ip_fw2.c revision 159398
1/*-
2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 * $FreeBSD: head/sys/netinet/ip_fw2.c 159398 2006-06-08 11:27:45Z oleg $
26 */
27
28#define        DEB(x)
29#define        DDB(x) x
30
31/*
32 * Implement IP packet firewall (new version)
33 */
34
35#if !defined(KLD_MODULE)
36#include "opt_ipfw.h"
37#include "opt_ipdn.h"
38#include "opt_inet.h"
39#ifndef INET
40#error IPFIREWALL requires INET.
41#endif /* INET */
42#endif
43#include "opt_inet6.h"
44#include "opt_ipsec.h"
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/condvar.h>
49#include <sys/malloc.h>
50#include <sys/mbuf.h>
51#include <sys/kernel.h>
52#include <sys/lock.h>
53#include <sys/jail.h>
54#include <sys/module.h>
55#include <sys/proc.h>
56#include <sys/rwlock.h>
57#include <sys/socket.h>
58#include <sys/socketvar.h>
59#include <sys/sysctl.h>
60#include <sys/syslog.h>
61#include <sys/ucred.h>
62#include <net/if.h>
63#include <net/radix.h>
64#include <net/route.h>
65#include <netinet/in.h>
66#include <netinet/in_systm.h>
67#include <netinet/in_var.h>
68#include <netinet/in_pcb.h>
69#include <netinet/ip.h>
70#include <netinet/ip_var.h>
71#include <netinet/ip_icmp.h>
72#include <netinet/ip_fw.h>
73#include <netinet/ip_divert.h>
74#include <netinet/ip_dummynet.h>
75#include <netinet/tcp.h>
76#include <netinet/tcp_timer.h>
77#include <netinet/tcp_var.h>
78#include <netinet/tcpip.h>
79#include <netinet/udp.h>
80#include <netinet/udp_var.h>
81
82#include <netgraph/ng_ipfw.h>
83
84#include <altq/if_altq.h>
85
86#ifdef IPSEC
87#include <netinet6/ipsec.h>
88#endif
89
90#include <netinet/ip6.h>
91#include <netinet/icmp6.h>
92#ifdef INET6
93#include <netinet6/scope6_var.h>
94#endif
95
96#include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
97
98#include <machine/in_cksum.h>	/* XXX for in_cksum */
99
100/*
101 * set_disable contains one bit per set value (0..31).
102 * If the bit is set, all rules with the corresponding set
103 * are disabled. Set RESVD_SET(31) is reserved for the default rule
104 * and rules that are not deleted by the flush command,
105 * and CANNOT be disabled.
106 * Rules in set RESVD_SET can only be deleted explicitly.
107 */
108static u_int32_t set_disable;
109
110static int fw_verbose;
111static int verbose_limit;
112
113static struct callout ipfw_timeout;
114static uma_zone_t ipfw_dyn_rule_zone;
115#define	IPFW_DEFAULT_RULE	65535
116
117/*
118 * Data structure to cache our ucred related
119 * information. This structure only gets used if
120 * the user specified UID/GID based constraints in
121 * a firewall rule.
122 */
123struct ip_fw_ugid {
124	gid_t		fw_groups[NGROUPS];
125	int		fw_ngroups;
126	uid_t		fw_uid;
127	int		fw_prid;
128};
129
130#define	IPFW_TABLES_MAX		128
131struct ip_fw_chain {
132	struct ip_fw	*rules;		/* list of rules */
133	struct ip_fw	*reap;		/* list of rules to reap */
134	struct radix_node_head *tables[IPFW_TABLES_MAX];
135	struct rwlock	rwmtx;
136};
137#define	IPFW_LOCK_INIT(_chain) \
138	rw_init(&(_chain)->rwmtx, "IPFW static rules")
139#define	IPFW_LOCK_DESTROY(_chain)	rw_destroy(&(_chain)->rwmtx)
140#define	IPFW_WLOCK_ASSERT(_chain)	do {				\
141	rw_assert(&(_chain)->rwmtx, RA_WLOCKED);					\
142	NET_ASSERT_GIANT();						\
143} while (0)
144
145#define IPFW_RLOCK(p) rw_rlock(&(p)->rwmtx)
146#define IPFW_RUNLOCK(p) rw_runlock(&(p)->rwmtx)
147#define IPFW_WLOCK(p) rw_wlock(&(p)->rwmtx)
148#define IPFW_WUNLOCK(p) rw_wunlock(&(p)->rwmtx)
149
150/*
151 * list of rules for layer 3
152 */
153static struct ip_fw_chain layer3_chain;
154
155MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
156MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
157
158struct table_entry {
159	struct radix_node	rn[2];
160	struct sockaddr_in	addr, mask;
161	u_int32_t		value;
162};
163
164static int fw_debug = 1;
165static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
166
167extern int ipfw_chg_hook(SYSCTL_HANDLER_ARGS);
168
169#ifdef SYSCTL_NODE
170SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
171SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, enable,
172    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3, &fw_enable, 0,
173    ipfw_chg_hook, "I", "Enable ipfw");
174SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
175    &autoinc_step, 0, "Rule number autincrement step");
176SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
177    CTLFLAG_RW | CTLFLAG_SECURE3,
178    &fw_one_pass, 0,
179    "Only do a single pass through ipfw when using dummynet(4)");
180SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
181    &fw_debug, 0, "Enable printing of debug ip_fw statements");
182SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
183    CTLFLAG_RW | CTLFLAG_SECURE3,
184    &fw_verbose, 0, "Log matches to ipfw rules");
185SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
186    &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
187
188/*
189 * Description of dynamic rules.
190 *
191 * Dynamic rules are stored in lists accessed through a hash table
192 * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
193 * be modified through the sysctl variable dyn_buckets which is
194 * updated when the table becomes empty.
195 *
196 * XXX currently there is only one list, ipfw_dyn.
197 *
198 * When a packet is received, its address fields are first masked
199 * with the mask defined for the rule, then hashed, then matched
200 * against the entries in the corresponding list.
201 * Dynamic rules can be used for different purposes:
202 *  + stateful rules;
203 *  + enforcing limits on the number of sessions;
204 *  + in-kernel NAT (not implemented yet)
205 *
206 * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
207 * measured in seconds and depending on the flags.
208 *
209 * The total number of dynamic rules is stored in dyn_count.
210 * The max number of dynamic rules is dyn_max. When we reach
211 * the maximum number of rules we do not create anymore. This is
212 * done to avoid consuming too much memory, but also too much
213 * time when searching on each packet (ideally, we should try instead
214 * to put a limit on the length of the list on each bucket...).
215 *
216 * Each dynamic rule holds a pointer to the parent ipfw rule so
217 * we know what action to perform. Dynamic rules are removed when
218 * the parent rule is deleted. XXX we should make them survive.
219 *
220 * There are some limitations with dynamic rules -- we do not
221 * obey the 'randomized match', and we do not do multiple
222 * passes through the firewall. XXX check the latter!!!
223 */
224static ipfw_dyn_rule **ipfw_dyn_v = NULL;
225static u_int32_t dyn_buckets = 256; /* must be power of 2 */
226static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
227
228static struct mtx ipfw_dyn_mtx;		/* mutex guarding dynamic rules */
229#define	IPFW_DYN_LOCK_INIT() \
230	mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
231#define	IPFW_DYN_LOCK_DESTROY()	mtx_destroy(&ipfw_dyn_mtx)
232#define	IPFW_DYN_LOCK()		mtx_lock(&ipfw_dyn_mtx)
233#define	IPFW_DYN_UNLOCK()	mtx_unlock(&ipfw_dyn_mtx)
234#define	IPFW_DYN_LOCK_ASSERT()	mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
235
236/*
237 * Timeouts for various events in handing dynamic rules.
238 */
239static u_int32_t dyn_ack_lifetime = 300;
240static u_int32_t dyn_syn_lifetime = 20;
241static u_int32_t dyn_fin_lifetime = 1;
242static u_int32_t dyn_rst_lifetime = 1;
243static u_int32_t dyn_udp_lifetime = 10;
244static u_int32_t dyn_short_lifetime = 5;
245
246/*
247 * Keepalives are sent if dyn_keepalive is set. They are sent every
248 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
249 * seconds of lifetime of a rule.
250 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
251 * than dyn_keepalive_period.
252 */
253
254static u_int32_t dyn_keepalive_interval = 20;
255static u_int32_t dyn_keepalive_period = 5;
256static u_int32_t dyn_keepalive = 1;	/* do send keepalives */
257
258static u_int32_t static_count;	/* # of static rules */
259static u_int32_t static_len;	/* size in bytes of static rules */
260static u_int32_t dyn_count;		/* # of dynamic rules */
261static u_int32_t dyn_max = 4096;	/* max # of dynamic rules */
262
263SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
264    &dyn_buckets, 0, "Number of dyn. buckets");
265SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
266    &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
267SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
268    &dyn_count, 0, "Number of dyn. rules");
269SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
270    &dyn_max, 0, "Max number of dyn. rules");
271SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
272    &static_count, 0, "Number of static rules");
273SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
274    &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
275SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
276    &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
277SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
278    &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
279SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
280    &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
281SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
282    &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
283SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
284    &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
285SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
286    &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
287
288#ifdef INET6
289/*
290 * IPv6 specific variables
291 */
292SYSCTL_DECL(_net_inet6_ip6);
293
294static struct sysctl_ctx_list ip6_fw_sysctl_ctx;
295static struct sysctl_oid *ip6_fw_sysctl_tree;
296#endif /* INET6 */
297#endif /* SYSCTL_NODE */
298
299static int fw_deny_unknown_exthdrs = 1;
300
301
302/*
303 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
304 * Other macros just cast void * into the appropriate type
305 */
306#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
307#define	TCP(p)		((struct tcphdr *)(p))
308#define	UDP(p)		((struct udphdr *)(p))
309#define	ICMP(p)		((struct icmphdr *)(p))
310#define	ICMP6(p)	((struct icmp6_hdr *)(p))
311
312static __inline int
313icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
314{
315	int type = icmp->icmp_type;
316
317	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
318}
319
320#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
321    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
322
323static int
324is_icmp_query(struct icmphdr *icmp)
325{
326	int type = icmp->icmp_type;
327
328	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
329}
330#undef TT
331
332/*
333 * The following checks use two arrays of 8 or 16 bits to store the
334 * bits that we want set or clear, respectively. They are in the
335 * low and high half of cmd->arg1 or cmd->d[0].
336 *
337 * We scan options and store the bits we find set. We succeed if
338 *
339 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
340 *
341 * The code is sometimes optimized not to store additional variables.
342 */
343
344static int
345flags_match(ipfw_insn *cmd, u_int8_t bits)
346{
347	u_char want_clear;
348	bits = ~bits;
349
350	if ( ((cmd->arg1 & 0xff) & bits) != 0)
351		return 0; /* some bits we want set were clear */
352	want_clear = (cmd->arg1 >> 8) & 0xff;
353	if ( (want_clear & bits) != want_clear)
354		return 0; /* some bits we want clear were set */
355	return 1;
356}
357
358static int
359ipopts_match(struct ip *ip, ipfw_insn *cmd)
360{
361	int optlen, bits = 0;
362	u_char *cp = (u_char *)(ip + 1);
363	int x = (ip->ip_hl << 2) - sizeof (struct ip);
364
365	for (; x > 0; x -= optlen, cp += optlen) {
366		int opt = cp[IPOPT_OPTVAL];
367
368		if (opt == IPOPT_EOL)
369			break;
370		if (opt == IPOPT_NOP)
371			optlen = 1;
372		else {
373			optlen = cp[IPOPT_OLEN];
374			if (optlen <= 0 || optlen > x)
375				return 0; /* invalid or truncated */
376		}
377		switch (opt) {
378
379		default:
380			break;
381
382		case IPOPT_LSRR:
383			bits |= IP_FW_IPOPT_LSRR;
384			break;
385
386		case IPOPT_SSRR:
387			bits |= IP_FW_IPOPT_SSRR;
388			break;
389
390		case IPOPT_RR:
391			bits |= IP_FW_IPOPT_RR;
392			break;
393
394		case IPOPT_TS:
395			bits |= IP_FW_IPOPT_TS;
396			break;
397		}
398	}
399	return (flags_match(cmd, bits));
400}
401
402static int
403tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
404{
405	int optlen, bits = 0;
406	u_char *cp = (u_char *)(tcp + 1);
407	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
408
409	for (; x > 0; x -= optlen, cp += optlen) {
410		int opt = cp[0];
411		if (opt == TCPOPT_EOL)
412			break;
413		if (opt == TCPOPT_NOP)
414			optlen = 1;
415		else {
416			optlen = cp[1];
417			if (optlen <= 0)
418				break;
419		}
420
421		switch (opt) {
422
423		default:
424			break;
425
426		case TCPOPT_MAXSEG:
427			bits |= IP_FW_TCPOPT_MSS;
428			break;
429
430		case TCPOPT_WINDOW:
431			bits |= IP_FW_TCPOPT_WINDOW;
432			break;
433
434		case TCPOPT_SACK_PERMITTED:
435		case TCPOPT_SACK:
436			bits |= IP_FW_TCPOPT_SACK;
437			break;
438
439		case TCPOPT_TIMESTAMP:
440			bits |= IP_FW_TCPOPT_TS;
441			break;
442
443		}
444	}
445	return (flags_match(cmd, bits));
446}
447
448static int
449iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
450{
451	if (ifp == NULL)	/* no iface with this packet, match fails */
452		return 0;
453	/* Check by name or by IP address */
454	if (cmd->name[0] != '\0') { /* match by name */
455		/* Check name */
456		if (cmd->p.glob) {
457			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
458				return(1);
459		} else {
460			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
461				return(1);
462		}
463	} else {
464		struct ifaddr *ia;
465
466		/* XXX lock? */
467		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
468			if (ia->ifa_addr == NULL)
469				continue;
470			if (ia->ifa_addr->sa_family != AF_INET)
471				continue;
472			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
473			    (ia->ifa_addr))->sin_addr.s_addr)
474				return(1);	/* match */
475		}
476	}
477	return(0);	/* no match, fail ... */
478}
479
480/*
481 * The verify_path function checks if a route to the src exists and
482 * if it is reachable via ifp (when provided).
483 *
484 * The 'verrevpath' option checks that the interface that an IP packet
485 * arrives on is the same interface that traffic destined for the
486 * packet's source address would be routed out of.  The 'versrcreach'
487 * option just checks that the source address is reachable via any route
488 * (except default) in the routing table.  These two are a measure to block
489 * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
490 * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
491 * is purposely reminiscent of the Cisco IOS command,
492 *
493 *   ip verify unicast reverse-path
494 *   ip verify unicast source reachable-via any
495 *
496 * which implements the same functionality. But note that syntax is
497 * misleading. The check may be performed on all IP packets whether unicast,
498 * multicast, or broadcast.
499 */
500static int
501verify_path(struct in_addr src, struct ifnet *ifp)
502{
503	struct route ro;
504	struct sockaddr_in *dst;
505
506	bzero(&ro, sizeof(ro));
507
508	dst = (struct sockaddr_in *)&(ro.ro_dst);
509	dst->sin_family = AF_INET;
510	dst->sin_len = sizeof(*dst);
511	dst->sin_addr = src;
512	rtalloc_ign(&ro, RTF_CLONING);
513
514	if (ro.ro_rt == NULL)
515		return 0;
516
517	/*
518	 * If ifp is provided, check for equality with rtentry.
519	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
520	 * in order to pass packets injected back by if_simloop():
521	 * if useloopback == 1 routing entry (via lo0) for our own address
522	 * may exist, so we need to handle routing assymetry.
523	 */
524	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
525		RTFREE(ro.ro_rt);
526		return 0;
527	}
528
529	/* if no ifp provided, check if rtentry is not default route */
530	if (ifp == NULL &&
531	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
532		RTFREE(ro.ro_rt);
533		return 0;
534	}
535
536	/* or if this is a blackhole/reject route */
537	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
538		RTFREE(ro.ro_rt);
539		return 0;
540	}
541
542	/* found valid route */
543	RTFREE(ro.ro_rt);
544	return 1;
545}
546
547#ifdef INET6
548/*
549 * ipv6 specific rules here...
550 */
551static __inline int
552icmp6type_match (int type, ipfw_insn_u32 *cmd)
553{
554	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
555}
556
557static int
558flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
559{
560	int i;
561	for (i=0; i <= cmd->o.arg1; ++i )
562		if (curr_flow == cmd->d[i] )
563			return 1;
564	return 0;
565}
566
567/* support for IP6_*_ME opcodes */
568static int
569search_ip6_addr_net (struct in6_addr * ip6_addr)
570{
571	struct ifnet *mdc;
572	struct ifaddr *mdc2;
573	struct in6_ifaddr *fdm;
574	struct in6_addr copia;
575
576	TAILQ_FOREACH(mdc, &ifnet, if_link)
577		for (mdc2 = mdc->if_addrlist.tqh_first; mdc2;
578		    mdc2 = mdc2->ifa_list.tqe_next) {
579			if (!mdc2->ifa_addr)
580				continue;
581			if (mdc2->ifa_addr->sa_family == AF_INET6) {
582				fdm = (struct in6_ifaddr *)mdc2;
583				copia = fdm->ia_addr.sin6_addr;
584				/* need for leaving scope_id in the sock_addr */
585				in6_clearscope(&copia);
586				if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia))
587					return 1;
588			}
589		}
590	return 0;
591}
592
593static int
594verify_path6(struct in6_addr *src, struct ifnet *ifp)
595{
596	struct route_in6 ro;
597	struct sockaddr_in6 *dst;
598
599	bzero(&ro, sizeof(ro));
600
601	dst = (struct sockaddr_in6 * )&(ro.ro_dst);
602	dst->sin6_family = AF_INET6;
603	dst->sin6_len = sizeof(*dst);
604	dst->sin6_addr = *src;
605	rtalloc_ign((struct route *)&ro, RTF_CLONING);
606
607	if (ro.ro_rt == NULL)
608		return 0;
609
610	/*
611	 * if ifp is provided, check for equality with rtentry
612	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
613	 * to support the case of sending packets to an address of our own.
614	 * (where the former interface is the first argument of if_simloop()
615	 *  (=ifp), the latter is lo0)
616	 */
617	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
618		RTFREE(ro.ro_rt);
619		return 0;
620	}
621
622	/* if no ifp provided, check if rtentry is not default route */
623	if (ifp == NULL &&
624	    IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
625		RTFREE(ro.ro_rt);
626		return 0;
627	}
628
629	/* or if this is a blackhole/reject route */
630	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
631		RTFREE(ro.ro_rt);
632		return 0;
633	}
634
635	/* found valid route */
636	RTFREE(ro.ro_rt);
637	return 1;
638
639}
640static __inline int
641hash_packet6(struct ipfw_flow_id *id)
642{
643	u_int32_t i;
644	i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
645	    (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
646	    (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
647	    (id->src_ip6.__u6_addr.__u6_addr32[3]) ^
648	    (id->dst_port) ^ (id->src_port);
649	return i;
650}
651
652static int
653is_icmp6_query(int icmp6_type)
654{
655	if ((icmp6_type <= ICMP6_MAXTYPE) &&
656	    (icmp6_type == ICMP6_ECHO_REQUEST ||
657	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
658	    icmp6_type == ICMP6_WRUREQUEST ||
659	    icmp6_type == ICMP6_FQDN_QUERY ||
660	    icmp6_type == ICMP6_NI_QUERY))
661		return (1);
662
663	return (0);
664}
665
666static void
667send_reject6(struct ip_fw_args *args, int code, u_short offset, u_int hlen)
668{
669	if (code == ICMP6_UNREACH_RST && offset == 0 &&
670	    args->f_id.proto == IPPROTO_TCP) {
671		struct ip6_hdr *ip6;
672		struct tcphdr *tcp;
673		tcp_seq ack, seq;
674		int flags;
675		struct {
676			struct ip6_hdr ip6;
677			struct tcphdr th;
678		} ti;
679
680		if (args->m->m_len < (hlen+sizeof(struct tcphdr))) {
681			args->m = m_pullup(args->m, hlen+sizeof(struct tcphdr));
682			if (args->m == NULL)
683				return;
684		}
685
686		ip6 = mtod(args->m, struct ip6_hdr *);
687		tcp = (struct tcphdr *)(mtod(args->m, char *) + hlen);
688
689		if ((tcp->th_flags & TH_RST) != 0) {
690			m_freem(args->m);
691			return;
692		}
693
694		ti.ip6 = *ip6;
695		ti.th = *tcp;
696		ti.th.th_seq = ntohl(ti.th.th_seq);
697		ti.th.th_ack = ntohl(ti.th.th_ack);
698		ti.ip6.ip6_nxt = IPPROTO_TCP;
699
700		if (ti.th.th_flags & TH_ACK) {
701			ack = 0;
702			seq = ti.th.th_ack;
703			flags = TH_RST;
704		} else {
705			ack = ti.th.th_seq;
706			if (((args->m)->m_flags & M_PKTHDR) != 0) {
707				ack += (args->m)->m_pkthdr.len - hlen
708					- (ti.th.th_off << 2);
709			} else if (ip6->ip6_plen) {
710				ack += ntohs(ip6->ip6_plen) + sizeof(*ip6)
711					- hlen - (ti.th.th_off << 2);
712			} else {
713				m_freem(args->m);
714				return;
715			}
716			if (tcp->th_flags & TH_SYN)
717				ack++;
718			seq = 0;
719			flags = TH_RST|TH_ACK;
720		}
721		bcopy(&ti, ip6, sizeof(ti));
722		tcp_respond(NULL, ip6, (struct tcphdr *)(ip6 + 1),
723			args->m, ack, seq, flags);
724
725	} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
726		icmp6_error(args->m, ICMP6_DST_UNREACH, code, 0);
727
728	} else
729		m_freem(args->m);
730
731	args->m = NULL;
732}
733
734#endif /* INET6 */
735
736static u_int64_t norule_counter;	/* counter for ipfw_log(NULL...) */
737
738#define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
739#define SNP(buf) buf, sizeof(buf)
740
741/*
742 * We enter here when we have a rule with O_LOG.
743 * XXX this function alone takes about 2Kbytes of code!
744 */
745static void
746ipfw_log(struct ip_fw *f, u_int hlen, struct ip_fw_args *args,
747	struct mbuf *m, struct ifnet *oif, u_short offset)
748{
749	struct ether_header *eh = args->eh;
750	char *action;
751	int limit_reached = 0;
752	char action2[40], proto[128], fragment[32];
753
754	fragment[0] = '\0';
755	proto[0] = '\0';
756
757	if (f == NULL) {	/* bogus pkt */
758		if (verbose_limit != 0 && norule_counter >= verbose_limit)
759			return;
760		norule_counter++;
761		if (norule_counter == verbose_limit)
762			limit_reached = verbose_limit;
763		action = "Refuse";
764	} else {	/* O_LOG is the first action, find the real one */
765		ipfw_insn *cmd = ACTION_PTR(f);
766		ipfw_insn_log *l = (ipfw_insn_log *)cmd;
767
768		if (l->max_log != 0 && l->log_left == 0)
769			return;
770		l->log_left--;
771		if (l->log_left == 0)
772			limit_reached = l->max_log;
773		cmd += F_LEN(cmd);	/* point to first action */
774		if (cmd->opcode == O_ALTQ) {
775			ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
776
777			snprintf(SNPARGS(action2, 0), "Altq %d",
778				altq->qid);
779			cmd += F_LEN(cmd);
780		}
781		if (cmd->opcode == O_PROB)
782			cmd += F_LEN(cmd);
783
784		if (cmd->opcode == O_TAG)
785			cmd += F_LEN(cmd);
786
787		action = action2;
788		switch (cmd->opcode) {
789		case O_DENY:
790			action = "Deny";
791			break;
792
793		case O_REJECT:
794			if (cmd->arg1==ICMP_REJECT_RST)
795				action = "Reset";
796			else if (cmd->arg1==ICMP_UNREACH_HOST)
797				action = "Reject";
798			else
799				snprintf(SNPARGS(action2, 0), "Unreach %d",
800					cmd->arg1);
801			break;
802
803		case O_UNREACH6:
804			if (cmd->arg1==ICMP6_UNREACH_RST)
805				action = "Reset";
806			else
807				snprintf(SNPARGS(action2, 0), "Unreach %d",
808					cmd->arg1);
809			break;
810
811		case O_ACCEPT:
812			action = "Accept";
813			break;
814		case O_COUNT:
815			action = "Count";
816			break;
817		case O_DIVERT:
818			snprintf(SNPARGS(action2, 0), "Divert %d",
819				cmd->arg1);
820			break;
821		case O_TEE:
822			snprintf(SNPARGS(action2, 0), "Tee %d",
823				cmd->arg1);
824			break;
825		case O_SKIPTO:
826			snprintf(SNPARGS(action2, 0), "SkipTo %d",
827				cmd->arg1);
828			break;
829		case O_PIPE:
830			snprintf(SNPARGS(action2, 0), "Pipe %d",
831				cmd->arg1);
832			break;
833		case O_QUEUE:
834			snprintf(SNPARGS(action2, 0), "Queue %d",
835				cmd->arg1);
836			break;
837		case O_FORWARD_IP: {
838			ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
839			int len;
840
841			len = snprintf(SNPARGS(action2, 0), "Forward to %s",
842				inet_ntoa(sa->sa.sin_addr));
843			if (sa->sa.sin_port)
844				snprintf(SNPARGS(action2, len), ":%d",
845				    sa->sa.sin_port);
846			}
847			break;
848		case O_NETGRAPH:
849			snprintf(SNPARGS(action2, 0), "Netgraph %d",
850				cmd->arg1);
851			break;
852		case O_NGTEE:
853			snprintf(SNPARGS(action2, 0), "Ngtee %d",
854				cmd->arg1);
855			break;
856		default:
857			action = "UNKNOWN";
858			break;
859		}
860	}
861
862	if (hlen == 0) {	/* non-ip */
863		snprintf(SNPARGS(proto, 0), "MAC");
864
865	} else {
866		int len;
867		char src[48], dst[48];
868		struct icmphdr *icmp;
869		struct tcphdr *tcp;
870		struct udphdr *udp;
871		/* Initialize to make compiler happy. */
872		struct ip *ip = NULL;
873#ifdef INET6
874		struct ip6_hdr *ip6 = NULL;
875		struct icmp6_hdr *icmp6;
876#endif
877		src[0] = '\0';
878		dst[0] = '\0';
879#ifdef INET6
880		if (args->f_id.addr_type == 6) {
881			snprintf(src, sizeof(src), "[%s]",
882			    ip6_sprintf(&args->f_id.src_ip6));
883			snprintf(dst, sizeof(dst), "[%s]",
884			    ip6_sprintf(&args->f_id.dst_ip6));
885
886			ip6 = (struct ip6_hdr *)mtod(m, struct ip6_hdr *);
887			tcp = (struct tcphdr *)(mtod(args->m, char *) + hlen);
888			udp = (struct udphdr *)(mtod(args->m, char *) + hlen);
889		} else
890#endif
891		{
892			ip = mtod(m, struct ip *);
893			tcp = L3HDR(struct tcphdr, ip);
894			udp = L3HDR(struct udphdr, ip);
895
896			inet_ntoa_r(ip->ip_src, src);
897			inet_ntoa_r(ip->ip_dst, dst);
898		}
899
900		switch (args->f_id.proto) {
901		case IPPROTO_TCP:
902			len = snprintf(SNPARGS(proto, 0), "TCP %s", src);
903			if (offset == 0)
904				snprintf(SNPARGS(proto, len), ":%d %s:%d",
905				    ntohs(tcp->th_sport),
906				    dst,
907				    ntohs(tcp->th_dport));
908			else
909				snprintf(SNPARGS(proto, len), " %s", dst);
910			break;
911
912		case IPPROTO_UDP:
913			len = snprintf(SNPARGS(proto, 0), "UDP %s", src);
914			if (offset == 0)
915				snprintf(SNPARGS(proto, len), ":%d %s:%d",
916				    ntohs(udp->uh_sport),
917				    dst,
918				    ntohs(udp->uh_dport));
919			else
920				snprintf(SNPARGS(proto, len), " %s", dst);
921			break;
922
923		case IPPROTO_ICMP:
924			icmp = L3HDR(struct icmphdr, ip);
925			if (offset == 0)
926				len = snprintf(SNPARGS(proto, 0),
927				    "ICMP:%u.%u ",
928				    icmp->icmp_type, icmp->icmp_code);
929			else
930				len = snprintf(SNPARGS(proto, 0), "ICMP ");
931			len += snprintf(SNPARGS(proto, len), "%s", src);
932			snprintf(SNPARGS(proto, len), " %s", dst);
933			break;
934#ifdef INET6
935		case IPPROTO_ICMPV6:
936			icmp6 = (struct icmp6_hdr *)(mtod(args->m, char *) + hlen);
937			if (offset == 0)
938				len = snprintf(SNPARGS(proto, 0),
939				    "ICMPv6:%u.%u ",
940				    icmp6->icmp6_type, icmp6->icmp6_code);
941			else
942				len = snprintf(SNPARGS(proto, 0), "ICMPv6 ");
943			len += snprintf(SNPARGS(proto, len), "%s", src);
944			snprintf(SNPARGS(proto, len), " %s", dst);
945			break;
946#endif
947		default:
948			len = snprintf(SNPARGS(proto, 0), "P:%d %s",
949			    args->f_id.proto, src);
950			snprintf(SNPARGS(proto, len), " %s", dst);
951			break;
952		}
953
954#ifdef INET6
955		if (args->f_id.addr_type == 6) {
956			if (offset & (IP6F_OFF_MASK | IP6F_MORE_FRAG))
957				snprintf(SNPARGS(fragment, 0),
958				    " (frag %08x:%d@%d%s)",
959				    args->f_id.frag_id6,
960				    ntohs(ip6->ip6_plen) - hlen,
961				    ntohs(offset & IP6F_OFF_MASK) << 3,
962				    (offset & IP6F_MORE_FRAG) ? "+" : "");
963		} else
964#endif
965		{
966			int ip_off, ip_len;
967			if (eh != NULL) { /* layer 2 packets are as on the wire */
968				ip_off = ntohs(ip->ip_off);
969				ip_len = ntohs(ip->ip_len);
970			} else {
971				ip_off = ip->ip_off;
972				ip_len = ip->ip_len;
973			}
974			if (ip_off & (IP_MF | IP_OFFMASK))
975				snprintf(SNPARGS(fragment, 0),
976				    " (frag %d:%d@%d%s)",
977				    ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
978				    offset << 3,
979				    (ip_off & IP_MF) ? "+" : "");
980		}
981	}
982	if (oif || m->m_pkthdr.rcvif)
983		log(LOG_SECURITY | LOG_INFO,
984		    "ipfw: %d %s %s %s via %s%s\n",
985		    f ? f->rulenum : -1,
986		    action, proto, oif ? "out" : "in",
987		    oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
988		    fragment);
989	else
990		log(LOG_SECURITY | LOG_INFO,
991		    "ipfw: %d %s %s [no if info]%s\n",
992		    f ? f->rulenum : -1,
993		    action, proto, fragment);
994	if (limit_reached)
995		log(LOG_SECURITY | LOG_NOTICE,
996		    "ipfw: limit %d reached on entry %d\n",
997		    limit_reached, f ? f->rulenum : -1);
998}
999
1000/*
1001 * IMPORTANT: the hash function for dynamic rules must be commutative
1002 * in source and destination (ip,port), because rules are bidirectional
1003 * and we want to find both in the same bucket.
1004 */
1005static __inline int
1006hash_packet(struct ipfw_flow_id *id)
1007{
1008	u_int32_t i;
1009
1010#ifdef INET6
1011	if (IS_IP6_FLOW_ID(id))
1012		i = hash_packet6(id);
1013	else
1014#endif /* INET6 */
1015	i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
1016	i &= (curr_dyn_buckets - 1);
1017	return i;
1018}
1019
1020/**
1021 * unlink a dynamic rule from a chain. prev is a pointer to
1022 * the previous one, q is a pointer to the rule to delete,
1023 * head is a pointer to the head of the queue.
1024 * Modifies q and potentially also head.
1025 */
1026#define UNLINK_DYN_RULE(prev, head, q) {				\
1027	ipfw_dyn_rule *old_q = q;					\
1028									\
1029	/* remove a refcount to the parent */				\
1030	if (q->dyn_type == O_LIMIT)					\
1031		q->parent->count--;					\
1032	DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
1033		(q->id.src_ip), (q->id.src_port),			\
1034		(q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); )	\
1035	if (prev != NULL)						\
1036		prev->next = q = q->next;				\
1037	else								\
1038		head = q = q->next;					\
1039	dyn_count--;							\
1040	uma_zfree(ipfw_dyn_rule_zone, old_q); }
1041
1042#define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
1043
1044/**
1045 * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
1046 *
1047 * If keep_me == NULL, rules are deleted even if not expired,
1048 * otherwise only expired rules are removed.
1049 *
1050 * The value of the second parameter is also used to point to identify
1051 * a rule we absolutely do not want to remove (e.g. because we are
1052 * holding a reference to it -- this is the case with O_LIMIT_PARENT
1053 * rules). The pointer is only used for comparison, so any non-null
1054 * value will do.
1055 */
1056static void
1057remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
1058{
1059	static u_int32_t last_remove = 0;
1060
1061#define FORCE (keep_me == NULL)
1062
1063	ipfw_dyn_rule *prev, *q;
1064	int i, pass = 0, max_pass = 0;
1065
1066	IPFW_DYN_LOCK_ASSERT();
1067
1068	if (ipfw_dyn_v == NULL || dyn_count == 0)
1069		return;
1070	/* do not expire more than once per second, it is useless */
1071	if (!FORCE && last_remove == time_uptime)
1072		return;
1073	last_remove = time_uptime;
1074
1075	/*
1076	 * because O_LIMIT refer to parent rules, during the first pass only
1077	 * remove child and mark any pending LIMIT_PARENT, and remove
1078	 * them in a second pass.
1079	 */
1080next_pass:
1081	for (i = 0 ; i < curr_dyn_buckets ; i++) {
1082		for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
1083			/*
1084			 * Logic can become complex here, so we split tests.
1085			 */
1086			if (q == keep_me)
1087				goto next;
1088			if (rule != NULL && rule != q->rule)
1089				goto next; /* not the one we are looking for */
1090			if (q->dyn_type == O_LIMIT_PARENT) {
1091				/*
1092				 * handle parent in the second pass,
1093				 * record we need one.
1094				 */
1095				max_pass = 1;
1096				if (pass == 0)
1097					goto next;
1098				if (FORCE && q->count != 0 ) {
1099					/* XXX should not happen! */
1100					printf("ipfw: OUCH! cannot remove rule,"
1101					     " count %d\n", q->count);
1102				}
1103			} else {
1104				if (!FORCE &&
1105				    !TIME_LEQ( q->expire, time_uptime ))
1106					goto next;
1107			}
1108             if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
1109                     UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
1110                     continue;
1111             }
1112next:
1113			prev=q;
1114			q=q->next;
1115		}
1116	}
1117	if (pass++ < max_pass)
1118		goto next_pass;
1119}
1120
1121
1122/**
1123 * lookup a dynamic rule.
1124 */
1125static ipfw_dyn_rule *
1126lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
1127	struct tcphdr *tcp)
1128{
1129	/*
1130	 * stateful ipfw extensions.
1131	 * Lookup into dynamic session queue
1132	 */
1133#define MATCH_REVERSE	0
1134#define MATCH_FORWARD	1
1135#define MATCH_NONE	2
1136#define MATCH_UNKNOWN	3
1137	int i, dir = MATCH_NONE;
1138	ipfw_dyn_rule *prev, *q=NULL;
1139
1140	IPFW_DYN_LOCK_ASSERT();
1141
1142	if (ipfw_dyn_v == NULL)
1143		goto done;	/* not found */
1144	i = hash_packet( pkt );
1145	for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
1146		if (q->dyn_type == O_LIMIT_PARENT && q->count)
1147			goto next;
1148		if (TIME_LEQ( q->expire, time_uptime)) { /* expire entry */
1149			UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
1150			continue;
1151		}
1152		if (pkt->proto == q->id.proto &&
1153		    q->dyn_type != O_LIMIT_PARENT) {
1154			if (IS_IP6_FLOW_ID(pkt)) {
1155			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1156				&(q->id.src_ip6)) &&
1157			    IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1158				&(q->id.dst_ip6)) &&
1159			    pkt->src_port == q->id.src_port &&
1160			    pkt->dst_port == q->id.dst_port ) {
1161				dir = MATCH_FORWARD;
1162				break;
1163			    }
1164			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1165				    &(q->id.dst_ip6)) &&
1166				IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1167				    &(q->id.src_ip6)) &&
1168				pkt->src_port == q->id.dst_port &&
1169				pkt->dst_port == q->id.src_port ) {
1170				    dir = MATCH_REVERSE;
1171				    break;
1172			    }
1173			} else {
1174			    if (pkt->src_ip == q->id.src_ip &&
1175				pkt->dst_ip == q->id.dst_ip &&
1176				pkt->src_port == q->id.src_port &&
1177				pkt->dst_port == q->id.dst_port ) {
1178				    dir = MATCH_FORWARD;
1179				    break;
1180			    }
1181			    if (pkt->src_ip == q->id.dst_ip &&
1182				pkt->dst_ip == q->id.src_ip &&
1183				pkt->src_port == q->id.dst_port &&
1184				pkt->dst_port == q->id.src_port ) {
1185				    dir = MATCH_REVERSE;
1186				    break;
1187			    }
1188			}
1189		}
1190next:
1191		prev = q;
1192		q = q->next;
1193	}
1194	if (q == NULL)
1195		goto done; /* q = NULL, not found */
1196
1197	if ( prev != NULL) { /* found and not in front */
1198		prev->next = q->next;
1199		q->next = ipfw_dyn_v[i];
1200		ipfw_dyn_v[i] = q;
1201	}
1202	if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
1203		u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
1204
1205#define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
1206#define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
1207		q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
1208		switch (q->state) {
1209		case TH_SYN:				/* opening */
1210			q->expire = time_uptime + dyn_syn_lifetime;
1211			break;
1212
1213		case BOTH_SYN:			/* move to established */
1214		case BOTH_SYN | TH_FIN :	/* one side tries to close */
1215		case BOTH_SYN | (TH_FIN << 8) :
1216 			if (tcp) {
1217#define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
1218			    u_int32_t ack = ntohl(tcp->th_ack);
1219			    if (dir == MATCH_FORWARD) {
1220				if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
1221				    q->ack_fwd = ack;
1222				else { /* ignore out-of-sequence */
1223				    break;
1224				}
1225			    } else {
1226				if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
1227				    q->ack_rev = ack;
1228				else { /* ignore out-of-sequence */
1229				    break;
1230				}
1231			    }
1232			}
1233			q->expire = time_uptime + dyn_ack_lifetime;
1234			break;
1235
1236		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
1237			if (dyn_fin_lifetime >= dyn_keepalive_period)
1238				dyn_fin_lifetime = dyn_keepalive_period - 1;
1239			q->expire = time_uptime + dyn_fin_lifetime;
1240			break;
1241
1242		default:
1243#if 0
1244			/*
1245			 * reset or some invalid combination, but can also
1246			 * occur if we use keep-state the wrong way.
1247			 */
1248			if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
1249				printf("invalid state: 0x%x\n", q->state);
1250#endif
1251			if (dyn_rst_lifetime >= dyn_keepalive_period)
1252				dyn_rst_lifetime = dyn_keepalive_period - 1;
1253			q->expire = time_uptime + dyn_rst_lifetime;
1254			break;
1255		}
1256	} else if (pkt->proto == IPPROTO_UDP) {
1257		q->expire = time_uptime + dyn_udp_lifetime;
1258	} else {
1259		/* other protocols */
1260		q->expire = time_uptime + dyn_short_lifetime;
1261	}
1262done:
1263	if (match_direction)
1264		*match_direction = dir;
1265	return q;
1266}
1267
1268static ipfw_dyn_rule *
1269lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
1270	struct tcphdr *tcp)
1271{
1272	ipfw_dyn_rule *q;
1273
1274	IPFW_DYN_LOCK();
1275	q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
1276	if (q == NULL)
1277		IPFW_DYN_UNLOCK();
1278	/* NB: return table locked when q is not NULL */
1279	return q;
1280}
1281
1282static void
1283realloc_dynamic_table(void)
1284{
1285	IPFW_DYN_LOCK_ASSERT();
1286
1287	/*
1288	 * Try reallocation, make sure we have a power of 2 and do
1289	 * not allow more than 64k entries. In case of overflow,
1290	 * default to 1024.
1291	 */
1292
1293	if (dyn_buckets > 65536)
1294		dyn_buckets = 1024;
1295	if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
1296		dyn_buckets = curr_dyn_buckets; /* reset */
1297		return;
1298	}
1299	curr_dyn_buckets = dyn_buckets;
1300	if (ipfw_dyn_v != NULL)
1301		free(ipfw_dyn_v, M_IPFW);
1302	for (;;) {
1303		ipfw_dyn_v = malloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
1304		       M_IPFW, M_NOWAIT | M_ZERO);
1305		if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
1306			break;
1307		curr_dyn_buckets /= 2;
1308	}
1309}
1310
1311/**
1312 * Install state of type 'type' for a dynamic session.
1313 * The hash table contains two type of rules:
1314 * - regular rules (O_KEEP_STATE)
1315 * - rules for sessions with limited number of sess per user
1316 *   (O_LIMIT). When they are created, the parent is
1317 *   increased by 1, and decreased on delete. In this case,
1318 *   the third parameter is the parent rule and not the chain.
1319 * - "parent" rules for the above (O_LIMIT_PARENT).
1320 */
1321static ipfw_dyn_rule *
1322add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
1323{
1324	ipfw_dyn_rule *r;
1325	int i;
1326
1327	IPFW_DYN_LOCK_ASSERT();
1328
1329	if (ipfw_dyn_v == NULL ||
1330	    (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
1331		realloc_dynamic_table();
1332		if (ipfw_dyn_v == NULL)
1333			return NULL; /* failed ! */
1334	}
1335	i = hash_packet(id);
1336
1337	r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
1338	if (r == NULL) {
1339		printf ("ipfw: sorry cannot allocate state\n");
1340		return NULL;
1341	}
1342
1343	/* increase refcount on parent, and set pointer */
1344	if (dyn_type == O_LIMIT) {
1345		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
1346		if ( parent->dyn_type != O_LIMIT_PARENT)
1347			panic("invalid parent");
1348		parent->count++;
1349		r->parent = parent;
1350		rule = parent->rule;
1351	}
1352
1353	r->id = *id;
1354	r->expire = time_uptime + dyn_syn_lifetime;
1355	r->rule = rule;
1356	r->dyn_type = dyn_type;
1357	r->pcnt = r->bcnt = 0;
1358	r->count = 0;
1359
1360	r->bucket = i;
1361	r->next = ipfw_dyn_v[i];
1362	ipfw_dyn_v[i] = r;
1363	dyn_count++;
1364	DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1365	   dyn_type,
1366	   (r->id.src_ip), (r->id.src_port),
1367	   (r->id.dst_ip), (r->id.dst_port),
1368	   dyn_count ); )
1369	return r;
1370}
1371
1372/**
1373 * lookup dynamic parent rule using pkt and rule as search keys.
1374 * If the lookup fails, then install one.
1375 */
1376static ipfw_dyn_rule *
1377lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
1378{
1379	ipfw_dyn_rule *q;
1380	int i;
1381
1382	IPFW_DYN_LOCK_ASSERT();
1383
1384	if (ipfw_dyn_v) {
1385		int is_v6 = IS_IP6_FLOW_ID(pkt);
1386		i = hash_packet( pkt );
1387		for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
1388			if (q->dyn_type == O_LIMIT_PARENT &&
1389			    rule== q->rule &&
1390			    pkt->proto == q->id.proto &&
1391			    pkt->src_port == q->id.src_port &&
1392			    pkt->dst_port == q->id.dst_port &&
1393			    (
1394				(is_v6 &&
1395				 IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1396					&(q->id.src_ip6)) &&
1397				 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1398					&(q->id.dst_ip6))) ||
1399				(!is_v6 &&
1400				 pkt->src_ip == q->id.src_ip &&
1401				 pkt->dst_ip == q->id.dst_ip)
1402			    )
1403			) {
1404				q->expire = time_uptime + dyn_short_lifetime;
1405				DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
1406				return q;
1407			}
1408	}
1409	return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
1410}
1411
1412/**
1413 * Install dynamic state for rule type cmd->o.opcode
1414 *
1415 * Returns 1 (failure) if state is not installed because of errors or because
1416 * session limitations are enforced.
1417 */
1418static int
1419install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
1420	struct ip_fw_args *args)
1421{
1422	static int last_log;
1423
1424	ipfw_dyn_rule *q;
1425
1426	DEB(printf("ipfw: install state type %d 0x%08x %u -> 0x%08x %u\n",
1427	    cmd->o.opcode,
1428	    (args->f_id.src_ip), (args->f_id.src_port),
1429	    (args->f_id.dst_ip), (args->f_id.dst_port) );)
1430
1431	IPFW_DYN_LOCK();
1432
1433	q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1434
1435	if (q != NULL) { /* should never occur */
1436		if (last_log != time_uptime) {
1437			last_log = time_uptime;
1438			printf("ipfw: install_state: entry already present, done\n");
1439		}
1440		IPFW_DYN_UNLOCK();
1441		return 0;
1442	}
1443
1444	if (dyn_count >= dyn_max)
1445		/*
1446		 * Run out of slots, try to remove any expired rule.
1447		 */
1448		remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
1449
1450	if (dyn_count >= dyn_max) {
1451		if (last_log != time_uptime) {
1452			last_log = time_uptime;
1453			printf("ipfw: install_state: Too many dynamic rules\n");
1454		}
1455		IPFW_DYN_UNLOCK();
1456		return 1; /* cannot install, notify caller */
1457	}
1458
1459	switch (cmd->o.opcode) {
1460	case O_KEEP_STATE: /* bidir rule */
1461		add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
1462		break;
1463
1464	case O_LIMIT: /* limit number of sessions */
1465	    {
1466		u_int16_t limit_mask = cmd->limit_mask;
1467		struct ipfw_flow_id id;
1468		ipfw_dyn_rule *parent;
1469
1470		DEB(printf("ipfw: installing dyn-limit rule %d\n",
1471		    cmd->conn_limit);)
1472
1473		id.dst_ip = id.src_ip = 0;
1474		id.dst_port = id.src_port = 0;
1475		id.proto = args->f_id.proto;
1476		id.addr_type = args->f_id.addr_type;
1477
1478		if (IS_IP6_FLOW_ID (&(args->f_id))) {
1479			if (limit_mask & DYN_SRC_ADDR)
1480				id.src_ip6 = args->f_id.src_ip6;
1481			if (limit_mask & DYN_DST_ADDR)
1482				id.dst_ip6 = args->f_id.dst_ip6;
1483		} else {
1484			if (limit_mask & DYN_SRC_ADDR)
1485				id.src_ip = args->f_id.src_ip;
1486			if (limit_mask & DYN_DST_ADDR)
1487				id.dst_ip = args->f_id.dst_ip;
1488		}
1489		if (limit_mask & DYN_SRC_PORT)
1490			id.src_port = args->f_id.src_port;
1491		if (limit_mask & DYN_DST_PORT)
1492			id.dst_port = args->f_id.dst_port;
1493		parent = lookup_dyn_parent(&id, rule);
1494		if (parent == NULL) {
1495			printf("ipfw: add parent failed\n");
1496			IPFW_DYN_UNLOCK();
1497			return 1;
1498		}
1499		if (parent->count >= cmd->conn_limit) {
1500			/*
1501			 * See if we can remove some expired rule.
1502			 */
1503			remove_dyn_rule(rule, parent);
1504			if (parent->count >= cmd->conn_limit) {
1505				if (fw_verbose && last_log != time_uptime) {
1506					last_log = time_uptime;
1507					log(LOG_SECURITY | LOG_DEBUG,
1508					    "drop session, too many entries\n");
1509				}
1510				IPFW_DYN_UNLOCK();
1511				return 1;
1512			}
1513		}
1514		add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1515	    }
1516		break;
1517	default:
1518		printf("ipfw: unknown dynamic rule type %u\n", cmd->o.opcode);
1519		IPFW_DYN_UNLOCK();
1520		return 1;
1521	}
1522	lookup_dyn_rule_locked(&args->f_id, NULL, NULL); /* XXX just set lifetime */
1523	IPFW_DYN_UNLOCK();
1524	return 0;
1525}
1526
1527/*
1528 * Generate a TCP packet, containing either a RST or a keepalive.
1529 * When flags & TH_RST, we are sending a RST packet, because of a
1530 * "reset" action matched the packet.
1531 * Otherwise we are sending a keepalive, and flags & TH_
1532 */
1533static struct mbuf *
1534send_pkt(struct ipfw_flow_id *id, u_int32_t seq, u_int32_t ack, int flags)
1535{
1536	struct mbuf *m;
1537	struct ip *ip;
1538	struct tcphdr *tcp;
1539
1540	MGETHDR(m, M_DONTWAIT, MT_DATA);
1541	if (m == 0)
1542		return (NULL);
1543	m->m_pkthdr.rcvif = (struct ifnet *)0;
1544	m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1545	m->m_data += max_linkhdr;
1546
1547	ip = mtod(m, struct ip *);
1548	bzero(ip, m->m_len);
1549	tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1550	ip->ip_p = IPPROTO_TCP;
1551	tcp->th_off = 5;
1552	/*
1553	 * Assume we are sending a RST (or a keepalive in the reverse
1554	 * direction), swap src and destination addresses and ports.
1555	 */
1556	ip->ip_src.s_addr = htonl(id->dst_ip);
1557	ip->ip_dst.s_addr = htonl(id->src_ip);
1558	tcp->th_sport = htons(id->dst_port);
1559	tcp->th_dport = htons(id->src_port);
1560	if (flags & TH_RST) {	/* we are sending a RST */
1561		if (flags & TH_ACK) {
1562			tcp->th_seq = htonl(ack);
1563			tcp->th_ack = htonl(0);
1564			tcp->th_flags = TH_RST;
1565		} else {
1566			if (flags & TH_SYN)
1567				seq++;
1568			tcp->th_seq = htonl(0);
1569			tcp->th_ack = htonl(seq);
1570			tcp->th_flags = TH_RST | TH_ACK;
1571		}
1572	} else {
1573		/*
1574		 * We are sending a keepalive. flags & TH_SYN determines
1575		 * the direction, forward if set, reverse if clear.
1576		 * NOTE: seq and ack are always assumed to be correct
1577		 * as set by the caller. This may be confusing...
1578		 */
1579		if (flags & TH_SYN) {
1580			/*
1581			 * we have to rewrite the correct addresses!
1582			 */
1583			ip->ip_dst.s_addr = htonl(id->dst_ip);
1584			ip->ip_src.s_addr = htonl(id->src_ip);
1585			tcp->th_dport = htons(id->dst_port);
1586			tcp->th_sport = htons(id->src_port);
1587		}
1588		tcp->th_seq = htonl(seq);
1589		tcp->th_ack = htonl(ack);
1590		tcp->th_flags = TH_ACK;
1591	}
1592	/*
1593	 * set ip_len to the payload size so we can compute
1594	 * the tcp checksum on the pseudoheader
1595	 * XXX check this, could save a couple of words ?
1596	 */
1597	ip->ip_len = htons(sizeof(struct tcphdr));
1598	tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1599	/*
1600	 * now fill fields left out earlier
1601	 */
1602	ip->ip_ttl = ip_defttl;
1603	ip->ip_len = m->m_pkthdr.len;
1604	m->m_flags |= M_SKIP_FIREWALL;
1605	return (m);
1606}
1607
1608/*
1609 * sends a reject message, consuming the mbuf passed as an argument.
1610 */
1611static void
1612send_reject(struct ip_fw_args *args, int code, u_short offset, int ip_len)
1613{
1614
1615	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1616		/* We need the IP header in host order for icmp_error(). */
1617		if (args->eh != NULL) {
1618			struct ip *ip = mtod(args->m, struct ip *);
1619			ip->ip_len = ntohs(ip->ip_len);
1620			ip->ip_off = ntohs(ip->ip_off);
1621		}
1622		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1623	} else if (offset == 0 && args->f_id.proto == IPPROTO_TCP) {
1624		struct tcphdr *const tcp =
1625		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1626		if ( (tcp->th_flags & TH_RST) == 0) {
1627			struct mbuf *m;
1628			m = send_pkt(&(args->f_id), ntohl(tcp->th_seq),
1629				ntohl(tcp->th_ack),
1630				tcp->th_flags | TH_RST);
1631			if (m != NULL)
1632				ip_output(m, NULL, NULL, 0, NULL, NULL);
1633		}
1634		m_freem(args->m);
1635	} else
1636		m_freem(args->m);
1637	args->m = NULL;
1638}
1639
1640/**
1641 *
1642 * Given an ip_fw *, lookup_next_rule will return a pointer
1643 * to the next rule, which can be either the jump
1644 * target (for skipto instructions) or the next one in the list (in
1645 * all other cases including a missing jump target).
1646 * The result is also written in the "next_rule" field of the rule.
1647 * Backward jumps are not allowed, so start looking from the next
1648 * rule...
1649 *
1650 * This never returns NULL -- in case we do not have an exact match,
1651 * the next rule is returned. When the ruleset is changed,
1652 * pointers are flushed so we are always correct.
1653 */
1654
1655static struct ip_fw *
1656lookup_next_rule(struct ip_fw *me)
1657{
1658	struct ip_fw *rule = NULL;
1659	ipfw_insn *cmd;
1660
1661	/* look for action, in case it is a skipto */
1662	cmd = ACTION_PTR(me);
1663	if (cmd->opcode == O_LOG)
1664		cmd += F_LEN(cmd);
1665	if (cmd->opcode == O_ALTQ)
1666		cmd += F_LEN(cmd);
1667	if (cmd->opcode == O_TAG)
1668		cmd += F_LEN(cmd);
1669	if ( cmd->opcode == O_SKIPTO )
1670		for (rule = me->next; rule ; rule = rule->next)
1671			if (rule->rulenum >= cmd->arg1)
1672				break;
1673	if (rule == NULL)			/* failure or not a skipto */
1674		rule = me->next;
1675	me->next_rule = rule;
1676	return rule;
1677}
1678
1679static int
1680add_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1681	uint8_t mlen, uint32_t value)
1682{
1683	struct radix_node_head *rnh;
1684	struct table_entry *ent;
1685
1686	if (tbl >= IPFW_TABLES_MAX)
1687		return (EINVAL);
1688	rnh = ch->tables[tbl];
1689	ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
1690	if (ent == NULL)
1691		return (ENOMEM);
1692	ent->value = value;
1693	ent->addr.sin_len = ent->mask.sin_len = 8;
1694	ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1695	ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
1696	IPFW_WLOCK(&layer3_chain);
1697	if (rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent) ==
1698	    NULL) {
1699		IPFW_WUNLOCK(&layer3_chain);
1700		free(ent, M_IPFW_TBL);
1701		return (EEXIST);
1702	}
1703	IPFW_WUNLOCK(&layer3_chain);
1704	return (0);
1705}
1706
1707static int
1708del_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1709	uint8_t mlen)
1710{
1711	struct radix_node_head *rnh;
1712	struct table_entry *ent;
1713	struct sockaddr_in sa, mask;
1714
1715	if (tbl >= IPFW_TABLES_MAX)
1716		return (EINVAL);
1717	rnh = ch->tables[tbl];
1718	sa.sin_len = mask.sin_len = 8;
1719	mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1720	sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
1721	IPFW_WLOCK(ch);
1722	ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
1723	if (ent == NULL) {
1724		IPFW_WUNLOCK(ch);
1725		return (ESRCH);
1726	}
1727	IPFW_WUNLOCK(ch);
1728	free(ent, M_IPFW_TBL);
1729	return (0);
1730}
1731
1732static int
1733flush_table_entry(struct radix_node *rn, void *arg)
1734{
1735	struct radix_node_head * const rnh = arg;
1736	struct table_entry *ent;
1737
1738	ent = (struct table_entry *)
1739	    rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
1740	if (ent != NULL)
1741		free(ent, M_IPFW_TBL);
1742	return (0);
1743}
1744
1745static int
1746flush_table(struct ip_fw_chain *ch, uint16_t tbl)
1747{
1748	struct radix_node_head *rnh;
1749
1750	IPFW_WLOCK_ASSERT(ch);
1751
1752	if (tbl >= IPFW_TABLES_MAX)
1753		return (EINVAL);
1754	rnh = ch->tables[tbl];
1755	KASSERT(rnh != NULL, ("NULL IPFW table"));
1756	rnh->rnh_walktree(rnh, flush_table_entry, rnh);
1757	return (0);
1758}
1759
1760static void
1761flush_tables(struct ip_fw_chain *ch)
1762{
1763	uint16_t tbl;
1764
1765	IPFW_WLOCK_ASSERT(ch);
1766
1767	for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
1768		flush_table(ch, tbl);
1769}
1770
1771static int
1772init_tables(struct ip_fw_chain *ch)
1773{
1774	int i;
1775	uint16_t j;
1776
1777	for (i = 0; i < IPFW_TABLES_MAX; i++) {
1778		if (!rn_inithead((void **)&ch->tables[i], 32)) {
1779			for (j = 0; j < i; j++) {
1780				(void) flush_table(ch, j);
1781			}
1782			return (ENOMEM);
1783		}
1784	}
1785	return (0);
1786}
1787
1788static int
1789lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1790	uint32_t *val)
1791{
1792	struct radix_node_head *rnh;
1793	struct table_entry *ent;
1794	struct sockaddr_in sa;
1795
1796	if (tbl >= IPFW_TABLES_MAX)
1797		return (0);
1798	rnh = ch->tables[tbl];
1799	sa.sin_len = 8;
1800	sa.sin_addr.s_addr = addr;
1801	ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
1802	if (ent != NULL) {
1803		*val = ent->value;
1804		return (1);
1805	}
1806	return (0);
1807}
1808
1809static int
1810count_table_entry(struct radix_node *rn, void *arg)
1811{
1812	u_int32_t * const cnt = arg;
1813
1814	(*cnt)++;
1815	return (0);
1816}
1817
1818static int
1819count_table(struct ip_fw_chain *ch, uint32_t tbl, uint32_t *cnt)
1820{
1821	struct radix_node_head *rnh;
1822
1823	if (tbl >= IPFW_TABLES_MAX)
1824		return (EINVAL);
1825	rnh = ch->tables[tbl];
1826	*cnt = 0;
1827	rnh->rnh_walktree(rnh, count_table_entry, cnt);
1828	return (0);
1829}
1830
1831static int
1832dump_table_entry(struct radix_node *rn, void *arg)
1833{
1834	struct table_entry * const n = (struct table_entry *)rn;
1835	ipfw_table * const tbl = arg;
1836	ipfw_table_entry *ent;
1837
1838	if (tbl->cnt == tbl->size)
1839		return (1);
1840	ent = &tbl->ent[tbl->cnt];
1841	ent->tbl = tbl->tbl;
1842	if (in_nullhost(n->mask.sin_addr))
1843		ent->masklen = 0;
1844	else
1845		ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
1846	ent->addr = n->addr.sin_addr.s_addr;
1847	ent->value = n->value;
1848	tbl->cnt++;
1849	return (0);
1850}
1851
1852static int
1853dump_table(struct ip_fw_chain *ch, ipfw_table *tbl)
1854{
1855	struct radix_node_head *rnh;
1856
1857	if (tbl->tbl >= IPFW_TABLES_MAX)
1858		return (EINVAL);
1859	rnh = ch->tables[tbl->tbl];
1860	tbl->cnt = 0;
1861	rnh->rnh_walktree(rnh, dump_table_entry, tbl);
1862	return (0);
1863}
1864
1865static void
1866fill_ugid_cache(struct inpcb *inp, struct ip_fw_ugid *ugp)
1867{
1868	struct ucred *cr;
1869
1870	if (inp->inp_socket != NULL) {
1871		cr = inp->inp_socket->so_cred;
1872		ugp->fw_prid = jailed(cr) ?
1873		    cr->cr_prison->pr_id : -1;
1874		ugp->fw_uid = cr->cr_uid;
1875		ugp->fw_ngroups = cr->cr_ngroups;
1876		bcopy(cr->cr_groups, ugp->fw_groups,
1877		    sizeof(ugp->fw_groups));
1878	}
1879}
1880
1881static int
1882check_uidgid(ipfw_insn_u32 *insn,
1883	int proto, struct ifnet *oif,
1884	struct in_addr dst_ip, u_int16_t dst_port,
1885	struct in_addr src_ip, u_int16_t src_port,
1886	struct ip_fw_ugid *ugp, int *lookup, struct inpcb *inp)
1887{
1888	struct inpcbinfo *pi;
1889	int wildcard;
1890	struct inpcb *pcb;
1891	int match;
1892	gid_t *gp;
1893
1894	/*
1895	 * Check to see if the UDP or TCP stack supplied us with
1896	 * the PCB. If so, rather then holding a lock and looking
1897	 * up the PCB, we can use the one that was supplied.
1898	 */
1899	if (inp && *lookup == 0) {
1900		INP_LOCK_ASSERT(inp);
1901		if (inp->inp_socket != NULL) {
1902			fill_ugid_cache(inp, ugp);
1903			*lookup = 1;
1904		}
1905	}
1906	/*
1907	 * If we have already been here and the packet has no
1908	 * PCB entry associated with it, then we can safely
1909	 * assume that this is a no match.
1910	 */
1911	if (*lookup == -1)
1912		return (0);
1913	if (proto == IPPROTO_TCP) {
1914		wildcard = 0;
1915		pi = &tcbinfo;
1916	} else if (proto == IPPROTO_UDP) {
1917		wildcard = 1;
1918		pi = &udbinfo;
1919	} else
1920		return 0;
1921	match = 0;
1922	if (*lookup == 0) {
1923		INP_INFO_RLOCK(pi);
1924		pcb =  (oif) ?
1925			in_pcblookup_hash(pi,
1926				dst_ip, htons(dst_port),
1927				src_ip, htons(src_port),
1928				wildcard, oif) :
1929			in_pcblookup_hash(pi,
1930				src_ip, htons(src_port),
1931				dst_ip, htons(dst_port),
1932				wildcard, NULL);
1933		if (pcb != NULL) {
1934			INP_LOCK(pcb);
1935			if (pcb->inp_socket != NULL) {
1936				fill_ugid_cache(pcb, ugp);
1937				*lookup = 1;
1938			}
1939			INP_UNLOCK(pcb);
1940		}
1941		INP_INFO_RUNLOCK(pi);
1942		if (*lookup == 0) {
1943			/*
1944			 * If the lookup did not yield any results, there
1945			 * is no sense in coming back and trying again. So
1946			 * we can set lookup to -1 and ensure that we wont
1947			 * bother the pcb system again.
1948			 */
1949			*lookup = -1;
1950			return (0);
1951		}
1952	}
1953	if (insn->o.opcode == O_UID)
1954		match = (ugp->fw_uid == (uid_t)insn->d[0]);
1955	else if (insn->o.opcode == O_GID) {
1956		for (gp = ugp->fw_groups;
1957			gp < &ugp->fw_groups[ugp->fw_ngroups]; gp++)
1958			if (*gp == (gid_t)insn->d[0]) {
1959				match = 1;
1960				break;
1961			}
1962	} else if (insn->o.opcode == O_JAIL)
1963		match = (ugp->fw_prid == (int)insn->d[0]);
1964	return match;
1965}
1966
1967/*
1968 * The main check routine for the firewall.
1969 *
1970 * All arguments are in args so we can modify them and return them
1971 * back to the caller.
1972 *
1973 * Parameters:
1974 *
1975 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
1976 *		Starts with the IP header.
1977 *	args->eh (in)	Mac header if present, or NULL for layer3 packet.
1978 *	args->oif	Outgoing interface, or NULL if packet is incoming.
1979 *		The incoming interface is in the mbuf. (in)
1980 *	args->divert_rule (in/out)
1981 *		Skip up to the first rule past this rule number;
1982 *		upon return, non-zero port number for divert or tee.
1983 *
1984 *	args->rule	Pointer to the last matching rule (in/out)
1985 *	args->next_hop	Socket we are forwarding to (out).
1986 *	args->f_id	Addresses grabbed from the packet (out)
1987 * 	args->cookie	a cookie depending on rule action
1988 *
1989 * Return value:
1990 *
1991 *	IP_FW_PASS	the packet must be accepted
1992 *	IP_FW_DENY	the packet must be dropped
1993 *	IP_FW_DIVERT	divert packet, port in m_tag
1994 *	IP_FW_TEE	tee packet, port in m_tag
1995 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
1996 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
1997 *
1998 */
1999
2000int
2001ipfw_chk(struct ip_fw_args *args)
2002{
2003	/*
2004	 * Local variables hold state during the processing of a packet.
2005	 *
2006	 * IMPORTANT NOTE: to speed up the processing of rules, there
2007	 * are some assumption on the values of the variables, which
2008	 * are documented here. Should you change them, please check
2009	 * the implementation of the various instructions to make sure
2010	 * that they still work.
2011	 *
2012	 * args->eh	The MAC header. It is non-null for a layer2
2013	 *	packet, it is NULL for a layer-3 packet.
2014	 *
2015	 * m | args->m	Pointer to the mbuf, as received from the caller.
2016	 *	It may change if ipfw_chk() does an m_pullup, or if it
2017	 *	consumes the packet because it calls send_reject().
2018	 *	XXX This has to change, so that ipfw_chk() never modifies
2019	 *	or consumes the buffer.
2020	 * ip	is simply an alias of the value of m, and it is kept
2021	 *	in sync with it (the packet is	supposed to start with
2022	 *	the ip header).
2023	 */
2024	struct mbuf *m = args->m;
2025	struct ip *ip = mtod(m, struct ip *);
2026
2027	/*
2028	 * For rules which contain uid/gid or jail constraints, cache
2029	 * a copy of the users credentials after the pcb lookup has been
2030	 * executed. This will speed up the processing of rules with
2031	 * these types of constraints, as well as decrease contention
2032	 * on pcb related locks.
2033	 */
2034	struct ip_fw_ugid fw_ugid_cache;
2035	int ugid_lookup = 0;
2036
2037	/*
2038	 * divinput_flags	If non-zero, set to the IP_FW_DIVERT_*_FLAG
2039	 *	associated with a packet input on a divert socket.  This
2040	 *	will allow to distinguish traffic and its direction when
2041	 *	it originates from a divert socket.
2042	 */
2043	u_int divinput_flags = 0;
2044
2045	/*
2046	 * oif | args->oif	If NULL, ipfw_chk has been called on the
2047	 *	inbound path (ether_input, ip_input).
2048	 *	If non-NULL, ipfw_chk has been called on the outbound path
2049	 *	(ether_output, ip_output).
2050	 */
2051	struct ifnet *oif = args->oif;
2052
2053	struct ip_fw *f = NULL;		/* matching rule */
2054	int retval = 0;
2055
2056	/*
2057	 * hlen	The length of the IP header.
2058	 */
2059	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
2060
2061	/*
2062	 * offset	The offset of a fragment. offset != 0 means that
2063	 *	we have a fragment at this offset of an IPv4 packet.
2064	 *	offset == 0 means that (if this is an IPv4 packet)
2065	 *	this is the first or only fragment.
2066	 *	For IPv6 offset == 0 means there is no Fragment Header.
2067	 *	If offset != 0 for IPv6 always use correct mask to
2068	 *	get the correct offset because we add IP6F_MORE_FRAG
2069	 *	to be able to dectect the first fragment which would
2070	 *	otherwise have offset = 0.
2071	 */
2072	u_short offset = 0;
2073
2074	/*
2075	 * Local copies of addresses. They are only valid if we have
2076	 * an IP packet.
2077	 *
2078	 * proto	The protocol. Set to 0 for non-ip packets,
2079	 *	or to the protocol read from the packet otherwise.
2080	 *	proto != 0 means that we have an IPv4 packet.
2081	 *
2082	 * src_port, dst_port	port numbers, in HOST format. Only
2083	 *	valid for TCP and UDP packets.
2084	 *
2085	 * src_ip, dst_ip	ip addresses, in NETWORK format.
2086	 *	Only valid for IPv4 packets.
2087	 */
2088	u_int8_t proto;
2089	u_int16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
2090	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
2091	u_int16_t ip_len=0;
2092	int pktlen;
2093
2094	/*
2095	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
2096	 * 	MATCH_NONE when checked and not matched (q = NULL),
2097	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
2098	 */
2099	int dyn_dir = MATCH_UNKNOWN;
2100	ipfw_dyn_rule *q = NULL;
2101	struct ip_fw_chain *chain = &layer3_chain;
2102	struct m_tag *mtag;
2103
2104	/*
2105	 * We store in ulp a pointer to the upper layer protocol header.
2106	 * In the ipv4 case this is easy to determine from the header,
2107	 * but for ipv6 we might have some additional headers in the middle.
2108	 * ulp is NULL if not found.
2109	 */
2110	void *ulp = NULL;		/* upper layer protocol pointer. */
2111	/* XXX ipv6 variables */
2112	int is_ipv6 = 0;
2113	u_int16_t ext_hd = 0;	/* bits vector for extension header filtering */
2114	/* end of ipv6 variables */
2115	int is_ipv4 = 0;
2116
2117	if (m->m_flags & M_SKIP_FIREWALL)
2118		return (IP_FW_PASS);	/* accept */
2119
2120	pktlen = m->m_pkthdr.len;
2121	proto = args->f_id.proto = 0;	/* mark f_id invalid */
2122		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
2123
2124/*
2125 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
2126 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
2127 * pointer might become stale after other pullups (but we never use it
2128 * this way).
2129 */
2130#define PULLUP_TO(len, p, T)						\
2131do {									\
2132	int x = (len) + sizeof(T);					\
2133	if ((m)->m_len < x) {						\
2134		args->m = m = m_pullup(m, x);				\
2135		if (m == NULL)						\
2136			goto pullup_failed;				\
2137	}								\
2138	p = (mtod(m, char *) + (len));					\
2139} while (0)
2140
2141	/* Identify IP packets and fill up variables. */
2142	if (pktlen >= sizeof(struct ip6_hdr) &&
2143	    (args->eh == NULL || ntohs(args->eh->ether_type)==ETHERTYPE_IPV6) &&
2144	    mtod(m, struct ip *)->ip_v == 6) {
2145		is_ipv6 = 1;
2146		args->f_id.addr_type = 6;
2147		hlen = sizeof(struct ip6_hdr);
2148		proto = mtod(m, struct ip6_hdr *)->ip6_nxt;
2149
2150		/* Search extension headers to find upper layer protocols */
2151		while (ulp == NULL) {
2152			switch (proto) {
2153			case IPPROTO_ICMPV6:
2154				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
2155				args->f_id.flags = ICMP6(ulp)->icmp6_type;
2156				break;
2157
2158			case IPPROTO_TCP:
2159				PULLUP_TO(hlen, ulp, struct tcphdr);
2160				dst_port = TCP(ulp)->th_dport;
2161				src_port = TCP(ulp)->th_sport;
2162				args->f_id.flags = TCP(ulp)->th_flags;
2163				break;
2164
2165			case IPPROTO_UDP:
2166				PULLUP_TO(hlen, ulp, struct udphdr);
2167				dst_port = UDP(ulp)->uh_dport;
2168				src_port = UDP(ulp)->uh_sport;
2169				break;
2170
2171			case IPPROTO_HOPOPTS:	/* RFC 2460 */
2172				PULLUP_TO(hlen, ulp, struct ip6_hbh);
2173				ext_hd |= EXT_HOPOPTS;
2174				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2175				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2176				ulp = NULL;
2177				break;
2178
2179			case IPPROTO_ROUTING:	/* RFC 2460 */
2180				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
2181				if (((struct ip6_rthdr *)ulp)->ip6r_type != 0) {
2182					printf("IPFW2: IPV6 - Unknown Routing "
2183					    "Header type(%d)\n",
2184					    ((struct ip6_rthdr *)ulp)->ip6r_type);
2185					if (fw_deny_unknown_exthdrs)
2186					    return (IP_FW_DENY);
2187					break;
2188				}
2189				ext_hd |= EXT_ROUTING;
2190				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
2191				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
2192				ulp = NULL;
2193				break;
2194
2195			case IPPROTO_FRAGMENT:	/* RFC 2460 */
2196				PULLUP_TO(hlen, ulp, struct ip6_frag);
2197				ext_hd |= EXT_FRAGMENT;
2198				hlen += sizeof (struct ip6_frag);
2199				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
2200				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
2201					IP6F_OFF_MASK;
2202				/* Add IP6F_MORE_FRAG for offset of first
2203				 * fragment to be != 0. */
2204				offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
2205					IP6F_MORE_FRAG;
2206				if (offset == 0) {
2207					printf("IPFW2: IPV6 - Invalid Fragment "
2208					    "Header\n");
2209					if (fw_deny_unknown_exthdrs)
2210					    return (IP_FW_DENY);
2211					break;
2212				}
2213				args->f_id.frag_id6 =
2214				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
2215				ulp = NULL;
2216				break;
2217
2218			case IPPROTO_DSTOPTS:	/* RFC 2460 */
2219				PULLUP_TO(hlen, ulp, struct ip6_hbh);
2220				ext_hd |= EXT_DSTOPTS;
2221				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2222				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2223				ulp = NULL;
2224				break;
2225
2226			case IPPROTO_AH:	/* RFC 2402 */
2227				PULLUP_TO(hlen, ulp, struct ip6_ext);
2228				ext_hd |= EXT_AH;
2229				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
2230				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
2231				ulp = NULL;
2232				break;
2233
2234			case IPPROTO_ESP:	/* RFC 2406 */
2235				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
2236				/* Anything past Seq# is variable length and
2237				 * data past this ext. header is encrypted. */
2238				ext_hd |= EXT_ESP;
2239				break;
2240
2241			case IPPROTO_NONE:	/* RFC 2460 */
2242				PULLUP_TO(hlen, ulp, struct ip6_ext);
2243				/* Packet ends here. if ip6e_len!=0 octets
2244				 * must be ignored. */
2245				break;
2246
2247			case IPPROTO_OSPFIGP:
2248				/* XXX OSPF header check? */
2249				PULLUP_TO(hlen, ulp, struct ip6_ext);
2250				break;
2251
2252			default:
2253				printf("IPFW2: IPV6 - Unknown Extension "
2254				    "Header(%d), ext_hd=%x\n", proto, ext_hd);
2255				if (fw_deny_unknown_exthdrs)
2256				    return (IP_FW_DENY);
2257				break;
2258			} /*switch */
2259		}
2260		args->f_id.src_ip6 = mtod(m,struct ip6_hdr *)->ip6_src;
2261		args->f_id.dst_ip6 = mtod(m,struct ip6_hdr *)->ip6_dst;
2262		args->f_id.src_ip = 0;
2263		args->f_id.dst_ip = 0;
2264		args->f_id.flow_id6 = ntohl(mtod(m, struct ip6_hdr *)->ip6_flow);
2265	} else if (pktlen >= sizeof(struct ip) &&
2266	    (args->eh == NULL || ntohs(args->eh->ether_type) == ETHERTYPE_IP) &&
2267	    mtod(m, struct ip *)->ip_v == 4) {
2268	    	is_ipv4 = 1;
2269		ip = mtod(m, struct ip *);
2270		hlen = ip->ip_hl << 2;
2271		args->f_id.addr_type = 4;
2272
2273		/*
2274		 * Collect parameters into local variables for faster matching.
2275		 */
2276		proto = ip->ip_p;
2277		src_ip = ip->ip_src;
2278		dst_ip = ip->ip_dst;
2279		if (args->eh != NULL) { /* layer 2 packets are as on the wire */
2280			offset = ntohs(ip->ip_off) & IP_OFFMASK;
2281			ip_len = ntohs(ip->ip_len);
2282		} else {
2283			offset = ip->ip_off & IP_OFFMASK;
2284			ip_len = ip->ip_len;
2285		}
2286		pktlen = ip_len < pktlen ? ip_len : pktlen;
2287
2288		if (offset == 0) {
2289			switch (proto) {
2290			case IPPROTO_TCP:
2291				PULLUP_TO(hlen, ulp, struct tcphdr);
2292				dst_port = TCP(ulp)->th_dport;
2293				src_port = TCP(ulp)->th_sport;
2294				args->f_id.flags = TCP(ulp)->th_flags;
2295				break;
2296
2297			case IPPROTO_UDP:
2298				PULLUP_TO(hlen, ulp, struct udphdr);
2299				dst_port = UDP(ulp)->uh_dport;
2300				src_port = UDP(ulp)->uh_sport;
2301				break;
2302
2303			case IPPROTO_ICMP:
2304				PULLUP_TO(hlen, ulp, struct icmphdr);
2305				args->f_id.flags = ICMP(ulp)->icmp_type;
2306				break;
2307
2308			default:
2309				break;
2310			}
2311		}
2312
2313		args->f_id.src_ip = ntohl(src_ip.s_addr);
2314		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
2315	}
2316#undef PULLUP_TO
2317	if (proto) { /* we may have port numbers, store them */
2318		args->f_id.proto = proto;
2319		args->f_id.src_port = src_port = ntohs(src_port);
2320		args->f_id.dst_port = dst_port = ntohs(dst_port);
2321	}
2322
2323	IPFW_RLOCK(chain);
2324	mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
2325	if (args->rule) {
2326		/*
2327		 * Packet has already been tagged. Look for the next rule
2328		 * to restart processing.
2329		 *
2330		 * If fw_one_pass != 0 then just accept it.
2331		 * XXX should not happen here, but optimized out in
2332		 * the caller.
2333		 */
2334		if (fw_one_pass) {
2335			IPFW_RUNLOCK(chain);
2336			return (IP_FW_PASS);
2337		}
2338
2339		f = args->rule->next_rule;
2340		if (f == NULL)
2341			f = lookup_next_rule(args->rule);
2342	} else {
2343		/*
2344		 * Find the starting rule. It can be either the first
2345		 * one, or the one after divert_rule if asked so.
2346		 */
2347		int skipto = mtag ? divert_cookie(mtag) : 0;
2348
2349		f = chain->rules;
2350		if (args->eh == NULL && skipto != 0) {
2351			if (skipto >= IPFW_DEFAULT_RULE) {
2352				IPFW_RUNLOCK(chain);
2353				return (IP_FW_DENY); /* invalid */
2354			}
2355			while (f && f->rulenum <= skipto)
2356				f = f->next;
2357			if (f == NULL) {	/* drop packet */
2358				IPFW_RUNLOCK(chain);
2359				return (IP_FW_DENY);
2360			}
2361		}
2362	}
2363	/* reset divert rule to avoid confusion later */
2364	if (mtag) {
2365		divinput_flags = divert_info(mtag) &
2366		    (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
2367		m_tag_delete(m, mtag);
2368	}
2369
2370	/*
2371	 * Now scan the rules, and parse microinstructions for each rule.
2372	 */
2373	for (; f; f = f->next) {
2374		ipfw_insn *cmd;
2375		uint32_t tablearg = 0;
2376		int l, cmdlen, skip_or; /* skip rest of OR block */
2377
2378again:
2379		if (set_disable & (1 << f->set) )
2380			continue;
2381
2382		skip_or = 0;
2383		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
2384		    l -= cmdlen, cmd += cmdlen) {
2385			int match;
2386
2387			/*
2388			 * check_body is a jump target used when we find a
2389			 * CHECK_STATE, and need to jump to the body of
2390			 * the target rule.
2391			 */
2392
2393check_body:
2394			cmdlen = F_LEN(cmd);
2395			/*
2396			 * An OR block (insn_1 || .. || insn_n) has the
2397			 * F_OR bit set in all but the last instruction.
2398			 * The first match will set "skip_or", and cause
2399			 * the following instructions to be skipped until
2400			 * past the one with the F_OR bit clear.
2401			 */
2402			if (skip_or) {		/* skip this instruction */
2403				if ((cmd->len & F_OR) == 0)
2404					skip_or = 0;	/* next one is good */
2405				continue;
2406			}
2407			match = 0; /* set to 1 if we succeed */
2408
2409			switch (cmd->opcode) {
2410			/*
2411			 * The first set of opcodes compares the packet's
2412			 * fields with some pattern, setting 'match' if a
2413			 * match is found. At the end of the loop there is
2414			 * logic to deal with F_NOT and F_OR flags associated
2415			 * with the opcode.
2416			 */
2417			case O_NOP:
2418				match = 1;
2419				break;
2420
2421			case O_FORWARD_MAC:
2422				printf("ipfw: opcode %d unimplemented\n",
2423				    cmd->opcode);
2424				break;
2425
2426			case O_GID:
2427			case O_UID:
2428			case O_JAIL:
2429				/*
2430				 * We only check offset == 0 && proto != 0,
2431				 * as this ensures that we have a
2432				 * packet with the ports info.
2433				 */
2434				if (offset!=0)
2435					break;
2436				if (is_ipv6) /* XXX to be fixed later */
2437					break;
2438				if (proto == IPPROTO_TCP ||
2439				    proto == IPPROTO_UDP)
2440					match = check_uidgid(
2441						    (ipfw_insn_u32 *)cmd,
2442						    proto, oif,
2443						    dst_ip, dst_port,
2444						    src_ip, src_port, &fw_ugid_cache,
2445						    &ugid_lookup, args->inp);
2446				break;
2447
2448			case O_RECV:
2449				match = iface_match(m->m_pkthdr.rcvif,
2450				    (ipfw_insn_if *)cmd);
2451				break;
2452
2453			case O_XMIT:
2454				match = iface_match(oif, (ipfw_insn_if *)cmd);
2455				break;
2456
2457			case O_VIA:
2458				match = iface_match(oif ? oif :
2459				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
2460				break;
2461
2462			case O_MACADDR2:
2463				if (args->eh != NULL) {	/* have MAC header */
2464					u_int32_t *want = (u_int32_t *)
2465						((ipfw_insn_mac *)cmd)->addr;
2466					u_int32_t *mask = (u_int32_t *)
2467						((ipfw_insn_mac *)cmd)->mask;
2468					u_int32_t *hdr = (u_int32_t *)args->eh;
2469
2470					match =
2471					    ( want[0] == (hdr[0] & mask[0]) &&
2472					      want[1] == (hdr[1] & mask[1]) &&
2473					      want[2] == (hdr[2] & mask[2]) );
2474				}
2475				break;
2476
2477			case O_MAC_TYPE:
2478				if (args->eh != NULL) {
2479					u_int16_t t =
2480					    ntohs(args->eh->ether_type);
2481					u_int16_t *p =
2482					    ((ipfw_insn_u16 *)cmd)->ports;
2483					int i;
2484
2485					for (i = cmdlen - 1; !match && i>0;
2486					    i--, p += 2)
2487						match = (t>=p[0] && t<=p[1]);
2488				}
2489				break;
2490
2491			case O_FRAG:
2492				match = (offset != 0);
2493				break;
2494
2495			case O_IN:	/* "out" is "not in" */
2496				match = (oif == NULL);
2497				break;
2498
2499			case O_LAYER2:
2500				match = (args->eh != NULL);
2501				break;
2502
2503			case O_DIVERTED:
2504				match = (cmd->arg1 & 1 && divinput_flags &
2505				    IP_FW_DIVERT_LOOPBACK_FLAG) ||
2506					(cmd->arg1 & 2 && divinput_flags &
2507				    IP_FW_DIVERT_OUTPUT_FLAG);
2508				break;
2509
2510			case O_PROTO:
2511				/*
2512				 * We do not allow an arg of 0 so the
2513				 * check of "proto" only suffices.
2514				 */
2515				match = (proto == cmd->arg1);
2516				break;
2517
2518			case O_IP_SRC:
2519				match = is_ipv4 &&
2520				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2521				    src_ip.s_addr);
2522				break;
2523
2524			case O_IP_SRC_LOOKUP:
2525			case O_IP_DST_LOOKUP:
2526				if (is_ipv4) {
2527				    uint32_t a =
2528					(cmd->opcode == O_IP_DST_LOOKUP) ?
2529					    dst_ip.s_addr : src_ip.s_addr;
2530				    uint32_t v;
2531
2532				    match = lookup_table(chain, cmd->arg1, a,
2533					&v);
2534				    if (!match)
2535					break;
2536				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2537					match =
2538					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
2539				    else
2540					tablearg = v;
2541				}
2542				break;
2543
2544			case O_IP_SRC_MASK:
2545			case O_IP_DST_MASK:
2546				if (is_ipv4) {
2547				    uint32_t a =
2548					(cmd->opcode == O_IP_DST_MASK) ?
2549					    dst_ip.s_addr : src_ip.s_addr;
2550				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2551				    int i = cmdlen-1;
2552
2553				    for (; !match && i>0; i-= 2, p+= 2)
2554					match = (p[0] == (a & p[1]));
2555				}
2556				break;
2557
2558			case O_IP_SRC_ME:
2559				if (is_ipv4) {
2560					struct ifnet *tif;
2561
2562					INADDR_TO_IFP(src_ip, tif);
2563					match = (tif != NULL);
2564				}
2565				break;
2566
2567			case O_IP_DST_SET:
2568			case O_IP_SRC_SET:
2569				if (is_ipv4) {
2570					u_int32_t *d = (u_int32_t *)(cmd+1);
2571					u_int32_t addr =
2572					    cmd->opcode == O_IP_DST_SET ?
2573						args->f_id.dst_ip :
2574						args->f_id.src_ip;
2575
2576					    if (addr < d[0])
2577						    break;
2578					    addr -= d[0]; /* subtract base */
2579					    match = (addr < cmd->arg1) &&
2580						( d[ 1 + (addr>>5)] &
2581						  (1<<(addr & 0x1f)) );
2582				}
2583				break;
2584
2585			case O_IP_DST:
2586				match = is_ipv4 &&
2587				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2588				    dst_ip.s_addr);
2589				break;
2590
2591			case O_IP_DST_ME:
2592				if (is_ipv4) {
2593					struct ifnet *tif;
2594
2595					INADDR_TO_IFP(dst_ip, tif);
2596					match = (tif != NULL);
2597				}
2598				break;
2599
2600			case O_IP_SRCPORT:
2601			case O_IP_DSTPORT:
2602				/*
2603				 * offset == 0 && proto != 0 is enough
2604				 * to guarantee that we have a
2605				 * packet with port info.
2606				 */
2607				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
2608				    && offset == 0) {
2609					u_int16_t x =
2610					    (cmd->opcode == O_IP_SRCPORT) ?
2611						src_port : dst_port ;
2612					u_int16_t *p =
2613					    ((ipfw_insn_u16 *)cmd)->ports;
2614					int i;
2615
2616					for (i = cmdlen - 1; !match && i>0;
2617					    i--, p += 2)
2618						match = (x>=p[0] && x<=p[1]);
2619				}
2620				break;
2621
2622			case O_ICMPTYPE:
2623				match = (offset == 0 && proto==IPPROTO_ICMP &&
2624				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2625				break;
2626
2627#ifdef INET6
2628			case O_ICMP6TYPE:
2629				match = is_ipv6 && offset == 0 &&
2630				    proto==IPPROTO_ICMPV6 &&
2631				    icmp6type_match(
2632					ICMP6(ulp)->icmp6_type,
2633					(ipfw_insn_u32 *)cmd);
2634				break;
2635#endif /* INET6 */
2636
2637			case O_IPOPT:
2638				match = (is_ipv4 &&
2639				    ipopts_match(mtod(m, struct ip *), cmd) );
2640				break;
2641
2642			case O_IPVER:
2643				match = (is_ipv4 &&
2644				    cmd->arg1 == mtod(m, struct ip *)->ip_v);
2645				break;
2646
2647			case O_IPID:
2648			case O_IPLEN:
2649			case O_IPTTL:
2650				if (is_ipv4) {	/* only for IP packets */
2651				    uint16_t x;
2652				    uint16_t *p;
2653				    int i;
2654
2655				    if (cmd->opcode == O_IPLEN)
2656					x = ip_len;
2657				    else if (cmd->opcode == O_IPTTL)
2658					x = mtod(m, struct ip *)->ip_ttl;
2659				    else /* must be IPID */
2660					x = ntohs(mtod(m, struct ip *)->ip_id);
2661				    if (cmdlen == 1) {
2662					match = (cmd->arg1 == x);
2663					break;
2664				    }
2665				    /* otherwise we have ranges */
2666				    p = ((ipfw_insn_u16 *)cmd)->ports;
2667				    i = cmdlen - 1;
2668				    for (; !match && i>0; i--, p += 2)
2669					match = (x >= p[0] && x <= p[1]);
2670				}
2671				break;
2672
2673			case O_IPPRECEDENCE:
2674				match = (is_ipv4 &&
2675				    (cmd->arg1 == (mtod(m, struct ip *)->ip_tos & 0xe0)) );
2676				break;
2677
2678			case O_IPTOS:
2679				match = (is_ipv4 &&
2680				    flags_match(cmd, mtod(m, struct ip *)->ip_tos));
2681				break;
2682
2683			case O_TCPDATALEN:
2684				if (proto == IPPROTO_TCP && offset == 0) {
2685				    struct tcphdr *tcp;
2686				    uint16_t x;
2687				    uint16_t *p;
2688				    int i;
2689
2690				    tcp = TCP(ulp);
2691				    x = ip_len -
2692					((ip->ip_hl + tcp->th_off) << 2);
2693				    if (cmdlen == 1) {
2694					match = (cmd->arg1 == x);
2695					break;
2696				    }
2697				    /* otherwise we have ranges */
2698				    p = ((ipfw_insn_u16 *)cmd)->ports;
2699				    i = cmdlen - 1;
2700				    for (; !match && i>0; i--, p += 2)
2701					match = (x >= p[0] && x <= p[1]);
2702				}
2703				break;
2704
2705			case O_TCPFLAGS:
2706				match = (proto == IPPROTO_TCP && offset == 0 &&
2707				    flags_match(cmd, TCP(ulp)->th_flags));
2708				break;
2709
2710			case O_TCPOPTS:
2711				match = (proto == IPPROTO_TCP && offset == 0 &&
2712				    tcpopts_match(TCP(ulp), cmd));
2713				break;
2714
2715			case O_TCPSEQ:
2716				match = (proto == IPPROTO_TCP && offset == 0 &&
2717				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2718					TCP(ulp)->th_seq);
2719				break;
2720
2721			case O_TCPACK:
2722				match = (proto == IPPROTO_TCP && offset == 0 &&
2723				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2724					TCP(ulp)->th_ack);
2725				break;
2726
2727			case O_TCPWIN:
2728				match = (proto == IPPROTO_TCP && offset == 0 &&
2729				    cmd->arg1 == TCP(ulp)->th_win);
2730				break;
2731
2732			case O_ESTAB:
2733				/* reject packets which have SYN only */
2734				/* XXX should i also check for TH_ACK ? */
2735				match = (proto == IPPROTO_TCP && offset == 0 &&
2736				    (TCP(ulp)->th_flags &
2737				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2738				break;
2739
2740			case O_ALTQ: {
2741				struct altq_tag *at;
2742				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2743
2744				match = 1;
2745				mtag = m_tag_find(m, PACKET_TAG_PF_QID, NULL);
2746				if (mtag != NULL)
2747					break;
2748				mtag = m_tag_get(PACKET_TAG_PF_QID,
2749						sizeof(struct altq_tag),
2750						M_NOWAIT);
2751				if (mtag == NULL) {
2752					/*
2753					 * Let the packet fall back to the
2754					 * default ALTQ.
2755					 */
2756					break;
2757				}
2758				at = (struct altq_tag *)(mtag+1);
2759				at->qid = altq->qid;
2760				if (is_ipv4)
2761					at->af = AF_INET;
2762				else
2763					at->af = AF_LINK;
2764				at->hdr = ip;
2765				m_tag_prepend(m, mtag);
2766				break;
2767			}
2768
2769			case O_LOG:
2770				if (fw_verbose)
2771					ipfw_log(f, hlen, args, m, oif, offset);
2772				match = 1;
2773				break;
2774
2775			case O_PROB:
2776				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2777				break;
2778
2779			case O_VERREVPATH:
2780				/* Outgoing packets automatically pass/match */
2781				match = ((oif != NULL) ||
2782				    (m->m_pkthdr.rcvif == NULL) ||
2783				    (
2784#ifdef INET6
2785				    is_ipv6 ?
2786					verify_path6(&(args->f_id.src_ip6),
2787					    m->m_pkthdr.rcvif) :
2788#endif
2789				    verify_path(src_ip, m->m_pkthdr.rcvif)));
2790				break;
2791
2792			case O_VERSRCREACH:
2793				/* Outgoing packets automatically pass/match */
2794				match = (hlen > 0 && ((oif != NULL) ||
2795#ifdef INET6
2796				    is_ipv6 ?
2797				        verify_path6(&(args->f_id.src_ip6),
2798				            NULL) :
2799#endif
2800				    verify_path(src_ip, NULL)));
2801				break;
2802
2803			case O_ANTISPOOF:
2804				/* Outgoing packets automatically pass/match */
2805				if (oif == NULL && hlen > 0 &&
2806				    (  (is_ipv4 && in_localaddr(src_ip))
2807#ifdef INET6
2808				    || (is_ipv6 &&
2809				        in6_localaddr(&(args->f_id.src_ip6)))
2810#endif
2811				    ))
2812					match =
2813#ifdef INET6
2814					    is_ipv6 ? verify_path6(
2815					        &(args->f_id.src_ip6),
2816					        m->m_pkthdr.rcvif) :
2817#endif
2818					    verify_path(src_ip,
2819					        m->m_pkthdr.rcvif);
2820				else
2821					match = 1;
2822				break;
2823
2824			case O_IPSEC:
2825#ifdef FAST_IPSEC
2826				match = (m_tag_find(m,
2827				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2828#endif
2829#ifdef IPSEC
2830				match = (ipsec_getnhist(m) != 0);
2831#endif
2832				/* otherwise no match */
2833				break;
2834
2835#ifdef INET6
2836			case O_IP6_SRC:
2837				match = is_ipv6 &&
2838				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
2839				    &((ipfw_insn_ip6 *)cmd)->addr6);
2840				break;
2841
2842			case O_IP6_DST:
2843				match = is_ipv6 &&
2844				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
2845				    &((ipfw_insn_ip6 *)cmd)->addr6);
2846				break;
2847			case O_IP6_SRC_MASK:
2848				if (is_ipv6) {
2849					ipfw_insn_ip6 *te = (ipfw_insn_ip6 *)cmd;
2850					struct in6_addr p = args->f_id.src_ip6;
2851
2852					APPLY_MASK(&p, &te->mask6);
2853					match = IN6_ARE_ADDR_EQUAL(&te->addr6, &p);
2854				}
2855				break;
2856
2857			case O_IP6_DST_MASK:
2858				if (is_ipv6) {
2859					ipfw_insn_ip6 *te = (ipfw_insn_ip6 *)cmd;
2860					struct in6_addr p = args->f_id.dst_ip6;
2861
2862					APPLY_MASK(&p, &te->mask6);
2863					match = IN6_ARE_ADDR_EQUAL(&te->addr6, &p);
2864				}
2865				break;
2866
2867			case O_IP6_SRC_ME:
2868				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
2869				break;
2870
2871			case O_IP6_DST_ME:
2872				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
2873				break;
2874
2875			case O_FLOW6ID:
2876				match = is_ipv6 &&
2877				    flow6id_match(args->f_id.flow_id6,
2878				    (ipfw_insn_u32 *) cmd);
2879				break;
2880
2881			case O_EXT_HDR:
2882				match = is_ipv6 &&
2883				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
2884				break;
2885
2886			case O_IP6:
2887				match = is_ipv6;
2888				break;
2889#endif
2890
2891			case O_IP4:
2892				match = is_ipv4;
2893				break;
2894
2895			case O_TAG:
2896				/* Packet is already tagged with this tag? */
2897				mtag = m_tag_locate(m, MTAG_IPFW,
2898						((ipfw_insn *) cmd)->arg1, NULL);
2899				/* We have `untag' action when F_NOT flag is
2900				 * present. And we must remove this mtag from
2901				 * mbuf and reset `match' to zero (`match' will
2902				 * be inversed later).
2903				 * Otherwise we should allocate new mtag and
2904				 * push it into mbuf.
2905				 */
2906				if (cmd->len & F_NOT) { /* `untag' action */
2907					if (mtag != NULL)
2908						m_tag_delete(m, mtag);
2909				} else if (mtag == NULL) {
2910					mtag = m_tag_alloc(MTAG_IPFW,
2911						((ipfw_insn *) cmd)->arg1, 0, M_NOWAIT);
2912					if (mtag != NULL)
2913						m_tag_prepend(m, mtag);
2914				}
2915				match = (cmd->len & F_NOT) ? 0: 1;
2916				break;
2917
2918			case O_TAGGED:
2919				if (cmdlen == 1) {
2920					match = (m_tag_locate(m, MTAG_IPFW,
2921						((ipfw_insn *) cmd)->arg1, NULL) != NULL);
2922					break;
2923				}
2924
2925				/* we have ranges */
2926				for (mtag = m_tag_first(m);
2927				    mtag != NULL && !match;
2928				    mtag = m_tag_next(m, mtag)) {
2929					uint16_t *p;
2930					int i;
2931
2932					if (mtag->m_tag_cookie != MTAG_IPFW)
2933						continue;
2934
2935					p = ((ipfw_insn_u16 *)cmd)->ports;
2936					i = cmdlen - 1;
2937					for(; !match && i > 0; i--, p += 2)
2938						match =
2939						    mtag->m_tag_id >= p[0] &&
2940						    mtag->m_tag_id <= p[1];
2941				}
2942				break;
2943
2944			/*
2945			 * The second set of opcodes represents 'actions',
2946			 * i.e. the terminal part of a rule once the packet
2947			 * matches all previous patterns.
2948			 * Typically there is only one action for each rule,
2949			 * and the opcode is stored at the end of the rule
2950			 * (but there are exceptions -- see below).
2951			 *
2952			 * In general, here we set retval and terminate the
2953			 * outer loop (would be a 'break 3' in some language,
2954			 * but we need to do a 'goto done').
2955			 *
2956			 * Exceptions:
2957			 * O_COUNT and O_SKIPTO actions:
2958			 *   instead of terminating, we jump to the next rule
2959			 *   ('goto next_rule', equivalent to a 'break 2'),
2960			 *   or to the SKIPTO target ('goto again' after
2961			 *   having set f, cmd and l), respectively.
2962			 *
2963			 * O_TAG, O_LOG and O_ALTQ action parameters:
2964			 *   perform some action and set match = 1;
2965			 *
2966			 * O_LIMIT and O_KEEP_STATE: these opcodes are
2967			 *   not real 'actions', and are stored right
2968			 *   before the 'action' part of the rule.
2969			 *   These opcodes try to install an entry in the
2970			 *   state tables; if successful, we continue with
2971			 *   the next opcode (match=1; break;), otherwise
2972			 *   the packet *   must be dropped
2973			 *   ('goto done' after setting retval);
2974			 *
2975			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2976			 *   cause a lookup of the state table, and a jump
2977			 *   to the 'action' part of the parent rule
2978			 *   ('goto check_body') if an entry is found, or
2979			 *   (CHECK_STATE only) a jump to the next rule if
2980			 *   the entry is not found ('goto next_rule').
2981			 *   The result of the lookup is cached to make
2982			 *   further instances of these opcodes are
2983			 *   effectively NOPs.
2984			 */
2985			case O_LIMIT:
2986			case O_KEEP_STATE:
2987				if (install_state(f,
2988				    (ipfw_insn_limit *)cmd, args)) {
2989					retval = IP_FW_DENY;
2990					goto done; /* error/limit violation */
2991				}
2992				match = 1;
2993				break;
2994
2995			case O_PROBE_STATE:
2996			case O_CHECK_STATE:
2997				/*
2998				 * dynamic rules are checked at the first
2999				 * keep-state or check-state occurrence,
3000				 * with the result being stored in dyn_dir.
3001				 * The compiler introduces a PROBE_STATE
3002				 * instruction for us when we have a
3003				 * KEEP_STATE (because PROBE_STATE needs
3004				 * to be run first).
3005				 */
3006				if (dyn_dir == MATCH_UNKNOWN &&
3007				    (q = lookup_dyn_rule(&args->f_id,
3008				     &dyn_dir, proto == IPPROTO_TCP ?
3009					TCP(ulp) : NULL))
3010					!= NULL) {
3011					/*
3012					 * Found dynamic entry, update stats
3013					 * and jump to the 'action' part of
3014					 * the parent rule.
3015					 */
3016					q->pcnt++;
3017					q->bcnt += pktlen;
3018					f = q->rule;
3019					cmd = ACTION_PTR(f);
3020					l = f->cmd_len - f->act_ofs;
3021					IPFW_DYN_UNLOCK();
3022					goto check_body;
3023				}
3024				/*
3025				 * Dynamic entry not found. If CHECK_STATE,
3026				 * skip to next rule, if PROBE_STATE just
3027				 * ignore and continue with next opcode.
3028				 */
3029				if (cmd->opcode == O_CHECK_STATE)
3030					goto next_rule;
3031				match = 1;
3032				break;
3033
3034			case O_ACCEPT:
3035				retval = 0;	/* accept */
3036				goto done;
3037
3038			case O_PIPE:
3039			case O_QUEUE:
3040				args->rule = f; /* report matching rule */
3041				if (cmd->arg1 == IP_FW_TABLEARG)
3042					args->cookie = tablearg;
3043				else
3044					args->cookie = cmd->arg1;
3045				retval = IP_FW_DUMMYNET;
3046				goto done;
3047
3048			case O_DIVERT:
3049			case O_TEE: {
3050				struct divert_tag *dt;
3051
3052				if (args->eh) /* not on layer 2 */
3053					break;
3054				mtag = m_tag_get(PACKET_TAG_DIVERT,
3055						sizeof(struct divert_tag),
3056						M_NOWAIT);
3057				if (mtag == NULL) {
3058					/* XXX statistic */
3059					/* drop packet */
3060					IPFW_RUNLOCK(chain);
3061					return (IP_FW_DENY);
3062				}
3063				dt = (struct divert_tag *)(mtag+1);
3064				dt->cookie = f->rulenum;
3065				if (cmd->arg1 == IP_FW_TABLEARG)
3066					dt->info = tablearg;
3067				else
3068					dt->info = cmd->arg1;
3069				m_tag_prepend(m, mtag);
3070				retval = (cmd->opcode == O_DIVERT) ?
3071				    IP_FW_DIVERT : IP_FW_TEE;
3072				goto done;
3073			}
3074
3075			case O_COUNT:
3076			case O_SKIPTO:
3077				f->pcnt++;	/* update stats */
3078				f->bcnt += pktlen;
3079				f->timestamp = time_uptime;
3080				if (cmd->opcode == O_COUNT)
3081					goto next_rule;
3082				/* handle skipto */
3083				if (f->next_rule == NULL)
3084					lookup_next_rule(f);
3085				f = f->next_rule;
3086				goto again;
3087
3088			case O_REJECT:
3089				/*
3090				 * Drop the packet and send a reject notice
3091				 * if the packet is not ICMP (or is an ICMP
3092				 * query), and it is not multicast/broadcast.
3093				 */
3094				if (hlen > 0 && is_ipv4 && offset == 0 &&
3095				    (proto != IPPROTO_ICMP ||
3096				     is_icmp_query(ICMP(ulp))) &&
3097				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3098				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
3099					send_reject(args, cmd->arg1,
3100					    offset,ip_len);
3101					m = args->m;
3102				}
3103				/* FALLTHROUGH */
3104#ifdef INET6
3105			case O_UNREACH6:
3106				if (hlen > 0 && is_ipv6 &&
3107				    (proto != IPPROTO_ICMPV6 ||
3108				     (is_icmp6_query(args->f_id.flags) == 1)) &&
3109				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3110				    !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
3111					send_reject6(args, cmd->arg1,
3112					    offset, hlen);
3113					m = args->m;
3114				}
3115				/* FALLTHROUGH */
3116#endif
3117			case O_DENY:
3118				retval = IP_FW_DENY;
3119				goto done;
3120
3121			case O_FORWARD_IP:
3122				if (args->eh)	/* not valid on layer2 pkts */
3123					break;
3124				if (!q || dyn_dir == MATCH_FORWARD)
3125					args->next_hop =
3126					    &((ipfw_insn_sa *)cmd)->sa;
3127				retval = IP_FW_PASS;
3128				goto done;
3129
3130			case O_NETGRAPH:
3131			case O_NGTEE:
3132				args->rule = f;	/* report matching rule */
3133				if (cmd->arg1 == IP_FW_TABLEARG)
3134					args->cookie = tablearg;
3135				else
3136					args->cookie = cmd->arg1;
3137				retval = (cmd->opcode == O_NETGRAPH) ?
3138				    IP_FW_NETGRAPH : IP_FW_NGTEE;
3139				goto done;
3140
3141			default:
3142				panic("-- unknown opcode %d\n", cmd->opcode);
3143			} /* end of switch() on opcodes */
3144
3145			if (cmd->len & F_NOT)
3146				match = !match;
3147
3148			if (match) {
3149				if (cmd->len & F_OR)
3150					skip_or = 1;
3151			} else {
3152				if (!(cmd->len & F_OR)) /* not an OR block, */
3153					break;		/* try next rule    */
3154			}
3155
3156		}	/* end of inner for, scan opcodes */
3157
3158next_rule:;		/* try next rule		*/
3159
3160	}		/* end of outer for, scan rules */
3161	printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3162	IPFW_RUNLOCK(chain);
3163	return (IP_FW_DENY);
3164
3165done:
3166	/* Update statistics */
3167	f->pcnt++;
3168	f->bcnt += pktlen;
3169	f->timestamp = time_uptime;
3170	IPFW_RUNLOCK(chain);
3171	return (retval);
3172
3173pullup_failed:
3174	if (fw_verbose)
3175		printf("ipfw: pullup failed\n");
3176	return (IP_FW_DENY);
3177}
3178
3179/*
3180 * When a rule is added/deleted, clear the next_rule pointers in all rules.
3181 * These will be reconstructed on the fly as packets are matched.
3182 */
3183static void
3184flush_rule_ptrs(struct ip_fw_chain *chain)
3185{
3186	struct ip_fw *rule;
3187
3188	IPFW_WLOCK_ASSERT(chain);
3189
3190	for (rule = chain->rules; rule; rule = rule->next)
3191		rule->next_rule = NULL;
3192}
3193
3194/*
3195 * Add a new rule to the list. Copy the rule into a malloc'ed area, then
3196 * possibly create a rule number and add the rule to the list.
3197 * Update the rule_number in the input struct so the caller knows it as well.
3198 */
3199static int
3200add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
3201{
3202	struct ip_fw *rule, *f, *prev;
3203	int l = RULESIZE(input_rule);
3204
3205	if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
3206		return (EINVAL);
3207
3208	rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
3209	if (rule == NULL)
3210		return (ENOSPC);
3211
3212	bcopy(input_rule, rule, l);
3213
3214	rule->next = NULL;
3215	rule->next_rule = NULL;
3216
3217	rule->pcnt = 0;
3218	rule->bcnt = 0;
3219	rule->timestamp = 0;
3220
3221	IPFW_WLOCK(chain);
3222
3223	if (chain->rules == NULL) {	/* default rule */
3224		chain->rules = rule;
3225		goto done;
3226        }
3227
3228	/*
3229	 * If rulenum is 0, find highest numbered rule before the
3230	 * default rule, and add autoinc_step
3231	 */
3232	if (autoinc_step < 1)
3233		autoinc_step = 1;
3234	else if (autoinc_step > 1000)
3235		autoinc_step = 1000;
3236	if (rule->rulenum == 0) {
3237		/*
3238		 * locate the highest numbered rule before default
3239		 */
3240		for (f = chain->rules; f; f = f->next) {
3241			if (f->rulenum == IPFW_DEFAULT_RULE)
3242				break;
3243			rule->rulenum = f->rulenum;
3244		}
3245		if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
3246			rule->rulenum += autoinc_step;
3247		input_rule->rulenum = rule->rulenum;
3248	}
3249
3250	/*
3251	 * Now insert the new rule in the right place in the sorted list.
3252	 */
3253	for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
3254		if (f->rulenum > rule->rulenum) { /* found the location */
3255			if (prev) {
3256				rule->next = f;
3257				prev->next = rule;
3258			} else { /* head insert */
3259				rule->next = chain->rules;
3260				chain->rules = rule;
3261			}
3262			break;
3263		}
3264	}
3265	flush_rule_ptrs(chain);
3266done:
3267	static_count++;
3268	static_len += l;
3269	IPFW_WUNLOCK(chain);
3270	DEB(printf("ipfw: installed rule %d, static count now %d\n",
3271		rule->rulenum, static_count);)
3272	return (0);
3273}
3274
3275/**
3276 * Remove a static rule (including derived * dynamic rules)
3277 * and place it on the ``reap list'' for later reclamation.
3278 * The caller is in charge of clearing rule pointers to avoid
3279 * dangling pointers.
3280 * @return a pointer to the next entry.
3281 * Arguments are not checked, so they better be correct.
3282 */
3283static struct ip_fw *
3284remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule, struct ip_fw *prev)
3285{
3286	struct ip_fw *n;
3287	int l = RULESIZE(rule);
3288
3289	IPFW_WLOCK_ASSERT(chain);
3290
3291	n = rule->next;
3292	IPFW_DYN_LOCK();
3293	remove_dyn_rule(rule, NULL /* force removal */);
3294	IPFW_DYN_UNLOCK();
3295	if (prev == NULL)
3296		chain->rules = n;
3297	else
3298		prev->next = n;
3299	static_count--;
3300	static_len -= l;
3301
3302	rule->next = chain->reap;
3303	chain->reap = rule;
3304
3305	return n;
3306}
3307
3308/**
3309 * Reclaim storage associated with a list of rules.  This is
3310 * typically the list created using remove_rule.
3311 */
3312static void
3313reap_rules(struct ip_fw *head)
3314{
3315	struct ip_fw *rule;
3316
3317	while ((rule = head) != NULL) {
3318		head = head->next;
3319		if (DUMMYNET_LOADED)
3320			ip_dn_ruledel_ptr(rule);
3321		free(rule, M_IPFW);
3322	}
3323}
3324
3325/*
3326 * Remove all rules from a chain (except rules in set RESVD_SET
3327 * unless kill_default = 1).  The caller is responsible for
3328 * reclaiming storage for the rules left in chain->reap.
3329 */
3330static void
3331free_chain(struct ip_fw_chain *chain, int kill_default)
3332{
3333	struct ip_fw *prev, *rule;
3334
3335	IPFW_WLOCK_ASSERT(chain);
3336
3337	flush_rule_ptrs(chain); /* more efficient to do outside the loop */
3338	for (prev = NULL, rule = chain->rules; rule ; )
3339		if (kill_default || rule->set != RESVD_SET)
3340			rule = remove_rule(chain, rule, prev);
3341		else {
3342			prev = rule;
3343			rule = rule->next;
3344		}
3345}
3346
3347/**
3348 * Remove all rules with given number, and also do set manipulation.
3349 * Assumes chain != NULL && *chain != NULL.
3350 *
3351 * The argument is an u_int32_t. The low 16 bit are the rule or set number,
3352 * the next 8 bits are the new set, the top 8 bits are the command:
3353 *
3354 *	0	delete rules with given number
3355 *	1	delete rules with given set number
3356 *	2	move rules with given number to new set
3357 *	3	move rules with given set number to new set
3358 *	4	swap sets with given numbers
3359 */
3360static int
3361del_entry(struct ip_fw_chain *chain, u_int32_t arg)
3362{
3363	struct ip_fw *prev = NULL, *rule;
3364	u_int16_t rulenum;	/* rule or old_set */
3365	u_int8_t cmd, new_set;
3366
3367	rulenum = arg & 0xffff;
3368	cmd = (arg >> 24) & 0xff;
3369	new_set = (arg >> 16) & 0xff;
3370
3371	if (cmd > 4)
3372		return EINVAL;
3373	if (new_set > RESVD_SET)
3374		return EINVAL;
3375	if (cmd == 0 || cmd == 2) {
3376		if (rulenum >= IPFW_DEFAULT_RULE)
3377			return EINVAL;
3378	} else {
3379		if (rulenum > RESVD_SET)	/* old_set */
3380			return EINVAL;
3381	}
3382
3383	IPFW_WLOCK(chain);
3384	rule = chain->rules;
3385	chain->reap = NULL;
3386	switch (cmd) {
3387	case 0:	/* delete rules with given number */
3388		/*
3389		 * locate first rule to delete
3390		 */
3391		for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3392			;
3393		if (rule->rulenum != rulenum) {
3394			IPFW_WUNLOCK(chain);
3395			return EINVAL;
3396		}
3397
3398		/*
3399		 * flush pointers outside the loop, then delete all matching
3400		 * rules. prev remains the same throughout the cycle.
3401		 */
3402		flush_rule_ptrs(chain);
3403		while (rule->rulenum == rulenum)
3404			rule = remove_rule(chain, rule, prev);
3405		break;
3406
3407	case 1:	/* delete all rules with given set number */
3408		flush_rule_ptrs(chain);
3409		rule = chain->rules;
3410		while (rule->rulenum < IPFW_DEFAULT_RULE)
3411			if (rule->set == rulenum)
3412				rule = remove_rule(chain, rule, prev);
3413			else {
3414				prev = rule;
3415				rule = rule->next;
3416			}
3417		break;
3418
3419	case 2:	/* move rules with given number to new set */
3420		rule = chain->rules;
3421		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3422			if (rule->rulenum == rulenum)
3423				rule->set = new_set;
3424		break;
3425
3426	case 3: /* move rules with given set number to new set */
3427		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3428			if (rule->set == rulenum)
3429				rule->set = new_set;
3430		break;
3431
3432	case 4: /* swap two sets */
3433		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3434			if (rule->set == rulenum)
3435				rule->set = new_set;
3436			else if (rule->set == new_set)
3437				rule->set = rulenum;
3438		break;
3439	}
3440	/*
3441	 * Look for rules to reclaim.  We grab the list before
3442	 * releasing the lock then reclaim them w/o the lock to
3443	 * avoid a LOR with dummynet.
3444	 */
3445	rule = chain->reap;
3446	chain->reap = NULL;
3447	IPFW_WUNLOCK(chain);
3448	if (rule)
3449		reap_rules(rule);
3450	return 0;
3451}
3452
3453/*
3454 * Clear counters for a specific rule.
3455 * The enclosing "table" is assumed locked.
3456 */
3457static void
3458clear_counters(struct ip_fw *rule, int log_only)
3459{
3460	ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
3461
3462	if (log_only == 0) {
3463		rule->bcnt = rule->pcnt = 0;
3464		rule->timestamp = 0;
3465	}
3466	if (l->o.opcode == O_LOG)
3467		l->log_left = l->max_log;
3468}
3469
3470/**
3471 * Reset some or all counters on firewall rules.
3472 * @arg frwl is null to clear all entries, or contains a specific
3473 * rule number.
3474 * @arg log_only is 1 if we only want to reset logs, zero otherwise.
3475 */
3476static int
3477zero_entry(struct ip_fw_chain *chain, int rulenum, int log_only)
3478{
3479	struct ip_fw *rule;
3480	char *msg;
3481
3482	IPFW_WLOCK(chain);
3483	if (rulenum == 0) {
3484		norule_counter = 0;
3485		for (rule = chain->rules; rule; rule = rule->next)
3486			clear_counters(rule, log_only);
3487		msg = log_only ? "ipfw: All logging counts reset.\n" :
3488				"ipfw: Accounting cleared.\n";
3489	} else {
3490		int cleared = 0;
3491		/*
3492		 * We can have multiple rules with the same number, so we
3493		 * need to clear them all.
3494		 */
3495		for (rule = chain->rules; rule; rule = rule->next)
3496			if (rule->rulenum == rulenum) {
3497				while (rule && rule->rulenum == rulenum) {
3498					clear_counters(rule, log_only);
3499					rule = rule->next;
3500				}
3501				cleared = 1;
3502				break;
3503			}
3504		if (!cleared) {	/* we did not find any matching rules */
3505			IPFW_WUNLOCK(chain);
3506			return (EINVAL);
3507		}
3508		msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
3509				"ipfw: Entry %d cleared.\n";
3510	}
3511	IPFW_WUNLOCK(chain);
3512
3513	if (fw_verbose)
3514		log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
3515	return (0);
3516}
3517
3518/*
3519 * Check validity of the structure before insert.
3520 * Fortunately rules are simple, so this mostly need to check rule sizes.
3521 */
3522static int
3523check_ipfw_struct(struct ip_fw *rule, int size)
3524{
3525	int l, cmdlen = 0;
3526	int have_action=0;
3527	ipfw_insn *cmd;
3528
3529	if (size < sizeof(*rule)) {
3530		printf("ipfw: rule too short\n");
3531		return (EINVAL);
3532	}
3533	/* first, check for valid size */
3534	l = RULESIZE(rule);
3535	if (l != size) {
3536		printf("ipfw: size mismatch (have %d want %d)\n", size, l);
3537		return (EINVAL);
3538	}
3539	if (rule->act_ofs >= rule->cmd_len) {
3540		printf("ipfw: bogus action offset (%u > %u)\n",
3541		    rule->act_ofs, rule->cmd_len - 1);
3542		return (EINVAL);
3543	}
3544	/*
3545	 * Now go for the individual checks. Very simple ones, basically only
3546	 * instruction sizes.
3547	 */
3548	for (l = rule->cmd_len, cmd = rule->cmd ;
3549			l > 0 ; l -= cmdlen, cmd += cmdlen) {
3550		cmdlen = F_LEN(cmd);
3551		if (cmdlen > l) {
3552			printf("ipfw: opcode %d size truncated\n",
3553			    cmd->opcode);
3554			return EINVAL;
3555		}
3556		DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
3557		switch (cmd->opcode) {
3558		case O_PROBE_STATE:
3559		case O_KEEP_STATE:
3560		case O_PROTO:
3561		case O_IP_SRC_ME:
3562		case O_IP_DST_ME:
3563		case O_LAYER2:
3564		case O_IN:
3565		case O_FRAG:
3566		case O_DIVERTED:
3567		case O_IPOPT:
3568		case O_IPTOS:
3569		case O_IPPRECEDENCE:
3570		case O_IPVER:
3571		case O_TCPWIN:
3572		case O_TCPFLAGS:
3573		case O_TCPOPTS:
3574		case O_ESTAB:
3575		case O_VERREVPATH:
3576		case O_VERSRCREACH:
3577		case O_ANTISPOOF:
3578		case O_IPSEC:
3579#ifdef INET6
3580		case O_IP6_SRC_ME:
3581		case O_IP6_DST_ME:
3582		case O_EXT_HDR:
3583		case O_IP6:
3584#endif
3585		case O_IP4:
3586		case O_TAG:
3587			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3588				goto bad_size;
3589			break;
3590
3591		case O_UID:
3592		case O_GID:
3593		case O_JAIL:
3594		case O_IP_SRC:
3595		case O_IP_DST:
3596		case O_TCPSEQ:
3597		case O_TCPACK:
3598		case O_PROB:
3599		case O_ICMPTYPE:
3600			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3601				goto bad_size;
3602			break;
3603
3604		case O_LIMIT:
3605			if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
3606				goto bad_size;
3607			break;
3608
3609		case O_LOG:
3610			if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
3611				goto bad_size;
3612
3613			((ipfw_insn_log *)cmd)->log_left =
3614			    ((ipfw_insn_log *)cmd)->max_log;
3615
3616			break;
3617
3618		case O_IP_SRC_MASK:
3619		case O_IP_DST_MASK:
3620			/* only odd command lengths */
3621			if ( !(cmdlen & 1) || cmdlen > 31)
3622				goto bad_size;
3623			break;
3624
3625		case O_IP_SRC_SET:
3626		case O_IP_DST_SET:
3627			if (cmd->arg1 == 0 || cmd->arg1 > 256) {
3628				printf("ipfw: invalid set size %d\n",
3629					cmd->arg1);
3630				return EINVAL;
3631			}
3632			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3633			    (cmd->arg1+31)/32 )
3634				goto bad_size;
3635			break;
3636
3637		case O_IP_SRC_LOOKUP:
3638		case O_IP_DST_LOOKUP:
3639			if (cmd->arg1 >= IPFW_TABLES_MAX) {
3640				printf("ipfw: invalid table number %d\n",
3641				    cmd->arg1);
3642				return (EINVAL);
3643			}
3644			if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
3645			    cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3646				goto bad_size;
3647			break;
3648
3649		case O_MACADDR2:
3650			if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
3651				goto bad_size;
3652			break;
3653
3654		case O_NOP:
3655		case O_IPID:
3656		case O_IPTTL:
3657		case O_IPLEN:
3658		case O_TCPDATALEN:
3659		case O_TAGGED:
3660			if (cmdlen < 1 || cmdlen > 31)
3661				goto bad_size;
3662			break;
3663
3664		case O_MAC_TYPE:
3665		case O_IP_SRCPORT:
3666		case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
3667			if (cmdlen < 2 || cmdlen > 31)
3668				goto bad_size;
3669			break;
3670
3671		case O_RECV:
3672		case O_XMIT:
3673		case O_VIA:
3674			if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
3675				goto bad_size;
3676			break;
3677
3678		case O_ALTQ:
3679			if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
3680				goto bad_size;
3681			break;
3682
3683		case O_PIPE:
3684		case O_QUEUE:
3685			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3686				goto bad_size;
3687			goto check_action;
3688
3689		case O_FORWARD_IP:
3690#ifdef	IPFIREWALL_FORWARD
3691			if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
3692				goto bad_size;
3693			goto check_action;
3694#else
3695			return EINVAL;
3696#endif
3697
3698		case O_DIVERT:
3699		case O_TEE:
3700			if (ip_divert_ptr == NULL)
3701				return EINVAL;
3702			else
3703				goto check_size;
3704		case O_NETGRAPH:
3705		case O_NGTEE:
3706			if (!NG_IPFW_LOADED)
3707				return EINVAL;
3708			else
3709				goto check_size;
3710		case O_FORWARD_MAC: /* XXX not implemented yet */
3711		case O_CHECK_STATE:
3712		case O_COUNT:
3713		case O_ACCEPT:
3714		case O_DENY:
3715		case O_REJECT:
3716#ifdef INET6
3717		case O_UNREACH6:
3718#endif
3719		case O_SKIPTO:
3720check_size:
3721			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3722				goto bad_size;
3723check_action:
3724			if (have_action) {
3725				printf("ipfw: opcode %d, multiple actions"
3726					" not allowed\n",
3727					cmd->opcode);
3728				return EINVAL;
3729			}
3730			have_action = 1;
3731			if (l != cmdlen) {
3732				printf("ipfw: opcode %d, action must be"
3733					" last opcode\n",
3734					cmd->opcode);
3735				return EINVAL;
3736			}
3737			break;
3738#ifdef INET6
3739		case O_IP6_SRC:
3740		case O_IP6_DST:
3741			if (cmdlen != F_INSN_SIZE(struct in6_addr) +
3742			    F_INSN_SIZE(ipfw_insn))
3743				goto bad_size;
3744			break;
3745
3746		case O_FLOW6ID:
3747			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3748			    ((ipfw_insn_u32 *)cmd)->o.arg1)
3749				goto bad_size;
3750			break;
3751
3752		case O_IP6_SRC_MASK:
3753		case O_IP6_DST_MASK:
3754			if ( !(cmdlen & 1) || cmdlen > 127)
3755				goto bad_size;
3756			break;
3757		case O_ICMP6TYPE:
3758			if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
3759				goto bad_size;
3760			break;
3761#endif
3762
3763		default:
3764			switch (cmd->opcode) {
3765#ifndef INET6
3766			case O_IP6_SRC_ME:
3767			case O_IP6_DST_ME:
3768			case O_EXT_HDR:
3769			case O_IP6:
3770			case O_UNREACH6:
3771			case O_IP6_SRC:
3772			case O_IP6_DST:
3773			case O_FLOW6ID:
3774			case O_IP6_SRC_MASK:
3775			case O_IP6_DST_MASK:
3776			case O_ICMP6TYPE:
3777				printf("ipfw: no IPv6 support in kernel\n");
3778				return EPROTONOSUPPORT;
3779#endif
3780			default:
3781				printf("ipfw: opcode %d, unknown opcode\n",
3782					cmd->opcode);
3783				return EINVAL;
3784			}
3785		}
3786	}
3787	if (have_action == 0) {
3788		printf("ipfw: missing action\n");
3789		return EINVAL;
3790	}
3791	return 0;
3792
3793bad_size:
3794	printf("ipfw: opcode %d size %d wrong\n",
3795		cmd->opcode, cmdlen);
3796	return EINVAL;
3797}
3798
3799/*
3800 * Copy the static and dynamic rules to the supplied buffer
3801 * and return the amount of space actually used.
3802 */
3803static size_t
3804ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
3805{
3806	char *bp = buf;
3807	char *ep = bp + space;
3808	struct ip_fw *rule;
3809	int i;
3810
3811	/* XXX this can take a long time and locking will block packet flow */
3812	IPFW_RLOCK(chain);
3813	for (rule = chain->rules; rule ; rule = rule->next) {
3814		/*
3815		 * Verify the entry fits in the buffer in case the
3816		 * rules changed between calculating buffer space and
3817		 * now.  This would be better done using a generation
3818		 * number but should suffice for now.
3819		 */
3820		i = RULESIZE(rule);
3821		if (bp + i <= ep) {
3822			bcopy(rule, bp, i);
3823			bcopy(&set_disable, &(((struct ip_fw *)bp)->next_rule),
3824			    sizeof(set_disable));
3825			bp += i;
3826		}
3827	}
3828	IPFW_RUNLOCK(chain);
3829	if (ipfw_dyn_v) {
3830		ipfw_dyn_rule *p, *last = NULL;
3831
3832		IPFW_DYN_LOCK();
3833		for (i = 0 ; i < curr_dyn_buckets; i++)
3834			for (p = ipfw_dyn_v[i] ; p != NULL; p = p->next) {
3835				if (bp + sizeof *p <= ep) {
3836					ipfw_dyn_rule *dst =
3837						(ipfw_dyn_rule *)bp;
3838					bcopy(p, dst, sizeof *p);
3839					bcopy(&(p->rule->rulenum), &(dst->rule),
3840					    sizeof(p->rule->rulenum));
3841					/*
3842					 * store a non-null value in "next".
3843					 * The userland code will interpret a
3844					 * NULL here as a marker
3845					 * for the last dynamic rule.
3846					 */
3847					bcopy(&dst, &dst->next, sizeof(dst));
3848					last = dst;
3849					dst->expire =
3850					    TIME_LEQ(dst->expire, time_uptime) ?
3851						0 : dst->expire - time_uptime ;
3852					bp += sizeof(ipfw_dyn_rule);
3853				}
3854			}
3855		IPFW_DYN_UNLOCK();
3856		if (last != NULL) /* mark last dynamic rule */
3857			bzero(&last->next, sizeof(last));
3858	}
3859	return (bp - (char *)buf);
3860}
3861
3862
3863/**
3864 * {set|get}sockopt parser.
3865 */
3866static int
3867ipfw_ctl(struct sockopt *sopt)
3868{
3869#define	RULE_MAXSIZE	(256*sizeof(u_int32_t))
3870	int error, rule_num;
3871	size_t size;
3872	struct ip_fw *buf, *rule;
3873	u_int32_t rulenum[2];
3874
3875	error = suser(sopt->sopt_td);
3876	if (error)
3877		return (error);
3878
3879	/*
3880	 * Disallow modifications in really-really secure mode, but still allow
3881	 * the logging counters to be reset.
3882	 */
3883	if (sopt->sopt_name == IP_FW_ADD ||
3884	    (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
3885		error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
3886		if (error)
3887			return (error);
3888	}
3889
3890	error = 0;
3891
3892	switch (sopt->sopt_name) {
3893	case IP_FW_GET:
3894		/*
3895		 * pass up a copy of the current rules. Static rules
3896		 * come first (the last of which has number IPFW_DEFAULT_RULE),
3897		 * followed by a possibly empty list of dynamic rule.
3898		 * The last dynamic rule has NULL in the "next" field.
3899		 *
3900		 * Note that the calculated size is used to bound the
3901		 * amount of data returned to the user.  The rule set may
3902		 * change between calculating the size and returning the
3903		 * data in which case we'll just return what fits.
3904		 */
3905		size = static_len;	/* size of static rules */
3906		if (ipfw_dyn_v)		/* add size of dyn.rules */
3907			size += (dyn_count * sizeof(ipfw_dyn_rule));
3908
3909		/*
3910		 * XXX todo: if the user passes a short length just to know
3911		 * how much room is needed, do not bother filling up the
3912		 * buffer, just jump to the sooptcopyout.
3913		 */
3914		buf = malloc(size, M_TEMP, M_WAITOK);
3915		error = sooptcopyout(sopt, buf,
3916				ipfw_getrules(&layer3_chain, buf, size));
3917		free(buf, M_TEMP);
3918		break;
3919
3920	case IP_FW_FLUSH:
3921		/*
3922		 * Normally we cannot release the lock on each iteration.
3923		 * We could do it here only because we start from the head all
3924		 * the times so there is no risk of missing some entries.
3925		 * On the other hand, the risk is that we end up with
3926		 * a very inconsistent ruleset, so better keep the lock
3927		 * around the whole cycle.
3928		 *
3929		 * XXX this code can be improved by resetting the head of
3930		 * the list to point to the default rule, and then freeing
3931		 * the old list without the need for a lock.
3932		 */
3933
3934		IPFW_WLOCK(&layer3_chain);
3935		layer3_chain.reap = NULL;
3936		free_chain(&layer3_chain, 0 /* keep default rule */);
3937		rule = layer3_chain.reap, layer3_chain.reap = NULL;
3938		IPFW_WUNLOCK(&layer3_chain);
3939		if (layer3_chain.reap != NULL)
3940			reap_rules(rule);
3941		break;
3942
3943	case IP_FW_ADD:
3944		rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
3945		error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
3946			sizeof(struct ip_fw) );
3947		if (error == 0)
3948			error = check_ipfw_struct(rule, sopt->sopt_valsize);
3949		if (error == 0) {
3950			error = add_rule(&layer3_chain, rule);
3951			size = RULESIZE(rule);
3952			if (!error && sopt->sopt_dir == SOPT_GET)
3953				error = sooptcopyout(sopt, rule, size);
3954		}
3955		free(rule, M_TEMP);
3956		break;
3957
3958	case IP_FW_DEL:
3959		/*
3960		 * IP_FW_DEL is used for deleting single rules or sets,
3961		 * and (ab)used to atomically manipulate sets. Argument size
3962		 * is used to distinguish between the two:
3963		 *    sizeof(u_int32_t)
3964		 *	delete single rule or set of rules,
3965		 *	or reassign rules (or sets) to a different set.
3966		 *    2*sizeof(u_int32_t)
3967		 *	atomic disable/enable sets.
3968		 *	first u_int32_t contains sets to be disabled,
3969		 *	second u_int32_t contains sets to be enabled.
3970		 */
3971		error = sooptcopyin(sopt, rulenum,
3972			2*sizeof(u_int32_t), sizeof(u_int32_t));
3973		if (error)
3974			break;
3975		size = sopt->sopt_valsize;
3976		if (size == sizeof(u_int32_t))	/* delete or reassign */
3977			error = del_entry(&layer3_chain, rulenum[0]);
3978		else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
3979			set_disable =
3980			    (set_disable | rulenum[0]) & ~rulenum[1] &
3981			    ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
3982		else
3983			error = EINVAL;
3984		break;
3985
3986	case IP_FW_ZERO:
3987	case IP_FW_RESETLOG: /* argument is an int, the rule number */
3988		rule_num = 0;
3989		if (sopt->sopt_val != 0) {
3990		    error = sooptcopyin(sopt, &rule_num,
3991			    sizeof(int), sizeof(int));
3992		    if (error)
3993			break;
3994		}
3995		error = zero_entry(&layer3_chain, rule_num,
3996			sopt->sopt_name == IP_FW_RESETLOG);
3997		break;
3998
3999	case IP_FW_TABLE_ADD:
4000		{
4001			ipfw_table_entry ent;
4002
4003			error = sooptcopyin(sopt, &ent,
4004			    sizeof(ent), sizeof(ent));
4005			if (error)
4006				break;
4007			error = add_table_entry(&layer3_chain, ent.tbl,
4008			    ent.addr, ent.masklen, ent.value);
4009		}
4010		break;
4011
4012	case IP_FW_TABLE_DEL:
4013		{
4014			ipfw_table_entry ent;
4015
4016			error = sooptcopyin(sopt, &ent,
4017			    sizeof(ent), sizeof(ent));
4018			if (error)
4019				break;
4020			error = del_table_entry(&layer3_chain, ent.tbl,
4021			    ent.addr, ent.masklen);
4022		}
4023		break;
4024
4025	case IP_FW_TABLE_FLUSH:
4026		{
4027			u_int16_t tbl;
4028
4029			error = sooptcopyin(sopt, &tbl,
4030			    sizeof(tbl), sizeof(tbl));
4031			if (error)
4032				break;
4033			IPFW_WLOCK(&layer3_chain);
4034			error = flush_table(&layer3_chain, tbl);
4035			IPFW_WUNLOCK(&layer3_chain);
4036		}
4037		break;
4038
4039	case IP_FW_TABLE_GETSIZE:
4040		{
4041			u_int32_t tbl, cnt;
4042
4043			if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
4044			    sizeof(tbl))))
4045				break;
4046			IPFW_RLOCK(&layer3_chain);
4047			error = count_table(&layer3_chain, tbl, &cnt);
4048			IPFW_RUNLOCK(&layer3_chain);
4049			if (error)
4050				break;
4051			error = sooptcopyout(sopt, &cnt, sizeof(cnt));
4052		}
4053		break;
4054
4055	case IP_FW_TABLE_LIST:
4056		{
4057			ipfw_table *tbl;
4058
4059			if (sopt->sopt_valsize < sizeof(*tbl)) {
4060				error = EINVAL;
4061				break;
4062			}
4063			size = sopt->sopt_valsize;
4064			tbl = malloc(size, M_TEMP, M_WAITOK);
4065			if (tbl == NULL) {
4066				error = ENOMEM;
4067				break;
4068			}
4069			error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
4070			if (error) {
4071				free(tbl, M_TEMP);
4072				break;
4073			}
4074			tbl->size = (size - sizeof(*tbl)) /
4075			    sizeof(ipfw_table_entry);
4076			IPFW_RLOCK(&layer3_chain);
4077			error = dump_table(&layer3_chain, tbl);
4078			IPFW_RUNLOCK(&layer3_chain);
4079			if (error) {
4080				free(tbl, M_TEMP);
4081				break;
4082			}
4083			error = sooptcopyout(sopt, tbl, size);
4084			free(tbl, M_TEMP);
4085		}
4086		break;
4087
4088	default:
4089		printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
4090		error = EINVAL;
4091	}
4092
4093	return (error);
4094#undef RULE_MAXSIZE
4095}
4096
4097/**
4098 * dummynet needs a reference to the default rule, because rules can be
4099 * deleted while packets hold a reference to them. When this happens,
4100 * dummynet changes the reference to the default rule (it could well be a
4101 * NULL pointer, but this way we do not need to check for the special
4102 * case, plus here he have info on the default behaviour).
4103 */
4104struct ip_fw *ip_fw_default_rule;
4105
4106/*
4107 * This procedure is only used to handle keepalives. It is invoked
4108 * every dyn_keepalive_period
4109 */
4110static void
4111ipfw_tick(void * __unused unused)
4112{
4113	struct mbuf *m0, *m, *mnext, **mtailp;
4114	int i;
4115	ipfw_dyn_rule *q;
4116
4117	if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0)
4118		goto done;
4119
4120	/*
4121	 * We make a chain of packets to go out here -- not deferring
4122	 * until after we drop the IPFW dynamic rule lock would result
4123	 * in a lock order reversal with the normal packet input -> ipfw
4124	 * call stack.
4125	 */
4126	m0 = NULL;
4127	mtailp = &m0;
4128	IPFW_DYN_LOCK();
4129	for (i = 0 ; i < curr_dyn_buckets ; i++) {
4130		for (q = ipfw_dyn_v[i] ; q ; q = q->next ) {
4131			if (q->dyn_type == O_LIMIT_PARENT)
4132				continue;
4133			if (q->id.proto != IPPROTO_TCP)
4134				continue;
4135			if ( (q->state & BOTH_SYN) != BOTH_SYN)
4136				continue;
4137			if (TIME_LEQ( time_uptime+dyn_keepalive_interval,
4138			    q->expire))
4139				continue;	/* too early */
4140			if (TIME_LEQ(q->expire, time_uptime))
4141				continue;	/* too late, rule expired */
4142
4143			*mtailp = send_pkt(&(q->id), q->ack_rev - 1,
4144				q->ack_fwd, TH_SYN);
4145			if (*mtailp != NULL)
4146				mtailp = &(*mtailp)->m_nextpkt;
4147			*mtailp = send_pkt(&(q->id), q->ack_fwd - 1,
4148				q->ack_rev, 0);
4149			if (*mtailp != NULL)
4150				mtailp = &(*mtailp)->m_nextpkt;
4151		}
4152	}
4153	IPFW_DYN_UNLOCK();
4154	for (m = mnext = m0; m != NULL; m = mnext) {
4155		mnext = m->m_nextpkt;
4156		m->m_nextpkt = NULL;
4157		ip_output(m, NULL, NULL, 0, NULL, NULL);
4158	}
4159done:
4160	callout_reset(&ipfw_timeout, dyn_keepalive_period*hz, ipfw_tick, NULL);
4161}
4162
4163int
4164ipfw_init(void)
4165{
4166	struct ip_fw default_rule;
4167	int error;
4168
4169#ifdef INET6
4170	/* Setup IPv6 fw sysctl tree. */
4171	sysctl_ctx_init(&ip6_fw_sysctl_ctx);
4172	ip6_fw_sysctl_tree = SYSCTL_ADD_NODE(&ip6_fw_sysctl_ctx,
4173	    SYSCTL_STATIC_CHILDREN(_net_inet6_ip6), OID_AUTO, "fw",
4174	    CTLFLAG_RW | CTLFLAG_SECURE, 0, "Firewall");
4175	SYSCTL_ADD_PROC(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4176	    OID_AUTO, "enable", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3,
4177	    &fw6_enable, 0, ipfw_chg_hook, "I", "Enable ipfw+6");
4178	SYSCTL_ADD_INT(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4179	    OID_AUTO, "deny_unknown_exthdrs", CTLFLAG_RW | CTLFLAG_SECURE,
4180	    &fw_deny_unknown_exthdrs, 0,
4181	    "Deny packets with unknown IPv6 Extension Headers");
4182#endif
4183
4184	layer3_chain.rules = NULL;
4185	IPFW_LOCK_INIT(&layer3_chain);
4186	ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule zone",
4187	    sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
4188	    UMA_ALIGN_PTR, 0);
4189	IPFW_DYN_LOCK_INIT();
4190	callout_init(&ipfw_timeout, NET_CALLOUT_MPSAFE);
4191
4192	bzero(&default_rule, sizeof default_rule);
4193
4194	default_rule.act_ofs = 0;
4195	default_rule.rulenum = IPFW_DEFAULT_RULE;
4196	default_rule.cmd_len = 1;
4197	default_rule.set = RESVD_SET;
4198
4199	default_rule.cmd[0].len = 1;
4200	default_rule.cmd[0].opcode =
4201#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
4202				1 ? O_ACCEPT :
4203#endif
4204				O_DENY;
4205
4206	error = add_rule(&layer3_chain, &default_rule);
4207	if (error != 0) {
4208		printf("ipfw2: error %u initializing default rule "
4209			"(support disabled)\n", error);
4210		IPFW_DYN_LOCK_DESTROY();
4211		IPFW_LOCK_DESTROY(&layer3_chain);
4212		uma_zdestroy(ipfw_dyn_rule_zone);
4213		return (error);
4214	}
4215
4216	ip_fw_default_rule = layer3_chain.rules;
4217	printf("ipfw2 "
4218#ifdef INET6
4219		"(+ipv6) "
4220#endif
4221		"initialized, divert %s, "
4222		"rule-based forwarding "
4223#ifdef IPFIREWALL_FORWARD
4224		"enabled, "
4225#else
4226		"disabled, "
4227#endif
4228		"default to %s, logging ",
4229#ifdef IPDIVERT
4230		"enabled",
4231#else
4232		"loadable",
4233#endif
4234		default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
4235
4236#ifdef IPFIREWALL_VERBOSE
4237	fw_verbose = 1;
4238#endif
4239#ifdef IPFIREWALL_VERBOSE_LIMIT
4240	verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
4241#endif
4242	if (fw_verbose == 0)
4243		printf("disabled\n");
4244	else if (verbose_limit == 0)
4245		printf("unlimited\n");
4246	else
4247		printf("limited to %d packets/entry by default\n",
4248		    verbose_limit);
4249
4250	error = init_tables(&layer3_chain);
4251	if (error) {
4252		IPFW_DYN_LOCK_DESTROY();
4253		IPFW_LOCK_DESTROY(&layer3_chain);
4254		uma_zdestroy(ipfw_dyn_rule_zone);
4255		return (error);
4256	}
4257	ip_fw_ctl_ptr = ipfw_ctl;
4258	ip_fw_chk_ptr = ipfw_chk;
4259	callout_reset(&ipfw_timeout, hz, ipfw_tick, NULL);
4260
4261	return (0);
4262}
4263
4264void
4265ipfw_destroy(void)
4266{
4267	struct ip_fw *reap;
4268
4269	ip_fw_chk_ptr = NULL;
4270	ip_fw_ctl_ptr = NULL;
4271	callout_drain(&ipfw_timeout);
4272	IPFW_WLOCK(&layer3_chain);
4273	flush_tables(&layer3_chain);
4274	layer3_chain.reap = NULL;
4275	free_chain(&layer3_chain, 1 /* kill default rule */);
4276	reap = layer3_chain.reap, layer3_chain.reap = NULL;
4277	IPFW_WUNLOCK(&layer3_chain);
4278	if (reap != NULL)
4279		reap_rules(reap);
4280	IPFW_DYN_LOCK_DESTROY();
4281	uma_zdestroy(ipfw_dyn_rule_zone);
4282	IPFW_LOCK_DESTROY(&layer3_chain);
4283
4284#ifdef INET6
4285	/* Free IPv6 fw sysctl tree. */
4286	sysctl_ctx_free(&ip6_fw_sysctl_ctx);
4287#endif
4288
4289	printf("IP firewall unloaded\n");
4290}
4291