ip_fw2.c revision 172930
1/*-
2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: head/sys/netinet/ip_fw2.c 172930 2007-10-24 19:04:04Z rwatson $");
28
29#define        DEB(x)
30#define        DDB(x) x
31
32/*
33 * Implement IP packet firewall (new version)
34 */
35
36#if !defined(KLD_MODULE)
37#include "opt_ipfw.h"
38#include "opt_ipdivert.h"
39#include "opt_ipdn.h"
40#include "opt_inet.h"
41#ifndef INET
42#error IPFIREWALL requires INET.
43#endif /* INET */
44#endif
45#include "opt_inet6.h"
46#include "opt_ipsec.h"
47#include "opt_mac.h"
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/condvar.h>
52#include <sys/eventhandler.h>
53#include <sys/malloc.h>
54#include <sys/mbuf.h>
55#include <sys/kernel.h>
56#include <sys/lock.h>
57#include <sys/jail.h>
58#include <sys/module.h>
59#include <sys/priv.h>
60#include <sys/proc.h>
61#include <sys/rwlock.h>
62#include <sys/socket.h>
63#include <sys/socketvar.h>
64#include <sys/sysctl.h>
65#include <sys/syslog.h>
66#include <sys/ucred.h>
67#include <net/if.h>
68#include <net/radix.h>
69#include <net/route.h>
70#include <net/pf_mtag.h>
71#include <netinet/in.h>
72#include <netinet/in_systm.h>
73#include <netinet/in_var.h>
74#include <netinet/in_pcb.h>
75#include <netinet/ip.h>
76#include <netinet/ip_var.h>
77#include <netinet/ip_icmp.h>
78#include <netinet/ip_fw.h>
79#include <netinet/ip_divert.h>
80#include <netinet/ip_dummynet.h>
81#include <netinet/ip_carp.h>
82#include <netinet/pim.h>
83#include <netinet/tcp.h>
84#include <netinet/tcp_timer.h>
85#include <netinet/tcp_var.h>
86#include <netinet/tcpip.h>
87#include <netinet/udp.h>
88#include <netinet/udp_var.h>
89#include <netinet/sctp.h>
90#ifdef IPFIREWALL_NAT
91#include <netinet/libalias/alias.h>
92#include <netinet/libalias/alias_local.h>
93#endif
94#include <netgraph/ng_ipfw.h>
95
96#include <altq/if_altq.h>
97
98#include <netinet/ip6.h>
99#include <netinet/icmp6.h>
100#ifdef INET6
101#include <netinet6/scope6_var.h>
102#endif
103
104#include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
105
106#include <machine/in_cksum.h>	/* XXX for in_cksum */
107
108#include <security/mac/mac_framework.h>
109
110/*
111 * set_disable contains one bit per set value (0..31).
112 * If the bit is set, all rules with the corresponding set
113 * are disabled. Set RESVD_SET(31) is reserved for the default rule
114 * and rules that are not deleted by the flush command,
115 * and CANNOT be disabled.
116 * Rules in set RESVD_SET can only be deleted explicitly.
117 */
118static u_int32_t set_disable;
119
120static int fw_verbose;
121static int verbose_limit;
122
123static struct callout ipfw_timeout;
124static uma_zone_t ipfw_dyn_rule_zone;
125#define	IPFW_DEFAULT_RULE	65535
126
127/*
128 * Data structure to cache our ucred related
129 * information. This structure only gets used if
130 * the user specified UID/GID based constraints in
131 * a firewall rule.
132 */
133struct ip_fw_ugid {
134	gid_t		fw_groups[NGROUPS];
135	int		fw_ngroups;
136	uid_t		fw_uid;
137	int		fw_prid;
138};
139
140#define	IPFW_TABLES_MAX		128
141struct ip_fw_chain {
142	struct ip_fw	*rules;		/* list of rules */
143	struct ip_fw	*reap;		/* list of rules to reap */
144	LIST_HEAD(, cfg_nat) nat;       /* list of nat entries */
145	struct radix_node_head *tables[IPFW_TABLES_MAX];
146	struct rwlock	rwmtx;
147};
148#define	IPFW_LOCK_INIT(_chain) \
149	rw_init(&(_chain)->rwmtx, "IPFW static rules")
150#define	IPFW_LOCK_DESTROY(_chain)	rw_destroy(&(_chain)->rwmtx)
151#define	IPFW_WLOCK_ASSERT(_chain)	rw_assert(&(_chain)->rwmtx, RA_WLOCKED)
152
153#define IPFW_RLOCK(p) rw_rlock(&(p)->rwmtx)
154#define IPFW_RUNLOCK(p) rw_runlock(&(p)->rwmtx)
155#define IPFW_WLOCK(p) rw_wlock(&(p)->rwmtx)
156#define IPFW_WUNLOCK(p) rw_wunlock(&(p)->rwmtx)
157
158/*
159 * list of rules for layer 3
160 */
161static struct ip_fw_chain layer3_chain;
162
163MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
164MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
165
166struct table_entry {
167	struct radix_node	rn[2];
168	struct sockaddr_in	addr, mask;
169	u_int32_t		value;
170};
171
172static int fw_debug = 1;
173static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
174
175extern int ipfw_chg_hook(SYSCTL_HANDLER_ARGS);
176
177#ifdef SYSCTL_NODE
178SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
179SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, enable,
180    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3, &fw_enable, 0,
181    ipfw_chg_hook, "I", "Enable ipfw");
182SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
183    &autoinc_step, 0, "Rule number autincrement step");
184SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
185    CTLFLAG_RW | CTLFLAG_SECURE3,
186    &fw_one_pass, 0,
187    "Only do a single pass through ipfw when using dummynet(4)");
188SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
189    &fw_debug, 0, "Enable printing of debug ip_fw statements");
190SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
191    CTLFLAG_RW | CTLFLAG_SECURE3,
192    &fw_verbose, 0, "Log matches to ipfw rules");
193SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
194    &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
195
196/*
197 * Description of dynamic rules.
198 *
199 * Dynamic rules are stored in lists accessed through a hash table
200 * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
201 * be modified through the sysctl variable dyn_buckets which is
202 * updated when the table becomes empty.
203 *
204 * XXX currently there is only one list, ipfw_dyn.
205 *
206 * When a packet is received, its address fields are first masked
207 * with the mask defined for the rule, then hashed, then matched
208 * against the entries in the corresponding list.
209 * Dynamic rules can be used for different purposes:
210 *  + stateful rules;
211 *  + enforcing limits on the number of sessions;
212 *  + in-kernel NAT (not implemented yet)
213 *
214 * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
215 * measured in seconds and depending on the flags.
216 *
217 * The total number of dynamic rules is stored in dyn_count.
218 * The max number of dynamic rules is dyn_max. When we reach
219 * the maximum number of rules we do not create anymore. This is
220 * done to avoid consuming too much memory, but also too much
221 * time when searching on each packet (ideally, we should try instead
222 * to put a limit on the length of the list on each bucket...).
223 *
224 * Each dynamic rule holds a pointer to the parent ipfw rule so
225 * we know what action to perform. Dynamic rules are removed when
226 * the parent rule is deleted. XXX we should make them survive.
227 *
228 * There are some limitations with dynamic rules -- we do not
229 * obey the 'randomized match', and we do not do multiple
230 * passes through the firewall. XXX check the latter!!!
231 */
232static ipfw_dyn_rule **ipfw_dyn_v = NULL;
233static u_int32_t dyn_buckets = 256; /* must be power of 2 */
234static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
235
236static struct mtx ipfw_dyn_mtx;		/* mutex guarding dynamic rules */
237#define	IPFW_DYN_LOCK_INIT() \
238	mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
239#define	IPFW_DYN_LOCK_DESTROY()	mtx_destroy(&ipfw_dyn_mtx)
240#define	IPFW_DYN_LOCK()		mtx_lock(&ipfw_dyn_mtx)
241#define	IPFW_DYN_UNLOCK()	mtx_unlock(&ipfw_dyn_mtx)
242#define	IPFW_DYN_LOCK_ASSERT()	mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
243
244/*
245 * Timeouts for various events in handing dynamic rules.
246 */
247static u_int32_t dyn_ack_lifetime = 300;
248static u_int32_t dyn_syn_lifetime = 20;
249static u_int32_t dyn_fin_lifetime = 1;
250static u_int32_t dyn_rst_lifetime = 1;
251static u_int32_t dyn_udp_lifetime = 10;
252static u_int32_t dyn_short_lifetime = 5;
253
254/*
255 * Keepalives are sent if dyn_keepalive is set. They are sent every
256 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
257 * seconds of lifetime of a rule.
258 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
259 * than dyn_keepalive_period.
260 */
261
262static u_int32_t dyn_keepalive_interval = 20;
263static u_int32_t dyn_keepalive_period = 5;
264static u_int32_t dyn_keepalive = 1;	/* do send keepalives */
265
266static u_int32_t static_count;	/* # of static rules */
267static u_int32_t static_len;	/* size in bytes of static rules */
268static u_int32_t dyn_count;		/* # of dynamic rules */
269static u_int32_t dyn_max = 4096;	/* max # of dynamic rules */
270
271SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
272    &dyn_buckets, 0, "Number of dyn. buckets");
273SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
274    &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
275SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
276    &dyn_count, 0, "Number of dyn. rules");
277SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
278    &dyn_max, 0, "Max number of dyn. rules");
279SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
280    &static_count, 0, "Number of static rules");
281SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
282    &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
283SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
284    &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
285SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
286    &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
287SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
288    &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
289SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
290    &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
291SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
292    &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
293SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
294    &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
295
296#ifdef INET6
297/*
298 * IPv6 specific variables
299 */
300SYSCTL_DECL(_net_inet6_ip6);
301
302static struct sysctl_ctx_list ip6_fw_sysctl_ctx;
303static struct sysctl_oid *ip6_fw_sysctl_tree;
304#endif /* INET6 */
305#endif /* SYSCTL_NODE */
306
307#ifdef IPFIREWALL_NAT
308MODULE_DEPEND(ipfw, libalias, 1, 1, 1);
309#endif
310static int fw_deny_unknown_exthdrs = 1;
311
312
313/*
314 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
315 * Other macros just cast void * into the appropriate type
316 */
317#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
318#define	TCP(p)		((struct tcphdr *)(p))
319#define	SCTP(p)		((struct sctphdr *)(p))
320#define	UDP(p)		((struct udphdr *)(p))
321#define	ICMP(p)		((struct icmphdr *)(p))
322#define	ICMP6(p)	((struct icmp6_hdr *)(p))
323
324static __inline int
325icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
326{
327	int type = icmp->icmp_type;
328
329	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
330}
331
332#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
333    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
334
335static int
336is_icmp_query(struct icmphdr *icmp)
337{
338	int type = icmp->icmp_type;
339
340	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
341}
342#undef TT
343
344/*
345 * The following checks use two arrays of 8 or 16 bits to store the
346 * bits that we want set or clear, respectively. They are in the
347 * low and high half of cmd->arg1 or cmd->d[0].
348 *
349 * We scan options and store the bits we find set. We succeed if
350 *
351 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
352 *
353 * The code is sometimes optimized not to store additional variables.
354 */
355
356static int
357flags_match(ipfw_insn *cmd, u_int8_t bits)
358{
359	u_char want_clear;
360	bits = ~bits;
361
362	if ( ((cmd->arg1 & 0xff) & bits) != 0)
363		return 0; /* some bits we want set were clear */
364	want_clear = (cmd->arg1 >> 8) & 0xff;
365	if ( (want_clear & bits) != want_clear)
366		return 0; /* some bits we want clear were set */
367	return 1;
368}
369
370static int
371ipopts_match(struct ip *ip, ipfw_insn *cmd)
372{
373	int optlen, bits = 0;
374	u_char *cp = (u_char *)(ip + 1);
375	int x = (ip->ip_hl << 2) - sizeof (struct ip);
376
377	for (; x > 0; x -= optlen, cp += optlen) {
378		int opt = cp[IPOPT_OPTVAL];
379
380		if (opt == IPOPT_EOL)
381			break;
382		if (opt == IPOPT_NOP)
383			optlen = 1;
384		else {
385			optlen = cp[IPOPT_OLEN];
386			if (optlen <= 0 || optlen > x)
387				return 0; /* invalid or truncated */
388		}
389		switch (opt) {
390
391		default:
392			break;
393
394		case IPOPT_LSRR:
395			bits |= IP_FW_IPOPT_LSRR;
396			break;
397
398		case IPOPT_SSRR:
399			bits |= IP_FW_IPOPT_SSRR;
400			break;
401
402		case IPOPT_RR:
403			bits |= IP_FW_IPOPT_RR;
404			break;
405
406		case IPOPT_TS:
407			bits |= IP_FW_IPOPT_TS;
408			break;
409		}
410	}
411	return (flags_match(cmd, bits));
412}
413
414static int
415tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
416{
417	int optlen, bits = 0;
418	u_char *cp = (u_char *)(tcp + 1);
419	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
420
421	for (; x > 0; x -= optlen, cp += optlen) {
422		int opt = cp[0];
423		if (opt == TCPOPT_EOL)
424			break;
425		if (opt == TCPOPT_NOP)
426			optlen = 1;
427		else {
428			optlen = cp[1];
429			if (optlen <= 0)
430				break;
431		}
432
433		switch (opt) {
434
435		default:
436			break;
437
438		case TCPOPT_MAXSEG:
439			bits |= IP_FW_TCPOPT_MSS;
440			break;
441
442		case TCPOPT_WINDOW:
443			bits |= IP_FW_TCPOPT_WINDOW;
444			break;
445
446		case TCPOPT_SACK_PERMITTED:
447		case TCPOPT_SACK:
448			bits |= IP_FW_TCPOPT_SACK;
449			break;
450
451		case TCPOPT_TIMESTAMP:
452			bits |= IP_FW_TCPOPT_TS;
453			break;
454
455		}
456	}
457	return (flags_match(cmd, bits));
458}
459
460static int
461iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
462{
463	if (ifp == NULL)	/* no iface with this packet, match fails */
464		return 0;
465	/* Check by name or by IP address */
466	if (cmd->name[0] != '\0') { /* match by name */
467		/* Check name */
468		if (cmd->p.glob) {
469			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
470				return(1);
471		} else {
472			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
473				return(1);
474		}
475	} else {
476		struct ifaddr *ia;
477
478		/* XXX lock? */
479		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
480			if (ia->ifa_addr->sa_family != AF_INET)
481				continue;
482			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
483			    (ia->ifa_addr))->sin_addr.s_addr)
484				return(1);	/* match */
485		}
486	}
487	return(0);	/* no match, fail ... */
488}
489
490/*
491 * The verify_path function checks if a route to the src exists and
492 * if it is reachable via ifp (when provided).
493 *
494 * The 'verrevpath' option checks that the interface that an IP packet
495 * arrives on is the same interface that traffic destined for the
496 * packet's source address would be routed out of.  The 'versrcreach'
497 * option just checks that the source address is reachable via any route
498 * (except default) in the routing table.  These two are a measure to block
499 * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
500 * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
501 * is purposely reminiscent of the Cisco IOS command,
502 *
503 *   ip verify unicast reverse-path
504 *   ip verify unicast source reachable-via any
505 *
506 * which implements the same functionality. But note that syntax is
507 * misleading. The check may be performed on all IP packets whether unicast,
508 * multicast, or broadcast.
509 */
510static int
511verify_path(struct in_addr src, struct ifnet *ifp)
512{
513	struct route ro;
514	struct sockaddr_in *dst;
515
516	bzero(&ro, sizeof(ro));
517
518	dst = (struct sockaddr_in *)&(ro.ro_dst);
519	dst->sin_family = AF_INET;
520	dst->sin_len = sizeof(*dst);
521	dst->sin_addr = src;
522	rtalloc_ign(&ro, RTF_CLONING);
523
524	if (ro.ro_rt == NULL)
525		return 0;
526
527	/*
528	 * If ifp is provided, check for equality with rtentry.
529	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
530	 * in order to pass packets injected back by if_simloop():
531	 * if useloopback == 1 routing entry (via lo0) for our own address
532	 * may exist, so we need to handle routing assymetry.
533	 */
534	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
535		RTFREE(ro.ro_rt);
536		return 0;
537	}
538
539	/* if no ifp provided, check if rtentry is not default route */
540	if (ifp == NULL &&
541	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
542		RTFREE(ro.ro_rt);
543		return 0;
544	}
545
546	/* or if this is a blackhole/reject route */
547	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
548		RTFREE(ro.ro_rt);
549		return 0;
550	}
551
552	/* found valid route */
553	RTFREE(ro.ro_rt);
554	return 1;
555}
556
557#ifdef INET6
558/*
559 * ipv6 specific rules here...
560 */
561static __inline int
562icmp6type_match (int type, ipfw_insn_u32 *cmd)
563{
564	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
565}
566
567static int
568flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
569{
570	int i;
571	for (i=0; i <= cmd->o.arg1; ++i )
572		if (curr_flow == cmd->d[i] )
573			return 1;
574	return 0;
575}
576
577/* support for IP6_*_ME opcodes */
578static int
579search_ip6_addr_net (struct in6_addr * ip6_addr)
580{
581	struct ifnet *mdc;
582	struct ifaddr *mdc2;
583	struct in6_ifaddr *fdm;
584	struct in6_addr copia;
585
586	TAILQ_FOREACH(mdc, &ifnet, if_link)
587		TAILQ_FOREACH(mdc2, &mdc->if_addrlist, ifa_list) {
588			if (mdc2->ifa_addr->sa_family == AF_INET6) {
589				fdm = (struct in6_ifaddr *)mdc2;
590				copia = fdm->ia_addr.sin6_addr;
591				/* need for leaving scope_id in the sock_addr */
592				in6_clearscope(&copia);
593				if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia))
594					return 1;
595			}
596		}
597	return 0;
598}
599
600static int
601verify_path6(struct in6_addr *src, struct ifnet *ifp)
602{
603	struct route_in6 ro;
604	struct sockaddr_in6 *dst;
605
606	bzero(&ro, sizeof(ro));
607
608	dst = (struct sockaddr_in6 * )&(ro.ro_dst);
609	dst->sin6_family = AF_INET6;
610	dst->sin6_len = sizeof(*dst);
611	dst->sin6_addr = *src;
612	rtalloc_ign((struct route *)&ro, RTF_CLONING);
613
614	if (ro.ro_rt == NULL)
615		return 0;
616
617	/*
618	 * if ifp is provided, check for equality with rtentry
619	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
620	 * to support the case of sending packets to an address of our own.
621	 * (where the former interface is the first argument of if_simloop()
622	 *  (=ifp), the latter is lo0)
623	 */
624	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
625		RTFREE(ro.ro_rt);
626		return 0;
627	}
628
629	/* if no ifp provided, check if rtentry is not default route */
630	if (ifp == NULL &&
631	    IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
632		RTFREE(ro.ro_rt);
633		return 0;
634	}
635
636	/* or if this is a blackhole/reject route */
637	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
638		RTFREE(ro.ro_rt);
639		return 0;
640	}
641
642	/* found valid route */
643	RTFREE(ro.ro_rt);
644	return 1;
645
646}
647static __inline int
648hash_packet6(struct ipfw_flow_id *id)
649{
650	u_int32_t i;
651	i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
652	    (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
653	    (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
654	    (id->src_ip6.__u6_addr.__u6_addr32[3]) ^
655	    (id->dst_port) ^ (id->src_port);
656	return i;
657}
658
659static int
660is_icmp6_query(int icmp6_type)
661{
662	if ((icmp6_type <= ICMP6_MAXTYPE) &&
663	    (icmp6_type == ICMP6_ECHO_REQUEST ||
664	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
665	    icmp6_type == ICMP6_WRUREQUEST ||
666	    icmp6_type == ICMP6_FQDN_QUERY ||
667	    icmp6_type == ICMP6_NI_QUERY))
668		return (1);
669
670	return (0);
671}
672
673static void
674send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
675{
676	struct mbuf *m;
677
678	m = args->m;
679	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
680		struct tcphdr *tcp;
681		tcp_seq ack, seq;
682		int flags;
683		struct {
684			struct ip6_hdr ip6;
685			struct tcphdr th;
686		} ti;
687		tcp = (struct tcphdr *)((char *)ip6 + hlen);
688
689		if ((tcp->th_flags & TH_RST) != 0) {
690			m_freem(m);
691			args->m = NULL;
692			return;
693		}
694
695		ti.ip6 = *ip6;
696		ti.th = *tcp;
697		ti.th.th_seq = ntohl(ti.th.th_seq);
698		ti.th.th_ack = ntohl(ti.th.th_ack);
699		ti.ip6.ip6_nxt = IPPROTO_TCP;
700
701		if (ti.th.th_flags & TH_ACK) {
702			ack = 0;
703			seq = ti.th.th_ack;
704			flags = TH_RST;
705		} else {
706			ack = ti.th.th_seq;
707			if ((m->m_flags & M_PKTHDR) != 0) {
708				/*
709				 * total new data to ACK is:
710				 * total packet length,
711				 * minus the header length,
712				 * minus the tcp header length.
713				 */
714				ack += m->m_pkthdr.len - hlen
715					- (ti.th.th_off << 2);
716			} else if (ip6->ip6_plen) {
717				ack += ntohs(ip6->ip6_plen) + sizeof(*ip6) -
718				    hlen - (ti.th.th_off << 2);
719			} else {
720				m_freem(m);
721				return;
722			}
723			if (tcp->th_flags & TH_SYN)
724				ack++;
725			seq = 0;
726			flags = TH_RST|TH_ACK;
727		}
728		bcopy(&ti, ip6, sizeof(ti));
729		/*
730		 * m is only used to recycle the mbuf
731		 * The data in it is never read so we don't need
732		 * to correct the offsets or anything
733		 */
734		tcp_respond(NULL, ip6, tcp, m, ack, seq, flags);
735	} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
736#if 0
737		/*
738		 * Unlike above, the mbufs need to line up with the ip6 hdr,
739		 * as the contents are read. We need to m_adj() the
740		 * needed amount.
741		 * The mbuf will however be thrown away so we can adjust it.
742		 * Remember we did an m_pullup on it already so we
743		 * can make some assumptions about contiguousness.
744		 */
745		if (args->L3offset)
746			m_adj(m, args->L3offset);
747#endif
748		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
749	} else
750		m_freem(m);
751
752	args->m = NULL;
753}
754
755#endif /* INET6 */
756
757static u_int64_t norule_counter;	/* counter for ipfw_log(NULL...) */
758
759#define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
760#define SNP(buf) buf, sizeof(buf)
761
762/*
763 * We enter here when we have a rule with O_LOG.
764 * XXX this function alone takes about 2Kbytes of code!
765 */
766static void
767ipfw_log(struct ip_fw *f, u_int hlen, struct ip_fw_args *args,
768    struct mbuf *m, struct ifnet *oif, u_short offset, uint32_t tablearg,
769    struct ip *ip)
770{
771	struct ether_header *eh = args->eh;
772	char *action;
773	int limit_reached = 0;
774	char action2[40], proto[128], fragment[32];
775
776	fragment[0] = '\0';
777	proto[0] = '\0';
778
779	if (f == NULL) {	/* bogus pkt */
780		if (verbose_limit != 0 && norule_counter >= verbose_limit)
781			return;
782		norule_counter++;
783		if (norule_counter == verbose_limit)
784			limit_reached = verbose_limit;
785		action = "Refuse";
786	} else {	/* O_LOG is the first action, find the real one */
787		ipfw_insn *cmd = ACTION_PTR(f);
788		ipfw_insn_log *l = (ipfw_insn_log *)cmd;
789
790		if (l->max_log != 0 && l->log_left == 0)
791			return;
792		l->log_left--;
793		if (l->log_left == 0)
794			limit_reached = l->max_log;
795		cmd += F_LEN(cmd);	/* point to first action */
796		if (cmd->opcode == O_ALTQ) {
797			ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
798
799			snprintf(SNPARGS(action2, 0), "Altq %d",
800				altq->qid);
801			cmd += F_LEN(cmd);
802		}
803		if (cmd->opcode == O_PROB)
804			cmd += F_LEN(cmd);
805
806		if (cmd->opcode == O_TAG)
807			cmd += F_LEN(cmd);
808
809		action = action2;
810		switch (cmd->opcode) {
811		case O_DENY:
812			action = "Deny";
813			break;
814
815		case O_REJECT:
816			if (cmd->arg1==ICMP_REJECT_RST)
817				action = "Reset";
818			else if (cmd->arg1==ICMP_UNREACH_HOST)
819				action = "Reject";
820			else
821				snprintf(SNPARGS(action2, 0), "Unreach %d",
822					cmd->arg1);
823			break;
824
825		case O_UNREACH6:
826			if (cmd->arg1==ICMP6_UNREACH_RST)
827				action = "Reset";
828			else
829				snprintf(SNPARGS(action2, 0), "Unreach %d",
830					cmd->arg1);
831			break;
832
833		case O_ACCEPT:
834			action = "Accept";
835			break;
836		case O_COUNT:
837			action = "Count";
838			break;
839		case O_DIVERT:
840			snprintf(SNPARGS(action2, 0), "Divert %d",
841				cmd->arg1);
842			break;
843		case O_TEE:
844			snprintf(SNPARGS(action2, 0), "Tee %d",
845				cmd->arg1);
846			break;
847		case O_SKIPTO:
848			snprintf(SNPARGS(action2, 0), "SkipTo %d",
849				cmd->arg1);
850			break;
851		case O_PIPE:
852			snprintf(SNPARGS(action2, 0), "Pipe %d",
853				cmd->arg1);
854			break;
855		case O_QUEUE:
856			snprintf(SNPARGS(action2, 0), "Queue %d",
857				cmd->arg1);
858			break;
859		case O_FORWARD_IP: {
860			ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
861			int len;
862			struct in_addr dummyaddr;
863			if (sa->sa.sin_addr.s_addr == INADDR_ANY)
864				dummyaddr.s_addr = htonl(tablearg);
865			else
866				dummyaddr.s_addr = sa->sa.sin_addr.s_addr;
867
868			len = snprintf(SNPARGS(action2, 0), "Forward to %s",
869				inet_ntoa(dummyaddr));
870
871			if (sa->sa.sin_port)
872				snprintf(SNPARGS(action2, len), ":%d",
873				    sa->sa.sin_port);
874			}
875			break;
876		case O_NETGRAPH:
877			snprintf(SNPARGS(action2, 0), "Netgraph %d",
878				cmd->arg1);
879			break;
880		case O_NGTEE:
881			snprintf(SNPARGS(action2, 0), "Ngtee %d",
882				cmd->arg1);
883			break;
884		case O_NAT:
885			action = "Nat";
886 			break;
887		default:
888			action = "UNKNOWN";
889			break;
890		}
891	}
892
893	if (hlen == 0) {	/* non-ip */
894		snprintf(SNPARGS(proto, 0), "MAC");
895
896	} else {
897		int len;
898		char src[48], dst[48];
899		struct icmphdr *icmp;
900		struct tcphdr *tcp;
901		struct udphdr *udp;
902#ifdef INET6
903		struct ip6_hdr *ip6 = NULL;
904		struct icmp6_hdr *icmp6;
905#endif
906		src[0] = '\0';
907		dst[0] = '\0';
908#ifdef INET6
909		if (IS_IP6_FLOW_ID(&(args->f_id))) {
910			char ip6buf[INET6_ADDRSTRLEN];
911			snprintf(src, sizeof(src), "[%s]",
912			    ip6_sprintf(ip6buf, &args->f_id.src_ip6));
913			snprintf(dst, sizeof(dst), "[%s]",
914			    ip6_sprintf(ip6buf, &args->f_id.dst_ip6));
915
916			ip6 = (struct ip6_hdr *)ip;
917			tcp = (struct tcphdr *)(((char *)ip) + hlen);
918			udp = (struct udphdr *)(((char *)ip) + hlen);
919		} else
920#endif
921		{
922			tcp = L3HDR(struct tcphdr, ip);
923			udp = L3HDR(struct udphdr, ip);
924
925			inet_ntoa_r(ip->ip_src, src);
926			inet_ntoa_r(ip->ip_dst, dst);
927		}
928
929		switch (args->f_id.proto) {
930		case IPPROTO_TCP:
931			len = snprintf(SNPARGS(proto, 0), "TCP %s", src);
932			if (offset == 0)
933				snprintf(SNPARGS(proto, len), ":%d %s:%d",
934				    ntohs(tcp->th_sport),
935				    dst,
936				    ntohs(tcp->th_dport));
937			else
938				snprintf(SNPARGS(proto, len), " %s", dst);
939			break;
940
941		case IPPROTO_UDP:
942			len = snprintf(SNPARGS(proto, 0), "UDP %s", src);
943			if (offset == 0)
944				snprintf(SNPARGS(proto, len), ":%d %s:%d",
945				    ntohs(udp->uh_sport),
946				    dst,
947				    ntohs(udp->uh_dport));
948			else
949				snprintf(SNPARGS(proto, len), " %s", dst);
950			break;
951
952		case IPPROTO_ICMP:
953			icmp = L3HDR(struct icmphdr, ip);
954			if (offset == 0)
955				len = snprintf(SNPARGS(proto, 0),
956				    "ICMP:%u.%u ",
957				    icmp->icmp_type, icmp->icmp_code);
958			else
959				len = snprintf(SNPARGS(proto, 0), "ICMP ");
960			len += snprintf(SNPARGS(proto, len), "%s", src);
961			snprintf(SNPARGS(proto, len), " %s", dst);
962			break;
963#ifdef INET6
964		case IPPROTO_ICMPV6:
965			icmp6 = (struct icmp6_hdr *)(((char *)ip) + hlen);
966			if (offset == 0)
967				len = snprintf(SNPARGS(proto, 0),
968				    "ICMPv6:%u.%u ",
969				    icmp6->icmp6_type, icmp6->icmp6_code);
970			else
971				len = snprintf(SNPARGS(proto, 0), "ICMPv6 ");
972			len += snprintf(SNPARGS(proto, len), "%s", src);
973			snprintf(SNPARGS(proto, len), " %s", dst);
974			break;
975#endif
976		default:
977			len = snprintf(SNPARGS(proto, 0), "P:%d %s",
978			    args->f_id.proto, src);
979			snprintf(SNPARGS(proto, len), " %s", dst);
980			break;
981		}
982
983#ifdef INET6
984		if (IS_IP6_FLOW_ID(&(args->f_id))) {
985			if (offset & (IP6F_OFF_MASK | IP6F_MORE_FRAG))
986				snprintf(SNPARGS(fragment, 0),
987				    " (frag %08x:%d@%d%s)",
988				    args->f_id.frag_id6,
989				    ntohs(ip6->ip6_plen) - hlen,
990				    ntohs(offset & IP6F_OFF_MASK) << 3,
991				    (offset & IP6F_MORE_FRAG) ? "+" : "");
992		} else
993#endif
994		{
995			int ip_off, ip_len;
996			if (eh != NULL) { /* layer 2 packets are as on the wire */
997				ip_off = ntohs(ip->ip_off);
998				ip_len = ntohs(ip->ip_len);
999			} else {
1000				ip_off = ip->ip_off;
1001				ip_len = ip->ip_len;
1002			}
1003			if (ip_off & (IP_MF | IP_OFFMASK))
1004				snprintf(SNPARGS(fragment, 0),
1005				    " (frag %d:%d@%d%s)",
1006				    ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
1007				    offset << 3,
1008				    (ip_off & IP_MF) ? "+" : "");
1009		}
1010	}
1011	if (oif || m->m_pkthdr.rcvif)
1012		log(LOG_SECURITY | LOG_INFO,
1013		    "ipfw: %d %s %s %s via %s%s\n",
1014		    f ? f->rulenum : -1,
1015		    action, proto, oif ? "out" : "in",
1016		    oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
1017		    fragment);
1018	else
1019		log(LOG_SECURITY | LOG_INFO,
1020		    "ipfw: %d %s %s [no if info]%s\n",
1021		    f ? f->rulenum : -1,
1022		    action, proto, fragment);
1023	if (limit_reached)
1024		log(LOG_SECURITY | LOG_NOTICE,
1025		    "ipfw: limit %d reached on entry %d\n",
1026		    limit_reached, f ? f->rulenum : -1);
1027}
1028
1029/*
1030 * IMPORTANT: the hash function for dynamic rules must be commutative
1031 * in source and destination (ip,port), because rules are bidirectional
1032 * and we want to find both in the same bucket.
1033 */
1034static __inline int
1035hash_packet(struct ipfw_flow_id *id)
1036{
1037	u_int32_t i;
1038
1039#ifdef INET6
1040	if (IS_IP6_FLOW_ID(id))
1041		i = hash_packet6(id);
1042	else
1043#endif /* INET6 */
1044	i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
1045	i &= (curr_dyn_buckets - 1);
1046	return i;
1047}
1048
1049/**
1050 * unlink a dynamic rule from a chain. prev is a pointer to
1051 * the previous one, q is a pointer to the rule to delete,
1052 * head is a pointer to the head of the queue.
1053 * Modifies q and potentially also head.
1054 */
1055#define UNLINK_DYN_RULE(prev, head, q) {				\
1056	ipfw_dyn_rule *old_q = q;					\
1057									\
1058	/* remove a refcount to the parent */				\
1059	if (q->dyn_type == O_LIMIT)					\
1060		q->parent->count--;					\
1061	DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
1062		(q->id.src_ip), (q->id.src_port),			\
1063		(q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); )	\
1064	if (prev != NULL)						\
1065		prev->next = q = q->next;				\
1066	else								\
1067		head = q = q->next;					\
1068	dyn_count--;							\
1069	uma_zfree(ipfw_dyn_rule_zone, old_q); }
1070
1071#define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
1072
1073/**
1074 * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
1075 *
1076 * If keep_me == NULL, rules are deleted even if not expired,
1077 * otherwise only expired rules are removed.
1078 *
1079 * The value of the second parameter is also used to point to identify
1080 * a rule we absolutely do not want to remove (e.g. because we are
1081 * holding a reference to it -- this is the case with O_LIMIT_PARENT
1082 * rules). The pointer is only used for comparison, so any non-null
1083 * value will do.
1084 */
1085static void
1086remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
1087{
1088	static u_int32_t last_remove = 0;
1089
1090#define FORCE (keep_me == NULL)
1091
1092	ipfw_dyn_rule *prev, *q;
1093	int i, pass = 0, max_pass = 0;
1094
1095	IPFW_DYN_LOCK_ASSERT();
1096
1097	if (ipfw_dyn_v == NULL || dyn_count == 0)
1098		return;
1099	/* do not expire more than once per second, it is useless */
1100	if (!FORCE && last_remove == time_uptime)
1101		return;
1102	last_remove = time_uptime;
1103
1104	/*
1105	 * because O_LIMIT refer to parent rules, during the first pass only
1106	 * remove child and mark any pending LIMIT_PARENT, and remove
1107	 * them in a second pass.
1108	 */
1109next_pass:
1110	for (i = 0 ; i < curr_dyn_buckets ; i++) {
1111		for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
1112			/*
1113			 * Logic can become complex here, so we split tests.
1114			 */
1115			if (q == keep_me)
1116				goto next;
1117			if (rule != NULL && rule != q->rule)
1118				goto next; /* not the one we are looking for */
1119			if (q->dyn_type == O_LIMIT_PARENT) {
1120				/*
1121				 * handle parent in the second pass,
1122				 * record we need one.
1123				 */
1124				max_pass = 1;
1125				if (pass == 0)
1126					goto next;
1127				if (FORCE && q->count != 0 ) {
1128					/* XXX should not happen! */
1129					printf("ipfw: OUCH! cannot remove rule,"
1130					     " count %d\n", q->count);
1131				}
1132			} else {
1133				if (!FORCE &&
1134				    !TIME_LEQ( q->expire, time_uptime ))
1135					goto next;
1136			}
1137             if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
1138                     UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
1139                     continue;
1140             }
1141next:
1142			prev=q;
1143			q=q->next;
1144		}
1145	}
1146	if (pass++ < max_pass)
1147		goto next_pass;
1148}
1149
1150
1151/**
1152 * lookup a dynamic rule.
1153 */
1154static ipfw_dyn_rule *
1155lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
1156    struct tcphdr *tcp)
1157{
1158	/*
1159	 * stateful ipfw extensions.
1160	 * Lookup into dynamic session queue
1161	 */
1162#define MATCH_REVERSE	0
1163#define MATCH_FORWARD	1
1164#define MATCH_NONE	2
1165#define MATCH_UNKNOWN	3
1166	int i, dir = MATCH_NONE;
1167	ipfw_dyn_rule *prev, *q=NULL;
1168
1169	IPFW_DYN_LOCK_ASSERT();
1170
1171	if (ipfw_dyn_v == NULL)
1172		goto done;	/* not found */
1173	i = hash_packet( pkt );
1174	for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
1175		if (q->dyn_type == O_LIMIT_PARENT && q->count)
1176			goto next;
1177		if (TIME_LEQ( q->expire, time_uptime)) { /* expire entry */
1178			UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
1179			continue;
1180		}
1181		if (pkt->proto == q->id.proto &&
1182		    q->dyn_type != O_LIMIT_PARENT) {
1183			if (IS_IP6_FLOW_ID(pkt)) {
1184			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1185				&(q->id.src_ip6)) &&
1186			    IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1187				&(q->id.dst_ip6)) &&
1188			    pkt->src_port == q->id.src_port &&
1189			    pkt->dst_port == q->id.dst_port ) {
1190				dir = MATCH_FORWARD;
1191				break;
1192			    }
1193			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1194				    &(q->id.dst_ip6)) &&
1195				IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1196				    &(q->id.src_ip6)) &&
1197				pkt->src_port == q->id.dst_port &&
1198				pkt->dst_port == q->id.src_port ) {
1199				    dir = MATCH_REVERSE;
1200				    break;
1201			    }
1202			} else {
1203			    if (pkt->src_ip == q->id.src_ip &&
1204				pkt->dst_ip == q->id.dst_ip &&
1205				pkt->src_port == q->id.src_port &&
1206				pkt->dst_port == q->id.dst_port ) {
1207				    dir = MATCH_FORWARD;
1208				    break;
1209			    }
1210			    if (pkt->src_ip == q->id.dst_ip &&
1211				pkt->dst_ip == q->id.src_ip &&
1212				pkt->src_port == q->id.dst_port &&
1213				pkt->dst_port == q->id.src_port ) {
1214				    dir = MATCH_REVERSE;
1215				    break;
1216			    }
1217			}
1218		}
1219next:
1220		prev = q;
1221		q = q->next;
1222	}
1223	if (q == NULL)
1224		goto done; /* q = NULL, not found */
1225
1226	if ( prev != NULL) { /* found and not in front */
1227		prev->next = q->next;
1228		q->next = ipfw_dyn_v[i];
1229		ipfw_dyn_v[i] = q;
1230	}
1231	if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
1232		u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
1233
1234#define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
1235#define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
1236		q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
1237		switch (q->state) {
1238		case TH_SYN:				/* opening */
1239			q->expire = time_uptime + dyn_syn_lifetime;
1240			break;
1241
1242		case BOTH_SYN:			/* move to established */
1243		case BOTH_SYN | TH_FIN :	/* one side tries to close */
1244		case BOTH_SYN | (TH_FIN << 8) :
1245 			if (tcp) {
1246#define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
1247			    u_int32_t ack = ntohl(tcp->th_ack);
1248			    if (dir == MATCH_FORWARD) {
1249				if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
1250				    q->ack_fwd = ack;
1251				else { /* ignore out-of-sequence */
1252				    break;
1253				}
1254			    } else {
1255				if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
1256				    q->ack_rev = ack;
1257				else { /* ignore out-of-sequence */
1258				    break;
1259				}
1260			    }
1261			}
1262			q->expire = time_uptime + dyn_ack_lifetime;
1263			break;
1264
1265		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
1266			if (dyn_fin_lifetime >= dyn_keepalive_period)
1267				dyn_fin_lifetime = dyn_keepalive_period - 1;
1268			q->expire = time_uptime + dyn_fin_lifetime;
1269			break;
1270
1271		default:
1272#if 0
1273			/*
1274			 * reset or some invalid combination, but can also
1275			 * occur if we use keep-state the wrong way.
1276			 */
1277			if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
1278				printf("invalid state: 0x%x\n", q->state);
1279#endif
1280			if (dyn_rst_lifetime >= dyn_keepalive_period)
1281				dyn_rst_lifetime = dyn_keepalive_period - 1;
1282			q->expire = time_uptime + dyn_rst_lifetime;
1283			break;
1284		}
1285	} else if (pkt->proto == IPPROTO_UDP) {
1286		q->expire = time_uptime + dyn_udp_lifetime;
1287	} else {
1288		/* other protocols */
1289		q->expire = time_uptime + dyn_short_lifetime;
1290	}
1291done:
1292	if (match_direction)
1293		*match_direction = dir;
1294	return q;
1295}
1296
1297static ipfw_dyn_rule *
1298lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
1299    struct tcphdr *tcp)
1300{
1301	ipfw_dyn_rule *q;
1302
1303	IPFW_DYN_LOCK();
1304	q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
1305	if (q == NULL)
1306		IPFW_DYN_UNLOCK();
1307	/* NB: return table locked when q is not NULL */
1308	return q;
1309}
1310
1311static void
1312realloc_dynamic_table(void)
1313{
1314	IPFW_DYN_LOCK_ASSERT();
1315
1316	/*
1317	 * Try reallocation, make sure we have a power of 2 and do
1318	 * not allow more than 64k entries. In case of overflow,
1319	 * default to 1024.
1320	 */
1321
1322	if (dyn_buckets > 65536)
1323		dyn_buckets = 1024;
1324	if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
1325		dyn_buckets = curr_dyn_buckets; /* reset */
1326		return;
1327	}
1328	curr_dyn_buckets = dyn_buckets;
1329	if (ipfw_dyn_v != NULL)
1330		free(ipfw_dyn_v, M_IPFW);
1331	for (;;) {
1332		ipfw_dyn_v = malloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
1333		       M_IPFW, M_NOWAIT | M_ZERO);
1334		if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
1335			break;
1336		curr_dyn_buckets /= 2;
1337	}
1338}
1339
1340/**
1341 * Install state of type 'type' for a dynamic session.
1342 * The hash table contains two type of rules:
1343 * - regular rules (O_KEEP_STATE)
1344 * - rules for sessions with limited number of sess per user
1345 *   (O_LIMIT). When they are created, the parent is
1346 *   increased by 1, and decreased on delete. In this case,
1347 *   the third parameter is the parent rule and not the chain.
1348 * - "parent" rules for the above (O_LIMIT_PARENT).
1349 */
1350static ipfw_dyn_rule *
1351add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
1352{
1353	ipfw_dyn_rule *r;
1354	int i;
1355
1356	IPFW_DYN_LOCK_ASSERT();
1357
1358	if (ipfw_dyn_v == NULL ||
1359	    (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
1360		realloc_dynamic_table();
1361		if (ipfw_dyn_v == NULL)
1362			return NULL; /* failed ! */
1363	}
1364	i = hash_packet(id);
1365
1366	r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
1367	if (r == NULL) {
1368		printf ("ipfw: sorry cannot allocate state\n");
1369		return NULL;
1370	}
1371
1372	/* increase refcount on parent, and set pointer */
1373	if (dyn_type == O_LIMIT) {
1374		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
1375		if ( parent->dyn_type != O_LIMIT_PARENT)
1376			panic("invalid parent");
1377		parent->count++;
1378		r->parent = parent;
1379		rule = parent->rule;
1380	}
1381
1382	r->id = *id;
1383	r->expire = time_uptime + dyn_syn_lifetime;
1384	r->rule = rule;
1385	r->dyn_type = dyn_type;
1386	r->pcnt = r->bcnt = 0;
1387	r->count = 0;
1388
1389	r->bucket = i;
1390	r->next = ipfw_dyn_v[i];
1391	ipfw_dyn_v[i] = r;
1392	dyn_count++;
1393	DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1394	   dyn_type,
1395	   (r->id.src_ip), (r->id.src_port),
1396	   (r->id.dst_ip), (r->id.dst_port),
1397	   dyn_count ); )
1398	return r;
1399}
1400
1401/**
1402 * lookup dynamic parent rule using pkt and rule as search keys.
1403 * If the lookup fails, then install one.
1404 */
1405static ipfw_dyn_rule *
1406lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
1407{
1408	ipfw_dyn_rule *q;
1409	int i;
1410
1411	IPFW_DYN_LOCK_ASSERT();
1412
1413	if (ipfw_dyn_v) {
1414		int is_v6 = IS_IP6_FLOW_ID(pkt);
1415		i = hash_packet( pkt );
1416		for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
1417			if (q->dyn_type == O_LIMIT_PARENT &&
1418			    rule== q->rule &&
1419			    pkt->proto == q->id.proto &&
1420			    pkt->src_port == q->id.src_port &&
1421			    pkt->dst_port == q->id.dst_port &&
1422			    (
1423				(is_v6 &&
1424				 IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1425					&(q->id.src_ip6)) &&
1426				 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1427					&(q->id.dst_ip6))) ||
1428				(!is_v6 &&
1429				 pkt->src_ip == q->id.src_ip &&
1430				 pkt->dst_ip == q->id.dst_ip)
1431			    )
1432			) {
1433				q->expire = time_uptime + dyn_short_lifetime;
1434				DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
1435				return q;
1436			}
1437	}
1438	return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
1439}
1440
1441/**
1442 * Install dynamic state for rule type cmd->o.opcode
1443 *
1444 * Returns 1 (failure) if state is not installed because of errors or because
1445 * session limitations are enforced.
1446 */
1447static int
1448install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
1449    struct ip_fw_args *args, uint32_t tablearg)
1450{
1451	static int last_log;
1452	ipfw_dyn_rule *q;
1453	struct in_addr da;
1454	char src[48], dst[48];
1455
1456	src[0] = '\0';
1457	dst[0] = '\0';
1458
1459	DEB(
1460	printf("ipfw: %s: type %d 0x%08x %u -> 0x%08x %u\n",
1461	    __func__, cmd->o.opcode,
1462	    (args->f_id.src_ip), (args->f_id.src_port),
1463	    (args->f_id.dst_ip), (args->f_id.dst_port));
1464	)
1465
1466	IPFW_DYN_LOCK();
1467
1468	q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1469
1470	if (q != NULL) {	/* should never occur */
1471		if (last_log != time_uptime) {
1472			last_log = time_uptime;
1473			printf("ipfw: %s: entry already present, done\n",
1474			    __func__);
1475		}
1476		IPFW_DYN_UNLOCK();
1477		return (0);
1478	}
1479
1480	if (dyn_count >= dyn_max)
1481		/* Run out of slots, try to remove any expired rule. */
1482		remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
1483
1484	if (dyn_count >= dyn_max) {
1485		if (last_log != time_uptime) {
1486			last_log = time_uptime;
1487			printf("ipfw: %s: Too many dynamic rules\n", __func__);
1488		}
1489		IPFW_DYN_UNLOCK();
1490		return (1);	/* cannot install, notify caller */
1491	}
1492
1493	switch (cmd->o.opcode) {
1494	case O_KEEP_STATE:	/* bidir rule */
1495		add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
1496		break;
1497
1498	case O_LIMIT: {		/* limit number of sessions */
1499		struct ipfw_flow_id id;
1500		ipfw_dyn_rule *parent;
1501		uint32_t conn_limit;
1502		uint16_t limit_mask = cmd->limit_mask;
1503
1504		conn_limit = (cmd->conn_limit == IP_FW_TABLEARG) ?
1505		    tablearg : cmd->conn_limit;
1506
1507		DEB(
1508		if (cmd->conn_limit == IP_FW_TABLEARG)
1509			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
1510			    "(tablearg)\n", __func__, conn_limit);
1511		else
1512			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
1513			    __func__, conn_limit);
1514		)
1515
1516		id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
1517		id.proto = args->f_id.proto;
1518		id.addr_type = args->f_id.addr_type;
1519
1520		if (IS_IP6_FLOW_ID (&(args->f_id))) {
1521			if (limit_mask & DYN_SRC_ADDR)
1522				id.src_ip6 = args->f_id.src_ip6;
1523			if (limit_mask & DYN_DST_ADDR)
1524				id.dst_ip6 = args->f_id.dst_ip6;
1525		} else {
1526			if (limit_mask & DYN_SRC_ADDR)
1527				id.src_ip = args->f_id.src_ip;
1528			if (limit_mask & DYN_DST_ADDR)
1529				id.dst_ip = args->f_id.dst_ip;
1530		}
1531		if (limit_mask & DYN_SRC_PORT)
1532			id.src_port = args->f_id.src_port;
1533		if (limit_mask & DYN_DST_PORT)
1534			id.dst_port = args->f_id.dst_port;
1535		if ((parent = lookup_dyn_parent(&id, rule)) == NULL) {
1536			printf("ipfw: %s: add parent failed\n", __func__);
1537			IPFW_DYN_UNLOCK();
1538			return (1);
1539		}
1540
1541		if (parent->count >= conn_limit) {
1542			/* See if we can remove some expired rule. */
1543			remove_dyn_rule(rule, parent);
1544			if (parent->count >= conn_limit) {
1545				if (fw_verbose && last_log != time_uptime) {
1546					last_log = time_uptime;
1547#ifdef INET6
1548					/*
1549					 * XXX IPv6 flows are not
1550					 * supported yet.
1551					 */
1552					if (IS_IP6_FLOW_ID(&(args->f_id))) {
1553						char ip6buf[INET6_ADDRSTRLEN];
1554						snprintf(src, sizeof(src),
1555						    "[%s]", ip6_sprintf(ip6buf,
1556							&args->f_id.src_ip6));
1557						snprintf(dst, sizeof(dst),
1558						    "[%s]", ip6_sprintf(ip6buf,
1559							&args->f_id.dst_ip6));
1560					} else
1561#endif
1562					{
1563						da.s_addr =
1564						    htonl(args->f_id.src_ip);
1565						inet_ntoa_r(da, src);
1566						da.s_addr =
1567						    htonl(args->f_id.dst_ip);
1568						inet_ntoa_r(da, dst);
1569					}
1570					log(LOG_SECURITY | LOG_DEBUG,
1571					    "ipfw: %d %s %s:%u -> %s:%u, %s\n",
1572					    parent->rule->rulenum,
1573					    "drop session",
1574					    src, (args->f_id.src_port),
1575					    dst, (args->f_id.dst_port),
1576					    "too many entries");
1577				}
1578				IPFW_DYN_UNLOCK();
1579				return (1);
1580			}
1581		}
1582		add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1583		break;
1584	}
1585	default:
1586		printf("ipfw: %s: unknown dynamic rule type %u\n",
1587		    __func__, cmd->o.opcode);
1588		IPFW_DYN_UNLOCK();
1589		return (1);
1590	}
1591
1592	/* XXX just set lifetime */
1593	lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1594
1595	IPFW_DYN_UNLOCK();
1596	return (0);
1597}
1598
1599/*
1600 * Generate a TCP packet, containing either a RST or a keepalive.
1601 * When flags & TH_RST, we are sending a RST packet, because of a
1602 * "reset" action matched the packet.
1603 * Otherwise we are sending a keepalive, and flags & TH_
1604 * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
1605 * so that MAC can label the reply appropriately.
1606 */
1607static struct mbuf *
1608send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
1609    u_int32_t ack, int flags)
1610{
1611	struct mbuf *m;
1612	struct ip *ip;
1613	struct tcphdr *tcp;
1614
1615	MGETHDR(m, M_DONTWAIT, MT_DATA);
1616	if (m == 0)
1617		return (NULL);
1618	m->m_pkthdr.rcvif = (struct ifnet *)0;
1619
1620#ifdef MAC
1621	if (replyto != NULL)
1622		mac_mbuf_create_netlayer(replyto, m);
1623	else
1624		mac_mbuf_create_from_firewall(m);
1625#else
1626	(void)replyto;		/* don't warn about unused arg */
1627#endif
1628
1629	m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1630	m->m_data += max_linkhdr;
1631
1632	ip = mtod(m, struct ip *);
1633	bzero(ip, m->m_len);
1634	tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1635	ip->ip_p = IPPROTO_TCP;
1636	tcp->th_off = 5;
1637	/*
1638	 * Assume we are sending a RST (or a keepalive in the reverse
1639	 * direction), swap src and destination addresses and ports.
1640	 */
1641	ip->ip_src.s_addr = htonl(id->dst_ip);
1642	ip->ip_dst.s_addr = htonl(id->src_ip);
1643	tcp->th_sport = htons(id->dst_port);
1644	tcp->th_dport = htons(id->src_port);
1645	if (flags & TH_RST) {	/* we are sending a RST */
1646		if (flags & TH_ACK) {
1647			tcp->th_seq = htonl(ack);
1648			tcp->th_ack = htonl(0);
1649			tcp->th_flags = TH_RST;
1650		} else {
1651			if (flags & TH_SYN)
1652				seq++;
1653			tcp->th_seq = htonl(0);
1654			tcp->th_ack = htonl(seq);
1655			tcp->th_flags = TH_RST | TH_ACK;
1656		}
1657	} else {
1658		/*
1659		 * We are sending a keepalive. flags & TH_SYN determines
1660		 * the direction, forward if set, reverse if clear.
1661		 * NOTE: seq and ack are always assumed to be correct
1662		 * as set by the caller. This may be confusing...
1663		 */
1664		if (flags & TH_SYN) {
1665			/*
1666			 * we have to rewrite the correct addresses!
1667			 */
1668			ip->ip_dst.s_addr = htonl(id->dst_ip);
1669			ip->ip_src.s_addr = htonl(id->src_ip);
1670			tcp->th_dport = htons(id->dst_port);
1671			tcp->th_sport = htons(id->src_port);
1672		}
1673		tcp->th_seq = htonl(seq);
1674		tcp->th_ack = htonl(ack);
1675		tcp->th_flags = TH_ACK;
1676	}
1677	/*
1678	 * set ip_len to the payload size so we can compute
1679	 * the tcp checksum on the pseudoheader
1680	 * XXX check this, could save a couple of words ?
1681	 */
1682	ip->ip_len = htons(sizeof(struct tcphdr));
1683	tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1684	/*
1685	 * now fill fields left out earlier
1686	 */
1687	ip->ip_ttl = ip_defttl;
1688	ip->ip_len = m->m_pkthdr.len;
1689	m->m_flags |= M_SKIP_FIREWALL;
1690	return (m);
1691}
1692
1693/*
1694 * sends a reject message, consuming the mbuf passed as an argument.
1695 */
1696static void
1697send_reject(struct ip_fw_args *args, int code, int ip_len, struct ip *ip)
1698{
1699
1700#if 0
1701	/* XXX When ip is not guaranteed to be at mtod() we will
1702	 * need to account for this */
1703	 * The mbuf will however be thrown away so we can adjust it.
1704	 * Remember we did an m_pullup on it already so we
1705	 * can make some assumptions about contiguousness.
1706	 */
1707	if (args->L3offset)
1708		m_adj(m, args->L3offset);
1709#endif
1710	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1711		/* We need the IP header in host order for icmp_error(). */
1712		if (args->eh != NULL) {
1713			ip->ip_len = ntohs(ip->ip_len);
1714			ip->ip_off = ntohs(ip->ip_off);
1715		}
1716		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1717	} else if (args->f_id.proto == IPPROTO_TCP) {
1718		struct tcphdr *const tcp =
1719		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1720		if ( (tcp->th_flags & TH_RST) == 0) {
1721			struct mbuf *m;
1722			m = send_pkt(args->m, &(args->f_id),
1723				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
1724				tcp->th_flags | TH_RST);
1725			if (m != NULL)
1726				ip_output(m, NULL, NULL, 0, NULL, NULL);
1727		}
1728		m_freem(args->m);
1729	} else
1730		m_freem(args->m);
1731	args->m = NULL;
1732}
1733
1734/**
1735 *
1736 * Given an ip_fw *, lookup_next_rule will return a pointer
1737 * to the next rule, which can be either the jump
1738 * target (for skipto instructions) or the next one in the list (in
1739 * all other cases including a missing jump target).
1740 * The result is also written in the "next_rule" field of the rule.
1741 * Backward jumps are not allowed, so start looking from the next
1742 * rule...
1743 *
1744 * This never returns NULL -- in case we do not have an exact match,
1745 * the next rule is returned. When the ruleset is changed,
1746 * pointers are flushed so we are always correct.
1747 */
1748
1749static struct ip_fw *
1750lookup_next_rule(struct ip_fw *me)
1751{
1752	struct ip_fw *rule = NULL;
1753	ipfw_insn *cmd;
1754
1755	/* look for action, in case it is a skipto */
1756	cmd = ACTION_PTR(me);
1757	if (cmd->opcode == O_LOG)
1758		cmd += F_LEN(cmd);
1759	if (cmd->opcode == O_ALTQ)
1760		cmd += F_LEN(cmd);
1761	if (cmd->opcode == O_TAG)
1762		cmd += F_LEN(cmd);
1763	if ( cmd->opcode == O_SKIPTO )
1764		for (rule = me->next; rule ; rule = rule->next)
1765			if (rule->rulenum >= cmd->arg1)
1766				break;
1767	if (rule == NULL)			/* failure or not a skipto */
1768		rule = me->next;
1769	me->next_rule = rule;
1770	return rule;
1771}
1772
1773static int
1774add_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1775    uint8_t mlen, uint32_t value)
1776{
1777	struct radix_node_head *rnh;
1778	struct table_entry *ent;
1779
1780	if (tbl >= IPFW_TABLES_MAX)
1781		return (EINVAL);
1782	rnh = ch->tables[tbl];
1783	ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
1784	if (ent == NULL)
1785		return (ENOMEM);
1786	ent->value = value;
1787	ent->addr.sin_len = ent->mask.sin_len = 8;
1788	ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1789	ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
1790	IPFW_WLOCK(&layer3_chain);
1791	if (rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent) ==
1792	    NULL) {
1793		IPFW_WUNLOCK(&layer3_chain);
1794		free(ent, M_IPFW_TBL);
1795		return (EEXIST);
1796	}
1797	IPFW_WUNLOCK(&layer3_chain);
1798	return (0);
1799}
1800
1801static int
1802del_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1803    uint8_t mlen)
1804{
1805	struct radix_node_head *rnh;
1806	struct table_entry *ent;
1807	struct sockaddr_in sa, mask;
1808
1809	if (tbl >= IPFW_TABLES_MAX)
1810		return (EINVAL);
1811	rnh = ch->tables[tbl];
1812	sa.sin_len = mask.sin_len = 8;
1813	mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1814	sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
1815	IPFW_WLOCK(ch);
1816	ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
1817	if (ent == NULL) {
1818		IPFW_WUNLOCK(ch);
1819		return (ESRCH);
1820	}
1821	IPFW_WUNLOCK(ch);
1822	free(ent, M_IPFW_TBL);
1823	return (0);
1824}
1825
1826static int
1827flush_table_entry(struct radix_node *rn, void *arg)
1828{
1829	struct radix_node_head * const rnh = arg;
1830	struct table_entry *ent;
1831
1832	ent = (struct table_entry *)
1833	    rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
1834	if (ent != NULL)
1835		free(ent, M_IPFW_TBL);
1836	return (0);
1837}
1838
1839static int
1840flush_table(struct ip_fw_chain *ch, uint16_t tbl)
1841{
1842	struct radix_node_head *rnh;
1843
1844	IPFW_WLOCK_ASSERT(ch);
1845
1846	if (tbl >= IPFW_TABLES_MAX)
1847		return (EINVAL);
1848	rnh = ch->tables[tbl];
1849	KASSERT(rnh != NULL, ("NULL IPFW table"));
1850	rnh->rnh_walktree(rnh, flush_table_entry, rnh);
1851	return (0);
1852}
1853
1854static void
1855flush_tables(struct ip_fw_chain *ch)
1856{
1857	uint16_t tbl;
1858
1859	IPFW_WLOCK_ASSERT(ch);
1860
1861	for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
1862		flush_table(ch, tbl);
1863}
1864
1865static int
1866init_tables(struct ip_fw_chain *ch)
1867{
1868	int i;
1869	uint16_t j;
1870
1871	for (i = 0; i < IPFW_TABLES_MAX; i++) {
1872		if (!rn_inithead((void **)&ch->tables[i], 32)) {
1873			for (j = 0; j < i; j++) {
1874				(void) flush_table(ch, j);
1875			}
1876			return (ENOMEM);
1877		}
1878	}
1879	return (0);
1880}
1881
1882static int
1883lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1884    uint32_t *val)
1885{
1886	struct radix_node_head *rnh;
1887	struct table_entry *ent;
1888	struct sockaddr_in sa;
1889
1890	if (tbl >= IPFW_TABLES_MAX)
1891		return (0);
1892	rnh = ch->tables[tbl];
1893	sa.sin_len = 8;
1894	sa.sin_addr.s_addr = addr;
1895	ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
1896	if (ent != NULL) {
1897		*val = ent->value;
1898		return (1);
1899	}
1900	return (0);
1901}
1902
1903static int
1904count_table_entry(struct radix_node *rn, void *arg)
1905{
1906	u_int32_t * const cnt = arg;
1907
1908	(*cnt)++;
1909	return (0);
1910}
1911
1912static int
1913count_table(struct ip_fw_chain *ch, uint32_t tbl, uint32_t *cnt)
1914{
1915	struct radix_node_head *rnh;
1916
1917	if (tbl >= IPFW_TABLES_MAX)
1918		return (EINVAL);
1919	rnh = ch->tables[tbl];
1920	*cnt = 0;
1921	rnh->rnh_walktree(rnh, count_table_entry, cnt);
1922	return (0);
1923}
1924
1925static int
1926dump_table_entry(struct radix_node *rn, void *arg)
1927{
1928	struct table_entry * const n = (struct table_entry *)rn;
1929	ipfw_table * const tbl = arg;
1930	ipfw_table_entry *ent;
1931
1932	if (tbl->cnt == tbl->size)
1933		return (1);
1934	ent = &tbl->ent[tbl->cnt];
1935	ent->tbl = tbl->tbl;
1936	if (in_nullhost(n->mask.sin_addr))
1937		ent->masklen = 0;
1938	else
1939		ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
1940	ent->addr = n->addr.sin_addr.s_addr;
1941	ent->value = n->value;
1942	tbl->cnt++;
1943	return (0);
1944}
1945
1946static int
1947dump_table(struct ip_fw_chain *ch, ipfw_table *tbl)
1948{
1949	struct radix_node_head *rnh;
1950
1951	if (tbl->tbl >= IPFW_TABLES_MAX)
1952		return (EINVAL);
1953	rnh = ch->tables[tbl->tbl];
1954	tbl->cnt = 0;
1955	rnh->rnh_walktree(rnh, dump_table_entry, tbl);
1956	return (0);
1957}
1958
1959static void
1960fill_ugid_cache(struct inpcb *inp, struct ip_fw_ugid *ugp)
1961{
1962	struct ucred *cr;
1963
1964	if (inp->inp_socket != NULL) {
1965		cr = inp->inp_socket->so_cred;
1966		ugp->fw_prid = jailed(cr) ?
1967		    cr->cr_prison->pr_id : -1;
1968		ugp->fw_uid = cr->cr_uid;
1969		ugp->fw_ngroups = cr->cr_ngroups;
1970		bcopy(cr->cr_groups, ugp->fw_groups,
1971		    sizeof(ugp->fw_groups));
1972	}
1973}
1974
1975static int
1976check_uidgid(ipfw_insn_u32 *insn, int proto, struct ifnet *oif,
1977    struct in_addr dst_ip, u_int16_t dst_port, struct in_addr src_ip,
1978    u_int16_t src_port, struct ip_fw_ugid *ugp, int *lookup,
1979    struct inpcb *inp)
1980{
1981	struct inpcbinfo *pi;
1982	int wildcard;
1983	struct inpcb *pcb;
1984	int match;
1985	gid_t *gp;
1986
1987	/*
1988	 * Check to see if the UDP or TCP stack supplied us with
1989	 * the PCB. If so, rather then holding a lock and looking
1990	 * up the PCB, we can use the one that was supplied.
1991	 */
1992	if (inp && *lookup == 0) {
1993		INP_LOCK_ASSERT(inp);
1994		if (inp->inp_socket != NULL) {
1995			fill_ugid_cache(inp, ugp);
1996			*lookup = 1;
1997		}
1998	}
1999	/*
2000	 * If we have already been here and the packet has no
2001	 * PCB entry associated with it, then we can safely
2002	 * assume that this is a no match.
2003	 */
2004	if (*lookup == -1)
2005		return (0);
2006	if (proto == IPPROTO_TCP) {
2007		wildcard = 0;
2008		pi = &tcbinfo;
2009	} else if (proto == IPPROTO_UDP) {
2010		wildcard = INPLOOKUP_WILDCARD;
2011		pi = &udbinfo;
2012	} else
2013		return 0;
2014	match = 0;
2015	if (*lookup == 0) {
2016		INP_INFO_RLOCK(pi);
2017		pcb =  (oif) ?
2018			in_pcblookup_hash(pi,
2019				dst_ip, htons(dst_port),
2020				src_ip, htons(src_port),
2021				wildcard, oif) :
2022			in_pcblookup_hash(pi,
2023				src_ip, htons(src_port),
2024				dst_ip, htons(dst_port),
2025				wildcard, NULL);
2026		if (pcb != NULL) {
2027			INP_LOCK(pcb);
2028			if (pcb->inp_socket != NULL) {
2029				fill_ugid_cache(pcb, ugp);
2030				*lookup = 1;
2031			}
2032			INP_UNLOCK(pcb);
2033		}
2034		INP_INFO_RUNLOCK(pi);
2035		if (*lookup == 0) {
2036			/*
2037			 * If the lookup did not yield any results, there
2038			 * is no sense in coming back and trying again. So
2039			 * we can set lookup to -1 and ensure that we wont
2040			 * bother the pcb system again.
2041			 */
2042			*lookup = -1;
2043			return (0);
2044		}
2045	}
2046	if (insn->o.opcode == O_UID)
2047		match = (ugp->fw_uid == (uid_t)insn->d[0]);
2048	else if (insn->o.opcode == O_GID) {
2049		for (gp = ugp->fw_groups;
2050			gp < &ugp->fw_groups[ugp->fw_ngroups]; gp++)
2051			if (*gp == (gid_t)insn->d[0]) {
2052				match = 1;
2053				break;
2054			}
2055	} else if (insn->o.opcode == O_JAIL)
2056		match = (ugp->fw_prid == (int)insn->d[0]);
2057	return match;
2058}
2059
2060#ifdef IPFIREWALL_NAT
2061static eventhandler_tag ifaddr_event_tag;
2062
2063static void
2064ifaddr_change(void *arg __unused, struct ifnet *ifp)
2065{
2066	struct cfg_nat *ptr;
2067	struct ifaddr *ifa;
2068
2069	IPFW_WLOCK(&layer3_chain);
2070	/* Check every nat entry... */
2071	LIST_FOREACH(ptr, &layer3_chain.nat, _next) {
2072		/* ...using nic 'ifp->if_xname' as dynamic alias address. */
2073		if (strncmp(ptr->if_name, ifp->if_xname, IF_NAMESIZE) == 0) {
2074			mtx_lock(&ifp->if_addr_mtx);
2075			TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
2076				if (ifa->ifa_addr == NULL)
2077					continue;
2078				if (ifa->ifa_addr->sa_family != AF_INET)
2079					continue;
2080				ptr->ip = ((struct sockaddr_in *)
2081				    (ifa->ifa_addr))->sin_addr;
2082				LibAliasSetAddress(ptr->lib, ptr->ip);
2083			}
2084			mtx_unlock(&ifp->if_addr_mtx);
2085		}
2086	}
2087	IPFW_WUNLOCK(&layer3_chain);
2088}
2089
2090static void
2091flush_nat_ptrs(const int i)
2092{
2093	struct ip_fw *rule;
2094
2095	IPFW_WLOCK_ASSERT(&layer3_chain);
2096	for (rule = layer3_chain.rules; rule; rule = rule->next) {
2097		ipfw_insn_nat *cmd = (ipfw_insn_nat *)ACTION_PTR(rule);
2098		if (cmd->o.opcode != O_NAT)
2099			continue;
2100		if (cmd->nat != NULL && cmd->nat->id == i)
2101			cmd->nat = NULL;
2102	}
2103}
2104
2105static struct cfg_nat *
2106lookup_nat(const int i)
2107{
2108	struct cfg_nat *ptr;
2109
2110	LIST_FOREACH(ptr, &layer3_chain.nat, _next)
2111		if (ptr->id == i)
2112			return(ptr);
2113	return (NULL);
2114}
2115
2116#define HOOK_NAT(b, p) do {                                     \
2117	IPFW_WLOCK_ASSERT(&layer3_chain);                       \
2118        LIST_INSERT_HEAD(b, p, _next);                          \
2119} while (0)
2120
2121#define UNHOOK_NAT(p) do {                                      \
2122	IPFW_WLOCK_ASSERT(&layer3_chain);                       \
2123        LIST_REMOVE(p, _next);                                  \
2124} while (0)
2125
2126#define HOOK_REDIR(b, p) do {                                   \
2127        LIST_INSERT_HEAD(b, p, _next);                          \
2128} while (0)
2129
2130#define HOOK_SPOOL(b, p) do {                                   \
2131        LIST_INSERT_HEAD(b, p, _next);                          \
2132} while (0)
2133
2134static void
2135del_redir_spool_cfg(struct cfg_nat *n, struct redir_chain *head)
2136{
2137	struct cfg_redir *r, *tmp_r;
2138	struct cfg_spool *s, *tmp_s;
2139	int i, num;
2140
2141	LIST_FOREACH_SAFE(r, head, _next, tmp_r) {
2142		num = 1; /* Number of alias_link to delete. */
2143		switch (r->mode) {
2144		case REDIR_PORT:
2145			num = r->pport_cnt;
2146			/* FALLTHROUGH */
2147		case REDIR_ADDR:
2148		case REDIR_PROTO:
2149			/* Delete all libalias redirect entry. */
2150			for (i = 0; i < num; i++)
2151				LibAliasRedirectDelete(n->lib, r->alink[i]);
2152			/* Del spool cfg if any. */
2153			LIST_FOREACH_SAFE(s, &r->spool_chain, _next, tmp_s) {
2154				LIST_REMOVE(s, _next);
2155				free(s, M_IPFW);
2156			}
2157			free(r->alink, M_IPFW);
2158			LIST_REMOVE(r, _next);
2159			free(r, M_IPFW);
2160			break;
2161		default:
2162			printf("unknown redirect mode: %u\n", r->mode);
2163			/* XXX - panic?!?!? */
2164			break;
2165		}
2166	}
2167}
2168
2169static int
2170add_redir_spool_cfg(char *buf, struct cfg_nat *ptr)
2171{
2172	struct cfg_redir *r, *ser_r;
2173	struct cfg_spool *s, *ser_s;
2174	int cnt, off, i;
2175	char *panic_err;
2176
2177	for (cnt = 0, off = 0; cnt < ptr->redir_cnt; cnt++) {
2178		ser_r = (struct cfg_redir *)&buf[off];
2179		r = malloc(SOF_REDIR, M_IPFW, M_WAITOK | M_ZERO);
2180		memcpy(r, ser_r, SOF_REDIR);
2181		LIST_INIT(&r->spool_chain);
2182		off += SOF_REDIR;
2183		r->alink = malloc(sizeof(struct alias_link *) * r->pport_cnt,
2184		    M_IPFW, M_WAITOK | M_ZERO);
2185		switch (r->mode) {
2186		case REDIR_ADDR:
2187			r->alink[0] = LibAliasRedirectAddr(ptr->lib, r->laddr,
2188			    r->paddr);
2189			break;
2190		case REDIR_PORT:
2191			for (i = 0 ; i < r->pport_cnt; i++) {
2192				/* If remotePort is all ports, set it to 0. */
2193				u_short remotePortCopy = r->rport + i;
2194				if (r->rport_cnt == 1 && r->rport == 0)
2195					remotePortCopy = 0;
2196				r->alink[i] = LibAliasRedirectPort(ptr->lib,
2197				    r->laddr, htons(r->lport + i), r->raddr,
2198				    htons(remotePortCopy), r->paddr,
2199				    htons(r->pport + i), r->proto);
2200				if (r->alink[i] == NULL) {
2201					r->alink[0] = NULL;
2202					break;
2203				}
2204			}
2205			break;
2206		case REDIR_PROTO:
2207			r->alink[0] = LibAliasRedirectProto(ptr->lib ,r->laddr,
2208			    r->raddr, r->paddr, r->proto);
2209			break;
2210		default:
2211			printf("unknown redirect mode: %u\n", r->mode);
2212			break;
2213		}
2214		if (r->alink[0] == NULL) {
2215			panic_err = "LibAliasRedirect* returned NULL";
2216			goto bad;
2217		} else /* LSNAT handling. */
2218			for (i = 0; i < r->spool_cnt; i++) {
2219				ser_s = (struct cfg_spool *)&buf[off];
2220				s = malloc(SOF_REDIR, M_IPFW,
2221				    M_WAITOK | M_ZERO);
2222				memcpy(s, ser_s, SOF_SPOOL);
2223				LibAliasAddServer(ptr->lib, r->alink[0],
2224				    s->addr, htons(s->port));
2225				off += SOF_SPOOL;
2226				/* Hook spool entry. */
2227				HOOK_SPOOL(&r->spool_chain, s);
2228			}
2229		/* And finally hook this redir entry. */
2230		HOOK_REDIR(&ptr->redir_chain, r);
2231	}
2232	return (1);
2233bad:
2234	/* something really bad happened: panic! */
2235	panic("%s\n", panic_err);
2236}
2237#endif
2238
2239/*
2240 * The main check routine for the firewall.
2241 *
2242 * All arguments are in args so we can modify them and return them
2243 * back to the caller.
2244 *
2245 * Parameters:
2246 *
2247 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
2248 *		Starts with the IP header.
2249 *	args->eh (in)	Mac header if present, or NULL for layer3 packet.
2250 *	args->L3offset	Number of bytes bypassed if we came from L2.
2251 *			e.g. often sizeof(eh)  ** NOTYET **
2252 *	args->oif	Outgoing interface, or NULL if packet is incoming.
2253 *		The incoming interface is in the mbuf. (in)
2254 *	args->divert_rule (in/out)
2255 *		Skip up to the first rule past this rule number;
2256 *		upon return, non-zero port number for divert or tee.
2257 *
2258 *	args->rule	Pointer to the last matching rule (in/out)
2259 *	args->next_hop	Socket we are forwarding to (out).
2260 *	args->f_id	Addresses grabbed from the packet (out)
2261 * 	args->cookie	a cookie depending on rule action
2262 *
2263 * Return value:
2264 *
2265 *	IP_FW_PASS	the packet must be accepted
2266 *	IP_FW_DENY	the packet must be dropped
2267 *	IP_FW_DIVERT	divert packet, port in m_tag
2268 *	IP_FW_TEE	tee packet, port in m_tag
2269 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
2270 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
2271 *
2272 */
2273int
2274ipfw_chk(struct ip_fw_args *args)
2275{
2276	/*
2277	 * Local variables holding state during the processing of a packet:
2278	 *
2279	 * IMPORTANT NOTE: to speed up the processing of rules, there
2280	 * are some assumption on the values of the variables, which
2281	 * are documented here. Should you change them, please check
2282	 * the implementation of the various instructions to make sure
2283	 * that they still work.
2284	 *
2285	 * args->eh	The MAC header. It is non-null for a layer2
2286	 *	packet, it is NULL for a layer-3 packet.
2287	 * **notyet**
2288	 * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
2289	 *
2290	 * m | args->m	Pointer to the mbuf, as received from the caller.
2291	 *	It may change if ipfw_chk() does an m_pullup, or if it
2292	 *	consumes the packet because it calls send_reject().
2293	 *	XXX This has to change, so that ipfw_chk() never modifies
2294	 *	or consumes the buffer.
2295	 * ip	is the beginning of the ip(4 or 6) header.
2296	 *	Calculated by adding the L3offset to the start of data.
2297	 *	(Until we start using L3offset, the packet is
2298	 *	supposed to start with the ip header).
2299	 */
2300	struct mbuf *m = args->m;
2301	struct ip *ip = mtod(m, struct ip *);
2302
2303	/*
2304	 * For rules which contain uid/gid or jail constraints, cache
2305	 * a copy of the users credentials after the pcb lookup has been
2306	 * executed. This will speed up the processing of rules with
2307	 * these types of constraints, as well as decrease contention
2308	 * on pcb related locks.
2309	 */
2310	struct ip_fw_ugid fw_ugid_cache;
2311	int ugid_lookup = 0;
2312
2313	/*
2314	 * divinput_flags	If non-zero, set to the IP_FW_DIVERT_*_FLAG
2315	 *	associated with a packet input on a divert socket.  This
2316	 *	will allow to distinguish traffic and its direction when
2317	 *	it originates from a divert socket.
2318	 */
2319	u_int divinput_flags = 0;
2320
2321	/*
2322	 * oif | args->oif	If NULL, ipfw_chk has been called on the
2323	 *	inbound path (ether_input, ip_input).
2324	 *	If non-NULL, ipfw_chk has been called on the outbound path
2325	 *	(ether_output, ip_output).
2326	 */
2327	struct ifnet *oif = args->oif;
2328
2329	struct ip_fw *f = NULL;		/* matching rule */
2330	int retval = 0;
2331
2332	/*
2333	 * hlen	The length of the IP header.
2334	 */
2335	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
2336
2337	/*
2338	 * offset	The offset of a fragment. offset != 0 means that
2339	 *	we have a fragment at this offset of an IPv4 packet.
2340	 *	offset == 0 means that (if this is an IPv4 packet)
2341	 *	this is the first or only fragment.
2342	 *	For IPv6 offset == 0 means there is no Fragment Header.
2343	 *	If offset != 0 for IPv6 always use correct mask to
2344	 *	get the correct offset because we add IP6F_MORE_FRAG
2345	 *	to be able to dectect the first fragment which would
2346	 *	otherwise have offset = 0.
2347	 */
2348	u_short offset = 0;
2349
2350	/*
2351	 * Local copies of addresses. They are only valid if we have
2352	 * an IP packet.
2353	 *
2354	 * proto	The protocol. Set to 0 for non-ip packets,
2355	 *	or to the protocol read from the packet otherwise.
2356	 *	proto != 0 means that we have an IPv4 packet.
2357	 *
2358	 * src_port, dst_port	port numbers, in HOST format. Only
2359	 *	valid for TCP and UDP packets.
2360	 *
2361	 * src_ip, dst_ip	ip addresses, in NETWORK format.
2362	 *	Only valid for IPv4 packets.
2363	 */
2364	u_int8_t proto;
2365	u_int16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
2366	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
2367	u_int16_t ip_len=0;
2368	int pktlen;
2369	u_int16_t	etype = 0;	/* Host order stored ether type */
2370
2371	/*
2372	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
2373	 * 	MATCH_NONE when checked and not matched (q = NULL),
2374	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
2375	 */
2376	int dyn_dir = MATCH_UNKNOWN;
2377	ipfw_dyn_rule *q = NULL;
2378	struct ip_fw_chain *chain = &layer3_chain;
2379	struct m_tag *mtag;
2380
2381	/*
2382	 * We store in ulp a pointer to the upper layer protocol header.
2383	 * In the ipv4 case this is easy to determine from the header,
2384	 * but for ipv6 we might have some additional headers in the middle.
2385	 * ulp is NULL if not found.
2386	 */
2387	void *ulp = NULL;		/* upper layer protocol pointer. */
2388	/* XXX ipv6 variables */
2389	int is_ipv6 = 0;
2390	u_int16_t ext_hd = 0;	/* bits vector for extension header filtering */
2391	/* end of ipv6 variables */
2392	int is_ipv4 = 0;
2393
2394	if (m->m_flags & M_SKIP_FIREWALL)
2395		return (IP_FW_PASS);	/* accept */
2396
2397	pktlen = m->m_pkthdr.len;
2398	proto = args->f_id.proto = 0;	/* mark f_id invalid */
2399		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
2400
2401/*
2402 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
2403 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
2404 * pointer might become stale after other pullups (but we never use it
2405 * this way).
2406 */
2407#define PULLUP_TO(len, p, T)						\
2408do {									\
2409	int x = (len) + sizeof(T);					\
2410	if ((m)->m_len < x) {						\
2411		args->m = m = m_pullup(m, x);				\
2412		if (m == NULL)						\
2413			goto pullup_failed;				\
2414	}								\
2415	p = (mtod(m, char *) + (len));					\
2416} while (0)
2417
2418	/*
2419	 * if we have an ether header,
2420	 */
2421	if (args->eh)
2422		etype = ntohs(args->eh->ether_type);
2423
2424	/* Identify IP packets and fill up variables. */
2425	if (pktlen >= sizeof(struct ip6_hdr) &&
2426	    (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
2427		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
2428		is_ipv6 = 1;
2429		args->f_id.addr_type = 6;
2430		hlen = sizeof(struct ip6_hdr);
2431		proto = ip6->ip6_nxt;
2432
2433		/* Search extension headers to find upper layer protocols */
2434		while (ulp == NULL) {
2435			switch (proto) {
2436			case IPPROTO_ICMPV6:
2437				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
2438				args->f_id.flags = ICMP6(ulp)->icmp6_type;
2439				break;
2440
2441			case IPPROTO_TCP:
2442				PULLUP_TO(hlen, ulp, struct tcphdr);
2443				dst_port = TCP(ulp)->th_dport;
2444				src_port = TCP(ulp)->th_sport;
2445				args->f_id.flags = TCP(ulp)->th_flags;
2446				break;
2447
2448			case IPPROTO_SCTP:
2449				PULLUP_TO(hlen, ulp, struct sctphdr);
2450				src_port = SCTP(ulp)->src_port;
2451				dst_port = SCTP(ulp)->dest_port;
2452				break;
2453
2454			case IPPROTO_UDP:
2455				PULLUP_TO(hlen, ulp, struct udphdr);
2456				dst_port = UDP(ulp)->uh_dport;
2457				src_port = UDP(ulp)->uh_sport;
2458				break;
2459
2460			case IPPROTO_HOPOPTS:	/* RFC 2460 */
2461				PULLUP_TO(hlen, ulp, struct ip6_hbh);
2462				ext_hd |= EXT_HOPOPTS;
2463				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2464				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2465				ulp = NULL;
2466				break;
2467
2468			case IPPROTO_ROUTING:	/* RFC 2460 */
2469				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
2470				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
2471				case 0:
2472					ext_hd |= EXT_RTHDR0;
2473					break;
2474				case 2:
2475					ext_hd |= EXT_RTHDR2;
2476					break;
2477				default:
2478					printf("IPFW2: IPV6 - Unknown Routing "
2479					    "Header type(%d)\n",
2480					    ((struct ip6_rthdr *)ulp)->ip6r_type);
2481					if (fw_deny_unknown_exthdrs)
2482					    return (IP_FW_DENY);
2483					break;
2484				}
2485				ext_hd |= EXT_ROUTING;
2486				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
2487				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
2488				ulp = NULL;
2489				break;
2490
2491			case IPPROTO_FRAGMENT:	/* RFC 2460 */
2492				PULLUP_TO(hlen, ulp, struct ip6_frag);
2493				ext_hd |= EXT_FRAGMENT;
2494				hlen += sizeof (struct ip6_frag);
2495				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
2496				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
2497					IP6F_OFF_MASK;
2498				/* Add IP6F_MORE_FRAG for offset of first
2499				 * fragment to be != 0. */
2500				offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
2501					IP6F_MORE_FRAG;
2502				if (offset == 0) {
2503					printf("IPFW2: IPV6 - Invalid Fragment "
2504					    "Header\n");
2505					if (fw_deny_unknown_exthdrs)
2506					    return (IP_FW_DENY);
2507					break;
2508				}
2509				args->f_id.frag_id6 =
2510				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
2511				ulp = NULL;
2512				break;
2513
2514			case IPPROTO_DSTOPTS:	/* RFC 2460 */
2515				PULLUP_TO(hlen, ulp, struct ip6_hbh);
2516				ext_hd |= EXT_DSTOPTS;
2517				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2518				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2519				ulp = NULL;
2520				break;
2521
2522			case IPPROTO_AH:	/* RFC 2402 */
2523				PULLUP_TO(hlen, ulp, struct ip6_ext);
2524				ext_hd |= EXT_AH;
2525				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
2526				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
2527				ulp = NULL;
2528				break;
2529
2530			case IPPROTO_ESP:	/* RFC 2406 */
2531				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
2532				/* Anything past Seq# is variable length and
2533				 * data past this ext. header is encrypted. */
2534				ext_hd |= EXT_ESP;
2535				break;
2536
2537			case IPPROTO_NONE:	/* RFC 2460 */
2538				PULLUP_TO(hlen, ulp, struct ip6_ext);
2539				/* Packet ends here. if ip6e_len!=0 octets
2540				 * must be ignored. */
2541				break;
2542
2543			case IPPROTO_OSPFIGP:
2544				/* XXX OSPF header check? */
2545				PULLUP_TO(hlen, ulp, struct ip6_ext);
2546				break;
2547
2548			case IPPROTO_PIM:
2549				/* XXX PIM header check? */
2550				PULLUP_TO(hlen, ulp, struct pim);
2551				break;
2552
2553			case IPPROTO_CARP:
2554				PULLUP_TO(hlen, ulp, struct carp_header);
2555				if (((struct carp_header *)ulp)->carp_version !=
2556				    CARP_VERSION)
2557					return (IP_FW_DENY);
2558				if (((struct carp_header *)ulp)->carp_type !=
2559				    CARP_ADVERTISEMENT)
2560					return (IP_FW_DENY);
2561				break;
2562
2563			case IPPROTO_IPV6:	/* RFC 2893 */
2564				PULLUP_TO(hlen, ulp, struct ip6_hdr);
2565				break;
2566
2567			case IPPROTO_IPV4:	/* RFC 2893 */
2568				PULLUP_TO(hlen, ulp, struct ip);
2569				break;
2570
2571			default:
2572				printf("IPFW2: IPV6 - Unknown Extension "
2573				    "Header(%d), ext_hd=%x\n", proto, ext_hd);
2574				if (fw_deny_unknown_exthdrs)
2575				    return (IP_FW_DENY);
2576				PULLUP_TO(hlen, ulp, struct ip6_ext);
2577				break;
2578			} /*switch */
2579		}
2580		ip = mtod(m, struct ip *);
2581		ip6 = (struct ip6_hdr *)ip;
2582		args->f_id.src_ip6 = ip6->ip6_src;
2583		args->f_id.dst_ip6 = ip6->ip6_dst;
2584		args->f_id.src_ip = 0;
2585		args->f_id.dst_ip = 0;
2586		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
2587	} else if (pktlen >= sizeof(struct ip) &&
2588	    (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
2589	    	is_ipv4 = 1;
2590		hlen = ip->ip_hl << 2;
2591		args->f_id.addr_type = 4;
2592
2593		/*
2594		 * Collect parameters into local variables for faster matching.
2595		 */
2596		proto = ip->ip_p;
2597		src_ip = ip->ip_src;
2598		dst_ip = ip->ip_dst;
2599		if (args->eh != NULL) { /* layer 2 packets are as on the wire */
2600			offset = ntohs(ip->ip_off) & IP_OFFMASK;
2601			ip_len = ntohs(ip->ip_len);
2602		} else {
2603			offset = ip->ip_off & IP_OFFMASK;
2604			ip_len = ip->ip_len;
2605		}
2606		pktlen = ip_len < pktlen ? ip_len : pktlen;
2607
2608		if (offset == 0) {
2609			switch (proto) {
2610			case IPPROTO_TCP:
2611				PULLUP_TO(hlen, ulp, struct tcphdr);
2612				dst_port = TCP(ulp)->th_dport;
2613				src_port = TCP(ulp)->th_sport;
2614				args->f_id.flags = TCP(ulp)->th_flags;
2615				break;
2616
2617			case IPPROTO_UDP:
2618				PULLUP_TO(hlen, ulp, struct udphdr);
2619				dst_port = UDP(ulp)->uh_dport;
2620				src_port = UDP(ulp)->uh_sport;
2621				break;
2622
2623			case IPPROTO_ICMP:
2624				PULLUP_TO(hlen, ulp, struct icmphdr);
2625				args->f_id.flags = ICMP(ulp)->icmp_type;
2626				break;
2627
2628			default:
2629				break;
2630			}
2631		}
2632
2633		ip = mtod(m, struct ip *);
2634		args->f_id.src_ip = ntohl(src_ip.s_addr);
2635		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
2636	}
2637#undef PULLUP_TO
2638	if (proto) { /* we may have port numbers, store them */
2639		args->f_id.proto = proto;
2640		args->f_id.src_port = src_port = ntohs(src_port);
2641		args->f_id.dst_port = dst_port = ntohs(dst_port);
2642	}
2643
2644	IPFW_RLOCK(chain);
2645	mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
2646	if (args->rule) {
2647		/*
2648		 * Packet has already been tagged. Look for the next rule
2649		 * to restart processing.
2650		 *
2651		 * If fw_one_pass != 0 then just accept it.
2652		 * XXX should not happen here, but optimized out in
2653		 * the caller.
2654		 */
2655		if (fw_one_pass) {
2656			IPFW_RUNLOCK(chain);
2657			return (IP_FW_PASS);
2658		}
2659
2660		f = args->rule->next_rule;
2661		if (f == NULL)
2662			f = lookup_next_rule(args->rule);
2663	} else {
2664		/*
2665		 * Find the starting rule. It can be either the first
2666		 * one, or the one after divert_rule if asked so.
2667		 */
2668		int skipto = mtag ? divert_cookie(mtag) : 0;
2669
2670		f = chain->rules;
2671		if (args->eh == NULL && skipto != 0) {
2672			if (skipto >= IPFW_DEFAULT_RULE) {
2673				IPFW_RUNLOCK(chain);
2674				return (IP_FW_DENY); /* invalid */
2675			}
2676			while (f && f->rulenum <= skipto)
2677				f = f->next;
2678			if (f == NULL) {	/* drop packet */
2679				IPFW_RUNLOCK(chain);
2680				return (IP_FW_DENY);
2681			}
2682		}
2683	}
2684	/* reset divert rule to avoid confusion later */
2685	if (mtag) {
2686		divinput_flags = divert_info(mtag) &
2687		    (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
2688		m_tag_delete(m, mtag);
2689	}
2690
2691	/*
2692	 * Now scan the rules, and parse microinstructions for each rule.
2693	 */
2694	for (; f; f = f->next) {
2695		ipfw_insn *cmd;
2696		uint32_t tablearg = 0;
2697		int l, cmdlen, skip_or; /* skip rest of OR block */
2698
2699again:
2700		if (set_disable & (1 << f->set) )
2701			continue;
2702
2703		skip_or = 0;
2704		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
2705		    l -= cmdlen, cmd += cmdlen) {
2706			int match;
2707
2708			/*
2709			 * check_body is a jump target used when we find a
2710			 * CHECK_STATE, and need to jump to the body of
2711			 * the target rule.
2712			 */
2713
2714check_body:
2715			cmdlen = F_LEN(cmd);
2716			/*
2717			 * An OR block (insn_1 || .. || insn_n) has the
2718			 * F_OR bit set in all but the last instruction.
2719			 * The first match will set "skip_or", and cause
2720			 * the following instructions to be skipped until
2721			 * past the one with the F_OR bit clear.
2722			 */
2723			if (skip_or) {		/* skip this instruction */
2724				if ((cmd->len & F_OR) == 0)
2725					skip_or = 0;	/* next one is good */
2726				continue;
2727			}
2728			match = 0; /* set to 1 if we succeed */
2729
2730			switch (cmd->opcode) {
2731			/*
2732			 * The first set of opcodes compares the packet's
2733			 * fields with some pattern, setting 'match' if a
2734			 * match is found. At the end of the loop there is
2735			 * logic to deal with F_NOT and F_OR flags associated
2736			 * with the opcode.
2737			 */
2738			case O_NOP:
2739				match = 1;
2740				break;
2741
2742			case O_FORWARD_MAC:
2743				printf("ipfw: opcode %d unimplemented\n",
2744				    cmd->opcode);
2745				break;
2746
2747			case O_GID:
2748			case O_UID:
2749			case O_JAIL:
2750				/*
2751				 * We only check offset == 0 && proto != 0,
2752				 * as this ensures that we have a
2753				 * packet with the ports info.
2754				 */
2755				if (offset!=0)
2756					break;
2757				if (is_ipv6) /* XXX to be fixed later */
2758					break;
2759				if (proto == IPPROTO_TCP ||
2760				    proto == IPPROTO_UDP)
2761					match = check_uidgid(
2762						    (ipfw_insn_u32 *)cmd,
2763						    proto, oif,
2764						    dst_ip, dst_port,
2765						    src_ip, src_port, &fw_ugid_cache,
2766						    &ugid_lookup, args->inp);
2767				break;
2768
2769			case O_RECV:
2770				match = iface_match(m->m_pkthdr.rcvif,
2771				    (ipfw_insn_if *)cmd);
2772				break;
2773
2774			case O_XMIT:
2775				match = iface_match(oif, (ipfw_insn_if *)cmd);
2776				break;
2777
2778			case O_VIA:
2779				match = iface_match(oif ? oif :
2780				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
2781				break;
2782
2783			case O_MACADDR2:
2784				if (args->eh != NULL) {	/* have MAC header */
2785					u_int32_t *want = (u_int32_t *)
2786						((ipfw_insn_mac *)cmd)->addr;
2787					u_int32_t *mask = (u_int32_t *)
2788						((ipfw_insn_mac *)cmd)->mask;
2789					u_int32_t *hdr = (u_int32_t *)args->eh;
2790
2791					match =
2792					    ( want[0] == (hdr[0] & mask[0]) &&
2793					      want[1] == (hdr[1] & mask[1]) &&
2794					      want[2] == (hdr[2] & mask[2]) );
2795				}
2796				break;
2797
2798			case O_MAC_TYPE:
2799				if (args->eh != NULL) {
2800					u_int16_t *p =
2801					    ((ipfw_insn_u16 *)cmd)->ports;
2802					int i;
2803
2804					for (i = cmdlen - 1; !match && i>0;
2805					    i--, p += 2)
2806						match = (etype >= p[0] &&
2807						    etype <= p[1]);
2808				}
2809				break;
2810
2811			case O_FRAG:
2812				match = (offset != 0);
2813				break;
2814
2815			case O_IN:	/* "out" is "not in" */
2816				match = (oif == NULL);
2817				break;
2818
2819			case O_LAYER2:
2820				match = (args->eh != NULL);
2821				break;
2822
2823			case O_DIVERTED:
2824				match = (cmd->arg1 & 1 && divinput_flags &
2825				    IP_FW_DIVERT_LOOPBACK_FLAG) ||
2826					(cmd->arg1 & 2 && divinput_flags &
2827				    IP_FW_DIVERT_OUTPUT_FLAG);
2828				break;
2829
2830			case O_PROTO:
2831				/*
2832				 * We do not allow an arg of 0 so the
2833				 * check of "proto" only suffices.
2834				 */
2835				match = (proto == cmd->arg1);
2836				break;
2837
2838			case O_IP_SRC:
2839				match = is_ipv4 &&
2840				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2841				    src_ip.s_addr);
2842				break;
2843
2844			case O_IP_SRC_LOOKUP:
2845			case O_IP_DST_LOOKUP:
2846				if (is_ipv4) {
2847				    uint32_t a =
2848					(cmd->opcode == O_IP_DST_LOOKUP) ?
2849					    dst_ip.s_addr : src_ip.s_addr;
2850				    uint32_t v;
2851
2852				    match = lookup_table(chain, cmd->arg1, a,
2853					&v);
2854				    if (!match)
2855					break;
2856				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2857					match =
2858					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
2859				    else
2860					tablearg = v;
2861				}
2862				break;
2863
2864			case O_IP_SRC_MASK:
2865			case O_IP_DST_MASK:
2866				if (is_ipv4) {
2867				    uint32_t a =
2868					(cmd->opcode == O_IP_DST_MASK) ?
2869					    dst_ip.s_addr : src_ip.s_addr;
2870				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2871				    int i = cmdlen-1;
2872
2873				    for (; !match && i>0; i-= 2, p+= 2)
2874					match = (p[0] == (a & p[1]));
2875				}
2876				break;
2877
2878			case O_IP_SRC_ME:
2879				if (is_ipv4) {
2880					struct ifnet *tif;
2881
2882					INADDR_TO_IFP(src_ip, tif);
2883					match = (tif != NULL);
2884				}
2885				break;
2886
2887			case O_IP_DST_SET:
2888			case O_IP_SRC_SET:
2889				if (is_ipv4) {
2890					u_int32_t *d = (u_int32_t *)(cmd+1);
2891					u_int32_t addr =
2892					    cmd->opcode == O_IP_DST_SET ?
2893						args->f_id.dst_ip :
2894						args->f_id.src_ip;
2895
2896					    if (addr < d[0])
2897						    break;
2898					    addr -= d[0]; /* subtract base */
2899					    match = (addr < cmd->arg1) &&
2900						( d[ 1 + (addr>>5)] &
2901						  (1<<(addr & 0x1f)) );
2902				}
2903				break;
2904
2905			case O_IP_DST:
2906				match = is_ipv4 &&
2907				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2908				    dst_ip.s_addr);
2909				break;
2910
2911			case O_IP_DST_ME:
2912				if (is_ipv4) {
2913					struct ifnet *tif;
2914
2915					INADDR_TO_IFP(dst_ip, tif);
2916					match = (tif != NULL);
2917				}
2918				break;
2919
2920			case O_IP_SRCPORT:
2921			case O_IP_DSTPORT:
2922				/*
2923				 * offset == 0 && proto != 0 is enough
2924				 * to guarantee that we have a
2925				 * packet with port info.
2926				 */
2927				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
2928				    && offset == 0) {
2929					u_int16_t x =
2930					    (cmd->opcode == O_IP_SRCPORT) ?
2931						src_port : dst_port ;
2932					u_int16_t *p =
2933					    ((ipfw_insn_u16 *)cmd)->ports;
2934					int i;
2935
2936					for (i = cmdlen - 1; !match && i>0;
2937					    i--, p += 2)
2938						match = (x>=p[0] && x<=p[1]);
2939				}
2940				break;
2941
2942			case O_ICMPTYPE:
2943				match = (offset == 0 && proto==IPPROTO_ICMP &&
2944				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2945				break;
2946
2947#ifdef INET6
2948			case O_ICMP6TYPE:
2949				match = is_ipv6 && offset == 0 &&
2950				    proto==IPPROTO_ICMPV6 &&
2951				    icmp6type_match(
2952					ICMP6(ulp)->icmp6_type,
2953					(ipfw_insn_u32 *)cmd);
2954				break;
2955#endif /* INET6 */
2956
2957			case O_IPOPT:
2958				match = (is_ipv4 &&
2959				    ipopts_match(ip, cmd) );
2960				break;
2961
2962			case O_IPVER:
2963				match = (is_ipv4 &&
2964				    cmd->arg1 == ip->ip_v);
2965				break;
2966
2967			case O_IPID:
2968			case O_IPLEN:
2969			case O_IPTTL:
2970				if (is_ipv4) {	/* only for IP packets */
2971				    uint16_t x;
2972				    uint16_t *p;
2973				    int i;
2974
2975				    if (cmd->opcode == O_IPLEN)
2976					x = ip_len;
2977				    else if (cmd->opcode == O_IPTTL)
2978					x = ip->ip_ttl;
2979				    else /* must be IPID */
2980					x = ntohs(ip->ip_id);
2981				    if (cmdlen == 1) {
2982					match = (cmd->arg1 == x);
2983					break;
2984				    }
2985				    /* otherwise we have ranges */
2986				    p = ((ipfw_insn_u16 *)cmd)->ports;
2987				    i = cmdlen - 1;
2988				    for (; !match && i>0; i--, p += 2)
2989					match = (x >= p[0] && x <= p[1]);
2990				}
2991				break;
2992
2993			case O_IPPRECEDENCE:
2994				match = (is_ipv4 &&
2995				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
2996				break;
2997
2998			case O_IPTOS:
2999				match = (is_ipv4 &&
3000				    flags_match(cmd, ip->ip_tos));
3001				break;
3002
3003			case O_TCPDATALEN:
3004				if (proto == IPPROTO_TCP && offset == 0) {
3005				    struct tcphdr *tcp;
3006				    uint16_t x;
3007				    uint16_t *p;
3008				    int i;
3009
3010				    tcp = TCP(ulp);
3011				    x = ip_len -
3012					((ip->ip_hl + tcp->th_off) << 2);
3013				    if (cmdlen == 1) {
3014					match = (cmd->arg1 == x);
3015					break;
3016				    }
3017				    /* otherwise we have ranges */
3018				    p = ((ipfw_insn_u16 *)cmd)->ports;
3019				    i = cmdlen - 1;
3020				    for (; !match && i>0; i--, p += 2)
3021					match = (x >= p[0] && x <= p[1]);
3022				}
3023				break;
3024
3025			case O_TCPFLAGS:
3026				match = (proto == IPPROTO_TCP && offset == 0 &&
3027				    flags_match(cmd, TCP(ulp)->th_flags));
3028				break;
3029
3030			case O_TCPOPTS:
3031				match = (proto == IPPROTO_TCP && offset == 0 &&
3032				    tcpopts_match(TCP(ulp), cmd));
3033				break;
3034
3035			case O_TCPSEQ:
3036				match = (proto == IPPROTO_TCP && offset == 0 &&
3037				    ((ipfw_insn_u32 *)cmd)->d[0] ==
3038					TCP(ulp)->th_seq);
3039				break;
3040
3041			case O_TCPACK:
3042				match = (proto == IPPROTO_TCP && offset == 0 &&
3043				    ((ipfw_insn_u32 *)cmd)->d[0] ==
3044					TCP(ulp)->th_ack);
3045				break;
3046
3047			case O_TCPWIN:
3048				match = (proto == IPPROTO_TCP && offset == 0 &&
3049				    cmd->arg1 == TCP(ulp)->th_win);
3050				break;
3051
3052			case O_ESTAB:
3053				/* reject packets which have SYN only */
3054				/* XXX should i also check for TH_ACK ? */
3055				match = (proto == IPPROTO_TCP && offset == 0 &&
3056				    (TCP(ulp)->th_flags &
3057				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
3058				break;
3059
3060			case O_ALTQ: {
3061				struct pf_mtag *at;
3062				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
3063
3064				match = 1;
3065				at = pf_find_mtag(m);
3066				if (at != NULL && at->qid != 0)
3067					break;
3068				at = pf_get_mtag(m);
3069				if (at == NULL) {
3070					/*
3071					 * Let the packet fall back to the
3072					 * default ALTQ.
3073					 */
3074					break;
3075				}
3076				at->qid = altq->qid;
3077				if (is_ipv4)
3078					at->af = AF_INET;
3079				else
3080					at->af = AF_LINK;
3081				at->hdr = ip;
3082				break;
3083			}
3084
3085			case O_LOG:
3086				if (fw_verbose)
3087					ipfw_log(f, hlen, args, m,
3088					    oif, offset, tablearg, ip);
3089				match = 1;
3090				break;
3091
3092			case O_PROB:
3093				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
3094				break;
3095
3096			case O_VERREVPATH:
3097				/* Outgoing packets automatically pass/match */
3098				match = ((oif != NULL) ||
3099				    (m->m_pkthdr.rcvif == NULL) ||
3100				    (
3101#ifdef INET6
3102				    is_ipv6 ?
3103					verify_path6(&(args->f_id.src_ip6),
3104					    m->m_pkthdr.rcvif) :
3105#endif
3106				    verify_path(src_ip, m->m_pkthdr.rcvif)));
3107				break;
3108
3109			case O_VERSRCREACH:
3110				/* Outgoing packets automatically pass/match */
3111				match = (hlen > 0 && ((oif != NULL) ||
3112#ifdef INET6
3113				    is_ipv6 ?
3114				        verify_path6(&(args->f_id.src_ip6),
3115				            NULL) :
3116#endif
3117				    verify_path(src_ip, NULL)));
3118				break;
3119
3120			case O_ANTISPOOF:
3121				/* Outgoing packets automatically pass/match */
3122				if (oif == NULL && hlen > 0 &&
3123				    (  (is_ipv4 && in_localaddr(src_ip))
3124#ifdef INET6
3125				    || (is_ipv6 &&
3126				        in6_localaddr(&(args->f_id.src_ip6)))
3127#endif
3128				    ))
3129					match =
3130#ifdef INET6
3131					    is_ipv6 ? verify_path6(
3132					        &(args->f_id.src_ip6),
3133					        m->m_pkthdr.rcvif) :
3134#endif
3135					    verify_path(src_ip,
3136					        m->m_pkthdr.rcvif);
3137				else
3138					match = 1;
3139				break;
3140
3141			case O_IPSEC:
3142#ifdef IPSEC
3143				match = (m_tag_find(m,
3144				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
3145#endif
3146				/* otherwise no match */
3147				break;
3148
3149#ifdef INET6
3150			case O_IP6_SRC:
3151				match = is_ipv6 &&
3152				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
3153				    &((ipfw_insn_ip6 *)cmd)->addr6);
3154				break;
3155
3156			case O_IP6_DST:
3157				match = is_ipv6 &&
3158				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
3159				    &((ipfw_insn_ip6 *)cmd)->addr6);
3160				break;
3161			case O_IP6_SRC_MASK:
3162			case O_IP6_DST_MASK:
3163				if (is_ipv6) {
3164					int i = cmdlen - 1;
3165					struct in6_addr p;
3166					struct in6_addr *d =
3167					    &((ipfw_insn_ip6 *)cmd)->addr6;
3168
3169					for (; !match && i > 0; d += 2,
3170					    i -= F_INSN_SIZE(struct in6_addr)
3171					    * 2) {
3172						p = (cmd->opcode ==
3173						    O_IP6_SRC_MASK) ?
3174						    args->f_id.src_ip6:
3175						    args->f_id.dst_ip6;
3176						APPLY_MASK(&p, &d[1]);
3177						match =
3178						    IN6_ARE_ADDR_EQUAL(&d[0],
3179						    &p);
3180					}
3181				}
3182				break;
3183
3184			case O_IP6_SRC_ME:
3185				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
3186				break;
3187
3188			case O_IP6_DST_ME:
3189				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
3190				break;
3191
3192			case O_FLOW6ID:
3193				match = is_ipv6 &&
3194				    flow6id_match(args->f_id.flow_id6,
3195				    (ipfw_insn_u32 *) cmd);
3196				break;
3197
3198			case O_EXT_HDR:
3199				match = is_ipv6 &&
3200				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
3201				break;
3202
3203			case O_IP6:
3204				match = is_ipv6;
3205				break;
3206#endif
3207
3208			case O_IP4:
3209				match = is_ipv4;
3210				break;
3211
3212			case O_TAG: {
3213				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
3214				    tablearg : cmd->arg1;
3215
3216				/* Packet is already tagged with this tag? */
3217				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
3218
3219				/* We have `untag' action when F_NOT flag is
3220				 * present. And we must remove this mtag from
3221				 * mbuf and reset `match' to zero (`match' will
3222				 * be inversed later).
3223				 * Otherwise we should allocate new mtag and
3224				 * push it into mbuf.
3225				 */
3226				if (cmd->len & F_NOT) { /* `untag' action */
3227					if (mtag != NULL)
3228						m_tag_delete(m, mtag);
3229				} else if (mtag == NULL) {
3230					if ((mtag = m_tag_alloc(MTAG_IPFW,
3231					    tag, 0, M_NOWAIT)) != NULL)
3232						m_tag_prepend(m, mtag);
3233				}
3234				match = (cmd->len & F_NOT) ? 0: 1;
3235				break;
3236			}
3237
3238			case O_TAGGED: {
3239				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
3240				    tablearg : cmd->arg1;
3241
3242				if (cmdlen == 1) {
3243					match = m_tag_locate(m, MTAG_IPFW,
3244					    tag, NULL) != NULL;
3245					break;
3246				}
3247
3248				/* we have ranges */
3249				for (mtag = m_tag_first(m);
3250				    mtag != NULL && !match;
3251				    mtag = m_tag_next(m, mtag)) {
3252					uint16_t *p;
3253					int i;
3254
3255					if (mtag->m_tag_cookie != MTAG_IPFW)
3256						continue;
3257
3258					p = ((ipfw_insn_u16 *)cmd)->ports;
3259					i = cmdlen - 1;
3260					for(; !match && i > 0; i--, p += 2)
3261						match =
3262						    mtag->m_tag_id >= p[0] &&
3263						    mtag->m_tag_id <= p[1];
3264				}
3265				break;
3266			}
3267
3268			/*
3269			 * The second set of opcodes represents 'actions',
3270			 * i.e. the terminal part of a rule once the packet
3271			 * matches all previous patterns.
3272			 * Typically there is only one action for each rule,
3273			 * and the opcode is stored at the end of the rule
3274			 * (but there are exceptions -- see below).
3275			 *
3276			 * In general, here we set retval and terminate the
3277			 * outer loop (would be a 'break 3' in some language,
3278			 * but we need to do a 'goto done').
3279			 *
3280			 * Exceptions:
3281			 * O_COUNT and O_SKIPTO actions:
3282			 *   instead of terminating, we jump to the next rule
3283			 *   ('goto next_rule', equivalent to a 'break 2'),
3284			 *   or to the SKIPTO target ('goto again' after
3285			 *   having set f, cmd and l), respectively.
3286			 *
3287			 * O_TAG, O_LOG and O_ALTQ action parameters:
3288			 *   perform some action and set match = 1;
3289			 *
3290			 * O_LIMIT and O_KEEP_STATE: these opcodes are
3291			 *   not real 'actions', and are stored right
3292			 *   before the 'action' part of the rule.
3293			 *   These opcodes try to install an entry in the
3294			 *   state tables; if successful, we continue with
3295			 *   the next opcode (match=1; break;), otherwise
3296			 *   the packet *   must be dropped
3297			 *   ('goto done' after setting retval);
3298			 *
3299			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
3300			 *   cause a lookup of the state table, and a jump
3301			 *   to the 'action' part of the parent rule
3302			 *   ('goto check_body') if an entry is found, or
3303			 *   (CHECK_STATE only) a jump to the next rule if
3304			 *   the entry is not found ('goto next_rule').
3305			 *   The result of the lookup is cached to make
3306			 *   further instances of these opcodes are
3307			 *   effectively NOPs.
3308			 */
3309			case O_LIMIT:
3310			case O_KEEP_STATE:
3311				if (install_state(f,
3312				    (ipfw_insn_limit *)cmd, args, tablearg)) {
3313					retval = IP_FW_DENY;
3314					goto done; /* error/limit violation */
3315				}
3316				match = 1;
3317				break;
3318
3319			case O_PROBE_STATE:
3320			case O_CHECK_STATE:
3321				/*
3322				 * dynamic rules are checked at the first
3323				 * keep-state or check-state occurrence,
3324				 * with the result being stored in dyn_dir.
3325				 * The compiler introduces a PROBE_STATE
3326				 * instruction for us when we have a
3327				 * KEEP_STATE (because PROBE_STATE needs
3328				 * to be run first).
3329				 */
3330				if (dyn_dir == MATCH_UNKNOWN &&
3331				    (q = lookup_dyn_rule(&args->f_id,
3332				     &dyn_dir, proto == IPPROTO_TCP ?
3333					TCP(ulp) : NULL))
3334					!= NULL) {
3335					/*
3336					 * Found dynamic entry, update stats
3337					 * and jump to the 'action' part of
3338					 * the parent rule.
3339					 */
3340					q->pcnt++;
3341					q->bcnt += pktlen;
3342					f = q->rule;
3343					cmd = ACTION_PTR(f);
3344					l = f->cmd_len - f->act_ofs;
3345					IPFW_DYN_UNLOCK();
3346					goto check_body;
3347				}
3348				/*
3349				 * Dynamic entry not found. If CHECK_STATE,
3350				 * skip to next rule, if PROBE_STATE just
3351				 * ignore and continue with next opcode.
3352				 */
3353				if (cmd->opcode == O_CHECK_STATE)
3354					goto next_rule;
3355				match = 1;
3356				break;
3357
3358			case O_ACCEPT:
3359				retval = 0;	/* accept */
3360				goto done;
3361
3362			case O_PIPE:
3363			case O_QUEUE:
3364				args->rule = f; /* report matching rule */
3365				if (cmd->arg1 == IP_FW_TABLEARG)
3366					args->cookie = tablearg;
3367				else
3368					args->cookie = cmd->arg1;
3369				retval = IP_FW_DUMMYNET;
3370				goto done;
3371
3372			case O_DIVERT:
3373			case O_TEE: {
3374				struct divert_tag *dt;
3375
3376				if (args->eh) /* not on layer 2 */
3377					break;
3378				mtag = m_tag_get(PACKET_TAG_DIVERT,
3379						sizeof(struct divert_tag),
3380						M_NOWAIT);
3381				if (mtag == NULL) {
3382					/* XXX statistic */
3383					/* drop packet */
3384					IPFW_RUNLOCK(chain);
3385					return (IP_FW_DENY);
3386				}
3387				dt = (struct divert_tag *)(mtag+1);
3388				dt->cookie = f->rulenum;
3389				if (cmd->arg1 == IP_FW_TABLEARG)
3390					dt->info = tablearg;
3391				else
3392					dt->info = cmd->arg1;
3393				m_tag_prepend(m, mtag);
3394				retval = (cmd->opcode == O_DIVERT) ?
3395				    IP_FW_DIVERT : IP_FW_TEE;
3396				goto done;
3397			}
3398
3399			case O_COUNT:
3400			case O_SKIPTO:
3401				f->pcnt++;	/* update stats */
3402				f->bcnt += pktlen;
3403				f->timestamp = time_uptime;
3404				if (cmd->opcode == O_COUNT)
3405					goto next_rule;
3406				/* handle skipto */
3407				if (f->next_rule == NULL)
3408					lookup_next_rule(f);
3409				f = f->next_rule;
3410				goto again;
3411
3412			case O_REJECT:
3413				/*
3414				 * Drop the packet and send a reject notice
3415				 * if the packet is not ICMP (or is an ICMP
3416				 * query), and it is not multicast/broadcast.
3417				 */
3418				if (hlen > 0 && is_ipv4 && offset == 0 &&
3419				    (proto != IPPROTO_ICMP ||
3420				     is_icmp_query(ICMP(ulp))) &&
3421				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3422				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
3423					send_reject(args, cmd->arg1, ip_len, ip);
3424					m = args->m;
3425				}
3426				/* FALLTHROUGH */
3427#ifdef INET6
3428			case O_UNREACH6:
3429				if (hlen > 0 && is_ipv6 &&
3430				    ((offset & IP6F_OFF_MASK) == 0) &&
3431				    (proto != IPPROTO_ICMPV6 ||
3432				     (is_icmp6_query(args->f_id.flags) == 1)) &&
3433				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3434				    !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
3435					send_reject6(
3436					    args, cmd->arg1, hlen,
3437					    (struct ip6_hdr *)ip);
3438					m = args->m;
3439				}
3440				/* FALLTHROUGH */
3441#endif
3442			case O_DENY:
3443				retval = IP_FW_DENY;
3444				goto done;
3445
3446			case O_FORWARD_IP: {
3447				struct sockaddr_in *sa;
3448				sa = &(((ipfw_insn_sa *)cmd)->sa);
3449				if (args->eh)	/* not valid on layer2 pkts */
3450					break;
3451				if (!q || dyn_dir == MATCH_FORWARD) {
3452					if (sa->sin_addr.s_addr == INADDR_ANY) {
3453						bcopy(sa, &args->hopstore,
3454							sizeof(*sa));
3455						args->hopstore.sin_addr.s_addr =
3456						    htonl(tablearg);
3457						args->next_hop =
3458						    &args->hopstore;
3459					} else {
3460						args->next_hop = sa;
3461					}
3462				}
3463				retval = IP_FW_PASS;
3464			    }
3465			    goto done;
3466
3467			case O_NETGRAPH:
3468			case O_NGTEE:
3469				args->rule = f;	/* report matching rule */
3470				if (cmd->arg1 == IP_FW_TABLEARG)
3471					args->cookie = tablearg;
3472				else
3473					args->cookie = cmd->arg1;
3474				retval = (cmd->opcode == O_NETGRAPH) ?
3475				    IP_FW_NETGRAPH : IP_FW_NGTEE;
3476				goto done;
3477
3478#ifdef IPFIREWALL_NAT
3479			case O_NAT: {
3480				struct cfg_nat *t;
3481				struct mbuf *mcl;
3482				/* XXX - libalias duct tape */
3483				int ldt;
3484				char *c;
3485
3486				ldt = 0;
3487				args->rule = f;	/* Report matching rule. */
3488				retval = 0;
3489				t = ((ipfw_insn_nat *)cmd)->nat;
3490				if (t == NULL) {
3491					t = lookup_nat(cmd->arg1);
3492					if (t == NULL) {
3493						retval = IP_FW_DENY;
3494						goto done;
3495					} else
3496						((ipfw_insn_nat *)cmd)->nat =
3497						    t;
3498				}
3499				if ((mcl = m_megapullup(m, m->m_pkthdr.len)) ==
3500				    NULL)
3501					goto badnat;
3502				ip = mtod(mcl, struct ip *);
3503				if (args->eh == NULL) {
3504					ip->ip_len = htons(ip->ip_len);
3505					ip->ip_off = htons(ip->ip_off);
3506				}
3507
3508				/*
3509				 * XXX - Libalias checksum offload 'duct tape':
3510				 *
3511				 * locally generated packets have only
3512				 * pseudo-header checksum calculated
3513				 * and libalias will screw it[1], so
3514				 * mark them for later fix.  Moreover
3515				 * there are cases when libalias
3516				 * modify tcp packet data[2], mark it
3517				 * for later fix too.
3518				 *
3519				 * [1] libalias was never meant to run
3520				 * in kernel, so it doesn't have any
3521				 * knowledge about checksum
3522				 * offloading, and it expects a packet
3523				 * with a full internet
3524				 * checksum. Unfortunately, packets
3525				 * generated locally will have just the
3526				 * pseudo header calculated, and when
3527				 * libalias tries to adjust the
3528				 * checksum it will actually screw it.
3529				 *
3530				 * [2] when libalias modify tcp's data
3531				 * content, full TCP checksum has to
3532				 * be recomputed: the problem is that
3533				 * libalias doesn't have any idea
3534				 * about checksum offloading To
3535				 * workaround this, we do not do
3536				 * checksumming in LibAlias, but only
3537				 * mark the packets in th_x2 field. If
3538				 * we receive a marked packet, we
3539				 * calculate correct checksum for it
3540				 * aware of offloading.  Why such a
3541				 * terrible hack instead of
3542				 * recalculating checksum for each
3543				 * packet?  Because the previous
3544				 * checksum was not checked!
3545				 * Recalculating checksums for EVERY
3546				 * packet will hide ALL transmission
3547				 * errors. Yes, marked packets still
3548				 * suffer from this problem. But,
3549				 * sigh, natd(8) has this problem,
3550				 * too.
3551				 *
3552				 * TODO: -make libalias mbuf aware (so
3553				 * it can handle delayed checksum and tso)
3554				 */
3555
3556				if (mcl->m_pkthdr.rcvif == NULL &&
3557				    mcl->m_pkthdr.csum_flags &
3558				    CSUM_DELAY_DATA)
3559					ldt = 1;
3560
3561				c = mtod(mcl, char *);
3562				if (oif == NULL)
3563					retval = LibAliasIn(t->lib, c,
3564					    MCLBYTES);
3565				else
3566					retval = LibAliasOut(t->lib, c,
3567					    MCLBYTES);
3568				if (retval != PKT_ALIAS_OK) {
3569					/* XXX - should i add some logging? */
3570					m_free(mcl);
3571				badnat:
3572					args->m = NULL;
3573					retval = IP_FW_DENY;
3574					goto done;
3575				}
3576				mcl->m_pkthdr.len = mcl->m_len =
3577				    ntohs(ip->ip_len);
3578
3579				/*
3580				 * XXX - libalias checksum offload
3581				 * 'duct tape' (see above)
3582				 */
3583
3584				if ((ip->ip_off & htons(IP_OFFMASK)) == 0 &&
3585				    ip->ip_p == IPPROTO_TCP) {
3586					struct tcphdr 	*th;
3587
3588					th = (struct tcphdr *)(ip + 1);
3589					if (th->th_x2)
3590						ldt = 1;
3591				}
3592
3593				if (ldt) {
3594					struct tcphdr 	*th;
3595					struct udphdr 	*uh;
3596					u_short cksum;
3597
3598					ip->ip_len = ntohs(ip->ip_len);
3599					cksum = in_pseudo(
3600						ip->ip_src.s_addr,
3601						ip->ip_dst.s_addr,
3602						htons(ip->ip_p + ip->ip_len -
3603					            (ip->ip_hl << 2))
3604						);
3605
3606					switch (ip->ip_p) {
3607					case IPPROTO_TCP:
3608						th = (struct tcphdr *)(ip + 1);
3609						/*
3610						 * Maybe it was set in
3611						 * libalias...
3612						 */
3613						th->th_x2 = 0;
3614						th->th_sum = cksum;
3615						mcl->m_pkthdr.csum_data =
3616						    offsetof(struct tcphdr,
3617						    th_sum);
3618						break;
3619					case IPPROTO_UDP:
3620						uh = (struct udphdr *)(ip + 1);
3621						uh->uh_sum = cksum;
3622						mcl->m_pkthdr.csum_data =
3623						    offsetof(struct udphdr,
3624						    uh_sum);
3625						break;
3626					}
3627					/*
3628					 * No hw checksum offloading: do it
3629					 * by ourself.
3630					 */
3631					if ((mcl->m_pkthdr.csum_flags &
3632					     CSUM_DELAY_DATA) == 0) {
3633						in_delayed_cksum(mcl);
3634						mcl->m_pkthdr.csum_flags &=
3635						    ~CSUM_DELAY_DATA;
3636					}
3637					ip->ip_len = htons(ip->ip_len);
3638				}
3639
3640				if (args->eh == NULL) {
3641					ip->ip_len = ntohs(ip->ip_len);
3642					ip->ip_off = ntohs(ip->ip_off);
3643				}
3644
3645				args->m = mcl;
3646				retval = IP_FW_NAT;
3647				goto done;
3648			}
3649#endif
3650
3651			default:
3652				panic("-- unknown opcode %d\n", cmd->opcode);
3653			} /* end of switch() on opcodes */
3654
3655			if (cmd->len & F_NOT)
3656				match = !match;
3657
3658			if (match) {
3659				if (cmd->len & F_OR)
3660					skip_or = 1;
3661			} else {
3662				if (!(cmd->len & F_OR)) /* not an OR block, */
3663					break;		/* try next rule    */
3664			}
3665
3666		}	/* end of inner for, scan opcodes */
3667
3668next_rule:;		/* try next rule		*/
3669
3670	}		/* end of outer for, scan rules */
3671	printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3672	IPFW_RUNLOCK(chain);
3673	return (IP_FW_DENY);
3674
3675done:
3676	/* Update statistics */
3677	f->pcnt++;
3678	f->bcnt += pktlen;
3679	f->timestamp = time_uptime;
3680	IPFW_RUNLOCK(chain);
3681	return (retval);
3682
3683pullup_failed:
3684	if (fw_verbose)
3685		printf("ipfw: pullup failed\n");
3686	return (IP_FW_DENY);
3687}
3688
3689/*
3690 * When a rule is added/deleted, clear the next_rule pointers in all rules.
3691 * These will be reconstructed on the fly as packets are matched.
3692 */
3693static void
3694flush_rule_ptrs(struct ip_fw_chain *chain)
3695{
3696	struct ip_fw *rule;
3697
3698	IPFW_WLOCK_ASSERT(chain);
3699
3700	for (rule = chain->rules; rule; rule = rule->next)
3701		rule->next_rule = NULL;
3702}
3703
3704/*
3705 * Add a new rule to the list. Copy the rule into a malloc'ed area, then
3706 * possibly create a rule number and add the rule to the list.
3707 * Update the rule_number in the input struct so the caller knows it as well.
3708 */
3709static int
3710add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
3711{
3712	struct ip_fw *rule, *f, *prev;
3713	int l = RULESIZE(input_rule);
3714
3715	if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
3716		return (EINVAL);
3717
3718	rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
3719	if (rule == NULL)
3720		return (ENOSPC);
3721
3722	bcopy(input_rule, rule, l);
3723
3724	rule->next = NULL;
3725	rule->next_rule = NULL;
3726
3727	rule->pcnt = 0;
3728	rule->bcnt = 0;
3729	rule->timestamp = 0;
3730
3731	IPFW_WLOCK(chain);
3732
3733	if (chain->rules == NULL) {	/* default rule */
3734		chain->rules = rule;
3735		goto done;
3736        }
3737
3738	/*
3739	 * If rulenum is 0, find highest numbered rule before the
3740	 * default rule, and add autoinc_step
3741	 */
3742	if (autoinc_step < 1)
3743		autoinc_step = 1;
3744	else if (autoinc_step > 1000)
3745		autoinc_step = 1000;
3746	if (rule->rulenum == 0) {
3747		/*
3748		 * locate the highest numbered rule before default
3749		 */
3750		for (f = chain->rules; f; f = f->next) {
3751			if (f->rulenum == IPFW_DEFAULT_RULE)
3752				break;
3753			rule->rulenum = f->rulenum;
3754		}
3755		if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
3756			rule->rulenum += autoinc_step;
3757		input_rule->rulenum = rule->rulenum;
3758	}
3759
3760	/*
3761	 * Now insert the new rule in the right place in the sorted list.
3762	 */
3763	for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
3764		if (f->rulenum > rule->rulenum) { /* found the location */
3765			if (prev) {
3766				rule->next = f;
3767				prev->next = rule;
3768			} else { /* head insert */
3769				rule->next = chain->rules;
3770				chain->rules = rule;
3771			}
3772			break;
3773		}
3774	}
3775	flush_rule_ptrs(chain);
3776done:
3777	static_count++;
3778	static_len += l;
3779	IPFW_WUNLOCK(chain);
3780	DEB(printf("ipfw: installed rule %d, static count now %d\n",
3781		rule->rulenum, static_count);)
3782	return (0);
3783}
3784
3785/**
3786 * Remove a static rule (including derived * dynamic rules)
3787 * and place it on the ``reap list'' for later reclamation.
3788 * The caller is in charge of clearing rule pointers to avoid
3789 * dangling pointers.
3790 * @return a pointer to the next entry.
3791 * Arguments are not checked, so they better be correct.
3792 */
3793static struct ip_fw *
3794remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule,
3795    struct ip_fw *prev)
3796{
3797	struct ip_fw *n;
3798	int l = RULESIZE(rule);
3799
3800	IPFW_WLOCK_ASSERT(chain);
3801
3802	n = rule->next;
3803	IPFW_DYN_LOCK();
3804	remove_dyn_rule(rule, NULL /* force removal */);
3805	IPFW_DYN_UNLOCK();
3806	if (prev == NULL)
3807		chain->rules = n;
3808	else
3809		prev->next = n;
3810	static_count--;
3811	static_len -= l;
3812
3813	rule->next = chain->reap;
3814	chain->reap = rule;
3815
3816	return n;
3817}
3818
3819/**
3820 * Reclaim storage associated with a list of rules.  This is
3821 * typically the list created using remove_rule.
3822 */
3823static void
3824reap_rules(struct ip_fw *head)
3825{
3826	struct ip_fw *rule;
3827
3828	while ((rule = head) != NULL) {
3829		head = head->next;
3830		if (DUMMYNET_LOADED)
3831			ip_dn_ruledel_ptr(rule);
3832		free(rule, M_IPFW);
3833	}
3834}
3835
3836/*
3837 * Remove all rules from a chain (except rules in set RESVD_SET
3838 * unless kill_default = 1).  The caller is responsible for
3839 * reclaiming storage for the rules left in chain->reap.
3840 */
3841static void
3842free_chain(struct ip_fw_chain *chain, int kill_default)
3843{
3844	struct ip_fw *prev, *rule;
3845
3846	IPFW_WLOCK_ASSERT(chain);
3847
3848	flush_rule_ptrs(chain); /* more efficient to do outside the loop */
3849	for (prev = NULL, rule = chain->rules; rule ; )
3850		if (kill_default || rule->set != RESVD_SET)
3851			rule = remove_rule(chain, rule, prev);
3852		else {
3853			prev = rule;
3854			rule = rule->next;
3855		}
3856}
3857
3858/**
3859 * Remove all rules with given number, and also do set manipulation.
3860 * Assumes chain != NULL && *chain != NULL.
3861 *
3862 * The argument is an u_int32_t. The low 16 bit are the rule or set number,
3863 * the next 8 bits are the new set, the top 8 bits are the command:
3864 *
3865 *	0	delete rules with given number
3866 *	1	delete rules with given set number
3867 *	2	move rules with given number to new set
3868 *	3	move rules with given set number to new set
3869 *	4	swap sets with given numbers
3870 *	5	delete rules with given number and with given set number
3871 */
3872static int
3873del_entry(struct ip_fw_chain *chain, u_int32_t arg)
3874{
3875	struct ip_fw *prev = NULL, *rule;
3876	u_int16_t rulenum;	/* rule or old_set */
3877	u_int8_t cmd, new_set;
3878
3879	rulenum = arg & 0xffff;
3880	cmd = (arg >> 24) & 0xff;
3881	new_set = (arg >> 16) & 0xff;
3882
3883	if (cmd > 5 || new_set > RESVD_SET)
3884		return EINVAL;
3885	if (cmd == 0 || cmd == 2 || cmd == 5) {
3886		if (rulenum >= IPFW_DEFAULT_RULE)
3887			return EINVAL;
3888	} else {
3889		if (rulenum > RESVD_SET)	/* old_set */
3890			return EINVAL;
3891	}
3892
3893	IPFW_WLOCK(chain);
3894	rule = chain->rules;
3895	chain->reap = NULL;
3896	switch (cmd) {
3897	case 0:	/* delete rules with given number */
3898		/*
3899		 * locate first rule to delete
3900		 */
3901		for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3902			;
3903		if (rule->rulenum != rulenum) {
3904			IPFW_WUNLOCK(chain);
3905			return EINVAL;
3906		}
3907
3908		/*
3909		 * flush pointers outside the loop, then delete all matching
3910		 * rules. prev remains the same throughout the cycle.
3911		 */
3912		flush_rule_ptrs(chain);
3913		while (rule->rulenum == rulenum)
3914			rule = remove_rule(chain, rule, prev);
3915		break;
3916
3917	case 1:	/* delete all rules with given set number */
3918		flush_rule_ptrs(chain);
3919		rule = chain->rules;
3920		while (rule->rulenum < IPFW_DEFAULT_RULE)
3921			if (rule->set == rulenum)
3922				rule = remove_rule(chain, rule, prev);
3923			else {
3924				prev = rule;
3925				rule = rule->next;
3926			}
3927		break;
3928
3929	case 2:	/* move rules with given number to new set */
3930		rule = chain->rules;
3931		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3932			if (rule->rulenum == rulenum)
3933				rule->set = new_set;
3934		break;
3935
3936	case 3: /* move rules with given set number to new set */
3937		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3938			if (rule->set == rulenum)
3939				rule->set = new_set;
3940		break;
3941
3942	case 4: /* swap two sets */
3943		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3944			if (rule->set == rulenum)
3945				rule->set = new_set;
3946			else if (rule->set == new_set)
3947				rule->set = rulenum;
3948		break;
3949	case 5: /* delete rules with given number and with given set number.
3950		 * rulenum - given rule number;
3951		 * new_set - given set number.
3952		 */
3953		for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3954			;
3955		if (rule->rulenum != rulenum) {
3956			IPFW_WUNLOCK(chain);
3957			return (EINVAL);
3958		}
3959		flush_rule_ptrs(chain);
3960		while (rule->rulenum == rulenum) {
3961			if (rule->set == new_set)
3962				rule = remove_rule(chain, rule, prev);
3963			else {
3964				prev = rule;
3965				rule = rule->next;
3966			}
3967		}
3968	}
3969	/*
3970	 * Look for rules to reclaim.  We grab the list before
3971	 * releasing the lock then reclaim them w/o the lock to
3972	 * avoid a LOR with dummynet.
3973	 */
3974	rule = chain->reap;
3975	chain->reap = NULL;
3976	IPFW_WUNLOCK(chain);
3977	if (rule)
3978		reap_rules(rule);
3979	return 0;
3980}
3981
3982/*
3983 * Clear counters for a specific rule.
3984 * The enclosing "table" is assumed locked.
3985 */
3986static void
3987clear_counters(struct ip_fw *rule, int log_only)
3988{
3989	ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
3990
3991	if (log_only == 0) {
3992		rule->bcnt = rule->pcnt = 0;
3993		rule->timestamp = 0;
3994	}
3995	if (l->o.opcode == O_LOG)
3996		l->log_left = l->max_log;
3997}
3998
3999/**
4000 * Reset some or all counters on firewall rules.
4001 * The argument `arg' is an u_int32_t. The low 16 bit are the rule number,
4002 * the next 8 bits are the set number, the top 8 bits are the command:
4003 *	0	work with rules from all set's;
4004 *	1	work with rules only from specified set.
4005 * Specified rule number is zero if we want to clear all entries.
4006 * log_only is 1 if we only want to reset logs, zero otherwise.
4007 */
4008static int
4009zero_entry(struct ip_fw_chain *chain, u_int32_t arg, int log_only)
4010{
4011	struct ip_fw *rule;
4012	char *msg;
4013
4014	uint16_t rulenum = arg & 0xffff;
4015	uint8_t set = (arg >> 16) & 0xff;
4016	uint8_t cmd = (arg >> 24) & 0xff;
4017
4018	if (cmd > 1)
4019		return (EINVAL);
4020	if (cmd == 1 && set > RESVD_SET)
4021		return (EINVAL);
4022
4023	IPFW_WLOCK(chain);
4024	if (rulenum == 0) {
4025		norule_counter = 0;
4026		for (rule = chain->rules; rule; rule = rule->next) {
4027			/* Skip rules from another set. */
4028			if (cmd == 1 && rule->set != set)
4029				continue;
4030			clear_counters(rule, log_only);
4031		}
4032		msg = log_only ? "ipfw: All logging counts reset.\n" :
4033		    "ipfw: Accounting cleared.\n";
4034	} else {
4035		int cleared = 0;
4036		/*
4037		 * We can have multiple rules with the same number, so we
4038		 * need to clear them all.
4039		 */
4040		for (rule = chain->rules; rule; rule = rule->next)
4041			if (rule->rulenum == rulenum) {
4042				while (rule && rule->rulenum == rulenum) {
4043					if (cmd == 0 || rule->set == set)
4044						clear_counters(rule, log_only);
4045					rule = rule->next;
4046				}
4047				cleared = 1;
4048				break;
4049			}
4050		if (!cleared) {	/* we did not find any matching rules */
4051			IPFW_WUNLOCK(chain);
4052			return (EINVAL);
4053		}
4054		msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
4055		    "ipfw: Entry %d cleared.\n";
4056	}
4057	IPFW_WUNLOCK(chain);
4058
4059	if (fw_verbose)
4060		log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
4061	return (0);
4062}
4063
4064/*
4065 * Check validity of the structure before insert.
4066 * Fortunately rules are simple, so this mostly need to check rule sizes.
4067 */
4068static int
4069check_ipfw_struct(struct ip_fw *rule, int size)
4070{
4071	int l, cmdlen = 0;
4072	int have_action=0;
4073	ipfw_insn *cmd;
4074
4075	if (size < sizeof(*rule)) {
4076		printf("ipfw: rule too short\n");
4077		return (EINVAL);
4078	}
4079	/* first, check for valid size */
4080	l = RULESIZE(rule);
4081	if (l != size) {
4082		printf("ipfw: size mismatch (have %d want %d)\n", size, l);
4083		return (EINVAL);
4084	}
4085	if (rule->act_ofs >= rule->cmd_len) {
4086		printf("ipfw: bogus action offset (%u > %u)\n",
4087		    rule->act_ofs, rule->cmd_len - 1);
4088		return (EINVAL);
4089	}
4090	/*
4091	 * Now go for the individual checks. Very simple ones, basically only
4092	 * instruction sizes.
4093	 */
4094	for (l = rule->cmd_len, cmd = rule->cmd ;
4095			l > 0 ; l -= cmdlen, cmd += cmdlen) {
4096		cmdlen = F_LEN(cmd);
4097		if (cmdlen > l) {
4098			printf("ipfw: opcode %d size truncated\n",
4099			    cmd->opcode);
4100			return EINVAL;
4101		}
4102		DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
4103		switch (cmd->opcode) {
4104		case O_PROBE_STATE:
4105		case O_KEEP_STATE:
4106		case O_PROTO:
4107		case O_IP_SRC_ME:
4108		case O_IP_DST_ME:
4109		case O_LAYER2:
4110		case O_IN:
4111		case O_FRAG:
4112		case O_DIVERTED:
4113		case O_IPOPT:
4114		case O_IPTOS:
4115		case O_IPPRECEDENCE:
4116		case O_IPVER:
4117		case O_TCPWIN:
4118		case O_TCPFLAGS:
4119		case O_TCPOPTS:
4120		case O_ESTAB:
4121		case O_VERREVPATH:
4122		case O_VERSRCREACH:
4123		case O_ANTISPOOF:
4124		case O_IPSEC:
4125#ifdef INET6
4126		case O_IP6_SRC_ME:
4127		case O_IP6_DST_ME:
4128		case O_EXT_HDR:
4129		case O_IP6:
4130#endif
4131		case O_IP4:
4132		case O_TAG:
4133			if (cmdlen != F_INSN_SIZE(ipfw_insn))
4134				goto bad_size;
4135			break;
4136
4137		case O_UID:
4138		case O_GID:
4139		case O_JAIL:
4140		case O_IP_SRC:
4141		case O_IP_DST:
4142		case O_TCPSEQ:
4143		case O_TCPACK:
4144		case O_PROB:
4145		case O_ICMPTYPE:
4146			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
4147				goto bad_size;
4148			break;
4149
4150		case O_LIMIT:
4151			if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
4152				goto bad_size;
4153			break;
4154
4155		case O_LOG:
4156			if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
4157				goto bad_size;
4158
4159			((ipfw_insn_log *)cmd)->log_left =
4160			    ((ipfw_insn_log *)cmd)->max_log;
4161
4162			break;
4163
4164		case O_IP_SRC_MASK:
4165		case O_IP_DST_MASK:
4166			/* only odd command lengths */
4167			if ( !(cmdlen & 1) || cmdlen > 31)
4168				goto bad_size;
4169			break;
4170
4171		case O_IP_SRC_SET:
4172		case O_IP_DST_SET:
4173			if (cmd->arg1 == 0 || cmd->arg1 > 256) {
4174				printf("ipfw: invalid set size %d\n",
4175					cmd->arg1);
4176				return EINVAL;
4177			}
4178			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
4179			    (cmd->arg1+31)/32 )
4180				goto bad_size;
4181			break;
4182
4183		case O_IP_SRC_LOOKUP:
4184		case O_IP_DST_LOOKUP:
4185			if (cmd->arg1 >= IPFW_TABLES_MAX) {
4186				printf("ipfw: invalid table number %d\n",
4187				    cmd->arg1);
4188				return (EINVAL);
4189			}
4190			if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
4191			    cmdlen != F_INSN_SIZE(ipfw_insn_u32))
4192				goto bad_size;
4193			break;
4194
4195		case O_MACADDR2:
4196			if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
4197				goto bad_size;
4198			break;
4199
4200		case O_NOP:
4201		case O_IPID:
4202		case O_IPTTL:
4203		case O_IPLEN:
4204		case O_TCPDATALEN:
4205		case O_TAGGED:
4206			if (cmdlen < 1 || cmdlen > 31)
4207				goto bad_size;
4208			break;
4209
4210		case O_MAC_TYPE:
4211		case O_IP_SRCPORT:
4212		case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
4213			if (cmdlen < 2 || cmdlen > 31)
4214				goto bad_size;
4215			break;
4216
4217		case O_RECV:
4218		case O_XMIT:
4219		case O_VIA:
4220			if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
4221				goto bad_size;
4222			break;
4223
4224		case O_ALTQ:
4225			if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
4226				goto bad_size;
4227			break;
4228
4229		case O_PIPE:
4230		case O_QUEUE:
4231			if (cmdlen != F_INSN_SIZE(ipfw_insn))
4232				goto bad_size;
4233			goto check_action;
4234
4235		case O_FORWARD_IP:
4236#ifdef	IPFIREWALL_FORWARD
4237			if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
4238				goto bad_size;
4239			goto check_action;
4240#else
4241			return EINVAL;
4242#endif
4243
4244		case O_DIVERT:
4245		case O_TEE:
4246			if (ip_divert_ptr == NULL)
4247				return EINVAL;
4248			else
4249				goto check_size;
4250		case O_NETGRAPH:
4251		case O_NGTEE:
4252			if (!NG_IPFW_LOADED)
4253				return EINVAL;
4254			else
4255				goto check_size;
4256		case O_NAT:
4257#ifdef IPFIREWALL_NAT
4258			if (cmdlen != F_INSN_SIZE(ipfw_insn_nat))
4259 				goto bad_size;
4260 			goto check_action;
4261#else
4262			return EINVAL;
4263#endif
4264		case O_FORWARD_MAC: /* XXX not implemented yet */
4265		case O_CHECK_STATE:
4266		case O_COUNT:
4267		case O_ACCEPT:
4268		case O_DENY:
4269		case O_REJECT:
4270#ifdef INET6
4271		case O_UNREACH6:
4272#endif
4273		case O_SKIPTO:
4274check_size:
4275			if (cmdlen != F_INSN_SIZE(ipfw_insn))
4276				goto bad_size;
4277check_action:
4278			if (have_action) {
4279				printf("ipfw: opcode %d, multiple actions"
4280					" not allowed\n",
4281					cmd->opcode);
4282				return EINVAL;
4283			}
4284			have_action = 1;
4285			if (l != cmdlen) {
4286				printf("ipfw: opcode %d, action must be"
4287					" last opcode\n",
4288					cmd->opcode);
4289				return EINVAL;
4290			}
4291			break;
4292#ifdef INET6
4293		case O_IP6_SRC:
4294		case O_IP6_DST:
4295			if (cmdlen != F_INSN_SIZE(struct in6_addr) +
4296			    F_INSN_SIZE(ipfw_insn))
4297				goto bad_size;
4298			break;
4299
4300		case O_FLOW6ID:
4301			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
4302			    ((ipfw_insn_u32 *)cmd)->o.arg1)
4303				goto bad_size;
4304			break;
4305
4306		case O_IP6_SRC_MASK:
4307		case O_IP6_DST_MASK:
4308			if ( !(cmdlen & 1) || cmdlen > 127)
4309				goto bad_size;
4310			break;
4311		case O_ICMP6TYPE:
4312			if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
4313				goto bad_size;
4314			break;
4315#endif
4316
4317		default:
4318			switch (cmd->opcode) {
4319#ifndef INET6
4320			case O_IP6_SRC_ME:
4321			case O_IP6_DST_ME:
4322			case O_EXT_HDR:
4323			case O_IP6:
4324			case O_UNREACH6:
4325			case O_IP6_SRC:
4326			case O_IP6_DST:
4327			case O_FLOW6ID:
4328			case O_IP6_SRC_MASK:
4329			case O_IP6_DST_MASK:
4330			case O_ICMP6TYPE:
4331				printf("ipfw: no IPv6 support in kernel\n");
4332				return EPROTONOSUPPORT;
4333#endif
4334			default:
4335				printf("ipfw: opcode %d, unknown opcode\n",
4336					cmd->opcode);
4337				return EINVAL;
4338			}
4339		}
4340	}
4341	if (have_action == 0) {
4342		printf("ipfw: missing action\n");
4343		return EINVAL;
4344	}
4345	return 0;
4346
4347bad_size:
4348	printf("ipfw: opcode %d size %d wrong\n",
4349		cmd->opcode, cmdlen);
4350	return EINVAL;
4351}
4352
4353/*
4354 * Copy the static and dynamic rules to the supplied buffer
4355 * and return the amount of space actually used.
4356 */
4357static size_t
4358ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
4359{
4360	char *bp = buf;
4361	char *ep = bp + space;
4362	struct ip_fw *rule;
4363	int i;
4364	time_t	boot_seconds;
4365
4366        boot_seconds = boottime.tv_sec;
4367	/* XXX this can take a long time and locking will block packet flow */
4368	IPFW_RLOCK(chain);
4369	for (rule = chain->rules; rule ; rule = rule->next) {
4370		/*
4371		 * Verify the entry fits in the buffer in case the
4372		 * rules changed between calculating buffer space and
4373		 * now.  This would be better done using a generation
4374		 * number but should suffice for now.
4375		 */
4376		i = RULESIZE(rule);
4377		if (bp + i <= ep) {
4378			bcopy(rule, bp, i);
4379			/*
4380			 * XXX HACK. Store the disable mask in the "next" pointer
4381			 * in a wild attempt to keep the ABI the same.
4382			 * Why do we do this on EVERY rule?
4383			 */
4384			bcopy(&set_disable, &(((struct ip_fw *)bp)->next_rule),
4385			    sizeof(set_disable));
4386			if (((struct ip_fw *)bp)->timestamp)
4387				((struct ip_fw *)bp)->timestamp += boot_seconds;
4388			bp += i;
4389		}
4390	}
4391	IPFW_RUNLOCK(chain);
4392	if (ipfw_dyn_v) {
4393		ipfw_dyn_rule *p, *last = NULL;
4394
4395		IPFW_DYN_LOCK();
4396		for (i = 0 ; i < curr_dyn_buckets; i++)
4397			for (p = ipfw_dyn_v[i] ; p != NULL; p = p->next) {
4398				if (bp + sizeof *p <= ep) {
4399					ipfw_dyn_rule *dst =
4400						(ipfw_dyn_rule *)bp;
4401					bcopy(p, dst, sizeof *p);
4402					bcopy(&(p->rule->rulenum), &(dst->rule),
4403					    sizeof(p->rule->rulenum));
4404					/*
4405					 * store set number into high word of
4406					 * dst->rule pointer.
4407					 */
4408					bcopy(&(p->rule->set),
4409					    (char *)&dst->rule +
4410					    sizeof(p->rule->rulenum),
4411					    sizeof(p->rule->set));
4412					/*
4413					 * store a non-null value in "next".
4414					 * The userland code will interpret a
4415					 * NULL here as a marker
4416					 * for the last dynamic rule.
4417					 */
4418					bcopy(&dst, &dst->next, sizeof(dst));
4419					last = dst;
4420					dst->expire =
4421					    TIME_LEQ(dst->expire, time_uptime) ?
4422						0 : dst->expire - time_uptime ;
4423					bp += sizeof(ipfw_dyn_rule);
4424				}
4425			}
4426		IPFW_DYN_UNLOCK();
4427		if (last != NULL) /* mark last dynamic rule */
4428			bzero(&last->next, sizeof(last));
4429	}
4430	return (bp - (char *)buf);
4431}
4432
4433
4434/**
4435 * {set|get}sockopt parser.
4436 */
4437static int
4438ipfw_ctl(struct sockopt *sopt)
4439{
4440#define	RULE_MAXSIZE	(256*sizeof(u_int32_t))
4441	int error;
4442	size_t size;
4443	struct ip_fw *buf, *rule;
4444	u_int32_t rulenum[2];
4445
4446	error = priv_check(sopt->sopt_td, PRIV_NETINET_IPFW);
4447	if (error)
4448		return (error);
4449
4450	/*
4451	 * Disallow modifications in really-really secure mode, but still allow
4452	 * the logging counters to be reset.
4453	 */
4454	if (sopt->sopt_name == IP_FW_ADD ||
4455	    (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
4456		error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
4457		if (error)
4458			return (error);
4459	}
4460
4461	error = 0;
4462
4463	switch (sopt->sopt_name) {
4464	case IP_FW_GET:
4465		/*
4466		 * pass up a copy of the current rules. Static rules
4467		 * come first (the last of which has number IPFW_DEFAULT_RULE),
4468		 * followed by a possibly empty list of dynamic rule.
4469		 * The last dynamic rule has NULL in the "next" field.
4470		 *
4471		 * Note that the calculated size is used to bound the
4472		 * amount of data returned to the user.  The rule set may
4473		 * change between calculating the size and returning the
4474		 * data in which case we'll just return what fits.
4475		 */
4476		size = static_len;	/* size of static rules */
4477		if (ipfw_dyn_v)		/* add size of dyn.rules */
4478			size += (dyn_count * sizeof(ipfw_dyn_rule));
4479
4480		/*
4481		 * XXX todo: if the user passes a short length just to know
4482		 * how much room is needed, do not bother filling up the
4483		 * buffer, just jump to the sooptcopyout.
4484		 */
4485		buf = malloc(size, M_TEMP, M_WAITOK);
4486		error = sooptcopyout(sopt, buf,
4487				ipfw_getrules(&layer3_chain, buf, size));
4488		free(buf, M_TEMP);
4489		break;
4490
4491	case IP_FW_FLUSH:
4492		/*
4493		 * Normally we cannot release the lock on each iteration.
4494		 * We could do it here only because we start from the head all
4495		 * the times so there is no risk of missing some entries.
4496		 * On the other hand, the risk is that we end up with
4497		 * a very inconsistent ruleset, so better keep the lock
4498		 * around the whole cycle.
4499		 *
4500		 * XXX this code can be improved by resetting the head of
4501		 * the list to point to the default rule, and then freeing
4502		 * the old list without the need for a lock.
4503		 */
4504
4505		IPFW_WLOCK(&layer3_chain);
4506		layer3_chain.reap = NULL;
4507		free_chain(&layer3_chain, 0 /* keep default rule */);
4508		rule = layer3_chain.reap;
4509		layer3_chain.reap = NULL;
4510		IPFW_WUNLOCK(&layer3_chain);
4511		if (rule != NULL)
4512			reap_rules(rule);
4513		break;
4514
4515	case IP_FW_ADD:
4516		rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
4517		error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
4518			sizeof(struct ip_fw) );
4519		if (error == 0)
4520			error = check_ipfw_struct(rule, sopt->sopt_valsize);
4521		if (error == 0) {
4522			error = add_rule(&layer3_chain, rule);
4523			size = RULESIZE(rule);
4524			if (!error && sopt->sopt_dir == SOPT_GET)
4525				error = sooptcopyout(sopt, rule, size);
4526		}
4527		free(rule, M_TEMP);
4528		break;
4529
4530	case IP_FW_DEL:
4531		/*
4532		 * IP_FW_DEL is used for deleting single rules or sets,
4533		 * and (ab)used to atomically manipulate sets. Argument size
4534		 * is used to distinguish between the two:
4535		 *    sizeof(u_int32_t)
4536		 *	delete single rule or set of rules,
4537		 *	or reassign rules (or sets) to a different set.
4538		 *    2*sizeof(u_int32_t)
4539		 *	atomic disable/enable sets.
4540		 *	first u_int32_t contains sets to be disabled,
4541		 *	second u_int32_t contains sets to be enabled.
4542		 */
4543		error = sooptcopyin(sopt, rulenum,
4544			2*sizeof(u_int32_t), sizeof(u_int32_t));
4545		if (error)
4546			break;
4547		size = sopt->sopt_valsize;
4548		if (size == sizeof(u_int32_t))	/* delete or reassign */
4549			error = del_entry(&layer3_chain, rulenum[0]);
4550		else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
4551			set_disable =
4552			    (set_disable | rulenum[0]) & ~rulenum[1] &
4553			    ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
4554		else
4555			error = EINVAL;
4556		break;
4557
4558	case IP_FW_ZERO:
4559	case IP_FW_RESETLOG: /* argument is an u_int_32, the rule number */
4560		rulenum[0] = 0;
4561		if (sopt->sopt_val != 0) {
4562		    error = sooptcopyin(sopt, rulenum,
4563			    sizeof(u_int32_t), sizeof(u_int32_t));
4564		    if (error)
4565			break;
4566		}
4567		error = zero_entry(&layer3_chain, rulenum[0],
4568			sopt->sopt_name == IP_FW_RESETLOG);
4569		break;
4570
4571	case IP_FW_TABLE_ADD:
4572		{
4573			ipfw_table_entry ent;
4574
4575			error = sooptcopyin(sopt, &ent,
4576			    sizeof(ent), sizeof(ent));
4577			if (error)
4578				break;
4579			error = add_table_entry(&layer3_chain, ent.tbl,
4580			    ent.addr, ent.masklen, ent.value);
4581		}
4582		break;
4583
4584	case IP_FW_TABLE_DEL:
4585		{
4586			ipfw_table_entry ent;
4587
4588			error = sooptcopyin(sopt, &ent,
4589			    sizeof(ent), sizeof(ent));
4590			if (error)
4591				break;
4592			error = del_table_entry(&layer3_chain, ent.tbl,
4593			    ent.addr, ent.masklen);
4594		}
4595		break;
4596
4597	case IP_FW_TABLE_FLUSH:
4598		{
4599			u_int16_t tbl;
4600
4601			error = sooptcopyin(sopt, &tbl,
4602			    sizeof(tbl), sizeof(tbl));
4603			if (error)
4604				break;
4605			IPFW_WLOCK(&layer3_chain);
4606			error = flush_table(&layer3_chain, tbl);
4607			IPFW_WUNLOCK(&layer3_chain);
4608		}
4609		break;
4610
4611	case IP_FW_TABLE_GETSIZE:
4612		{
4613			u_int32_t tbl, cnt;
4614
4615			if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
4616			    sizeof(tbl))))
4617				break;
4618			IPFW_RLOCK(&layer3_chain);
4619			error = count_table(&layer3_chain, tbl, &cnt);
4620			IPFW_RUNLOCK(&layer3_chain);
4621			if (error)
4622				break;
4623			error = sooptcopyout(sopt, &cnt, sizeof(cnt));
4624		}
4625		break;
4626
4627	case IP_FW_TABLE_LIST:
4628		{
4629			ipfw_table *tbl;
4630
4631			if (sopt->sopt_valsize < sizeof(*tbl)) {
4632				error = EINVAL;
4633				break;
4634			}
4635			size = sopt->sopt_valsize;
4636			tbl = malloc(size, M_TEMP, M_WAITOK);
4637			error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
4638			if (error) {
4639				free(tbl, M_TEMP);
4640				break;
4641			}
4642			tbl->size = (size - sizeof(*tbl)) /
4643			    sizeof(ipfw_table_entry);
4644			IPFW_RLOCK(&layer3_chain);
4645			error = dump_table(&layer3_chain, tbl);
4646			IPFW_RUNLOCK(&layer3_chain);
4647			if (error) {
4648				free(tbl, M_TEMP);
4649				break;
4650			}
4651			error = sooptcopyout(sopt, tbl, size);
4652			free(tbl, M_TEMP);
4653		}
4654		break;
4655
4656#ifdef IPFIREWALL_NAT
4657	case IP_FW_NAT_CFG:
4658	{
4659		struct cfg_nat *ptr, *ser_n;
4660		char *buf;
4661
4662		buf = malloc(NAT_BUF_LEN, M_IPFW, M_WAITOK | M_ZERO);
4663		error = sooptcopyin(sopt, buf, NAT_BUF_LEN,
4664		    sizeof(struct cfg_nat));
4665		ser_n = (struct cfg_nat *)buf;
4666
4667		/*
4668		 * Find/create nat rule.
4669		 */
4670		IPFW_WLOCK(&layer3_chain);
4671		ptr = lookup_nat(ser_n->id);
4672		if (ptr == NULL) {
4673			/* New rule: allocate and init new instance. */
4674			ptr = malloc(sizeof(struct cfg_nat),
4675		            M_IPFW, M_NOWAIT | M_ZERO);
4676			if (ptr == NULL) {
4677				IPFW_WUNLOCK(&layer3_chain);
4678				free(buf, M_IPFW);
4679				return (ENOSPC);
4680			}
4681			ptr->lib = LibAliasInit(NULL);
4682			if (ptr->lib == NULL) {
4683				IPFW_WUNLOCK(&layer3_chain);
4684				free(ptr, M_IPFW);
4685				free(buf, M_IPFW);
4686				return (EINVAL);
4687			}
4688			LIST_INIT(&ptr->redir_chain);
4689		} else {
4690			/* Entry already present: temporarly unhook it. */
4691			UNHOOK_NAT(ptr);
4692			flush_nat_ptrs(ser_n->id);
4693		}
4694		IPFW_WUNLOCK(&layer3_chain);
4695
4696		/*
4697		 * Basic nat configuration.
4698		 */
4699		ptr->id = ser_n->id;
4700		/*
4701		 * XXX - what if this rule doesn't nat any ip and just
4702		 * redirect?
4703		 * do we set aliasaddress to 0.0.0.0?
4704		 */
4705		ptr->ip = ser_n->ip;
4706		ptr->redir_cnt = ser_n->redir_cnt;
4707		ptr->mode = ser_n->mode;
4708		LibAliasSetMode(ptr->lib, ser_n->mode, ser_n->mode);
4709		LibAliasSetAddress(ptr->lib, ptr->ip);
4710		memcpy(ptr->if_name, ser_n->if_name, IF_NAMESIZE);
4711
4712		/*
4713		 * Redir and LSNAT configuration.
4714		 */
4715		/* Delete old cfgs. */
4716		del_redir_spool_cfg(ptr, &ptr->redir_chain);
4717		/* Add new entries. */
4718		add_redir_spool_cfg(&buf[(sizeof(struct cfg_nat))], ptr);
4719		free(buf, M_IPFW);
4720		IPFW_WLOCK(&layer3_chain);
4721		HOOK_NAT(&layer3_chain.nat, ptr);
4722		IPFW_WUNLOCK(&layer3_chain);
4723	}
4724	break;
4725
4726	case IP_FW_NAT_DEL:
4727	{
4728		struct cfg_nat *ptr;
4729		int i;
4730
4731		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
4732		IPFW_WLOCK(&layer3_chain);
4733		ptr = lookup_nat(i);
4734		if (ptr == NULL) {
4735			error = EINVAL;
4736			IPFW_WUNLOCK(&layer3_chain);
4737			break;
4738		}
4739		UNHOOK_NAT(ptr);
4740		flush_nat_ptrs(i);
4741		IPFW_WUNLOCK(&layer3_chain);
4742		del_redir_spool_cfg(ptr, &ptr->redir_chain);
4743		LibAliasUninit(ptr->lib);
4744		free(ptr, M_IPFW);
4745	}
4746	break;
4747
4748	case IP_FW_NAT_GET_CONFIG:
4749	{
4750		uint8_t *data;
4751		struct cfg_nat *n;
4752		struct cfg_redir *r;
4753		struct cfg_spool *s;
4754		int nat_cnt, off;
4755
4756		nat_cnt = 0;
4757		off = sizeof(nat_cnt);
4758
4759		data = malloc(NAT_BUF_LEN, M_IPFW, M_WAITOK | M_ZERO);
4760		IPFW_RLOCK(&layer3_chain);
4761		/* Serialize all the data. */
4762		LIST_FOREACH(n, &layer3_chain.nat, _next) {
4763			nat_cnt++;
4764			if (off + SOF_NAT < NAT_BUF_LEN) {
4765				bcopy(n, &data[off], SOF_NAT);
4766				off += SOF_NAT;
4767				LIST_FOREACH(r, &n->redir_chain, _next) {
4768					if (off + SOF_REDIR < NAT_BUF_LEN) {
4769						bcopy(r, &data[off],
4770						    SOF_REDIR);
4771						off += SOF_REDIR;
4772						LIST_FOREACH(s, &r->spool_chain,
4773						    _next) {
4774							if (off + SOF_SPOOL <
4775							    NAT_BUF_LEN) {
4776								bcopy(s,
4777								    &data[off],
4778								    SOF_SPOOL);
4779								off +=
4780								    SOF_SPOOL;
4781							} else
4782								goto nospace;
4783						}
4784					} else
4785						goto nospace;
4786				}
4787			} else
4788				goto nospace;
4789		}
4790		bcopy(&nat_cnt, data, sizeof(nat_cnt));
4791		IPFW_RUNLOCK(&layer3_chain);
4792		error = sooptcopyout(sopt, data, NAT_BUF_LEN);
4793		free(data, M_IPFW);
4794		break;
4795	nospace:
4796		IPFW_RUNLOCK(&layer3_chain);
4797		printf("serialized data buffer not big enough:"
4798		    "please increase NAT_BUF_LEN\n");
4799		free(data, M_IPFW);
4800	}
4801	break;
4802
4803	case IP_FW_NAT_GET_LOG:
4804	{
4805		uint8_t *data;
4806		struct cfg_nat *ptr;
4807		int i, size, cnt, sof;
4808
4809		data = NULL;
4810		sof = LIBALIAS_BUF_SIZE;
4811		cnt = 0;
4812
4813		IPFW_RLOCK(&layer3_chain);
4814		size = i = 0;
4815		LIST_FOREACH(ptr, &layer3_chain.nat, _next) {
4816			if (ptr->lib->logDesc == NULL)
4817				continue;
4818			cnt++;
4819			size = cnt * (sof + sizeof(int));
4820			data = realloc(data, size, M_IPFW, M_NOWAIT | M_ZERO);
4821			if (data == NULL) {
4822				IPFW_RUNLOCK(&layer3_chain);
4823				return (ENOSPC);
4824			}
4825			bcopy(&ptr->id, &data[i], sizeof(int));
4826			i += sizeof(int);
4827			bcopy(ptr->lib->logDesc, &data[i], sof);
4828			i += sof;
4829		}
4830		IPFW_RUNLOCK(&layer3_chain);
4831		error = sooptcopyout(sopt, data, size);
4832		free(data, M_IPFW);
4833	}
4834	break;
4835#endif
4836
4837	default:
4838		printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
4839		error = EINVAL;
4840	}
4841
4842	return (error);
4843#undef RULE_MAXSIZE
4844}
4845
4846/**
4847 * dummynet needs a reference to the default rule, because rules can be
4848 * deleted while packets hold a reference to them. When this happens,
4849 * dummynet changes the reference to the default rule (it could well be a
4850 * NULL pointer, but this way we do not need to check for the special
4851 * case, plus here he have info on the default behaviour).
4852 */
4853struct ip_fw *ip_fw_default_rule;
4854
4855/*
4856 * This procedure is only used to handle keepalives. It is invoked
4857 * every dyn_keepalive_period
4858 */
4859static void
4860ipfw_tick(void * __unused unused)
4861{
4862	struct mbuf *m0, *m, *mnext, **mtailp;
4863	int i;
4864	ipfw_dyn_rule *q;
4865
4866	if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0)
4867		goto done;
4868
4869	/*
4870	 * We make a chain of packets to go out here -- not deferring
4871	 * until after we drop the IPFW dynamic rule lock would result
4872	 * in a lock order reversal with the normal packet input -> ipfw
4873	 * call stack.
4874	 */
4875	m0 = NULL;
4876	mtailp = &m0;
4877	IPFW_DYN_LOCK();
4878	for (i = 0 ; i < curr_dyn_buckets ; i++) {
4879		for (q = ipfw_dyn_v[i] ; q ; q = q->next ) {
4880			if (q->dyn_type == O_LIMIT_PARENT)
4881				continue;
4882			if (q->id.proto != IPPROTO_TCP)
4883				continue;
4884			if ( (q->state & BOTH_SYN) != BOTH_SYN)
4885				continue;
4886			if (TIME_LEQ( time_uptime+dyn_keepalive_interval,
4887			    q->expire))
4888				continue;	/* too early */
4889			if (TIME_LEQ(q->expire, time_uptime))
4890				continue;	/* too late, rule expired */
4891
4892			*mtailp = send_pkt(NULL, &(q->id), q->ack_rev - 1,
4893				q->ack_fwd, TH_SYN);
4894			if (*mtailp != NULL)
4895				mtailp = &(*mtailp)->m_nextpkt;
4896			*mtailp = send_pkt(NULL, &(q->id), q->ack_fwd - 1,
4897				q->ack_rev, 0);
4898			if (*mtailp != NULL)
4899				mtailp = &(*mtailp)->m_nextpkt;
4900		}
4901	}
4902	IPFW_DYN_UNLOCK();
4903	for (m = mnext = m0; m != NULL; m = mnext) {
4904		mnext = m->m_nextpkt;
4905		m->m_nextpkt = NULL;
4906		ip_output(m, NULL, NULL, 0, NULL, NULL);
4907	}
4908done:
4909	callout_reset(&ipfw_timeout, dyn_keepalive_period*hz, ipfw_tick, NULL);
4910}
4911
4912int
4913ipfw_init(void)
4914{
4915	struct ip_fw default_rule;
4916	int error;
4917
4918#ifdef INET6
4919	/* Setup IPv6 fw sysctl tree. */
4920	sysctl_ctx_init(&ip6_fw_sysctl_ctx);
4921	ip6_fw_sysctl_tree = SYSCTL_ADD_NODE(&ip6_fw_sysctl_ctx,
4922	    SYSCTL_STATIC_CHILDREN(_net_inet6_ip6), OID_AUTO, "fw",
4923	    CTLFLAG_RW | CTLFLAG_SECURE, 0, "Firewall");
4924	SYSCTL_ADD_PROC(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4925	    OID_AUTO, "enable", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3,
4926	    &fw6_enable, 0, ipfw_chg_hook, "I", "Enable ipfw+6");
4927	SYSCTL_ADD_INT(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4928	    OID_AUTO, "deny_unknown_exthdrs", CTLFLAG_RW | CTLFLAG_SECURE,
4929	    &fw_deny_unknown_exthdrs, 0,
4930	    "Deny packets with unknown IPv6 Extension Headers");
4931#endif
4932
4933	layer3_chain.rules = NULL;
4934	IPFW_LOCK_INIT(&layer3_chain);
4935	ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule",
4936	    sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
4937	    UMA_ALIGN_PTR, 0);
4938	IPFW_DYN_LOCK_INIT();
4939	callout_init(&ipfw_timeout, CALLOUT_MPSAFE);
4940
4941	bzero(&default_rule, sizeof default_rule);
4942
4943	default_rule.act_ofs = 0;
4944	default_rule.rulenum = IPFW_DEFAULT_RULE;
4945	default_rule.cmd_len = 1;
4946	default_rule.set = RESVD_SET;
4947
4948	default_rule.cmd[0].len = 1;
4949	default_rule.cmd[0].opcode =
4950#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
4951				1 ? O_ACCEPT :
4952#endif
4953				O_DENY;
4954
4955	error = add_rule(&layer3_chain, &default_rule);
4956	if (error != 0) {
4957		printf("ipfw2: error %u initializing default rule "
4958			"(support disabled)\n", error);
4959		IPFW_DYN_LOCK_DESTROY();
4960		IPFW_LOCK_DESTROY(&layer3_chain);
4961		uma_zdestroy(ipfw_dyn_rule_zone);
4962		return (error);
4963	}
4964
4965	ip_fw_default_rule = layer3_chain.rules;
4966	printf("ipfw2 "
4967#ifdef INET6
4968		"(+ipv6) "
4969#endif
4970		"initialized, divert %s, "
4971		"rule-based forwarding "
4972#ifdef IPFIREWALL_FORWARD
4973		"enabled, "
4974#else
4975		"disabled, "
4976#endif
4977		"default to %s, logging ",
4978#ifdef IPDIVERT
4979		"enabled",
4980#else
4981		"loadable",
4982#endif
4983		default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
4984
4985#ifdef IPFIREWALL_VERBOSE
4986	fw_verbose = 1;
4987#endif
4988#ifdef IPFIREWALL_VERBOSE_LIMIT
4989	verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
4990#endif
4991	if (fw_verbose == 0)
4992		printf("disabled\n");
4993	else if (verbose_limit == 0)
4994		printf("unlimited\n");
4995	else
4996		printf("limited to %d packets/entry by default\n",
4997		    verbose_limit);
4998
4999	error = init_tables(&layer3_chain);
5000	if (error) {
5001		IPFW_DYN_LOCK_DESTROY();
5002		IPFW_LOCK_DESTROY(&layer3_chain);
5003		uma_zdestroy(ipfw_dyn_rule_zone);
5004		return (error);
5005	}
5006	ip_fw_ctl_ptr = ipfw_ctl;
5007	ip_fw_chk_ptr = ipfw_chk;
5008	callout_reset(&ipfw_timeout, hz, ipfw_tick, NULL);
5009#ifdef IPFIREWALL_NAT
5010	LIST_INIT(&layer3_chain.nat);
5011	ifaddr_event_tag = EVENTHANDLER_REGISTER(ifaddr_event, ifaddr_change,
5012	    NULL, EVENTHANDLER_PRI_ANY);
5013#endif
5014	return (0);
5015}
5016
5017void
5018ipfw_destroy(void)
5019{
5020	struct ip_fw *reap;
5021#ifdef IPFIREWALL_NAT
5022	struct cfg_nat *ptr, *ptr_temp;
5023#endif
5024
5025	ip_fw_chk_ptr = NULL;
5026	ip_fw_ctl_ptr = NULL;
5027	callout_drain(&ipfw_timeout);
5028	IPFW_WLOCK(&layer3_chain);
5029	flush_tables(&layer3_chain);
5030#ifdef IPFIREWALL_NAT
5031	LIST_FOREACH_SAFE(ptr, &layer3_chain.nat, _next, ptr_temp) {
5032		LIST_REMOVE(ptr, _next);
5033		del_redir_spool_cfg(ptr, &ptr->redir_chain);
5034		LibAliasUninit(ptr->lib);
5035		free(ptr, M_IPFW);
5036	}
5037	EVENTHANDLER_DEREGISTER(ifaddr_event, ifaddr_event_tag);
5038#endif
5039	layer3_chain.reap = NULL;
5040	free_chain(&layer3_chain, 1 /* kill default rule */);
5041	reap = layer3_chain.reap, layer3_chain.reap = NULL;
5042	IPFW_WUNLOCK(&layer3_chain);
5043	if (reap != NULL)
5044		reap_rules(reap);
5045	IPFW_DYN_LOCK_DESTROY();
5046	uma_zdestroy(ipfw_dyn_rule_zone);
5047	if (ipfw_dyn_v != NULL)
5048		free(ipfw_dyn_v, M_IPFW);
5049	IPFW_LOCK_DESTROY(&layer3_chain);
5050
5051#ifdef INET6
5052	/* Free IPv6 fw sysctl tree. */
5053	sysctl_ctx_free(&ip6_fw_sysctl_ctx);
5054#endif
5055
5056	printf("IP firewall unloaded\n");
5057}
5058