ip_fw2.c revision 154216
1219820Sjeff/*-
2219820Sjeff * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3219820Sjeff *
4219820Sjeff * Redistribution and use in source and binary forms, with or without
5219820Sjeff * modification, are permitted provided that the following conditions
6219820Sjeff * are met:
7219820Sjeff * 1. Redistributions of source code must retain the above copyright
8219820Sjeff *    notice, this list of conditions and the following disclaimer.
9219820Sjeff * 2. Redistributions in binary form must reproduce the above copyright
10219820Sjeff *    notice, this list of conditions and the following disclaimer in the
11219820Sjeff *    documentation and/or other materials provided with the distribution.
12219820Sjeff *
13219820Sjeff * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14219820Sjeff * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15219820Sjeff * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16219820Sjeff * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17219820Sjeff * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18219820Sjeff * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19219820Sjeff * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20219820Sjeff * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21219820Sjeff * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22219820Sjeff * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23219820Sjeff * SUCH DAMAGE.
24219820Sjeff *
25219820Sjeff * $FreeBSD: head/sys/netinet/ip_fw2.c 154216 2006-01-11 08:02:16Z cperciva $
26219820Sjeff */
27219820Sjeff
28219820Sjeff#define        DEB(x)
29219820Sjeff#define        DDB(x) x
30219820Sjeff
31219820Sjeff/*
32219820Sjeff * Implement IP packet firewall (new version)
33219820Sjeff */
34219820Sjeff
35219820Sjeff#if !defined(KLD_MODULE)
36219820Sjeff#include "opt_ipfw.h"
37219820Sjeff#include "opt_ip6fw.h"
38219820Sjeff#include "opt_ipdn.h"
39219820Sjeff#include "opt_inet.h"
40219820Sjeff#ifndef INET
41219820Sjeff#error IPFIREWALL requires INET.
42219820Sjeff#endif /* INET */
43219820Sjeff#endif
44219820Sjeff#include "opt_inet6.h"
45219820Sjeff#include "opt_ipsec.h"
46219820Sjeff
47219820Sjeff#include <sys/param.h>
48219820Sjeff#include <sys/systm.h>
49219820Sjeff#include <sys/condvar.h>
50219820Sjeff#include <sys/malloc.h>
51219820Sjeff#include <sys/mbuf.h>
52219820Sjeff#include <sys/kernel.h>
53219820Sjeff#include <sys/jail.h>
54219820Sjeff#include <sys/module.h>
55219820Sjeff#include <sys/proc.h>
56219820Sjeff#include <sys/socket.h>
57219820Sjeff#include <sys/socketvar.h>
58219820Sjeff#include <sys/sysctl.h>
59219820Sjeff#include <sys/syslog.h>
60#include <sys/ucred.h>
61#include <net/if.h>
62#include <net/radix.h>
63#include <net/route.h>
64#include <netinet/in.h>
65#include <netinet/in_systm.h>
66#include <netinet/in_var.h>
67#include <netinet/in_pcb.h>
68#include <netinet/ip.h>
69#include <netinet/ip_var.h>
70#include <netinet/ip_icmp.h>
71#include <netinet/ip_fw.h>
72#include <netinet/ip_divert.h>
73#include <netinet/ip_dummynet.h>
74#include <netinet/tcp.h>
75#include <netinet/tcp_timer.h>
76#include <netinet/tcp_var.h>
77#include <netinet/tcpip.h>
78#include <netinet/udp.h>
79#include <netinet/udp_var.h>
80
81#include <netgraph/ng_ipfw.h>
82
83#include <altq/if_altq.h>
84
85#ifdef IPSEC
86#include <netinet6/ipsec.h>
87#endif
88
89#include <netinet/ip6.h>
90#include <netinet/icmp6.h>
91#ifdef INET6
92#include <netinet6/scope6_var.h>
93#endif
94
95#include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
96
97#include <machine/in_cksum.h>	/* XXX for in_cksum */
98
99/*
100 * set_disable contains one bit per set value (0..31).
101 * If the bit is set, all rules with the corresponding set
102 * are disabled. Set RESVD_SET(31) is reserved for the default rule
103 * and rules that are not deleted by the flush command,
104 * and CANNOT be disabled.
105 * Rules in set RESVD_SET can only be deleted explicitly.
106 */
107static u_int32_t set_disable;
108
109static int fw_verbose;
110static int verbose_limit;
111
112static struct callout ipfw_timeout;
113static uma_zone_t ipfw_dyn_rule_zone;
114#define	IPFW_DEFAULT_RULE	65535
115
116/*
117 * Data structure to cache our ucred related
118 * information. This structure only gets used if
119 * the user specified UID/GID based constraints in
120 * a firewall rule.
121 */
122struct ip_fw_ugid {
123	gid_t		fw_groups[NGROUPS];
124	int		fw_ngroups;
125	uid_t		fw_uid;
126	int		fw_prid;
127};
128
129#define	IPFW_TABLES_MAX		128
130struct ip_fw_chain {
131	struct ip_fw	*rules;		/* list of rules */
132	struct ip_fw	*reap;		/* list of rules to reap */
133	struct radix_node_head *tables[IPFW_TABLES_MAX];
134	struct mtx	mtx;		/* lock guarding rule list */
135	int		busy_count;	/* busy count for rw locks */
136	int		want_write;
137	struct cv	cv;
138};
139#define	IPFW_LOCK_INIT(_chain) \
140	mtx_init(&(_chain)->mtx, "IPFW static rules", NULL, \
141		MTX_DEF | MTX_RECURSE)
142#define	IPFW_LOCK_DESTROY(_chain)	mtx_destroy(&(_chain)->mtx)
143#define	IPFW_WLOCK_ASSERT(_chain)	do {				\
144	mtx_assert(&(_chain)->mtx, MA_OWNED);				\
145	NET_ASSERT_GIANT();						\
146} while (0)
147
148static __inline void
149IPFW_RLOCK(struct ip_fw_chain *chain)
150{
151	mtx_lock(&chain->mtx);
152	chain->busy_count++;
153	mtx_unlock(&chain->mtx);
154}
155
156static __inline void
157IPFW_RUNLOCK(struct ip_fw_chain *chain)
158{
159	mtx_lock(&chain->mtx);
160	chain->busy_count--;
161	if (chain->busy_count == 0 && chain->want_write)
162		cv_signal(&chain->cv);
163	mtx_unlock(&chain->mtx);
164}
165
166static __inline void
167IPFW_WLOCK(struct ip_fw_chain *chain)
168{
169	mtx_lock(&chain->mtx);
170	chain->want_write++;
171	while (chain->busy_count > 0)
172		cv_wait(&chain->cv, &chain->mtx);
173}
174
175static __inline void
176IPFW_WUNLOCK(struct ip_fw_chain *chain)
177{
178	chain->want_write--;
179	cv_signal(&chain->cv);
180	mtx_unlock(&chain->mtx);
181}
182
183/*
184 * list of rules for layer 3
185 */
186static struct ip_fw_chain layer3_chain;
187
188MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
189MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
190
191struct table_entry {
192	struct radix_node	rn[2];
193	struct sockaddr_in	addr, mask;
194	u_int32_t		value;
195};
196
197static int fw_debug = 1;
198static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
199
200#ifdef SYSCTL_NODE
201SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
202SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, enable,
203    CTLFLAG_RW | CTLFLAG_SECURE3,
204    &fw_enable, 0, "Enable ipfw");
205SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
206    &autoinc_step, 0, "Rule number autincrement step");
207SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
208    CTLFLAG_RW | CTLFLAG_SECURE3,
209    &fw_one_pass, 0,
210    "Only do a single pass through ipfw when using dummynet(4)");
211SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
212    &fw_debug, 0, "Enable printing of debug ip_fw statements");
213SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
214    CTLFLAG_RW | CTLFLAG_SECURE3,
215    &fw_verbose, 0, "Log matches to ipfw rules");
216SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
217    &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
218
219/*
220 * Description of dynamic rules.
221 *
222 * Dynamic rules are stored in lists accessed through a hash table
223 * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
224 * be modified through the sysctl variable dyn_buckets which is
225 * updated when the table becomes empty.
226 *
227 * XXX currently there is only one list, ipfw_dyn.
228 *
229 * When a packet is received, its address fields are first masked
230 * with the mask defined for the rule, then hashed, then matched
231 * against the entries in the corresponding list.
232 * Dynamic rules can be used for different purposes:
233 *  + stateful rules;
234 *  + enforcing limits on the number of sessions;
235 *  + in-kernel NAT (not implemented yet)
236 *
237 * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
238 * measured in seconds and depending on the flags.
239 *
240 * The total number of dynamic rules is stored in dyn_count.
241 * The max number of dynamic rules is dyn_max. When we reach
242 * the maximum number of rules we do not create anymore. This is
243 * done to avoid consuming too much memory, but also too much
244 * time when searching on each packet (ideally, we should try instead
245 * to put a limit on the length of the list on each bucket...).
246 *
247 * Each dynamic rule holds a pointer to the parent ipfw rule so
248 * we know what action to perform. Dynamic rules are removed when
249 * the parent rule is deleted. XXX we should make them survive.
250 *
251 * There are some limitations with dynamic rules -- we do not
252 * obey the 'randomized match', and we do not do multiple
253 * passes through the firewall. XXX check the latter!!!
254 */
255static ipfw_dyn_rule **ipfw_dyn_v = NULL;
256static u_int32_t dyn_buckets = 256; /* must be power of 2 */
257static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
258
259static struct mtx ipfw_dyn_mtx;		/* mutex guarding dynamic rules */
260#define	IPFW_DYN_LOCK_INIT() \
261	mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
262#define	IPFW_DYN_LOCK_DESTROY()	mtx_destroy(&ipfw_dyn_mtx)
263#define	IPFW_DYN_LOCK()		mtx_lock(&ipfw_dyn_mtx)
264#define	IPFW_DYN_UNLOCK()	mtx_unlock(&ipfw_dyn_mtx)
265#define	IPFW_DYN_LOCK_ASSERT()	mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
266
267/*
268 * Timeouts for various events in handing dynamic rules.
269 */
270static u_int32_t dyn_ack_lifetime = 300;
271static u_int32_t dyn_syn_lifetime = 20;
272static u_int32_t dyn_fin_lifetime = 1;
273static u_int32_t dyn_rst_lifetime = 1;
274static u_int32_t dyn_udp_lifetime = 10;
275static u_int32_t dyn_short_lifetime = 5;
276
277/*
278 * Keepalives are sent if dyn_keepalive is set. They are sent every
279 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
280 * seconds of lifetime of a rule.
281 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
282 * than dyn_keepalive_period.
283 */
284
285static u_int32_t dyn_keepalive_interval = 20;
286static u_int32_t dyn_keepalive_period = 5;
287static u_int32_t dyn_keepalive = 1;	/* do send keepalives */
288
289static u_int32_t static_count;	/* # of static rules */
290static u_int32_t static_len;	/* size in bytes of static rules */
291static u_int32_t dyn_count;		/* # of dynamic rules */
292static u_int32_t dyn_max = 4096;	/* max # of dynamic rules */
293
294SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
295    &dyn_buckets, 0, "Number of dyn. buckets");
296SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
297    &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
298SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
299    &dyn_count, 0, "Number of dyn. rules");
300SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
301    &dyn_max, 0, "Max number of dyn. rules");
302SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
303    &static_count, 0, "Number of static rules");
304SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
305    &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
306SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
307    &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
308SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
309    &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
310SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
311    &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
312SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
313    &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
314SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
315    &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
316SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
317    &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
318
319#ifdef INET6
320/*
321 * IPv6 specific variables
322 */
323SYSCTL_DECL(_net_inet6_ip6);
324
325static struct sysctl_ctx_list ip6_fw_sysctl_ctx;
326static struct sysctl_oid *ip6_fw_sysctl_tree;
327#endif /* INET6 */
328#endif /* SYSCTL_NODE */
329
330static int fw_deny_unknown_exthdrs = 1;
331
332
333/*
334 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
335 * Other macros just cast void * into the appropriate type
336 */
337#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
338#define	TCP(p)		((struct tcphdr *)(p))
339#define	UDP(p)		((struct udphdr *)(p))
340#define	ICMP(p)		((struct icmphdr *)(p))
341#define	ICMP6(p)	((struct icmp6_hdr *)(p))
342
343static __inline int
344icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
345{
346	int type = icmp->icmp_type;
347
348	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
349}
350
351#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
352    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
353
354static int
355is_icmp_query(struct icmphdr *icmp)
356{
357	int type = icmp->icmp_type;
358
359	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
360}
361#undef TT
362
363/*
364 * The following checks use two arrays of 8 or 16 bits to store the
365 * bits that we want set or clear, respectively. They are in the
366 * low and high half of cmd->arg1 or cmd->d[0].
367 *
368 * We scan options and store the bits we find set. We succeed if
369 *
370 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
371 *
372 * The code is sometimes optimized not to store additional variables.
373 */
374
375static int
376flags_match(ipfw_insn *cmd, u_int8_t bits)
377{
378	u_char want_clear;
379	bits = ~bits;
380
381	if ( ((cmd->arg1 & 0xff) & bits) != 0)
382		return 0; /* some bits we want set were clear */
383	want_clear = (cmd->arg1 >> 8) & 0xff;
384	if ( (want_clear & bits) != want_clear)
385		return 0; /* some bits we want clear were set */
386	return 1;
387}
388
389static int
390ipopts_match(struct ip *ip, ipfw_insn *cmd)
391{
392	int optlen, bits = 0;
393	u_char *cp = (u_char *)(ip + 1);
394	int x = (ip->ip_hl << 2) - sizeof (struct ip);
395
396	for (; x > 0; x -= optlen, cp += optlen) {
397		int opt = cp[IPOPT_OPTVAL];
398
399		if (opt == IPOPT_EOL)
400			break;
401		if (opt == IPOPT_NOP)
402			optlen = 1;
403		else {
404			optlen = cp[IPOPT_OLEN];
405			if (optlen <= 0 || optlen > x)
406				return 0; /* invalid or truncated */
407		}
408		switch (opt) {
409
410		default:
411			break;
412
413		case IPOPT_LSRR:
414			bits |= IP_FW_IPOPT_LSRR;
415			break;
416
417		case IPOPT_SSRR:
418			bits |= IP_FW_IPOPT_SSRR;
419			break;
420
421		case IPOPT_RR:
422			bits |= IP_FW_IPOPT_RR;
423			break;
424
425		case IPOPT_TS:
426			bits |= IP_FW_IPOPT_TS;
427			break;
428		}
429	}
430	return (flags_match(cmd, bits));
431}
432
433static int
434tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
435{
436	int optlen, bits = 0;
437	u_char *cp = (u_char *)(tcp + 1);
438	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
439
440	for (; x > 0; x -= optlen, cp += optlen) {
441		int opt = cp[0];
442		if (opt == TCPOPT_EOL)
443			break;
444		if (opt == TCPOPT_NOP)
445			optlen = 1;
446		else {
447			optlen = cp[1];
448			if (optlen <= 0)
449				break;
450		}
451
452		switch (opt) {
453
454		default:
455			break;
456
457		case TCPOPT_MAXSEG:
458			bits |= IP_FW_TCPOPT_MSS;
459			break;
460
461		case TCPOPT_WINDOW:
462			bits |= IP_FW_TCPOPT_WINDOW;
463			break;
464
465		case TCPOPT_SACK_PERMITTED:
466		case TCPOPT_SACK:
467			bits |= IP_FW_TCPOPT_SACK;
468			break;
469
470		case TCPOPT_TIMESTAMP:
471			bits |= IP_FW_TCPOPT_TS;
472			break;
473
474		}
475	}
476	return (flags_match(cmd, bits));
477}
478
479static int
480iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
481{
482	if (ifp == NULL)	/* no iface with this packet, match fails */
483		return 0;
484	/* Check by name or by IP address */
485	if (cmd->name[0] != '\0') { /* match by name */
486		/* Check name */
487		if (cmd->p.glob) {
488			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
489				return(1);
490		} else {
491			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
492				return(1);
493		}
494	} else {
495		struct ifaddr *ia;
496
497		/* XXX lock? */
498		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
499			if (ia->ifa_addr == NULL)
500				continue;
501			if (ia->ifa_addr->sa_family != AF_INET)
502				continue;
503			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
504			    (ia->ifa_addr))->sin_addr.s_addr)
505				return(1);	/* match */
506		}
507	}
508	return(0);	/* no match, fail ... */
509}
510
511/*
512 * The verify_path function checks if a route to the src exists and
513 * if it is reachable via ifp (when provided).
514 *
515 * The 'verrevpath' option checks that the interface that an IP packet
516 * arrives on is the same interface that traffic destined for the
517 * packet's source address would be routed out of.  The 'versrcreach'
518 * option just checks that the source address is reachable via any route
519 * (except default) in the routing table.  These two are a measure to block
520 * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
521 * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
522 * is purposely reminiscent of the Cisco IOS command,
523 *
524 *   ip verify unicast reverse-path
525 *   ip verify unicast source reachable-via any
526 *
527 * which implements the same functionality. But note that syntax is
528 * misleading. The check may be performed on all IP packets whether unicast,
529 * multicast, or broadcast.
530 */
531static int
532verify_path(struct in_addr src, struct ifnet *ifp)
533{
534	struct route ro;
535	struct sockaddr_in *dst;
536
537	bzero(&ro, sizeof(ro));
538
539	dst = (struct sockaddr_in *)&(ro.ro_dst);
540	dst->sin_family = AF_INET;
541	dst->sin_len = sizeof(*dst);
542	dst->sin_addr = src;
543	rtalloc_ign(&ro, RTF_CLONING);
544
545	if (ro.ro_rt == NULL)
546		return 0;
547
548	/* if ifp is provided, check for equality with rtentry */
549	if (ifp != NULL && ro.ro_rt->rt_ifp != ifp) {
550		RTFREE(ro.ro_rt);
551		return 0;
552	}
553
554	/* if no ifp provided, check if rtentry is not default route */
555	if (ifp == NULL &&
556	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
557		RTFREE(ro.ro_rt);
558		return 0;
559	}
560
561	/* or if this is a blackhole/reject route */
562	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
563		RTFREE(ro.ro_rt);
564		return 0;
565	}
566
567	/* found valid route */
568	RTFREE(ro.ro_rt);
569	return 1;
570}
571
572#ifdef INET6
573/*
574 * ipv6 specific rules here...
575 */
576static __inline int
577icmp6type_match (int type, ipfw_insn_u32 *cmd)
578{
579	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
580}
581
582static int
583flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
584{
585	int i;
586	for (i=0; i <= cmd->o.arg1; ++i )
587		if (curr_flow == cmd->d[i] )
588			return 1;
589	return 0;
590}
591
592/* support for IP6_*_ME opcodes */
593static int
594search_ip6_addr_net (struct in6_addr * ip6_addr)
595{
596	struct ifnet *mdc;
597	struct ifaddr *mdc2;
598	struct in6_ifaddr *fdm;
599	struct in6_addr copia;
600
601	TAILQ_FOREACH(mdc, &ifnet, if_link)
602		for (mdc2 = mdc->if_addrlist.tqh_first; mdc2;
603		    mdc2 = mdc2->ifa_list.tqe_next) {
604			if (!mdc2->ifa_addr)
605				continue;
606			if (mdc2->ifa_addr->sa_family == AF_INET6) {
607				fdm = (struct in6_ifaddr *)mdc2;
608				copia = fdm->ia_addr.sin6_addr;
609				/* need for leaving scope_id in the sock_addr */
610				in6_clearscope(&copia);
611				if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia))
612					return 1;
613			}
614		}
615	return 0;
616}
617
618static int
619verify_path6(struct in6_addr *src, struct ifnet *ifp)
620{
621	struct route_in6 ro;
622	struct sockaddr_in6 *dst;
623
624	bzero(&ro, sizeof(ro));
625
626	dst = (struct sockaddr_in6 * )&(ro.ro_dst);
627	dst->sin6_family = AF_INET6;
628	dst->sin6_len = sizeof(*dst);
629	dst->sin6_addr = *src;
630	rtalloc_ign((struct route *)&ro, RTF_CLONING);
631
632	if (ro.ro_rt == NULL)
633		return 0;
634
635	/*
636	 * if ifp is provided, check for equality with rtentry
637	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
638	 * to support the case of sending packets to an address of our own.
639	 * (where the former interface is the first argument of if_simloop()
640	 *  (=ifp), the latter is lo0)
641	 */
642	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
643		RTFREE(ro.ro_rt);
644		return 0;
645	}
646
647	/* if no ifp provided, check if rtentry is not default route */
648	if (ifp == NULL &&
649	    IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
650		RTFREE(ro.ro_rt);
651		return 0;
652	}
653
654	/* or if this is a blackhole/reject route */
655	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
656		RTFREE(ro.ro_rt);
657		return 0;
658	}
659
660	/* found valid route */
661	RTFREE(ro.ro_rt);
662	return 1;
663
664}
665static __inline int
666hash_packet6(struct ipfw_flow_id *id)
667{
668	u_int32_t i;
669	i = (id->dst_ip6.__u6_addr.__u6_addr32[0]) ^
670	    (id->dst_ip6.__u6_addr.__u6_addr32[1]) ^
671	    (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
672	    (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
673	    (id->dst_port) ^ (id->src_port) ^ (id->flow_id6);
674	return i;
675}
676
677static int
678is_icmp6_query(int icmp6_type)
679{
680	if ((icmp6_type <= ICMP6_MAXTYPE) &&
681	    (icmp6_type == ICMP6_ECHO_REQUEST ||
682	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
683	    icmp6_type == ICMP6_WRUREQUEST ||
684	    icmp6_type == ICMP6_FQDN_QUERY ||
685	    icmp6_type == ICMP6_NI_QUERY))
686		return (1);
687
688	return (0);
689}
690
691static void
692send_reject6(struct ip_fw_args *args, int code, u_short offset, u_int hlen)
693{
694	if (code == ICMP6_UNREACH_RST && offset == 0 &&
695	    args->f_id.proto == IPPROTO_TCP) {
696		struct ip6_hdr *ip6;
697		struct tcphdr *tcp;
698		tcp_seq ack, seq;
699		int flags;
700		struct {
701			struct ip6_hdr ip6;
702			struct tcphdr th;
703		} ti;
704
705		if (args->m->m_len < (hlen+sizeof(struct tcphdr))) {
706			args->m = m_pullup(args->m, hlen+sizeof(struct tcphdr));
707			if (args->m == NULL)
708				return;
709		}
710
711		ip6 = mtod(args->m, struct ip6_hdr *);
712		tcp = (struct tcphdr *)(mtod(args->m, char *) + hlen);
713
714		if ((tcp->th_flags & TH_RST) != 0) {
715			m_freem(args->m);
716			return;
717		}
718
719		ti.ip6 = *ip6;
720		ti.th = *tcp;
721		ti.th.th_seq = ntohl(ti.th.th_seq);
722		ti.th.th_ack = ntohl(ti.th.th_ack);
723		ti.ip6.ip6_nxt = IPPROTO_TCP;
724
725		if (ti.th.th_flags & TH_ACK) {
726			ack = 0;
727			seq = ti.th.th_ack;
728			flags = TH_RST;
729		} else {
730			ack = ti.th.th_seq;
731			if (((args->m)->m_flags & M_PKTHDR) != 0) {
732				ack += (args->m)->m_pkthdr.len - hlen
733					- (ti.th.th_off << 2);
734			} else if (ip6->ip6_plen) {
735				ack += ntohs(ip6->ip6_plen) + sizeof(*ip6)
736					- hlen - (ti.th.th_off << 2);
737			} else {
738				m_freem(args->m);
739				return;
740			}
741			if (tcp->th_flags & TH_SYN)
742				ack++;
743			seq = 0;
744			flags = TH_RST|TH_ACK;
745		}
746		bcopy(&ti, ip6, sizeof(ti));
747		tcp_respond(NULL, ip6, (struct tcphdr *)(ip6 + 1),
748			args->m, ack, seq, flags);
749
750	} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
751		icmp6_error(args->m, ICMP6_DST_UNREACH, code, 0);
752
753	} else
754		m_freem(args->m);
755
756	args->m = NULL;
757}
758
759#endif /* INET6 */
760
761static u_int64_t norule_counter;	/* counter for ipfw_log(NULL...) */
762
763#define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
764#define SNP(buf) buf, sizeof(buf)
765
766/*
767 * We enter here when we have a rule with O_LOG.
768 * XXX this function alone takes about 2Kbytes of code!
769 */
770static void
771ipfw_log(struct ip_fw *f, u_int hlen, struct ip_fw_args *args,
772	struct mbuf *m, struct ifnet *oif, u_short offset)
773{
774	struct ether_header *eh = args->eh;
775	char *action;
776	int limit_reached = 0;
777	char action2[40], proto[128], fragment[32];
778
779	fragment[0] = '\0';
780	proto[0] = '\0';
781
782	if (f == NULL) {	/* bogus pkt */
783		if (verbose_limit != 0 && norule_counter >= verbose_limit)
784			return;
785		norule_counter++;
786		if (norule_counter == verbose_limit)
787			limit_reached = verbose_limit;
788		action = "Refuse";
789	} else {	/* O_LOG is the first action, find the real one */
790		ipfw_insn *cmd = ACTION_PTR(f);
791		ipfw_insn_log *l = (ipfw_insn_log *)cmd;
792
793		if (l->max_log != 0 && l->log_left == 0)
794			return;
795		l->log_left--;
796		if (l->log_left == 0)
797			limit_reached = l->max_log;
798		cmd += F_LEN(cmd);	/* point to first action */
799		if (cmd->opcode == O_ALTQ) {
800			ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
801
802			snprintf(SNPARGS(action2, 0), "Altq %d",
803				altq->qid);
804			cmd += F_LEN(cmd);
805		}
806		if (cmd->opcode == O_PROB)
807			cmd += F_LEN(cmd);
808
809		action = action2;
810		switch (cmd->opcode) {
811		case O_DENY:
812			action = "Deny";
813			break;
814
815		case O_REJECT:
816			if (cmd->arg1==ICMP_REJECT_RST)
817				action = "Reset";
818			else if (cmd->arg1==ICMP_UNREACH_HOST)
819				action = "Reject";
820			else
821				snprintf(SNPARGS(action2, 0), "Unreach %d",
822					cmd->arg1);
823			break;
824
825		case O_UNREACH6:
826			if (cmd->arg1==ICMP6_UNREACH_RST)
827				action = "Reset";
828			else
829				snprintf(SNPARGS(action2, 0), "Unreach %d",
830					cmd->arg1);
831			break;
832
833		case O_ACCEPT:
834			action = "Accept";
835			break;
836		case O_COUNT:
837			action = "Count";
838			break;
839		case O_DIVERT:
840			snprintf(SNPARGS(action2, 0), "Divert %d",
841				cmd->arg1);
842			break;
843		case O_TEE:
844			snprintf(SNPARGS(action2, 0), "Tee %d",
845				cmd->arg1);
846			break;
847		case O_SKIPTO:
848			snprintf(SNPARGS(action2, 0), "SkipTo %d",
849				cmd->arg1);
850			break;
851		case O_PIPE:
852			snprintf(SNPARGS(action2, 0), "Pipe %d",
853				cmd->arg1);
854			break;
855		case O_QUEUE:
856			snprintf(SNPARGS(action2, 0), "Queue %d",
857				cmd->arg1);
858			break;
859		case O_FORWARD_IP: {
860			ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
861			int len;
862
863			len = snprintf(SNPARGS(action2, 0), "Forward to %s",
864				inet_ntoa(sa->sa.sin_addr));
865			if (sa->sa.sin_port)
866				snprintf(SNPARGS(action2, len), ":%d",
867				    sa->sa.sin_port);
868			}
869			break;
870		case O_NETGRAPH:
871			snprintf(SNPARGS(action2, 0), "Netgraph %d",
872				cmd->arg1);
873			break;
874		case O_NGTEE:
875			snprintf(SNPARGS(action2, 0), "Ngtee %d",
876				cmd->arg1);
877			break;
878		default:
879			action = "UNKNOWN";
880			break;
881		}
882	}
883
884	if (hlen == 0) {	/* non-ip */
885		snprintf(SNPARGS(proto, 0), "MAC");
886
887	} else {
888		int len;
889		char src[48], dst[48];
890		struct icmphdr *icmp;
891		struct tcphdr *tcp;
892		struct udphdr *udp;
893		/* Initialize to make compiler happy. */
894		struct ip *ip = NULL;
895#ifdef INET6
896		struct ip6_hdr *ip6 = NULL;
897		struct icmp6_hdr *icmp6;
898#endif
899		src[0] = '\0';
900		dst[0] = '\0';
901#ifdef INET6
902		if (args->f_id.addr_type == 6) {
903			snprintf(src, sizeof(src), "[%s]",
904			    ip6_sprintf(&args->f_id.src_ip6));
905			snprintf(dst, sizeof(dst), "[%s]",
906			    ip6_sprintf(&args->f_id.dst_ip6));
907
908			ip6 = (struct ip6_hdr *)mtod(m, struct ip6_hdr *);
909			tcp = (struct tcphdr *)(mtod(args->m, char *) + hlen);
910			udp = (struct udphdr *)(mtod(args->m, char *) + hlen);
911		} else
912#endif
913		{
914			ip = mtod(m, struct ip *);
915			tcp = L3HDR(struct tcphdr, ip);
916			udp = L3HDR(struct udphdr, ip);
917
918			inet_ntoa_r(ip->ip_src, src);
919			inet_ntoa_r(ip->ip_dst, dst);
920		}
921
922		switch (args->f_id.proto) {
923		case IPPROTO_TCP:
924			len = snprintf(SNPARGS(proto, 0), "TCP %s", src);
925			if (offset == 0)
926				snprintf(SNPARGS(proto, len), ":%d %s:%d",
927				    ntohs(tcp->th_sport),
928				    dst,
929				    ntohs(tcp->th_dport));
930			else
931				snprintf(SNPARGS(proto, len), " %s", dst);
932			break;
933
934		case IPPROTO_UDP:
935			len = snprintf(SNPARGS(proto, 0), "UDP %s", src);
936			if (offset == 0)
937				snprintf(SNPARGS(proto, len), ":%d %s:%d",
938				    ntohs(udp->uh_sport),
939				    dst,
940				    ntohs(udp->uh_dport));
941			else
942				snprintf(SNPARGS(proto, len), " %s", dst);
943			break;
944
945		case IPPROTO_ICMP:
946			icmp = L3HDR(struct icmphdr, ip);
947			if (offset == 0)
948				len = snprintf(SNPARGS(proto, 0),
949				    "ICMP:%u.%u ",
950				    icmp->icmp_type, icmp->icmp_code);
951			else
952				len = snprintf(SNPARGS(proto, 0), "ICMP ");
953			len += snprintf(SNPARGS(proto, len), "%s", src);
954			snprintf(SNPARGS(proto, len), " %s", dst);
955			break;
956#ifdef INET6
957		case IPPROTO_ICMPV6:
958			icmp6 = (struct icmp6_hdr *)(mtod(args->m, char *) + hlen);
959			if (offset == 0)
960				len = snprintf(SNPARGS(proto, 0),
961				    "ICMPv6:%u.%u ",
962				    icmp6->icmp6_type, icmp6->icmp6_code);
963			else
964				len = snprintf(SNPARGS(proto, 0), "ICMPv6 ");
965			len += snprintf(SNPARGS(proto, len), "%s", src);
966			snprintf(SNPARGS(proto, len), " %s", dst);
967			break;
968#endif
969		default:
970			len = snprintf(SNPARGS(proto, 0), "P:%d %s",
971			    args->f_id.proto, src);
972			snprintf(SNPARGS(proto, len), " %s", dst);
973			break;
974		}
975
976#ifdef INET6
977		if (args->f_id.addr_type == 6) {
978			if (offset & (IP6F_OFF_MASK | IP6F_MORE_FRAG))
979				snprintf(SNPARGS(fragment, 0),
980				    " (frag %08x:%d@%d%s)",
981				    args->f_id.frag_id6,
982				    ntohs(ip6->ip6_plen) - hlen,
983				    ntohs(offset & IP6F_OFF_MASK) << 3,
984				    (offset & IP6F_MORE_FRAG) ? "+" : "");
985		} else
986#endif
987		{
988			int ip_off, ip_len;
989			if (eh != NULL) { /* layer 2 packets are as on the wire */
990				ip_off = ntohs(ip->ip_off);
991				ip_len = ntohs(ip->ip_len);
992			} else {
993				ip_off = ip->ip_off;
994				ip_len = ip->ip_len;
995			}
996			if (ip_off & (IP_MF | IP_OFFMASK))
997				snprintf(SNPARGS(fragment, 0),
998				    " (frag %d:%d@%d%s)",
999				    ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
1000				    offset << 3,
1001				    (ip_off & IP_MF) ? "+" : "");
1002		}
1003	}
1004	if (oif || m->m_pkthdr.rcvif)
1005		log(LOG_SECURITY | LOG_INFO,
1006		    "ipfw: %d %s %s %s via %s%s\n",
1007		    f ? f->rulenum : -1,
1008		    action, proto, oif ? "out" : "in",
1009		    oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
1010		    fragment);
1011	else
1012		log(LOG_SECURITY | LOG_INFO,
1013		    "ipfw: %d %s %s [no if info]%s\n",
1014		    f ? f->rulenum : -1,
1015		    action, proto, fragment);
1016	if (limit_reached)
1017		log(LOG_SECURITY | LOG_NOTICE,
1018		    "ipfw: limit %d reached on entry %d\n",
1019		    limit_reached, f ? f->rulenum : -1);
1020}
1021
1022/*
1023 * IMPORTANT: the hash function for dynamic rules must be commutative
1024 * in source and destination (ip,port), because rules are bidirectional
1025 * and we want to find both in the same bucket.
1026 */
1027static __inline int
1028hash_packet(struct ipfw_flow_id *id)
1029{
1030	u_int32_t i;
1031
1032#ifdef INET6
1033	if (IS_IP6_FLOW_ID(id))
1034		i = hash_packet6(id);
1035	else
1036#endif /* INET6 */
1037	i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
1038	i &= (curr_dyn_buckets - 1);
1039	return i;
1040}
1041
1042/**
1043 * unlink a dynamic rule from a chain. prev is a pointer to
1044 * the previous one, q is a pointer to the rule to delete,
1045 * head is a pointer to the head of the queue.
1046 * Modifies q and potentially also head.
1047 */
1048#define UNLINK_DYN_RULE(prev, head, q) {				\
1049	ipfw_dyn_rule *old_q = q;					\
1050									\
1051	/* remove a refcount to the parent */				\
1052	if (q->dyn_type == O_LIMIT)					\
1053		q->parent->count--;					\
1054	DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
1055		(q->id.src_ip), (q->id.src_port),			\
1056		(q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); )	\
1057	if (prev != NULL)						\
1058		prev->next = q = q->next;				\
1059	else								\
1060		head = q = q->next;					\
1061	dyn_count--;							\
1062	uma_zfree(ipfw_dyn_rule_zone, old_q); }
1063
1064#define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
1065
1066/**
1067 * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
1068 *
1069 * If keep_me == NULL, rules are deleted even if not expired,
1070 * otherwise only expired rules are removed.
1071 *
1072 * The value of the second parameter is also used to point to identify
1073 * a rule we absolutely do not want to remove (e.g. because we are
1074 * holding a reference to it -- this is the case with O_LIMIT_PARENT
1075 * rules). The pointer is only used for comparison, so any non-null
1076 * value will do.
1077 */
1078static void
1079remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
1080{
1081	static u_int32_t last_remove = 0;
1082
1083#define FORCE (keep_me == NULL)
1084
1085	ipfw_dyn_rule *prev, *q;
1086	int i, pass = 0, max_pass = 0;
1087
1088	IPFW_DYN_LOCK_ASSERT();
1089
1090	if (ipfw_dyn_v == NULL || dyn_count == 0)
1091		return;
1092	/* do not expire more than once per second, it is useless */
1093	if (!FORCE && last_remove == time_uptime)
1094		return;
1095	last_remove = time_uptime;
1096
1097	/*
1098	 * because O_LIMIT refer to parent rules, during the first pass only
1099	 * remove child and mark any pending LIMIT_PARENT, and remove
1100	 * them in a second pass.
1101	 */
1102next_pass:
1103	for (i = 0 ; i < curr_dyn_buckets ; i++) {
1104		for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
1105			/*
1106			 * Logic can become complex here, so we split tests.
1107			 */
1108			if (q == keep_me)
1109				goto next;
1110			if (rule != NULL && rule != q->rule)
1111				goto next; /* not the one we are looking for */
1112			if (q->dyn_type == O_LIMIT_PARENT) {
1113				/*
1114				 * handle parent in the second pass,
1115				 * record we need one.
1116				 */
1117				max_pass = 1;
1118				if (pass == 0)
1119					goto next;
1120				if (FORCE && q->count != 0 ) {
1121					/* XXX should not happen! */
1122					printf("ipfw: OUCH! cannot remove rule,"
1123					     " count %d\n", q->count);
1124				}
1125			} else {
1126				if (!FORCE &&
1127				    !TIME_LEQ( q->expire, time_uptime ))
1128					goto next;
1129			}
1130             if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
1131                     UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
1132                     continue;
1133             }
1134next:
1135			prev=q;
1136			q=q->next;
1137		}
1138	}
1139	if (pass++ < max_pass)
1140		goto next_pass;
1141}
1142
1143
1144/**
1145 * lookup a dynamic rule.
1146 */
1147static ipfw_dyn_rule *
1148lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
1149	struct tcphdr *tcp)
1150{
1151	/*
1152	 * stateful ipfw extensions.
1153	 * Lookup into dynamic session queue
1154	 */
1155#define MATCH_REVERSE	0
1156#define MATCH_FORWARD	1
1157#define MATCH_NONE	2
1158#define MATCH_UNKNOWN	3
1159	int i, dir = MATCH_NONE;
1160	ipfw_dyn_rule *prev, *q=NULL;
1161
1162	IPFW_DYN_LOCK_ASSERT();
1163
1164	if (ipfw_dyn_v == NULL)
1165		goto done;	/* not found */
1166	i = hash_packet( pkt );
1167	for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
1168		if (q->dyn_type == O_LIMIT_PARENT && q->count)
1169			goto next;
1170		if (TIME_LEQ( q->expire, time_uptime)) { /* expire entry */
1171			UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
1172			continue;
1173		}
1174		if (pkt->proto == q->id.proto &&
1175		    q->dyn_type != O_LIMIT_PARENT) {
1176			if (IS_IP6_FLOW_ID(pkt)) {
1177			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1178				&(q->id.src_ip6)) &&
1179			    IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1180				&(q->id.dst_ip6)) &&
1181			    pkt->src_port == q->id.src_port &&
1182			    pkt->dst_port == q->id.dst_port ) {
1183				dir = MATCH_FORWARD;
1184				break;
1185			    }
1186			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1187				    &(q->id.dst_ip6)) &&
1188				IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1189				    &(q->id.src_ip6)) &&
1190				pkt->src_port == q->id.dst_port &&
1191				pkt->dst_port == q->id.src_port ) {
1192				    dir = MATCH_REVERSE;
1193				    break;
1194			    }
1195			} else {
1196			    if (pkt->src_ip == q->id.src_ip &&
1197				pkt->dst_ip == q->id.dst_ip &&
1198				pkt->src_port == q->id.src_port &&
1199				pkt->dst_port == q->id.dst_port ) {
1200				    dir = MATCH_FORWARD;
1201				    break;
1202			    }
1203			    if (pkt->src_ip == q->id.dst_ip &&
1204				pkt->dst_ip == q->id.src_ip &&
1205				pkt->src_port == q->id.dst_port &&
1206				pkt->dst_port == q->id.src_port ) {
1207				    dir = MATCH_REVERSE;
1208				    break;
1209			    }
1210			}
1211		}
1212next:
1213		prev = q;
1214		q = q->next;
1215	}
1216	if (q == NULL)
1217		goto done; /* q = NULL, not found */
1218
1219	if ( prev != NULL) { /* found and not in front */
1220		prev->next = q->next;
1221		q->next = ipfw_dyn_v[i];
1222		ipfw_dyn_v[i] = q;
1223	}
1224	if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
1225		u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
1226
1227#define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
1228#define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
1229		q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
1230		switch (q->state) {
1231		case TH_SYN:				/* opening */
1232			q->expire = time_uptime + dyn_syn_lifetime;
1233			break;
1234
1235		case BOTH_SYN:			/* move to established */
1236		case BOTH_SYN | TH_FIN :	/* one side tries to close */
1237		case BOTH_SYN | (TH_FIN << 8) :
1238 			if (tcp) {
1239#define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
1240			    u_int32_t ack = ntohl(tcp->th_ack);
1241			    if (dir == MATCH_FORWARD) {
1242				if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
1243				    q->ack_fwd = ack;
1244				else { /* ignore out-of-sequence */
1245				    break;
1246				}
1247			    } else {
1248				if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
1249				    q->ack_rev = ack;
1250				else { /* ignore out-of-sequence */
1251				    break;
1252				}
1253			    }
1254			}
1255			q->expire = time_uptime + dyn_ack_lifetime;
1256			break;
1257
1258		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
1259			if (dyn_fin_lifetime >= dyn_keepalive_period)
1260				dyn_fin_lifetime = dyn_keepalive_period - 1;
1261			q->expire = time_uptime + dyn_fin_lifetime;
1262			break;
1263
1264		default:
1265#if 0
1266			/*
1267			 * reset or some invalid combination, but can also
1268			 * occur if we use keep-state the wrong way.
1269			 */
1270			if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
1271				printf("invalid state: 0x%x\n", q->state);
1272#endif
1273			if (dyn_rst_lifetime >= dyn_keepalive_period)
1274				dyn_rst_lifetime = dyn_keepalive_period - 1;
1275			q->expire = time_uptime + dyn_rst_lifetime;
1276			break;
1277		}
1278	} else if (pkt->proto == IPPROTO_UDP) {
1279		q->expire = time_uptime + dyn_udp_lifetime;
1280	} else {
1281		/* other protocols */
1282		q->expire = time_uptime + dyn_short_lifetime;
1283	}
1284done:
1285	if (match_direction)
1286		*match_direction = dir;
1287	return q;
1288}
1289
1290static ipfw_dyn_rule *
1291lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
1292	struct tcphdr *tcp)
1293{
1294	ipfw_dyn_rule *q;
1295
1296	IPFW_DYN_LOCK();
1297	q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
1298	if (q == NULL)
1299		IPFW_DYN_UNLOCK();
1300	/* NB: return table locked when q is not NULL */
1301	return q;
1302}
1303
1304static void
1305realloc_dynamic_table(void)
1306{
1307	IPFW_DYN_LOCK_ASSERT();
1308
1309	/*
1310	 * Try reallocation, make sure we have a power of 2 and do
1311	 * not allow more than 64k entries. In case of overflow,
1312	 * default to 1024.
1313	 */
1314
1315	if (dyn_buckets > 65536)
1316		dyn_buckets = 1024;
1317	if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
1318		dyn_buckets = curr_dyn_buckets; /* reset */
1319		return;
1320	}
1321	curr_dyn_buckets = dyn_buckets;
1322	if (ipfw_dyn_v != NULL)
1323		free(ipfw_dyn_v, M_IPFW);
1324	for (;;) {
1325		ipfw_dyn_v = malloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
1326		       M_IPFW, M_NOWAIT | M_ZERO);
1327		if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
1328			break;
1329		curr_dyn_buckets /= 2;
1330	}
1331}
1332
1333/**
1334 * Install state of type 'type' for a dynamic session.
1335 * The hash table contains two type of rules:
1336 * - regular rules (O_KEEP_STATE)
1337 * - rules for sessions with limited number of sess per user
1338 *   (O_LIMIT). When they are created, the parent is
1339 *   increased by 1, and decreased on delete. In this case,
1340 *   the third parameter is the parent rule and not the chain.
1341 * - "parent" rules for the above (O_LIMIT_PARENT).
1342 */
1343static ipfw_dyn_rule *
1344add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
1345{
1346	ipfw_dyn_rule *r;
1347	int i;
1348
1349	IPFW_DYN_LOCK_ASSERT();
1350
1351	if (ipfw_dyn_v == NULL ||
1352	    (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
1353		realloc_dynamic_table();
1354		if (ipfw_dyn_v == NULL)
1355			return NULL; /* failed ! */
1356	}
1357	i = hash_packet(id);
1358
1359	r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
1360	if (r == NULL) {
1361		printf ("ipfw: sorry cannot allocate state\n");
1362		return NULL;
1363	}
1364
1365	/* increase refcount on parent, and set pointer */
1366	if (dyn_type == O_LIMIT) {
1367		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
1368		if ( parent->dyn_type != O_LIMIT_PARENT)
1369			panic("invalid parent");
1370		parent->count++;
1371		r->parent = parent;
1372		rule = parent->rule;
1373	}
1374
1375	r->id = *id;
1376	r->expire = time_uptime + dyn_syn_lifetime;
1377	r->rule = rule;
1378	r->dyn_type = dyn_type;
1379	r->pcnt = r->bcnt = 0;
1380	r->count = 0;
1381
1382	r->bucket = i;
1383	r->next = ipfw_dyn_v[i];
1384	ipfw_dyn_v[i] = r;
1385	dyn_count++;
1386	DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1387	   dyn_type,
1388	   (r->id.src_ip), (r->id.src_port),
1389	   (r->id.dst_ip), (r->id.dst_port),
1390	   dyn_count ); )
1391	return r;
1392}
1393
1394/**
1395 * lookup dynamic parent rule using pkt and rule as search keys.
1396 * If the lookup fails, then install one.
1397 */
1398static ipfw_dyn_rule *
1399lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
1400{
1401	ipfw_dyn_rule *q;
1402	int i;
1403
1404	IPFW_DYN_LOCK_ASSERT();
1405
1406	if (ipfw_dyn_v) {
1407		int is_v6 = IS_IP6_FLOW_ID(pkt);
1408		i = hash_packet( pkt );
1409		for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
1410			if (q->dyn_type == O_LIMIT_PARENT &&
1411			    rule== q->rule &&
1412			    pkt->proto == q->id.proto &&
1413			    pkt->src_port == q->id.src_port &&
1414			    pkt->dst_port == q->id.dst_port &&
1415			    (
1416				(is_v6 &&
1417				 IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1418					&(q->id.src_ip6)) &&
1419				 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1420					&(q->id.dst_ip6))) ||
1421				(!is_v6 &&
1422				 pkt->src_ip == q->id.src_ip &&
1423				 pkt->dst_ip == q->id.dst_ip)
1424			    )
1425			) {
1426				q->expire = time_uptime + dyn_short_lifetime;
1427				DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
1428				return q;
1429			}
1430	}
1431	return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
1432}
1433
1434/**
1435 * Install dynamic state for rule type cmd->o.opcode
1436 *
1437 * Returns 1 (failure) if state is not installed because of errors or because
1438 * session limitations are enforced.
1439 */
1440static int
1441install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
1442	struct ip_fw_args *args)
1443{
1444	static int last_log;
1445
1446	ipfw_dyn_rule *q;
1447
1448	DEB(printf("ipfw: install state type %d 0x%08x %u -> 0x%08x %u\n",
1449	    cmd->o.opcode,
1450	    (args->f_id.src_ip), (args->f_id.src_port),
1451	    (args->f_id.dst_ip), (args->f_id.dst_port) );)
1452
1453	IPFW_DYN_LOCK();
1454
1455	q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1456
1457	if (q != NULL) { /* should never occur */
1458		if (last_log != time_uptime) {
1459			last_log = time_uptime;
1460			printf("ipfw: install_state: entry already present, done\n");
1461		}
1462		IPFW_DYN_UNLOCK();
1463		return 0;
1464	}
1465
1466	if (dyn_count >= dyn_max)
1467		/*
1468		 * Run out of slots, try to remove any expired rule.
1469		 */
1470		remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
1471
1472	if (dyn_count >= dyn_max) {
1473		if (last_log != time_uptime) {
1474			last_log = time_uptime;
1475			printf("ipfw: install_state: Too many dynamic rules\n");
1476		}
1477		IPFW_DYN_UNLOCK();
1478		return 1; /* cannot install, notify caller */
1479	}
1480
1481	switch (cmd->o.opcode) {
1482	case O_KEEP_STATE: /* bidir rule */
1483		add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
1484		break;
1485
1486	case O_LIMIT: /* limit number of sessions */
1487	    {
1488		u_int16_t limit_mask = cmd->limit_mask;
1489		struct ipfw_flow_id id;
1490		ipfw_dyn_rule *parent;
1491
1492		DEB(printf("ipfw: installing dyn-limit rule %d\n",
1493		    cmd->conn_limit);)
1494
1495		id.dst_ip = id.src_ip = 0;
1496		id.dst_port = id.src_port = 0;
1497		id.proto = args->f_id.proto;
1498
1499		if (IS_IP6_FLOW_ID (&(args->f_id))) {
1500			if (limit_mask & DYN_SRC_ADDR)
1501				id.src_ip6 = args->f_id.src_ip6;
1502			if (limit_mask & DYN_DST_ADDR)
1503				id.dst_ip6 = args->f_id.dst_ip6;
1504		} else {
1505			if (limit_mask & DYN_SRC_ADDR)
1506				id.src_ip = args->f_id.src_ip;
1507			if (limit_mask & DYN_DST_ADDR)
1508				id.dst_ip = args->f_id.dst_ip;
1509		}
1510		if (limit_mask & DYN_SRC_PORT)
1511			id.src_port = args->f_id.src_port;
1512		if (limit_mask & DYN_DST_PORT)
1513			id.dst_port = args->f_id.dst_port;
1514		parent = lookup_dyn_parent(&id, rule);
1515		if (parent == NULL) {
1516			printf("ipfw: add parent failed\n");
1517			IPFW_DYN_UNLOCK();
1518			return 1;
1519		}
1520		if (parent->count >= cmd->conn_limit) {
1521			/*
1522			 * See if we can remove some expired rule.
1523			 */
1524			remove_dyn_rule(rule, parent);
1525			if (parent->count >= cmd->conn_limit) {
1526				if (fw_verbose && last_log != time_uptime) {
1527					last_log = time_uptime;
1528					log(LOG_SECURITY | LOG_DEBUG,
1529					    "drop session, too many entries\n");
1530				}
1531				IPFW_DYN_UNLOCK();
1532				return 1;
1533			}
1534		}
1535		add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1536	    }
1537		break;
1538	default:
1539		printf("ipfw: unknown dynamic rule type %u\n", cmd->o.opcode);
1540		IPFW_DYN_UNLOCK();
1541		return 1;
1542	}
1543	lookup_dyn_rule_locked(&args->f_id, NULL, NULL); /* XXX just set lifetime */
1544	IPFW_DYN_UNLOCK();
1545	return 0;
1546}
1547
1548/*
1549 * Generate a TCP packet, containing either a RST or a keepalive.
1550 * When flags & TH_RST, we are sending a RST packet, because of a
1551 * "reset" action matched the packet.
1552 * Otherwise we are sending a keepalive, and flags & TH_
1553 */
1554static struct mbuf *
1555send_pkt(struct ipfw_flow_id *id, u_int32_t seq, u_int32_t ack, int flags)
1556{
1557	struct mbuf *m;
1558	struct ip *ip;
1559	struct tcphdr *tcp;
1560
1561	MGETHDR(m, M_DONTWAIT, MT_DATA);
1562	if (m == 0)
1563		return (NULL);
1564	m->m_pkthdr.rcvif = (struct ifnet *)0;
1565	m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1566	m->m_data += max_linkhdr;
1567
1568	ip = mtod(m, struct ip *);
1569	bzero(ip, m->m_len);
1570	tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1571	ip->ip_p = IPPROTO_TCP;
1572	tcp->th_off = 5;
1573	/*
1574	 * Assume we are sending a RST (or a keepalive in the reverse
1575	 * direction), swap src and destination addresses and ports.
1576	 */
1577	ip->ip_src.s_addr = htonl(id->dst_ip);
1578	ip->ip_dst.s_addr = htonl(id->src_ip);
1579	tcp->th_sport = htons(id->dst_port);
1580	tcp->th_dport = htons(id->src_port);
1581	if (flags & TH_RST) {	/* we are sending a RST */
1582		if (flags & TH_ACK) {
1583			tcp->th_seq = htonl(ack);
1584			tcp->th_ack = htonl(0);
1585			tcp->th_flags = TH_RST;
1586		} else {
1587			if (flags & TH_SYN)
1588				seq++;
1589			tcp->th_seq = htonl(0);
1590			tcp->th_ack = htonl(seq);
1591			tcp->th_flags = TH_RST | TH_ACK;
1592		}
1593	} else {
1594		/*
1595		 * We are sending a keepalive. flags & TH_SYN determines
1596		 * the direction, forward if set, reverse if clear.
1597		 * NOTE: seq and ack are always assumed to be correct
1598		 * as set by the caller. This may be confusing...
1599		 */
1600		if (flags & TH_SYN) {
1601			/*
1602			 * we have to rewrite the correct addresses!
1603			 */
1604			ip->ip_dst.s_addr = htonl(id->dst_ip);
1605			ip->ip_src.s_addr = htonl(id->src_ip);
1606			tcp->th_dport = htons(id->dst_port);
1607			tcp->th_sport = htons(id->src_port);
1608		}
1609		tcp->th_seq = htonl(seq);
1610		tcp->th_ack = htonl(ack);
1611		tcp->th_flags = TH_ACK;
1612	}
1613	/*
1614	 * set ip_len to the payload size so we can compute
1615	 * the tcp checksum on the pseudoheader
1616	 * XXX check this, could save a couple of words ?
1617	 */
1618	ip->ip_len = htons(sizeof(struct tcphdr));
1619	tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1620	/*
1621	 * now fill fields left out earlier
1622	 */
1623	ip->ip_ttl = ip_defttl;
1624	ip->ip_len = m->m_pkthdr.len;
1625	m->m_flags |= M_SKIP_FIREWALL;
1626	return (m);
1627}
1628
1629/*
1630 * sends a reject message, consuming the mbuf passed as an argument.
1631 */
1632static void
1633send_reject(struct ip_fw_args *args, int code, u_short offset, int ip_len)
1634{
1635
1636	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1637		/* We need the IP header in host order for icmp_error(). */
1638		if (args->eh != NULL) {
1639			struct ip *ip = mtod(args->m, struct ip *);
1640			ip->ip_len = ntohs(ip->ip_len);
1641			ip->ip_off = ntohs(ip->ip_off);
1642		}
1643		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1644	} else if (offset == 0 && args->f_id.proto == IPPROTO_TCP) {
1645		struct tcphdr *const tcp =
1646		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1647		if ( (tcp->th_flags & TH_RST) == 0) {
1648			struct mbuf *m;
1649			m = send_pkt(&(args->f_id), ntohl(tcp->th_seq),
1650				ntohl(tcp->th_ack),
1651				tcp->th_flags | TH_RST);
1652			if (m != NULL)
1653				ip_output(m, NULL, NULL, 0, NULL, NULL);
1654		}
1655		m_freem(args->m);
1656	} else
1657		m_freem(args->m);
1658	args->m = NULL;
1659}
1660
1661/**
1662 *
1663 * Given an ip_fw *, lookup_next_rule will return a pointer
1664 * to the next rule, which can be either the jump
1665 * target (for skipto instructions) or the next one in the list (in
1666 * all other cases including a missing jump target).
1667 * The result is also written in the "next_rule" field of the rule.
1668 * Backward jumps are not allowed, so start looking from the next
1669 * rule...
1670 *
1671 * This never returns NULL -- in case we do not have an exact match,
1672 * the next rule is returned. When the ruleset is changed,
1673 * pointers are flushed so we are always correct.
1674 */
1675
1676static struct ip_fw *
1677lookup_next_rule(struct ip_fw *me)
1678{
1679	struct ip_fw *rule = NULL;
1680	ipfw_insn *cmd;
1681
1682	/* look for action, in case it is a skipto */
1683	cmd = ACTION_PTR(me);
1684	if (cmd->opcode == O_LOG)
1685		cmd += F_LEN(cmd);
1686	if (cmd->opcode == O_ALTQ)
1687		cmd += F_LEN(cmd);
1688	if ( cmd->opcode == O_SKIPTO )
1689		for (rule = me->next; rule ; rule = rule->next)
1690			if (rule->rulenum >= cmd->arg1)
1691				break;
1692	if (rule == NULL)			/* failure or not a skipto */
1693		rule = me->next;
1694	me->next_rule = rule;
1695	return rule;
1696}
1697
1698static void
1699init_tables(struct ip_fw_chain *ch)
1700{
1701	int i;
1702
1703	for (i = 0; i < IPFW_TABLES_MAX; i++)
1704		rn_inithead((void **)&ch->tables[i], 32);
1705}
1706
1707static int
1708add_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1709	uint8_t mlen, uint32_t value)
1710{
1711	struct radix_node_head *rnh;
1712	struct table_entry *ent;
1713
1714	if (tbl >= IPFW_TABLES_MAX)
1715		return (EINVAL);
1716	rnh = ch->tables[tbl];
1717	ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
1718	if (ent == NULL)
1719		return (ENOMEM);
1720	ent->value = value;
1721	ent->addr.sin_len = ent->mask.sin_len = 8;
1722	ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1723	ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
1724	IPFW_WLOCK(&layer3_chain);
1725	if (rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent) ==
1726	    NULL) {
1727		IPFW_WUNLOCK(&layer3_chain);
1728		free(ent, M_IPFW_TBL);
1729		return (EEXIST);
1730	}
1731	IPFW_WUNLOCK(&layer3_chain);
1732	return (0);
1733}
1734
1735static int
1736del_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1737	uint8_t mlen)
1738{
1739	struct radix_node_head *rnh;
1740	struct table_entry *ent;
1741	struct sockaddr_in sa, mask;
1742
1743	if (tbl >= IPFW_TABLES_MAX)
1744		return (EINVAL);
1745	rnh = ch->tables[tbl];
1746	sa.sin_len = mask.sin_len = 8;
1747	mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1748	sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
1749	IPFW_WLOCK(ch);
1750	ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
1751	if (ent == NULL) {
1752		IPFW_WUNLOCK(ch);
1753		return (ESRCH);
1754	}
1755	IPFW_WUNLOCK(ch);
1756	free(ent, M_IPFW_TBL);
1757	return (0);
1758}
1759
1760static int
1761flush_table_entry(struct radix_node *rn, void *arg)
1762{
1763	struct radix_node_head * const rnh = arg;
1764	struct table_entry *ent;
1765
1766	ent = (struct table_entry *)
1767	    rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
1768	if (ent != NULL)
1769		free(ent, M_IPFW_TBL);
1770	return (0);
1771}
1772
1773static int
1774flush_table(struct ip_fw_chain *ch, uint16_t tbl)
1775{
1776	struct radix_node_head *rnh;
1777
1778	IPFW_WLOCK_ASSERT(ch);
1779
1780	if (tbl >= IPFW_TABLES_MAX)
1781		return (EINVAL);
1782	rnh = ch->tables[tbl];
1783	rnh->rnh_walktree(rnh, flush_table_entry, rnh);
1784	return (0);
1785}
1786
1787static void
1788flush_tables(struct ip_fw_chain *ch)
1789{
1790	uint16_t tbl;
1791
1792	IPFW_WLOCK_ASSERT(ch);
1793
1794	for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
1795		flush_table(ch, tbl);
1796}
1797
1798static int
1799lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1800	uint32_t *val)
1801{
1802	struct radix_node_head *rnh;
1803	struct table_entry *ent;
1804	struct sockaddr_in sa;
1805
1806	if (tbl >= IPFW_TABLES_MAX)
1807		return (0);
1808	rnh = ch->tables[tbl];
1809	sa.sin_len = 8;
1810	sa.sin_addr.s_addr = addr;
1811	ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
1812	if (ent != NULL) {
1813		*val = ent->value;
1814		return (1);
1815	}
1816	return (0);
1817}
1818
1819static int
1820count_table_entry(struct radix_node *rn, void *arg)
1821{
1822	u_int32_t * const cnt = arg;
1823
1824	(*cnt)++;
1825	return (0);
1826}
1827
1828static int
1829count_table(struct ip_fw_chain *ch, uint32_t tbl, uint32_t *cnt)
1830{
1831	struct radix_node_head *rnh;
1832
1833	if (tbl >= IPFW_TABLES_MAX)
1834		return (EINVAL);
1835	rnh = ch->tables[tbl];
1836	*cnt = 0;
1837	rnh->rnh_walktree(rnh, count_table_entry, cnt);
1838	return (0);
1839}
1840
1841static int
1842dump_table_entry(struct radix_node *rn, void *arg)
1843{
1844	struct table_entry * const n = (struct table_entry *)rn;
1845	ipfw_table * const tbl = arg;
1846	ipfw_table_entry *ent;
1847
1848	if (tbl->cnt == tbl->size)
1849		return (1);
1850	ent = &tbl->ent[tbl->cnt];
1851	ent->tbl = tbl->tbl;
1852	if (in_nullhost(n->mask.sin_addr))
1853		ent->masklen = 0;
1854	else
1855		ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
1856	ent->addr = n->addr.sin_addr.s_addr;
1857	ent->value = n->value;
1858	tbl->cnt++;
1859	return (0);
1860}
1861
1862static int
1863dump_table(struct ip_fw_chain *ch, ipfw_table *tbl)
1864{
1865	struct radix_node_head *rnh;
1866
1867	IPFW_WLOCK_ASSERT(ch);
1868
1869	if (tbl->tbl >= IPFW_TABLES_MAX)
1870		return (EINVAL);
1871	rnh = ch->tables[tbl->tbl];
1872	tbl->cnt = 0;
1873	rnh->rnh_walktree(rnh, dump_table_entry, tbl);
1874	return (0);
1875}
1876
1877static void
1878fill_ugid_cache(struct inpcb *inp, struct ip_fw_ugid *ugp)
1879{
1880	struct ucred *cr;
1881
1882	if (inp->inp_socket != NULL) {
1883		cr = inp->inp_socket->so_cred;
1884		ugp->fw_prid = jailed(cr) ?
1885		    cr->cr_prison->pr_id : -1;
1886		ugp->fw_uid = cr->cr_uid;
1887		ugp->fw_ngroups = cr->cr_ngroups;
1888		bcopy(cr->cr_groups, ugp->fw_groups,
1889		    sizeof(ugp->fw_groups));
1890	}
1891}
1892
1893static int
1894check_uidgid(ipfw_insn_u32 *insn,
1895	int proto, struct ifnet *oif,
1896	struct in_addr dst_ip, u_int16_t dst_port,
1897	struct in_addr src_ip, u_int16_t src_port,
1898	struct ip_fw_ugid *ugp, int *lookup, struct inpcb *inp)
1899{
1900	struct inpcbinfo *pi;
1901	int wildcard;
1902	struct inpcb *pcb;
1903	int match;
1904	gid_t *gp;
1905
1906	/*
1907	 * Check to see if the UDP or TCP stack supplied us with
1908	 * the PCB. If so, rather then holding a lock and looking
1909	 * up the PCB, we can use the one that was supplied.
1910	 */
1911	if (inp && *lookup == 0) {
1912		INP_LOCK_ASSERT(inp);
1913		if (inp->inp_socket != NULL) {
1914			fill_ugid_cache(inp, ugp);
1915			*lookup = 1;
1916		}
1917	}
1918	/*
1919	 * If we have already been here and the packet has no
1920	 * PCB entry associated with it, then we can safely
1921	 * assume that this is a no match.
1922	 */
1923	if (*lookup == -1)
1924		return (0);
1925	if (proto == IPPROTO_TCP) {
1926		wildcard = 0;
1927		pi = &tcbinfo;
1928	} else if (proto == IPPROTO_UDP) {
1929		wildcard = 1;
1930		pi = &udbinfo;
1931	} else
1932		return 0;
1933	match = 0;
1934	if (*lookup == 0) {
1935		INP_INFO_RLOCK(pi);
1936		pcb =  (oif) ?
1937			in_pcblookup_hash(pi,
1938				dst_ip, htons(dst_port),
1939				src_ip, htons(src_port),
1940				wildcard, oif) :
1941			in_pcblookup_hash(pi,
1942				src_ip, htons(src_port),
1943				dst_ip, htons(dst_port),
1944				wildcard, NULL);
1945		if (pcb != NULL) {
1946			INP_LOCK(pcb);
1947			if (pcb->inp_socket != NULL) {
1948				fill_ugid_cache(pcb, ugp);
1949				*lookup = 1;
1950			}
1951			INP_UNLOCK(pcb);
1952		}
1953		INP_INFO_RUNLOCK(pi);
1954		if (*lookup == 0) {
1955			/*
1956			 * If the lookup did not yield any results, there
1957			 * is no sense in coming back and trying again. So
1958			 * we can set lookup to -1 and ensure that we wont
1959			 * bother the pcb system again.
1960			 */
1961			*lookup = -1;
1962			return (0);
1963		}
1964	}
1965	if (insn->o.opcode == O_UID)
1966		match = (ugp->fw_uid == (uid_t)insn->d[0]);
1967	else if (insn->o.opcode == O_GID) {
1968		for (gp = ugp->fw_groups;
1969			gp < &ugp->fw_groups[ugp->fw_ngroups]; gp++)
1970			if (*gp == (gid_t)insn->d[0]) {
1971				match = 1;
1972				break;
1973			}
1974	} else if (insn->o.opcode == O_JAIL)
1975		match = (ugp->fw_prid == (int)insn->d[0]);
1976	return match;
1977}
1978
1979/*
1980 * The main check routine for the firewall.
1981 *
1982 * All arguments are in args so we can modify them and return them
1983 * back to the caller.
1984 *
1985 * Parameters:
1986 *
1987 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
1988 *		Starts with the IP header.
1989 *	args->eh (in)	Mac header if present, or NULL for layer3 packet.
1990 *	args->oif	Outgoing interface, or NULL if packet is incoming.
1991 *		The incoming interface is in the mbuf. (in)
1992 *	args->divert_rule (in/out)
1993 *		Skip up to the first rule past this rule number;
1994 *		upon return, non-zero port number for divert or tee.
1995 *
1996 *	args->rule	Pointer to the last matching rule (in/out)
1997 *	args->next_hop	Socket we are forwarding to (out).
1998 *	args->f_id	Addresses grabbed from the packet (out)
1999 * 	args->cookie	a cookie depending on rule action
2000 *
2001 * Return value:
2002 *
2003 *	IP_FW_PASS	the packet must be accepted
2004 *	IP_FW_DENY	the packet must be dropped
2005 *	IP_FW_DIVERT	divert packet, port in m_tag
2006 *	IP_FW_TEE	tee packet, port in m_tag
2007 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
2008 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
2009 *
2010 */
2011
2012int
2013ipfw_chk(struct ip_fw_args *args)
2014{
2015	/*
2016	 * Local variables hold state during the processing of a packet.
2017	 *
2018	 * IMPORTANT NOTE: to speed up the processing of rules, there
2019	 * are some assumption on the values of the variables, which
2020	 * are documented here. Should you change them, please check
2021	 * the implementation of the various instructions to make sure
2022	 * that they still work.
2023	 *
2024	 * args->eh	The MAC header. It is non-null for a layer2
2025	 *	packet, it is NULL for a layer-3 packet.
2026	 *
2027	 * m | args->m	Pointer to the mbuf, as received from the caller.
2028	 *	It may change if ipfw_chk() does an m_pullup, or if it
2029	 *	consumes the packet because it calls send_reject().
2030	 *	XXX This has to change, so that ipfw_chk() never modifies
2031	 *	or consumes the buffer.
2032	 * ip	is simply an alias of the value of m, and it is kept
2033	 *	in sync with it (the packet is	supposed to start with
2034	 *	the ip header).
2035	 */
2036	struct mbuf *m = args->m;
2037	struct ip *ip = mtod(m, struct ip *);
2038
2039	/*
2040	 * For rules which contain uid/gid or jail constraints, cache
2041	 * a copy of the users credentials after the pcb lookup has been
2042	 * executed. This will speed up the processing of rules with
2043	 * these types of constraints, as well as decrease contention
2044	 * on pcb related locks.
2045	 */
2046	struct ip_fw_ugid fw_ugid_cache;
2047	int ugid_lookup = 0;
2048
2049	/*
2050	 * divinput_flags	If non-zero, set to the IP_FW_DIVERT_*_FLAG
2051	 *	associated with a packet input on a divert socket.  This
2052	 *	will allow to distinguish traffic and its direction when
2053	 *	it originates from a divert socket.
2054	 */
2055	u_int divinput_flags = 0;
2056
2057	/*
2058	 * oif | args->oif	If NULL, ipfw_chk has been called on the
2059	 *	inbound path (ether_input, ip_input).
2060	 *	If non-NULL, ipfw_chk has been called on the outbound path
2061	 *	(ether_output, ip_output).
2062	 */
2063	struct ifnet *oif = args->oif;
2064
2065	struct ip_fw *f = NULL;		/* matching rule */
2066	int retval = 0;
2067
2068	/*
2069	 * hlen	The length of the IP header.
2070	 */
2071	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
2072
2073	/*
2074	 * offset	The offset of a fragment. offset != 0 means that
2075	 *	we have a fragment at this offset of an IPv4 packet.
2076	 *	offset == 0 means that (if this is an IPv4 packet)
2077	 *	this is the first or only fragment.
2078	 *	For IPv6 offset == 0 means there is no Fragment Header.
2079	 *	If offset != 0 for IPv6 always use correct mask to
2080	 *	get the correct offset because we add IP6F_MORE_FRAG
2081	 *	to be able to dectect the first fragment which would
2082	 *	otherwise have offset = 0.
2083	 */
2084	u_short offset = 0;
2085
2086	/*
2087	 * Local copies of addresses. They are only valid if we have
2088	 * an IP packet.
2089	 *
2090	 * proto	The protocol. Set to 0 for non-ip packets,
2091	 *	or to the protocol read from the packet otherwise.
2092	 *	proto != 0 means that we have an IPv4 packet.
2093	 *
2094	 * src_port, dst_port	port numbers, in HOST format. Only
2095	 *	valid for TCP and UDP packets.
2096	 *
2097	 * src_ip, dst_ip	ip addresses, in NETWORK format.
2098	 *	Only valid for IPv4 packets.
2099	 */
2100	u_int8_t proto;
2101	u_int16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
2102	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
2103	u_int16_t ip_len=0;
2104	int pktlen;
2105
2106	/*
2107	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
2108	 * 	MATCH_NONE when checked and not matched (q = NULL),
2109	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
2110	 */
2111	int dyn_dir = MATCH_UNKNOWN;
2112	ipfw_dyn_rule *q = NULL;
2113	struct ip_fw_chain *chain = &layer3_chain;
2114	struct m_tag *mtag;
2115
2116	/*
2117	 * We store in ulp a pointer to the upper layer protocol header.
2118	 * In the ipv4 case this is easy to determine from the header,
2119	 * but for ipv6 we might have some additional headers in the middle.
2120	 * ulp is NULL if not found.
2121	 */
2122	void *ulp = NULL;		/* upper layer protocol pointer. */
2123	/* XXX ipv6 variables */
2124	int is_ipv6 = 0;
2125	u_int16_t ext_hd = 0;	/* bits vector for extension header filtering */
2126	/* end of ipv6 variables */
2127	int is_ipv4 = 0;
2128
2129	if (m->m_flags & M_SKIP_FIREWALL)
2130		return (IP_FW_PASS);	/* accept */
2131
2132	pktlen = m->m_pkthdr.len;
2133	proto = args->f_id.proto = 0;	/* mark f_id invalid */
2134		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
2135
2136/*
2137 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
2138 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
2139 * pointer might become stale after other pullups (but we never use it
2140 * this way).
2141 */
2142#define PULLUP_TO(len, p, T)						\
2143do {									\
2144	int x = (len) + sizeof(T);					\
2145	if ((m)->m_len < x) {						\
2146		args->m = m = m_pullup(m, x);				\
2147		if (m == NULL)						\
2148			goto pullup_failed;				\
2149	}								\
2150	p = (mtod(m, char *) + (len));					\
2151} while (0)
2152
2153	/* Identify IP packets and fill up variables. */
2154	if (pktlen >= sizeof(struct ip6_hdr) &&
2155	    (args->eh == NULL || ntohs(args->eh->ether_type)==ETHERTYPE_IPV6) &&
2156	    mtod(m, struct ip *)->ip_v == 6) {
2157		is_ipv6 = 1;
2158		args->f_id.addr_type = 6;
2159		hlen = sizeof(struct ip6_hdr);
2160		proto = mtod(m, struct ip6_hdr *)->ip6_nxt;
2161
2162		/* Search extension headers to find upper layer protocols */
2163		while (ulp == NULL) {
2164			switch (proto) {
2165			case IPPROTO_ICMPV6:
2166				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
2167				args->f_id.flags = ICMP6(ulp)->icmp6_type;
2168				break;
2169
2170			case IPPROTO_TCP:
2171				PULLUP_TO(hlen, ulp, struct tcphdr);
2172				dst_port = TCP(ulp)->th_dport;
2173				src_port = TCP(ulp)->th_sport;
2174				args->f_id.flags = TCP(ulp)->th_flags;
2175				break;
2176
2177			case IPPROTO_UDP:
2178				PULLUP_TO(hlen, ulp, struct udphdr);
2179				dst_port = UDP(ulp)->uh_dport;
2180				src_port = UDP(ulp)->uh_sport;
2181				break;
2182
2183			case IPPROTO_HOPOPTS:	/* RFC 2460 */
2184				PULLUP_TO(hlen, ulp, struct ip6_hbh);
2185				ext_hd |= EXT_HOPOPTS;
2186				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2187				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2188				ulp = NULL;
2189				break;
2190
2191			case IPPROTO_ROUTING:	/* RFC 2460 */
2192				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
2193				if (((struct ip6_rthdr *)ulp)->ip6r_type != 0) {
2194					printf("IPFW2: IPV6 - Unknown Routing "
2195					    "Header type(%d)\n",
2196					    ((struct ip6_rthdr *)ulp)->ip6r_type);
2197					if (fw_deny_unknown_exthdrs)
2198					    return (IP_FW_DENY);
2199					break;
2200				}
2201				ext_hd |= EXT_ROUTING;
2202				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
2203				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
2204				ulp = NULL;
2205				break;
2206
2207			case IPPROTO_FRAGMENT:	/* RFC 2460 */
2208				PULLUP_TO(hlen, ulp, struct ip6_frag);
2209				ext_hd |= EXT_FRAGMENT;
2210				hlen += sizeof (struct ip6_frag);
2211				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
2212				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
2213					IP6F_OFF_MASK;
2214				/* Add IP6F_MORE_FRAG for offset of first
2215				 * fragment to be != 0. */
2216				offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
2217					IP6F_MORE_FRAG;
2218				if (offset == 0) {
2219					printf("IPFW2: IPV6 - Invalid Fragment "
2220					    "Header\n");
2221					if (fw_deny_unknown_exthdrs)
2222					    return (IP_FW_DENY);
2223					break;
2224				}
2225				args->f_id.frag_id6 =
2226				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
2227				ulp = NULL;
2228				break;
2229
2230			case IPPROTO_DSTOPTS:	/* RFC 2460 */
2231				PULLUP_TO(hlen, ulp, struct ip6_hbh);
2232				ext_hd |= EXT_DSTOPTS;
2233				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2234				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2235				ulp = NULL;
2236				break;
2237
2238			case IPPROTO_AH:	/* RFC 2402 */
2239				PULLUP_TO(hlen, ulp, struct ip6_ext);
2240				ext_hd |= EXT_AH;
2241				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
2242				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
2243				ulp = NULL;
2244				break;
2245
2246			case IPPROTO_ESP:	/* RFC 2406 */
2247				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
2248				/* Anything past Seq# is variable length and
2249				 * data past this ext. header is encrypted. */
2250				ext_hd |= EXT_ESP;
2251				break;
2252
2253			case IPPROTO_NONE:	/* RFC 2460 */
2254				PULLUP_TO(hlen, ulp, struct ip6_ext);
2255				/* Packet ends here. if ip6e_len!=0 octets
2256				 * must be ignored. */
2257				break;
2258
2259			case IPPROTO_OSPFIGP:
2260				/* XXX OSPF header check? */
2261				PULLUP_TO(hlen, ulp, struct ip6_ext);
2262				break;
2263
2264			default:
2265				printf("IPFW2: IPV6 - Unknown Extension "
2266				    "Header(%d), ext_hd=%x\n", proto, ext_hd);
2267				if (fw_deny_unknown_exthdrs)
2268				    return (IP_FW_DENY);
2269				break;
2270			} /*switch */
2271		}
2272		args->f_id.src_ip6 = mtod(m,struct ip6_hdr *)->ip6_src;
2273		args->f_id.dst_ip6 = mtod(m,struct ip6_hdr *)->ip6_dst;
2274		args->f_id.src_ip = 0;
2275		args->f_id.dst_ip = 0;
2276		args->f_id.flow_id6 = ntohl(mtod(m, struct ip6_hdr *)->ip6_flow);
2277	} else if (pktlen >= sizeof(struct ip) &&
2278	    (args->eh == NULL || ntohs(args->eh->ether_type) == ETHERTYPE_IP) &&
2279	    mtod(m, struct ip *)->ip_v == 4) {
2280	    	is_ipv4 = 1;
2281		ip = mtod(m, struct ip *);
2282		hlen = ip->ip_hl << 2;
2283		args->f_id.addr_type = 4;
2284
2285		/*
2286		 * Collect parameters into local variables for faster matching.
2287		 */
2288		proto = ip->ip_p;
2289		src_ip = ip->ip_src;
2290		dst_ip = ip->ip_dst;
2291		if (args->eh != NULL) { /* layer 2 packets are as on the wire */
2292			offset = ntohs(ip->ip_off) & IP_OFFMASK;
2293			ip_len = ntohs(ip->ip_len);
2294		} else {
2295			offset = ip->ip_off & IP_OFFMASK;
2296			ip_len = ip->ip_len;
2297		}
2298		pktlen = ip_len < pktlen ? ip_len : pktlen;
2299
2300		if (offset == 0) {
2301			switch (proto) {
2302			case IPPROTO_TCP:
2303				PULLUP_TO(hlen, ulp, struct tcphdr);
2304				dst_port = TCP(ulp)->th_dport;
2305				src_port = TCP(ulp)->th_sport;
2306				args->f_id.flags = TCP(ulp)->th_flags;
2307				break;
2308
2309			case IPPROTO_UDP:
2310				PULLUP_TO(hlen, ulp, struct udphdr);
2311				dst_port = UDP(ulp)->uh_dport;
2312				src_port = UDP(ulp)->uh_sport;
2313				break;
2314
2315			case IPPROTO_ICMP:
2316				PULLUP_TO(hlen, ulp, struct icmphdr);
2317				args->f_id.flags = ICMP(ulp)->icmp_type;
2318				break;
2319
2320			default:
2321				break;
2322			}
2323		}
2324
2325		args->f_id.src_ip = ntohl(src_ip.s_addr);
2326		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
2327	}
2328#undef PULLUP_TO
2329	if (proto) { /* we may have port numbers, store them */
2330		args->f_id.proto = proto;
2331		args->f_id.src_port = src_port = ntohs(src_port);
2332		args->f_id.dst_port = dst_port = ntohs(dst_port);
2333	}
2334
2335	IPFW_RLOCK(chain);
2336	mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
2337	if (args->rule) {
2338		/*
2339		 * Packet has already been tagged. Look for the next rule
2340		 * to restart processing.
2341		 *
2342		 * If fw_one_pass != 0 then just accept it.
2343		 * XXX should not happen here, but optimized out in
2344		 * the caller.
2345		 */
2346		if (fw_one_pass) {
2347			IPFW_RUNLOCK(chain);
2348			return (IP_FW_PASS);
2349		}
2350
2351		f = args->rule->next_rule;
2352		if (f == NULL)
2353			f = lookup_next_rule(args->rule);
2354	} else {
2355		/*
2356		 * Find the starting rule. It can be either the first
2357		 * one, or the one after divert_rule if asked so.
2358		 */
2359		int skipto = mtag ? divert_cookie(mtag) : 0;
2360
2361		f = chain->rules;
2362		if (args->eh == NULL && skipto != 0) {
2363			if (skipto >= IPFW_DEFAULT_RULE) {
2364				IPFW_RUNLOCK(chain);
2365				return (IP_FW_DENY); /* invalid */
2366			}
2367			while (f && f->rulenum <= skipto)
2368				f = f->next;
2369			if (f == NULL) {	/* drop packet */
2370				IPFW_RUNLOCK(chain);
2371				return (IP_FW_DENY);
2372			}
2373		}
2374	}
2375	/* reset divert rule to avoid confusion later */
2376	if (mtag) {
2377		divinput_flags = divert_info(mtag) &
2378		    (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
2379		m_tag_delete(m, mtag);
2380	}
2381
2382	/*
2383	 * Now scan the rules, and parse microinstructions for each rule.
2384	 */
2385	for (; f; f = f->next) {
2386		ipfw_insn *cmd;
2387		uint32_t tablearg = 0;
2388		int l, cmdlen, skip_or; /* skip rest of OR block */
2389
2390again:
2391		if (set_disable & (1 << f->set) )
2392			continue;
2393
2394		skip_or = 0;
2395		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
2396		    l -= cmdlen, cmd += cmdlen) {
2397			int match;
2398
2399			/*
2400			 * check_body is a jump target used when we find a
2401			 * CHECK_STATE, and need to jump to the body of
2402			 * the target rule.
2403			 */
2404
2405check_body:
2406			cmdlen = F_LEN(cmd);
2407			/*
2408			 * An OR block (insn_1 || .. || insn_n) has the
2409			 * F_OR bit set in all but the last instruction.
2410			 * The first match will set "skip_or", and cause
2411			 * the following instructions to be skipped until
2412			 * past the one with the F_OR bit clear.
2413			 */
2414			if (skip_or) {		/* skip this instruction */
2415				if ((cmd->len & F_OR) == 0)
2416					skip_or = 0;	/* next one is good */
2417				continue;
2418			}
2419			match = 0; /* set to 1 if we succeed */
2420
2421			switch (cmd->opcode) {
2422			/*
2423			 * The first set of opcodes compares the packet's
2424			 * fields with some pattern, setting 'match' if a
2425			 * match is found. At the end of the loop there is
2426			 * logic to deal with F_NOT and F_OR flags associated
2427			 * with the opcode.
2428			 */
2429			case O_NOP:
2430				match = 1;
2431				break;
2432
2433			case O_FORWARD_MAC:
2434				printf("ipfw: opcode %d unimplemented\n",
2435				    cmd->opcode);
2436				break;
2437
2438			case O_GID:
2439			case O_UID:
2440			case O_JAIL:
2441				/*
2442				 * We only check offset == 0 && proto != 0,
2443				 * as this ensures that we have a
2444				 * packet with the ports info.
2445				 */
2446				if (offset!=0)
2447					break;
2448				if (is_ipv6) /* XXX to be fixed later */
2449					break;
2450				if (proto == IPPROTO_TCP ||
2451				    proto == IPPROTO_UDP)
2452					match = check_uidgid(
2453						    (ipfw_insn_u32 *)cmd,
2454						    proto, oif,
2455						    dst_ip, dst_port,
2456						    src_ip, src_port, &fw_ugid_cache,
2457						    &ugid_lookup, args->inp);
2458				break;
2459
2460			case O_RECV:
2461				match = iface_match(m->m_pkthdr.rcvif,
2462				    (ipfw_insn_if *)cmd);
2463				break;
2464
2465			case O_XMIT:
2466				match = iface_match(oif, (ipfw_insn_if *)cmd);
2467				break;
2468
2469			case O_VIA:
2470				match = iface_match(oif ? oif :
2471				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
2472				break;
2473
2474			case O_MACADDR2:
2475				if (args->eh != NULL) {	/* have MAC header */
2476					u_int32_t *want = (u_int32_t *)
2477						((ipfw_insn_mac *)cmd)->addr;
2478					u_int32_t *mask = (u_int32_t *)
2479						((ipfw_insn_mac *)cmd)->mask;
2480					u_int32_t *hdr = (u_int32_t *)args->eh;
2481
2482					match =
2483					    ( want[0] == (hdr[0] & mask[0]) &&
2484					      want[1] == (hdr[1] & mask[1]) &&
2485					      want[2] == (hdr[2] & mask[2]) );
2486				}
2487				break;
2488
2489			case O_MAC_TYPE:
2490				if (args->eh != NULL) {
2491					u_int16_t t =
2492					    ntohs(args->eh->ether_type);
2493					u_int16_t *p =
2494					    ((ipfw_insn_u16 *)cmd)->ports;
2495					int i;
2496
2497					for (i = cmdlen - 1; !match && i>0;
2498					    i--, p += 2)
2499						match = (t>=p[0] && t<=p[1]);
2500				}
2501				break;
2502
2503			case O_FRAG:
2504				match = (offset != 0);
2505				break;
2506
2507			case O_IN:	/* "out" is "not in" */
2508				match = (oif == NULL);
2509				break;
2510
2511			case O_LAYER2:
2512				match = (args->eh != NULL);
2513				break;
2514
2515			case O_DIVERTED:
2516				match = (cmd->arg1 & 1 && divinput_flags &
2517				    IP_FW_DIVERT_LOOPBACK_FLAG) ||
2518					(cmd->arg1 & 2 && divinput_flags &
2519				    IP_FW_DIVERT_OUTPUT_FLAG);
2520				break;
2521
2522			case O_PROTO:
2523				/*
2524				 * We do not allow an arg of 0 so the
2525				 * check of "proto" only suffices.
2526				 */
2527				match = (proto == cmd->arg1);
2528				break;
2529
2530			case O_IP_SRC:
2531				match = is_ipv4 &&
2532				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2533				    src_ip.s_addr);
2534				break;
2535
2536			case O_IP_SRC_LOOKUP:
2537			case O_IP_DST_LOOKUP:
2538				if (is_ipv4) {
2539				    uint32_t a =
2540					(cmd->opcode == O_IP_DST_LOOKUP) ?
2541					    dst_ip.s_addr : src_ip.s_addr;
2542				    uint32_t v;
2543
2544				    match = lookup_table(chain, cmd->arg1, a,
2545					&v);
2546				    if (!match)
2547					break;
2548				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2549					match =
2550					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
2551				    else
2552					tablearg = v;
2553				}
2554				break;
2555
2556			case O_IP_SRC_MASK:
2557			case O_IP_DST_MASK:
2558				if (is_ipv4) {
2559				    uint32_t a =
2560					(cmd->opcode == O_IP_DST_MASK) ?
2561					    dst_ip.s_addr : src_ip.s_addr;
2562				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2563				    int i = cmdlen-1;
2564
2565				    for (; !match && i>0; i-= 2, p+= 2)
2566					match = (p[0] == (a & p[1]));
2567				}
2568				break;
2569
2570			case O_IP_SRC_ME:
2571				if (is_ipv4) {
2572					struct ifnet *tif;
2573
2574					INADDR_TO_IFP(src_ip, tif);
2575					match = (tif != NULL);
2576				}
2577				break;
2578
2579			case O_IP_DST_SET:
2580			case O_IP_SRC_SET:
2581				if (is_ipv4) {
2582					u_int32_t *d = (u_int32_t *)(cmd+1);
2583					u_int32_t addr =
2584					    cmd->opcode == O_IP_DST_SET ?
2585						args->f_id.dst_ip :
2586						args->f_id.src_ip;
2587
2588					    if (addr < d[0])
2589						    break;
2590					    addr -= d[0]; /* subtract base */
2591					    match = (addr < cmd->arg1) &&
2592						( d[ 1 + (addr>>5)] &
2593						  (1<<(addr & 0x1f)) );
2594				}
2595				break;
2596
2597			case O_IP_DST:
2598				match = is_ipv4 &&
2599				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2600				    dst_ip.s_addr);
2601				break;
2602
2603			case O_IP_DST_ME:
2604				if (is_ipv4) {
2605					struct ifnet *tif;
2606
2607					INADDR_TO_IFP(dst_ip, tif);
2608					match = (tif != NULL);
2609				}
2610				break;
2611
2612			case O_IP_SRCPORT:
2613			case O_IP_DSTPORT:
2614				/*
2615				 * offset == 0 && proto != 0 is enough
2616				 * to guarantee that we have a
2617				 * packet with port info.
2618				 */
2619				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
2620				    && offset == 0) {
2621					u_int16_t x =
2622					    (cmd->opcode == O_IP_SRCPORT) ?
2623						src_port : dst_port ;
2624					u_int16_t *p =
2625					    ((ipfw_insn_u16 *)cmd)->ports;
2626					int i;
2627
2628					for (i = cmdlen - 1; !match && i>0;
2629					    i--, p += 2)
2630						match = (x>=p[0] && x<=p[1]);
2631				}
2632				break;
2633
2634			case O_ICMPTYPE:
2635				match = (offset == 0 && proto==IPPROTO_ICMP &&
2636				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2637				break;
2638
2639#ifdef INET6
2640			case O_ICMP6TYPE:
2641				match = is_ipv6 && offset == 0 &&
2642				    proto==IPPROTO_ICMPV6 &&
2643				    icmp6type_match(
2644					ICMP6(ulp)->icmp6_type,
2645					(ipfw_insn_u32 *)cmd);
2646				break;
2647#endif /* INET6 */
2648
2649			case O_IPOPT:
2650				match = (is_ipv4 &&
2651				    ipopts_match(mtod(m, struct ip *), cmd) );
2652				break;
2653
2654			case O_IPVER:
2655				match = (is_ipv4 &&
2656				    cmd->arg1 == mtod(m, struct ip *)->ip_v);
2657				break;
2658
2659			case O_IPID:
2660			case O_IPLEN:
2661			case O_IPTTL:
2662				if (is_ipv4) {	/* only for IP packets */
2663				    uint16_t x;
2664				    uint16_t *p;
2665				    int i;
2666
2667				    if (cmd->opcode == O_IPLEN)
2668					x = ip_len;
2669				    else if (cmd->opcode == O_IPTTL)
2670					x = mtod(m, struct ip *)->ip_ttl;
2671				    else /* must be IPID */
2672					x = ntohs(mtod(m, struct ip *)->ip_id);
2673				    if (cmdlen == 1) {
2674					match = (cmd->arg1 == x);
2675					break;
2676				    }
2677				    /* otherwise we have ranges */
2678				    p = ((ipfw_insn_u16 *)cmd)->ports;
2679				    i = cmdlen - 1;
2680				    for (; !match && i>0; i--, p += 2)
2681					match = (x >= p[0] && x <= p[1]);
2682				}
2683				break;
2684
2685			case O_IPPRECEDENCE:
2686				match = (is_ipv4 &&
2687				    (cmd->arg1 == (mtod(m, struct ip *)->ip_tos & 0xe0)) );
2688				break;
2689
2690			case O_IPTOS:
2691				match = (is_ipv4 &&
2692				    flags_match(cmd, mtod(m, struct ip *)->ip_tos));
2693				break;
2694
2695			case O_TCPDATALEN:
2696				if (proto == IPPROTO_TCP && offset == 0) {
2697				    struct tcphdr *tcp;
2698				    uint16_t x;
2699				    uint16_t *p;
2700				    int i;
2701
2702				    tcp = TCP(ulp);
2703				    x = ip_len -
2704					((ip->ip_hl + tcp->th_off) << 2);
2705				    if (cmdlen == 1) {
2706					match = (cmd->arg1 == x);
2707					break;
2708				    }
2709				    /* otherwise we have ranges */
2710				    p = ((ipfw_insn_u16 *)cmd)->ports;
2711				    i = cmdlen - 1;
2712				    for (; !match && i>0; i--, p += 2)
2713					match = (x >= p[0] && x <= p[1]);
2714				}
2715				break;
2716
2717			case O_TCPFLAGS:
2718				match = (proto == IPPROTO_TCP && offset == 0 &&
2719				    flags_match(cmd, TCP(ulp)->th_flags));
2720				break;
2721
2722			case O_TCPOPTS:
2723				match = (proto == IPPROTO_TCP && offset == 0 &&
2724				    tcpopts_match(TCP(ulp), cmd));
2725				break;
2726
2727			case O_TCPSEQ:
2728				match = (proto == IPPROTO_TCP && offset == 0 &&
2729				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2730					TCP(ulp)->th_seq);
2731				break;
2732
2733			case O_TCPACK:
2734				match = (proto == IPPROTO_TCP && offset == 0 &&
2735				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2736					TCP(ulp)->th_ack);
2737				break;
2738
2739			case O_TCPWIN:
2740				match = (proto == IPPROTO_TCP && offset == 0 &&
2741				    cmd->arg1 == TCP(ulp)->th_win);
2742				break;
2743
2744			case O_ESTAB:
2745				/* reject packets which have SYN only */
2746				/* XXX should i also check for TH_ACK ? */
2747				match = (proto == IPPROTO_TCP && offset == 0 &&
2748				    (TCP(ulp)->th_flags &
2749				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2750				break;
2751
2752			case O_ALTQ: {
2753				struct altq_tag *at;
2754				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2755
2756				match = 1;
2757				mtag = m_tag_find(m, PACKET_TAG_PF_QID, NULL);
2758				if (mtag != NULL)
2759					break;
2760				mtag = m_tag_get(PACKET_TAG_PF_QID,
2761						sizeof(struct altq_tag),
2762						M_NOWAIT);
2763				if (mtag == NULL) {
2764					/*
2765					 * Let the packet fall back to the
2766					 * default ALTQ.
2767					 */
2768					break;
2769				}
2770				at = (struct altq_tag *)(mtag+1);
2771				at->qid = altq->qid;
2772				if (is_ipv4)
2773					at->af = AF_INET;
2774				else
2775					at->af = AF_LINK;
2776				at->hdr = ip;
2777				m_tag_prepend(m, mtag);
2778				break;
2779			}
2780
2781			case O_LOG:
2782				if (fw_verbose)
2783					ipfw_log(f, hlen, args, m, oif, offset);
2784				match = 1;
2785				break;
2786
2787			case O_PROB:
2788				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2789				break;
2790
2791			case O_VERREVPATH:
2792				/* Outgoing packets automatically pass/match */
2793				match = ((oif != NULL) ||
2794				    (m->m_pkthdr.rcvif == NULL) ||
2795				    (
2796#ifdef INET6
2797				    is_ipv6 ?
2798					verify_path6(&(args->f_id.src_ip6),
2799					    m->m_pkthdr.rcvif) :
2800#endif
2801				    verify_path(src_ip, m->m_pkthdr.rcvif)));
2802				break;
2803
2804			case O_VERSRCREACH:
2805				/* Outgoing packets automatically pass/match */
2806				match = (hlen > 0 && ((oif != NULL) ||
2807#ifdef INET6
2808				    is_ipv6 ?
2809				        verify_path6(&(args->f_id.src_ip6),
2810				            NULL) :
2811#endif
2812				    verify_path(src_ip, NULL)));
2813				break;
2814
2815			case O_ANTISPOOF:
2816				/* Outgoing packets automatically pass/match */
2817				if (oif == NULL && hlen > 0 &&
2818				    (  (is_ipv4 && in_localaddr(src_ip))
2819#ifdef INET6
2820				    || (is_ipv6 &&
2821				        in6_localaddr(&(args->f_id.src_ip6)))
2822#endif
2823				    ))
2824					match =
2825#ifdef INET6
2826					    is_ipv6 ? verify_path6(
2827					        &(args->f_id.src_ip6),
2828					        m->m_pkthdr.rcvif) :
2829#endif
2830					    verify_path(src_ip,
2831					        m->m_pkthdr.rcvif);
2832				else
2833					match = 1;
2834				break;
2835
2836			case O_IPSEC:
2837#ifdef FAST_IPSEC
2838				match = (m_tag_find(m,
2839				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2840#endif
2841#ifdef IPSEC
2842				match = (ipsec_getnhist(m) != 0);
2843#endif
2844				/* otherwise no match */
2845				break;
2846
2847#ifdef INET6
2848			case O_IP6_SRC:
2849				match = is_ipv6 &&
2850				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
2851				    &((ipfw_insn_ip6 *)cmd)->addr6);
2852				break;
2853
2854			case O_IP6_DST:
2855				match = is_ipv6 &&
2856				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
2857				    &((ipfw_insn_ip6 *)cmd)->addr6);
2858				break;
2859			case O_IP6_SRC_MASK:
2860				if (is_ipv6) {
2861					ipfw_insn_ip6 *te = (ipfw_insn_ip6 *)cmd;
2862					struct in6_addr p = args->f_id.src_ip6;
2863
2864					APPLY_MASK(&p, &te->mask6);
2865					match = IN6_ARE_ADDR_EQUAL(&te->addr6, &p);
2866				}
2867				break;
2868
2869			case O_IP6_DST_MASK:
2870				if (is_ipv6) {
2871					ipfw_insn_ip6 *te = (ipfw_insn_ip6 *)cmd;
2872					struct in6_addr p = args->f_id.dst_ip6;
2873
2874					APPLY_MASK(&p, &te->mask6);
2875					match = IN6_ARE_ADDR_EQUAL(&te->addr6, &p);
2876				}
2877				break;
2878
2879			case O_IP6_SRC_ME:
2880				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
2881				break;
2882
2883			case O_IP6_DST_ME:
2884				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
2885				break;
2886
2887			case O_FLOW6ID:
2888				match = is_ipv6 &&
2889				    flow6id_match(args->f_id.flow_id6,
2890				    (ipfw_insn_u32 *) cmd);
2891				break;
2892
2893			case O_EXT_HDR:
2894				match = is_ipv6 &&
2895				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
2896				break;
2897
2898			case O_IP6:
2899				match = is_ipv6;
2900				break;
2901#endif
2902
2903			case O_IP4:
2904				match = is_ipv4;
2905				break;
2906
2907			/*
2908			 * The second set of opcodes represents 'actions',
2909			 * i.e. the terminal part of a rule once the packet
2910			 * matches all previous patterns.
2911			 * Typically there is only one action for each rule,
2912			 * and the opcode is stored at the end of the rule
2913			 * (but there are exceptions -- see below).
2914			 *
2915			 * In general, here we set retval and terminate the
2916			 * outer loop (would be a 'break 3' in some language,
2917			 * but we need to do a 'goto done').
2918			 *
2919			 * Exceptions:
2920			 * O_COUNT and O_SKIPTO actions:
2921			 *   instead of terminating, we jump to the next rule
2922			 *   ('goto next_rule', equivalent to a 'break 2'),
2923			 *   or to the SKIPTO target ('goto again' after
2924			 *   having set f, cmd and l), respectively.
2925			 *
2926			 * O_LOG and O_ALTQ action parameters:
2927			 *   perform some action and set match = 1;
2928			 *
2929			 * O_LIMIT and O_KEEP_STATE: these opcodes are
2930			 *   not real 'actions', and are stored right
2931			 *   before the 'action' part of the rule.
2932			 *   These opcodes try to install an entry in the
2933			 *   state tables; if successful, we continue with
2934			 *   the next opcode (match=1; break;), otherwise
2935			 *   the packet *   must be dropped
2936			 *   ('goto done' after setting retval);
2937			 *
2938			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2939			 *   cause a lookup of the state table, and a jump
2940			 *   to the 'action' part of the parent rule
2941			 *   ('goto check_body') if an entry is found, or
2942			 *   (CHECK_STATE only) a jump to the next rule if
2943			 *   the entry is not found ('goto next_rule').
2944			 *   The result of the lookup is cached to make
2945			 *   further instances of these opcodes are
2946			 *   effectively NOPs.
2947			 */
2948			case O_LIMIT:
2949			case O_KEEP_STATE:
2950				if (install_state(f,
2951				    (ipfw_insn_limit *)cmd, args)) {
2952					retval = IP_FW_DENY;
2953					goto done; /* error/limit violation */
2954				}
2955				match = 1;
2956				break;
2957
2958			case O_PROBE_STATE:
2959			case O_CHECK_STATE:
2960				/*
2961				 * dynamic rules are checked at the first
2962				 * keep-state or check-state occurrence,
2963				 * with the result being stored in dyn_dir.
2964				 * The compiler introduces a PROBE_STATE
2965				 * instruction for us when we have a
2966				 * KEEP_STATE (because PROBE_STATE needs
2967				 * to be run first).
2968				 */
2969				if (dyn_dir == MATCH_UNKNOWN &&
2970				    (q = lookup_dyn_rule(&args->f_id,
2971				     &dyn_dir, proto == IPPROTO_TCP ?
2972					TCP(ulp) : NULL))
2973					!= NULL) {
2974					/*
2975					 * Found dynamic entry, update stats
2976					 * and jump to the 'action' part of
2977					 * the parent rule.
2978					 */
2979					q->pcnt++;
2980					q->bcnt += pktlen;
2981					f = q->rule;
2982					cmd = ACTION_PTR(f);
2983					l = f->cmd_len - f->act_ofs;
2984					IPFW_DYN_UNLOCK();
2985					goto check_body;
2986				}
2987				/*
2988				 * Dynamic entry not found. If CHECK_STATE,
2989				 * skip to next rule, if PROBE_STATE just
2990				 * ignore and continue with next opcode.
2991				 */
2992				if (cmd->opcode == O_CHECK_STATE)
2993					goto next_rule;
2994				match = 1;
2995				break;
2996
2997			case O_ACCEPT:
2998				retval = 0;	/* accept */
2999				goto done;
3000
3001			case O_PIPE:
3002			case O_QUEUE:
3003				args->rule = f; /* report matching rule */
3004				if (cmd->arg1 == IP_FW_TABLEARG)
3005					args->cookie = tablearg;
3006				else
3007					args->cookie = cmd->arg1;
3008				retval = IP_FW_DUMMYNET;
3009				goto done;
3010
3011			case O_DIVERT:
3012			case O_TEE: {
3013				struct divert_tag *dt;
3014
3015				if (args->eh) /* not on layer 2 */
3016					break;
3017				mtag = m_tag_get(PACKET_TAG_DIVERT,
3018						sizeof(struct divert_tag),
3019						M_NOWAIT);
3020				if (mtag == NULL) {
3021					/* XXX statistic */
3022					/* drop packet */
3023					IPFW_RUNLOCK(chain);
3024					return (IP_FW_DENY);
3025				}
3026				dt = (struct divert_tag *)(mtag+1);
3027				dt->cookie = f->rulenum;
3028				if (cmd->arg1 == IP_FW_TABLEARG)
3029					dt->info = tablearg;
3030				else
3031					dt->info = cmd->arg1;
3032				m_tag_prepend(m, mtag);
3033				retval = (cmd->opcode == O_DIVERT) ?
3034				    IP_FW_DIVERT : IP_FW_TEE;
3035				goto done;
3036			}
3037
3038			case O_COUNT:
3039			case O_SKIPTO:
3040				f->pcnt++;	/* update stats */
3041				f->bcnt += pktlen;
3042				f->timestamp = time_uptime;
3043				if (cmd->opcode == O_COUNT)
3044					goto next_rule;
3045				/* handle skipto */
3046				if (f->next_rule == NULL)
3047					lookup_next_rule(f);
3048				f = f->next_rule;
3049				goto again;
3050
3051			case O_REJECT:
3052				/*
3053				 * Drop the packet and send a reject notice
3054				 * if the packet is not ICMP (or is an ICMP
3055				 * query), and it is not multicast/broadcast.
3056				 */
3057				if (hlen > 0 && is_ipv4 && offset == 0 &&
3058				    (proto != IPPROTO_ICMP ||
3059				     is_icmp_query(ICMP(ulp))) &&
3060				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3061				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
3062					send_reject(args, cmd->arg1,
3063					    offset,ip_len);
3064					m = args->m;
3065				}
3066				/* FALLTHROUGH */
3067#ifdef INET6
3068			case O_UNREACH6:
3069				if (hlen > 0 && is_ipv6 &&
3070				    (proto != IPPROTO_ICMPV6 ||
3071				     (is_icmp6_query(args->f_id.flags) == 1)) &&
3072				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3073				    !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
3074					send_reject6(args, cmd->arg1,
3075					    offset, hlen);
3076					m = args->m;
3077				}
3078				/* FALLTHROUGH */
3079#endif
3080			case O_DENY:
3081				retval = IP_FW_DENY;
3082				goto done;
3083
3084			case O_FORWARD_IP:
3085				if (args->eh)	/* not valid on layer2 pkts */
3086					break;
3087				if (!q || dyn_dir == MATCH_FORWARD)
3088					args->next_hop =
3089					    &((ipfw_insn_sa *)cmd)->sa;
3090				retval = IP_FW_PASS;
3091				goto done;
3092
3093			case O_NETGRAPH:
3094			case O_NGTEE:
3095				args->rule = f;	/* report matching rule */
3096				if (cmd->arg1 == IP_FW_TABLEARG)
3097					args->cookie = tablearg;
3098				else
3099					args->cookie = cmd->arg1;
3100				retval = (cmd->opcode == O_NETGRAPH) ?
3101				    IP_FW_NETGRAPH : IP_FW_NGTEE;
3102				goto done;
3103
3104			default:
3105				panic("-- unknown opcode %d\n", cmd->opcode);
3106			} /* end of switch() on opcodes */
3107
3108			if (cmd->len & F_NOT)
3109				match = !match;
3110
3111			if (match) {
3112				if (cmd->len & F_OR)
3113					skip_or = 1;
3114			} else {
3115				if (!(cmd->len & F_OR)) /* not an OR block, */
3116					break;		/* try next rule    */
3117			}
3118
3119		}	/* end of inner for, scan opcodes */
3120
3121next_rule:;		/* try next rule		*/
3122
3123	}		/* end of outer for, scan rules */
3124	printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3125	IPFW_RUNLOCK(chain);
3126	return (IP_FW_DENY);
3127
3128done:
3129	/* Update statistics */
3130	f->pcnt++;
3131	f->bcnt += pktlen;
3132	f->timestamp = time_uptime;
3133	IPFW_RUNLOCK(chain);
3134	return (retval);
3135
3136pullup_failed:
3137	if (fw_verbose)
3138		printf("ipfw: pullup failed\n");
3139	return (IP_FW_DENY);
3140}
3141
3142/*
3143 * When a rule is added/deleted, clear the next_rule pointers in all rules.
3144 * These will be reconstructed on the fly as packets are matched.
3145 */
3146static void
3147flush_rule_ptrs(struct ip_fw_chain *chain)
3148{
3149	struct ip_fw *rule;
3150
3151	IPFW_WLOCK_ASSERT(chain);
3152
3153	for (rule = chain->rules; rule; rule = rule->next)
3154		rule->next_rule = NULL;
3155}
3156
3157/*
3158 * Add a new rule to the list. Copy the rule into a malloc'ed area, then
3159 * possibly create a rule number and add the rule to the list.
3160 * Update the rule_number in the input struct so the caller knows it as well.
3161 */
3162static int
3163add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
3164{
3165	struct ip_fw *rule, *f, *prev;
3166	int l = RULESIZE(input_rule);
3167
3168	if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
3169		return (EINVAL);
3170
3171	rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
3172	if (rule == NULL)
3173		return (ENOSPC);
3174
3175	bcopy(input_rule, rule, l);
3176
3177	rule->next = NULL;
3178	rule->next_rule = NULL;
3179
3180	rule->pcnt = 0;
3181	rule->bcnt = 0;
3182	rule->timestamp = 0;
3183
3184	IPFW_WLOCK(chain);
3185
3186	if (chain->rules == NULL) {	/* default rule */
3187		chain->rules = rule;
3188		goto done;
3189        }
3190
3191	/*
3192	 * If rulenum is 0, find highest numbered rule before the
3193	 * default rule, and add autoinc_step
3194	 */
3195	if (autoinc_step < 1)
3196		autoinc_step = 1;
3197	else if (autoinc_step > 1000)
3198		autoinc_step = 1000;
3199	if (rule->rulenum == 0) {
3200		/*
3201		 * locate the highest numbered rule before default
3202		 */
3203		for (f = chain->rules; f; f = f->next) {
3204			if (f->rulenum == IPFW_DEFAULT_RULE)
3205				break;
3206			rule->rulenum = f->rulenum;
3207		}
3208		if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
3209			rule->rulenum += autoinc_step;
3210		input_rule->rulenum = rule->rulenum;
3211	}
3212
3213	/*
3214	 * Now insert the new rule in the right place in the sorted list.
3215	 */
3216	for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
3217		if (f->rulenum > rule->rulenum) { /* found the location */
3218			if (prev) {
3219				rule->next = f;
3220				prev->next = rule;
3221			} else { /* head insert */
3222				rule->next = chain->rules;
3223				chain->rules = rule;
3224			}
3225			break;
3226		}
3227	}
3228	flush_rule_ptrs(chain);
3229done:
3230	static_count++;
3231	static_len += l;
3232	IPFW_WUNLOCK(chain);
3233	DEB(printf("ipfw: installed rule %d, static count now %d\n",
3234		rule->rulenum, static_count);)
3235	return (0);
3236}
3237
3238/**
3239 * Remove a static rule (including derived * dynamic rules)
3240 * and place it on the ``reap list'' for later reclamation.
3241 * The caller is in charge of clearing rule pointers to avoid
3242 * dangling pointers.
3243 * @return a pointer to the next entry.
3244 * Arguments are not checked, so they better be correct.
3245 */
3246static struct ip_fw *
3247remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule, struct ip_fw *prev)
3248{
3249	struct ip_fw *n;
3250	int l = RULESIZE(rule);
3251
3252	IPFW_WLOCK_ASSERT(chain);
3253
3254	n = rule->next;
3255	IPFW_DYN_LOCK();
3256	remove_dyn_rule(rule, NULL /* force removal */);
3257	IPFW_DYN_UNLOCK();
3258	if (prev == NULL)
3259		chain->rules = n;
3260	else
3261		prev->next = n;
3262	static_count--;
3263	static_len -= l;
3264
3265	rule->next = chain->reap;
3266	chain->reap = rule;
3267
3268	return n;
3269}
3270
3271/**
3272 * Reclaim storage associated with a list of rules.  This is
3273 * typically the list created using remove_rule.
3274 */
3275static void
3276reap_rules(struct ip_fw *head)
3277{
3278	struct ip_fw *rule;
3279
3280	while ((rule = head) != NULL) {
3281		head = head->next;
3282		if (DUMMYNET_LOADED)
3283			ip_dn_ruledel_ptr(rule);
3284		free(rule, M_IPFW);
3285	}
3286}
3287
3288/*
3289 * Remove all rules from a chain (except rules in set RESVD_SET
3290 * unless kill_default = 1).  The caller is responsible for
3291 * reclaiming storage for the rules left in chain->reap.
3292 */
3293static void
3294free_chain(struct ip_fw_chain *chain, int kill_default)
3295{
3296	struct ip_fw *prev, *rule;
3297
3298	IPFW_WLOCK_ASSERT(chain);
3299
3300	flush_rule_ptrs(chain); /* more efficient to do outside the loop */
3301	for (prev = NULL, rule = chain->rules; rule ; )
3302		if (kill_default || rule->set != RESVD_SET)
3303			rule = remove_rule(chain, rule, prev);
3304		else {
3305			prev = rule;
3306			rule = rule->next;
3307		}
3308}
3309
3310/**
3311 * Remove all rules with given number, and also do set manipulation.
3312 * Assumes chain != NULL && *chain != NULL.
3313 *
3314 * The argument is an u_int32_t. The low 16 bit are the rule or set number,
3315 * the next 8 bits are the new set, the top 8 bits are the command:
3316 *
3317 *	0	delete rules with given number
3318 *	1	delete rules with given set number
3319 *	2	move rules with given number to new set
3320 *	3	move rules with given set number to new set
3321 *	4	swap sets with given numbers
3322 */
3323static int
3324del_entry(struct ip_fw_chain *chain, u_int32_t arg)
3325{
3326	struct ip_fw *prev = NULL, *rule;
3327	u_int16_t rulenum;	/* rule or old_set */
3328	u_int8_t cmd, new_set;
3329
3330	rulenum = arg & 0xffff;
3331	cmd = (arg >> 24) & 0xff;
3332	new_set = (arg >> 16) & 0xff;
3333
3334	if (cmd > 4)
3335		return EINVAL;
3336	if (new_set > RESVD_SET)
3337		return EINVAL;
3338	if (cmd == 0 || cmd == 2) {
3339		if (rulenum >= IPFW_DEFAULT_RULE)
3340			return EINVAL;
3341	} else {
3342		if (rulenum > RESVD_SET)	/* old_set */
3343			return EINVAL;
3344	}
3345
3346	IPFW_WLOCK(chain);
3347	rule = chain->rules;
3348	chain->reap = NULL;
3349	switch (cmd) {
3350	case 0:	/* delete rules with given number */
3351		/*
3352		 * locate first rule to delete
3353		 */
3354		for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3355			;
3356		if (rule->rulenum != rulenum) {
3357			IPFW_WUNLOCK(chain);
3358			return EINVAL;
3359		}
3360
3361		/*
3362		 * flush pointers outside the loop, then delete all matching
3363		 * rules. prev remains the same throughout the cycle.
3364		 */
3365		flush_rule_ptrs(chain);
3366		while (rule->rulenum == rulenum)
3367			rule = remove_rule(chain, rule, prev);
3368		break;
3369
3370	case 1:	/* delete all rules with given set number */
3371		flush_rule_ptrs(chain);
3372		rule = chain->rules;
3373		while (rule->rulenum < IPFW_DEFAULT_RULE)
3374			if (rule->set == rulenum)
3375				rule = remove_rule(chain, rule, prev);
3376			else {
3377				prev = rule;
3378				rule = rule->next;
3379			}
3380		break;
3381
3382	case 2:	/* move rules with given number to new set */
3383		rule = chain->rules;
3384		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3385			if (rule->rulenum == rulenum)
3386				rule->set = new_set;
3387		break;
3388
3389	case 3: /* move rules with given set number to new set */
3390		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3391			if (rule->set == rulenum)
3392				rule->set = new_set;
3393		break;
3394
3395	case 4: /* swap two sets */
3396		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3397			if (rule->set == rulenum)
3398				rule->set = new_set;
3399			else if (rule->set == new_set)
3400				rule->set = rulenum;
3401		break;
3402	}
3403	/*
3404	 * Look for rules to reclaim.  We grab the list before
3405	 * releasing the lock then reclaim them w/o the lock to
3406	 * avoid a LOR with dummynet.
3407	 */
3408	rule = chain->reap;
3409	chain->reap = NULL;
3410	IPFW_WUNLOCK(chain);
3411	if (rule)
3412		reap_rules(rule);
3413	return 0;
3414}
3415
3416/*
3417 * Clear counters for a specific rule.
3418 * The enclosing "table" is assumed locked.
3419 */
3420static void
3421clear_counters(struct ip_fw *rule, int log_only)
3422{
3423	ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
3424
3425	if (log_only == 0) {
3426		rule->bcnt = rule->pcnt = 0;
3427		rule->timestamp = 0;
3428	}
3429	if (l->o.opcode == O_LOG)
3430		l->log_left = l->max_log;
3431}
3432
3433/**
3434 * Reset some or all counters on firewall rules.
3435 * @arg frwl is null to clear all entries, or contains a specific
3436 * rule number.
3437 * @arg log_only is 1 if we only want to reset logs, zero otherwise.
3438 */
3439static int
3440zero_entry(struct ip_fw_chain *chain, int rulenum, int log_only)
3441{
3442	struct ip_fw *rule;
3443	char *msg;
3444
3445	IPFW_WLOCK(chain);
3446	if (rulenum == 0) {
3447		norule_counter = 0;
3448		for (rule = chain->rules; rule; rule = rule->next)
3449			clear_counters(rule, log_only);
3450		msg = log_only ? "ipfw: All logging counts reset.\n" :
3451				"ipfw: Accounting cleared.\n";
3452	} else {
3453		int cleared = 0;
3454		/*
3455		 * We can have multiple rules with the same number, so we
3456		 * need to clear them all.
3457		 */
3458		for (rule = chain->rules; rule; rule = rule->next)
3459			if (rule->rulenum == rulenum) {
3460				while (rule && rule->rulenum == rulenum) {
3461					clear_counters(rule, log_only);
3462					rule = rule->next;
3463				}
3464				cleared = 1;
3465				break;
3466			}
3467		if (!cleared) {	/* we did not find any matching rules */
3468			IPFW_WUNLOCK(chain);
3469			return (EINVAL);
3470		}
3471		msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
3472				"ipfw: Entry %d cleared.\n";
3473	}
3474	IPFW_WUNLOCK(chain);
3475
3476	if (fw_verbose)
3477		log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
3478	return (0);
3479}
3480
3481/*
3482 * Check validity of the structure before insert.
3483 * Fortunately rules are simple, so this mostly need to check rule sizes.
3484 */
3485static int
3486check_ipfw_struct(struct ip_fw *rule, int size)
3487{
3488	int l, cmdlen = 0;
3489	int have_action=0;
3490	ipfw_insn *cmd;
3491
3492	if (size < sizeof(*rule)) {
3493		printf("ipfw: rule too short\n");
3494		return (EINVAL);
3495	}
3496	/* first, check for valid size */
3497	l = RULESIZE(rule);
3498	if (l != size) {
3499		printf("ipfw: size mismatch (have %d want %d)\n", size, l);
3500		return (EINVAL);
3501	}
3502	if (rule->act_ofs >= rule->cmd_len) {
3503		printf("ipfw: bogus action offset (%u > %u)\n",
3504		    rule->act_ofs, rule->cmd_len - 1);
3505		return (EINVAL);
3506	}
3507	/*
3508	 * Now go for the individual checks. Very simple ones, basically only
3509	 * instruction sizes.
3510	 */
3511	for (l = rule->cmd_len, cmd = rule->cmd ;
3512			l > 0 ; l -= cmdlen, cmd += cmdlen) {
3513		cmdlen = F_LEN(cmd);
3514		if (cmdlen > l) {
3515			printf("ipfw: opcode %d size truncated\n",
3516			    cmd->opcode);
3517			return EINVAL;
3518		}
3519		DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
3520		switch (cmd->opcode) {
3521		case O_PROBE_STATE:
3522		case O_KEEP_STATE:
3523		case O_PROTO:
3524		case O_IP_SRC_ME:
3525		case O_IP_DST_ME:
3526		case O_LAYER2:
3527		case O_IN:
3528		case O_FRAG:
3529		case O_DIVERTED:
3530		case O_IPOPT:
3531		case O_IPTOS:
3532		case O_IPPRECEDENCE:
3533		case O_IPVER:
3534		case O_TCPWIN:
3535		case O_TCPFLAGS:
3536		case O_TCPOPTS:
3537		case O_ESTAB:
3538		case O_VERREVPATH:
3539		case O_VERSRCREACH:
3540		case O_ANTISPOOF:
3541		case O_IPSEC:
3542#ifdef INET6
3543		case O_IP6_SRC_ME:
3544		case O_IP6_DST_ME:
3545		case O_EXT_HDR:
3546		case O_IP6:
3547#endif
3548		case O_IP4:
3549			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3550				goto bad_size;
3551			break;
3552
3553		case O_UID:
3554		case O_GID:
3555		case O_JAIL:
3556		case O_IP_SRC:
3557		case O_IP_DST:
3558		case O_TCPSEQ:
3559		case O_TCPACK:
3560		case O_PROB:
3561		case O_ICMPTYPE:
3562			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3563				goto bad_size;
3564			break;
3565
3566		case O_LIMIT:
3567			if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
3568				goto bad_size;
3569			break;
3570
3571		case O_LOG:
3572			if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
3573				goto bad_size;
3574
3575			((ipfw_insn_log *)cmd)->log_left =
3576			    ((ipfw_insn_log *)cmd)->max_log;
3577
3578			break;
3579
3580		case O_IP_SRC_MASK:
3581		case O_IP_DST_MASK:
3582			/* only odd command lengths */
3583			if ( !(cmdlen & 1) || cmdlen > 31)
3584				goto bad_size;
3585			break;
3586
3587		case O_IP_SRC_SET:
3588		case O_IP_DST_SET:
3589			if (cmd->arg1 == 0 || cmd->arg1 > 256) {
3590				printf("ipfw: invalid set size %d\n",
3591					cmd->arg1);
3592				return EINVAL;
3593			}
3594			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3595			    (cmd->arg1+31)/32 )
3596				goto bad_size;
3597			break;
3598
3599		case O_IP_SRC_LOOKUP:
3600		case O_IP_DST_LOOKUP:
3601			if (cmd->arg1 >= IPFW_TABLES_MAX) {
3602				printf("ipfw: invalid table number %d\n",
3603				    cmd->arg1);
3604				return (EINVAL);
3605			}
3606			if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
3607			    cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3608				goto bad_size;
3609			break;
3610
3611		case O_MACADDR2:
3612			if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
3613				goto bad_size;
3614			break;
3615
3616		case O_NOP:
3617		case O_IPID:
3618		case O_IPTTL:
3619		case O_IPLEN:
3620		case O_TCPDATALEN:
3621			if (cmdlen < 1 || cmdlen > 31)
3622				goto bad_size;
3623			break;
3624
3625		case O_MAC_TYPE:
3626		case O_IP_SRCPORT:
3627		case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
3628			if (cmdlen < 2 || cmdlen > 31)
3629				goto bad_size;
3630			break;
3631
3632		case O_RECV:
3633		case O_XMIT:
3634		case O_VIA:
3635			if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
3636				goto bad_size;
3637			break;
3638
3639		case O_ALTQ:
3640			if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
3641				goto bad_size;
3642			break;
3643
3644		case O_PIPE:
3645		case O_QUEUE:
3646			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3647				goto bad_size;
3648			goto check_action;
3649
3650		case O_FORWARD_IP:
3651#ifdef	IPFIREWALL_FORWARD
3652			if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
3653				goto bad_size;
3654			goto check_action;
3655#else
3656			return EINVAL;
3657#endif
3658
3659		case O_DIVERT:
3660		case O_TEE:
3661			if (ip_divert_ptr == NULL)
3662				return EINVAL;
3663			else
3664				goto check_size;
3665		case O_NETGRAPH:
3666		case O_NGTEE:
3667			if (!NG_IPFW_LOADED)
3668				return EINVAL;
3669			else
3670				goto check_size;
3671		case O_FORWARD_MAC: /* XXX not implemented yet */
3672		case O_CHECK_STATE:
3673		case O_COUNT:
3674		case O_ACCEPT:
3675		case O_DENY:
3676		case O_REJECT:
3677#ifdef INET6
3678		case O_UNREACH6:
3679#endif
3680		case O_SKIPTO:
3681check_size:
3682			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3683				goto bad_size;
3684check_action:
3685			if (have_action) {
3686				printf("ipfw: opcode %d, multiple actions"
3687					" not allowed\n",
3688					cmd->opcode);
3689				return EINVAL;
3690			}
3691			have_action = 1;
3692			if (l != cmdlen) {
3693				printf("ipfw: opcode %d, action must be"
3694					" last opcode\n",
3695					cmd->opcode);
3696				return EINVAL;
3697			}
3698			break;
3699#ifdef INET6
3700		case O_IP6_SRC:
3701		case O_IP6_DST:
3702			if (cmdlen != F_INSN_SIZE(struct in6_addr) +
3703			    F_INSN_SIZE(ipfw_insn))
3704				goto bad_size;
3705			break;
3706
3707		case O_FLOW6ID:
3708			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3709			    ((ipfw_insn_u32 *)cmd)->o.arg1)
3710				goto bad_size;
3711			break;
3712
3713		case O_IP6_SRC_MASK:
3714		case O_IP6_DST_MASK:
3715			if ( !(cmdlen & 1) || cmdlen > 127)
3716				goto bad_size;
3717			break;
3718		case O_ICMP6TYPE:
3719			if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
3720				goto bad_size;
3721			break;
3722#endif
3723
3724		default:
3725			switch (cmd->opcode) {
3726#ifndef INET6
3727			case O_IP6_SRC_ME:
3728			case O_IP6_DST_ME:
3729			case O_EXT_HDR:
3730			case O_IP6:
3731			case O_UNREACH6:
3732			case O_IP6_SRC:
3733			case O_IP6_DST:
3734			case O_FLOW6ID:
3735			case O_IP6_SRC_MASK:
3736			case O_IP6_DST_MASK:
3737			case O_ICMP6TYPE:
3738				printf("ipfw: no IPv6 support in kernel\n");
3739				return EPROTONOSUPPORT;
3740#endif
3741			default:
3742				printf("ipfw: opcode %d, unknown opcode\n",
3743					cmd->opcode);
3744				return EINVAL;
3745			}
3746		}
3747	}
3748	if (have_action == 0) {
3749		printf("ipfw: missing action\n");
3750		return EINVAL;
3751	}
3752	return 0;
3753
3754bad_size:
3755	printf("ipfw: opcode %d size %d wrong\n",
3756		cmd->opcode, cmdlen);
3757	return EINVAL;
3758}
3759
3760/*
3761 * Copy the static and dynamic rules to the supplied buffer
3762 * and return the amount of space actually used.
3763 */
3764static size_t
3765ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
3766{
3767	char *bp = buf;
3768	char *ep = bp + space;
3769	struct ip_fw *rule;
3770	int i;
3771
3772	/* XXX this can take a long time and locking will block packet flow */
3773	IPFW_RLOCK(chain);
3774	for (rule = chain->rules; rule ; rule = rule->next) {
3775		/*
3776		 * Verify the entry fits in the buffer in case the
3777		 * rules changed between calculating buffer space and
3778		 * now.  This would be better done using a generation
3779		 * number but should suffice for now.
3780		 */
3781		i = RULESIZE(rule);
3782		if (bp + i <= ep) {
3783			bcopy(rule, bp, i);
3784			bcopy(&set_disable, &(((struct ip_fw *)bp)->next_rule),
3785			    sizeof(set_disable));
3786			bp += i;
3787		}
3788	}
3789	IPFW_RUNLOCK(chain);
3790	if (ipfw_dyn_v) {
3791		ipfw_dyn_rule *p, *last = NULL;
3792
3793		IPFW_DYN_LOCK();
3794		for (i = 0 ; i < curr_dyn_buckets; i++)
3795			for (p = ipfw_dyn_v[i] ; p != NULL; p = p->next) {
3796				if (bp + sizeof *p <= ep) {
3797					ipfw_dyn_rule *dst =
3798						(ipfw_dyn_rule *)bp;
3799					bcopy(p, dst, sizeof *p);
3800					bcopy(&(p->rule->rulenum), &(dst->rule),
3801					    sizeof(p->rule->rulenum));
3802					/*
3803					 * store a non-null value in "next".
3804					 * The userland code will interpret a
3805					 * NULL here as a marker
3806					 * for the last dynamic rule.
3807					 */
3808					bcopy(&dst, &dst->next, sizeof(dst));
3809					last = dst;
3810					dst->expire =
3811					    TIME_LEQ(dst->expire, time_uptime) ?
3812						0 : dst->expire - time_uptime ;
3813					bp += sizeof(ipfw_dyn_rule);
3814				}
3815			}
3816		IPFW_DYN_UNLOCK();
3817		if (last != NULL) /* mark last dynamic rule */
3818			bzero(&last->next, sizeof(last));
3819	}
3820	return (bp - (char *)buf);
3821}
3822
3823
3824/**
3825 * {set|get}sockopt parser.
3826 */
3827static int
3828ipfw_ctl(struct sockopt *sopt)
3829{
3830#define	RULE_MAXSIZE	(256*sizeof(u_int32_t))
3831	int error, rule_num;
3832	size_t size;
3833	struct ip_fw *buf, *rule;
3834	u_int32_t rulenum[2];
3835
3836	error = suser(sopt->sopt_td);
3837	if (error)
3838		return (error);
3839
3840	/*
3841	 * Disallow modifications in really-really secure mode, but still allow
3842	 * the logging counters to be reset.
3843	 */
3844	if (sopt->sopt_name == IP_FW_ADD ||
3845	    (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
3846		error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
3847		if (error)
3848			return (error);
3849	}
3850
3851	error = 0;
3852
3853	switch (sopt->sopt_name) {
3854	case IP_FW_GET:
3855		/*
3856		 * pass up a copy of the current rules. Static rules
3857		 * come first (the last of which has number IPFW_DEFAULT_RULE),
3858		 * followed by a possibly empty list of dynamic rule.
3859		 * The last dynamic rule has NULL in the "next" field.
3860		 *
3861		 * Note that the calculated size is used to bound the
3862		 * amount of data returned to the user.  The rule set may
3863		 * change between calculating the size and returning the
3864		 * data in which case we'll just return what fits.
3865		 */
3866		size = static_len;	/* size of static rules */
3867		if (ipfw_dyn_v)		/* add size of dyn.rules */
3868			size += (dyn_count * sizeof(ipfw_dyn_rule));
3869
3870		/*
3871		 * XXX todo: if the user passes a short length just to know
3872		 * how much room is needed, do not bother filling up the
3873		 * buffer, just jump to the sooptcopyout.
3874		 */
3875		buf = malloc(size, M_TEMP, M_WAITOK);
3876		error = sooptcopyout(sopt, buf,
3877				ipfw_getrules(&layer3_chain, buf, size));
3878		free(buf, M_TEMP);
3879		break;
3880
3881	case IP_FW_FLUSH:
3882		/*
3883		 * Normally we cannot release the lock on each iteration.
3884		 * We could do it here only because we start from the head all
3885		 * the times so there is no risk of missing some entries.
3886		 * On the other hand, the risk is that we end up with
3887		 * a very inconsistent ruleset, so better keep the lock
3888		 * around the whole cycle.
3889		 *
3890		 * XXX this code can be improved by resetting the head of
3891		 * the list to point to the default rule, and then freeing
3892		 * the old list without the need for a lock.
3893		 */
3894
3895		IPFW_WLOCK(&layer3_chain);
3896		layer3_chain.reap = NULL;
3897		free_chain(&layer3_chain, 0 /* keep default rule */);
3898		rule = layer3_chain.reap, layer3_chain.reap = NULL;
3899		IPFW_WUNLOCK(&layer3_chain);
3900		if (layer3_chain.reap != NULL)
3901			reap_rules(rule);
3902		break;
3903
3904	case IP_FW_ADD:
3905		rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
3906		error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
3907			sizeof(struct ip_fw) );
3908		if (error == 0)
3909			error = check_ipfw_struct(rule, sopt->sopt_valsize);
3910		if (error == 0) {
3911			error = add_rule(&layer3_chain, rule);
3912			size = RULESIZE(rule);
3913			if (!error && sopt->sopt_dir == SOPT_GET)
3914				error = sooptcopyout(sopt, rule, size);
3915		}
3916		free(rule, M_TEMP);
3917		break;
3918
3919	case IP_FW_DEL:
3920		/*
3921		 * IP_FW_DEL is used for deleting single rules or sets,
3922		 * and (ab)used to atomically manipulate sets. Argument size
3923		 * is used to distinguish between the two:
3924		 *    sizeof(u_int32_t)
3925		 *	delete single rule or set of rules,
3926		 *	or reassign rules (or sets) to a different set.
3927		 *    2*sizeof(u_int32_t)
3928		 *	atomic disable/enable sets.
3929		 *	first u_int32_t contains sets to be disabled,
3930		 *	second u_int32_t contains sets to be enabled.
3931		 */
3932		error = sooptcopyin(sopt, rulenum,
3933			2*sizeof(u_int32_t), sizeof(u_int32_t));
3934		if (error)
3935			break;
3936		size = sopt->sopt_valsize;
3937		if (size == sizeof(u_int32_t))	/* delete or reassign */
3938			error = del_entry(&layer3_chain, rulenum[0]);
3939		else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
3940			set_disable =
3941			    (set_disable | rulenum[0]) & ~rulenum[1] &
3942			    ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
3943		else
3944			error = EINVAL;
3945		break;
3946
3947	case IP_FW_ZERO:
3948	case IP_FW_RESETLOG: /* argument is an int, the rule number */
3949		rule_num = 0;
3950		if (sopt->sopt_val != 0) {
3951		    error = sooptcopyin(sopt, &rule_num,
3952			    sizeof(int), sizeof(int));
3953		    if (error)
3954			break;
3955		}
3956		error = zero_entry(&layer3_chain, rule_num,
3957			sopt->sopt_name == IP_FW_RESETLOG);
3958		break;
3959
3960	case IP_FW_TABLE_ADD:
3961		{
3962			ipfw_table_entry ent;
3963
3964			error = sooptcopyin(sopt, &ent,
3965			    sizeof(ent), sizeof(ent));
3966			if (error)
3967				break;
3968			error = add_table_entry(&layer3_chain, ent.tbl,
3969			    ent.addr, ent.masklen, ent.value);
3970		}
3971		break;
3972
3973	case IP_FW_TABLE_DEL:
3974		{
3975			ipfw_table_entry ent;
3976
3977			error = sooptcopyin(sopt, &ent,
3978			    sizeof(ent), sizeof(ent));
3979			if (error)
3980				break;
3981			error = del_table_entry(&layer3_chain, ent.tbl,
3982			    ent.addr, ent.masklen);
3983		}
3984		break;
3985
3986	case IP_FW_TABLE_FLUSH:
3987		{
3988			u_int16_t tbl;
3989
3990			error = sooptcopyin(sopt, &tbl,
3991			    sizeof(tbl), sizeof(tbl));
3992			if (error)
3993				break;
3994			IPFW_WLOCK(&layer3_chain);
3995			error = flush_table(&layer3_chain, tbl);
3996			IPFW_WUNLOCK(&layer3_chain);
3997		}
3998		break;
3999
4000	case IP_FW_TABLE_GETSIZE:
4001		{
4002			u_int32_t tbl, cnt;
4003
4004			if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
4005			    sizeof(tbl))))
4006				break;
4007			IPFW_RLOCK(&layer3_chain);
4008			if ((error = count_table(&layer3_chain, tbl, &cnt)))
4009				break;
4010			IPFW_RUNLOCK(&layer3_chain);
4011			error = sooptcopyout(sopt, &cnt, sizeof(cnt));
4012		}
4013		break;
4014
4015	case IP_FW_TABLE_LIST:
4016		{
4017			ipfw_table *tbl;
4018
4019			if (sopt->sopt_valsize < sizeof(*tbl)) {
4020				error = EINVAL;
4021				break;
4022			}
4023			size = sopt->sopt_valsize;
4024			tbl = malloc(size, M_TEMP, M_WAITOK);
4025			if (tbl == NULL) {
4026				error = ENOMEM;
4027				break;
4028			}
4029			error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
4030			if (error) {
4031				free(tbl, M_TEMP);
4032				break;
4033			}
4034			tbl->size = (size - sizeof(*tbl)) /
4035			    sizeof(ipfw_table_entry);
4036			IPFW_WLOCK(&layer3_chain);
4037			error = dump_table(&layer3_chain, tbl);
4038			if (error) {
4039				IPFW_WUNLOCK(&layer3_chain);
4040				free(tbl, M_TEMP);
4041				break;
4042			}
4043			IPFW_WUNLOCK(&layer3_chain);
4044			error = sooptcopyout(sopt, tbl, size);
4045			free(tbl, M_TEMP);
4046		}
4047		break;
4048
4049	default:
4050		printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
4051		error = EINVAL;
4052	}
4053
4054	return (error);
4055#undef RULE_MAXSIZE
4056}
4057
4058/**
4059 * dummynet needs a reference to the default rule, because rules can be
4060 * deleted while packets hold a reference to them. When this happens,
4061 * dummynet changes the reference to the default rule (it could well be a
4062 * NULL pointer, but this way we do not need to check for the special
4063 * case, plus here he have info on the default behaviour).
4064 */
4065struct ip_fw *ip_fw_default_rule;
4066
4067/*
4068 * This procedure is only used to handle keepalives. It is invoked
4069 * every dyn_keepalive_period
4070 */
4071static void
4072ipfw_tick(void * __unused unused)
4073{
4074	struct mbuf *m0, *m, *mnext, **mtailp;
4075	int i;
4076	ipfw_dyn_rule *q;
4077
4078	if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0)
4079		goto done;
4080
4081	/*
4082	 * We make a chain of packets to go out here -- not deferring
4083	 * until after we drop the IPFW dynamic rule lock would result
4084	 * in a lock order reversal with the normal packet input -> ipfw
4085	 * call stack.
4086	 */
4087	m0 = NULL;
4088	mtailp = &m0;
4089	IPFW_DYN_LOCK();
4090	for (i = 0 ; i < curr_dyn_buckets ; i++) {
4091		for (q = ipfw_dyn_v[i] ; q ; q = q->next ) {
4092			if (q->dyn_type == O_LIMIT_PARENT)
4093				continue;
4094			if (q->id.proto != IPPROTO_TCP)
4095				continue;
4096			if ( (q->state & BOTH_SYN) != BOTH_SYN)
4097				continue;
4098			if (TIME_LEQ( time_uptime+dyn_keepalive_interval,
4099			    q->expire))
4100				continue;	/* too early */
4101			if (TIME_LEQ(q->expire, time_uptime))
4102				continue;	/* too late, rule expired */
4103
4104			*mtailp = send_pkt(&(q->id), q->ack_rev - 1,
4105				q->ack_fwd, TH_SYN);
4106			if (*mtailp != NULL)
4107				mtailp = &(*mtailp)->m_nextpkt;
4108			*mtailp = send_pkt(&(q->id), q->ack_fwd - 1,
4109				q->ack_rev, 0);
4110			if (*mtailp != NULL)
4111				mtailp = &(*mtailp)->m_nextpkt;
4112		}
4113	}
4114	IPFW_DYN_UNLOCK();
4115	for (m = mnext = m0; m != NULL; m = mnext) {
4116		mnext = m->m_nextpkt;
4117		m->m_nextpkt = NULL;
4118		ip_output(m, NULL, NULL, 0, NULL, NULL);
4119	}
4120done:
4121	callout_reset(&ipfw_timeout, dyn_keepalive_period*hz, ipfw_tick, NULL);
4122}
4123
4124int
4125ipfw_init(void)
4126{
4127	struct ip_fw default_rule;
4128	int error;
4129
4130#ifdef INET6
4131	/* Setup IPv6 fw sysctl tree. */
4132	sysctl_ctx_init(&ip6_fw_sysctl_ctx);
4133	ip6_fw_sysctl_tree = SYSCTL_ADD_NODE(&ip6_fw_sysctl_ctx,
4134		SYSCTL_STATIC_CHILDREN(_net_inet6_ip6), OID_AUTO, "fw",
4135		CTLFLAG_RW | CTLFLAG_SECURE, 0, "Firewall");
4136	SYSCTL_ADD_INT(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4137		OID_AUTO, "deny_unknown_exthdrs", CTLFLAG_RW | CTLFLAG_SECURE,
4138		&fw_deny_unknown_exthdrs, 0,
4139		"Deny packets with unknown IPv6 Extension Headers");
4140#endif
4141
4142	layer3_chain.rules = NULL;
4143	layer3_chain.want_write = 0;
4144	layer3_chain.busy_count = 0;
4145	cv_init(&layer3_chain.cv, "Condition variable for IPFW rw locks");
4146	IPFW_LOCK_INIT(&layer3_chain);
4147	ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule zone",
4148	    sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
4149	    UMA_ALIGN_PTR, 0);
4150	IPFW_DYN_LOCK_INIT();
4151	callout_init(&ipfw_timeout, NET_CALLOUT_MPSAFE);
4152
4153	bzero(&default_rule, sizeof default_rule);
4154
4155	default_rule.act_ofs = 0;
4156	default_rule.rulenum = IPFW_DEFAULT_RULE;
4157	default_rule.cmd_len = 1;
4158	default_rule.set = RESVD_SET;
4159
4160	default_rule.cmd[0].len = 1;
4161	default_rule.cmd[0].opcode =
4162#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
4163				1 ? O_ACCEPT :
4164#endif
4165				O_DENY;
4166
4167	error = add_rule(&layer3_chain, &default_rule);
4168	if (error != 0) {
4169		printf("ipfw2: error %u initializing default rule "
4170			"(support disabled)\n", error);
4171		IPFW_DYN_LOCK_DESTROY();
4172		IPFW_LOCK_DESTROY(&layer3_chain);
4173		return (error);
4174	}
4175
4176	ip_fw_default_rule = layer3_chain.rules;
4177	printf("ipfw2 (+ipv6) initialized, divert %s, "
4178		"rule-based forwarding "
4179#ifdef IPFIREWALL_FORWARD
4180		"enabled, "
4181#else
4182		"disabled, "
4183#endif
4184		"default to %s, logging ",
4185#ifdef IPDIVERT
4186		"enabled",
4187#else
4188		"loadable",
4189#endif
4190		default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
4191
4192#ifdef IPFIREWALL_VERBOSE
4193	fw_verbose = 1;
4194#endif
4195#ifdef IPFIREWALL_VERBOSE_LIMIT
4196	verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
4197#endif
4198	if (fw_verbose == 0)
4199		printf("disabled\n");
4200	else if (verbose_limit == 0)
4201		printf("unlimited\n");
4202	else
4203		printf("limited to %d packets/entry by default\n",
4204		    verbose_limit);
4205
4206	init_tables(&layer3_chain);
4207	ip_fw_ctl_ptr = ipfw_ctl;
4208	ip_fw_chk_ptr = ipfw_chk;
4209	callout_reset(&ipfw_timeout, hz, ipfw_tick, NULL);
4210
4211	return (0);
4212}
4213
4214void
4215ipfw_destroy(void)
4216{
4217	struct ip_fw *reap;
4218
4219	ip_fw_chk_ptr = NULL;
4220	ip_fw_ctl_ptr = NULL;
4221	callout_drain(&ipfw_timeout);
4222	IPFW_WLOCK(&layer3_chain);
4223	flush_tables(&layer3_chain);
4224	layer3_chain.reap = NULL;
4225	free_chain(&layer3_chain, 1 /* kill default rule */);
4226	reap = layer3_chain.reap, layer3_chain.reap = NULL;
4227	IPFW_WUNLOCK(&layer3_chain);
4228	if (reap != NULL)
4229		reap_rules(reap);
4230	IPFW_DYN_LOCK_DESTROY();
4231	uma_zdestroy(ipfw_dyn_rule_zone);
4232	IPFW_LOCK_DESTROY(&layer3_chain);
4233
4234#ifdef INET6
4235	/* Free IPv6 fw sysctl tree. */
4236	sysctl_ctx_free(&ip6_fw_sysctl_ctx);
4237#endif
4238
4239	printf("IP firewall unloaded\n");
4240}
4241