ip_fw2.c revision 159636
1/*-
2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 * $FreeBSD: head/sys/netinet/ip_fw2.c 159636 2006-06-15 09:39:22Z oleg $
26 */
27
28#define        DEB(x)
29#define        DDB(x) x
30
31/*
32 * Implement IP packet firewall (new version)
33 */
34
35#if !defined(KLD_MODULE)
36#include "opt_ipfw.h"
37#include "opt_ipdn.h"
38#include "opt_inet.h"
39#ifndef INET
40#error IPFIREWALL requires INET.
41#endif /* INET */
42#endif
43#include "opt_inet6.h"
44#include "opt_ipsec.h"
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/condvar.h>
49#include <sys/malloc.h>
50#include <sys/mbuf.h>
51#include <sys/kernel.h>
52#include <sys/lock.h>
53#include <sys/jail.h>
54#include <sys/module.h>
55#include <sys/proc.h>
56#include <sys/rwlock.h>
57#include <sys/socket.h>
58#include <sys/socketvar.h>
59#include <sys/sysctl.h>
60#include <sys/syslog.h>
61#include <sys/ucred.h>
62#include <net/if.h>
63#include <net/radix.h>
64#include <net/route.h>
65#include <netinet/in.h>
66#include <netinet/in_systm.h>
67#include <netinet/in_var.h>
68#include <netinet/in_pcb.h>
69#include <netinet/ip.h>
70#include <netinet/ip_var.h>
71#include <netinet/ip_icmp.h>
72#include <netinet/ip_fw.h>
73#include <netinet/ip_divert.h>
74#include <netinet/ip_dummynet.h>
75#include <netinet/tcp.h>
76#include <netinet/tcp_timer.h>
77#include <netinet/tcp_var.h>
78#include <netinet/tcpip.h>
79#include <netinet/udp.h>
80#include <netinet/udp_var.h>
81
82#include <netgraph/ng_ipfw.h>
83
84#include <altq/if_altq.h>
85
86#ifdef IPSEC
87#include <netinet6/ipsec.h>
88#endif
89
90#include <netinet/ip6.h>
91#include <netinet/icmp6.h>
92#ifdef INET6
93#include <netinet6/scope6_var.h>
94#endif
95
96#include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
97
98#include <machine/in_cksum.h>	/* XXX for in_cksum */
99
100/*
101 * set_disable contains one bit per set value (0..31).
102 * If the bit is set, all rules with the corresponding set
103 * are disabled. Set RESVD_SET(31) is reserved for the default rule
104 * and rules that are not deleted by the flush command,
105 * and CANNOT be disabled.
106 * Rules in set RESVD_SET can only be deleted explicitly.
107 */
108static u_int32_t set_disable;
109
110static int fw_verbose;
111static int verbose_limit;
112
113static struct callout ipfw_timeout;
114static uma_zone_t ipfw_dyn_rule_zone;
115#define	IPFW_DEFAULT_RULE	65535
116
117/*
118 * Data structure to cache our ucred related
119 * information. This structure only gets used if
120 * the user specified UID/GID based constraints in
121 * a firewall rule.
122 */
123struct ip_fw_ugid {
124	gid_t		fw_groups[NGROUPS];
125	int		fw_ngroups;
126	uid_t		fw_uid;
127	int		fw_prid;
128};
129
130#define	IPFW_TABLES_MAX		128
131struct ip_fw_chain {
132	struct ip_fw	*rules;		/* list of rules */
133	struct ip_fw	*reap;		/* list of rules to reap */
134	struct radix_node_head *tables[IPFW_TABLES_MAX];
135	struct rwlock	rwmtx;
136};
137#define	IPFW_LOCK_INIT(_chain) \
138	rw_init(&(_chain)->rwmtx, "IPFW static rules")
139#define	IPFW_LOCK_DESTROY(_chain)	rw_destroy(&(_chain)->rwmtx)
140#define	IPFW_WLOCK_ASSERT(_chain)	do {				\
141	rw_assert(&(_chain)->rwmtx, RA_WLOCKED);					\
142	NET_ASSERT_GIANT();						\
143} while (0)
144
145#define IPFW_RLOCK(p) rw_rlock(&(p)->rwmtx)
146#define IPFW_RUNLOCK(p) rw_runlock(&(p)->rwmtx)
147#define IPFW_WLOCK(p) rw_wlock(&(p)->rwmtx)
148#define IPFW_WUNLOCK(p) rw_wunlock(&(p)->rwmtx)
149
150/*
151 * list of rules for layer 3
152 */
153static struct ip_fw_chain layer3_chain;
154
155MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
156MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
157
158struct table_entry {
159	struct radix_node	rn[2];
160	struct sockaddr_in	addr, mask;
161	u_int32_t		value;
162};
163
164static int fw_debug = 1;
165static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
166
167extern int ipfw_chg_hook(SYSCTL_HANDLER_ARGS);
168
169#ifdef SYSCTL_NODE
170SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
171SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, enable,
172    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3, &fw_enable, 0,
173    ipfw_chg_hook, "I", "Enable ipfw");
174SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
175    &autoinc_step, 0, "Rule number autincrement step");
176SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
177    CTLFLAG_RW | CTLFLAG_SECURE3,
178    &fw_one_pass, 0,
179    "Only do a single pass through ipfw when using dummynet(4)");
180SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
181    &fw_debug, 0, "Enable printing of debug ip_fw statements");
182SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
183    CTLFLAG_RW | CTLFLAG_SECURE3,
184    &fw_verbose, 0, "Log matches to ipfw rules");
185SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
186    &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
187
188/*
189 * Description of dynamic rules.
190 *
191 * Dynamic rules are stored in lists accessed through a hash table
192 * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
193 * be modified through the sysctl variable dyn_buckets which is
194 * updated when the table becomes empty.
195 *
196 * XXX currently there is only one list, ipfw_dyn.
197 *
198 * When a packet is received, its address fields are first masked
199 * with the mask defined for the rule, then hashed, then matched
200 * against the entries in the corresponding list.
201 * Dynamic rules can be used for different purposes:
202 *  + stateful rules;
203 *  + enforcing limits on the number of sessions;
204 *  + in-kernel NAT (not implemented yet)
205 *
206 * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
207 * measured in seconds and depending on the flags.
208 *
209 * The total number of dynamic rules is stored in dyn_count.
210 * The max number of dynamic rules is dyn_max. When we reach
211 * the maximum number of rules we do not create anymore. This is
212 * done to avoid consuming too much memory, but also too much
213 * time when searching on each packet (ideally, we should try instead
214 * to put a limit on the length of the list on each bucket...).
215 *
216 * Each dynamic rule holds a pointer to the parent ipfw rule so
217 * we know what action to perform. Dynamic rules are removed when
218 * the parent rule is deleted. XXX we should make them survive.
219 *
220 * There are some limitations with dynamic rules -- we do not
221 * obey the 'randomized match', and we do not do multiple
222 * passes through the firewall. XXX check the latter!!!
223 */
224static ipfw_dyn_rule **ipfw_dyn_v = NULL;
225static u_int32_t dyn_buckets = 256; /* must be power of 2 */
226static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
227
228static struct mtx ipfw_dyn_mtx;		/* mutex guarding dynamic rules */
229#define	IPFW_DYN_LOCK_INIT() \
230	mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
231#define	IPFW_DYN_LOCK_DESTROY()	mtx_destroy(&ipfw_dyn_mtx)
232#define	IPFW_DYN_LOCK()		mtx_lock(&ipfw_dyn_mtx)
233#define	IPFW_DYN_UNLOCK()	mtx_unlock(&ipfw_dyn_mtx)
234#define	IPFW_DYN_LOCK_ASSERT()	mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
235
236/*
237 * Timeouts for various events in handing dynamic rules.
238 */
239static u_int32_t dyn_ack_lifetime = 300;
240static u_int32_t dyn_syn_lifetime = 20;
241static u_int32_t dyn_fin_lifetime = 1;
242static u_int32_t dyn_rst_lifetime = 1;
243static u_int32_t dyn_udp_lifetime = 10;
244static u_int32_t dyn_short_lifetime = 5;
245
246/*
247 * Keepalives are sent if dyn_keepalive is set. They are sent every
248 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
249 * seconds of lifetime of a rule.
250 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
251 * than dyn_keepalive_period.
252 */
253
254static u_int32_t dyn_keepalive_interval = 20;
255static u_int32_t dyn_keepalive_period = 5;
256static u_int32_t dyn_keepalive = 1;	/* do send keepalives */
257
258static u_int32_t static_count;	/* # of static rules */
259static u_int32_t static_len;	/* size in bytes of static rules */
260static u_int32_t dyn_count;		/* # of dynamic rules */
261static u_int32_t dyn_max = 4096;	/* max # of dynamic rules */
262
263SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
264    &dyn_buckets, 0, "Number of dyn. buckets");
265SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
266    &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
267SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
268    &dyn_count, 0, "Number of dyn. rules");
269SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
270    &dyn_max, 0, "Max number of dyn. rules");
271SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
272    &static_count, 0, "Number of static rules");
273SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
274    &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
275SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
276    &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
277SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
278    &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
279SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
280    &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
281SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
282    &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
283SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
284    &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
285SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
286    &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
287
288#ifdef INET6
289/*
290 * IPv6 specific variables
291 */
292SYSCTL_DECL(_net_inet6_ip6);
293
294static struct sysctl_ctx_list ip6_fw_sysctl_ctx;
295static struct sysctl_oid *ip6_fw_sysctl_tree;
296#endif /* INET6 */
297#endif /* SYSCTL_NODE */
298
299static int fw_deny_unknown_exthdrs = 1;
300
301
302/*
303 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
304 * Other macros just cast void * into the appropriate type
305 */
306#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
307#define	TCP(p)		((struct tcphdr *)(p))
308#define	UDP(p)		((struct udphdr *)(p))
309#define	ICMP(p)		((struct icmphdr *)(p))
310#define	ICMP6(p)	((struct icmp6_hdr *)(p))
311
312static __inline int
313icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
314{
315	int type = icmp->icmp_type;
316
317	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
318}
319
320#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
321    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
322
323static int
324is_icmp_query(struct icmphdr *icmp)
325{
326	int type = icmp->icmp_type;
327
328	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
329}
330#undef TT
331
332/*
333 * The following checks use two arrays of 8 or 16 bits to store the
334 * bits that we want set or clear, respectively. They are in the
335 * low and high half of cmd->arg1 or cmd->d[0].
336 *
337 * We scan options and store the bits we find set. We succeed if
338 *
339 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
340 *
341 * The code is sometimes optimized not to store additional variables.
342 */
343
344static int
345flags_match(ipfw_insn *cmd, u_int8_t bits)
346{
347	u_char want_clear;
348	bits = ~bits;
349
350	if ( ((cmd->arg1 & 0xff) & bits) != 0)
351		return 0; /* some bits we want set were clear */
352	want_clear = (cmd->arg1 >> 8) & 0xff;
353	if ( (want_clear & bits) != want_clear)
354		return 0; /* some bits we want clear were set */
355	return 1;
356}
357
358static int
359ipopts_match(struct ip *ip, ipfw_insn *cmd)
360{
361	int optlen, bits = 0;
362	u_char *cp = (u_char *)(ip + 1);
363	int x = (ip->ip_hl << 2) - sizeof (struct ip);
364
365	for (; x > 0; x -= optlen, cp += optlen) {
366		int opt = cp[IPOPT_OPTVAL];
367
368		if (opt == IPOPT_EOL)
369			break;
370		if (opt == IPOPT_NOP)
371			optlen = 1;
372		else {
373			optlen = cp[IPOPT_OLEN];
374			if (optlen <= 0 || optlen > x)
375				return 0; /* invalid or truncated */
376		}
377		switch (opt) {
378
379		default:
380			break;
381
382		case IPOPT_LSRR:
383			bits |= IP_FW_IPOPT_LSRR;
384			break;
385
386		case IPOPT_SSRR:
387			bits |= IP_FW_IPOPT_SSRR;
388			break;
389
390		case IPOPT_RR:
391			bits |= IP_FW_IPOPT_RR;
392			break;
393
394		case IPOPT_TS:
395			bits |= IP_FW_IPOPT_TS;
396			break;
397		}
398	}
399	return (flags_match(cmd, bits));
400}
401
402static int
403tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
404{
405	int optlen, bits = 0;
406	u_char *cp = (u_char *)(tcp + 1);
407	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
408
409	for (; x > 0; x -= optlen, cp += optlen) {
410		int opt = cp[0];
411		if (opt == TCPOPT_EOL)
412			break;
413		if (opt == TCPOPT_NOP)
414			optlen = 1;
415		else {
416			optlen = cp[1];
417			if (optlen <= 0)
418				break;
419		}
420
421		switch (opt) {
422
423		default:
424			break;
425
426		case TCPOPT_MAXSEG:
427			bits |= IP_FW_TCPOPT_MSS;
428			break;
429
430		case TCPOPT_WINDOW:
431			bits |= IP_FW_TCPOPT_WINDOW;
432			break;
433
434		case TCPOPT_SACK_PERMITTED:
435		case TCPOPT_SACK:
436			bits |= IP_FW_TCPOPT_SACK;
437			break;
438
439		case TCPOPT_TIMESTAMP:
440			bits |= IP_FW_TCPOPT_TS;
441			break;
442
443		}
444	}
445	return (flags_match(cmd, bits));
446}
447
448static int
449iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
450{
451	if (ifp == NULL)	/* no iface with this packet, match fails */
452		return 0;
453	/* Check by name or by IP address */
454	if (cmd->name[0] != '\0') { /* match by name */
455		/* Check name */
456		if (cmd->p.glob) {
457			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
458				return(1);
459		} else {
460			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
461				return(1);
462		}
463	} else {
464		struct ifaddr *ia;
465
466		/* XXX lock? */
467		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
468			if (ia->ifa_addr == NULL)
469				continue;
470			if (ia->ifa_addr->sa_family != AF_INET)
471				continue;
472			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
473			    (ia->ifa_addr))->sin_addr.s_addr)
474				return(1);	/* match */
475		}
476	}
477	return(0);	/* no match, fail ... */
478}
479
480/*
481 * The verify_path function checks if a route to the src exists and
482 * if it is reachable via ifp (when provided).
483 *
484 * The 'verrevpath' option checks that the interface that an IP packet
485 * arrives on is the same interface that traffic destined for the
486 * packet's source address would be routed out of.  The 'versrcreach'
487 * option just checks that the source address is reachable via any route
488 * (except default) in the routing table.  These two are a measure to block
489 * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
490 * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
491 * is purposely reminiscent of the Cisco IOS command,
492 *
493 *   ip verify unicast reverse-path
494 *   ip verify unicast source reachable-via any
495 *
496 * which implements the same functionality. But note that syntax is
497 * misleading. The check may be performed on all IP packets whether unicast,
498 * multicast, or broadcast.
499 */
500static int
501verify_path(struct in_addr src, struct ifnet *ifp)
502{
503	struct route ro;
504	struct sockaddr_in *dst;
505
506	bzero(&ro, sizeof(ro));
507
508	dst = (struct sockaddr_in *)&(ro.ro_dst);
509	dst->sin_family = AF_INET;
510	dst->sin_len = sizeof(*dst);
511	dst->sin_addr = src;
512	rtalloc_ign(&ro, RTF_CLONING);
513
514	if (ro.ro_rt == NULL)
515		return 0;
516
517	/*
518	 * If ifp is provided, check for equality with rtentry.
519	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
520	 * in order to pass packets injected back by if_simloop():
521	 * if useloopback == 1 routing entry (via lo0) for our own address
522	 * may exist, so we need to handle routing assymetry.
523	 */
524	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
525		RTFREE(ro.ro_rt);
526		return 0;
527	}
528
529	/* if no ifp provided, check if rtentry is not default route */
530	if (ifp == NULL &&
531	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
532		RTFREE(ro.ro_rt);
533		return 0;
534	}
535
536	/* or if this is a blackhole/reject route */
537	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
538		RTFREE(ro.ro_rt);
539		return 0;
540	}
541
542	/* found valid route */
543	RTFREE(ro.ro_rt);
544	return 1;
545}
546
547#ifdef INET6
548/*
549 * ipv6 specific rules here...
550 */
551static __inline int
552icmp6type_match (int type, ipfw_insn_u32 *cmd)
553{
554	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
555}
556
557static int
558flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
559{
560	int i;
561	for (i=0; i <= cmd->o.arg1; ++i )
562		if (curr_flow == cmd->d[i] )
563			return 1;
564	return 0;
565}
566
567/* support for IP6_*_ME opcodes */
568static int
569search_ip6_addr_net (struct in6_addr * ip6_addr)
570{
571	struct ifnet *mdc;
572	struct ifaddr *mdc2;
573	struct in6_ifaddr *fdm;
574	struct in6_addr copia;
575
576	TAILQ_FOREACH(mdc, &ifnet, if_link)
577		for (mdc2 = mdc->if_addrlist.tqh_first; mdc2;
578		    mdc2 = mdc2->ifa_list.tqe_next) {
579			if (!mdc2->ifa_addr)
580				continue;
581			if (mdc2->ifa_addr->sa_family == AF_INET6) {
582				fdm = (struct in6_ifaddr *)mdc2;
583				copia = fdm->ia_addr.sin6_addr;
584				/* need for leaving scope_id in the sock_addr */
585				in6_clearscope(&copia);
586				if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia))
587					return 1;
588			}
589		}
590	return 0;
591}
592
593static int
594verify_path6(struct in6_addr *src, struct ifnet *ifp)
595{
596	struct route_in6 ro;
597	struct sockaddr_in6 *dst;
598
599	bzero(&ro, sizeof(ro));
600
601	dst = (struct sockaddr_in6 * )&(ro.ro_dst);
602	dst->sin6_family = AF_INET6;
603	dst->sin6_len = sizeof(*dst);
604	dst->sin6_addr = *src;
605	rtalloc_ign((struct route *)&ro, RTF_CLONING);
606
607	if (ro.ro_rt == NULL)
608		return 0;
609
610	/*
611	 * if ifp is provided, check for equality with rtentry
612	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
613	 * to support the case of sending packets to an address of our own.
614	 * (where the former interface is the first argument of if_simloop()
615	 *  (=ifp), the latter is lo0)
616	 */
617	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
618		RTFREE(ro.ro_rt);
619		return 0;
620	}
621
622	/* if no ifp provided, check if rtentry is not default route */
623	if (ifp == NULL &&
624	    IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
625		RTFREE(ro.ro_rt);
626		return 0;
627	}
628
629	/* or if this is a blackhole/reject route */
630	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
631		RTFREE(ro.ro_rt);
632		return 0;
633	}
634
635	/* found valid route */
636	RTFREE(ro.ro_rt);
637	return 1;
638
639}
640static __inline int
641hash_packet6(struct ipfw_flow_id *id)
642{
643	u_int32_t i;
644	i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
645	    (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
646	    (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
647	    (id->src_ip6.__u6_addr.__u6_addr32[3]) ^
648	    (id->dst_port) ^ (id->src_port);
649	return i;
650}
651
652static int
653is_icmp6_query(int icmp6_type)
654{
655	if ((icmp6_type <= ICMP6_MAXTYPE) &&
656	    (icmp6_type == ICMP6_ECHO_REQUEST ||
657	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
658	    icmp6_type == ICMP6_WRUREQUEST ||
659	    icmp6_type == ICMP6_FQDN_QUERY ||
660	    icmp6_type == ICMP6_NI_QUERY))
661		return (1);
662
663	return (0);
664}
665
666static void
667send_reject6(struct ip_fw_args *args, int code, u_short offset, u_int hlen)
668{
669	if (code == ICMP6_UNREACH_RST && offset == 0 &&
670	    args->f_id.proto == IPPROTO_TCP) {
671		struct ip6_hdr *ip6;
672		struct tcphdr *tcp;
673		tcp_seq ack, seq;
674		int flags;
675		struct {
676			struct ip6_hdr ip6;
677			struct tcphdr th;
678		} ti;
679
680		if (args->m->m_len < (hlen+sizeof(struct tcphdr))) {
681			args->m = m_pullup(args->m, hlen+sizeof(struct tcphdr));
682			if (args->m == NULL)
683				return;
684		}
685
686		ip6 = mtod(args->m, struct ip6_hdr *);
687		tcp = (struct tcphdr *)(mtod(args->m, char *) + hlen);
688
689		if ((tcp->th_flags & TH_RST) != 0) {
690			m_freem(args->m);
691			return;
692		}
693
694		ti.ip6 = *ip6;
695		ti.th = *tcp;
696		ti.th.th_seq = ntohl(ti.th.th_seq);
697		ti.th.th_ack = ntohl(ti.th.th_ack);
698		ti.ip6.ip6_nxt = IPPROTO_TCP;
699
700		if (ti.th.th_flags & TH_ACK) {
701			ack = 0;
702			seq = ti.th.th_ack;
703			flags = TH_RST;
704		} else {
705			ack = ti.th.th_seq;
706			if (((args->m)->m_flags & M_PKTHDR) != 0) {
707				ack += (args->m)->m_pkthdr.len - hlen
708					- (ti.th.th_off << 2);
709			} else if (ip6->ip6_plen) {
710				ack += ntohs(ip6->ip6_plen) + sizeof(*ip6)
711					- hlen - (ti.th.th_off << 2);
712			} else {
713				m_freem(args->m);
714				return;
715			}
716			if (tcp->th_flags & TH_SYN)
717				ack++;
718			seq = 0;
719			flags = TH_RST|TH_ACK;
720		}
721		bcopy(&ti, ip6, sizeof(ti));
722		tcp_respond(NULL, ip6, (struct tcphdr *)(ip6 + 1),
723			args->m, ack, seq, flags);
724
725	} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
726		icmp6_error(args->m, ICMP6_DST_UNREACH, code, 0);
727
728	} else
729		m_freem(args->m);
730
731	args->m = NULL;
732}
733
734#endif /* INET6 */
735
736static u_int64_t norule_counter;	/* counter for ipfw_log(NULL...) */
737
738#define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
739#define SNP(buf) buf, sizeof(buf)
740
741/*
742 * We enter here when we have a rule with O_LOG.
743 * XXX this function alone takes about 2Kbytes of code!
744 */
745static void
746ipfw_log(struct ip_fw *f, u_int hlen, struct ip_fw_args *args,
747	struct mbuf *m, struct ifnet *oif, u_short offset)
748{
749	struct ether_header *eh = args->eh;
750	char *action;
751	int limit_reached = 0;
752	char action2[40], proto[128], fragment[32];
753
754	fragment[0] = '\0';
755	proto[0] = '\0';
756
757	if (f == NULL) {	/* bogus pkt */
758		if (verbose_limit != 0 && norule_counter >= verbose_limit)
759			return;
760		norule_counter++;
761		if (norule_counter == verbose_limit)
762			limit_reached = verbose_limit;
763		action = "Refuse";
764	} else {	/* O_LOG is the first action, find the real one */
765		ipfw_insn *cmd = ACTION_PTR(f);
766		ipfw_insn_log *l = (ipfw_insn_log *)cmd;
767
768		if (l->max_log != 0 && l->log_left == 0)
769			return;
770		l->log_left--;
771		if (l->log_left == 0)
772			limit_reached = l->max_log;
773		cmd += F_LEN(cmd);	/* point to first action */
774		if (cmd->opcode == O_ALTQ) {
775			ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
776
777			snprintf(SNPARGS(action2, 0), "Altq %d",
778				altq->qid);
779			cmd += F_LEN(cmd);
780		}
781		if (cmd->opcode == O_PROB)
782			cmd += F_LEN(cmd);
783
784		if (cmd->opcode == O_TAG)
785			cmd += F_LEN(cmd);
786
787		action = action2;
788		switch (cmd->opcode) {
789		case O_DENY:
790			action = "Deny";
791			break;
792
793		case O_REJECT:
794			if (cmd->arg1==ICMP_REJECT_RST)
795				action = "Reset";
796			else if (cmd->arg1==ICMP_UNREACH_HOST)
797				action = "Reject";
798			else
799				snprintf(SNPARGS(action2, 0), "Unreach %d",
800					cmd->arg1);
801			break;
802
803		case O_UNREACH6:
804			if (cmd->arg1==ICMP6_UNREACH_RST)
805				action = "Reset";
806			else
807				snprintf(SNPARGS(action2, 0), "Unreach %d",
808					cmd->arg1);
809			break;
810
811		case O_ACCEPT:
812			action = "Accept";
813			break;
814		case O_COUNT:
815			action = "Count";
816			break;
817		case O_DIVERT:
818			snprintf(SNPARGS(action2, 0), "Divert %d",
819				cmd->arg1);
820			break;
821		case O_TEE:
822			snprintf(SNPARGS(action2, 0), "Tee %d",
823				cmd->arg1);
824			break;
825		case O_SKIPTO:
826			snprintf(SNPARGS(action2, 0), "SkipTo %d",
827				cmd->arg1);
828			break;
829		case O_PIPE:
830			snprintf(SNPARGS(action2, 0), "Pipe %d",
831				cmd->arg1);
832			break;
833		case O_QUEUE:
834			snprintf(SNPARGS(action2, 0), "Queue %d",
835				cmd->arg1);
836			break;
837		case O_FORWARD_IP: {
838			ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
839			int len;
840
841			len = snprintf(SNPARGS(action2, 0), "Forward to %s",
842				inet_ntoa(sa->sa.sin_addr));
843			if (sa->sa.sin_port)
844				snprintf(SNPARGS(action2, len), ":%d",
845				    sa->sa.sin_port);
846			}
847			break;
848		case O_NETGRAPH:
849			snprintf(SNPARGS(action2, 0), "Netgraph %d",
850				cmd->arg1);
851			break;
852		case O_NGTEE:
853			snprintf(SNPARGS(action2, 0), "Ngtee %d",
854				cmd->arg1);
855			break;
856		default:
857			action = "UNKNOWN";
858			break;
859		}
860	}
861
862	if (hlen == 0) {	/* non-ip */
863		snprintf(SNPARGS(proto, 0), "MAC");
864
865	} else {
866		int len;
867		char src[48], dst[48];
868		struct icmphdr *icmp;
869		struct tcphdr *tcp;
870		struct udphdr *udp;
871		/* Initialize to make compiler happy. */
872		struct ip *ip = NULL;
873#ifdef INET6
874		struct ip6_hdr *ip6 = NULL;
875		struct icmp6_hdr *icmp6;
876#endif
877		src[0] = '\0';
878		dst[0] = '\0';
879#ifdef INET6
880		if (args->f_id.addr_type == 6) {
881			snprintf(src, sizeof(src), "[%s]",
882			    ip6_sprintf(&args->f_id.src_ip6));
883			snprintf(dst, sizeof(dst), "[%s]",
884			    ip6_sprintf(&args->f_id.dst_ip6));
885
886			ip6 = (struct ip6_hdr *)mtod(m, struct ip6_hdr *);
887			tcp = (struct tcphdr *)(mtod(args->m, char *) + hlen);
888			udp = (struct udphdr *)(mtod(args->m, char *) + hlen);
889		} else
890#endif
891		{
892			ip = mtod(m, struct ip *);
893			tcp = L3HDR(struct tcphdr, ip);
894			udp = L3HDR(struct udphdr, ip);
895
896			inet_ntoa_r(ip->ip_src, src);
897			inet_ntoa_r(ip->ip_dst, dst);
898		}
899
900		switch (args->f_id.proto) {
901		case IPPROTO_TCP:
902			len = snprintf(SNPARGS(proto, 0), "TCP %s", src);
903			if (offset == 0)
904				snprintf(SNPARGS(proto, len), ":%d %s:%d",
905				    ntohs(tcp->th_sport),
906				    dst,
907				    ntohs(tcp->th_dport));
908			else
909				snprintf(SNPARGS(proto, len), " %s", dst);
910			break;
911
912		case IPPROTO_UDP:
913			len = snprintf(SNPARGS(proto, 0), "UDP %s", src);
914			if (offset == 0)
915				snprintf(SNPARGS(proto, len), ":%d %s:%d",
916				    ntohs(udp->uh_sport),
917				    dst,
918				    ntohs(udp->uh_dport));
919			else
920				snprintf(SNPARGS(proto, len), " %s", dst);
921			break;
922
923		case IPPROTO_ICMP:
924			icmp = L3HDR(struct icmphdr, ip);
925			if (offset == 0)
926				len = snprintf(SNPARGS(proto, 0),
927				    "ICMP:%u.%u ",
928				    icmp->icmp_type, icmp->icmp_code);
929			else
930				len = snprintf(SNPARGS(proto, 0), "ICMP ");
931			len += snprintf(SNPARGS(proto, len), "%s", src);
932			snprintf(SNPARGS(proto, len), " %s", dst);
933			break;
934#ifdef INET6
935		case IPPROTO_ICMPV6:
936			icmp6 = (struct icmp6_hdr *)(mtod(args->m, char *) + hlen);
937			if (offset == 0)
938				len = snprintf(SNPARGS(proto, 0),
939				    "ICMPv6:%u.%u ",
940				    icmp6->icmp6_type, icmp6->icmp6_code);
941			else
942				len = snprintf(SNPARGS(proto, 0), "ICMPv6 ");
943			len += snprintf(SNPARGS(proto, len), "%s", src);
944			snprintf(SNPARGS(proto, len), " %s", dst);
945			break;
946#endif
947		default:
948			len = snprintf(SNPARGS(proto, 0), "P:%d %s",
949			    args->f_id.proto, src);
950			snprintf(SNPARGS(proto, len), " %s", dst);
951			break;
952		}
953
954#ifdef INET6
955		if (args->f_id.addr_type == 6) {
956			if (offset & (IP6F_OFF_MASK | IP6F_MORE_FRAG))
957				snprintf(SNPARGS(fragment, 0),
958				    " (frag %08x:%d@%d%s)",
959				    args->f_id.frag_id6,
960				    ntohs(ip6->ip6_plen) - hlen,
961				    ntohs(offset & IP6F_OFF_MASK) << 3,
962				    (offset & IP6F_MORE_FRAG) ? "+" : "");
963		} else
964#endif
965		{
966			int ip_off, ip_len;
967			if (eh != NULL) { /* layer 2 packets are as on the wire */
968				ip_off = ntohs(ip->ip_off);
969				ip_len = ntohs(ip->ip_len);
970			} else {
971				ip_off = ip->ip_off;
972				ip_len = ip->ip_len;
973			}
974			if (ip_off & (IP_MF | IP_OFFMASK))
975				snprintf(SNPARGS(fragment, 0),
976				    " (frag %d:%d@%d%s)",
977				    ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
978				    offset << 3,
979				    (ip_off & IP_MF) ? "+" : "");
980		}
981	}
982	if (oif || m->m_pkthdr.rcvif)
983		log(LOG_SECURITY | LOG_INFO,
984		    "ipfw: %d %s %s %s via %s%s\n",
985		    f ? f->rulenum : -1,
986		    action, proto, oif ? "out" : "in",
987		    oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
988		    fragment);
989	else
990		log(LOG_SECURITY | LOG_INFO,
991		    "ipfw: %d %s %s [no if info]%s\n",
992		    f ? f->rulenum : -1,
993		    action, proto, fragment);
994	if (limit_reached)
995		log(LOG_SECURITY | LOG_NOTICE,
996		    "ipfw: limit %d reached on entry %d\n",
997		    limit_reached, f ? f->rulenum : -1);
998}
999
1000/*
1001 * IMPORTANT: the hash function for dynamic rules must be commutative
1002 * in source and destination (ip,port), because rules are bidirectional
1003 * and we want to find both in the same bucket.
1004 */
1005static __inline int
1006hash_packet(struct ipfw_flow_id *id)
1007{
1008	u_int32_t i;
1009
1010#ifdef INET6
1011	if (IS_IP6_FLOW_ID(id))
1012		i = hash_packet6(id);
1013	else
1014#endif /* INET6 */
1015	i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
1016	i &= (curr_dyn_buckets - 1);
1017	return i;
1018}
1019
1020/**
1021 * unlink a dynamic rule from a chain. prev is a pointer to
1022 * the previous one, q is a pointer to the rule to delete,
1023 * head is a pointer to the head of the queue.
1024 * Modifies q and potentially also head.
1025 */
1026#define UNLINK_DYN_RULE(prev, head, q) {				\
1027	ipfw_dyn_rule *old_q = q;					\
1028									\
1029	/* remove a refcount to the parent */				\
1030	if (q->dyn_type == O_LIMIT)					\
1031		q->parent->count--;					\
1032	DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
1033		(q->id.src_ip), (q->id.src_port),			\
1034		(q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); )	\
1035	if (prev != NULL)						\
1036		prev->next = q = q->next;				\
1037	else								\
1038		head = q = q->next;					\
1039	dyn_count--;							\
1040	uma_zfree(ipfw_dyn_rule_zone, old_q); }
1041
1042#define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
1043
1044/**
1045 * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
1046 *
1047 * If keep_me == NULL, rules are deleted even if not expired,
1048 * otherwise only expired rules are removed.
1049 *
1050 * The value of the second parameter is also used to point to identify
1051 * a rule we absolutely do not want to remove (e.g. because we are
1052 * holding a reference to it -- this is the case with O_LIMIT_PARENT
1053 * rules). The pointer is only used for comparison, so any non-null
1054 * value will do.
1055 */
1056static void
1057remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
1058{
1059	static u_int32_t last_remove = 0;
1060
1061#define FORCE (keep_me == NULL)
1062
1063	ipfw_dyn_rule *prev, *q;
1064	int i, pass = 0, max_pass = 0;
1065
1066	IPFW_DYN_LOCK_ASSERT();
1067
1068	if (ipfw_dyn_v == NULL || dyn_count == 0)
1069		return;
1070	/* do not expire more than once per second, it is useless */
1071	if (!FORCE && last_remove == time_uptime)
1072		return;
1073	last_remove = time_uptime;
1074
1075	/*
1076	 * because O_LIMIT refer to parent rules, during the first pass only
1077	 * remove child and mark any pending LIMIT_PARENT, and remove
1078	 * them in a second pass.
1079	 */
1080next_pass:
1081	for (i = 0 ; i < curr_dyn_buckets ; i++) {
1082		for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
1083			/*
1084			 * Logic can become complex here, so we split tests.
1085			 */
1086			if (q == keep_me)
1087				goto next;
1088			if (rule != NULL && rule != q->rule)
1089				goto next; /* not the one we are looking for */
1090			if (q->dyn_type == O_LIMIT_PARENT) {
1091				/*
1092				 * handle parent in the second pass,
1093				 * record we need one.
1094				 */
1095				max_pass = 1;
1096				if (pass == 0)
1097					goto next;
1098				if (FORCE && q->count != 0 ) {
1099					/* XXX should not happen! */
1100					printf("ipfw: OUCH! cannot remove rule,"
1101					     " count %d\n", q->count);
1102				}
1103			} else {
1104				if (!FORCE &&
1105				    !TIME_LEQ( q->expire, time_uptime ))
1106					goto next;
1107			}
1108             if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
1109                     UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
1110                     continue;
1111             }
1112next:
1113			prev=q;
1114			q=q->next;
1115		}
1116	}
1117	if (pass++ < max_pass)
1118		goto next_pass;
1119}
1120
1121
1122/**
1123 * lookup a dynamic rule.
1124 */
1125static ipfw_dyn_rule *
1126lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
1127	struct tcphdr *tcp)
1128{
1129	/*
1130	 * stateful ipfw extensions.
1131	 * Lookup into dynamic session queue
1132	 */
1133#define MATCH_REVERSE	0
1134#define MATCH_FORWARD	1
1135#define MATCH_NONE	2
1136#define MATCH_UNKNOWN	3
1137	int i, dir = MATCH_NONE;
1138	ipfw_dyn_rule *prev, *q=NULL;
1139
1140	IPFW_DYN_LOCK_ASSERT();
1141
1142	if (ipfw_dyn_v == NULL)
1143		goto done;	/* not found */
1144	i = hash_packet( pkt );
1145	for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
1146		if (q->dyn_type == O_LIMIT_PARENT && q->count)
1147			goto next;
1148		if (TIME_LEQ( q->expire, time_uptime)) { /* expire entry */
1149			UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
1150			continue;
1151		}
1152		if (pkt->proto == q->id.proto &&
1153		    q->dyn_type != O_LIMIT_PARENT) {
1154			if (IS_IP6_FLOW_ID(pkt)) {
1155			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1156				&(q->id.src_ip6)) &&
1157			    IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1158				&(q->id.dst_ip6)) &&
1159			    pkt->src_port == q->id.src_port &&
1160			    pkt->dst_port == q->id.dst_port ) {
1161				dir = MATCH_FORWARD;
1162				break;
1163			    }
1164			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1165				    &(q->id.dst_ip6)) &&
1166				IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1167				    &(q->id.src_ip6)) &&
1168				pkt->src_port == q->id.dst_port &&
1169				pkt->dst_port == q->id.src_port ) {
1170				    dir = MATCH_REVERSE;
1171				    break;
1172			    }
1173			} else {
1174			    if (pkt->src_ip == q->id.src_ip &&
1175				pkt->dst_ip == q->id.dst_ip &&
1176				pkt->src_port == q->id.src_port &&
1177				pkt->dst_port == q->id.dst_port ) {
1178				    dir = MATCH_FORWARD;
1179				    break;
1180			    }
1181			    if (pkt->src_ip == q->id.dst_ip &&
1182				pkt->dst_ip == q->id.src_ip &&
1183				pkt->src_port == q->id.dst_port &&
1184				pkt->dst_port == q->id.src_port ) {
1185				    dir = MATCH_REVERSE;
1186				    break;
1187			    }
1188			}
1189		}
1190next:
1191		prev = q;
1192		q = q->next;
1193	}
1194	if (q == NULL)
1195		goto done; /* q = NULL, not found */
1196
1197	if ( prev != NULL) { /* found and not in front */
1198		prev->next = q->next;
1199		q->next = ipfw_dyn_v[i];
1200		ipfw_dyn_v[i] = q;
1201	}
1202	if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
1203		u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
1204
1205#define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
1206#define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
1207		q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
1208		switch (q->state) {
1209		case TH_SYN:				/* opening */
1210			q->expire = time_uptime + dyn_syn_lifetime;
1211			break;
1212
1213		case BOTH_SYN:			/* move to established */
1214		case BOTH_SYN | TH_FIN :	/* one side tries to close */
1215		case BOTH_SYN | (TH_FIN << 8) :
1216 			if (tcp) {
1217#define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
1218			    u_int32_t ack = ntohl(tcp->th_ack);
1219			    if (dir == MATCH_FORWARD) {
1220				if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
1221				    q->ack_fwd = ack;
1222				else { /* ignore out-of-sequence */
1223				    break;
1224				}
1225			    } else {
1226				if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
1227				    q->ack_rev = ack;
1228				else { /* ignore out-of-sequence */
1229				    break;
1230				}
1231			    }
1232			}
1233			q->expire = time_uptime + dyn_ack_lifetime;
1234			break;
1235
1236		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
1237			if (dyn_fin_lifetime >= dyn_keepalive_period)
1238				dyn_fin_lifetime = dyn_keepalive_period - 1;
1239			q->expire = time_uptime + dyn_fin_lifetime;
1240			break;
1241
1242		default:
1243#if 0
1244			/*
1245			 * reset or some invalid combination, but can also
1246			 * occur if we use keep-state the wrong way.
1247			 */
1248			if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
1249				printf("invalid state: 0x%x\n", q->state);
1250#endif
1251			if (dyn_rst_lifetime >= dyn_keepalive_period)
1252				dyn_rst_lifetime = dyn_keepalive_period - 1;
1253			q->expire = time_uptime + dyn_rst_lifetime;
1254			break;
1255		}
1256	} else if (pkt->proto == IPPROTO_UDP) {
1257		q->expire = time_uptime + dyn_udp_lifetime;
1258	} else {
1259		/* other protocols */
1260		q->expire = time_uptime + dyn_short_lifetime;
1261	}
1262done:
1263	if (match_direction)
1264		*match_direction = dir;
1265	return q;
1266}
1267
1268static ipfw_dyn_rule *
1269lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
1270	struct tcphdr *tcp)
1271{
1272	ipfw_dyn_rule *q;
1273
1274	IPFW_DYN_LOCK();
1275	q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
1276	if (q == NULL)
1277		IPFW_DYN_UNLOCK();
1278	/* NB: return table locked when q is not NULL */
1279	return q;
1280}
1281
1282static void
1283realloc_dynamic_table(void)
1284{
1285	IPFW_DYN_LOCK_ASSERT();
1286
1287	/*
1288	 * Try reallocation, make sure we have a power of 2 and do
1289	 * not allow more than 64k entries. In case of overflow,
1290	 * default to 1024.
1291	 */
1292
1293	if (dyn_buckets > 65536)
1294		dyn_buckets = 1024;
1295	if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
1296		dyn_buckets = curr_dyn_buckets; /* reset */
1297		return;
1298	}
1299	curr_dyn_buckets = dyn_buckets;
1300	if (ipfw_dyn_v != NULL)
1301		free(ipfw_dyn_v, M_IPFW);
1302	for (;;) {
1303		ipfw_dyn_v = malloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
1304		       M_IPFW, M_NOWAIT | M_ZERO);
1305		if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
1306			break;
1307		curr_dyn_buckets /= 2;
1308	}
1309}
1310
1311/**
1312 * Install state of type 'type' for a dynamic session.
1313 * The hash table contains two type of rules:
1314 * - regular rules (O_KEEP_STATE)
1315 * - rules for sessions with limited number of sess per user
1316 *   (O_LIMIT). When they are created, the parent is
1317 *   increased by 1, and decreased on delete. In this case,
1318 *   the third parameter is the parent rule and not the chain.
1319 * - "parent" rules for the above (O_LIMIT_PARENT).
1320 */
1321static ipfw_dyn_rule *
1322add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
1323{
1324	ipfw_dyn_rule *r;
1325	int i;
1326
1327	IPFW_DYN_LOCK_ASSERT();
1328
1329	if (ipfw_dyn_v == NULL ||
1330	    (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
1331		realloc_dynamic_table();
1332		if (ipfw_dyn_v == NULL)
1333			return NULL; /* failed ! */
1334	}
1335	i = hash_packet(id);
1336
1337	r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
1338	if (r == NULL) {
1339		printf ("ipfw: sorry cannot allocate state\n");
1340		return NULL;
1341	}
1342
1343	/* increase refcount on parent, and set pointer */
1344	if (dyn_type == O_LIMIT) {
1345		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
1346		if ( parent->dyn_type != O_LIMIT_PARENT)
1347			panic("invalid parent");
1348		parent->count++;
1349		r->parent = parent;
1350		rule = parent->rule;
1351	}
1352
1353	r->id = *id;
1354	r->expire = time_uptime + dyn_syn_lifetime;
1355	r->rule = rule;
1356	r->dyn_type = dyn_type;
1357	r->pcnt = r->bcnt = 0;
1358	r->count = 0;
1359
1360	r->bucket = i;
1361	r->next = ipfw_dyn_v[i];
1362	ipfw_dyn_v[i] = r;
1363	dyn_count++;
1364	DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1365	   dyn_type,
1366	   (r->id.src_ip), (r->id.src_port),
1367	   (r->id.dst_ip), (r->id.dst_port),
1368	   dyn_count ); )
1369	return r;
1370}
1371
1372/**
1373 * lookup dynamic parent rule using pkt and rule as search keys.
1374 * If the lookup fails, then install one.
1375 */
1376static ipfw_dyn_rule *
1377lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
1378{
1379	ipfw_dyn_rule *q;
1380	int i;
1381
1382	IPFW_DYN_LOCK_ASSERT();
1383
1384	if (ipfw_dyn_v) {
1385		int is_v6 = IS_IP6_FLOW_ID(pkt);
1386		i = hash_packet( pkt );
1387		for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
1388			if (q->dyn_type == O_LIMIT_PARENT &&
1389			    rule== q->rule &&
1390			    pkt->proto == q->id.proto &&
1391			    pkt->src_port == q->id.src_port &&
1392			    pkt->dst_port == q->id.dst_port &&
1393			    (
1394				(is_v6 &&
1395				 IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1396					&(q->id.src_ip6)) &&
1397				 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1398					&(q->id.dst_ip6))) ||
1399				(!is_v6 &&
1400				 pkt->src_ip == q->id.src_ip &&
1401				 pkt->dst_ip == q->id.dst_ip)
1402			    )
1403			) {
1404				q->expire = time_uptime + dyn_short_lifetime;
1405				DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
1406				return q;
1407			}
1408	}
1409	return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
1410}
1411
1412/**
1413 * Install dynamic state for rule type cmd->o.opcode
1414 *
1415 * Returns 1 (failure) if state is not installed because of errors or because
1416 * session limitations are enforced.
1417 */
1418static int
1419install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
1420    struct ip_fw_args *args, uint32_t tablearg)
1421{
1422	static int last_log;
1423
1424	ipfw_dyn_rule *q;
1425
1426	DEB(
1427	printf("ipfw: %s: type %d 0x%08x %u -> 0x%08x %u\n",
1428	    __func__, cmd->o.opcode,
1429	    (args->f_id.src_ip), (args->f_id.src_port),
1430	    (args->f_id.dst_ip), (args->f_id.dst_port));
1431	)
1432
1433	IPFW_DYN_LOCK();
1434
1435	q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1436
1437	if (q != NULL) {	/* should never occur */
1438		if (last_log != time_uptime) {
1439			last_log = time_uptime;
1440			printf("ipfw: %s: entry already present, done\n",
1441			    __func__);
1442		}
1443		IPFW_DYN_UNLOCK();
1444		return (0);
1445	}
1446
1447	if (dyn_count >= dyn_max)
1448		/* Run out of slots, try to remove any expired rule. */
1449		remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
1450
1451	if (dyn_count >= dyn_max) {
1452		if (last_log != time_uptime) {
1453			last_log = time_uptime;
1454			printf("ipfw: %s: Too many dynamic rules\n", __func__);
1455		}
1456		IPFW_DYN_UNLOCK();
1457		return (1);	/* cannot install, notify caller */
1458	}
1459
1460	switch (cmd->o.opcode) {
1461	case O_KEEP_STATE:	/* bidir rule */
1462		add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
1463		break;
1464
1465	case O_LIMIT: {		/* limit number of sessions */
1466		struct ipfw_flow_id id;
1467		ipfw_dyn_rule *parent;
1468		uint32_t conn_limit;
1469		uint16_t limit_mask = cmd->limit_mask;
1470
1471		conn_limit = (cmd->conn_limit == IP_FW_TABLEARG) ?
1472		    tablearg : cmd->conn_limit;
1473
1474		DEB(
1475		if (cmd->conn_limit == IP_FW_TABLEARG)
1476			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
1477			    "(tablearg)\n", __func__, conn_limit);
1478		else
1479			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
1480			    __func__, conn_limit);
1481		)
1482
1483		id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
1484		id.proto = args->f_id.proto;
1485		id.addr_type = args->f_id.addr_type;
1486
1487		if (IS_IP6_FLOW_ID (&(args->f_id))) {
1488			if (limit_mask & DYN_SRC_ADDR)
1489				id.src_ip6 = args->f_id.src_ip6;
1490			if (limit_mask & DYN_DST_ADDR)
1491				id.dst_ip6 = args->f_id.dst_ip6;
1492		} else {
1493			if (limit_mask & DYN_SRC_ADDR)
1494				id.src_ip = args->f_id.src_ip;
1495			if (limit_mask & DYN_DST_ADDR)
1496				id.dst_ip = args->f_id.dst_ip;
1497		}
1498		if (limit_mask & DYN_SRC_PORT)
1499			id.src_port = args->f_id.src_port;
1500		if (limit_mask & DYN_DST_PORT)
1501			id.dst_port = args->f_id.dst_port;
1502		if ((parent = lookup_dyn_parent(&id, rule)) == NULL) {
1503			printf("ipfw: %s: add parent failed\n", __func__);
1504			IPFW_DYN_UNLOCK();
1505			return (1);
1506		}
1507
1508		if (parent->count >= conn_limit) {
1509			/* See if we can remove some expired rule. */
1510			remove_dyn_rule(rule, parent);
1511			if (parent->count >= conn_limit) {
1512				if (fw_verbose && last_log != time_uptime) {
1513					last_log = time_uptime;
1514					log(LOG_SECURITY | LOG_DEBUG,
1515					    "drop session, too many entries\n");
1516				}
1517				IPFW_DYN_UNLOCK();
1518				return (1);
1519			}
1520		}
1521		add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1522		break;
1523	}
1524	default:
1525		printf("ipfw: %s: unknown dynamic rule type %u\n",
1526		    __func__, cmd->o.opcode);
1527		IPFW_DYN_UNLOCK();
1528		return (1);
1529	}
1530
1531	/* XXX just set lifetime */
1532	lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1533
1534	IPFW_DYN_UNLOCK();
1535	return (0);
1536}
1537
1538/*
1539 * Generate a TCP packet, containing either a RST or a keepalive.
1540 * When flags & TH_RST, we are sending a RST packet, because of a
1541 * "reset" action matched the packet.
1542 * Otherwise we are sending a keepalive, and flags & TH_
1543 */
1544static struct mbuf *
1545send_pkt(struct ipfw_flow_id *id, u_int32_t seq, u_int32_t ack, int flags)
1546{
1547	struct mbuf *m;
1548	struct ip *ip;
1549	struct tcphdr *tcp;
1550
1551	MGETHDR(m, M_DONTWAIT, MT_DATA);
1552	if (m == 0)
1553		return (NULL);
1554	m->m_pkthdr.rcvif = (struct ifnet *)0;
1555	m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1556	m->m_data += max_linkhdr;
1557
1558	ip = mtod(m, struct ip *);
1559	bzero(ip, m->m_len);
1560	tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1561	ip->ip_p = IPPROTO_TCP;
1562	tcp->th_off = 5;
1563	/*
1564	 * Assume we are sending a RST (or a keepalive in the reverse
1565	 * direction), swap src and destination addresses and ports.
1566	 */
1567	ip->ip_src.s_addr = htonl(id->dst_ip);
1568	ip->ip_dst.s_addr = htonl(id->src_ip);
1569	tcp->th_sport = htons(id->dst_port);
1570	tcp->th_dport = htons(id->src_port);
1571	if (flags & TH_RST) {	/* we are sending a RST */
1572		if (flags & TH_ACK) {
1573			tcp->th_seq = htonl(ack);
1574			tcp->th_ack = htonl(0);
1575			tcp->th_flags = TH_RST;
1576		} else {
1577			if (flags & TH_SYN)
1578				seq++;
1579			tcp->th_seq = htonl(0);
1580			tcp->th_ack = htonl(seq);
1581			tcp->th_flags = TH_RST | TH_ACK;
1582		}
1583	} else {
1584		/*
1585		 * We are sending a keepalive. flags & TH_SYN determines
1586		 * the direction, forward if set, reverse if clear.
1587		 * NOTE: seq and ack are always assumed to be correct
1588		 * as set by the caller. This may be confusing...
1589		 */
1590		if (flags & TH_SYN) {
1591			/*
1592			 * we have to rewrite the correct addresses!
1593			 */
1594			ip->ip_dst.s_addr = htonl(id->dst_ip);
1595			ip->ip_src.s_addr = htonl(id->src_ip);
1596			tcp->th_dport = htons(id->dst_port);
1597			tcp->th_sport = htons(id->src_port);
1598		}
1599		tcp->th_seq = htonl(seq);
1600		tcp->th_ack = htonl(ack);
1601		tcp->th_flags = TH_ACK;
1602	}
1603	/*
1604	 * set ip_len to the payload size so we can compute
1605	 * the tcp checksum on the pseudoheader
1606	 * XXX check this, could save a couple of words ?
1607	 */
1608	ip->ip_len = htons(sizeof(struct tcphdr));
1609	tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1610	/*
1611	 * now fill fields left out earlier
1612	 */
1613	ip->ip_ttl = ip_defttl;
1614	ip->ip_len = m->m_pkthdr.len;
1615	m->m_flags |= M_SKIP_FIREWALL;
1616	return (m);
1617}
1618
1619/*
1620 * sends a reject message, consuming the mbuf passed as an argument.
1621 */
1622static void
1623send_reject(struct ip_fw_args *args, int code, u_short offset, int ip_len)
1624{
1625
1626	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1627		/* We need the IP header in host order for icmp_error(). */
1628		if (args->eh != NULL) {
1629			struct ip *ip = mtod(args->m, struct ip *);
1630			ip->ip_len = ntohs(ip->ip_len);
1631			ip->ip_off = ntohs(ip->ip_off);
1632		}
1633		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1634	} else if (offset == 0 && args->f_id.proto == IPPROTO_TCP) {
1635		struct tcphdr *const tcp =
1636		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1637		if ( (tcp->th_flags & TH_RST) == 0) {
1638			struct mbuf *m;
1639			m = send_pkt(&(args->f_id), ntohl(tcp->th_seq),
1640				ntohl(tcp->th_ack),
1641				tcp->th_flags | TH_RST);
1642			if (m != NULL)
1643				ip_output(m, NULL, NULL, 0, NULL, NULL);
1644		}
1645		m_freem(args->m);
1646	} else
1647		m_freem(args->m);
1648	args->m = NULL;
1649}
1650
1651/**
1652 *
1653 * Given an ip_fw *, lookup_next_rule will return a pointer
1654 * to the next rule, which can be either the jump
1655 * target (for skipto instructions) or the next one in the list (in
1656 * all other cases including a missing jump target).
1657 * The result is also written in the "next_rule" field of the rule.
1658 * Backward jumps are not allowed, so start looking from the next
1659 * rule...
1660 *
1661 * This never returns NULL -- in case we do not have an exact match,
1662 * the next rule is returned. When the ruleset is changed,
1663 * pointers are flushed so we are always correct.
1664 */
1665
1666static struct ip_fw *
1667lookup_next_rule(struct ip_fw *me)
1668{
1669	struct ip_fw *rule = NULL;
1670	ipfw_insn *cmd;
1671
1672	/* look for action, in case it is a skipto */
1673	cmd = ACTION_PTR(me);
1674	if (cmd->opcode == O_LOG)
1675		cmd += F_LEN(cmd);
1676	if (cmd->opcode == O_ALTQ)
1677		cmd += F_LEN(cmd);
1678	if (cmd->opcode == O_TAG)
1679		cmd += F_LEN(cmd);
1680	if ( cmd->opcode == O_SKIPTO )
1681		for (rule = me->next; rule ; rule = rule->next)
1682			if (rule->rulenum >= cmd->arg1)
1683				break;
1684	if (rule == NULL)			/* failure or not a skipto */
1685		rule = me->next;
1686	me->next_rule = rule;
1687	return rule;
1688}
1689
1690static int
1691add_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1692	uint8_t mlen, uint32_t value)
1693{
1694	struct radix_node_head *rnh;
1695	struct table_entry *ent;
1696
1697	if (tbl >= IPFW_TABLES_MAX)
1698		return (EINVAL);
1699	rnh = ch->tables[tbl];
1700	ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
1701	if (ent == NULL)
1702		return (ENOMEM);
1703	ent->value = value;
1704	ent->addr.sin_len = ent->mask.sin_len = 8;
1705	ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1706	ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
1707	IPFW_WLOCK(&layer3_chain);
1708	if (rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent) ==
1709	    NULL) {
1710		IPFW_WUNLOCK(&layer3_chain);
1711		free(ent, M_IPFW_TBL);
1712		return (EEXIST);
1713	}
1714	IPFW_WUNLOCK(&layer3_chain);
1715	return (0);
1716}
1717
1718static int
1719del_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1720	uint8_t mlen)
1721{
1722	struct radix_node_head *rnh;
1723	struct table_entry *ent;
1724	struct sockaddr_in sa, mask;
1725
1726	if (tbl >= IPFW_TABLES_MAX)
1727		return (EINVAL);
1728	rnh = ch->tables[tbl];
1729	sa.sin_len = mask.sin_len = 8;
1730	mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1731	sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
1732	IPFW_WLOCK(ch);
1733	ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
1734	if (ent == NULL) {
1735		IPFW_WUNLOCK(ch);
1736		return (ESRCH);
1737	}
1738	IPFW_WUNLOCK(ch);
1739	free(ent, M_IPFW_TBL);
1740	return (0);
1741}
1742
1743static int
1744flush_table_entry(struct radix_node *rn, void *arg)
1745{
1746	struct radix_node_head * const rnh = arg;
1747	struct table_entry *ent;
1748
1749	ent = (struct table_entry *)
1750	    rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
1751	if (ent != NULL)
1752		free(ent, M_IPFW_TBL);
1753	return (0);
1754}
1755
1756static int
1757flush_table(struct ip_fw_chain *ch, uint16_t tbl)
1758{
1759	struct radix_node_head *rnh;
1760
1761	IPFW_WLOCK_ASSERT(ch);
1762
1763	if (tbl >= IPFW_TABLES_MAX)
1764		return (EINVAL);
1765	rnh = ch->tables[tbl];
1766	KASSERT(rnh != NULL, ("NULL IPFW table"));
1767	rnh->rnh_walktree(rnh, flush_table_entry, rnh);
1768	return (0);
1769}
1770
1771static void
1772flush_tables(struct ip_fw_chain *ch)
1773{
1774	uint16_t tbl;
1775
1776	IPFW_WLOCK_ASSERT(ch);
1777
1778	for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
1779		flush_table(ch, tbl);
1780}
1781
1782static int
1783init_tables(struct ip_fw_chain *ch)
1784{
1785	int i;
1786	uint16_t j;
1787
1788	for (i = 0; i < IPFW_TABLES_MAX; i++) {
1789		if (!rn_inithead((void **)&ch->tables[i], 32)) {
1790			for (j = 0; j < i; j++) {
1791				(void) flush_table(ch, j);
1792			}
1793			return (ENOMEM);
1794		}
1795	}
1796	return (0);
1797}
1798
1799static int
1800lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1801	uint32_t *val)
1802{
1803	struct radix_node_head *rnh;
1804	struct table_entry *ent;
1805	struct sockaddr_in sa;
1806
1807	if (tbl >= IPFW_TABLES_MAX)
1808		return (0);
1809	rnh = ch->tables[tbl];
1810	sa.sin_len = 8;
1811	sa.sin_addr.s_addr = addr;
1812	ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
1813	if (ent != NULL) {
1814		*val = ent->value;
1815		return (1);
1816	}
1817	return (0);
1818}
1819
1820static int
1821count_table_entry(struct radix_node *rn, void *arg)
1822{
1823	u_int32_t * const cnt = arg;
1824
1825	(*cnt)++;
1826	return (0);
1827}
1828
1829static int
1830count_table(struct ip_fw_chain *ch, uint32_t tbl, uint32_t *cnt)
1831{
1832	struct radix_node_head *rnh;
1833
1834	if (tbl >= IPFW_TABLES_MAX)
1835		return (EINVAL);
1836	rnh = ch->tables[tbl];
1837	*cnt = 0;
1838	rnh->rnh_walktree(rnh, count_table_entry, cnt);
1839	return (0);
1840}
1841
1842static int
1843dump_table_entry(struct radix_node *rn, void *arg)
1844{
1845	struct table_entry * const n = (struct table_entry *)rn;
1846	ipfw_table * const tbl = arg;
1847	ipfw_table_entry *ent;
1848
1849	if (tbl->cnt == tbl->size)
1850		return (1);
1851	ent = &tbl->ent[tbl->cnt];
1852	ent->tbl = tbl->tbl;
1853	if (in_nullhost(n->mask.sin_addr))
1854		ent->masklen = 0;
1855	else
1856		ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
1857	ent->addr = n->addr.sin_addr.s_addr;
1858	ent->value = n->value;
1859	tbl->cnt++;
1860	return (0);
1861}
1862
1863static int
1864dump_table(struct ip_fw_chain *ch, ipfw_table *tbl)
1865{
1866	struct radix_node_head *rnh;
1867
1868	if (tbl->tbl >= IPFW_TABLES_MAX)
1869		return (EINVAL);
1870	rnh = ch->tables[tbl->tbl];
1871	tbl->cnt = 0;
1872	rnh->rnh_walktree(rnh, dump_table_entry, tbl);
1873	return (0);
1874}
1875
1876static void
1877fill_ugid_cache(struct inpcb *inp, struct ip_fw_ugid *ugp)
1878{
1879	struct ucred *cr;
1880
1881	if (inp->inp_socket != NULL) {
1882		cr = inp->inp_socket->so_cred;
1883		ugp->fw_prid = jailed(cr) ?
1884		    cr->cr_prison->pr_id : -1;
1885		ugp->fw_uid = cr->cr_uid;
1886		ugp->fw_ngroups = cr->cr_ngroups;
1887		bcopy(cr->cr_groups, ugp->fw_groups,
1888		    sizeof(ugp->fw_groups));
1889	}
1890}
1891
1892static int
1893check_uidgid(ipfw_insn_u32 *insn,
1894	int proto, struct ifnet *oif,
1895	struct in_addr dst_ip, u_int16_t dst_port,
1896	struct in_addr src_ip, u_int16_t src_port,
1897	struct ip_fw_ugid *ugp, int *lookup, struct inpcb *inp)
1898{
1899	struct inpcbinfo *pi;
1900	int wildcard;
1901	struct inpcb *pcb;
1902	int match;
1903	gid_t *gp;
1904
1905	/*
1906	 * Check to see if the UDP or TCP stack supplied us with
1907	 * the PCB. If so, rather then holding a lock and looking
1908	 * up the PCB, we can use the one that was supplied.
1909	 */
1910	if (inp && *lookup == 0) {
1911		INP_LOCK_ASSERT(inp);
1912		if (inp->inp_socket != NULL) {
1913			fill_ugid_cache(inp, ugp);
1914			*lookup = 1;
1915		}
1916	}
1917	/*
1918	 * If we have already been here and the packet has no
1919	 * PCB entry associated with it, then we can safely
1920	 * assume that this is a no match.
1921	 */
1922	if (*lookup == -1)
1923		return (0);
1924	if (proto == IPPROTO_TCP) {
1925		wildcard = 0;
1926		pi = &tcbinfo;
1927	} else if (proto == IPPROTO_UDP) {
1928		wildcard = 1;
1929		pi = &udbinfo;
1930	} else
1931		return 0;
1932	match = 0;
1933	if (*lookup == 0) {
1934		INP_INFO_RLOCK(pi);
1935		pcb =  (oif) ?
1936			in_pcblookup_hash(pi,
1937				dst_ip, htons(dst_port),
1938				src_ip, htons(src_port),
1939				wildcard, oif) :
1940			in_pcblookup_hash(pi,
1941				src_ip, htons(src_port),
1942				dst_ip, htons(dst_port),
1943				wildcard, NULL);
1944		if (pcb != NULL) {
1945			INP_LOCK(pcb);
1946			if (pcb->inp_socket != NULL) {
1947				fill_ugid_cache(pcb, ugp);
1948				*lookup = 1;
1949			}
1950			INP_UNLOCK(pcb);
1951		}
1952		INP_INFO_RUNLOCK(pi);
1953		if (*lookup == 0) {
1954			/*
1955			 * If the lookup did not yield any results, there
1956			 * is no sense in coming back and trying again. So
1957			 * we can set lookup to -1 and ensure that we wont
1958			 * bother the pcb system again.
1959			 */
1960			*lookup = -1;
1961			return (0);
1962		}
1963	}
1964	if (insn->o.opcode == O_UID)
1965		match = (ugp->fw_uid == (uid_t)insn->d[0]);
1966	else if (insn->o.opcode == O_GID) {
1967		for (gp = ugp->fw_groups;
1968			gp < &ugp->fw_groups[ugp->fw_ngroups]; gp++)
1969			if (*gp == (gid_t)insn->d[0]) {
1970				match = 1;
1971				break;
1972			}
1973	} else if (insn->o.opcode == O_JAIL)
1974		match = (ugp->fw_prid == (int)insn->d[0]);
1975	return match;
1976}
1977
1978/*
1979 * The main check routine for the firewall.
1980 *
1981 * All arguments are in args so we can modify them and return them
1982 * back to the caller.
1983 *
1984 * Parameters:
1985 *
1986 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
1987 *		Starts with the IP header.
1988 *	args->eh (in)	Mac header if present, or NULL for layer3 packet.
1989 *	args->oif	Outgoing interface, or NULL if packet is incoming.
1990 *		The incoming interface is in the mbuf. (in)
1991 *	args->divert_rule (in/out)
1992 *		Skip up to the first rule past this rule number;
1993 *		upon return, non-zero port number for divert or tee.
1994 *
1995 *	args->rule	Pointer to the last matching rule (in/out)
1996 *	args->next_hop	Socket we are forwarding to (out).
1997 *	args->f_id	Addresses grabbed from the packet (out)
1998 * 	args->cookie	a cookie depending on rule action
1999 *
2000 * Return value:
2001 *
2002 *	IP_FW_PASS	the packet must be accepted
2003 *	IP_FW_DENY	the packet must be dropped
2004 *	IP_FW_DIVERT	divert packet, port in m_tag
2005 *	IP_FW_TEE	tee packet, port in m_tag
2006 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
2007 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
2008 *
2009 */
2010
2011int
2012ipfw_chk(struct ip_fw_args *args)
2013{
2014	/*
2015	 * Local variables hold state during the processing of a packet.
2016	 *
2017	 * IMPORTANT NOTE: to speed up the processing of rules, there
2018	 * are some assumption on the values of the variables, which
2019	 * are documented here. Should you change them, please check
2020	 * the implementation of the various instructions to make sure
2021	 * that they still work.
2022	 *
2023	 * args->eh	The MAC header. It is non-null for a layer2
2024	 *	packet, it is NULL for a layer-3 packet.
2025	 *
2026	 * m | args->m	Pointer to the mbuf, as received from the caller.
2027	 *	It may change if ipfw_chk() does an m_pullup, or if it
2028	 *	consumes the packet because it calls send_reject().
2029	 *	XXX This has to change, so that ipfw_chk() never modifies
2030	 *	or consumes the buffer.
2031	 * ip	is simply an alias of the value of m, and it is kept
2032	 *	in sync with it (the packet is	supposed to start with
2033	 *	the ip header).
2034	 */
2035	struct mbuf *m = args->m;
2036	struct ip *ip = mtod(m, struct ip *);
2037
2038	/*
2039	 * For rules which contain uid/gid or jail constraints, cache
2040	 * a copy of the users credentials after the pcb lookup has been
2041	 * executed. This will speed up the processing of rules with
2042	 * these types of constraints, as well as decrease contention
2043	 * on pcb related locks.
2044	 */
2045	struct ip_fw_ugid fw_ugid_cache;
2046	int ugid_lookup = 0;
2047
2048	/*
2049	 * divinput_flags	If non-zero, set to the IP_FW_DIVERT_*_FLAG
2050	 *	associated with a packet input on a divert socket.  This
2051	 *	will allow to distinguish traffic and its direction when
2052	 *	it originates from a divert socket.
2053	 */
2054	u_int divinput_flags = 0;
2055
2056	/*
2057	 * oif | args->oif	If NULL, ipfw_chk has been called on the
2058	 *	inbound path (ether_input, ip_input).
2059	 *	If non-NULL, ipfw_chk has been called on the outbound path
2060	 *	(ether_output, ip_output).
2061	 */
2062	struct ifnet *oif = args->oif;
2063
2064	struct ip_fw *f = NULL;		/* matching rule */
2065	int retval = 0;
2066
2067	/*
2068	 * hlen	The length of the IP header.
2069	 */
2070	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
2071
2072	/*
2073	 * offset	The offset of a fragment. offset != 0 means that
2074	 *	we have a fragment at this offset of an IPv4 packet.
2075	 *	offset == 0 means that (if this is an IPv4 packet)
2076	 *	this is the first or only fragment.
2077	 *	For IPv6 offset == 0 means there is no Fragment Header.
2078	 *	If offset != 0 for IPv6 always use correct mask to
2079	 *	get the correct offset because we add IP6F_MORE_FRAG
2080	 *	to be able to dectect the first fragment which would
2081	 *	otherwise have offset = 0.
2082	 */
2083	u_short offset = 0;
2084
2085	/*
2086	 * Local copies of addresses. They are only valid if we have
2087	 * an IP packet.
2088	 *
2089	 * proto	The protocol. Set to 0 for non-ip packets,
2090	 *	or to the protocol read from the packet otherwise.
2091	 *	proto != 0 means that we have an IPv4 packet.
2092	 *
2093	 * src_port, dst_port	port numbers, in HOST format. Only
2094	 *	valid for TCP and UDP packets.
2095	 *
2096	 * src_ip, dst_ip	ip addresses, in NETWORK format.
2097	 *	Only valid for IPv4 packets.
2098	 */
2099	u_int8_t proto;
2100	u_int16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
2101	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
2102	u_int16_t ip_len=0;
2103	int pktlen;
2104
2105	/*
2106	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
2107	 * 	MATCH_NONE when checked and not matched (q = NULL),
2108	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
2109	 */
2110	int dyn_dir = MATCH_UNKNOWN;
2111	ipfw_dyn_rule *q = NULL;
2112	struct ip_fw_chain *chain = &layer3_chain;
2113	struct m_tag *mtag;
2114
2115	/*
2116	 * We store in ulp a pointer to the upper layer protocol header.
2117	 * In the ipv4 case this is easy to determine from the header,
2118	 * but for ipv6 we might have some additional headers in the middle.
2119	 * ulp is NULL if not found.
2120	 */
2121	void *ulp = NULL;		/* upper layer protocol pointer. */
2122	/* XXX ipv6 variables */
2123	int is_ipv6 = 0;
2124	u_int16_t ext_hd = 0;	/* bits vector for extension header filtering */
2125	/* end of ipv6 variables */
2126	int is_ipv4 = 0;
2127
2128	if (m->m_flags & M_SKIP_FIREWALL)
2129		return (IP_FW_PASS);	/* accept */
2130
2131	pktlen = m->m_pkthdr.len;
2132	proto = args->f_id.proto = 0;	/* mark f_id invalid */
2133		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
2134
2135/*
2136 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
2137 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
2138 * pointer might become stale after other pullups (but we never use it
2139 * this way).
2140 */
2141#define PULLUP_TO(len, p, T)						\
2142do {									\
2143	int x = (len) + sizeof(T);					\
2144	if ((m)->m_len < x) {						\
2145		args->m = m = m_pullup(m, x);				\
2146		if (m == NULL)						\
2147			goto pullup_failed;				\
2148	}								\
2149	p = (mtod(m, char *) + (len));					\
2150} while (0)
2151
2152	/* Identify IP packets and fill up variables. */
2153	if (pktlen >= sizeof(struct ip6_hdr) &&
2154	    (args->eh == NULL || ntohs(args->eh->ether_type)==ETHERTYPE_IPV6) &&
2155	    mtod(m, struct ip *)->ip_v == 6) {
2156		is_ipv6 = 1;
2157		args->f_id.addr_type = 6;
2158		hlen = sizeof(struct ip6_hdr);
2159		proto = mtod(m, struct ip6_hdr *)->ip6_nxt;
2160
2161		/* Search extension headers to find upper layer protocols */
2162		while (ulp == NULL) {
2163			switch (proto) {
2164			case IPPROTO_ICMPV6:
2165				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
2166				args->f_id.flags = ICMP6(ulp)->icmp6_type;
2167				break;
2168
2169			case IPPROTO_TCP:
2170				PULLUP_TO(hlen, ulp, struct tcphdr);
2171				dst_port = TCP(ulp)->th_dport;
2172				src_port = TCP(ulp)->th_sport;
2173				args->f_id.flags = TCP(ulp)->th_flags;
2174				break;
2175
2176			case IPPROTO_UDP:
2177				PULLUP_TO(hlen, ulp, struct udphdr);
2178				dst_port = UDP(ulp)->uh_dport;
2179				src_port = UDP(ulp)->uh_sport;
2180				break;
2181
2182			case IPPROTO_HOPOPTS:	/* RFC 2460 */
2183				PULLUP_TO(hlen, ulp, struct ip6_hbh);
2184				ext_hd |= EXT_HOPOPTS;
2185				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2186				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2187				ulp = NULL;
2188				break;
2189
2190			case IPPROTO_ROUTING:	/* RFC 2460 */
2191				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
2192				if (((struct ip6_rthdr *)ulp)->ip6r_type != 0) {
2193					printf("IPFW2: IPV6 - Unknown Routing "
2194					    "Header type(%d)\n",
2195					    ((struct ip6_rthdr *)ulp)->ip6r_type);
2196					if (fw_deny_unknown_exthdrs)
2197					    return (IP_FW_DENY);
2198					break;
2199				}
2200				ext_hd |= EXT_ROUTING;
2201				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
2202				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
2203				ulp = NULL;
2204				break;
2205
2206			case IPPROTO_FRAGMENT:	/* RFC 2460 */
2207				PULLUP_TO(hlen, ulp, struct ip6_frag);
2208				ext_hd |= EXT_FRAGMENT;
2209				hlen += sizeof (struct ip6_frag);
2210				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
2211				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
2212					IP6F_OFF_MASK;
2213				/* Add IP6F_MORE_FRAG for offset of first
2214				 * fragment to be != 0. */
2215				offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
2216					IP6F_MORE_FRAG;
2217				if (offset == 0) {
2218					printf("IPFW2: IPV6 - Invalid Fragment "
2219					    "Header\n");
2220					if (fw_deny_unknown_exthdrs)
2221					    return (IP_FW_DENY);
2222					break;
2223				}
2224				args->f_id.frag_id6 =
2225				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
2226				ulp = NULL;
2227				break;
2228
2229			case IPPROTO_DSTOPTS:	/* RFC 2460 */
2230				PULLUP_TO(hlen, ulp, struct ip6_hbh);
2231				ext_hd |= EXT_DSTOPTS;
2232				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2233				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2234				ulp = NULL;
2235				break;
2236
2237			case IPPROTO_AH:	/* RFC 2402 */
2238				PULLUP_TO(hlen, ulp, struct ip6_ext);
2239				ext_hd |= EXT_AH;
2240				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
2241				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
2242				ulp = NULL;
2243				break;
2244
2245			case IPPROTO_ESP:	/* RFC 2406 */
2246				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
2247				/* Anything past Seq# is variable length and
2248				 * data past this ext. header is encrypted. */
2249				ext_hd |= EXT_ESP;
2250				break;
2251
2252			case IPPROTO_NONE:	/* RFC 2460 */
2253				PULLUP_TO(hlen, ulp, struct ip6_ext);
2254				/* Packet ends here. if ip6e_len!=0 octets
2255				 * must be ignored. */
2256				break;
2257
2258			case IPPROTO_OSPFIGP:
2259				/* XXX OSPF header check? */
2260				PULLUP_TO(hlen, ulp, struct ip6_ext);
2261				break;
2262
2263			default:
2264				printf("IPFW2: IPV6 - Unknown Extension "
2265				    "Header(%d), ext_hd=%x\n", proto, ext_hd);
2266				if (fw_deny_unknown_exthdrs)
2267				    return (IP_FW_DENY);
2268				break;
2269			} /*switch */
2270		}
2271		args->f_id.src_ip6 = mtod(m,struct ip6_hdr *)->ip6_src;
2272		args->f_id.dst_ip6 = mtod(m,struct ip6_hdr *)->ip6_dst;
2273		args->f_id.src_ip = 0;
2274		args->f_id.dst_ip = 0;
2275		args->f_id.flow_id6 = ntohl(mtod(m, struct ip6_hdr *)->ip6_flow);
2276	} else if (pktlen >= sizeof(struct ip) &&
2277	    (args->eh == NULL || ntohs(args->eh->ether_type) == ETHERTYPE_IP) &&
2278	    mtod(m, struct ip *)->ip_v == 4) {
2279	    	is_ipv4 = 1;
2280		ip = mtod(m, struct ip *);
2281		hlen = ip->ip_hl << 2;
2282		args->f_id.addr_type = 4;
2283
2284		/*
2285		 * Collect parameters into local variables for faster matching.
2286		 */
2287		proto = ip->ip_p;
2288		src_ip = ip->ip_src;
2289		dst_ip = ip->ip_dst;
2290		if (args->eh != NULL) { /* layer 2 packets are as on the wire */
2291			offset = ntohs(ip->ip_off) & IP_OFFMASK;
2292			ip_len = ntohs(ip->ip_len);
2293		} else {
2294			offset = ip->ip_off & IP_OFFMASK;
2295			ip_len = ip->ip_len;
2296		}
2297		pktlen = ip_len < pktlen ? ip_len : pktlen;
2298
2299		if (offset == 0) {
2300			switch (proto) {
2301			case IPPROTO_TCP:
2302				PULLUP_TO(hlen, ulp, struct tcphdr);
2303				dst_port = TCP(ulp)->th_dport;
2304				src_port = TCP(ulp)->th_sport;
2305				args->f_id.flags = TCP(ulp)->th_flags;
2306				break;
2307
2308			case IPPROTO_UDP:
2309				PULLUP_TO(hlen, ulp, struct udphdr);
2310				dst_port = UDP(ulp)->uh_dport;
2311				src_port = UDP(ulp)->uh_sport;
2312				break;
2313
2314			case IPPROTO_ICMP:
2315				PULLUP_TO(hlen, ulp, struct icmphdr);
2316				args->f_id.flags = ICMP(ulp)->icmp_type;
2317				break;
2318
2319			default:
2320				break;
2321			}
2322		}
2323
2324		args->f_id.src_ip = ntohl(src_ip.s_addr);
2325		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
2326	}
2327#undef PULLUP_TO
2328	if (proto) { /* we may have port numbers, store them */
2329		args->f_id.proto = proto;
2330		args->f_id.src_port = src_port = ntohs(src_port);
2331		args->f_id.dst_port = dst_port = ntohs(dst_port);
2332	}
2333
2334	IPFW_RLOCK(chain);
2335	mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
2336	if (args->rule) {
2337		/*
2338		 * Packet has already been tagged. Look for the next rule
2339		 * to restart processing.
2340		 *
2341		 * If fw_one_pass != 0 then just accept it.
2342		 * XXX should not happen here, but optimized out in
2343		 * the caller.
2344		 */
2345		if (fw_one_pass) {
2346			IPFW_RUNLOCK(chain);
2347			return (IP_FW_PASS);
2348		}
2349
2350		f = args->rule->next_rule;
2351		if (f == NULL)
2352			f = lookup_next_rule(args->rule);
2353	} else {
2354		/*
2355		 * Find the starting rule. It can be either the first
2356		 * one, or the one after divert_rule if asked so.
2357		 */
2358		int skipto = mtag ? divert_cookie(mtag) : 0;
2359
2360		f = chain->rules;
2361		if (args->eh == NULL && skipto != 0) {
2362			if (skipto >= IPFW_DEFAULT_RULE) {
2363				IPFW_RUNLOCK(chain);
2364				return (IP_FW_DENY); /* invalid */
2365			}
2366			while (f && f->rulenum <= skipto)
2367				f = f->next;
2368			if (f == NULL) {	/* drop packet */
2369				IPFW_RUNLOCK(chain);
2370				return (IP_FW_DENY);
2371			}
2372		}
2373	}
2374	/* reset divert rule to avoid confusion later */
2375	if (mtag) {
2376		divinput_flags = divert_info(mtag) &
2377		    (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
2378		m_tag_delete(m, mtag);
2379	}
2380
2381	/*
2382	 * Now scan the rules, and parse microinstructions for each rule.
2383	 */
2384	for (; f; f = f->next) {
2385		ipfw_insn *cmd;
2386		uint32_t tablearg = 0;
2387		int l, cmdlen, skip_or; /* skip rest of OR block */
2388
2389again:
2390		if (set_disable & (1 << f->set) )
2391			continue;
2392
2393		skip_or = 0;
2394		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
2395		    l -= cmdlen, cmd += cmdlen) {
2396			int match;
2397
2398			/*
2399			 * check_body is a jump target used when we find a
2400			 * CHECK_STATE, and need to jump to the body of
2401			 * the target rule.
2402			 */
2403
2404check_body:
2405			cmdlen = F_LEN(cmd);
2406			/*
2407			 * An OR block (insn_1 || .. || insn_n) has the
2408			 * F_OR bit set in all but the last instruction.
2409			 * The first match will set "skip_or", and cause
2410			 * the following instructions to be skipped until
2411			 * past the one with the F_OR bit clear.
2412			 */
2413			if (skip_or) {		/* skip this instruction */
2414				if ((cmd->len & F_OR) == 0)
2415					skip_or = 0;	/* next one is good */
2416				continue;
2417			}
2418			match = 0; /* set to 1 if we succeed */
2419
2420			switch (cmd->opcode) {
2421			/*
2422			 * The first set of opcodes compares the packet's
2423			 * fields with some pattern, setting 'match' if a
2424			 * match is found. At the end of the loop there is
2425			 * logic to deal with F_NOT and F_OR flags associated
2426			 * with the opcode.
2427			 */
2428			case O_NOP:
2429				match = 1;
2430				break;
2431
2432			case O_FORWARD_MAC:
2433				printf("ipfw: opcode %d unimplemented\n",
2434				    cmd->opcode);
2435				break;
2436
2437			case O_GID:
2438			case O_UID:
2439			case O_JAIL:
2440				/*
2441				 * We only check offset == 0 && proto != 0,
2442				 * as this ensures that we have a
2443				 * packet with the ports info.
2444				 */
2445				if (offset!=0)
2446					break;
2447				if (is_ipv6) /* XXX to be fixed later */
2448					break;
2449				if (proto == IPPROTO_TCP ||
2450				    proto == IPPROTO_UDP)
2451					match = check_uidgid(
2452						    (ipfw_insn_u32 *)cmd,
2453						    proto, oif,
2454						    dst_ip, dst_port,
2455						    src_ip, src_port, &fw_ugid_cache,
2456						    &ugid_lookup, args->inp);
2457				break;
2458
2459			case O_RECV:
2460				match = iface_match(m->m_pkthdr.rcvif,
2461				    (ipfw_insn_if *)cmd);
2462				break;
2463
2464			case O_XMIT:
2465				match = iface_match(oif, (ipfw_insn_if *)cmd);
2466				break;
2467
2468			case O_VIA:
2469				match = iface_match(oif ? oif :
2470				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
2471				break;
2472
2473			case O_MACADDR2:
2474				if (args->eh != NULL) {	/* have MAC header */
2475					u_int32_t *want = (u_int32_t *)
2476						((ipfw_insn_mac *)cmd)->addr;
2477					u_int32_t *mask = (u_int32_t *)
2478						((ipfw_insn_mac *)cmd)->mask;
2479					u_int32_t *hdr = (u_int32_t *)args->eh;
2480
2481					match =
2482					    ( want[0] == (hdr[0] & mask[0]) &&
2483					      want[1] == (hdr[1] & mask[1]) &&
2484					      want[2] == (hdr[2] & mask[2]) );
2485				}
2486				break;
2487
2488			case O_MAC_TYPE:
2489				if (args->eh != NULL) {
2490					u_int16_t t =
2491					    ntohs(args->eh->ether_type);
2492					u_int16_t *p =
2493					    ((ipfw_insn_u16 *)cmd)->ports;
2494					int i;
2495
2496					for (i = cmdlen - 1; !match && i>0;
2497					    i--, p += 2)
2498						match = (t>=p[0] && t<=p[1]);
2499				}
2500				break;
2501
2502			case O_FRAG:
2503				match = (offset != 0);
2504				break;
2505
2506			case O_IN:	/* "out" is "not in" */
2507				match = (oif == NULL);
2508				break;
2509
2510			case O_LAYER2:
2511				match = (args->eh != NULL);
2512				break;
2513
2514			case O_DIVERTED:
2515				match = (cmd->arg1 & 1 && divinput_flags &
2516				    IP_FW_DIVERT_LOOPBACK_FLAG) ||
2517					(cmd->arg1 & 2 && divinput_flags &
2518				    IP_FW_DIVERT_OUTPUT_FLAG);
2519				break;
2520
2521			case O_PROTO:
2522				/*
2523				 * We do not allow an arg of 0 so the
2524				 * check of "proto" only suffices.
2525				 */
2526				match = (proto == cmd->arg1);
2527				break;
2528
2529			case O_IP_SRC:
2530				match = is_ipv4 &&
2531				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2532				    src_ip.s_addr);
2533				break;
2534
2535			case O_IP_SRC_LOOKUP:
2536			case O_IP_DST_LOOKUP:
2537				if (is_ipv4) {
2538				    uint32_t a =
2539					(cmd->opcode == O_IP_DST_LOOKUP) ?
2540					    dst_ip.s_addr : src_ip.s_addr;
2541				    uint32_t v;
2542
2543				    match = lookup_table(chain, cmd->arg1, a,
2544					&v);
2545				    if (!match)
2546					break;
2547				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2548					match =
2549					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
2550				    else
2551					tablearg = v;
2552				}
2553				break;
2554
2555			case O_IP_SRC_MASK:
2556			case O_IP_DST_MASK:
2557				if (is_ipv4) {
2558				    uint32_t a =
2559					(cmd->opcode == O_IP_DST_MASK) ?
2560					    dst_ip.s_addr : src_ip.s_addr;
2561				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2562				    int i = cmdlen-1;
2563
2564				    for (; !match && i>0; i-= 2, p+= 2)
2565					match = (p[0] == (a & p[1]));
2566				}
2567				break;
2568
2569			case O_IP_SRC_ME:
2570				if (is_ipv4) {
2571					struct ifnet *tif;
2572
2573					INADDR_TO_IFP(src_ip, tif);
2574					match = (tif != NULL);
2575				}
2576				break;
2577
2578			case O_IP_DST_SET:
2579			case O_IP_SRC_SET:
2580				if (is_ipv4) {
2581					u_int32_t *d = (u_int32_t *)(cmd+1);
2582					u_int32_t addr =
2583					    cmd->opcode == O_IP_DST_SET ?
2584						args->f_id.dst_ip :
2585						args->f_id.src_ip;
2586
2587					    if (addr < d[0])
2588						    break;
2589					    addr -= d[0]; /* subtract base */
2590					    match = (addr < cmd->arg1) &&
2591						( d[ 1 + (addr>>5)] &
2592						  (1<<(addr & 0x1f)) );
2593				}
2594				break;
2595
2596			case O_IP_DST:
2597				match = is_ipv4 &&
2598				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2599				    dst_ip.s_addr);
2600				break;
2601
2602			case O_IP_DST_ME:
2603				if (is_ipv4) {
2604					struct ifnet *tif;
2605
2606					INADDR_TO_IFP(dst_ip, tif);
2607					match = (tif != NULL);
2608				}
2609				break;
2610
2611			case O_IP_SRCPORT:
2612			case O_IP_DSTPORT:
2613				/*
2614				 * offset == 0 && proto != 0 is enough
2615				 * to guarantee that we have a
2616				 * packet with port info.
2617				 */
2618				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
2619				    && offset == 0) {
2620					u_int16_t x =
2621					    (cmd->opcode == O_IP_SRCPORT) ?
2622						src_port : dst_port ;
2623					u_int16_t *p =
2624					    ((ipfw_insn_u16 *)cmd)->ports;
2625					int i;
2626
2627					for (i = cmdlen - 1; !match && i>0;
2628					    i--, p += 2)
2629						match = (x>=p[0] && x<=p[1]);
2630				}
2631				break;
2632
2633			case O_ICMPTYPE:
2634				match = (offset == 0 && proto==IPPROTO_ICMP &&
2635				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2636				break;
2637
2638#ifdef INET6
2639			case O_ICMP6TYPE:
2640				match = is_ipv6 && offset == 0 &&
2641				    proto==IPPROTO_ICMPV6 &&
2642				    icmp6type_match(
2643					ICMP6(ulp)->icmp6_type,
2644					(ipfw_insn_u32 *)cmd);
2645				break;
2646#endif /* INET6 */
2647
2648			case O_IPOPT:
2649				match = (is_ipv4 &&
2650				    ipopts_match(mtod(m, struct ip *), cmd) );
2651				break;
2652
2653			case O_IPVER:
2654				match = (is_ipv4 &&
2655				    cmd->arg1 == mtod(m, struct ip *)->ip_v);
2656				break;
2657
2658			case O_IPID:
2659			case O_IPLEN:
2660			case O_IPTTL:
2661				if (is_ipv4) {	/* only for IP packets */
2662				    uint16_t x;
2663				    uint16_t *p;
2664				    int i;
2665
2666				    if (cmd->opcode == O_IPLEN)
2667					x = ip_len;
2668				    else if (cmd->opcode == O_IPTTL)
2669					x = mtod(m, struct ip *)->ip_ttl;
2670				    else /* must be IPID */
2671					x = ntohs(mtod(m, struct ip *)->ip_id);
2672				    if (cmdlen == 1) {
2673					match = (cmd->arg1 == x);
2674					break;
2675				    }
2676				    /* otherwise we have ranges */
2677				    p = ((ipfw_insn_u16 *)cmd)->ports;
2678				    i = cmdlen - 1;
2679				    for (; !match && i>0; i--, p += 2)
2680					match = (x >= p[0] && x <= p[1]);
2681				}
2682				break;
2683
2684			case O_IPPRECEDENCE:
2685				match = (is_ipv4 &&
2686				    (cmd->arg1 == (mtod(m, struct ip *)->ip_tos & 0xe0)) );
2687				break;
2688
2689			case O_IPTOS:
2690				match = (is_ipv4 &&
2691				    flags_match(cmd, mtod(m, struct ip *)->ip_tos));
2692				break;
2693
2694			case O_TCPDATALEN:
2695				if (proto == IPPROTO_TCP && offset == 0) {
2696				    struct tcphdr *tcp;
2697				    uint16_t x;
2698				    uint16_t *p;
2699				    int i;
2700
2701				    tcp = TCP(ulp);
2702				    x = ip_len -
2703					((ip->ip_hl + tcp->th_off) << 2);
2704				    if (cmdlen == 1) {
2705					match = (cmd->arg1 == x);
2706					break;
2707				    }
2708				    /* otherwise we have ranges */
2709				    p = ((ipfw_insn_u16 *)cmd)->ports;
2710				    i = cmdlen - 1;
2711				    for (; !match && i>0; i--, p += 2)
2712					match = (x >= p[0] && x <= p[1]);
2713				}
2714				break;
2715
2716			case O_TCPFLAGS:
2717				match = (proto == IPPROTO_TCP && offset == 0 &&
2718				    flags_match(cmd, TCP(ulp)->th_flags));
2719				break;
2720
2721			case O_TCPOPTS:
2722				match = (proto == IPPROTO_TCP && offset == 0 &&
2723				    tcpopts_match(TCP(ulp), cmd));
2724				break;
2725
2726			case O_TCPSEQ:
2727				match = (proto == IPPROTO_TCP && offset == 0 &&
2728				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2729					TCP(ulp)->th_seq);
2730				break;
2731
2732			case O_TCPACK:
2733				match = (proto == IPPROTO_TCP && offset == 0 &&
2734				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2735					TCP(ulp)->th_ack);
2736				break;
2737
2738			case O_TCPWIN:
2739				match = (proto == IPPROTO_TCP && offset == 0 &&
2740				    cmd->arg1 == TCP(ulp)->th_win);
2741				break;
2742
2743			case O_ESTAB:
2744				/* reject packets which have SYN only */
2745				/* XXX should i also check for TH_ACK ? */
2746				match = (proto == IPPROTO_TCP && offset == 0 &&
2747				    (TCP(ulp)->th_flags &
2748				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2749				break;
2750
2751			case O_ALTQ: {
2752				struct altq_tag *at;
2753				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2754
2755				match = 1;
2756				mtag = m_tag_find(m, PACKET_TAG_PF_QID, NULL);
2757				if (mtag != NULL)
2758					break;
2759				mtag = m_tag_get(PACKET_TAG_PF_QID,
2760						sizeof(struct altq_tag),
2761						M_NOWAIT);
2762				if (mtag == NULL) {
2763					/*
2764					 * Let the packet fall back to the
2765					 * default ALTQ.
2766					 */
2767					break;
2768				}
2769				at = (struct altq_tag *)(mtag+1);
2770				at->qid = altq->qid;
2771				if (is_ipv4)
2772					at->af = AF_INET;
2773				else
2774					at->af = AF_LINK;
2775				at->hdr = ip;
2776				m_tag_prepend(m, mtag);
2777				break;
2778			}
2779
2780			case O_LOG:
2781				if (fw_verbose)
2782					ipfw_log(f, hlen, args, m, oif, offset);
2783				match = 1;
2784				break;
2785
2786			case O_PROB:
2787				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2788				break;
2789
2790			case O_VERREVPATH:
2791				/* Outgoing packets automatically pass/match */
2792				match = ((oif != NULL) ||
2793				    (m->m_pkthdr.rcvif == NULL) ||
2794				    (
2795#ifdef INET6
2796				    is_ipv6 ?
2797					verify_path6(&(args->f_id.src_ip6),
2798					    m->m_pkthdr.rcvif) :
2799#endif
2800				    verify_path(src_ip, m->m_pkthdr.rcvif)));
2801				break;
2802
2803			case O_VERSRCREACH:
2804				/* Outgoing packets automatically pass/match */
2805				match = (hlen > 0 && ((oif != NULL) ||
2806#ifdef INET6
2807				    is_ipv6 ?
2808				        verify_path6(&(args->f_id.src_ip6),
2809				            NULL) :
2810#endif
2811				    verify_path(src_ip, NULL)));
2812				break;
2813
2814			case O_ANTISPOOF:
2815				/* Outgoing packets automatically pass/match */
2816				if (oif == NULL && hlen > 0 &&
2817				    (  (is_ipv4 && in_localaddr(src_ip))
2818#ifdef INET6
2819				    || (is_ipv6 &&
2820				        in6_localaddr(&(args->f_id.src_ip6)))
2821#endif
2822				    ))
2823					match =
2824#ifdef INET6
2825					    is_ipv6 ? verify_path6(
2826					        &(args->f_id.src_ip6),
2827					        m->m_pkthdr.rcvif) :
2828#endif
2829					    verify_path(src_ip,
2830					        m->m_pkthdr.rcvif);
2831				else
2832					match = 1;
2833				break;
2834
2835			case O_IPSEC:
2836#ifdef FAST_IPSEC
2837				match = (m_tag_find(m,
2838				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2839#endif
2840#ifdef IPSEC
2841				match = (ipsec_getnhist(m) != 0);
2842#endif
2843				/* otherwise no match */
2844				break;
2845
2846#ifdef INET6
2847			case O_IP6_SRC:
2848				match = is_ipv6 &&
2849				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
2850				    &((ipfw_insn_ip6 *)cmd)->addr6);
2851				break;
2852
2853			case O_IP6_DST:
2854				match = is_ipv6 &&
2855				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
2856				    &((ipfw_insn_ip6 *)cmd)->addr6);
2857				break;
2858			case O_IP6_SRC_MASK:
2859				if (is_ipv6) {
2860					ipfw_insn_ip6 *te = (ipfw_insn_ip6 *)cmd;
2861					struct in6_addr p = args->f_id.src_ip6;
2862
2863					APPLY_MASK(&p, &te->mask6);
2864					match = IN6_ARE_ADDR_EQUAL(&te->addr6, &p);
2865				}
2866				break;
2867
2868			case O_IP6_DST_MASK:
2869				if (is_ipv6) {
2870					ipfw_insn_ip6 *te = (ipfw_insn_ip6 *)cmd;
2871					struct in6_addr p = args->f_id.dst_ip6;
2872
2873					APPLY_MASK(&p, &te->mask6);
2874					match = IN6_ARE_ADDR_EQUAL(&te->addr6, &p);
2875				}
2876				break;
2877
2878			case O_IP6_SRC_ME:
2879				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
2880				break;
2881
2882			case O_IP6_DST_ME:
2883				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
2884				break;
2885
2886			case O_FLOW6ID:
2887				match = is_ipv6 &&
2888				    flow6id_match(args->f_id.flow_id6,
2889				    (ipfw_insn_u32 *) cmd);
2890				break;
2891
2892			case O_EXT_HDR:
2893				match = is_ipv6 &&
2894				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
2895				break;
2896
2897			case O_IP6:
2898				match = is_ipv6;
2899				break;
2900#endif
2901
2902			case O_IP4:
2903				match = is_ipv4;
2904				break;
2905
2906			case O_TAG: {
2907				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
2908				    tablearg : cmd->arg1;
2909
2910				/* Packet is already tagged with this tag? */
2911				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
2912
2913				/* We have `untag' action when F_NOT flag is
2914				 * present. And we must remove this mtag from
2915				 * mbuf and reset `match' to zero (`match' will
2916				 * be inversed later).
2917				 * Otherwise we should allocate new mtag and
2918				 * push it into mbuf.
2919				 */
2920				if (cmd->len & F_NOT) { /* `untag' action */
2921					if (mtag != NULL)
2922						m_tag_delete(m, mtag);
2923				} else if (mtag == NULL) {
2924					if ((mtag = m_tag_alloc(MTAG_IPFW,
2925					    tag, 0, M_NOWAIT)) != NULL)
2926						m_tag_prepend(m, mtag);
2927				}
2928				match = (cmd->len & F_NOT) ? 0: 1;
2929				break;
2930			}
2931
2932			case O_TAGGED: {
2933				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
2934				    tablearg : cmd->arg1;
2935
2936				if (cmdlen == 1) {
2937					match = m_tag_locate(m, MTAG_IPFW,
2938					    tag, NULL) != NULL;
2939					break;
2940				}
2941
2942				/* we have ranges */
2943				for (mtag = m_tag_first(m);
2944				    mtag != NULL && !match;
2945				    mtag = m_tag_next(m, mtag)) {
2946					uint16_t *p;
2947					int i;
2948
2949					if (mtag->m_tag_cookie != MTAG_IPFW)
2950						continue;
2951
2952					p = ((ipfw_insn_u16 *)cmd)->ports;
2953					i = cmdlen - 1;
2954					for(; !match && i > 0; i--, p += 2)
2955						match =
2956						    mtag->m_tag_id >= p[0] &&
2957						    mtag->m_tag_id <= p[1];
2958				}
2959				break;
2960			}
2961
2962			/*
2963			 * The second set of opcodes represents 'actions',
2964			 * i.e. the terminal part of a rule once the packet
2965			 * matches all previous patterns.
2966			 * Typically there is only one action for each rule,
2967			 * and the opcode is stored at the end of the rule
2968			 * (but there are exceptions -- see below).
2969			 *
2970			 * In general, here we set retval and terminate the
2971			 * outer loop (would be a 'break 3' in some language,
2972			 * but we need to do a 'goto done').
2973			 *
2974			 * Exceptions:
2975			 * O_COUNT and O_SKIPTO actions:
2976			 *   instead of terminating, we jump to the next rule
2977			 *   ('goto next_rule', equivalent to a 'break 2'),
2978			 *   or to the SKIPTO target ('goto again' after
2979			 *   having set f, cmd and l), respectively.
2980			 *
2981			 * O_TAG, O_LOG and O_ALTQ action parameters:
2982			 *   perform some action and set match = 1;
2983			 *
2984			 * O_LIMIT and O_KEEP_STATE: these opcodes are
2985			 *   not real 'actions', and are stored right
2986			 *   before the 'action' part of the rule.
2987			 *   These opcodes try to install an entry in the
2988			 *   state tables; if successful, we continue with
2989			 *   the next opcode (match=1; break;), otherwise
2990			 *   the packet *   must be dropped
2991			 *   ('goto done' after setting retval);
2992			 *
2993			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2994			 *   cause a lookup of the state table, and a jump
2995			 *   to the 'action' part of the parent rule
2996			 *   ('goto check_body') if an entry is found, or
2997			 *   (CHECK_STATE only) a jump to the next rule if
2998			 *   the entry is not found ('goto next_rule').
2999			 *   The result of the lookup is cached to make
3000			 *   further instances of these opcodes are
3001			 *   effectively NOPs.
3002			 */
3003			case O_LIMIT:
3004			case O_KEEP_STATE:
3005				if (install_state(f,
3006				    (ipfw_insn_limit *)cmd, args, tablearg)) {
3007					retval = IP_FW_DENY;
3008					goto done; /* error/limit violation */
3009				}
3010				match = 1;
3011				break;
3012
3013			case O_PROBE_STATE:
3014			case O_CHECK_STATE:
3015				/*
3016				 * dynamic rules are checked at the first
3017				 * keep-state or check-state occurrence,
3018				 * with the result being stored in dyn_dir.
3019				 * The compiler introduces a PROBE_STATE
3020				 * instruction for us when we have a
3021				 * KEEP_STATE (because PROBE_STATE needs
3022				 * to be run first).
3023				 */
3024				if (dyn_dir == MATCH_UNKNOWN &&
3025				    (q = lookup_dyn_rule(&args->f_id,
3026				     &dyn_dir, proto == IPPROTO_TCP ?
3027					TCP(ulp) : NULL))
3028					!= NULL) {
3029					/*
3030					 * Found dynamic entry, update stats
3031					 * and jump to the 'action' part of
3032					 * the parent rule.
3033					 */
3034					q->pcnt++;
3035					q->bcnt += pktlen;
3036					f = q->rule;
3037					cmd = ACTION_PTR(f);
3038					l = f->cmd_len - f->act_ofs;
3039					IPFW_DYN_UNLOCK();
3040					goto check_body;
3041				}
3042				/*
3043				 * Dynamic entry not found. If CHECK_STATE,
3044				 * skip to next rule, if PROBE_STATE just
3045				 * ignore and continue with next opcode.
3046				 */
3047				if (cmd->opcode == O_CHECK_STATE)
3048					goto next_rule;
3049				match = 1;
3050				break;
3051
3052			case O_ACCEPT:
3053				retval = 0;	/* accept */
3054				goto done;
3055
3056			case O_PIPE:
3057			case O_QUEUE:
3058				args->rule = f; /* report matching rule */
3059				if (cmd->arg1 == IP_FW_TABLEARG)
3060					args->cookie = tablearg;
3061				else
3062					args->cookie = cmd->arg1;
3063				retval = IP_FW_DUMMYNET;
3064				goto done;
3065
3066			case O_DIVERT:
3067			case O_TEE: {
3068				struct divert_tag *dt;
3069
3070				if (args->eh) /* not on layer 2 */
3071					break;
3072				mtag = m_tag_get(PACKET_TAG_DIVERT,
3073						sizeof(struct divert_tag),
3074						M_NOWAIT);
3075				if (mtag == NULL) {
3076					/* XXX statistic */
3077					/* drop packet */
3078					IPFW_RUNLOCK(chain);
3079					return (IP_FW_DENY);
3080				}
3081				dt = (struct divert_tag *)(mtag+1);
3082				dt->cookie = f->rulenum;
3083				if (cmd->arg1 == IP_FW_TABLEARG)
3084					dt->info = tablearg;
3085				else
3086					dt->info = cmd->arg1;
3087				m_tag_prepend(m, mtag);
3088				retval = (cmd->opcode == O_DIVERT) ?
3089				    IP_FW_DIVERT : IP_FW_TEE;
3090				goto done;
3091			}
3092
3093			case O_COUNT:
3094			case O_SKIPTO:
3095				f->pcnt++;	/* update stats */
3096				f->bcnt += pktlen;
3097				f->timestamp = time_uptime;
3098				if (cmd->opcode == O_COUNT)
3099					goto next_rule;
3100				/* handle skipto */
3101				if (f->next_rule == NULL)
3102					lookup_next_rule(f);
3103				f = f->next_rule;
3104				goto again;
3105
3106			case O_REJECT:
3107				/*
3108				 * Drop the packet and send a reject notice
3109				 * if the packet is not ICMP (or is an ICMP
3110				 * query), and it is not multicast/broadcast.
3111				 */
3112				if (hlen > 0 && is_ipv4 && offset == 0 &&
3113				    (proto != IPPROTO_ICMP ||
3114				     is_icmp_query(ICMP(ulp))) &&
3115				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3116				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
3117					send_reject(args, cmd->arg1,
3118					    offset,ip_len);
3119					m = args->m;
3120				}
3121				/* FALLTHROUGH */
3122#ifdef INET6
3123			case O_UNREACH6:
3124				if (hlen > 0 && is_ipv6 &&
3125				    (proto != IPPROTO_ICMPV6 ||
3126				     (is_icmp6_query(args->f_id.flags) == 1)) &&
3127				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3128				    !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
3129					send_reject6(args, cmd->arg1,
3130					    offset, hlen);
3131					m = args->m;
3132				}
3133				/* FALLTHROUGH */
3134#endif
3135			case O_DENY:
3136				retval = IP_FW_DENY;
3137				goto done;
3138
3139			case O_FORWARD_IP:
3140				if (args->eh)	/* not valid on layer2 pkts */
3141					break;
3142				if (!q || dyn_dir == MATCH_FORWARD)
3143					args->next_hop =
3144					    &((ipfw_insn_sa *)cmd)->sa;
3145				retval = IP_FW_PASS;
3146				goto done;
3147
3148			case O_NETGRAPH:
3149			case O_NGTEE:
3150				args->rule = f;	/* report matching rule */
3151				if (cmd->arg1 == IP_FW_TABLEARG)
3152					args->cookie = tablearg;
3153				else
3154					args->cookie = cmd->arg1;
3155				retval = (cmd->opcode == O_NETGRAPH) ?
3156				    IP_FW_NETGRAPH : IP_FW_NGTEE;
3157				goto done;
3158
3159			default:
3160				panic("-- unknown opcode %d\n", cmd->opcode);
3161			} /* end of switch() on opcodes */
3162
3163			if (cmd->len & F_NOT)
3164				match = !match;
3165
3166			if (match) {
3167				if (cmd->len & F_OR)
3168					skip_or = 1;
3169			} else {
3170				if (!(cmd->len & F_OR)) /* not an OR block, */
3171					break;		/* try next rule    */
3172			}
3173
3174		}	/* end of inner for, scan opcodes */
3175
3176next_rule:;		/* try next rule		*/
3177
3178	}		/* end of outer for, scan rules */
3179	printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3180	IPFW_RUNLOCK(chain);
3181	return (IP_FW_DENY);
3182
3183done:
3184	/* Update statistics */
3185	f->pcnt++;
3186	f->bcnt += pktlen;
3187	f->timestamp = time_uptime;
3188	IPFW_RUNLOCK(chain);
3189	return (retval);
3190
3191pullup_failed:
3192	if (fw_verbose)
3193		printf("ipfw: pullup failed\n");
3194	return (IP_FW_DENY);
3195}
3196
3197/*
3198 * When a rule is added/deleted, clear the next_rule pointers in all rules.
3199 * These will be reconstructed on the fly as packets are matched.
3200 */
3201static void
3202flush_rule_ptrs(struct ip_fw_chain *chain)
3203{
3204	struct ip_fw *rule;
3205
3206	IPFW_WLOCK_ASSERT(chain);
3207
3208	for (rule = chain->rules; rule; rule = rule->next)
3209		rule->next_rule = NULL;
3210}
3211
3212/*
3213 * Add a new rule to the list. Copy the rule into a malloc'ed area, then
3214 * possibly create a rule number and add the rule to the list.
3215 * Update the rule_number in the input struct so the caller knows it as well.
3216 */
3217static int
3218add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
3219{
3220	struct ip_fw *rule, *f, *prev;
3221	int l = RULESIZE(input_rule);
3222
3223	if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
3224		return (EINVAL);
3225
3226	rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
3227	if (rule == NULL)
3228		return (ENOSPC);
3229
3230	bcopy(input_rule, rule, l);
3231
3232	rule->next = NULL;
3233	rule->next_rule = NULL;
3234
3235	rule->pcnt = 0;
3236	rule->bcnt = 0;
3237	rule->timestamp = 0;
3238
3239	IPFW_WLOCK(chain);
3240
3241	if (chain->rules == NULL) {	/* default rule */
3242		chain->rules = rule;
3243		goto done;
3244        }
3245
3246	/*
3247	 * If rulenum is 0, find highest numbered rule before the
3248	 * default rule, and add autoinc_step
3249	 */
3250	if (autoinc_step < 1)
3251		autoinc_step = 1;
3252	else if (autoinc_step > 1000)
3253		autoinc_step = 1000;
3254	if (rule->rulenum == 0) {
3255		/*
3256		 * locate the highest numbered rule before default
3257		 */
3258		for (f = chain->rules; f; f = f->next) {
3259			if (f->rulenum == IPFW_DEFAULT_RULE)
3260				break;
3261			rule->rulenum = f->rulenum;
3262		}
3263		if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
3264			rule->rulenum += autoinc_step;
3265		input_rule->rulenum = rule->rulenum;
3266	}
3267
3268	/*
3269	 * Now insert the new rule in the right place in the sorted list.
3270	 */
3271	for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
3272		if (f->rulenum > rule->rulenum) { /* found the location */
3273			if (prev) {
3274				rule->next = f;
3275				prev->next = rule;
3276			} else { /* head insert */
3277				rule->next = chain->rules;
3278				chain->rules = rule;
3279			}
3280			break;
3281		}
3282	}
3283	flush_rule_ptrs(chain);
3284done:
3285	static_count++;
3286	static_len += l;
3287	IPFW_WUNLOCK(chain);
3288	DEB(printf("ipfw: installed rule %d, static count now %d\n",
3289		rule->rulenum, static_count);)
3290	return (0);
3291}
3292
3293/**
3294 * Remove a static rule (including derived * dynamic rules)
3295 * and place it on the ``reap list'' for later reclamation.
3296 * The caller is in charge of clearing rule pointers to avoid
3297 * dangling pointers.
3298 * @return a pointer to the next entry.
3299 * Arguments are not checked, so they better be correct.
3300 */
3301static struct ip_fw *
3302remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule, struct ip_fw *prev)
3303{
3304	struct ip_fw *n;
3305	int l = RULESIZE(rule);
3306
3307	IPFW_WLOCK_ASSERT(chain);
3308
3309	n = rule->next;
3310	IPFW_DYN_LOCK();
3311	remove_dyn_rule(rule, NULL /* force removal */);
3312	IPFW_DYN_UNLOCK();
3313	if (prev == NULL)
3314		chain->rules = n;
3315	else
3316		prev->next = n;
3317	static_count--;
3318	static_len -= l;
3319
3320	rule->next = chain->reap;
3321	chain->reap = rule;
3322
3323	return n;
3324}
3325
3326/**
3327 * Reclaim storage associated with a list of rules.  This is
3328 * typically the list created using remove_rule.
3329 */
3330static void
3331reap_rules(struct ip_fw *head)
3332{
3333	struct ip_fw *rule;
3334
3335	while ((rule = head) != NULL) {
3336		head = head->next;
3337		if (DUMMYNET_LOADED)
3338			ip_dn_ruledel_ptr(rule);
3339		free(rule, M_IPFW);
3340	}
3341}
3342
3343/*
3344 * Remove all rules from a chain (except rules in set RESVD_SET
3345 * unless kill_default = 1).  The caller is responsible for
3346 * reclaiming storage for the rules left in chain->reap.
3347 */
3348static void
3349free_chain(struct ip_fw_chain *chain, int kill_default)
3350{
3351	struct ip_fw *prev, *rule;
3352
3353	IPFW_WLOCK_ASSERT(chain);
3354
3355	flush_rule_ptrs(chain); /* more efficient to do outside the loop */
3356	for (prev = NULL, rule = chain->rules; rule ; )
3357		if (kill_default || rule->set != RESVD_SET)
3358			rule = remove_rule(chain, rule, prev);
3359		else {
3360			prev = rule;
3361			rule = rule->next;
3362		}
3363}
3364
3365/**
3366 * Remove all rules with given number, and also do set manipulation.
3367 * Assumes chain != NULL && *chain != NULL.
3368 *
3369 * The argument is an u_int32_t. The low 16 bit are the rule or set number,
3370 * the next 8 bits are the new set, the top 8 bits are the command:
3371 *
3372 *	0	delete rules with given number
3373 *	1	delete rules with given set number
3374 *	2	move rules with given number to new set
3375 *	3	move rules with given set number to new set
3376 *	4	swap sets with given numbers
3377 */
3378static int
3379del_entry(struct ip_fw_chain *chain, u_int32_t arg)
3380{
3381	struct ip_fw *prev = NULL, *rule;
3382	u_int16_t rulenum;	/* rule or old_set */
3383	u_int8_t cmd, new_set;
3384
3385	rulenum = arg & 0xffff;
3386	cmd = (arg >> 24) & 0xff;
3387	new_set = (arg >> 16) & 0xff;
3388
3389	if (cmd > 4)
3390		return EINVAL;
3391	if (new_set > RESVD_SET)
3392		return EINVAL;
3393	if (cmd == 0 || cmd == 2) {
3394		if (rulenum >= IPFW_DEFAULT_RULE)
3395			return EINVAL;
3396	} else {
3397		if (rulenum > RESVD_SET)	/* old_set */
3398			return EINVAL;
3399	}
3400
3401	IPFW_WLOCK(chain);
3402	rule = chain->rules;
3403	chain->reap = NULL;
3404	switch (cmd) {
3405	case 0:	/* delete rules with given number */
3406		/*
3407		 * locate first rule to delete
3408		 */
3409		for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3410			;
3411		if (rule->rulenum != rulenum) {
3412			IPFW_WUNLOCK(chain);
3413			return EINVAL;
3414		}
3415
3416		/*
3417		 * flush pointers outside the loop, then delete all matching
3418		 * rules. prev remains the same throughout the cycle.
3419		 */
3420		flush_rule_ptrs(chain);
3421		while (rule->rulenum == rulenum)
3422			rule = remove_rule(chain, rule, prev);
3423		break;
3424
3425	case 1:	/* delete all rules with given set number */
3426		flush_rule_ptrs(chain);
3427		rule = chain->rules;
3428		while (rule->rulenum < IPFW_DEFAULT_RULE)
3429			if (rule->set == rulenum)
3430				rule = remove_rule(chain, rule, prev);
3431			else {
3432				prev = rule;
3433				rule = rule->next;
3434			}
3435		break;
3436
3437	case 2:	/* move rules with given number to new set */
3438		rule = chain->rules;
3439		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3440			if (rule->rulenum == rulenum)
3441				rule->set = new_set;
3442		break;
3443
3444	case 3: /* move rules with given set number to new set */
3445		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3446			if (rule->set == rulenum)
3447				rule->set = new_set;
3448		break;
3449
3450	case 4: /* swap two sets */
3451		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3452			if (rule->set == rulenum)
3453				rule->set = new_set;
3454			else if (rule->set == new_set)
3455				rule->set = rulenum;
3456		break;
3457	}
3458	/*
3459	 * Look for rules to reclaim.  We grab the list before
3460	 * releasing the lock then reclaim them w/o the lock to
3461	 * avoid a LOR with dummynet.
3462	 */
3463	rule = chain->reap;
3464	chain->reap = NULL;
3465	IPFW_WUNLOCK(chain);
3466	if (rule)
3467		reap_rules(rule);
3468	return 0;
3469}
3470
3471/*
3472 * Clear counters for a specific rule.
3473 * The enclosing "table" is assumed locked.
3474 */
3475static void
3476clear_counters(struct ip_fw *rule, int log_only)
3477{
3478	ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
3479
3480	if (log_only == 0) {
3481		rule->bcnt = rule->pcnt = 0;
3482		rule->timestamp = 0;
3483	}
3484	if (l->o.opcode == O_LOG)
3485		l->log_left = l->max_log;
3486}
3487
3488/**
3489 * Reset some or all counters on firewall rules.
3490 * @arg frwl is null to clear all entries, or contains a specific
3491 * rule number.
3492 * @arg log_only is 1 if we only want to reset logs, zero otherwise.
3493 */
3494static int
3495zero_entry(struct ip_fw_chain *chain, int rulenum, int log_only)
3496{
3497	struct ip_fw *rule;
3498	char *msg;
3499
3500	IPFW_WLOCK(chain);
3501	if (rulenum == 0) {
3502		norule_counter = 0;
3503		for (rule = chain->rules; rule; rule = rule->next)
3504			clear_counters(rule, log_only);
3505		msg = log_only ? "ipfw: All logging counts reset.\n" :
3506				"ipfw: Accounting cleared.\n";
3507	} else {
3508		int cleared = 0;
3509		/*
3510		 * We can have multiple rules with the same number, so we
3511		 * need to clear them all.
3512		 */
3513		for (rule = chain->rules; rule; rule = rule->next)
3514			if (rule->rulenum == rulenum) {
3515				while (rule && rule->rulenum == rulenum) {
3516					clear_counters(rule, log_only);
3517					rule = rule->next;
3518				}
3519				cleared = 1;
3520				break;
3521			}
3522		if (!cleared) {	/* we did not find any matching rules */
3523			IPFW_WUNLOCK(chain);
3524			return (EINVAL);
3525		}
3526		msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
3527				"ipfw: Entry %d cleared.\n";
3528	}
3529	IPFW_WUNLOCK(chain);
3530
3531	if (fw_verbose)
3532		log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
3533	return (0);
3534}
3535
3536/*
3537 * Check validity of the structure before insert.
3538 * Fortunately rules are simple, so this mostly need to check rule sizes.
3539 */
3540static int
3541check_ipfw_struct(struct ip_fw *rule, int size)
3542{
3543	int l, cmdlen = 0;
3544	int have_action=0;
3545	ipfw_insn *cmd;
3546
3547	if (size < sizeof(*rule)) {
3548		printf("ipfw: rule too short\n");
3549		return (EINVAL);
3550	}
3551	/* first, check for valid size */
3552	l = RULESIZE(rule);
3553	if (l != size) {
3554		printf("ipfw: size mismatch (have %d want %d)\n", size, l);
3555		return (EINVAL);
3556	}
3557	if (rule->act_ofs >= rule->cmd_len) {
3558		printf("ipfw: bogus action offset (%u > %u)\n",
3559		    rule->act_ofs, rule->cmd_len - 1);
3560		return (EINVAL);
3561	}
3562	/*
3563	 * Now go for the individual checks. Very simple ones, basically only
3564	 * instruction sizes.
3565	 */
3566	for (l = rule->cmd_len, cmd = rule->cmd ;
3567			l > 0 ; l -= cmdlen, cmd += cmdlen) {
3568		cmdlen = F_LEN(cmd);
3569		if (cmdlen > l) {
3570			printf("ipfw: opcode %d size truncated\n",
3571			    cmd->opcode);
3572			return EINVAL;
3573		}
3574		DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
3575		switch (cmd->opcode) {
3576		case O_PROBE_STATE:
3577		case O_KEEP_STATE:
3578		case O_PROTO:
3579		case O_IP_SRC_ME:
3580		case O_IP_DST_ME:
3581		case O_LAYER2:
3582		case O_IN:
3583		case O_FRAG:
3584		case O_DIVERTED:
3585		case O_IPOPT:
3586		case O_IPTOS:
3587		case O_IPPRECEDENCE:
3588		case O_IPVER:
3589		case O_TCPWIN:
3590		case O_TCPFLAGS:
3591		case O_TCPOPTS:
3592		case O_ESTAB:
3593		case O_VERREVPATH:
3594		case O_VERSRCREACH:
3595		case O_ANTISPOOF:
3596		case O_IPSEC:
3597#ifdef INET6
3598		case O_IP6_SRC_ME:
3599		case O_IP6_DST_ME:
3600		case O_EXT_HDR:
3601		case O_IP6:
3602#endif
3603		case O_IP4:
3604		case O_TAG:
3605			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3606				goto bad_size;
3607			break;
3608
3609		case O_UID:
3610		case O_GID:
3611		case O_JAIL:
3612		case O_IP_SRC:
3613		case O_IP_DST:
3614		case O_TCPSEQ:
3615		case O_TCPACK:
3616		case O_PROB:
3617		case O_ICMPTYPE:
3618			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3619				goto bad_size;
3620			break;
3621
3622		case O_LIMIT:
3623			if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
3624				goto bad_size;
3625			break;
3626
3627		case O_LOG:
3628			if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
3629				goto bad_size;
3630
3631			((ipfw_insn_log *)cmd)->log_left =
3632			    ((ipfw_insn_log *)cmd)->max_log;
3633
3634			break;
3635
3636		case O_IP_SRC_MASK:
3637		case O_IP_DST_MASK:
3638			/* only odd command lengths */
3639			if ( !(cmdlen & 1) || cmdlen > 31)
3640				goto bad_size;
3641			break;
3642
3643		case O_IP_SRC_SET:
3644		case O_IP_DST_SET:
3645			if (cmd->arg1 == 0 || cmd->arg1 > 256) {
3646				printf("ipfw: invalid set size %d\n",
3647					cmd->arg1);
3648				return EINVAL;
3649			}
3650			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3651			    (cmd->arg1+31)/32 )
3652				goto bad_size;
3653			break;
3654
3655		case O_IP_SRC_LOOKUP:
3656		case O_IP_DST_LOOKUP:
3657			if (cmd->arg1 >= IPFW_TABLES_MAX) {
3658				printf("ipfw: invalid table number %d\n",
3659				    cmd->arg1);
3660				return (EINVAL);
3661			}
3662			if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
3663			    cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3664				goto bad_size;
3665			break;
3666
3667		case O_MACADDR2:
3668			if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
3669				goto bad_size;
3670			break;
3671
3672		case O_NOP:
3673		case O_IPID:
3674		case O_IPTTL:
3675		case O_IPLEN:
3676		case O_TCPDATALEN:
3677		case O_TAGGED:
3678			if (cmdlen < 1 || cmdlen > 31)
3679				goto bad_size;
3680			break;
3681
3682		case O_MAC_TYPE:
3683		case O_IP_SRCPORT:
3684		case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
3685			if (cmdlen < 2 || cmdlen > 31)
3686				goto bad_size;
3687			break;
3688
3689		case O_RECV:
3690		case O_XMIT:
3691		case O_VIA:
3692			if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
3693				goto bad_size;
3694			break;
3695
3696		case O_ALTQ:
3697			if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
3698				goto bad_size;
3699			break;
3700
3701		case O_PIPE:
3702		case O_QUEUE:
3703			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3704				goto bad_size;
3705			goto check_action;
3706
3707		case O_FORWARD_IP:
3708#ifdef	IPFIREWALL_FORWARD
3709			if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
3710				goto bad_size;
3711			goto check_action;
3712#else
3713			return EINVAL;
3714#endif
3715
3716		case O_DIVERT:
3717		case O_TEE:
3718			if (ip_divert_ptr == NULL)
3719				return EINVAL;
3720			else
3721				goto check_size;
3722		case O_NETGRAPH:
3723		case O_NGTEE:
3724			if (!NG_IPFW_LOADED)
3725				return EINVAL;
3726			else
3727				goto check_size;
3728		case O_FORWARD_MAC: /* XXX not implemented yet */
3729		case O_CHECK_STATE:
3730		case O_COUNT:
3731		case O_ACCEPT:
3732		case O_DENY:
3733		case O_REJECT:
3734#ifdef INET6
3735		case O_UNREACH6:
3736#endif
3737		case O_SKIPTO:
3738check_size:
3739			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3740				goto bad_size;
3741check_action:
3742			if (have_action) {
3743				printf("ipfw: opcode %d, multiple actions"
3744					" not allowed\n",
3745					cmd->opcode);
3746				return EINVAL;
3747			}
3748			have_action = 1;
3749			if (l != cmdlen) {
3750				printf("ipfw: opcode %d, action must be"
3751					" last opcode\n",
3752					cmd->opcode);
3753				return EINVAL;
3754			}
3755			break;
3756#ifdef INET6
3757		case O_IP6_SRC:
3758		case O_IP6_DST:
3759			if (cmdlen != F_INSN_SIZE(struct in6_addr) +
3760			    F_INSN_SIZE(ipfw_insn))
3761				goto bad_size;
3762			break;
3763
3764		case O_FLOW6ID:
3765			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3766			    ((ipfw_insn_u32 *)cmd)->o.arg1)
3767				goto bad_size;
3768			break;
3769
3770		case O_IP6_SRC_MASK:
3771		case O_IP6_DST_MASK:
3772			if ( !(cmdlen & 1) || cmdlen > 127)
3773				goto bad_size;
3774			break;
3775		case O_ICMP6TYPE:
3776			if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
3777				goto bad_size;
3778			break;
3779#endif
3780
3781		default:
3782			switch (cmd->opcode) {
3783#ifndef INET6
3784			case O_IP6_SRC_ME:
3785			case O_IP6_DST_ME:
3786			case O_EXT_HDR:
3787			case O_IP6:
3788			case O_UNREACH6:
3789			case O_IP6_SRC:
3790			case O_IP6_DST:
3791			case O_FLOW6ID:
3792			case O_IP6_SRC_MASK:
3793			case O_IP6_DST_MASK:
3794			case O_ICMP6TYPE:
3795				printf("ipfw: no IPv6 support in kernel\n");
3796				return EPROTONOSUPPORT;
3797#endif
3798			default:
3799				printf("ipfw: opcode %d, unknown opcode\n",
3800					cmd->opcode);
3801				return EINVAL;
3802			}
3803		}
3804	}
3805	if (have_action == 0) {
3806		printf("ipfw: missing action\n");
3807		return EINVAL;
3808	}
3809	return 0;
3810
3811bad_size:
3812	printf("ipfw: opcode %d size %d wrong\n",
3813		cmd->opcode, cmdlen);
3814	return EINVAL;
3815}
3816
3817/*
3818 * Copy the static and dynamic rules to the supplied buffer
3819 * and return the amount of space actually used.
3820 */
3821static size_t
3822ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
3823{
3824	char *bp = buf;
3825	char *ep = bp + space;
3826	struct ip_fw *rule;
3827	int i;
3828
3829	/* XXX this can take a long time and locking will block packet flow */
3830	IPFW_RLOCK(chain);
3831	for (rule = chain->rules; rule ; rule = rule->next) {
3832		/*
3833		 * Verify the entry fits in the buffer in case the
3834		 * rules changed between calculating buffer space and
3835		 * now.  This would be better done using a generation
3836		 * number but should suffice for now.
3837		 */
3838		i = RULESIZE(rule);
3839		if (bp + i <= ep) {
3840			bcopy(rule, bp, i);
3841			bcopy(&set_disable, &(((struct ip_fw *)bp)->next_rule),
3842			    sizeof(set_disable));
3843			bp += i;
3844		}
3845	}
3846	IPFW_RUNLOCK(chain);
3847	if (ipfw_dyn_v) {
3848		ipfw_dyn_rule *p, *last = NULL;
3849
3850		IPFW_DYN_LOCK();
3851		for (i = 0 ; i < curr_dyn_buckets; i++)
3852			for (p = ipfw_dyn_v[i] ; p != NULL; p = p->next) {
3853				if (bp + sizeof *p <= ep) {
3854					ipfw_dyn_rule *dst =
3855						(ipfw_dyn_rule *)bp;
3856					bcopy(p, dst, sizeof *p);
3857					bcopy(&(p->rule->rulenum), &(dst->rule),
3858					    sizeof(p->rule->rulenum));
3859					/*
3860					 * store a non-null value in "next".
3861					 * The userland code will interpret a
3862					 * NULL here as a marker
3863					 * for the last dynamic rule.
3864					 */
3865					bcopy(&dst, &dst->next, sizeof(dst));
3866					last = dst;
3867					dst->expire =
3868					    TIME_LEQ(dst->expire, time_uptime) ?
3869						0 : dst->expire - time_uptime ;
3870					bp += sizeof(ipfw_dyn_rule);
3871				}
3872			}
3873		IPFW_DYN_UNLOCK();
3874		if (last != NULL) /* mark last dynamic rule */
3875			bzero(&last->next, sizeof(last));
3876	}
3877	return (bp - (char *)buf);
3878}
3879
3880
3881/**
3882 * {set|get}sockopt parser.
3883 */
3884static int
3885ipfw_ctl(struct sockopt *sopt)
3886{
3887#define	RULE_MAXSIZE	(256*sizeof(u_int32_t))
3888	int error, rule_num;
3889	size_t size;
3890	struct ip_fw *buf, *rule;
3891	u_int32_t rulenum[2];
3892
3893	error = suser(sopt->sopt_td);
3894	if (error)
3895		return (error);
3896
3897	/*
3898	 * Disallow modifications in really-really secure mode, but still allow
3899	 * the logging counters to be reset.
3900	 */
3901	if (sopt->sopt_name == IP_FW_ADD ||
3902	    (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
3903		error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
3904		if (error)
3905			return (error);
3906	}
3907
3908	error = 0;
3909
3910	switch (sopt->sopt_name) {
3911	case IP_FW_GET:
3912		/*
3913		 * pass up a copy of the current rules. Static rules
3914		 * come first (the last of which has number IPFW_DEFAULT_RULE),
3915		 * followed by a possibly empty list of dynamic rule.
3916		 * The last dynamic rule has NULL in the "next" field.
3917		 *
3918		 * Note that the calculated size is used to bound the
3919		 * amount of data returned to the user.  The rule set may
3920		 * change between calculating the size and returning the
3921		 * data in which case we'll just return what fits.
3922		 */
3923		size = static_len;	/* size of static rules */
3924		if (ipfw_dyn_v)		/* add size of dyn.rules */
3925			size += (dyn_count * sizeof(ipfw_dyn_rule));
3926
3927		/*
3928		 * XXX todo: if the user passes a short length just to know
3929		 * how much room is needed, do not bother filling up the
3930		 * buffer, just jump to the sooptcopyout.
3931		 */
3932		buf = malloc(size, M_TEMP, M_WAITOK);
3933		error = sooptcopyout(sopt, buf,
3934				ipfw_getrules(&layer3_chain, buf, size));
3935		free(buf, M_TEMP);
3936		break;
3937
3938	case IP_FW_FLUSH:
3939		/*
3940		 * Normally we cannot release the lock on each iteration.
3941		 * We could do it here only because we start from the head all
3942		 * the times so there is no risk of missing some entries.
3943		 * On the other hand, the risk is that we end up with
3944		 * a very inconsistent ruleset, so better keep the lock
3945		 * around the whole cycle.
3946		 *
3947		 * XXX this code can be improved by resetting the head of
3948		 * the list to point to the default rule, and then freeing
3949		 * the old list without the need for a lock.
3950		 */
3951
3952		IPFW_WLOCK(&layer3_chain);
3953		layer3_chain.reap = NULL;
3954		free_chain(&layer3_chain, 0 /* keep default rule */);
3955		rule = layer3_chain.reap, layer3_chain.reap = NULL;
3956		IPFW_WUNLOCK(&layer3_chain);
3957		if (layer3_chain.reap != NULL)
3958			reap_rules(rule);
3959		break;
3960
3961	case IP_FW_ADD:
3962		rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
3963		error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
3964			sizeof(struct ip_fw) );
3965		if (error == 0)
3966			error = check_ipfw_struct(rule, sopt->sopt_valsize);
3967		if (error == 0) {
3968			error = add_rule(&layer3_chain, rule);
3969			size = RULESIZE(rule);
3970			if (!error && sopt->sopt_dir == SOPT_GET)
3971				error = sooptcopyout(sopt, rule, size);
3972		}
3973		free(rule, M_TEMP);
3974		break;
3975
3976	case IP_FW_DEL:
3977		/*
3978		 * IP_FW_DEL is used for deleting single rules or sets,
3979		 * and (ab)used to atomically manipulate sets. Argument size
3980		 * is used to distinguish between the two:
3981		 *    sizeof(u_int32_t)
3982		 *	delete single rule or set of rules,
3983		 *	or reassign rules (or sets) to a different set.
3984		 *    2*sizeof(u_int32_t)
3985		 *	atomic disable/enable sets.
3986		 *	first u_int32_t contains sets to be disabled,
3987		 *	second u_int32_t contains sets to be enabled.
3988		 */
3989		error = sooptcopyin(sopt, rulenum,
3990			2*sizeof(u_int32_t), sizeof(u_int32_t));
3991		if (error)
3992			break;
3993		size = sopt->sopt_valsize;
3994		if (size == sizeof(u_int32_t))	/* delete or reassign */
3995			error = del_entry(&layer3_chain, rulenum[0]);
3996		else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
3997			set_disable =
3998			    (set_disable | rulenum[0]) & ~rulenum[1] &
3999			    ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
4000		else
4001			error = EINVAL;
4002		break;
4003
4004	case IP_FW_ZERO:
4005	case IP_FW_RESETLOG: /* argument is an int, the rule number */
4006		rule_num = 0;
4007		if (sopt->sopt_val != 0) {
4008		    error = sooptcopyin(sopt, &rule_num,
4009			    sizeof(int), sizeof(int));
4010		    if (error)
4011			break;
4012		}
4013		error = zero_entry(&layer3_chain, rule_num,
4014			sopt->sopt_name == IP_FW_RESETLOG);
4015		break;
4016
4017	case IP_FW_TABLE_ADD:
4018		{
4019			ipfw_table_entry ent;
4020
4021			error = sooptcopyin(sopt, &ent,
4022			    sizeof(ent), sizeof(ent));
4023			if (error)
4024				break;
4025			error = add_table_entry(&layer3_chain, ent.tbl,
4026			    ent.addr, ent.masklen, ent.value);
4027		}
4028		break;
4029
4030	case IP_FW_TABLE_DEL:
4031		{
4032			ipfw_table_entry ent;
4033
4034			error = sooptcopyin(sopt, &ent,
4035			    sizeof(ent), sizeof(ent));
4036			if (error)
4037				break;
4038			error = del_table_entry(&layer3_chain, ent.tbl,
4039			    ent.addr, ent.masklen);
4040		}
4041		break;
4042
4043	case IP_FW_TABLE_FLUSH:
4044		{
4045			u_int16_t tbl;
4046
4047			error = sooptcopyin(sopt, &tbl,
4048			    sizeof(tbl), sizeof(tbl));
4049			if (error)
4050				break;
4051			IPFW_WLOCK(&layer3_chain);
4052			error = flush_table(&layer3_chain, tbl);
4053			IPFW_WUNLOCK(&layer3_chain);
4054		}
4055		break;
4056
4057	case IP_FW_TABLE_GETSIZE:
4058		{
4059			u_int32_t tbl, cnt;
4060
4061			if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
4062			    sizeof(tbl))))
4063				break;
4064			IPFW_RLOCK(&layer3_chain);
4065			error = count_table(&layer3_chain, tbl, &cnt);
4066			IPFW_RUNLOCK(&layer3_chain);
4067			if (error)
4068				break;
4069			error = sooptcopyout(sopt, &cnt, sizeof(cnt));
4070		}
4071		break;
4072
4073	case IP_FW_TABLE_LIST:
4074		{
4075			ipfw_table *tbl;
4076
4077			if (sopt->sopt_valsize < sizeof(*tbl)) {
4078				error = EINVAL;
4079				break;
4080			}
4081			size = sopt->sopt_valsize;
4082			tbl = malloc(size, M_TEMP, M_WAITOK);
4083			if (tbl == NULL) {
4084				error = ENOMEM;
4085				break;
4086			}
4087			error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
4088			if (error) {
4089				free(tbl, M_TEMP);
4090				break;
4091			}
4092			tbl->size = (size - sizeof(*tbl)) /
4093			    sizeof(ipfw_table_entry);
4094			IPFW_RLOCK(&layer3_chain);
4095			error = dump_table(&layer3_chain, tbl);
4096			IPFW_RUNLOCK(&layer3_chain);
4097			if (error) {
4098				free(tbl, M_TEMP);
4099				break;
4100			}
4101			error = sooptcopyout(sopt, tbl, size);
4102			free(tbl, M_TEMP);
4103		}
4104		break;
4105
4106	default:
4107		printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
4108		error = EINVAL;
4109	}
4110
4111	return (error);
4112#undef RULE_MAXSIZE
4113}
4114
4115/**
4116 * dummynet needs a reference to the default rule, because rules can be
4117 * deleted while packets hold a reference to them. When this happens,
4118 * dummynet changes the reference to the default rule (it could well be a
4119 * NULL pointer, but this way we do not need to check for the special
4120 * case, plus here he have info on the default behaviour).
4121 */
4122struct ip_fw *ip_fw_default_rule;
4123
4124/*
4125 * This procedure is only used to handle keepalives. It is invoked
4126 * every dyn_keepalive_period
4127 */
4128static void
4129ipfw_tick(void * __unused unused)
4130{
4131	struct mbuf *m0, *m, *mnext, **mtailp;
4132	int i;
4133	ipfw_dyn_rule *q;
4134
4135	if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0)
4136		goto done;
4137
4138	/*
4139	 * We make a chain of packets to go out here -- not deferring
4140	 * until after we drop the IPFW dynamic rule lock would result
4141	 * in a lock order reversal with the normal packet input -> ipfw
4142	 * call stack.
4143	 */
4144	m0 = NULL;
4145	mtailp = &m0;
4146	IPFW_DYN_LOCK();
4147	for (i = 0 ; i < curr_dyn_buckets ; i++) {
4148		for (q = ipfw_dyn_v[i] ; q ; q = q->next ) {
4149			if (q->dyn_type == O_LIMIT_PARENT)
4150				continue;
4151			if (q->id.proto != IPPROTO_TCP)
4152				continue;
4153			if ( (q->state & BOTH_SYN) != BOTH_SYN)
4154				continue;
4155			if (TIME_LEQ( time_uptime+dyn_keepalive_interval,
4156			    q->expire))
4157				continue;	/* too early */
4158			if (TIME_LEQ(q->expire, time_uptime))
4159				continue;	/* too late, rule expired */
4160
4161			*mtailp = send_pkt(&(q->id), q->ack_rev - 1,
4162				q->ack_fwd, TH_SYN);
4163			if (*mtailp != NULL)
4164				mtailp = &(*mtailp)->m_nextpkt;
4165			*mtailp = send_pkt(&(q->id), q->ack_fwd - 1,
4166				q->ack_rev, 0);
4167			if (*mtailp != NULL)
4168				mtailp = &(*mtailp)->m_nextpkt;
4169		}
4170	}
4171	IPFW_DYN_UNLOCK();
4172	for (m = mnext = m0; m != NULL; m = mnext) {
4173		mnext = m->m_nextpkt;
4174		m->m_nextpkt = NULL;
4175		ip_output(m, NULL, NULL, 0, NULL, NULL);
4176	}
4177done:
4178	callout_reset(&ipfw_timeout, dyn_keepalive_period*hz, ipfw_tick, NULL);
4179}
4180
4181int
4182ipfw_init(void)
4183{
4184	struct ip_fw default_rule;
4185	int error;
4186
4187#ifdef INET6
4188	/* Setup IPv6 fw sysctl tree. */
4189	sysctl_ctx_init(&ip6_fw_sysctl_ctx);
4190	ip6_fw_sysctl_tree = SYSCTL_ADD_NODE(&ip6_fw_sysctl_ctx,
4191	    SYSCTL_STATIC_CHILDREN(_net_inet6_ip6), OID_AUTO, "fw",
4192	    CTLFLAG_RW | CTLFLAG_SECURE, 0, "Firewall");
4193	SYSCTL_ADD_PROC(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4194	    OID_AUTO, "enable", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3,
4195	    &fw6_enable, 0, ipfw_chg_hook, "I", "Enable ipfw+6");
4196	SYSCTL_ADD_INT(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4197	    OID_AUTO, "deny_unknown_exthdrs", CTLFLAG_RW | CTLFLAG_SECURE,
4198	    &fw_deny_unknown_exthdrs, 0,
4199	    "Deny packets with unknown IPv6 Extension Headers");
4200#endif
4201
4202	layer3_chain.rules = NULL;
4203	IPFW_LOCK_INIT(&layer3_chain);
4204	ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule zone",
4205	    sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
4206	    UMA_ALIGN_PTR, 0);
4207	IPFW_DYN_LOCK_INIT();
4208	callout_init(&ipfw_timeout, NET_CALLOUT_MPSAFE);
4209
4210	bzero(&default_rule, sizeof default_rule);
4211
4212	default_rule.act_ofs = 0;
4213	default_rule.rulenum = IPFW_DEFAULT_RULE;
4214	default_rule.cmd_len = 1;
4215	default_rule.set = RESVD_SET;
4216
4217	default_rule.cmd[0].len = 1;
4218	default_rule.cmd[0].opcode =
4219#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
4220				1 ? O_ACCEPT :
4221#endif
4222				O_DENY;
4223
4224	error = add_rule(&layer3_chain, &default_rule);
4225	if (error != 0) {
4226		printf("ipfw2: error %u initializing default rule "
4227			"(support disabled)\n", error);
4228		IPFW_DYN_LOCK_DESTROY();
4229		IPFW_LOCK_DESTROY(&layer3_chain);
4230		uma_zdestroy(ipfw_dyn_rule_zone);
4231		return (error);
4232	}
4233
4234	ip_fw_default_rule = layer3_chain.rules;
4235	printf("ipfw2 "
4236#ifdef INET6
4237		"(+ipv6) "
4238#endif
4239		"initialized, divert %s, "
4240		"rule-based forwarding "
4241#ifdef IPFIREWALL_FORWARD
4242		"enabled, "
4243#else
4244		"disabled, "
4245#endif
4246		"default to %s, logging ",
4247#ifdef IPDIVERT
4248		"enabled",
4249#else
4250		"loadable",
4251#endif
4252		default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
4253
4254#ifdef IPFIREWALL_VERBOSE
4255	fw_verbose = 1;
4256#endif
4257#ifdef IPFIREWALL_VERBOSE_LIMIT
4258	verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
4259#endif
4260	if (fw_verbose == 0)
4261		printf("disabled\n");
4262	else if (verbose_limit == 0)
4263		printf("unlimited\n");
4264	else
4265		printf("limited to %d packets/entry by default\n",
4266		    verbose_limit);
4267
4268	error = init_tables(&layer3_chain);
4269	if (error) {
4270		IPFW_DYN_LOCK_DESTROY();
4271		IPFW_LOCK_DESTROY(&layer3_chain);
4272		uma_zdestroy(ipfw_dyn_rule_zone);
4273		return (error);
4274	}
4275	ip_fw_ctl_ptr = ipfw_ctl;
4276	ip_fw_chk_ptr = ipfw_chk;
4277	callout_reset(&ipfw_timeout, hz, ipfw_tick, NULL);
4278
4279	return (0);
4280}
4281
4282void
4283ipfw_destroy(void)
4284{
4285	struct ip_fw *reap;
4286
4287	ip_fw_chk_ptr = NULL;
4288	ip_fw_ctl_ptr = NULL;
4289	callout_drain(&ipfw_timeout);
4290	IPFW_WLOCK(&layer3_chain);
4291	flush_tables(&layer3_chain);
4292	layer3_chain.reap = NULL;
4293	free_chain(&layer3_chain, 1 /* kill default rule */);
4294	reap = layer3_chain.reap, layer3_chain.reap = NULL;
4295	IPFW_WUNLOCK(&layer3_chain);
4296	if (reap != NULL)
4297		reap_rules(reap);
4298	IPFW_DYN_LOCK_DESTROY();
4299	uma_zdestroy(ipfw_dyn_rule_zone);
4300	IPFW_LOCK_DESTROY(&layer3_chain);
4301
4302#ifdef INET6
4303	/* Free IPv6 fw sysctl tree. */
4304	sysctl_ctx_free(&ip6_fw_sysctl_ctx);
4305#endif
4306
4307	printf("IP firewall unloaded\n");
4308}
4309