ip_fw2.c revision 182145
1/*-
2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: head/sys/netinet/ip_fw2.c 182145 2008-08-25 05:38:18Z julian $");
28
29#define        DEB(x)
30#define        DDB(x) x
31
32/*
33 * Implement IP packet firewall (new version)
34 */
35
36#if !defined(KLD_MODULE)
37#include "opt_ipfw.h"
38#include "opt_ipdivert.h"
39#include "opt_ipdn.h"
40#include "opt_inet.h"
41#ifndef INET
42#error IPFIREWALL requires INET.
43#endif /* INET */
44#endif
45#include "opt_inet6.h"
46#include "opt_ipsec.h"
47#include "opt_mac.h"
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/condvar.h>
52#include <sys/eventhandler.h>
53#include <sys/malloc.h>
54#include <sys/mbuf.h>
55#include <sys/kernel.h>
56#include <sys/lock.h>
57#include <sys/jail.h>
58#include <sys/module.h>
59#include <sys/priv.h>
60#include <sys/proc.h>
61#include <sys/rwlock.h>
62#include <sys/socket.h>
63#include <sys/socketvar.h>
64#include <sys/sysctl.h>
65#include <sys/syslog.h>
66#include <sys/ucred.h>
67#include <sys/vimage.h>
68#include <net/if.h>
69#include <net/radix.h>
70#include <net/route.h>
71#include <net/pf_mtag.h>
72
73#define	IPFW_INTERNAL	/* Access to protected data structures in ip_fw.h. */
74
75#include <netinet/in.h>
76#include <netinet/in_systm.h>
77#include <netinet/in_var.h>
78#include <netinet/in_pcb.h>
79#include <netinet/ip.h>
80#include <netinet/ip_var.h>
81#include <netinet/ip_icmp.h>
82#include <netinet/ip_fw.h>
83#include <netinet/ip_divert.h>
84#include <netinet/ip_dummynet.h>
85#include <netinet/ip_carp.h>
86#include <netinet/pim.h>
87#include <netinet/tcp.h>
88#include <netinet/tcp_timer.h>
89#include <netinet/tcp_var.h>
90#include <netinet/tcpip.h>
91#include <netinet/udp.h>
92#include <netinet/udp_var.h>
93#include <netinet/sctp.h>
94#include <netgraph/ng_ipfw.h>
95
96#include <altq/if_altq.h>
97
98#include <netinet/ip6.h>
99#include <netinet/icmp6.h>
100#ifdef INET6
101#include <netinet6/scope6_var.h>
102#endif
103
104#include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
105
106#include <machine/in_cksum.h>	/* XXX for in_cksum */
107
108#include <security/mac/mac_framework.h>
109
110/*
111 * set_disable contains one bit per set value (0..31).
112 * If the bit is set, all rules with the corresponding set
113 * are disabled. Set RESVD_SET(31) is reserved for the default rule
114 * and rules that are not deleted by the flush command,
115 * and CANNOT be disabled.
116 * Rules in set RESVD_SET can only be deleted explicitly.
117 */
118static u_int32_t set_disable;
119
120static int fw_verbose;
121static int verbose_limit;
122
123static struct callout ipfw_timeout;
124static uma_zone_t ipfw_dyn_rule_zone;
125#define	IPFW_DEFAULT_RULE	65535
126
127/*
128 * Data structure to cache our ucred related
129 * information. This structure only gets used if
130 * the user specified UID/GID based constraints in
131 * a firewall rule.
132 */
133struct ip_fw_ugid {
134	gid_t		fw_groups[NGROUPS];
135	int		fw_ngroups;
136	uid_t		fw_uid;
137	int		fw_prid;
138};
139
140/*
141 * list of rules for layer 3
142 */
143struct ip_fw_chain layer3_chain;
144
145MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
146MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
147#define IPFW_NAT_LOADED (ipfw_nat_ptr != NULL)
148ipfw_nat_t *ipfw_nat_ptr = NULL;
149ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
150ipfw_nat_cfg_t *ipfw_nat_del_ptr;
151ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
152ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
153
154struct table_entry {
155	struct radix_node	rn[2];
156	struct sockaddr_in	addr, mask;
157	u_int32_t		value;
158};
159
160static int fw_debug = 1;
161static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
162
163extern int ipfw_chg_hook(SYSCTL_HANDLER_ARGS);
164
165#ifdef SYSCTL_NODE
166SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
167SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, enable,
168    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3, &fw_enable, 0,
169    ipfw_chg_hook, "I", "Enable ipfw");
170SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
171    &autoinc_step, 0, "Rule number autincrement step");
172SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
173    CTLFLAG_RW | CTLFLAG_SECURE3,
174    &fw_one_pass, 0,
175    "Only do a single pass through ipfw when using dummynet(4)");
176SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
177    &fw_debug, 0, "Enable printing of debug ip_fw statements");
178SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
179    CTLFLAG_RW | CTLFLAG_SECURE3,
180    &fw_verbose, 0, "Log matches to ipfw rules");
181SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
182    &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
183
184/*
185 * Description of dynamic rules.
186 *
187 * Dynamic rules are stored in lists accessed through a hash table
188 * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
189 * be modified through the sysctl variable dyn_buckets which is
190 * updated when the table becomes empty.
191 *
192 * XXX currently there is only one list, ipfw_dyn.
193 *
194 * When a packet is received, its address fields are first masked
195 * with the mask defined for the rule, then hashed, then matched
196 * against the entries in the corresponding list.
197 * Dynamic rules can be used for different purposes:
198 *  + stateful rules;
199 *  + enforcing limits on the number of sessions;
200 *  + in-kernel NAT (not implemented yet)
201 *
202 * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
203 * measured in seconds and depending on the flags.
204 *
205 * The total number of dynamic rules is stored in dyn_count.
206 * The max number of dynamic rules is dyn_max. When we reach
207 * the maximum number of rules we do not create anymore. This is
208 * done to avoid consuming too much memory, but also too much
209 * time when searching on each packet (ideally, we should try instead
210 * to put a limit on the length of the list on each bucket...).
211 *
212 * Each dynamic rule holds a pointer to the parent ipfw rule so
213 * we know what action to perform. Dynamic rules are removed when
214 * the parent rule is deleted. XXX we should make them survive.
215 *
216 * There are some limitations with dynamic rules -- we do not
217 * obey the 'randomized match', and we do not do multiple
218 * passes through the firewall. XXX check the latter!!!
219 */
220static ipfw_dyn_rule **ipfw_dyn_v = NULL;
221static u_int32_t dyn_buckets = 256; /* must be power of 2 */
222static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
223
224static struct mtx ipfw_dyn_mtx;		/* mutex guarding dynamic rules */
225#define	IPFW_DYN_LOCK_INIT() \
226	mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
227#define	IPFW_DYN_LOCK_DESTROY()	mtx_destroy(&ipfw_dyn_mtx)
228#define	IPFW_DYN_LOCK()		mtx_lock(&ipfw_dyn_mtx)
229#define	IPFW_DYN_UNLOCK()	mtx_unlock(&ipfw_dyn_mtx)
230#define	IPFW_DYN_LOCK_ASSERT()	mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
231
232/*
233 * Timeouts for various events in handing dynamic rules.
234 */
235static u_int32_t dyn_ack_lifetime = 300;
236static u_int32_t dyn_syn_lifetime = 20;
237static u_int32_t dyn_fin_lifetime = 1;
238static u_int32_t dyn_rst_lifetime = 1;
239static u_int32_t dyn_udp_lifetime = 10;
240static u_int32_t dyn_short_lifetime = 5;
241
242/*
243 * Keepalives are sent if dyn_keepalive is set. They are sent every
244 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
245 * seconds of lifetime of a rule.
246 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
247 * than dyn_keepalive_period.
248 */
249
250static u_int32_t dyn_keepalive_interval = 20;
251static u_int32_t dyn_keepalive_period = 5;
252static u_int32_t dyn_keepalive = 1;	/* do send keepalives */
253
254static u_int32_t static_count;	/* # of static rules */
255static u_int32_t static_len;	/* size in bytes of static rules */
256static u_int32_t dyn_count;		/* # of dynamic rules */
257static u_int32_t dyn_max = 4096;	/* max # of dynamic rules */
258
259SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
260    &dyn_buckets, 0, "Number of dyn. buckets");
261SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
262    &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
263SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
264    &dyn_count, 0, "Number of dyn. rules");
265SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
266    &dyn_max, 0, "Max number of dyn. rules");
267SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
268    &static_count, 0, "Number of static rules");
269SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
270    &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
271SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
272    &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
273SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
274    &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
275SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
276    &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
277SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
278    &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
279SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
280    &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
281SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
282    &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
283
284#ifdef INET6
285/*
286 * IPv6 specific variables
287 */
288SYSCTL_DECL(_net_inet6_ip6);
289
290static struct sysctl_ctx_list ip6_fw_sysctl_ctx;
291static struct sysctl_oid *ip6_fw_sysctl_tree;
292#endif /* INET6 */
293#endif /* SYSCTL_NODE */
294
295static int fw_deny_unknown_exthdrs = 1;
296
297
298/*
299 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
300 * Other macros just cast void * into the appropriate type
301 */
302#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
303#define	TCP(p)		((struct tcphdr *)(p))
304#define	SCTP(p)		((struct sctphdr *)(p))
305#define	UDP(p)		((struct udphdr *)(p))
306#define	ICMP(p)		((struct icmphdr *)(p))
307#define	ICMP6(p)	((struct icmp6_hdr *)(p))
308
309static __inline int
310icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
311{
312	int type = icmp->icmp_type;
313
314	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
315}
316
317#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
318    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
319
320static int
321is_icmp_query(struct icmphdr *icmp)
322{
323	int type = icmp->icmp_type;
324
325	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
326}
327#undef TT
328
329/*
330 * The following checks use two arrays of 8 or 16 bits to store the
331 * bits that we want set or clear, respectively. They are in the
332 * low and high half of cmd->arg1 or cmd->d[0].
333 *
334 * We scan options and store the bits we find set. We succeed if
335 *
336 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
337 *
338 * The code is sometimes optimized not to store additional variables.
339 */
340
341static int
342flags_match(ipfw_insn *cmd, u_int8_t bits)
343{
344	u_char want_clear;
345	bits = ~bits;
346
347	if ( ((cmd->arg1 & 0xff) & bits) != 0)
348		return 0; /* some bits we want set were clear */
349	want_clear = (cmd->arg1 >> 8) & 0xff;
350	if ( (want_clear & bits) != want_clear)
351		return 0; /* some bits we want clear were set */
352	return 1;
353}
354
355static int
356ipopts_match(struct ip *ip, ipfw_insn *cmd)
357{
358	int optlen, bits = 0;
359	u_char *cp = (u_char *)(ip + 1);
360	int x = (ip->ip_hl << 2) - sizeof (struct ip);
361
362	for (; x > 0; x -= optlen, cp += optlen) {
363		int opt = cp[IPOPT_OPTVAL];
364
365		if (opt == IPOPT_EOL)
366			break;
367		if (opt == IPOPT_NOP)
368			optlen = 1;
369		else {
370			optlen = cp[IPOPT_OLEN];
371			if (optlen <= 0 || optlen > x)
372				return 0; /* invalid or truncated */
373		}
374		switch (opt) {
375
376		default:
377			break;
378
379		case IPOPT_LSRR:
380			bits |= IP_FW_IPOPT_LSRR;
381			break;
382
383		case IPOPT_SSRR:
384			bits |= IP_FW_IPOPT_SSRR;
385			break;
386
387		case IPOPT_RR:
388			bits |= IP_FW_IPOPT_RR;
389			break;
390
391		case IPOPT_TS:
392			bits |= IP_FW_IPOPT_TS;
393			break;
394		}
395	}
396	return (flags_match(cmd, bits));
397}
398
399static int
400tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
401{
402	int optlen, bits = 0;
403	u_char *cp = (u_char *)(tcp + 1);
404	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
405
406	for (; x > 0; x -= optlen, cp += optlen) {
407		int opt = cp[0];
408		if (opt == TCPOPT_EOL)
409			break;
410		if (opt == TCPOPT_NOP)
411			optlen = 1;
412		else {
413			optlen = cp[1];
414			if (optlen <= 0)
415				break;
416		}
417
418		switch (opt) {
419
420		default:
421			break;
422
423		case TCPOPT_MAXSEG:
424			bits |= IP_FW_TCPOPT_MSS;
425			break;
426
427		case TCPOPT_WINDOW:
428			bits |= IP_FW_TCPOPT_WINDOW;
429			break;
430
431		case TCPOPT_SACK_PERMITTED:
432		case TCPOPT_SACK:
433			bits |= IP_FW_TCPOPT_SACK;
434			break;
435
436		case TCPOPT_TIMESTAMP:
437			bits |= IP_FW_TCPOPT_TS;
438			break;
439
440		}
441	}
442	return (flags_match(cmd, bits));
443}
444
445static int
446iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
447{
448	if (ifp == NULL)	/* no iface with this packet, match fails */
449		return 0;
450	/* Check by name or by IP address */
451	if (cmd->name[0] != '\0') { /* match by name */
452		/* Check name */
453		if (cmd->p.glob) {
454			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
455				return(1);
456		} else {
457			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
458				return(1);
459		}
460	} else {
461		struct ifaddr *ia;
462
463		/* XXX lock? */
464		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
465			if (ia->ifa_addr->sa_family != AF_INET)
466				continue;
467			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
468			    (ia->ifa_addr))->sin_addr.s_addr)
469				return(1);	/* match */
470		}
471	}
472	return(0);	/* no match, fail ... */
473}
474
475/*
476 * The verify_path function checks if a route to the src exists and
477 * if it is reachable via ifp (when provided).
478 *
479 * The 'verrevpath' option checks that the interface that an IP packet
480 * arrives on is the same interface that traffic destined for the
481 * packet's source address would be routed out of.  The 'versrcreach'
482 * option just checks that the source address is reachable via any route
483 * (except default) in the routing table.  These two are a measure to block
484 * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
485 * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
486 * is purposely reminiscent of the Cisco IOS command,
487 *
488 *   ip verify unicast reverse-path
489 *   ip verify unicast source reachable-via any
490 *
491 * which implements the same functionality. But note that syntax is
492 * misleading. The check may be performed on all IP packets whether unicast,
493 * multicast, or broadcast.
494 */
495static int
496verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
497{
498	struct route ro;
499	struct sockaddr_in *dst;
500
501	bzero(&ro, sizeof(ro));
502
503	dst = (struct sockaddr_in *)&(ro.ro_dst);
504	dst->sin_family = AF_INET;
505	dst->sin_len = sizeof(*dst);
506	dst->sin_addr = src;
507	in_rtalloc_ign(&ro, RTF_CLONING, fib);
508
509	if (ro.ro_rt == NULL)
510		return 0;
511
512	/*
513	 * If ifp is provided, check for equality with rtentry.
514	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
515	 * in order to pass packets injected back by if_simloop():
516	 * if useloopback == 1 routing entry (via lo0) for our own address
517	 * may exist, so we need to handle routing assymetry.
518	 */
519	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
520		RTFREE(ro.ro_rt);
521		return 0;
522	}
523
524	/* if no ifp provided, check if rtentry is not default route */
525	if (ifp == NULL &&
526	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
527		RTFREE(ro.ro_rt);
528		return 0;
529	}
530
531	/* or if this is a blackhole/reject route */
532	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
533		RTFREE(ro.ro_rt);
534		return 0;
535	}
536
537	/* found valid route */
538	RTFREE(ro.ro_rt);
539	return 1;
540}
541
542#ifdef INET6
543/*
544 * ipv6 specific rules here...
545 */
546static __inline int
547icmp6type_match (int type, ipfw_insn_u32 *cmd)
548{
549	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
550}
551
552static int
553flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
554{
555	int i;
556	for (i=0; i <= cmd->o.arg1; ++i )
557		if (curr_flow == cmd->d[i] )
558			return 1;
559	return 0;
560}
561
562/* support for IP6_*_ME opcodes */
563static int
564search_ip6_addr_net (struct in6_addr * ip6_addr)
565{
566	struct ifnet *mdc;
567	struct ifaddr *mdc2;
568	struct in6_ifaddr *fdm;
569	struct in6_addr copia;
570
571	TAILQ_FOREACH(mdc, &V_ifnet, if_link)
572		TAILQ_FOREACH(mdc2, &mdc->if_addrlist, ifa_list) {
573			if (mdc2->ifa_addr->sa_family == AF_INET6) {
574				fdm = (struct in6_ifaddr *)mdc2;
575				copia = fdm->ia_addr.sin6_addr;
576				/* need for leaving scope_id in the sock_addr */
577				in6_clearscope(&copia);
578				if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia))
579					return 1;
580			}
581		}
582	return 0;
583}
584
585static int
586verify_path6(struct in6_addr *src, struct ifnet *ifp)
587{
588	struct route_in6 ro;
589	struct sockaddr_in6 *dst;
590
591	bzero(&ro, sizeof(ro));
592
593	dst = (struct sockaddr_in6 * )&(ro.ro_dst);
594	dst->sin6_family = AF_INET6;
595	dst->sin6_len = sizeof(*dst);
596	dst->sin6_addr = *src;
597	/* XXX MRT 0 for ipv6 at this time */
598	rtalloc_ign((struct route *)&ro, RTF_CLONING);
599
600	if (ro.ro_rt == NULL)
601		return 0;
602
603	/*
604	 * if ifp is provided, check for equality with rtentry
605	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
606	 * to support the case of sending packets to an address of our own.
607	 * (where the former interface is the first argument of if_simloop()
608	 *  (=ifp), the latter is lo0)
609	 */
610	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
611		RTFREE(ro.ro_rt);
612		return 0;
613	}
614
615	/* if no ifp provided, check if rtentry is not default route */
616	if (ifp == NULL &&
617	    IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
618		RTFREE(ro.ro_rt);
619		return 0;
620	}
621
622	/* or if this is a blackhole/reject route */
623	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
624		RTFREE(ro.ro_rt);
625		return 0;
626	}
627
628	/* found valid route */
629	RTFREE(ro.ro_rt);
630	return 1;
631
632}
633static __inline int
634hash_packet6(struct ipfw_flow_id *id)
635{
636	u_int32_t i;
637	i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
638	    (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
639	    (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
640	    (id->src_ip6.__u6_addr.__u6_addr32[3]) ^
641	    (id->dst_port) ^ (id->src_port);
642	return i;
643}
644
645static int
646is_icmp6_query(int icmp6_type)
647{
648	if ((icmp6_type <= ICMP6_MAXTYPE) &&
649	    (icmp6_type == ICMP6_ECHO_REQUEST ||
650	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
651	    icmp6_type == ICMP6_WRUREQUEST ||
652	    icmp6_type == ICMP6_FQDN_QUERY ||
653	    icmp6_type == ICMP6_NI_QUERY))
654		return (1);
655
656	return (0);
657}
658
659static void
660send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
661{
662	struct mbuf *m;
663
664	m = args->m;
665	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
666		struct tcphdr *tcp;
667		tcp_seq ack, seq;
668		int flags;
669		struct {
670			struct ip6_hdr ip6;
671			struct tcphdr th;
672		} ti;
673		tcp = (struct tcphdr *)((char *)ip6 + hlen);
674
675		if ((tcp->th_flags & TH_RST) != 0) {
676			m_freem(m);
677			args->m = NULL;
678			return;
679		}
680
681		ti.ip6 = *ip6;
682		ti.th = *tcp;
683		ti.th.th_seq = ntohl(ti.th.th_seq);
684		ti.th.th_ack = ntohl(ti.th.th_ack);
685		ti.ip6.ip6_nxt = IPPROTO_TCP;
686
687		if (ti.th.th_flags & TH_ACK) {
688			ack = 0;
689			seq = ti.th.th_ack;
690			flags = TH_RST;
691		} else {
692			ack = ti.th.th_seq;
693			if ((m->m_flags & M_PKTHDR) != 0) {
694				/*
695				 * total new data to ACK is:
696				 * total packet length,
697				 * minus the header length,
698				 * minus the tcp header length.
699				 */
700				ack += m->m_pkthdr.len - hlen
701					- (ti.th.th_off << 2);
702			} else if (ip6->ip6_plen) {
703				ack += ntohs(ip6->ip6_plen) + sizeof(*ip6) -
704				    hlen - (ti.th.th_off << 2);
705			} else {
706				m_freem(m);
707				return;
708			}
709			if (tcp->th_flags & TH_SYN)
710				ack++;
711			seq = 0;
712			flags = TH_RST|TH_ACK;
713		}
714		bcopy(&ti, ip6, sizeof(ti));
715		/*
716		 * m is only used to recycle the mbuf
717		 * The data in it is never read so we don't need
718		 * to correct the offsets or anything
719		 */
720		tcp_respond(NULL, ip6, tcp, m, ack, seq, flags);
721	} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
722#if 0
723		/*
724		 * Unlike above, the mbufs need to line up with the ip6 hdr,
725		 * as the contents are read. We need to m_adj() the
726		 * needed amount.
727		 * The mbuf will however be thrown away so we can adjust it.
728		 * Remember we did an m_pullup on it already so we
729		 * can make some assumptions about contiguousness.
730		 */
731		if (args->L3offset)
732			m_adj(m, args->L3offset);
733#endif
734		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
735	} else
736		m_freem(m);
737
738	args->m = NULL;
739}
740
741#endif /* INET6 */
742
743static u_int64_t norule_counter;	/* counter for ipfw_log(NULL...) */
744
745#define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
746#define SNP(buf) buf, sizeof(buf)
747
748/*
749 * We enter here when we have a rule with O_LOG.
750 * XXX this function alone takes about 2Kbytes of code!
751 */
752static void
753ipfw_log(struct ip_fw *f, u_int hlen, struct ip_fw_args *args,
754    struct mbuf *m, struct ifnet *oif, u_short offset, uint32_t tablearg,
755    struct ip *ip)
756{
757	struct ether_header *eh = args->eh;
758	char *action;
759	int limit_reached = 0;
760	char action2[40], proto[128], fragment[32];
761
762	fragment[0] = '\0';
763	proto[0] = '\0';
764
765	if (f == NULL) {	/* bogus pkt */
766		if (V_verbose_limit != 0 && V_norule_counter >= V_verbose_limit)
767			return;
768		V_norule_counter++;
769		if (V_norule_counter == V_verbose_limit)
770			limit_reached = V_verbose_limit;
771		action = "Refuse";
772	} else {	/* O_LOG is the first action, find the real one */
773		ipfw_insn *cmd = ACTION_PTR(f);
774		ipfw_insn_log *l = (ipfw_insn_log *)cmd;
775
776		if (l->max_log != 0 && l->log_left == 0)
777			return;
778		l->log_left--;
779		if (l->log_left == 0)
780			limit_reached = l->max_log;
781		cmd += F_LEN(cmd);	/* point to first action */
782		if (cmd->opcode == O_ALTQ) {
783			ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
784
785			snprintf(SNPARGS(action2, 0), "Altq %d",
786				altq->qid);
787			cmd += F_LEN(cmd);
788		}
789		if (cmd->opcode == O_PROB)
790			cmd += F_LEN(cmd);
791
792		if (cmd->opcode == O_TAG)
793			cmd += F_LEN(cmd);
794
795		action = action2;
796		switch (cmd->opcode) {
797		case O_DENY:
798			action = "Deny";
799			break;
800
801		case O_REJECT:
802			if (cmd->arg1==ICMP_REJECT_RST)
803				action = "Reset";
804			else if (cmd->arg1==ICMP_UNREACH_HOST)
805				action = "Reject";
806			else
807				snprintf(SNPARGS(action2, 0), "Unreach %d",
808					cmd->arg1);
809			break;
810
811		case O_UNREACH6:
812			if (cmd->arg1==ICMP6_UNREACH_RST)
813				action = "Reset";
814			else
815				snprintf(SNPARGS(action2, 0), "Unreach %d",
816					cmd->arg1);
817			break;
818
819		case O_ACCEPT:
820			action = "Accept";
821			break;
822		case O_COUNT:
823			action = "Count";
824			break;
825		case O_DIVERT:
826			snprintf(SNPARGS(action2, 0), "Divert %d",
827				cmd->arg1);
828			break;
829		case O_TEE:
830			snprintf(SNPARGS(action2, 0), "Tee %d",
831				cmd->arg1);
832			break;
833		case O_SETFIB:
834			snprintf(SNPARGS(action2, 0), "SetFib %d",
835				cmd->arg1);
836			break;
837		case O_SKIPTO:
838			snprintf(SNPARGS(action2, 0), "SkipTo %d",
839				cmd->arg1);
840			break;
841		case O_PIPE:
842			snprintf(SNPARGS(action2, 0), "Pipe %d",
843				cmd->arg1);
844			break;
845		case O_QUEUE:
846			snprintf(SNPARGS(action2, 0), "Queue %d",
847				cmd->arg1);
848			break;
849		case O_FORWARD_IP: {
850			ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
851			int len;
852			struct in_addr dummyaddr;
853			if (sa->sa.sin_addr.s_addr == INADDR_ANY)
854				dummyaddr.s_addr = htonl(tablearg);
855			else
856				dummyaddr.s_addr = sa->sa.sin_addr.s_addr;
857
858			len = snprintf(SNPARGS(action2, 0), "Forward to %s",
859				inet_ntoa(dummyaddr));
860
861			if (sa->sa.sin_port)
862				snprintf(SNPARGS(action2, len), ":%d",
863				    sa->sa.sin_port);
864			}
865			break;
866		case O_NETGRAPH:
867			snprintf(SNPARGS(action2, 0), "Netgraph %d",
868				cmd->arg1);
869			break;
870		case O_NGTEE:
871			snprintf(SNPARGS(action2, 0), "Ngtee %d",
872				cmd->arg1);
873			break;
874		case O_NAT:
875			action = "Nat";
876 			break;
877		default:
878			action = "UNKNOWN";
879			break;
880		}
881	}
882
883	if (hlen == 0) {	/* non-ip */
884		snprintf(SNPARGS(proto, 0), "MAC");
885
886	} else {
887		int len;
888		char src[48], dst[48];
889		struct icmphdr *icmp;
890		struct tcphdr *tcp;
891		struct udphdr *udp;
892#ifdef INET6
893		struct ip6_hdr *ip6 = NULL;
894		struct icmp6_hdr *icmp6;
895#endif
896		src[0] = '\0';
897		dst[0] = '\0';
898#ifdef INET6
899		if (IS_IP6_FLOW_ID(&(args->f_id))) {
900			char ip6buf[INET6_ADDRSTRLEN];
901			snprintf(src, sizeof(src), "[%s]",
902			    ip6_sprintf(ip6buf, &args->f_id.src_ip6));
903			snprintf(dst, sizeof(dst), "[%s]",
904			    ip6_sprintf(ip6buf, &args->f_id.dst_ip6));
905
906			ip6 = (struct ip6_hdr *)ip;
907			tcp = (struct tcphdr *)(((char *)ip) + hlen);
908			udp = (struct udphdr *)(((char *)ip) + hlen);
909		} else
910#endif
911		{
912			tcp = L3HDR(struct tcphdr, ip);
913			udp = L3HDR(struct udphdr, ip);
914
915			inet_ntoa_r(ip->ip_src, src);
916			inet_ntoa_r(ip->ip_dst, dst);
917		}
918
919		switch (args->f_id.proto) {
920		case IPPROTO_TCP:
921			len = snprintf(SNPARGS(proto, 0), "TCP %s", src);
922			if (offset == 0)
923				snprintf(SNPARGS(proto, len), ":%d %s:%d",
924				    ntohs(tcp->th_sport),
925				    dst,
926				    ntohs(tcp->th_dport));
927			else
928				snprintf(SNPARGS(proto, len), " %s", dst);
929			break;
930
931		case IPPROTO_UDP:
932			len = snprintf(SNPARGS(proto, 0), "UDP %s", src);
933			if (offset == 0)
934				snprintf(SNPARGS(proto, len), ":%d %s:%d",
935				    ntohs(udp->uh_sport),
936				    dst,
937				    ntohs(udp->uh_dport));
938			else
939				snprintf(SNPARGS(proto, len), " %s", dst);
940			break;
941
942		case IPPROTO_ICMP:
943			icmp = L3HDR(struct icmphdr, ip);
944			if (offset == 0)
945				len = snprintf(SNPARGS(proto, 0),
946				    "ICMP:%u.%u ",
947				    icmp->icmp_type, icmp->icmp_code);
948			else
949				len = snprintf(SNPARGS(proto, 0), "ICMP ");
950			len += snprintf(SNPARGS(proto, len), "%s", src);
951			snprintf(SNPARGS(proto, len), " %s", dst);
952			break;
953#ifdef INET6
954		case IPPROTO_ICMPV6:
955			icmp6 = (struct icmp6_hdr *)(((char *)ip) + hlen);
956			if (offset == 0)
957				len = snprintf(SNPARGS(proto, 0),
958				    "ICMPv6:%u.%u ",
959				    icmp6->icmp6_type, icmp6->icmp6_code);
960			else
961				len = snprintf(SNPARGS(proto, 0), "ICMPv6 ");
962			len += snprintf(SNPARGS(proto, len), "%s", src);
963			snprintf(SNPARGS(proto, len), " %s", dst);
964			break;
965#endif
966		default:
967			len = snprintf(SNPARGS(proto, 0), "P:%d %s",
968			    args->f_id.proto, src);
969			snprintf(SNPARGS(proto, len), " %s", dst);
970			break;
971		}
972
973#ifdef INET6
974		if (IS_IP6_FLOW_ID(&(args->f_id))) {
975			if (offset & (IP6F_OFF_MASK | IP6F_MORE_FRAG))
976				snprintf(SNPARGS(fragment, 0),
977				    " (frag %08x:%d@%d%s)",
978				    args->f_id.frag_id6,
979				    ntohs(ip6->ip6_plen) - hlen,
980				    ntohs(offset & IP6F_OFF_MASK) << 3,
981				    (offset & IP6F_MORE_FRAG) ? "+" : "");
982		} else
983#endif
984		{
985			int ip_off, ip_len;
986			if (eh != NULL) { /* layer 2 packets are as on the wire */
987				ip_off = ntohs(ip->ip_off);
988				ip_len = ntohs(ip->ip_len);
989			} else {
990				ip_off = ip->ip_off;
991				ip_len = ip->ip_len;
992			}
993			if (ip_off & (IP_MF | IP_OFFMASK))
994				snprintf(SNPARGS(fragment, 0),
995				    " (frag %d:%d@%d%s)",
996				    ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
997				    offset << 3,
998				    (ip_off & IP_MF) ? "+" : "");
999		}
1000	}
1001	if (oif || m->m_pkthdr.rcvif)
1002		log(LOG_SECURITY | LOG_INFO,
1003		    "ipfw: %d %s %s %s via %s%s\n",
1004		    f ? f->rulenum : -1,
1005		    action, proto, oif ? "out" : "in",
1006		    oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
1007		    fragment);
1008	else
1009		log(LOG_SECURITY | LOG_INFO,
1010		    "ipfw: %d %s %s [no if info]%s\n",
1011		    f ? f->rulenum : -1,
1012		    action, proto, fragment);
1013	if (limit_reached)
1014		log(LOG_SECURITY | LOG_NOTICE,
1015		    "ipfw: limit %d reached on entry %d\n",
1016		    limit_reached, f ? f->rulenum : -1);
1017}
1018
1019/*
1020 * IMPORTANT: the hash function for dynamic rules must be commutative
1021 * in source and destination (ip,port), because rules are bidirectional
1022 * and we want to find both in the same bucket.
1023 */
1024static __inline int
1025hash_packet(struct ipfw_flow_id *id)
1026{
1027	u_int32_t i;
1028
1029#ifdef INET6
1030	if (IS_IP6_FLOW_ID(id))
1031		i = hash_packet6(id);
1032	else
1033#endif /* INET6 */
1034	i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
1035	i &= (V_curr_dyn_buckets - 1);
1036	return i;
1037}
1038
1039/**
1040 * unlink a dynamic rule from a chain. prev is a pointer to
1041 * the previous one, q is a pointer to the rule to delete,
1042 * head is a pointer to the head of the queue.
1043 * Modifies q and potentially also head.
1044 */
1045#define UNLINK_DYN_RULE(prev, head, q) {				\
1046	ipfw_dyn_rule *old_q = q;					\
1047									\
1048	/* remove a refcount to the parent */				\
1049	if (q->dyn_type == O_LIMIT)					\
1050		q->parent->count--;					\
1051	DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
1052		(q->id.src_ip), (q->id.src_port),			\
1053		(q->id.dst_ip), (q->id.dst_port), V_dyn_count-1 ); )	\
1054	if (prev != NULL)						\
1055		prev->next = q = q->next;				\
1056	else								\
1057		head = q = q->next;					\
1058	V_dyn_count--;							\
1059	uma_zfree(ipfw_dyn_rule_zone, old_q); }
1060
1061#define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
1062
1063/**
1064 * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
1065 *
1066 * If keep_me == NULL, rules are deleted even if not expired,
1067 * otherwise only expired rules are removed.
1068 *
1069 * The value of the second parameter is also used to point to identify
1070 * a rule we absolutely do not want to remove (e.g. because we are
1071 * holding a reference to it -- this is the case with O_LIMIT_PARENT
1072 * rules). The pointer is only used for comparison, so any non-null
1073 * value will do.
1074 */
1075static void
1076remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
1077{
1078	static u_int32_t last_remove = 0;
1079
1080#define FORCE (keep_me == NULL)
1081
1082	ipfw_dyn_rule *prev, *q;
1083	int i, pass = 0, max_pass = 0;
1084
1085	IPFW_DYN_LOCK_ASSERT();
1086
1087	if (V_ipfw_dyn_v == NULL || V_dyn_count == 0)
1088		return;
1089	/* do not expire more than once per second, it is useless */
1090	if (!FORCE && last_remove == time_uptime)
1091		return;
1092	last_remove = time_uptime;
1093
1094	/*
1095	 * because O_LIMIT refer to parent rules, during the first pass only
1096	 * remove child and mark any pending LIMIT_PARENT, and remove
1097	 * them in a second pass.
1098	 */
1099next_pass:
1100	for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1101		for (prev=NULL, q = V_ipfw_dyn_v[i] ; q ; ) {
1102			/*
1103			 * Logic can become complex here, so we split tests.
1104			 */
1105			if (q == keep_me)
1106				goto next;
1107			if (rule != NULL && rule != q->rule)
1108				goto next; /* not the one we are looking for */
1109			if (q->dyn_type == O_LIMIT_PARENT) {
1110				/*
1111				 * handle parent in the second pass,
1112				 * record we need one.
1113				 */
1114				max_pass = 1;
1115				if (pass == 0)
1116					goto next;
1117				if (FORCE && q->count != 0 ) {
1118					/* XXX should not happen! */
1119					printf("ipfw: OUCH! cannot remove rule,"
1120					     " count %d\n", q->count);
1121				}
1122			} else {
1123				if (!FORCE &&
1124				    !TIME_LEQ( q->expire, time_uptime ))
1125					goto next;
1126			}
1127             if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
1128                     UNLINK_DYN_RULE(prev, V_ipfw_dyn_v[i], q);
1129                     continue;
1130             }
1131next:
1132			prev=q;
1133			q=q->next;
1134		}
1135	}
1136	if (pass++ < max_pass)
1137		goto next_pass;
1138}
1139
1140
1141/**
1142 * lookup a dynamic rule.
1143 */
1144static ipfw_dyn_rule *
1145lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
1146    struct tcphdr *tcp)
1147{
1148	/*
1149	 * stateful ipfw extensions.
1150	 * Lookup into dynamic session queue
1151	 */
1152#define MATCH_REVERSE	0
1153#define MATCH_FORWARD	1
1154#define MATCH_NONE	2
1155#define MATCH_UNKNOWN	3
1156	int i, dir = MATCH_NONE;
1157	ipfw_dyn_rule *prev, *q=NULL;
1158
1159	IPFW_DYN_LOCK_ASSERT();
1160
1161	if (V_ipfw_dyn_v == NULL)
1162		goto done;	/* not found */
1163	i = hash_packet( pkt );
1164	for (prev=NULL, q = V_ipfw_dyn_v[i] ; q != NULL ; ) {
1165		if (q->dyn_type == O_LIMIT_PARENT && q->count)
1166			goto next;
1167		if (TIME_LEQ( q->expire, time_uptime)) { /* expire entry */
1168			UNLINK_DYN_RULE(prev, V_ipfw_dyn_v[i], q);
1169			continue;
1170		}
1171		if (pkt->proto == q->id.proto &&
1172		    q->dyn_type != O_LIMIT_PARENT) {
1173			if (IS_IP6_FLOW_ID(pkt)) {
1174			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1175				&(q->id.src_ip6)) &&
1176			    IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1177				&(q->id.dst_ip6)) &&
1178			    pkt->src_port == q->id.src_port &&
1179			    pkt->dst_port == q->id.dst_port ) {
1180				dir = MATCH_FORWARD;
1181				break;
1182			    }
1183			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1184				    &(q->id.dst_ip6)) &&
1185				IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1186				    &(q->id.src_ip6)) &&
1187				pkt->src_port == q->id.dst_port &&
1188				pkt->dst_port == q->id.src_port ) {
1189				    dir = MATCH_REVERSE;
1190				    break;
1191			    }
1192			} else {
1193			    if (pkt->src_ip == q->id.src_ip &&
1194				pkt->dst_ip == q->id.dst_ip &&
1195				pkt->src_port == q->id.src_port &&
1196				pkt->dst_port == q->id.dst_port ) {
1197				    dir = MATCH_FORWARD;
1198				    break;
1199			    }
1200			    if (pkt->src_ip == q->id.dst_ip &&
1201				pkt->dst_ip == q->id.src_ip &&
1202				pkt->src_port == q->id.dst_port &&
1203				pkt->dst_port == q->id.src_port ) {
1204				    dir = MATCH_REVERSE;
1205				    break;
1206			    }
1207			}
1208		}
1209next:
1210		prev = q;
1211		q = q->next;
1212	}
1213	if (q == NULL)
1214		goto done; /* q = NULL, not found */
1215
1216	if ( prev != NULL) { /* found and not in front */
1217		prev->next = q->next;
1218		q->next = V_ipfw_dyn_v[i];
1219		V_ipfw_dyn_v[i] = q;
1220	}
1221	if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
1222		u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
1223
1224#define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
1225#define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
1226		q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
1227		switch (q->state) {
1228		case TH_SYN:				/* opening */
1229			q->expire = time_uptime + V_dyn_syn_lifetime;
1230			break;
1231
1232		case BOTH_SYN:			/* move to established */
1233		case BOTH_SYN | TH_FIN :	/* one side tries to close */
1234		case BOTH_SYN | (TH_FIN << 8) :
1235 			if (tcp) {
1236#define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
1237			    u_int32_t ack = ntohl(tcp->th_ack);
1238			    if (dir == MATCH_FORWARD) {
1239				if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
1240				    q->ack_fwd = ack;
1241				else { /* ignore out-of-sequence */
1242				    break;
1243				}
1244			    } else {
1245				if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
1246				    q->ack_rev = ack;
1247				else { /* ignore out-of-sequence */
1248				    break;
1249				}
1250			    }
1251			}
1252			q->expire = time_uptime + V_dyn_ack_lifetime;
1253			break;
1254
1255		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
1256			if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
1257				V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
1258			q->expire = time_uptime + V_dyn_fin_lifetime;
1259			break;
1260
1261		default:
1262#if 0
1263			/*
1264			 * reset or some invalid combination, but can also
1265			 * occur if we use keep-state the wrong way.
1266			 */
1267			if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
1268				printf("invalid state: 0x%x\n", q->state);
1269#endif
1270			if (V_dyn_rst_lifetime >= V_dyn_keepalive_period)
1271				V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
1272			q->expire = time_uptime + V_dyn_rst_lifetime;
1273			break;
1274		}
1275	} else if (pkt->proto == IPPROTO_UDP) {
1276		q->expire = time_uptime + V_dyn_udp_lifetime;
1277	} else {
1278		/* other protocols */
1279		q->expire = time_uptime + V_dyn_short_lifetime;
1280	}
1281done:
1282	if (match_direction)
1283		*match_direction = dir;
1284	return q;
1285}
1286
1287static ipfw_dyn_rule *
1288lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
1289    struct tcphdr *tcp)
1290{
1291	ipfw_dyn_rule *q;
1292
1293	IPFW_DYN_LOCK();
1294	q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
1295	if (q == NULL)
1296		IPFW_DYN_UNLOCK();
1297	/* NB: return table locked when q is not NULL */
1298	return q;
1299}
1300
1301static void
1302realloc_dynamic_table(void)
1303{
1304	IPFW_DYN_LOCK_ASSERT();
1305
1306	/*
1307	 * Try reallocation, make sure we have a power of 2 and do
1308	 * not allow more than 64k entries. In case of overflow,
1309	 * default to 1024.
1310	 */
1311
1312	if (V_dyn_buckets > 65536)
1313		V_dyn_buckets = 1024;
1314	if ((V_dyn_buckets & (V_dyn_buckets-1)) != 0) { /* not a power of 2 */
1315		V_dyn_buckets = V_curr_dyn_buckets; /* reset */
1316		return;
1317	}
1318	V_curr_dyn_buckets = V_dyn_buckets;
1319	if (V_ipfw_dyn_v != NULL)
1320		free(V_ipfw_dyn_v, M_IPFW);
1321	for (;;) {
1322		V_ipfw_dyn_v = malloc(V_curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
1323		       M_IPFW, M_NOWAIT | M_ZERO);
1324		if (V_ipfw_dyn_v != NULL || V_curr_dyn_buckets <= 2)
1325			break;
1326		V_curr_dyn_buckets /= 2;
1327	}
1328}
1329
1330/**
1331 * Install state of type 'type' for a dynamic session.
1332 * The hash table contains two type of rules:
1333 * - regular rules (O_KEEP_STATE)
1334 * - rules for sessions with limited number of sess per user
1335 *   (O_LIMIT). When they are created, the parent is
1336 *   increased by 1, and decreased on delete. In this case,
1337 *   the third parameter is the parent rule and not the chain.
1338 * - "parent" rules for the above (O_LIMIT_PARENT).
1339 */
1340static ipfw_dyn_rule *
1341add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
1342{
1343	ipfw_dyn_rule *r;
1344	int i;
1345
1346	IPFW_DYN_LOCK_ASSERT();
1347
1348	if (V_ipfw_dyn_v == NULL ||
1349	    (V_dyn_count == 0 && V_dyn_buckets != V_curr_dyn_buckets)) {
1350		realloc_dynamic_table();
1351		if (V_ipfw_dyn_v == NULL)
1352			return NULL; /* failed ! */
1353	}
1354	i = hash_packet(id);
1355
1356	r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
1357	if (r == NULL) {
1358		printf ("ipfw: sorry cannot allocate state\n");
1359		return NULL;
1360	}
1361
1362	/* increase refcount on parent, and set pointer */
1363	if (dyn_type == O_LIMIT) {
1364		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
1365		if ( parent->dyn_type != O_LIMIT_PARENT)
1366			panic("invalid parent");
1367		parent->count++;
1368		r->parent = parent;
1369		rule = parent->rule;
1370	}
1371
1372	r->id = *id;
1373	r->expire = time_uptime + V_dyn_syn_lifetime;
1374	r->rule = rule;
1375	r->dyn_type = dyn_type;
1376	r->pcnt = r->bcnt = 0;
1377	r->count = 0;
1378
1379	r->bucket = i;
1380	r->next = V_ipfw_dyn_v[i];
1381	V_ipfw_dyn_v[i] = r;
1382	V_dyn_count++;
1383	DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1384	   dyn_type,
1385	   (r->id.src_ip), (r->id.src_port),
1386	   (r->id.dst_ip), (r->id.dst_port),
1387	   V_dyn_count ); )
1388	return r;
1389}
1390
1391/**
1392 * lookup dynamic parent rule using pkt and rule as search keys.
1393 * If the lookup fails, then install one.
1394 */
1395static ipfw_dyn_rule *
1396lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
1397{
1398	ipfw_dyn_rule *q;
1399	int i;
1400
1401	IPFW_DYN_LOCK_ASSERT();
1402
1403	if (V_ipfw_dyn_v) {
1404		int is_v6 = IS_IP6_FLOW_ID(pkt);
1405		i = hash_packet( pkt );
1406		for (q = V_ipfw_dyn_v[i] ; q != NULL ; q=q->next)
1407			if (q->dyn_type == O_LIMIT_PARENT &&
1408			    rule== q->rule &&
1409			    pkt->proto == q->id.proto &&
1410			    pkt->src_port == q->id.src_port &&
1411			    pkt->dst_port == q->id.dst_port &&
1412			    (
1413				(is_v6 &&
1414				 IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1415					&(q->id.src_ip6)) &&
1416				 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1417					&(q->id.dst_ip6))) ||
1418				(!is_v6 &&
1419				 pkt->src_ip == q->id.src_ip &&
1420				 pkt->dst_ip == q->id.dst_ip)
1421			    )
1422			) {
1423				q->expire = time_uptime + V_dyn_short_lifetime;
1424				DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
1425				return q;
1426			}
1427	}
1428	return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
1429}
1430
1431/**
1432 * Install dynamic state for rule type cmd->o.opcode
1433 *
1434 * Returns 1 (failure) if state is not installed because of errors or because
1435 * session limitations are enforced.
1436 */
1437static int
1438install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
1439    struct ip_fw_args *args, uint32_t tablearg)
1440{
1441	static int last_log;
1442	ipfw_dyn_rule *q;
1443	struct in_addr da;
1444	char src[48], dst[48];
1445
1446	src[0] = '\0';
1447	dst[0] = '\0';
1448
1449	DEB(
1450	printf("ipfw: %s: type %d 0x%08x %u -> 0x%08x %u\n",
1451	    __func__, cmd->o.opcode,
1452	    (args->f_id.src_ip), (args->f_id.src_port),
1453	    (args->f_id.dst_ip), (args->f_id.dst_port));
1454	)
1455
1456	IPFW_DYN_LOCK();
1457
1458	q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1459
1460	if (q != NULL) {	/* should never occur */
1461		if (last_log != time_uptime) {
1462			last_log = time_uptime;
1463			printf("ipfw: %s: entry already present, done\n",
1464			    __func__);
1465		}
1466		IPFW_DYN_UNLOCK();
1467		return (0);
1468	}
1469
1470	if (V_dyn_count >= V_dyn_max)
1471		/* Run out of slots, try to remove any expired rule. */
1472		remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
1473
1474	if (V_dyn_count >= V_dyn_max) {
1475		if (last_log != time_uptime) {
1476			last_log = time_uptime;
1477			printf("ipfw: %s: Too many dynamic rules\n", __func__);
1478		}
1479		IPFW_DYN_UNLOCK();
1480		return (1);	/* cannot install, notify caller */
1481	}
1482
1483	switch (cmd->o.opcode) {
1484	case O_KEEP_STATE:	/* bidir rule */
1485		add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
1486		break;
1487
1488	case O_LIMIT: {		/* limit number of sessions */
1489		struct ipfw_flow_id id;
1490		ipfw_dyn_rule *parent;
1491		uint32_t conn_limit;
1492		uint16_t limit_mask = cmd->limit_mask;
1493
1494		conn_limit = (cmd->conn_limit == IP_FW_TABLEARG) ?
1495		    tablearg : cmd->conn_limit;
1496
1497		DEB(
1498		if (cmd->conn_limit == IP_FW_TABLEARG)
1499			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
1500			    "(tablearg)\n", __func__, conn_limit);
1501		else
1502			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
1503			    __func__, conn_limit);
1504		)
1505
1506		id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
1507		id.proto = args->f_id.proto;
1508		id.addr_type = args->f_id.addr_type;
1509		id.fib = M_GETFIB(args->m);
1510
1511		if (IS_IP6_FLOW_ID (&(args->f_id))) {
1512			if (limit_mask & DYN_SRC_ADDR)
1513				id.src_ip6 = args->f_id.src_ip6;
1514			if (limit_mask & DYN_DST_ADDR)
1515				id.dst_ip6 = args->f_id.dst_ip6;
1516		} else {
1517			if (limit_mask & DYN_SRC_ADDR)
1518				id.src_ip = args->f_id.src_ip;
1519			if (limit_mask & DYN_DST_ADDR)
1520				id.dst_ip = args->f_id.dst_ip;
1521		}
1522		if (limit_mask & DYN_SRC_PORT)
1523			id.src_port = args->f_id.src_port;
1524		if (limit_mask & DYN_DST_PORT)
1525			id.dst_port = args->f_id.dst_port;
1526		if ((parent = lookup_dyn_parent(&id, rule)) == NULL) {
1527			printf("ipfw: %s: add parent failed\n", __func__);
1528			IPFW_DYN_UNLOCK();
1529			return (1);
1530		}
1531
1532		if (parent->count >= conn_limit) {
1533			/* See if we can remove some expired rule. */
1534			remove_dyn_rule(rule, parent);
1535			if (parent->count >= conn_limit) {
1536				if (V_fw_verbose && last_log != time_uptime) {
1537					last_log = time_uptime;
1538#ifdef INET6
1539					/*
1540					 * XXX IPv6 flows are not
1541					 * supported yet.
1542					 */
1543					if (IS_IP6_FLOW_ID(&(args->f_id))) {
1544						char ip6buf[INET6_ADDRSTRLEN];
1545						snprintf(src, sizeof(src),
1546						    "[%s]", ip6_sprintf(ip6buf,
1547							&args->f_id.src_ip6));
1548						snprintf(dst, sizeof(dst),
1549						    "[%s]", ip6_sprintf(ip6buf,
1550							&args->f_id.dst_ip6));
1551					} else
1552#endif
1553					{
1554						da.s_addr =
1555						    htonl(args->f_id.src_ip);
1556						inet_ntoa_r(da, src);
1557						da.s_addr =
1558						    htonl(args->f_id.dst_ip);
1559						inet_ntoa_r(da, dst);
1560					}
1561					log(LOG_SECURITY | LOG_DEBUG,
1562					    "ipfw: %d %s %s:%u -> %s:%u, %s\n",
1563					    parent->rule->rulenum,
1564					    "drop session",
1565					    src, (args->f_id.src_port),
1566					    dst, (args->f_id.dst_port),
1567					    "too many entries");
1568				}
1569				IPFW_DYN_UNLOCK();
1570				return (1);
1571			}
1572		}
1573		add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1574		break;
1575	}
1576	default:
1577		printf("ipfw: %s: unknown dynamic rule type %u\n",
1578		    __func__, cmd->o.opcode);
1579		IPFW_DYN_UNLOCK();
1580		return (1);
1581	}
1582
1583	/* XXX just set lifetime */
1584	lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1585
1586	IPFW_DYN_UNLOCK();
1587	return (0);
1588}
1589
1590/*
1591 * Generate a TCP packet, containing either a RST or a keepalive.
1592 * When flags & TH_RST, we are sending a RST packet, because of a
1593 * "reset" action matched the packet.
1594 * Otherwise we are sending a keepalive, and flags & TH_
1595 * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
1596 * so that MAC can label the reply appropriately.
1597 */
1598static struct mbuf *
1599send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
1600    u_int32_t ack, int flags)
1601{
1602	struct mbuf *m;
1603	struct ip *ip;
1604	struct tcphdr *tcp;
1605
1606	MGETHDR(m, M_DONTWAIT, MT_DATA);
1607	if (m == 0)
1608		return (NULL);
1609	m->m_pkthdr.rcvif = (struct ifnet *)0;
1610
1611	M_SETFIB(m, id->fib);
1612#ifdef MAC
1613	if (replyto != NULL)
1614		mac_netinet_firewall_reply(replyto, m);
1615	else
1616		mac_netinet_firewall_send(m);
1617#else
1618	(void)replyto;		/* don't warn about unused arg */
1619#endif
1620
1621	m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1622	m->m_data += max_linkhdr;
1623
1624	ip = mtod(m, struct ip *);
1625	bzero(ip, m->m_len);
1626	tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1627	ip->ip_p = IPPROTO_TCP;
1628	tcp->th_off = 5;
1629	/*
1630	 * Assume we are sending a RST (or a keepalive in the reverse
1631	 * direction), swap src and destination addresses and ports.
1632	 */
1633	ip->ip_src.s_addr = htonl(id->dst_ip);
1634	ip->ip_dst.s_addr = htonl(id->src_ip);
1635	tcp->th_sport = htons(id->dst_port);
1636	tcp->th_dport = htons(id->src_port);
1637	if (flags & TH_RST) {	/* we are sending a RST */
1638		if (flags & TH_ACK) {
1639			tcp->th_seq = htonl(ack);
1640			tcp->th_ack = htonl(0);
1641			tcp->th_flags = TH_RST;
1642		} else {
1643			if (flags & TH_SYN)
1644				seq++;
1645			tcp->th_seq = htonl(0);
1646			tcp->th_ack = htonl(seq);
1647			tcp->th_flags = TH_RST | TH_ACK;
1648		}
1649	} else {
1650		/*
1651		 * We are sending a keepalive. flags & TH_SYN determines
1652		 * the direction, forward if set, reverse if clear.
1653		 * NOTE: seq and ack are always assumed to be correct
1654		 * as set by the caller. This may be confusing...
1655		 */
1656		if (flags & TH_SYN) {
1657			/*
1658			 * we have to rewrite the correct addresses!
1659			 */
1660			ip->ip_dst.s_addr = htonl(id->dst_ip);
1661			ip->ip_src.s_addr = htonl(id->src_ip);
1662			tcp->th_dport = htons(id->dst_port);
1663			tcp->th_sport = htons(id->src_port);
1664		}
1665		tcp->th_seq = htonl(seq);
1666		tcp->th_ack = htonl(ack);
1667		tcp->th_flags = TH_ACK;
1668	}
1669	/*
1670	 * set ip_len to the payload size so we can compute
1671	 * the tcp checksum on the pseudoheader
1672	 * XXX check this, could save a couple of words ?
1673	 */
1674	ip->ip_len = htons(sizeof(struct tcphdr));
1675	tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1676	/*
1677	 * now fill fields left out earlier
1678	 */
1679	ip->ip_ttl = V_ip_defttl;
1680	ip->ip_len = m->m_pkthdr.len;
1681	m->m_flags |= M_SKIP_FIREWALL;
1682	return (m);
1683}
1684
1685/*
1686 * sends a reject message, consuming the mbuf passed as an argument.
1687 */
1688static void
1689send_reject(struct ip_fw_args *args, int code, int ip_len, struct ip *ip)
1690{
1691
1692#if 0
1693	/* XXX When ip is not guaranteed to be at mtod() we will
1694	 * need to account for this */
1695	 * The mbuf will however be thrown away so we can adjust it.
1696	 * Remember we did an m_pullup on it already so we
1697	 * can make some assumptions about contiguousness.
1698	 */
1699	if (args->L3offset)
1700		m_adj(m, args->L3offset);
1701#endif
1702	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1703		/* We need the IP header in host order for icmp_error(). */
1704		if (args->eh != NULL) {
1705			ip->ip_len = ntohs(ip->ip_len);
1706			ip->ip_off = ntohs(ip->ip_off);
1707		}
1708		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1709	} else if (args->f_id.proto == IPPROTO_TCP) {
1710		struct tcphdr *const tcp =
1711		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1712		if ( (tcp->th_flags & TH_RST) == 0) {
1713			struct mbuf *m;
1714			m = send_pkt(args->m, &(args->f_id),
1715				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
1716				tcp->th_flags | TH_RST);
1717			if (m != NULL)
1718				ip_output(m, NULL, NULL, 0, NULL, NULL);
1719		}
1720		m_freem(args->m);
1721	} else
1722		m_freem(args->m);
1723	args->m = NULL;
1724}
1725
1726/**
1727 *
1728 * Given an ip_fw *, lookup_next_rule will return a pointer
1729 * to the next rule, which can be either the jump
1730 * target (for skipto instructions) or the next one in the list (in
1731 * all other cases including a missing jump target).
1732 * The result is also written in the "next_rule" field of the rule.
1733 * Backward jumps are not allowed, so start looking from the next
1734 * rule...
1735 *
1736 * This never returns NULL -- in case we do not have an exact match,
1737 * the next rule is returned. When the ruleset is changed,
1738 * pointers are flushed so we are always correct.
1739 */
1740
1741static struct ip_fw *
1742lookup_next_rule(struct ip_fw *me, u_int32_t tablearg)
1743{
1744	struct ip_fw *rule = NULL;
1745	ipfw_insn *cmd;
1746	u_int16_t	rulenum;
1747
1748	/* look for action, in case it is a skipto */
1749	cmd = ACTION_PTR(me);
1750	if (cmd->opcode == O_LOG)
1751		cmd += F_LEN(cmd);
1752	if (cmd->opcode == O_ALTQ)
1753		cmd += F_LEN(cmd);
1754	if (cmd->opcode == O_TAG)
1755		cmd += F_LEN(cmd);
1756	if (cmd->opcode == O_SKIPTO ) {
1757		if (tablearg != 0) {
1758			rulenum = (u_int16_t)tablearg;
1759		} else {
1760			rulenum = cmd->arg1;
1761		}
1762		for (rule = me->next; rule ; rule = rule->next) {
1763			if (rule->rulenum >= rulenum) {
1764				break;
1765			}
1766		}
1767	}
1768	if (rule == NULL)			/* failure or not a skipto */
1769		rule = me->next;
1770	me->next_rule = rule;
1771	return rule;
1772}
1773
1774static int
1775add_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1776    uint8_t mlen, uint32_t value)
1777{
1778	struct radix_node_head *rnh;
1779	struct table_entry *ent;
1780
1781	if (tbl >= IPFW_TABLES_MAX)
1782		return (EINVAL);
1783	rnh = ch->tables[tbl];
1784	ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
1785	if (ent == NULL)
1786		return (ENOMEM);
1787	ent->value = value;
1788	ent->addr.sin_len = ent->mask.sin_len = 8;
1789	ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1790	ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
1791	IPFW_WLOCK(&V_layer3_chain);
1792	if (rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent) ==
1793	    NULL) {
1794		IPFW_WUNLOCK(&V_layer3_chain);
1795		free(ent, M_IPFW_TBL);
1796		return (EEXIST);
1797	}
1798	IPFW_WUNLOCK(&V_layer3_chain);
1799	return (0);
1800}
1801
1802static int
1803del_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1804    uint8_t mlen)
1805{
1806	struct radix_node_head *rnh;
1807	struct table_entry *ent;
1808	struct sockaddr_in sa, mask;
1809
1810	if (tbl >= IPFW_TABLES_MAX)
1811		return (EINVAL);
1812	rnh = ch->tables[tbl];
1813	sa.sin_len = mask.sin_len = 8;
1814	mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1815	sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
1816	IPFW_WLOCK(ch);
1817	ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
1818	if (ent == NULL) {
1819		IPFW_WUNLOCK(ch);
1820		return (ESRCH);
1821	}
1822	IPFW_WUNLOCK(ch);
1823	free(ent, M_IPFW_TBL);
1824	return (0);
1825}
1826
1827static int
1828flush_table_entry(struct radix_node *rn, void *arg)
1829{
1830	struct radix_node_head * const rnh = arg;
1831	struct table_entry *ent;
1832
1833	ent = (struct table_entry *)
1834	    rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
1835	if (ent != NULL)
1836		free(ent, M_IPFW_TBL);
1837	return (0);
1838}
1839
1840static int
1841flush_table(struct ip_fw_chain *ch, uint16_t tbl)
1842{
1843	struct radix_node_head *rnh;
1844
1845	IPFW_WLOCK_ASSERT(ch);
1846
1847	if (tbl >= IPFW_TABLES_MAX)
1848		return (EINVAL);
1849	rnh = ch->tables[tbl];
1850	KASSERT(rnh != NULL, ("NULL IPFW table"));
1851	rnh->rnh_walktree(rnh, flush_table_entry, rnh);
1852	return (0);
1853}
1854
1855static void
1856flush_tables(struct ip_fw_chain *ch)
1857{
1858	uint16_t tbl;
1859
1860	IPFW_WLOCK_ASSERT(ch);
1861
1862	for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
1863		flush_table(ch, tbl);
1864}
1865
1866static int
1867init_tables(struct ip_fw_chain *ch)
1868{
1869	int i;
1870	uint16_t j;
1871
1872	for (i = 0; i < IPFW_TABLES_MAX; i++) {
1873		if (!rn_inithead((void **)&ch->tables[i], 32)) {
1874			for (j = 0; j < i; j++) {
1875				(void) flush_table(ch, j);
1876			}
1877			return (ENOMEM);
1878		}
1879	}
1880	return (0);
1881}
1882
1883static int
1884lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1885    uint32_t *val)
1886{
1887	struct radix_node_head *rnh;
1888	struct table_entry *ent;
1889	struct sockaddr_in sa;
1890
1891	if (tbl >= IPFW_TABLES_MAX)
1892		return (0);
1893	rnh = ch->tables[tbl];
1894	sa.sin_len = 8;
1895	sa.sin_addr.s_addr = addr;
1896	ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
1897	if (ent != NULL) {
1898		*val = ent->value;
1899		return (1);
1900	}
1901	return (0);
1902}
1903
1904static int
1905count_table_entry(struct radix_node *rn, void *arg)
1906{
1907	u_int32_t * const cnt = arg;
1908
1909	(*cnt)++;
1910	return (0);
1911}
1912
1913static int
1914count_table(struct ip_fw_chain *ch, uint32_t tbl, uint32_t *cnt)
1915{
1916	struct radix_node_head *rnh;
1917
1918	if (tbl >= IPFW_TABLES_MAX)
1919		return (EINVAL);
1920	rnh = ch->tables[tbl];
1921	*cnt = 0;
1922	rnh->rnh_walktree(rnh, count_table_entry, cnt);
1923	return (0);
1924}
1925
1926static int
1927dump_table_entry(struct radix_node *rn, void *arg)
1928{
1929	struct table_entry * const n = (struct table_entry *)rn;
1930	ipfw_table * const tbl = arg;
1931	ipfw_table_entry *ent;
1932
1933	if (tbl->cnt == tbl->size)
1934		return (1);
1935	ent = &tbl->ent[tbl->cnt];
1936	ent->tbl = tbl->tbl;
1937	if (in_nullhost(n->mask.sin_addr))
1938		ent->masklen = 0;
1939	else
1940		ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
1941	ent->addr = n->addr.sin_addr.s_addr;
1942	ent->value = n->value;
1943	tbl->cnt++;
1944	return (0);
1945}
1946
1947static int
1948dump_table(struct ip_fw_chain *ch, ipfw_table *tbl)
1949{
1950	struct radix_node_head *rnh;
1951
1952	if (tbl->tbl >= IPFW_TABLES_MAX)
1953		return (EINVAL);
1954	rnh = ch->tables[tbl->tbl];
1955	tbl->cnt = 0;
1956	rnh->rnh_walktree(rnh, dump_table_entry, tbl);
1957	return (0);
1958}
1959
1960static void
1961fill_ugid_cache(struct inpcb *inp, struct ip_fw_ugid *ugp)
1962{
1963	struct ucred *cr;
1964
1965	if (inp->inp_socket != NULL) {
1966		cr = inp->inp_socket->so_cred;
1967		ugp->fw_prid = jailed(cr) ?
1968		    cr->cr_prison->pr_id : -1;
1969		ugp->fw_uid = cr->cr_uid;
1970		ugp->fw_ngroups = cr->cr_ngroups;
1971		bcopy(cr->cr_groups, ugp->fw_groups,
1972		    sizeof(ugp->fw_groups));
1973	}
1974}
1975
1976static int
1977check_uidgid(ipfw_insn_u32 *insn, int proto, struct ifnet *oif,
1978    struct in_addr dst_ip, u_int16_t dst_port, struct in_addr src_ip,
1979    u_int16_t src_port, struct ip_fw_ugid *ugp, int *lookup,
1980    struct inpcb *inp)
1981{
1982	struct inpcbinfo *pi;
1983	int wildcard;
1984	struct inpcb *pcb;
1985	int match;
1986	gid_t *gp;
1987
1988	/*
1989	 * Check to see if the UDP or TCP stack supplied us with
1990	 * the PCB. If so, rather then holding a lock and looking
1991	 * up the PCB, we can use the one that was supplied.
1992	 */
1993	if (inp && *lookup == 0) {
1994		INP_LOCK_ASSERT(inp);
1995		if (inp->inp_socket != NULL) {
1996			fill_ugid_cache(inp, ugp);
1997			*lookup = 1;
1998		}
1999	}
2000	/*
2001	 * If we have already been here and the packet has no
2002	 * PCB entry associated with it, then we can safely
2003	 * assume that this is a no match.
2004	 */
2005	if (*lookup == -1)
2006		return (0);
2007	if (proto == IPPROTO_TCP) {
2008		wildcard = 0;
2009		pi = &V_tcbinfo;
2010	} else if (proto == IPPROTO_UDP) {
2011		wildcard = INPLOOKUP_WILDCARD;
2012		pi = &V_udbinfo;
2013	} else
2014		return 0;
2015	match = 0;
2016	if (*lookup == 0) {
2017		INP_INFO_RLOCK(pi);
2018		pcb =  (oif) ?
2019			in_pcblookup_hash(pi,
2020				dst_ip, htons(dst_port),
2021				src_ip, htons(src_port),
2022				wildcard, oif) :
2023			in_pcblookup_hash(pi,
2024				src_ip, htons(src_port),
2025				dst_ip, htons(dst_port),
2026				wildcard, NULL);
2027		if (pcb != NULL) {
2028			INP_RLOCK(pcb);
2029			if (pcb->inp_socket != NULL) {
2030				fill_ugid_cache(pcb, ugp);
2031				*lookup = 1;
2032			}
2033			INP_RUNLOCK(pcb);
2034		}
2035		INP_INFO_RUNLOCK(pi);
2036		if (*lookup == 0) {
2037			/*
2038			 * If the lookup did not yield any results, there
2039			 * is no sense in coming back and trying again. So
2040			 * we can set lookup to -1 and ensure that we wont
2041			 * bother the pcb system again.
2042			 */
2043			*lookup = -1;
2044			return (0);
2045		}
2046	}
2047	if (insn->o.opcode == O_UID)
2048		match = (ugp->fw_uid == (uid_t)insn->d[0]);
2049	else if (insn->o.opcode == O_GID) {
2050		for (gp = ugp->fw_groups;
2051			gp < &ugp->fw_groups[ugp->fw_ngroups]; gp++)
2052			if (*gp == (gid_t)insn->d[0]) {
2053				match = 1;
2054				break;
2055			}
2056	} else if (insn->o.opcode == O_JAIL)
2057		match = (ugp->fw_prid == (int)insn->d[0]);
2058	return match;
2059}
2060
2061/*
2062 * The main check routine for the firewall.
2063 *
2064 * All arguments are in args so we can modify them and return them
2065 * back to the caller.
2066 *
2067 * Parameters:
2068 *
2069 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
2070 *		Starts with the IP header.
2071 *	args->eh (in)	Mac header if present, or NULL for layer3 packet.
2072 *	args->L3offset	Number of bytes bypassed if we came from L2.
2073 *			e.g. often sizeof(eh)  ** NOTYET **
2074 *	args->oif	Outgoing interface, or NULL if packet is incoming.
2075 *		The incoming interface is in the mbuf. (in)
2076 *	args->divert_rule (in/out)
2077 *		Skip up to the first rule past this rule number;
2078 *		upon return, non-zero port number for divert or tee.
2079 *
2080 *	args->rule	Pointer to the last matching rule (in/out)
2081 *	args->next_hop	Socket we are forwarding to (out).
2082 *	args->f_id	Addresses grabbed from the packet (out)
2083 * 	args->cookie	a cookie depending on rule action
2084 *
2085 * Return value:
2086 *
2087 *	IP_FW_PASS	the packet must be accepted
2088 *	IP_FW_DENY	the packet must be dropped
2089 *	IP_FW_DIVERT	divert packet, port in m_tag
2090 *	IP_FW_TEE	tee packet, port in m_tag
2091 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
2092 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
2093 *
2094 */
2095int
2096ipfw_chk(struct ip_fw_args *args)
2097{
2098	/*
2099	 * Local variables holding state during the processing of a packet:
2100	 *
2101	 * IMPORTANT NOTE: to speed up the processing of rules, there
2102	 * are some assumption on the values of the variables, which
2103	 * are documented here. Should you change them, please check
2104	 * the implementation of the various instructions to make sure
2105	 * that they still work.
2106	 *
2107	 * args->eh	The MAC header. It is non-null for a layer2
2108	 *	packet, it is NULL for a layer-3 packet.
2109	 * **notyet**
2110	 * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
2111	 *
2112	 * m | args->m	Pointer to the mbuf, as received from the caller.
2113	 *	It may change if ipfw_chk() does an m_pullup, or if it
2114	 *	consumes the packet because it calls send_reject().
2115	 *	XXX This has to change, so that ipfw_chk() never modifies
2116	 *	or consumes the buffer.
2117	 * ip	is the beginning of the ip(4 or 6) header.
2118	 *	Calculated by adding the L3offset to the start of data.
2119	 *	(Until we start using L3offset, the packet is
2120	 *	supposed to start with the ip header).
2121	 */
2122	struct mbuf *m = args->m;
2123	struct ip *ip = mtod(m, struct ip *);
2124
2125	/*
2126	 * For rules which contain uid/gid or jail constraints, cache
2127	 * a copy of the users credentials after the pcb lookup has been
2128	 * executed. This will speed up the processing of rules with
2129	 * these types of constraints, as well as decrease contention
2130	 * on pcb related locks.
2131	 */
2132	struct ip_fw_ugid fw_ugid_cache;
2133	int ugid_lookup = 0;
2134
2135	/*
2136	 * divinput_flags	If non-zero, set to the IP_FW_DIVERT_*_FLAG
2137	 *	associated with a packet input on a divert socket.  This
2138	 *	will allow to distinguish traffic and its direction when
2139	 *	it originates from a divert socket.
2140	 */
2141	u_int divinput_flags = 0;
2142
2143	/*
2144	 * oif | args->oif	If NULL, ipfw_chk has been called on the
2145	 *	inbound path (ether_input, ip_input).
2146	 *	If non-NULL, ipfw_chk has been called on the outbound path
2147	 *	(ether_output, ip_output).
2148	 */
2149	struct ifnet *oif = args->oif;
2150
2151	struct ip_fw *f = NULL;		/* matching rule */
2152	int retval = 0;
2153
2154	/*
2155	 * hlen	The length of the IP header.
2156	 */
2157	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
2158
2159	/*
2160	 * offset	The offset of a fragment. offset != 0 means that
2161	 *	we have a fragment at this offset of an IPv4 packet.
2162	 *	offset == 0 means that (if this is an IPv4 packet)
2163	 *	this is the first or only fragment.
2164	 *	For IPv6 offset == 0 means there is no Fragment Header.
2165	 *	If offset != 0 for IPv6 always use correct mask to
2166	 *	get the correct offset because we add IP6F_MORE_FRAG
2167	 *	to be able to dectect the first fragment which would
2168	 *	otherwise have offset = 0.
2169	 */
2170	u_short offset = 0;
2171
2172	/*
2173	 * Local copies of addresses. They are only valid if we have
2174	 * an IP packet.
2175	 *
2176	 * proto	The protocol. Set to 0 for non-ip packets,
2177	 *	or to the protocol read from the packet otherwise.
2178	 *	proto != 0 means that we have an IPv4 packet.
2179	 *
2180	 * src_port, dst_port	port numbers, in HOST format. Only
2181	 *	valid for TCP and UDP packets.
2182	 *
2183	 * src_ip, dst_ip	ip addresses, in NETWORK format.
2184	 *	Only valid for IPv4 packets.
2185	 */
2186	u_int8_t proto;
2187	u_int16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
2188	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
2189	u_int16_t ip_len=0;
2190	int pktlen;
2191	u_int16_t	etype = 0;	/* Host order stored ether type */
2192
2193	/*
2194	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
2195	 * 	MATCH_NONE when checked and not matched (q = NULL),
2196	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
2197	 */
2198	int dyn_dir = MATCH_UNKNOWN;
2199	ipfw_dyn_rule *q = NULL;
2200	struct ip_fw_chain *chain = &V_layer3_chain;
2201	struct m_tag *mtag;
2202
2203	/*
2204	 * We store in ulp a pointer to the upper layer protocol header.
2205	 * In the ipv4 case this is easy to determine from the header,
2206	 * but for ipv6 we might have some additional headers in the middle.
2207	 * ulp is NULL if not found.
2208	 */
2209	void *ulp = NULL;		/* upper layer protocol pointer. */
2210	/* XXX ipv6 variables */
2211	int is_ipv6 = 0;
2212	u_int16_t ext_hd = 0;	/* bits vector for extension header filtering */
2213	/* end of ipv6 variables */
2214	int is_ipv4 = 0;
2215
2216	if (m->m_flags & M_SKIP_FIREWALL)
2217		return (IP_FW_PASS);	/* accept */
2218
2219	pktlen = m->m_pkthdr.len;
2220	args->f_id.fib = M_GETFIB(m); /* note mbuf not altered) */
2221	proto = args->f_id.proto = 0;	/* mark f_id invalid */
2222		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
2223
2224/*
2225 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
2226 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
2227 * pointer might become stale after other pullups (but we never use it
2228 * this way).
2229 */
2230#define PULLUP_TO(len, p, T)						\
2231do {									\
2232	int x = (len) + sizeof(T);					\
2233	if ((m)->m_len < x) {						\
2234		args->m = m = m_pullup(m, x);				\
2235		if (m == NULL)						\
2236			goto pullup_failed;				\
2237	}								\
2238	p = (mtod(m, char *) + (len));					\
2239} while (0)
2240
2241	/*
2242	 * if we have an ether header,
2243	 */
2244	if (args->eh)
2245		etype = ntohs(args->eh->ether_type);
2246
2247	/* Identify IP packets and fill up variables. */
2248	if (pktlen >= sizeof(struct ip6_hdr) &&
2249	    (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
2250		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
2251		is_ipv6 = 1;
2252		args->f_id.addr_type = 6;
2253		hlen = sizeof(struct ip6_hdr);
2254		proto = ip6->ip6_nxt;
2255
2256		/* Search extension headers to find upper layer protocols */
2257		while (ulp == NULL) {
2258			switch (proto) {
2259			case IPPROTO_ICMPV6:
2260				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
2261				args->f_id.flags = ICMP6(ulp)->icmp6_type;
2262				break;
2263
2264			case IPPROTO_TCP:
2265				PULLUP_TO(hlen, ulp, struct tcphdr);
2266				dst_port = TCP(ulp)->th_dport;
2267				src_port = TCP(ulp)->th_sport;
2268				args->f_id.flags = TCP(ulp)->th_flags;
2269				break;
2270
2271			case IPPROTO_SCTP:
2272				PULLUP_TO(hlen, ulp, struct sctphdr);
2273				src_port = SCTP(ulp)->src_port;
2274				dst_port = SCTP(ulp)->dest_port;
2275				break;
2276
2277			case IPPROTO_UDP:
2278				PULLUP_TO(hlen, ulp, struct udphdr);
2279				dst_port = UDP(ulp)->uh_dport;
2280				src_port = UDP(ulp)->uh_sport;
2281				break;
2282
2283			case IPPROTO_HOPOPTS:	/* RFC 2460 */
2284				PULLUP_TO(hlen, ulp, struct ip6_hbh);
2285				ext_hd |= EXT_HOPOPTS;
2286				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2287				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2288				ulp = NULL;
2289				break;
2290
2291			case IPPROTO_ROUTING:	/* RFC 2460 */
2292				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
2293				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
2294				case 0:
2295					ext_hd |= EXT_RTHDR0;
2296					break;
2297				case 2:
2298					ext_hd |= EXT_RTHDR2;
2299					break;
2300				default:
2301					printf("IPFW2: IPV6 - Unknown Routing "
2302					    "Header type(%d)\n",
2303					    ((struct ip6_rthdr *)ulp)->ip6r_type);
2304					if (V_fw_deny_unknown_exthdrs)
2305					    return (IP_FW_DENY);
2306					break;
2307				}
2308				ext_hd |= EXT_ROUTING;
2309				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
2310				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
2311				ulp = NULL;
2312				break;
2313
2314			case IPPROTO_FRAGMENT:	/* RFC 2460 */
2315				PULLUP_TO(hlen, ulp, struct ip6_frag);
2316				ext_hd |= EXT_FRAGMENT;
2317				hlen += sizeof (struct ip6_frag);
2318				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
2319				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
2320					IP6F_OFF_MASK;
2321				/* Add IP6F_MORE_FRAG for offset of first
2322				 * fragment to be != 0. */
2323				offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
2324					IP6F_MORE_FRAG;
2325				if (offset == 0) {
2326					printf("IPFW2: IPV6 - Invalid Fragment "
2327					    "Header\n");
2328					if (V_fw_deny_unknown_exthdrs)
2329					    return (IP_FW_DENY);
2330					break;
2331				}
2332				args->f_id.frag_id6 =
2333				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
2334				ulp = NULL;
2335				break;
2336
2337			case IPPROTO_DSTOPTS:	/* RFC 2460 */
2338				PULLUP_TO(hlen, ulp, struct ip6_hbh);
2339				ext_hd |= EXT_DSTOPTS;
2340				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2341				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2342				ulp = NULL;
2343				break;
2344
2345			case IPPROTO_AH:	/* RFC 2402 */
2346				PULLUP_TO(hlen, ulp, struct ip6_ext);
2347				ext_hd |= EXT_AH;
2348				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
2349				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
2350				ulp = NULL;
2351				break;
2352
2353			case IPPROTO_ESP:	/* RFC 2406 */
2354				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
2355				/* Anything past Seq# is variable length and
2356				 * data past this ext. header is encrypted. */
2357				ext_hd |= EXT_ESP;
2358				break;
2359
2360			case IPPROTO_NONE:	/* RFC 2460 */
2361				/*
2362				 * Packet ends here, and IPv6 header has
2363				 * already been pulled up. If ip6e_len!=0
2364				 * then octets must be ignored.
2365				 */
2366				ulp = ip; /* non-NULL to get out of loop. */
2367				break;
2368
2369			case IPPROTO_OSPFIGP:
2370				/* XXX OSPF header check? */
2371				PULLUP_TO(hlen, ulp, struct ip6_ext);
2372				break;
2373
2374			case IPPROTO_PIM:
2375				/* XXX PIM header check? */
2376				PULLUP_TO(hlen, ulp, struct pim);
2377				break;
2378
2379			case IPPROTO_CARP:
2380				PULLUP_TO(hlen, ulp, struct carp_header);
2381				if (((struct carp_header *)ulp)->carp_version !=
2382				    CARP_VERSION)
2383					return (IP_FW_DENY);
2384				if (((struct carp_header *)ulp)->carp_type !=
2385				    CARP_ADVERTISEMENT)
2386					return (IP_FW_DENY);
2387				break;
2388
2389			case IPPROTO_IPV6:	/* RFC 2893 */
2390				PULLUP_TO(hlen, ulp, struct ip6_hdr);
2391				break;
2392
2393			case IPPROTO_IPV4:	/* RFC 2893 */
2394				PULLUP_TO(hlen, ulp, struct ip);
2395				break;
2396
2397			default:
2398				printf("IPFW2: IPV6 - Unknown Extension "
2399				    "Header(%d), ext_hd=%x\n", proto, ext_hd);
2400				if (V_fw_deny_unknown_exthdrs)
2401				    return (IP_FW_DENY);
2402				PULLUP_TO(hlen, ulp, struct ip6_ext);
2403				break;
2404			} /*switch */
2405		}
2406		ip = mtod(m, struct ip *);
2407		ip6 = (struct ip6_hdr *)ip;
2408		args->f_id.src_ip6 = ip6->ip6_src;
2409		args->f_id.dst_ip6 = ip6->ip6_dst;
2410		args->f_id.src_ip = 0;
2411		args->f_id.dst_ip = 0;
2412		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
2413	} else if (pktlen >= sizeof(struct ip) &&
2414	    (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
2415	    	is_ipv4 = 1;
2416		hlen = ip->ip_hl << 2;
2417		args->f_id.addr_type = 4;
2418
2419		/*
2420		 * Collect parameters into local variables for faster matching.
2421		 */
2422		proto = ip->ip_p;
2423		src_ip = ip->ip_src;
2424		dst_ip = ip->ip_dst;
2425		if (args->eh != NULL) { /* layer 2 packets are as on the wire */
2426			offset = ntohs(ip->ip_off) & IP_OFFMASK;
2427			ip_len = ntohs(ip->ip_len);
2428		} else {
2429			offset = ip->ip_off & IP_OFFMASK;
2430			ip_len = ip->ip_len;
2431		}
2432		pktlen = ip_len < pktlen ? ip_len : pktlen;
2433
2434		if (offset == 0) {
2435			switch (proto) {
2436			case IPPROTO_TCP:
2437				PULLUP_TO(hlen, ulp, struct tcphdr);
2438				dst_port = TCP(ulp)->th_dport;
2439				src_port = TCP(ulp)->th_sport;
2440				args->f_id.flags = TCP(ulp)->th_flags;
2441				break;
2442
2443			case IPPROTO_UDP:
2444				PULLUP_TO(hlen, ulp, struct udphdr);
2445				dst_port = UDP(ulp)->uh_dport;
2446				src_port = UDP(ulp)->uh_sport;
2447				break;
2448
2449			case IPPROTO_ICMP:
2450				PULLUP_TO(hlen, ulp, struct icmphdr);
2451				args->f_id.flags = ICMP(ulp)->icmp_type;
2452				break;
2453
2454			default:
2455				break;
2456			}
2457		}
2458
2459		ip = mtod(m, struct ip *);
2460		args->f_id.src_ip = ntohl(src_ip.s_addr);
2461		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
2462	}
2463#undef PULLUP_TO
2464	if (proto) { /* we may have port numbers, store them */
2465		args->f_id.proto = proto;
2466		args->f_id.src_port = src_port = ntohs(src_port);
2467		args->f_id.dst_port = dst_port = ntohs(dst_port);
2468	}
2469
2470	IPFW_RLOCK(chain);
2471	mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
2472	if (args->rule) {
2473		/*
2474		 * Packet has already been tagged. Look for the next rule
2475		 * to restart processing.
2476		 *
2477		 * If fw_one_pass != 0 then just accept it.
2478		 * XXX should not happen here, but optimized out in
2479		 * the caller.
2480		 */
2481		if (V_fw_one_pass) {
2482			IPFW_RUNLOCK(chain);
2483			return (IP_FW_PASS);
2484		}
2485
2486		f = args->rule->next_rule;
2487		if (f == NULL)
2488			f = lookup_next_rule(args->rule, 0);
2489	} else {
2490		/*
2491		 * Find the starting rule. It can be either the first
2492		 * one, or the one after divert_rule if asked so.
2493		 */
2494		int skipto = mtag ? divert_cookie(mtag) : 0;
2495
2496		f = chain->rules;
2497		if (args->eh == NULL && skipto != 0) {
2498			if (skipto >= IPFW_DEFAULT_RULE) {
2499				IPFW_RUNLOCK(chain);
2500				return (IP_FW_DENY); /* invalid */
2501			}
2502			while (f && f->rulenum <= skipto)
2503				f = f->next;
2504			if (f == NULL) {	/* drop packet */
2505				IPFW_RUNLOCK(chain);
2506				return (IP_FW_DENY);
2507			}
2508		}
2509	}
2510	/* reset divert rule to avoid confusion later */
2511	if (mtag) {
2512		divinput_flags = divert_info(mtag) &
2513		    (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
2514		m_tag_delete(m, mtag);
2515	}
2516
2517	/*
2518	 * Now scan the rules, and parse microinstructions for each rule.
2519	 */
2520	for (; f; f = f->next) {
2521		ipfw_insn *cmd;
2522		uint32_t tablearg = 0;
2523		int l, cmdlen, skip_or; /* skip rest of OR block */
2524
2525again:
2526		if (V_set_disable & (1 << f->set) )
2527			continue;
2528
2529		skip_or = 0;
2530		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
2531		    l -= cmdlen, cmd += cmdlen) {
2532			int match;
2533
2534			/*
2535			 * check_body is a jump target used when we find a
2536			 * CHECK_STATE, and need to jump to the body of
2537			 * the target rule.
2538			 */
2539
2540check_body:
2541			cmdlen = F_LEN(cmd);
2542			/*
2543			 * An OR block (insn_1 || .. || insn_n) has the
2544			 * F_OR bit set in all but the last instruction.
2545			 * The first match will set "skip_or", and cause
2546			 * the following instructions to be skipped until
2547			 * past the one with the F_OR bit clear.
2548			 */
2549			if (skip_or) {		/* skip this instruction */
2550				if ((cmd->len & F_OR) == 0)
2551					skip_or = 0;	/* next one is good */
2552				continue;
2553			}
2554			match = 0; /* set to 1 if we succeed */
2555
2556			switch (cmd->opcode) {
2557			/*
2558			 * The first set of opcodes compares the packet's
2559			 * fields with some pattern, setting 'match' if a
2560			 * match is found. At the end of the loop there is
2561			 * logic to deal with F_NOT and F_OR flags associated
2562			 * with the opcode.
2563			 */
2564			case O_NOP:
2565				match = 1;
2566				break;
2567
2568			case O_FORWARD_MAC:
2569				printf("ipfw: opcode %d unimplemented\n",
2570				    cmd->opcode);
2571				break;
2572
2573			case O_GID:
2574			case O_UID:
2575			case O_JAIL:
2576				/*
2577				 * We only check offset == 0 && proto != 0,
2578				 * as this ensures that we have a
2579				 * packet with the ports info.
2580				 */
2581				if (offset!=0)
2582					break;
2583				if (is_ipv6) /* XXX to be fixed later */
2584					break;
2585				if (proto == IPPROTO_TCP ||
2586				    proto == IPPROTO_UDP)
2587					match = check_uidgid(
2588						    (ipfw_insn_u32 *)cmd,
2589						    proto, oif,
2590						    dst_ip, dst_port,
2591						    src_ip, src_port, &fw_ugid_cache,
2592						    &ugid_lookup, args->inp);
2593				break;
2594
2595			case O_RECV:
2596				match = iface_match(m->m_pkthdr.rcvif,
2597				    (ipfw_insn_if *)cmd);
2598				break;
2599
2600			case O_XMIT:
2601				match = iface_match(oif, (ipfw_insn_if *)cmd);
2602				break;
2603
2604			case O_VIA:
2605				match = iface_match(oif ? oif :
2606				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
2607				break;
2608
2609			case O_MACADDR2:
2610				if (args->eh != NULL) {	/* have MAC header */
2611					u_int32_t *want = (u_int32_t *)
2612						((ipfw_insn_mac *)cmd)->addr;
2613					u_int32_t *mask = (u_int32_t *)
2614						((ipfw_insn_mac *)cmd)->mask;
2615					u_int32_t *hdr = (u_int32_t *)args->eh;
2616
2617					match =
2618					    ( want[0] == (hdr[0] & mask[0]) &&
2619					      want[1] == (hdr[1] & mask[1]) &&
2620					      want[2] == (hdr[2] & mask[2]) );
2621				}
2622				break;
2623
2624			case O_MAC_TYPE:
2625				if (args->eh != NULL) {
2626					u_int16_t *p =
2627					    ((ipfw_insn_u16 *)cmd)->ports;
2628					int i;
2629
2630					for (i = cmdlen - 1; !match && i>0;
2631					    i--, p += 2)
2632						match = (etype >= p[0] &&
2633						    etype <= p[1]);
2634				}
2635				break;
2636
2637			case O_FRAG:
2638				match = (offset != 0);
2639				break;
2640
2641			case O_IN:	/* "out" is "not in" */
2642				match = (oif == NULL);
2643				break;
2644
2645			case O_LAYER2:
2646				match = (args->eh != NULL);
2647				break;
2648
2649			case O_DIVERTED:
2650				match = (cmd->arg1 & 1 && divinput_flags &
2651				    IP_FW_DIVERT_LOOPBACK_FLAG) ||
2652					(cmd->arg1 & 2 && divinput_flags &
2653				    IP_FW_DIVERT_OUTPUT_FLAG);
2654				break;
2655
2656			case O_PROTO:
2657				/*
2658				 * We do not allow an arg of 0 so the
2659				 * check of "proto" only suffices.
2660				 */
2661				match = (proto == cmd->arg1);
2662				break;
2663
2664			case O_IP_SRC:
2665				match = is_ipv4 &&
2666				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2667				    src_ip.s_addr);
2668				break;
2669
2670			case O_IP_SRC_LOOKUP:
2671			case O_IP_DST_LOOKUP:
2672				if (is_ipv4) {
2673				    uint32_t a =
2674					(cmd->opcode == O_IP_DST_LOOKUP) ?
2675					    dst_ip.s_addr : src_ip.s_addr;
2676				    uint32_t v;
2677
2678				    match = lookup_table(chain, cmd->arg1, a,
2679					&v);
2680				    if (!match)
2681					break;
2682				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2683					match =
2684					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
2685				    else
2686					tablearg = v;
2687				}
2688				break;
2689
2690			case O_IP_SRC_MASK:
2691			case O_IP_DST_MASK:
2692				if (is_ipv4) {
2693				    uint32_t a =
2694					(cmd->opcode == O_IP_DST_MASK) ?
2695					    dst_ip.s_addr : src_ip.s_addr;
2696				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2697				    int i = cmdlen-1;
2698
2699				    for (; !match && i>0; i-= 2, p+= 2)
2700					match = (p[0] == (a & p[1]));
2701				}
2702				break;
2703
2704			case O_IP_SRC_ME:
2705				if (is_ipv4) {
2706					struct ifnet *tif;
2707
2708					INADDR_TO_IFP(src_ip, tif);
2709					match = (tif != NULL);
2710				}
2711				break;
2712
2713			case O_IP_DST_SET:
2714			case O_IP_SRC_SET:
2715				if (is_ipv4) {
2716					u_int32_t *d = (u_int32_t *)(cmd+1);
2717					u_int32_t addr =
2718					    cmd->opcode == O_IP_DST_SET ?
2719						args->f_id.dst_ip :
2720						args->f_id.src_ip;
2721
2722					    if (addr < d[0])
2723						    break;
2724					    addr -= d[0]; /* subtract base */
2725					    match = (addr < cmd->arg1) &&
2726						( d[ 1 + (addr>>5)] &
2727						  (1<<(addr & 0x1f)) );
2728				}
2729				break;
2730
2731			case O_IP_DST:
2732				match = is_ipv4 &&
2733				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2734				    dst_ip.s_addr);
2735				break;
2736
2737			case O_IP_DST_ME:
2738				if (is_ipv4) {
2739					struct ifnet *tif;
2740
2741					INADDR_TO_IFP(dst_ip, tif);
2742					match = (tif != NULL);
2743				}
2744				break;
2745
2746			case O_IP_SRCPORT:
2747			case O_IP_DSTPORT:
2748				/*
2749				 * offset == 0 && proto != 0 is enough
2750				 * to guarantee that we have a
2751				 * packet with port info.
2752				 */
2753				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
2754				    && offset == 0) {
2755					u_int16_t x =
2756					    (cmd->opcode == O_IP_SRCPORT) ?
2757						src_port : dst_port ;
2758					u_int16_t *p =
2759					    ((ipfw_insn_u16 *)cmd)->ports;
2760					int i;
2761
2762					for (i = cmdlen - 1; !match && i>0;
2763					    i--, p += 2)
2764						match = (x>=p[0] && x<=p[1]);
2765				}
2766				break;
2767
2768			case O_ICMPTYPE:
2769				match = (offset == 0 && proto==IPPROTO_ICMP &&
2770				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2771				break;
2772
2773#ifdef INET6
2774			case O_ICMP6TYPE:
2775				match = is_ipv6 && offset == 0 &&
2776				    proto==IPPROTO_ICMPV6 &&
2777				    icmp6type_match(
2778					ICMP6(ulp)->icmp6_type,
2779					(ipfw_insn_u32 *)cmd);
2780				break;
2781#endif /* INET6 */
2782
2783			case O_IPOPT:
2784				match = (is_ipv4 &&
2785				    ipopts_match(ip, cmd) );
2786				break;
2787
2788			case O_IPVER:
2789				match = (is_ipv4 &&
2790				    cmd->arg1 == ip->ip_v);
2791				break;
2792
2793			case O_IPID:
2794			case O_IPLEN:
2795			case O_IPTTL:
2796				if (is_ipv4) {	/* only for IP packets */
2797				    uint16_t x;
2798				    uint16_t *p;
2799				    int i;
2800
2801				    if (cmd->opcode == O_IPLEN)
2802					x = ip_len;
2803				    else if (cmd->opcode == O_IPTTL)
2804					x = ip->ip_ttl;
2805				    else /* must be IPID */
2806					x = ntohs(ip->ip_id);
2807				    if (cmdlen == 1) {
2808					match = (cmd->arg1 == x);
2809					break;
2810				    }
2811				    /* otherwise we have ranges */
2812				    p = ((ipfw_insn_u16 *)cmd)->ports;
2813				    i = cmdlen - 1;
2814				    for (; !match && i>0; i--, p += 2)
2815					match = (x >= p[0] && x <= p[1]);
2816				}
2817				break;
2818
2819			case O_IPPRECEDENCE:
2820				match = (is_ipv4 &&
2821				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
2822				break;
2823
2824			case O_IPTOS:
2825				match = (is_ipv4 &&
2826				    flags_match(cmd, ip->ip_tos));
2827				break;
2828
2829			case O_TCPDATALEN:
2830				if (proto == IPPROTO_TCP && offset == 0) {
2831				    struct tcphdr *tcp;
2832				    uint16_t x;
2833				    uint16_t *p;
2834				    int i;
2835
2836				    tcp = TCP(ulp);
2837				    x = ip_len -
2838					((ip->ip_hl + tcp->th_off) << 2);
2839				    if (cmdlen == 1) {
2840					match = (cmd->arg1 == x);
2841					break;
2842				    }
2843				    /* otherwise we have ranges */
2844				    p = ((ipfw_insn_u16 *)cmd)->ports;
2845				    i = cmdlen - 1;
2846				    for (; !match && i>0; i--, p += 2)
2847					match = (x >= p[0] && x <= p[1]);
2848				}
2849				break;
2850
2851			case O_TCPFLAGS:
2852				match = (proto == IPPROTO_TCP && offset == 0 &&
2853				    flags_match(cmd, TCP(ulp)->th_flags));
2854				break;
2855
2856			case O_TCPOPTS:
2857				match = (proto == IPPROTO_TCP && offset == 0 &&
2858				    tcpopts_match(TCP(ulp), cmd));
2859				break;
2860
2861			case O_TCPSEQ:
2862				match = (proto == IPPROTO_TCP && offset == 0 &&
2863				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2864					TCP(ulp)->th_seq);
2865				break;
2866
2867			case O_TCPACK:
2868				match = (proto == IPPROTO_TCP && offset == 0 &&
2869				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2870					TCP(ulp)->th_ack);
2871				break;
2872
2873			case O_TCPWIN:
2874				match = (proto == IPPROTO_TCP && offset == 0 &&
2875				    cmd->arg1 == TCP(ulp)->th_win);
2876				break;
2877
2878			case O_ESTAB:
2879				/* reject packets which have SYN only */
2880				/* XXX should i also check for TH_ACK ? */
2881				match = (proto == IPPROTO_TCP && offset == 0 &&
2882				    (TCP(ulp)->th_flags &
2883				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2884				break;
2885
2886			case O_ALTQ: {
2887				struct pf_mtag *at;
2888				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2889
2890				match = 1;
2891				at = pf_find_mtag(m);
2892				if (at != NULL && at->qid != 0)
2893					break;
2894				at = pf_get_mtag(m);
2895				if (at == NULL) {
2896					/*
2897					 * Let the packet fall back to the
2898					 * default ALTQ.
2899					 */
2900					break;
2901				}
2902				at->qid = altq->qid;
2903				if (is_ipv4)
2904					at->af = AF_INET;
2905				else
2906					at->af = AF_LINK;
2907				at->hdr = ip;
2908				break;
2909			}
2910
2911			case O_LOG:
2912				if (V_fw_verbose)
2913					ipfw_log(f, hlen, args, m,
2914					    oif, offset, tablearg, ip);
2915				match = 1;
2916				break;
2917
2918			case O_PROB:
2919				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2920				break;
2921
2922			case O_VERREVPATH:
2923				/* Outgoing packets automatically pass/match */
2924				match = ((oif != NULL) ||
2925				    (m->m_pkthdr.rcvif == NULL) ||
2926				    (
2927#ifdef INET6
2928				    is_ipv6 ?
2929					verify_path6(&(args->f_id.src_ip6),
2930					    m->m_pkthdr.rcvif) :
2931#endif
2932				    verify_path(src_ip, m->m_pkthdr.rcvif,
2933				        args->f_id.fib)));
2934				break;
2935
2936			case O_VERSRCREACH:
2937				/* Outgoing packets automatically pass/match */
2938				match = (hlen > 0 && ((oif != NULL) ||
2939#ifdef INET6
2940				    is_ipv6 ?
2941				        verify_path6(&(args->f_id.src_ip6),
2942				            NULL) :
2943#endif
2944				    verify_path(src_ip, NULL, args->f_id.fib)));
2945				break;
2946
2947			case O_ANTISPOOF:
2948				/* Outgoing packets automatically pass/match */
2949				if (oif == NULL && hlen > 0 &&
2950				    (  (is_ipv4 && in_localaddr(src_ip))
2951#ifdef INET6
2952				    || (is_ipv6 &&
2953				        in6_localaddr(&(args->f_id.src_ip6)))
2954#endif
2955				    ))
2956					match =
2957#ifdef INET6
2958					    is_ipv6 ? verify_path6(
2959					        &(args->f_id.src_ip6),
2960					        m->m_pkthdr.rcvif) :
2961#endif
2962					    verify_path(src_ip,
2963					    	m->m_pkthdr.rcvif,
2964					        args->f_id.fib);
2965				else
2966					match = 1;
2967				break;
2968
2969			case O_IPSEC:
2970#ifdef IPSEC
2971				match = (m_tag_find(m,
2972				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2973#endif
2974				/* otherwise no match */
2975				break;
2976
2977#ifdef INET6
2978			case O_IP6_SRC:
2979				match = is_ipv6 &&
2980				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
2981				    &((ipfw_insn_ip6 *)cmd)->addr6);
2982				break;
2983
2984			case O_IP6_DST:
2985				match = is_ipv6 &&
2986				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
2987				    &((ipfw_insn_ip6 *)cmd)->addr6);
2988				break;
2989			case O_IP6_SRC_MASK:
2990			case O_IP6_DST_MASK:
2991				if (is_ipv6) {
2992					int i = cmdlen - 1;
2993					struct in6_addr p;
2994					struct in6_addr *d =
2995					    &((ipfw_insn_ip6 *)cmd)->addr6;
2996
2997					for (; !match && i > 0; d += 2,
2998					    i -= F_INSN_SIZE(struct in6_addr)
2999					    * 2) {
3000						p = (cmd->opcode ==
3001						    O_IP6_SRC_MASK) ?
3002						    args->f_id.src_ip6:
3003						    args->f_id.dst_ip6;
3004						APPLY_MASK(&p, &d[1]);
3005						match =
3006						    IN6_ARE_ADDR_EQUAL(&d[0],
3007						    &p);
3008					}
3009				}
3010				break;
3011
3012			case O_IP6_SRC_ME:
3013				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
3014				break;
3015
3016			case O_IP6_DST_ME:
3017				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
3018				break;
3019
3020			case O_FLOW6ID:
3021				match = is_ipv6 &&
3022				    flow6id_match(args->f_id.flow_id6,
3023				    (ipfw_insn_u32 *) cmd);
3024				break;
3025
3026			case O_EXT_HDR:
3027				match = is_ipv6 &&
3028				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
3029				break;
3030
3031			case O_IP6:
3032				match = is_ipv6;
3033				break;
3034#endif
3035
3036			case O_IP4:
3037				match = is_ipv4;
3038				break;
3039
3040			case O_TAG: {
3041				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
3042				    tablearg : cmd->arg1;
3043
3044				/* Packet is already tagged with this tag? */
3045				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
3046
3047				/* We have `untag' action when F_NOT flag is
3048				 * present. And we must remove this mtag from
3049				 * mbuf and reset `match' to zero (`match' will
3050				 * be inversed later).
3051				 * Otherwise we should allocate new mtag and
3052				 * push it into mbuf.
3053				 */
3054				if (cmd->len & F_NOT) { /* `untag' action */
3055					if (mtag != NULL)
3056						m_tag_delete(m, mtag);
3057				} else if (mtag == NULL) {
3058					if ((mtag = m_tag_alloc(MTAG_IPFW,
3059					    tag, 0, M_NOWAIT)) != NULL)
3060						m_tag_prepend(m, mtag);
3061				}
3062				match = (cmd->len & F_NOT) ? 0: 1;
3063				break;
3064			}
3065
3066			case O_FIB: /* try match the specified fib */
3067				if (args->f_id.fib == cmd->arg1)
3068					match = 1;
3069				break;
3070
3071			case O_TAGGED: {
3072				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
3073				    tablearg : cmd->arg1;
3074
3075				if (cmdlen == 1) {
3076					match = m_tag_locate(m, MTAG_IPFW,
3077					    tag, NULL) != NULL;
3078					break;
3079				}
3080
3081				/* we have ranges */
3082				for (mtag = m_tag_first(m);
3083				    mtag != NULL && !match;
3084				    mtag = m_tag_next(m, mtag)) {
3085					uint16_t *p;
3086					int i;
3087
3088					if (mtag->m_tag_cookie != MTAG_IPFW)
3089						continue;
3090
3091					p = ((ipfw_insn_u16 *)cmd)->ports;
3092					i = cmdlen - 1;
3093					for(; !match && i > 0; i--, p += 2)
3094						match =
3095						    mtag->m_tag_id >= p[0] &&
3096						    mtag->m_tag_id <= p[1];
3097				}
3098				break;
3099			}
3100
3101			/*
3102			 * The second set of opcodes represents 'actions',
3103			 * i.e. the terminal part of a rule once the packet
3104			 * matches all previous patterns.
3105			 * Typically there is only one action for each rule,
3106			 * and the opcode is stored at the end of the rule
3107			 * (but there are exceptions -- see below).
3108			 *
3109			 * In general, here we set retval and terminate the
3110			 * outer loop (would be a 'break 3' in some language,
3111			 * but we need to do a 'goto done').
3112			 *
3113			 * Exceptions:
3114			 * O_COUNT and O_SKIPTO actions:
3115			 *   instead of terminating, we jump to the next rule
3116			 *   ('goto next_rule', equivalent to a 'break 2'),
3117			 *   or to the SKIPTO target ('goto again' after
3118			 *   having set f, cmd and l), respectively.
3119			 *
3120			 * O_TAG, O_LOG and O_ALTQ action parameters:
3121			 *   perform some action and set match = 1;
3122			 *
3123			 * O_LIMIT and O_KEEP_STATE: these opcodes are
3124			 *   not real 'actions', and are stored right
3125			 *   before the 'action' part of the rule.
3126			 *   These opcodes try to install an entry in the
3127			 *   state tables; if successful, we continue with
3128			 *   the next opcode (match=1; break;), otherwise
3129			 *   the packet *   must be dropped
3130			 *   ('goto done' after setting retval);
3131			 *
3132			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
3133			 *   cause a lookup of the state table, and a jump
3134			 *   to the 'action' part of the parent rule
3135			 *   ('goto check_body') if an entry is found, or
3136			 *   (CHECK_STATE only) a jump to the next rule if
3137			 *   the entry is not found ('goto next_rule').
3138			 *   The result of the lookup is cached to make
3139			 *   further instances of these opcodes are
3140			 *   effectively NOPs.
3141			 */
3142			case O_LIMIT:
3143			case O_KEEP_STATE:
3144				if (install_state(f,
3145				    (ipfw_insn_limit *)cmd, args, tablearg)) {
3146					retval = IP_FW_DENY;
3147					goto done; /* error/limit violation */
3148				}
3149				match = 1;
3150				break;
3151
3152			case O_PROBE_STATE:
3153			case O_CHECK_STATE:
3154				/*
3155				 * dynamic rules are checked at the first
3156				 * keep-state or check-state occurrence,
3157				 * with the result being stored in dyn_dir.
3158				 * The compiler introduces a PROBE_STATE
3159				 * instruction for us when we have a
3160				 * KEEP_STATE (because PROBE_STATE needs
3161				 * to be run first).
3162				 */
3163				if (dyn_dir == MATCH_UNKNOWN &&
3164				    (q = lookup_dyn_rule(&args->f_id,
3165				     &dyn_dir, proto == IPPROTO_TCP ?
3166					TCP(ulp) : NULL))
3167					!= NULL) {
3168					/*
3169					 * Found dynamic entry, update stats
3170					 * and jump to the 'action' part of
3171					 * the parent rule.
3172					 */
3173					q->pcnt++;
3174					q->bcnt += pktlen;
3175					f = q->rule;
3176					cmd = ACTION_PTR(f);
3177					l = f->cmd_len - f->act_ofs;
3178					IPFW_DYN_UNLOCK();
3179					goto check_body;
3180				}
3181				/*
3182				 * Dynamic entry not found. If CHECK_STATE,
3183				 * skip to next rule, if PROBE_STATE just
3184				 * ignore and continue with next opcode.
3185				 */
3186				if (cmd->opcode == O_CHECK_STATE)
3187					goto next_rule;
3188				match = 1;
3189				break;
3190
3191			case O_ACCEPT:
3192				retval = 0;	/* accept */
3193				goto done;
3194
3195			case O_PIPE:
3196			case O_QUEUE:
3197				args->rule = f; /* report matching rule */
3198				if (cmd->arg1 == IP_FW_TABLEARG)
3199					args->cookie = tablearg;
3200				else
3201					args->cookie = cmd->arg1;
3202				retval = IP_FW_DUMMYNET;
3203				goto done;
3204
3205			case O_DIVERT:
3206			case O_TEE: {
3207				struct divert_tag *dt;
3208
3209				if (args->eh) /* not on layer 2 */
3210					break;
3211				mtag = m_tag_get(PACKET_TAG_DIVERT,
3212						sizeof(struct divert_tag),
3213						M_NOWAIT);
3214				if (mtag == NULL) {
3215					/* XXX statistic */
3216					/* drop packet */
3217					IPFW_RUNLOCK(chain);
3218					return (IP_FW_DENY);
3219				}
3220				dt = (struct divert_tag *)(mtag+1);
3221				dt->cookie = f->rulenum;
3222				if (cmd->arg1 == IP_FW_TABLEARG)
3223					dt->info = tablearg;
3224				else
3225					dt->info = cmd->arg1;
3226				m_tag_prepend(m, mtag);
3227				retval = (cmd->opcode == O_DIVERT) ?
3228				    IP_FW_DIVERT : IP_FW_TEE;
3229				goto done;
3230			}
3231			case O_COUNT:
3232			case O_SKIPTO:
3233				f->pcnt++;	/* update stats */
3234				f->bcnt += pktlen;
3235				f->timestamp = time_uptime;
3236				if (cmd->opcode == O_COUNT)
3237					goto next_rule;
3238				/* handle skipto */
3239				if (cmd->arg1 == IP_FW_TABLEARG) {
3240					f = lookup_next_rule(f, tablearg);
3241				} else {
3242					if (f->next_rule == NULL)
3243						lookup_next_rule(f, 0);
3244					f = f->next_rule;
3245				}
3246				goto again;
3247
3248			case O_REJECT:
3249				/*
3250				 * Drop the packet and send a reject notice
3251				 * if the packet is not ICMP (or is an ICMP
3252				 * query), and it is not multicast/broadcast.
3253				 */
3254				if (hlen > 0 && is_ipv4 && offset == 0 &&
3255				    (proto != IPPROTO_ICMP ||
3256				     is_icmp_query(ICMP(ulp))) &&
3257				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3258				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
3259					send_reject(args, cmd->arg1, ip_len, ip);
3260					m = args->m;
3261				}
3262				/* FALLTHROUGH */
3263#ifdef INET6
3264			case O_UNREACH6:
3265				if (hlen > 0 && is_ipv6 &&
3266				    ((offset & IP6F_OFF_MASK) == 0) &&
3267				    (proto != IPPROTO_ICMPV6 ||
3268				     (is_icmp6_query(args->f_id.flags) == 1)) &&
3269				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3270				    !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
3271					send_reject6(
3272					    args, cmd->arg1, hlen,
3273					    (struct ip6_hdr *)ip);
3274					m = args->m;
3275				}
3276				/* FALLTHROUGH */
3277#endif
3278			case O_DENY:
3279				retval = IP_FW_DENY;
3280				goto done;
3281
3282			case O_FORWARD_IP: {
3283				struct sockaddr_in *sa;
3284				sa = &(((ipfw_insn_sa *)cmd)->sa);
3285				if (args->eh)	/* not valid on layer2 pkts */
3286					break;
3287				if (!q || dyn_dir == MATCH_FORWARD) {
3288					if (sa->sin_addr.s_addr == INADDR_ANY) {
3289						bcopy(sa, &args->hopstore,
3290							sizeof(*sa));
3291						args->hopstore.sin_addr.s_addr =
3292						    htonl(tablearg);
3293						args->next_hop =
3294						    &args->hopstore;
3295					} else {
3296						args->next_hop = sa;
3297					}
3298				}
3299				retval = IP_FW_PASS;
3300			    }
3301			    goto done;
3302
3303			case O_NETGRAPH:
3304			case O_NGTEE:
3305				args->rule = f;	/* report matching rule */
3306				if (cmd->arg1 == IP_FW_TABLEARG)
3307					args->cookie = tablearg;
3308				else
3309					args->cookie = cmd->arg1;
3310				retval = (cmd->opcode == O_NETGRAPH) ?
3311				    IP_FW_NETGRAPH : IP_FW_NGTEE;
3312				goto done;
3313
3314			case O_SETFIB:
3315				f->pcnt++;	/* update stats */
3316				f->bcnt += pktlen;
3317				f->timestamp = time_uptime;
3318				M_SETFIB(m, cmd->arg1);
3319				args->f_id.fib = cmd->arg1;
3320				goto next_rule;
3321
3322			case O_NAT: {
3323                        	struct cfg_nat *t;
3324                        	int nat_id;
3325
3326 				if (IPFW_NAT_LOADED) {
3327					args->rule = f; /* Report matching rule. */
3328					t = ((ipfw_insn_nat *)cmd)->nat;
3329					if (t == NULL) {
3330						nat_id = (cmd->arg1 == IP_FW_TABLEARG) ?
3331						    tablearg : cmd->arg1;
3332						LOOKUP_NAT(V_layer3_chain, nat_id, t);
3333						if (t == NULL) {
3334							retval = IP_FW_DENY;
3335							goto done;
3336						}
3337						if (cmd->arg1 != IP_FW_TABLEARG)
3338							((ipfw_insn_nat *)cmd)->nat = t;
3339					}
3340					retval = ipfw_nat_ptr(args, t, m);
3341				} else
3342					retval = IP_FW_DENY;
3343				goto done;
3344			}
3345
3346			default:
3347				panic("-- unknown opcode %d\n", cmd->opcode);
3348			} /* end of switch() on opcodes */
3349
3350			if (cmd->len & F_NOT)
3351				match = !match;
3352
3353			if (match) {
3354				if (cmd->len & F_OR)
3355					skip_or = 1;
3356			} else {
3357				if (!(cmd->len & F_OR)) /* not an OR block, */
3358					break;		/* try next rule    */
3359			}
3360
3361		}	/* end of inner for, scan opcodes */
3362
3363next_rule:;		/* try next rule		*/
3364
3365	}		/* end of outer for, scan rules */
3366	printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3367	IPFW_RUNLOCK(chain);
3368	return (IP_FW_DENY);
3369
3370done:
3371	/* Update statistics */
3372	f->pcnt++;
3373	f->bcnt += pktlen;
3374	f->timestamp = time_uptime;
3375	IPFW_RUNLOCK(chain);
3376	return (retval);
3377
3378pullup_failed:
3379	if (V_fw_verbose)
3380		printf("ipfw: pullup failed\n");
3381	return (IP_FW_DENY);
3382}
3383
3384/*
3385 * When a rule is added/deleted, clear the next_rule pointers in all rules.
3386 * These will be reconstructed on the fly as packets are matched.
3387 */
3388static void
3389flush_rule_ptrs(struct ip_fw_chain *chain)
3390{
3391	struct ip_fw *rule;
3392
3393	IPFW_WLOCK_ASSERT(chain);
3394
3395	for (rule = chain->rules; rule; rule = rule->next)
3396		rule->next_rule = NULL;
3397}
3398
3399/*
3400 * Add a new rule to the list. Copy the rule into a malloc'ed area, then
3401 * possibly create a rule number and add the rule to the list.
3402 * Update the rule_number in the input struct so the caller knows it as well.
3403 */
3404static int
3405add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
3406{
3407	struct ip_fw *rule, *f, *prev;
3408	int l = RULESIZE(input_rule);
3409
3410	if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
3411		return (EINVAL);
3412
3413	rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
3414	if (rule == NULL)
3415		return (ENOSPC);
3416
3417	bcopy(input_rule, rule, l);
3418
3419	rule->next = NULL;
3420	rule->next_rule = NULL;
3421
3422	rule->pcnt = 0;
3423	rule->bcnt = 0;
3424	rule->timestamp = 0;
3425
3426	IPFW_WLOCK(chain);
3427
3428	if (chain->rules == NULL) {	/* default rule */
3429		chain->rules = rule;
3430		goto done;
3431        }
3432
3433	/*
3434	 * If rulenum is 0, find highest numbered rule before the
3435	 * default rule, and add autoinc_step
3436	 */
3437	if (V_autoinc_step < 1)
3438		V_autoinc_step = 1;
3439	else if (V_autoinc_step > 1000)
3440		V_autoinc_step = 1000;
3441	if (rule->rulenum == 0) {
3442		/*
3443		 * locate the highest numbered rule before default
3444		 */
3445		for (f = chain->rules; f; f = f->next) {
3446			if (f->rulenum == IPFW_DEFAULT_RULE)
3447				break;
3448			rule->rulenum = f->rulenum;
3449		}
3450		if (rule->rulenum < IPFW_DEFAULT_RULE - V_autoinc_step)
3451			rule->rulenum += V_autoinc_step;
3452		input_rule->rulenum = rule->rulenum;
3453	}
3454
3455	/*
3456	 * Now insert the new rule in the right place in the sorted list.
3457	 */
3458	for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
3459		if (f->rulenum > rule->rulenum) { /* found the location */
3460			if (prev) {
3461				rule->next = f;
3462				prev->next = rule;
3463			} else { /* head insert */
3464				rule->next = chain->rules;
3465				chain->rules = rule;
3466			}
3467			break;
3468		}
3469	}
3470	flush_rule_ptrs(chain);
3471done:
3472	V_static_count++;
3473	V_static_len += l;
3474	IPFW_WUNLOCK(chain);
3475	DEB(printf("ipfw: installed rule %d, static count now %d\n",
3476		rule->rulenum, V_static_count);)
3477	return (0);
3478}
3479
3480/**
3481 * Remove a static rule (including derived * dynamic rules)
3482 * and place it on the ``reap list'' for later reclamation.
3483 * The caller is in charge of clearing rule pointers to avoid
3484 * dangling pointers.
3485 * @return a pointer to the next entry.
3486 * Arguments are not checked, so they better be correct.
3487 */
3488static struct ip_fw *
3489remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule,
3490    struct ip_fw *prev)
3491{
3492	struct ip_fw *n;
3493	int l = RULESIZE(rule);
3494
3495	IPFW_WLOCK_ASSERT(chain);
3496
3497	n = rule->next;
3498	IPFW_DYN_LOCK();
3499	remove_dyn_rule(rule, NULL /* force removal */);
3500	IPFW_DYN_UNLOCK();
3501	if (prev == NULL)
3502		chain->rules = n;
3503	else
3504		prev->next = n;
3505	V_static_count--;
3506	V_static_len -= l;
3507
3508	rule->next = chain->reap;
3509	chain->reap = rule;
3510
3511	return n;
3512}
3513
3514/**
3515 * Reclaim storage associated with a list of rules.  This is
3516 * typically the list created using remove_rule.
3517 */
3518static void
3519reap_rules(struct ip_fw *head)
3520{
3521	struct ip_fw *rule;
3522
3523	while ((rule = head) != NULL) {
3524		head = head->next;
3525		if (DUMMYNET_LOADED)
3526			ip_dn_ruledel_ptr(rule);
3527		free(rule, M_IPFW);
3528	}
3529}
3530
3531/*
3532 * Remove all rules from a chain (except rules in set RESVD_SET
3533 * unless kill_default = 1).  The caller is responsible for
3534 * reclaiming storage for the rules left in chain->reap.
3535 */
3536static void
3537free_chain(struct ip_fw_chain *chain, int kill_default)
3538{
3539	struct ip_fw *prev, *rule;
3540
3541	IPFW_WLOCK_ASSERT(chain);
3542
3543	flush_rule_ptrs(chain); /* more efficient to do outside the loop */
3544	for (prev = NULL, rule = chain->rules; rule ; )
3545		if (kill_default || rule->set != RESVD_SET)
3546			rule = remove_rule(chain, rule, prev);
3547		else {
3548			prev = rule;
3549			rule = rule->next;
3550		}
3551}
3552
3553/**
3554 * Remove all rules with given number, and also do set manipulation.
3555 * Assumes chain != NULL && *chain != NULL.
3556 *
3557 * The argument is an u_int32_t. The low 16 bit are the rule or set number,
3558 * the next 8 bits are the new set, the top 8 bits are the command:
3559 *
3560 *	0	delete rules with given number
3561 *	1	delete rules with given set number
3562 *	2	move rules with given number to new set
3563 *	3	move rules with given set number to new set
3564 *	4	swap sets with given numbers
3565 *	5	delete rules with given number and with given set number
3566 */
3567static int
3568del_entry(struct ip_fw_chain *chain, u_int32_t arg)
3569{
3570	struct ip_fw *prev = NULL, *rule;
3571	u_int16_t rulenum;	/* rule or old_set */
3572	u_int8_t cmd, new_set;
3573
3574	rulenum = arg & 0xffff;
3575	cmd = (arg >> 24) & 0xff;
3576	new_set = (arg >> 16) & 0xff;
3577
3578	if (cmd > 5 || new_set > RESVD_SET)
3579		return EINVAL;
3580	if (cmd == 0 || cmd == 2 || cmd == 5) {
3581		if (rulenum >= IPFW_DEFAULT_RULE)
3582			return EINVAL;
3583	} else {
3584		if (rulenum > RESVD_SET)	/* old_set */
3585			return EINVAL;
3586	}
3587
3588	IPFW_WLOCK(chain);
3589	rule = chain->rules;
3590	chain->reap = NULL;
3591	switch (cmd) {
3592	case 0:	/* delete rules with given number */
3593		/*
3594		 * locate first rule to delete
3595		 */
3596		for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3597			;
3598		if (rule->rulenum != rulenum) {
3599			IPFW_WUNLOCK(chain);
3600			return EINVAL;
3601		}
3602
3603		/*
3604		 * flush pointers outside the loop, then delete all matching
3605		 * rules. prev remains the same throughout the cycle.
3606		 */
3607		flush_rule_ptrs(chain);
3608		while (rule->rulenum == rulenum)
3609			rule = remove_rule(chain, rule, prev);
3610		break;
3611
3612	case 1:	/* delete all rules with given set number */
3613		flush_rule_ptrs(chain);
3614		rule = chain->rules;
3615		while (rule->rulenum < IPFW_DEFAULT_RULE)
3616			if (rule->set == rulenum)
3617				rule = remove_rule(chain, rule, prev);
3618			else {
3619				prev = rule;
3620				rule = rule->next;
3621			}
3622		break;
3623
3624	case 2:	/* move rules with given number to new set */
3625		rule = chain->rules;
3626		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3627			if (rule->rulenum == rulenum)
3628				rule->set = new_set;
3629		break;
3630
3631	case 3: /* move rules with given set number to new set */
3632		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3633			if (rule->set == rulenum)
3634				rule->set = new_set;
3635		break;
3636
3637	case 4: /* swap two sets */
3638		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3639			if (rule->set == rulenum)
3640				rule->set = new_set;
3641			else if (rule->set == new_set)
3642				rule->set = rulenum;
3643		break;
3644	case 5: /* delete rules with given number and with given set number.
3645		 * rulenum - given rule number;
3646		 * new_set - given set number.
3647		 */
3648		for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3649			;
3650		if (rule->rulenum != rulenum) {
3651			IPFW_WUNLOCK(chain);
3652			return (EINVAL);
3653		}
3654		flush_rule_ptrs(chain);
3655		while (rule->rulenum == rulenum) {
3656			if (rule->set == new_set)
3657				rule = remove_rule(chain, rule, prev);
3658			else {
3659				prev = rule;
3660				rule = rule->next;
3661			}
3662		}
3663	}
3664	/*
3665	 * Look for rules to reclaim.  We grab the list before
3666	 * releasing the lock then reclaim them w/o the lock to
3667	 * avoid a LOR with dummynet.
3668	 */
3669	rule = chain->reap;
3670	chain->reap = NULL;
3671	IPFW_WUNLOCK(chain);
3672	if (rule)
3673		reap_rules(rule);
3674	return 0;
3675}
3676
3677/*
3678 * Clear counters for a specific rule.
3679 * The enclosing "table" is assumed locked.
3680 */
3681static void
3682clear_counters(struct ip_fw *rule, int log_only)
3683{
3684	ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
3685
3686	if (log_only == 0) {
3687		rule->bcnt = rule->pcnt = 0;
3688		rule->timestamp = 0;
3689	}
3690	if (l->o.opcode == O_LOG)
3691		l->log_left = l->max_log;
3692}
3693
3694/**
3695 * Reset some or all counters on firewall rules.
3696 * The argument `arg' is an u_int32_t. The low 16 bit are the rule number,
3697 * the next 8 bits are the set number, the top 8 bits are the command:
3698 *	0	work with rules from all set's;
3699 *	1	work with rules only from specified set.
3700 * Specified rule number is zero if we want to clear all entries.
3701 * log_only is 1 if we only want to reset logs, zero otherwise.
3702 */
3703static int
3704zero_entry(struct ip_fw_chain *chain, u_int32_t arg, int log_only)
3705{
3706	struct ip_fw *rule;
3707	char *msg;
3708
3709	uint16_t rulenum = arg & 0xffff;
3710	uint8_t set = (arg >> 16) & 0xff;
3711	uint8_t cmd = (arg >> 24) & 0xff;
3712
3713	if (cmd > 1)
3714		return (EINVAL);
3715	if (cmd == 1 && set > RESVD_SET)
3716		return (EINVAL);
3717
3718	IPFW_WLOCK(chain);
3719	if (rulenum == 0) {
3720		V_norule_counter = 0;
3721		for (rule = chain->rules; rule; rule = rule->next) {
3722			/* Skip rules from another set. */
3723			if (cmd == 1 && rule->set != set)
3724				continue;
3725			clear_counters(rule, log_only);
3726		}
3727		msg = log_only ? "ipfw: All logging counts reset.\n" :
3728		    "ipfw: Accounting cleared.\n";
3729	} else {
3730		int cleared = 0;
3731		/*
3732		 * We can have multiple rules with the same number, so we
3733		 * need to clear them all.
3734		 */
3735		for (rule = chain->rules; rule; rule = rule->next)
3736			if (rule->rulenum == rulenum) {
3737				while (rule && rule->rulenum == rulenum) {
3738					if (cmd == 0 || rule->set == set)
3739						clear_counters(rule, log_only);
3740					rule = rule->next;
3741				}
3742				cleared = 1;
3743				break;
3744			}
3745		if (!cleared) {	/* we did not find any matching rules */
3746			IPFW_WUNLOCK(chain);
3747			return (EINVAL);
3748		}
3749		msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
3750		    "ipfw: Entry %d cleared.\n";
3751	}
3752	IPFW_WUNLOCK(chain);
3753
3754	if (V_fw_verbose)
3755		log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
3756	return (0);
3757}
3758
3759/*
3760 * Check validity of the structure before insert.
3761 * Fortunately rules are simple, so this mostly need to check rule sizes.
3762 */
3763static int
3764check_ipfw_struct(struct ip_fw *rule, int size)
3765{
3766	int l, cmdlen = 0;
3767	int have_action=0;
3768	ipfw_insn *cmd;
3769
3770	if (size < sizeof(*rule)) {
3771		printf("ipfw: rule too short\n");
3772		return (EINVAL);
3773	}
3774	/* first, check for valid size */
3775	l = RULESIZE(rule);
3776	if (l != size) {
3777		printf("ipfw: size mismatch (have %d want %d)\n", size, l);
3778		return (EINVAL);
3779	}
3780	if (rule->act_ofs >= rule->cmd_len) {
3781		printf("ipfw: bogus action offset (%u > %u)\n",
3782		    rule->act_ofs, rule->cmd_len - 1);
3783		return (EINVAL);
3784	}
3785	/*
3786	 * Now go for the individual checks. Very simple ones, basically only
3787	 * instruction sizes.
3788	 */
3789	for (l = rule->cmd_len, cmd = rule->cmd ;
3790			l > 0 ; l -= cmdlen, cmd += cmdlen) {
3791		cmdlen = F_LEN(cmd);
3792		if (cmdlen > l) {
3793			printf("ipfw: opcode %d size truncated\n",
3794			    cmd->opcode);
3795			return EINVAL;
3796		}
3797		DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
3798		switch (cmd->opcode) {
3799		case O_PROBE_STATE:
3800		case O_KEEP_STATE:
3801		case O_PROTO:
3802		case O_IP_SRC_ME:
3803		case O_IP_DST_ME:
3804		case O_LAYER2:
3805		case O_IN:
3806		case O_FRAG:
3807		case O_DIVERTED:
3808		case O_IPOPT:
3809		case O_IPTOS:
3810		case O_IPPRECEDENCE:
3811		case O_IPVER:
3812		case O_TCPWIN:
3813		case O_TCPFLAGS:
3814		case O_TCPOPTS:
3815		case O_ESTAB:
3816		case O_VERREVPATH:
3817		case O_VERSRCREACH:
3818		case O_ANTISPOOF:
3819		case O_IPSEC:
3820#ifdef INET6
3821		case O_IP6_SRC_ME:
3822		case O_IP6_DST_ME:
3823		case O_EXT_HDR:
3824		case O_IP6:
3825#endif
3826		case O_IP4:
3827		case O_TAG:
3828			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3829				goto bad_size;
3830			break;
3831
3832		case O_FIB:
3833			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3834				goto bad_size;
3835			if (cmd->arg1 >= rt_numfibs) {
3836				printf("ipfw: invalid fib number %d\n",
3837					cmd->arg1);
3838				return EINVAL;
3839			}
3840			break;
3841
3842		case O_SETFIB:
3843			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3844				goto bad_size;
3845			if (cmd->arg1 >= rt_numfibs) {
3846				printf("ipfw: invalid fib number %d\n",
3847					cmd->arg1);
3848				return EINVAL;
3849			}
3850			goto check_action;
3851
3852		case O_UID:
3853		case O_GID:
3854		case O_JAIL:
3855		case O_IP_SRC:
3856		case O_IP_DST:
3857		case O_TCPSEQ:
3858		case O_TCPACK:
3859		case O_PROB:
3860		case O_ICMPTYPE:
3861			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3862				goto bad_size;
3863			break;
3864
3865		case O_LIMIT:
3866			if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
3867				goto bad_size;
3868			break;
3869
3870		case O_LOG:
3871			if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
3872				goto bad_size;
3873
3874			((ipfw_insn_log *)cmd)->log_left =
3875			    ((ipfw_insn_log *)cmd)->max_log;
3876
3877			break;
3878
3879		case O_IP_SRC_MASK:
3880		case O_IP_DST_MASK:
3881			/* only odd command lengths */
3882			if ( !(cmdlen & 1) || cmdlen > 31)
3883				goto bad_size;
3884			break;
3885
3886		case O_IP_SRC_SET:
3887		case O_IP_DST_SET:
3888			if (cmd->arg1 == 0 || cmd->arg1 > 256) {
3889				printf("ipfw: invalid set size %d\n",
3890					cmd->arg1);
3891				return EINVAL;
3892			}
3893			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3894			    (cmd->arg1+31)/32 )
3895				goto bad_size;
3896			break;
3897
3898		case O_IP_SRC_LOOKUP:
3899		case O_IP_DST_LOOKUP:
3900			if (cmd->arg1 >= IPFW_TABLES_MAX) {
3901				printf("ipfw: invalid table number %d\n",
3902				    cmd->arg1);
3903				return (EINVAL);
3904			}
3905			if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
3906			    cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3907				goto bad_size;
3908			break;
3909
3910		case O_MACADDR2:
3911			if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
3912				goto bad_size;
3913			break;
3914
3915		case O_NOP:
3916		case O_IPID:
3917		case O_IPTTL:
3918		case O_IPLEN:
3919		case O_TCPDATALEN:
3920		case O_TAGGED:
3921			if (cmdlen < 1 || cmdlen > 31)
3922				goto bad_size;
3923			break;
3924
3925		case O_MAC_TYPE:
3926		case O_IP_SRCPORT:
3927		case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
3928			if (cmdlen < 2 || cmdlen > 31)
3929				goto bad_size;
3930			break;
3931
3932		case O_RECV:
3933		case O_XMIT:
3934		case O_VIA:
3935			if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
3936				goto bad_size;
3937			break;
3938
3939		case O_ALTQ:
3940			if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
3941				goto bad_size;
3942			break;
3943
3944		case O_PIPE:
3945		case O_QUEUE:
3946			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3947				goto bad_size;
3948			goto check_action;
3949
3950		case O_FORWARD_IP:
3951#ifdef	IPFIREWALL_FORWARD
3952			if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
3953				goto bad_size;
3954			goto check_action;
3955#else
3956			return EINVAL;
3957#endif
3958
3959		case O_DIVERT:
3960		case O_TEE:
3961			if (ip_divert_ptr == NULL)
3962				return EINVAL;
3963			else
3964				goto check_size;
3965		case O_NETGRAPH:
3966		case O_NGTEE:
3967			if (!NG_IPFW_LOADED)
3968				return EINVAL;
3969			else
3970				goto check_size;
3971		case O_NAT:
3972			if (!IPFW_NAT_LOADED)
3973				return EINVAL;
3974			if (cmdlen != F_INSN_SIZE(ipfw_insn_nat))
3975 				goto bad_size;
3976 			goto check_action;
3977		case O_FORWARD_MAC: /* XXX not implemented yet */
3978		case O_CHECK_STATE:
3979		case O_COUNT:
3980		case O_ACCEPT:
3981		case O_DENY:
3982		case O_REJECT:
3983#ifdef INET6
3984		case O_UNREACH6:
3985#endif
3986		case O_SKIPTO:
3987check_size:
3988			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3989				goto bad_size;
3990check_action:
3991			if (have_action) {
3992				printf("ipfw: opcode %d, multiple actions"
3993					" not allowed\n",
3994					cmd->opcode);
3995				return EINVAL;
3996			}
3997			have_action = 1;
3998			if (l != cmdlen) {
3999				printf("ipfw: opcode %d, action must be"
4000					" last opcode\n",
4001					cmd->opcode);
4002				return EINVAL;
4003			}
4004			break;
4005#ifdef INET6
4006		case O_IP6_SRC:
4007		case O_IP6_DST:
4008			if (cmdlen != F_INSN_SIZE(struct in6_addr) +
4009			    F_INSN_SIZE(ipfw_insn))
4010				goto bad_size;
4011			break;
4012
4013		case O_FLOW6ID:
4014			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
4015			    ((ipfw_insn_u32 *)cmd)->o.arg1)
4016				goto bad_size;
4017			break;
4018
4019		case O_IP6_SRC_MASK:
4020		case O_IP6_DST_MASK:
4021			if ( !(cmdlen & 1) || cmdlen > 127)
4022				goto bad_size;
4023			break;
4024		case O_ICMP6TYPE:
4025			if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
4026				goto bad_size;
4027			break;
4028#endif
4029
4030		default:
4031			switch (cmd->opcode) {
4032#ifndef INET6
4033			case O_IP6_SRC_ME:
4034			case O_IP6_DST_ME:
4035			case O_EXT_HDR:
4036			case O_IP6:
4037			case O_UNREACH6:
4038			case O_IP6_SRC:
4039			case O_IP6_DST:
4040			case O_FLOW6ID:
4041			case O_IP6_SRC_MASK:
4042			case O_IP6_DST_MASK:
4043			case O_ICMP6TYPE:
4044				printf("ipfw: no IPv6 support in kernel\n");
4045				return EPROTONOSUPPORT;
4046#endif
4047			default:
4048				printf("ipfw: opcode %d, unknown opcode\n",
4049					cmd->opcode);
4050				return EINVAL;
4051			}
4052		}
4053	}
4054	if (have_action == 0) {
4055		printf("ipfw: missing action\n");
4056		return EINVAL;
4057	}
4058	return 0;
4059
4060bad_size:
4061	printf("ipfw: opcode %d size %d wrong\n",
4062		cmd->opcode, cmdlen);
4063	return EINVAL;
4064}
4065
4066/*
4067 * Copy the static and dynamic rules to the supplied buffer
4068 * and return the amount of space actually used.
4069 */
4070static size_t
4071ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
4072{
4073	char *bp = buf;
4074	char *ep = bp + space;
4075	struct ip_fw *rule;
4076	int i;
4077	time_t	boot_seconds;
4078
4079        boot_seconds = boottime.tv_sec;
4080	/* XXX this can take a long time and locking will block packet flow */
4081	IPFW_RLOCK(chain);
4082	for (rule = chain->rules; rule ; rule = rule->next) {
4083		/*
4084		 * Verify the entry fits in the buffer in case the
4085		 * rules changed between calculating buffer space and
4086		 * now.  This would be better done using a generation
4087		 * number but should suffice for now.
4088		 */
4089		i = RULESIZE(rule);
4090		if (bp + i <= ep) {
4091			bcopy(rule, bp, i);
4092			/*
4093			 * XXX HACK. Store the disable mask in the "next"
4094			 * pointer in a wild attempt to keep the ABI the same.
4095			 * Why do we do this on EVERY rule?
4096			 */
4097			bcopy(&V_set_disable,
4098			    &(((struct ip_fw *)bp)->next_rule),
4099			    sizeof(V_set_disable));
4100			if (((struct ip_fw *)bp)->timestamp)
4101				((struct ip_fw *)bp)->timestamp += boot_seconds;
4102			bp += i;
4103		}
4104	}
4105	IPFW_RUNLOCK(chain);
4106	if (V_ipfw_dyn_v) {
4107		ipfw_dyn_rule *p, *last = NULL;
4108
4109		IPFW_DYN_LOCK();
4110		for (i = 0 ; i < V_curr_dyn_buckets; i++)
4111			for (p = V_ipfw_dyn_v[i] ; p != NULL; p = p->next) {
4112				if (bp + sizeof *p <= ep) {
4113					ipfw_dyn_rule *dst =
4114						(ipfw_dyn_rule *)bp;
4115					bcopy(p, dst, sizeof *p);
4116					bcopy(&(p->rule->rulenum), &(dst->rule),
4117					    sizeof(p->rule->rulenum));
4118					/*
4119					 * store set number into high word of
4120					 * dst->rule pointer.
4121					 */
4122					bcopy(&(p->rule->set),
4123					    (char *)&dst->rule +
4124					    sizeof(p->rule->rulenum),
4125					    sizeof(p->rule->set));
4126					/*
4127					 * store a non-null value in "next".
4128					 * The userland code will interpret a
4129					 * NULL here as a marker
4130					 * for the last dynamic rule.
4131					 */
4132					bcopy(&dst, &dst->next, sizeof(dst));
4133					last = dst;
4134					dst->expire =
4135					    TIME_LEQ(dst->expire, time_uptime) ?
4136						0 : dst->expire - time_uptime ;
4137					bp += sizeof(ipfw_dyn_rule);
4138				}
4139			}
4140		IPFW_DYN_UNLOCK();
4141		if (last != NULL) /* mark last dynamic rule */
4142			bzero(&last->next, sizeof(last));
4143	}
4144	return (bp - (char *)buf);
4145}
4146
4147
4148/**
4149 * {set|get}sockopt parser.
4150 */
4151static int
4152ipfw_ctl(struct sockopt *sopt)
4153{
4154#define	RULE_MAXSIZE	(256*sizeof(u_int32_t))
4155	int error;
4156	size_t size;
4157	struct ip_fw *buf, *rule;
4158	u_int32_t rulenum[2];
4159
4160	error = priv_check(sopt->sopt_td, PRIV_NETINET_IPFW);
4161	if (error)
4162		return (error);
4163
4164	/*
4165	 * Disallow modifications in really-really secure mode, but still allow
4166	 * the logging counters to be reset.
4167	 */
4168	if (sopt->sopt_name == IP_FW_ADD ||
4169	    (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
4170		error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
4171		if (error)
4172			return (error);
4173	}
4174
4175	error = 0;
4176
4177	switch (sopt->sopt_name) {
4178	case IP_FW_GET:
4179		/*
4180		 * pass up a copy of the current rules. Static rules
4181		 * come first (the last of which has number IPFW_DEFAULT_RULE),
4182		 * followed by a possibly empty list of dynamic rule.
4183		 * The last dynamic rule has NULL in the "next" field.
4184		 *
4185		 * Note that the calculated size is used to bound the
4186		 * amount of data returned to the user.  The rule set may
4187		 * change between calculating the size and returning the
4188		 * data in which case we'll just return what fits.
4189		 */
4190		size = V_static_len;	/* size of static rules */
4191		if (V_ipfw_dyn_v)		/* add size of dyn.rules */
4192			size += (V_dyn_count * sizeof(ipfw_dyn_rule));
4193
4194		/*
4195		 * XXX todo: if the user passes a short length just to know
4196		 * how much room is needed, do not bother filling up the
4197		 * buffer, just jump to the sooptcopyout.
4198		 */
4199		buf = malloc(size, M_TEMP, M_WAITOK);
4200		error = sooptcopyout(sopt, buf,
4201				ipfw_getrules(&V_layer3_chain, buf, size));
4202		free(buf, M_TEMP);
4203		break;
4204
4205	case IP_FW_FLUSH:
4206		/*
4207		 * Normally we cannot release the lock on each iteration.
4208		 * We could do it here only because we start from the head all
4209		 * the times so there is no risk of missing some entries.
4210		 * On the other hand, the risk is that we end up with
4211		 * a very inconsistent ruleset, so better keep the lock
4212		 * around the whole cycle.
4213		 *
4214		 * XXX this code can be improved by resetting the head of
4215		 * the list to point to the default rule, and then freeing
4216		 * the old list without the need for a lock.
4217		 */
4218
4219		IPFW_WLOCK(&V_layer3_chain);
4220		V_layer3_chain.reap = NULL;
4221		free_chain(&V_layer3_chain, 0 /* keep default rule */);
4222		rule = V_layer3_chain.reap;
4223		V_layer3_chain.reap = NULL;
4224		IPFW_WUNLOCK(&V_layer3_chain);
4225		if (rule != NULL)
4226			reap_rules(rule);
4227		break;
4228
4229	case IP_FW_ADD:
4230		rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
4231		error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
4232			sizeof(struct ip_fw) );
4233		if (error == 0)
4234			error = check_ipfw_struct(rule, sopt->sopt_valsize);
4235		if (error == 0) {
4236			error = add_rule(&V_layer3_chain, rule);
4237			size = RULESIZE(rule);
4238			if (!error && sopt->sopt_dir == SOPT_GET)
4239				error = sooptcopyout(sopt, rule, size);
4240		}
4241		free(rule, M_TEMP);
4242		break;
4243
4244	case IP_FW_DEL:
4245		/*
4246		 * IP_FW_DEL is used for deleting single rules or sets,
4247		 * and (ab)used to atomically manipulate sets. Argument size
4248		 * is used to distinguish between the two:
4249		 *    sizeof(u_int32_t)
4250		 *	delete single rule or set of rules,
4251		 *	or reassign rules (or sets) to a different set.
4252		 *    2*sizeof(u_int32_t)
4253		 *	atomic disable/enable sets.
4254		 *	first u_int32_t contains sets to be disabled,
4255		 *	second u_int32_t contains sets to be enabled.
4256		 */
4257		error = sooptcopyin(sopt, rulenum,
4258			2*sizeof(u_int32_t), sizeof(u_int32_t));
4259		if (error)
4260			break;
4261		size = sopt->sopt_valsize;
4262		if (size == sizeof(u_int32_t))	/* delete or reassign */
4263			error = del_entry(&V_layer3_chain, rulenum[0]);
4264		else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
4265			V_set_disable =
4266			    (V_set_disable | rulenum[0]) & ~rulenum[1] &
4267			    ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
4268		else
4269			error = EINVAL;
4270		break;
4271
4272	case IP_FW_ZERO:
4273	case IP_FW_RESETLOG: /* argument is an u_int_32, the rule number */
4274		rulenum[0] = 0;
4275		if (sopt->sopt_val != 0) {
4276		    error = sooptcopyin(sopt, rulenum,
4277			    sizeof(u_int32_t), sizeof(u_int32_t));
4278		    if (error)
4279			break;
4280		}
4281		error = zero_entry(&V_layer3_chain, rulenum[0],
4282			sopt->sopt_name == IP_FW_RESETLOG);
4283		break;
4284
4285	case IP_FW_TABLE_ADD:
4286		{
4287			ipfw_table_entry ent;
4288
4289			error = sooptcopyin(sopt, &ent,
4290			    sizeof(ent), sizeof(ent));
4291			if (error)
4292				break;
4293			error = add_table_entry(&V_layer3_chain, ent.tbl,
4294			    ent.addr, ent.masklen, ent.value);
4295		}
4296		break;
4297
4298	case IP_FW_TABLE_DEL:
4299		{
4300			ipfw_table_entry ent;
4301
4302			error = sooptcopyin(sopt, &ent,
4303			    sizeof(ent), sizeof(ent));
4304			if (error)
4305				break;
4306			error = del_table_entry(&V_layer3_chain, ent.tbl,
4307			    ent.addr, ent.masklen);
4308		}
4309		break;
4310
4311	case IP_FW_TABLE_FLUSH:
4312		{
4313			u_int16_t tbl;
4314
4315			error = sooptcopyin(sopt, &tbl,
4316			    sizeof(tbl), sizeof(tbl));
4317			if (error)
4318				break;
4319			IPFW_WLOCK(&V_layer3_chain);
4320			error = flush_table(&V_layer3_chain, tbl);
4321			IPFW_WUNLOCK(&V_layer3_chain);
4322		}
4323		break;
4324
4325	case IP_FW_TABLE_GETSIZE:
4326		{
4327			u_int32_t tbl, cnt;
4328
4329			if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
4330			    sizeof(tbl))))
4331				break;
4332			IPFW_RLOCK(&V_layer3_chain);
4333			error = count_table(&V_layer3_chain, tbl, &cnt);
4334			IPFW_RUNLOCK(&V_layer3_chain);
4335			if (error)
4336				break;
4337			error = sooptcopyout(sopt, &cnt, sizeof(cnt));
4338		}
4339		break;
4340
4341	case IP_FW_TABLE_LIST:
4342		{
4343			ipfw_table *tbl;
4344
4345			if (sopt->sopt_valsize < sizeof(*tbl)) {
4346				error = EINVAL;
4347				break;
4348			}
4349			size = sopt->sopt_valsize;
4350			tbl = malloc(size, M_TEMP, M_WAITOK);
4351			error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
4352			if (error) {
4353				free(tbl, M_TEMP);
4354				break;
4355			}
4356			tbl->size = (size - sizeof(*tbl)) /
4357			    sizeof(ipfw_table_entry);
4358			IPFW_RLOCK(&V_layer3_chain);
4359			error = dump_table(&V_layer3_chain, tbl);
4360			IPFW_RUNLOCK(&V_layer3_chain);
4361			if (error) {
4362				free(tbl, M_TEMP);
4363				break;
4364			}
4365			error = sooptcopyout(sopt, tbl, size);
4366			free(tbl, M_TEMP);
4367		}
4368		break;
4369
4370	case IP_FW_NAT_CFG:
4371	{
4372		if (IPFW_NAT_LOADED)
4373			error = ipfw_nat_cfg_ptr(sopt);
4374		else {
4375			printf("IP_FW_NAT_CFG: ipfw_nat not present, please load it.\n");
4376			error = EINVAL;
4377		}
4378	}
4379	break;
4380
4381	case IP_FW_NAT_DEL:
4382	{
4383		if (IPFW_NAT_LOADED)
4384			error = ipfw_nat_del_ptr(sopt);
4385		else {
4386			printf("IP_FW_NAT_DEL: ipfw_nat not present, please load it.\n");
4387			printf("ipfw_nat not loaded: %d\n", sopt->sopt_name);
4388			error = EINVAL;
4389		}
4390	}
4391	break;
4392
4393	case IP_FW_NAT_GET_CONFIG:
4394	{
4395		if (IPFW_NAT_LOADED)
4396			error = ipfw_nat_get_cfg_ptr(sopt);
4397		else {
4398			printf("IP_FW_NAT_GET_CFG: ipfw_nat not present, please load it.\n");
4399			error = EINVAL;
4400		}
4401	}
4402	break;
4403
4404	case IP_FW_NAT_GET_LOG:
4405	{
4406		if (IPFW_NAT_LOADED)
4407			error = ipfw_nat_get_log_ptr(sopt);
4408		else {
4409			printf("IP_FW_NAT_GET_LOG: ipfw_nat not present, please load it.\n");
4410			error = EINVAL;
4411		}
4412	}
4413	break;
4414
4415	default:
4416		printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
4417		error = EINVAL;
4418	}
4419
4420	return (error);
4421#undef RULE_MAXSIZE
4422}
4423
4424/**
4425 * dummynet needs a reference to the default rule, because rules can be
4426 * deleted while packets hold a reference to them. When this happens,
4427 * dummynet changes the reference to the default rule (it could well be a
4428 * NULL pointer, but this way we do not need to check for the special
4429 * case, plus here he have info on the default behaviour).
4430 */
4431struct ip_fw *ip_fw_default_rule;
4432
4433/*
4434 * This procedure is only used to handle keepalives. It is invoked
4435 * every dyn_keepalive_period
4436 */
4437static void
4438ipfw_tick(void * __unused unused)
4439{
4440	struct mbuf *m0, *m, *mnext, **mtailp;
4441	int i;
4442	ipfw_dyn_rule *q;
4443
4444	if (V_dyn_keepalive == 0 || V_ipfw_dyn_v == NULL || V_dyn_count == 0)
4445		goto done;
4446
4447	/*
4448	 * We make a chain of packets to go out here -- not deferring
4449	 * until after we drop the IPFW dynamic rule lock would result
4450	 * in a lock order reversal with the normal packet input -> ipfw
4451	 * call stack.
4452	 */
4453	m0 = NULL;
4454	mtailp = &m0;
4455	IPFW_DYN_LOCK();
4456	for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
4457		for (q = V_ipfw_dyn_v[i] ; q ; q = q->next ) {
4458			if (q->dyn_type == O_LIMIT_PARENT)
4459				continue;
4460			if (q->id.proto != IPPROTO_TCP)
4461				continue;
4462			if ( (q->state & BOTH_SYN) != BOTH_SYN)
4463				continue;
4464			if (TIME_LEQ( time_uptime+V_dyn_keepalive_interval,
4465			    q->expire))
4466				continue;	/* too early */
4467			if (TIME_LEQ(q->expire, time_uptime))
4468				continue;	/* too late, rule expired */
4469
4470			*mtailp = send_pkt(NULL, &(q->id), q->ack_rev - 1,
4471				q->ack_fwd, TH_SYN);
4472			if (*mtailp != NULL)
4473				mtailp = &(*mtailp)->m_nextpkt;
4474			*mtailp = send_pkt(NULL, &(q->id), q->ack_fwd - 1,
4475				q->ack_rev, 0);
4476			if (*mtailp != NULL)
4477				mtailp = &(*mtailp)->m_nextpkt;
4478		}
4479	}
4480	IPFW_DYN_UNLOCK();
4481	for (m = mnext = m0; m != NULL; m = mnext) {
4482		mnext = m->m_nextpkt;
4483		m->m_nextpkt = NULL;
4484		ip_output(m, NULL, NULL, 0, NULL, NULL);
4485	}
4486done:
4487	callout_reset(&V_ipfw_timeout, V_dyn_keepalive_period * hz,
4488		      ipfw_tick, NULL);
4489}
4490
4491int
4492ipfw_init(void)
4493{
4494	struct ip_fw default_rule;
4495	int error;
4496
4497#ifdef INET6
4498	/* Setup IPv6 fw sysctl tree. */
4499	sysctl_ctx_init(&ip6_fw_sysctl_ctx);
4500	ip6_fw_sysctl_tree = SYSCTL_ADD_NODE(&ip6_fw_sysctl_ctx,
4501	    SYSCTL_STATIC_CHILDREN(_net_inet6_ip6), OID_AUTO, "fw",
4502	    CTLFLAG_RW | CTLFLAG_SECURE, 0, "Firewall");
4503	SYSCTL_ADD_PROC(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4504	    OID_AUTO, "enable", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3,
4505	    &V_fw6_enable, 0, ipfw_chg_hook, "I", "Enable ipfw+6");
4506	SYSCTL_ADD_INT(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4507	    OID_AUTO, "deny_unknown_exthdrs", CTLFLAG_RW | CTLFLAG_SECURE,
4508	    &V_fw_deny_unknown_exthdrs, 0,
4509	    "Deny packets with unknown IPv6 Extension Headers");
4510#endif
4511
4512	V_layer3_chain.rules = NULL;
4513	IPFW_LOCK_INIT(&V_layer3_chain);
4514	ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule",
4515	    sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
4516	    UMA_ALIGN_PTR, 0);
4517	IPFW_DYN_LOCK_INIT();
4518	callout_init(&V_ipfw_timeout, CALLOUT_MPSAFE);
4519
4520	bzero(&default_rule, sizeof default_rule);
4521
4522	default_rule.act_ofs = 0;
4523	default_rule.rulenum = IPFW_DEFAULT_RULE;
4524	default_rule.cmd_len = 1;
4525	default_rule.set = RESVD_SET;
4526
4527	default_rule.cmd[0].len = 1;
4528	default_rule.cmd[0].opcode =
4529#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
4530				1 ? O_ACCEPT :
4531#endif
4532				O_DENY;
4533
4534	error = add_rule(&V_layer3_chain, &default_rule);
4535	if (error != 0) {
4536		printf("ipfw2: error %u initializing default rule "
4537			"(support disabled)\n", error);
4538		IPFW_DYN_LOCK_DESTROY();
4539		IPFW_LOCK_DESTROY(&V_layer3_chain);
4540		uma_zdestroy(ipfw_dyn_rule_zone);
4541		return (error);
4542	}
4543
4544	ip_fw_default_rule = V_layer3_chain.rules;
4545	printf("ipfw2 "
4546#ifdef INET6
4547		"(+ipv6) "
4548#endif
4549		"initialized, divert %s, nat %s, "
4550		"rule-based forwarding "
4551#ifdef IPFIREWALL_FORWARD
4552		"enabled, "
4553#else
4554		"disabled, "
4555#endif
4556		"default to %s, logging ",
4557#ifdef IPDIVERT
4558		"enabled",
4559#else
4560		"loadable",
4561#endif
4562#ifdef IPFIREWALL_NAT
4563		"enabled",
4564#else
4565		"loadable",
4566#endif
4567
4568		default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
4569
4570#ifdef IPFIREWALL_VERBOSE
4571	V_fw_verbose = 1;
4572#endif
4573#ifdef IPFIREWALL_VERBOSE_LIMIT
4574	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
4575#endif
4576	if (V_fw_verbose == 0)
4577		printf("disabled\n");
4578	else if (V_verbose_limit == 0)
4579		printf("unlimited\n");
4580	else
4581		printf("limited to %d packets/entry by default\n",
4582		    V_verbose_limit);
4583
4584	error = init_tables(&V_layer3_chain);
4585	if (error) {
4586		IPFW_DYN_LOCK_DESTROY();
4587		IPFW_LOCK_DESTROY(&V_layer3_chain);
4588		uma_zdestroy(ipfw_dyn_rule_zone);
4589		return (error);
4590	}
4591	ip_fw_ctl_ptr = ipfw_ctl;
4592	ip_fw_chk_ptr = ipfw_chk;
4593	callout_reset(&V_ipfw_timeout, hz, ipfw_tick, NULL);
4594	LIST_INIT(&V_layer3_chain.nat);
4595	return (0);
4596}
4597
4598void
4599ipfw_destroy(void)
4600{
4601	struct ip_fw *reap;
4602
4603	ip_fw_chk_ptr = NULL;
4604	ip_fw_ctl_ptr = NULL;
4605	callout_drain(&V_ipfw_timeout);
4606	IPFW_WLOCK(&V_layer3_chain);
4607	flush_tables(&V_layer3_chain);
4608	V_layer3_chain.reap = NULL;
4609	free_chain(&V_layer3_chain, 1 /* kill default rule */);
4610	reap = V_layer3_chain.reap, V_layer3_chain.reap = NULL;
4611	IPFW_WUNLOCK(&V_layer3_chain);
4612	if (reap != NULL)
4613		reap_rules(reap);
4614	IPFW_DYN_LOCK_DESTROY();
4615	uma_zdestroy(ipfw_dyn_rule_zone);
4616	if (V_ipfw_dyn_v != NULL)
4617		free(V_ipfw_dyn_v, M_IPFW);
4618	IPFW_LOCK_DESTROY(&V_layer3_chain);
4619
4620#ifdef INET6
4621	/* Free IPv6 fw sysctl tree. */
4622	sysctl_ctx_free(&ip6_fw_sysctl_ctx);
4623#endif
4624
4625	printf("IP firewall unloaded\n");
4626}
4627