SRC:
3896		case O_IP_DST:
3897		case O_TCPSEQ:
3898		case O_TCPACK:
3899		case O_PROB:
3900		case O_ICMPTYPE:
3901			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3902				goto bad_size;
3903			break;
3904
3905		case O_LIMIT:
3906			if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
3907				goto bad_size;
3908			break;
3909
3910		case O_LOG:
3911			if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
3912				goto bad_size;
3913
3914			((ipfw_insn_log *)cmd)->log_left =
3915			    ((ipfw_insn_log *)cmd)->max_log;
3916
3917			break;
3918
3919		case O_IP_SRC_MASK:
3920		case O_IP_DST_MASK:
3921			/* only odd command lengths */
3922			if ( !(cmdlen & 1) || cmdlen > 31)
3923				goto bad_size;
3924			break;
3925
3926		case O_IP_SRC_SET:
3927		case O_IP_DST_SET:
3928			if (cmd->arg1 == 0 || cmd->arg1 > 256) {
3929				printf("ipfw: invalid set size %d\n",
3930					cmd->arg1);
3931				return EINVAL;
3932			}
3933			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3934			    (cmd->arg1+31)/32 )
3935				goto bad_size;
3936			break;
3937
3938		case O_IP_SRC_LOOKUP:
3939		case O_IP_DST_LOOKUP:
3940			if (cmd->arg1 >= IPFW_TABLES_MAX) {
3941				printf("ipfw: invalid table number %d\n",
3942				    cmd->arg1);
3943				return (EINVAL);
3944			}
3945			if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
3946			    cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3947				goto bad_size;
3948			break;
3949
3950		case O_MACADDR2:
3951			if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
3952				goto bad_size;
3953			break;
3954
3955		case O_NOP:
3956		case O_IPID:
3957		case O_IPTTL:
3958		case O_IPLEN:
3959		case O_TCPDATALEN:
3960		case O_TAGGED:
3961			if (cmdlen < 1 || cmdlen > 31)
3962				goto bad_size;
3963			break;
3964
3965		case O_MAC_TYPE:
3966		case O_IP_SRCPORT:
3967		case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
3968			if (cmdlen < 2 || cmdlen > 31)
3969				goto bad_size;
3970			break;
3971
3972		case O_RECV:
3973		case O_XMIT:
3974		case O_VIA:
3975			if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
3976				goto bad_size;
3977			break;
3978
3979		case O_ALTQ:
3980			if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
3981				goto bad_size;
3982			break;
3983
3984		case O_PIPE:
3985		case O_QUEUE:
3986			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3987				goto bad_size;
3988			goto check_action;
3989
3990		case O_FORWARD_IP:
3991#ifdef	IPFIREWALL_FORWARD
3992			if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
3993				goto bad_size;
3994			goto check_action;
3995#else
3996			return EINVAL;
3997#endif
3998
3999		case O_DIVERT:
4000		case O_TEE:
4001			if (ip_divert_ptr == NULL)
4002				return EINVAL;
4003			else
4004				goto check_size;
4005		case O_NETGRAPH:
4006		case O_NGTEE:
4007			if (!NG_IPFW_LOADED)
4008				return EINVAL;
4009			else
4010				goto check_size;
4011		case O_NAT:
4012			if (!IPFW_NAT_LOADED)
4013				return EINVAL;
4014			if (cmdlen != F_INSN_SIZE(ipfw_insn_nat))
4015 				goto bad_size;
4016 			goto check_action;
4017		case O_FORWARD_MAC: /* XXX not implemented yet */
4018		case O_CHECK_STATE:
4019		case O_COUNT:
4020		case O_ACCEPT:
4021		case O_DENY:
4022		case O_REJECT:
4023#ifdef INET6
4024		case O_UNREACH6:
4025#endif
4026		case O_SKIPTO:
4027check_size:
4028			if (cmdlen != F_INSN_SIZE(ipfw_insn))
4029				goto bad_size;
4030check_action:
4031			if (have_action) {
4032				printf("ipfw: opcode %d, multiple actions"
4033					" not allowed\n",
4034					cmd->opcode);
4035				return EINVAL;
4036			}
4037			have_action = 1;
4038			if (l != cmdlen) {
4039				printf("ipfw: opcode %d, action must be"
4040					" last opcode\n",
4041					cmd->opcode);
4042				return EINVAL;
4043			}
4044			break;
4045#ifdef INET6
4046		case O_IP6_SRC:
4047		case O_IP6_DST:
4048			if (cmdlen != F_INSN_SIZE(struct in6_addr) +
4049			    F_INSN_SIZE(ipfw_insn))
4050				goto bad_size;
4051			break;
4052
4053		case O_FLOW6ID:
4054			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
4055			    ((ipfw_insn_u32 *)cmd)->o.arg1)
4056				goto bad_size;
4057			break;
4058
4059		case O_IP6_SRC_MASK:
4060		case O_IP6_DST_MASK:
4061			if ( !(cmdlen & 1) || cmdlen > 127)
4062				goto bad_size;
4063			break;
4064		case O_ICMP6TYPE:
4065			if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
4066				goto bad_size;
4067			break;
4068#endif
4069
4070		default:
4071			switch (cmd->opcode) {
4072#ifndef INET6
4073			case O_IP6_SRC_ME:
4074			case O_IP6_DST_ME:
4075			case O_EXT_HDR:
4076			case O_IP6:
4077			case O_UNREACH6:
4078			case O_IP6_SRC:
4079			case O_IP6_DST:
4080			case O_FLOW6ID:
4081			case O_IP6_SRC_MASK:
4082			case O_IP6_DST_MASK:
4083			case O_ICMP6TYPE:
4084				printf("ipfw: no IPv6 support in kernel\n");
4085				return EPROTONOSUPPORT;
4086#endif
4087			default:
4088				printf("ipfw: opcode %d, unknown opcode\n",
4089					cmd->opcode);
4090				return EINVAL;
4091			}
4092		}
4093	}
4094	if (have_action == 0) {
4095		printf("ipfw: missing action\n");
4096		return EINVAL;
4097	}
4098	return 0;
4099
4100bad_size:
4101	printf("ipfw: opcode %d size %d wrong\n",
4102		cmd->opcode, cmdlen);
4103	return EINVAL;
4104}
4105
4106/*
4107 * Copy the static and dynamic rules to the supplied buffer
4108 * and return the amount of space actually used.
4109 */
4110static size_t
4111ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
4112{
4113	INIT_VNET_IPFW(curvnet);
4114	char *bp = buf;
4115	char *ep = bp + space;
4116	struct ip_fw *rule;
4117	int i;
4118	time_t	boot_seconds;
4119
4120        boot_seconds = boottime.tv_sec;
4121	/* XXX this can take a long time and locking will block packet flow */
4122	IPFW_RLOCK(chain);
4123	for (rule = chain->rules; rule ; rule = rule->next) {
4124		/*
4125		 * Verify the entry fits in the buffer in case the
4126		 * rules changed between calculating buffer space and
4127		 * now.  This would be better done using a generation
4128		 * number but should suffice for now.
4129		 */
4130		i = RULESIZE(rule);
4131		if (bp + i <= ep) {
4132			bcopy(rule, bp, i);
4133			/*
4134			 * XXX HACK. Store the disable mask in the "next"
4135			 * pointer in a wild attempt to keep the ABI the same.
4136			 * Why do we do this on EVERY rule?
4137			 */
4138			bcopy(&V_set_disable,
4139			    &(((struct ip_fw *)bp)->next_rule),
4140			    sizeof(V_set_disable));
4141			if (((struct ip_fw *)bp)->timestamp)
4142				((struct ip_fw *)bp)->timestamp += boot_seconds;
4143			bp += i;
4144		}
4145	}
4146	IPFW_RUNLOCK(chain);
4147	if (V_ipfw_dyn_v) {
4148		ipfw_dyn_rule *p, *last = NULL;
4149
4150		IPFW_DYN_LOCK();
4151		for (i = 0 ; i < V_curr_dyn_buckets; i++)
4152			for (p = V_ipfw_dyn_v[i] ; p != NULL; p = p->next) {
4153				if (bp + sizeof *p <= ep) {
4154					ipfw_dyn_rule *dst =
4155						(ipfw_dyn_rule *)bp;
4156					bcopy(p, dst, sizeof *p);
4157					bcopy(&(p->rule->rulenum), &(dst->rule),
4158					    sizeof(p->rule->rulenum));
4159					/*
4160					 * store set number into high word of
4161					 * dst->rule pointer.
4162					 */
4163					bcopy(&(p->rule->set),
4164					    (char *)&dst->rule +
4165					    sizeof(p->rule->rulenum),
4166					    sizeof(p->rule->set));
4167					/*
4168					 * store a non-null value in "next".
4169					 * The userland code will interpret a
4170					 * NULL here as a marker
4171					 * for the last dynamic rule.
4172					 */
4173					bcopy(&dst, &dst->next, sizeof(dst));
4174					last = dst;
4175					dst->expire =
4176					    TIME_LEQ(dst->expire, time_uptime) ?
4177						0 : dst->expire - time_uptime ;
4178					bp += sizeof(ipfw_dyn_rule);
4179				}
4180			}
4181		IPFW_DYN_UNLOCK();
4182		if (last != NULL) /* mark last dynamic rule */
4183			bzero(&last->next, sizeof(last));
4184	}
4185	return (bp - (char *)buf);
4186}
4187
4188
4189/**
4190 * {set|get}sockopt parser.
4191 */
4192static int
4193ipfw_ctl(struct sockopt *sopt)
4194{
4195#define	RULE_MAXSIZE	(256*sizeof(u_int32_t))
4196	INIT_VNET_IPFW(curvnet);
4197	int error;
4198	size_t size;
4199	struct ip_fw *buf, *rule;
4200	u_int32_t rulenum[2];
4201
4202	error = priv_check(sopt->sopt_td, PRIV_NETINET_IPFW);
4203	if (error)
4204		return (error);
4205
4206	/*
4207	 * Disallow modifications in really-really secure mode, but still allow
4208	 * the logging counters to be reset.
4209	 */
4210	if (sopt->sopt_name == IP_FW_ADD ||
4211	    (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
4212		error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
4213		if (error)
4214			return (error);
4215	}
4216
4217	error = 0;
4218
4219	switch (sopt->sopt_name) {
4220	case IP_FW_GET:
4221		/*
4222		 * pass up a copy of the current rules. Static rules
4223		 * come first (the last of which has number IPFW_DEFAULT_RULE),
4224		 * followed by a possibly empty list of dynamic rule.
4225		 * The last dynamic rule has NULL in the "next" field.
4226		 *
4227		 * Note that the calculated size is used to bound the
4228		 * amount of data returned to the user.  The rule set may
4229		 * change between calculating the size and returning the
4230		 * data in which case we'll just return what fits.
4231		 */
4232		size = V_static_len;	/* size of static rules */
4233		if (V_ipfw_dyn_v)		/* add size of dyn.rules */
4234			size += (V_dyn_count * sizeof(ipfw_dyn_rule));
4235
4236		/*
4237		 * XXX todo: if the user passes a short length just to know
4238		 * how much room is needed, do not bother filling up the
4239		 * buffer, just jump to the sooptcopyout.
4240		 */
4241		buf = malloc(size, M_TEMP, M_WAITOK);
4242		error = sooptcopyout(sopt, buf,
4243				ipfw_getrules(&V_layer3_chain, buf, size));
4244		free(buf, M_TEMP);
4245		break;
4246
4247	case IP_FW_FLUSH:
4248		/*
4249		 * Normally we cannot release the lock on each iteration.
4250		 * We could do it here only because we start from the head all
4251		 * the times so there is no risk of missing some entries.
4252		 * On the other hand, the risk is that we end up with
4253		 * a very inconsistent ruleset, so better keep the lock
4254		 * around the whole cycle.
4255		 *
4256		 * XXX this code can be improved by resetting the head of
4257		 * the list to point to the default rule, and then freeing
4258		 * the old list without the need for a lock.
4259		 */
4260
4261		IPFW_WLOCK(&V_layer3_chain);
4262		V_layer3_chain.reap = NULL;
4263		free_chain(&V_layer3_chain, 0 /* keep default rule */);
4264		rule = V_layer3_chain.reap;
4265		V_layer3_chain.reap = NULL;
4266		IPFW_WUNLOCK(&V_layer3_chain);
4267		if (rule != NULL)
4268			reap_rules(rule);
4269		break;
4270
4271	case IP_FW_ADD:
4272		rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
4273		error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
4274			sizeof(struct ip_fw) );
4275		if (error == 0)
4276			error = check_ipfw_struct(rule, sopt->sopt_valsize);
4277		if (error == 0) {
4278			error = add_rule(&V_layer3_chain, rule);
4279			size = RULESIZE(rule);
4280			if (!error && sopt->sopt_dir == SOPT_GET)
4281				error = sooptcopyout(sopt, rule, size);
4282		}
4283		free(rule, M_TEMP);
4284		break;
4285
4286	case IP_FW_DEL:
4287		/*
4288		 * IP_FW_DEL is used for deleting single rules or sets,
4289		 * and (ab)used to atomically manipulate sets. Argument size
4290		 * is used to distinguish between the two:
4291		 *    sizeof(u_int32_t)
4292		 *	delete single rule or set of rules,
4293		 *	or reassign rules (or sets) to a different set.
4294		 *    2*sizeof(u_int32_t)
4295		 *	atomic disable/enable sets.
4296		 *	first u_int32_t contains sets to be disabled,
4297		 *	second u_int32_t contains sets to be enabled.
4298		 */
4299		error = sooptcopyin(sopt, rulenum,
4300			2*sizeof(u_int32_t), sizeof(u_int32_t));
4301		if (error)
4302			break;
4303		size = sopt->sopt_valsize;
4304		if (size == sizeof(u_int32_t))	/* delete or reassign */
4305			error = del_entry(&V_layer3_chain, rulenum[0]);
4306		else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
4307			V_set_disable =
4308			    (V_set_disable | rulenum[0]) & ~rulenum[1] &
4309			    ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
4310		else
4311			error = EINVAL;
4312		break;
4313
4314	case IP_FW_ZERO:
4315	case IP_FW_RESETLOG: /* argument is an u_int_32, the rule number */
4316		rulenum[0] = 0;
4317		if (sopt->sopt_val != 0) {
4318		    error = sooptcopyin(sopt, rulenum,
4319			    sizeof(u_int32_t), sizeof(u_int32_t));
4320		    if (error)
4321			break;
4322		}
4323		error = zero_entry(&V_layer3_chain, rulenum[0],
4324			sopt->sopt_name == IP_FW_RESETLOG);
4325		break;
4326
4327	case IP_FW_TABLE_ADD:
4328		{
4329			ipfw_table_entry ent;
4330
4331			error = sooptcopyin(sopt, &ent,
4332			    sizeof(ent), sizeof(ent));
4333			if (error)
4334				break;
4335			error = add_table_entry(&V_layer3_chain, ent.tbl,
4336			    ent.addr, ent.masklen, ent.value);
4337		}
4338		break;
4339
4340	case IP_FW_TABLE_DEL:
4341		{
4342			ipfw_table_entry ent;
4343
4344			error = sooptcopyin(sopt, &ent,
4345			    sizeof(ent), sizeof(ent));
4346			if (error)
4347				break;
4348			error = del_table_entry(&V_layer3_chain, ent.tbl,
4349			    ent.addr, ent.masklen);
4350		}
4351		break;
4352
4353	case IP_FW_TABLE_FLUSH:
4354		{
4355			u_int16_t tbl;
4356
4357			error = sooptcopyin(sopt, &tbl,
4358			    sizeof(tbl), sizeof(tbl));
4359			if (error)
4360				break;
4361			IPFW_WLOCK(&V_layer3_chain);
4362			error = flush_table(&V_layer3_chain, tbl);
4363			IPFW_WUNLOCK(&V_layer3_chain);
4364		}
4365		break;
4366
4367	case IP_FW_TABLE_GETSIZE:
4368		{
4369			u_int32_t tbl, cnt;
4370
4371			if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
4372			    sizeof(tbl))))
4373				break;
4374			IPFW_RLOCK(&V_layer3_chain);
4375			error = count_table(&V_layer3_chain, tbl, &cnt);
4376			IPFW_RUNLOCK(&V_layer3_chain);
4377			if (error)
4378				break;
4379			error = sooptcopyout(sopt, &cnt, sizeof(cnt));
4380		}
4381		break;
4382
4383	case IP_FW_TABLE_LIST:
4384		{
4385			ipfw_table *tbl;
4386
4387			if (sopt->sopt_valsize < sizeof(*tbl)) {
4388				error = EINVAL;
4389				break;
4390			}
4391			size = sopt->sopt_valsize;
4392			tbl = malloc(size, M_TEMP, M_WAITOK);
4393			error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
4394			if (error) {
4395				free(tbl, M_TEMP);
4396				break;
4397			}
4398			tbl->size = (size - sizeof(*tbl)) /
4399			    sizeof(ipfw_table_entry);
4400			IPFW_RLOCK(&V_layer3_chain);
4401			error = dump_table(&V_layer3_chain, tbl);
4402			IPFW_RUNLOCK(&V_layer3_chain);
4403			if (error) {
4404				free(tbl, M_TEMP);
4405				break;
4406			}
4407			error = sooptcopyout(sopt, tbl, size);
4408			free(tbl, M_TEMP);
4409		}
4410		break;
4411
4412	case IP_FW_NAT_CFG:
4413		if (IPFW_NAT_LOADED)
4414			error = ipfw_nat_cfg_ptr(sopt);
4415		else {
4416			printf("IP_FW_NAT_CFG: %s\n",
4417			    "ipfw_nat not present, please load it");
4418			error = EINVAL;
4419		}
4420		break;
4421
4422	case IP_FW_NAT_DEL:
4423		if (IPFW_NAT_LOADED)
4424			error = ipfw_nat_del_ptr(sopt);
4425		else {
4426			printf("IP_FW_NAT_DEL: %s\n",
4427			    "ipfw_nat not present, please load it");
4428			error = EINVAL;
4429		}
4430		break;
4431
4432	case IP_FW_NAT_GET_CONFIG:
4433		if (IPFW_NAT_LOADED)
4434			error = ipfw_nat_get_cfg_ptr(sopt);
4435		else {
4436			printf("IP_FW_NAT_GET_CFG: %s\n",
4437			    "ipfw_nat not present, please load it");
4438			error = EINVAL;
4439		}
4440		break;
4441
4442	case IP_FW_NAT_GET_LOG:
4443		if (IPFW_NAT_LOADED)
4444			error = ipfw_nat_get_log_ptr(sopt);
4445		else {
4446			printf("IP_FW_NAT_GET_LOG: %s\n",
4447			    "ipfw_nat not present, please load it");
4448			error = EINVAL;
4449		}
4450		break;
4451
4452	default:
4453		printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
4454		error = EINVAL;
4455	}
4456
4457	return (error);
4458#undef RULE_MAXSIZE
4459}
4460
4461/**
4462 * dummynet needs a reference to the default rule, because rules can be
4463 * deleted while packets hold a reference to them. When this happens,
4464 * dummynet changes the reference to the default rule (it could well be a
4465 * NULL pointer, but this way we do not need to check for the special
4466 * case, plus here he have info on the default behaviour).
4467 */
4468struct ip_fw *ip_fw_default_rule;
4469
4470/*
4471 * This procedure is only used to handle keepalives. It is invoked
4472 * every dyn_keepalive_period
4473 */
4474static void
4475ipfw_tick(void * __unused unused)
4476{
4477	struct mbuf *m0, *m, *mnext, **mtailp;
4478	int i;
4479	ipfw_dyn_rule *q;
4480
4481	if (V_dyn_keepalive == 0 || V_ipfw_dyn_v == NULL || V_dyn_count == 0)
4482		goto done;
4483
4484	/*
4485	 * We make a chain of packets to go out here -- not deferring
4486	 * until after we drop the IPFW dynamic rule lock would result
4487	 * in a lock order reversal with the normal packet input -> ipfw
4488	 * call stack.
4489	 */
4490	m0 = NULL;
4491	mtailp = &m0;
4492	IPFW_DYN_LOCK();
4493	for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
4494		for (q = V_ipfw_dyn_v[i] ; q ; q = q->next ) {
4495			if (q->dyn_type == O_LIMIT_PARENT)
4496				continue;
4497			if (q->id.proto != IPPROTO_TCP)
4498				continue;
4499			if ( (q->state & BOTH_SYN) != BOTH_SYN)
4500				continue;
4501			if (TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
4502			    q->expire))
4503				continue;	/* too early */
4504			if (TIME_LEQ(q->expire, time_uptime))
4505				continue;	/* too late, rule expired */
4506
4507			*mtailp = send_pkt(NULL, &(q->id), q->ack_rev - 1,
4508				q->ack_fwd, TH_SYN);
4509			if (*mtailp != NULL)
4510				mtailp = &(*mtailp)->m_nextpkt;
4511			*mtailp = send_pkt(NULL, &(q->id), q->ack_fwd - 1,
4512				q->ack_rev, 0);
4513			if (*mtailp != NULL)
4514				mtailp = &(*mtailp)->m_nextpkt;
4515		}
4516	}
4517	IPFW_DYN_UNLOCK();
4518	for (m = mnext = m0; m != NULL; m = mnext) {
4519		mnext = m->m_nextpkt;
4520		m->m_nextpkt = NULL;
4521		ip_output(m, NULL, NULL, 0, NULL, NULL);
4522	}
4523done:
4524	callout_reset(&V_ipfw_timeout, V_dyn_keepalive_period * hz,
4525		      ipfw_tick, NULL);
4526}
4527
4528int
4529ipfw_init(void)
4530{
4531	INIT_VNET_IPFW(curvnet);
4532	struct ip_fw default_rule;
4533	int error;
4534
4535	V_fw_debug = 1;
4536	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
4537
4538	V_ipfw_dyn_v = NULL;
4539	V_dyn_buckets = 256;	/* must be power of 2 */
4540	V_curr_dyn_buckets = 256; /* must be power of 2 */
4541
4542	V_dyn_ack_lifetime = 300;
4543	V_dyn_syn_lifetime = 20;
4544	V_dyn_fin_lifetime = 1;
4545	V_dyn_rst_lifetime = 1;
4546	V_dyn_udp_lifetime = 10;
4547	V_dyn_short_lifetime = 5;
4548
4549	V_dyn_keepalive_interval = 20;
4550	V_dyn_keepalive_period = 5;
4551	V_dyn_keepalive = 1;	/* do send keepalives */
4552
4553	V_dyn_max = 4096;	/* max # of dynamic rules */
4554
4555	V_fw_deny_unknown_exthdrs = 1;
4556
4557#ifdef INET6
4558	/* Setup IPv6 fw sysctl tree. */
4559	sysctl_ctx_init(&ip6_fw_sysctl_ctx);
4560	ip6_fw_sysctl_tree = SYSCTL_ADD_NODE(&ip6_fw_sysctl_ctx,
4561	    SYSCTL_STATIC_CHILDREN(_net_inet6_ip6), OID_AUTO, "fw",
4562	    CTLFLAG_RW | CTLFLAG_SECURE, 0, "Firewall");
4563	SYSCTL_ADD_PROC(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4564	    OID_AUTO, "enable", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3,
4565	    &V_fw6_enable, 0, ipfw_chg_hook, "I", "Enable ipfw+6");
4566	SYSCTL_ADD_INT(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4567	    OID_AUTO, "deny_unknown_exthdrs", CTLFLAG_RW | CTLFLAG_SECURE,
4568	    &V_fw_deny_unknown_exthdrs, 0,
4569	    "Deny packets with unknown IPv6 Extension Headers");
4570#endif
4571
4572	V_layer3_chain.rules = NULL;
4573	IPFW_LOCK_INIT(&V_layer3_chain);
4574	ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule",
4575	    sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
4576	    UMA_ALIGN_PTR, 0);
4577	IPFW_DYN_LOCK_INIT();
4578	callout_init(&V_ipfw_timeout, CALLOUT_MPSAFE);
4579
4580	bzero(&default_rule, sizeof default_rule);
4581
4582	default_rule.act_ofs = 0;
4583	default_rule.rulenum = IPFW_DEFAULT_RULE;
4584	default_rule.cmd_len = 1;
4585	default_rule.set = RESVD_SET;
4586
4587	default_rule.cmd[0].len = 1;
4588	default_rule.cmd[0].opcode =
4589#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
4590				1 ? O_ACCEPT :
4591#endif
4592				O_DENY;
4593
4594	error = add_rule(&V_layer3_chain, &default_rule);
4595	if (error != 0) {
4596		printf("ipfw2: error %u initializing default rule "
4597			"(support disabled)\n", error);
4598		IPFW_DYN_LOCK_DESTROY();
4599		IPFW_LOCK_DESTROY(&V_layer3_chain);
4600		uma_zdestroy(ipfw_dyn_rule_zone);
4601		return (error);
4602	}
4603
4604	ip_fw_default_rule = V_layer3_chain.rules;
4605	printf("ipfw2 "
4606#ifdef INET6
4607		"(+ipv6) "
4608#endif
4609		"initialized, divert %s, nat %s, "
4610		"rule-based forwarding "
4611#ifdef IPFIREWALL_FORWARD
4612		"enabled, "
4613#else
4614		"disabled, "
4615#endif
4616		"default to %s, logging ",
4617#ifdef IPDIVERT
4618		"enabled",
4619#else
4620		"loadable",
4621#endif
4622#ifdef IPFIREWALL_NAT
4623		"enabled",
4624#else
4625		"loadable",
4626#endif
4627
4628		default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
4629
4630#ifdef IPFIREWALL_VERBOSE
4631	V_fw_verbose = 1;
4632#endif
4633#ifdef IPFIREWALL_VERBOSE_LIMIT
4634	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
4635#endif
4636	if (V_fw_verbose == 0)
4637		printf("disabled\n");
4638	else if (V_verbose_limit == 0)
4639		printf("unlimited\n");
4640	else
4641		printf("limited to %d packets/entry by default\n",
4642		    V_verbose_limit);
4643
4644	error = init_tables(&V_layer3_chain);
4645	if (error) {
4646		IPFW_DYN_LOCK_DESTROY();
4647		IPFW_LOCK_DESTROY(&V_layer3_chain);
4648		uma_zdestroy(ipfw_dyn_rule_zone);
4649		return (error);
4650	}
4651	ip_fw_ctl_ptr = ipfw_ctl;
4652	ip_fw_chk_ptr = ipfw_chk;
4653	callout_reset(&V_ipfw_timeout, hz, ipfw_tick, NULL);
4654	LIST_INIT(&V_layer3_chain.nat);
4655	return (0);
4656}
4657
4658void
4659ipfw_destroy(void)
4660{
4661	struct ip_fw *reap;
4662
4663	ip_fw_chk_ptr = NULL;
4664	ip_fw_ctl_ptr = NULL;
4665	callout_drain(&V_ipfw_timeout);
4666	IPFW_WLOCK(&V_layer3_chain);
4667	flush_tables(&V_layer3_chain);
4668	V_layer3_chain.reap = NULL;
4669	free_chain(&V_layer3_chain, 1 /* kill default rule */);
4670	reap = V_layer3_chain.reap, V_layer3_chain.reap = NULL;
4671	IPFW_WUNLOCK(&V_layer3_chain);
4672	if (reap != NULL)
4673		reap_rules(reap);
4674	IPFW_DYN_LOCK_DESTROY();
4675	uma_zdestroy(ipfw_dyn_rule_zone);
4676	if (V_ipfw_dyn_v != NULL)
4677		free(V_ipfw_dyn_v, M_IPFW);
4678	IPFW_LOCK_DESTROY(&V_layer3_chain);
4679
4680#ifdef INET6
4681	/* Free IPv6 fw sysctl tree. */
4682	sysctl_ctx_free(&ip6_fw_sysctl_ctx);
4683#endif
4684
4685	printf("IP firewall unloaded\n");
4686}
4687