ip_fw2.c revision 152928
1/*-
2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 * $FreeBSD: head/sys/netinet/ip_fw2.c 152928 2005-11-29 17:56:11Z ume $
26 */
27
28#define        DEB(x)
29#define        DDB(x) x
30
31/*
32 * Implement IP packet firewall (new version)
33 */
34
35#if !defined(KLD_MODULE)
36#include "opt_ipfw.h"
37#include "opt_ip6fw.h"
38#include "opt_ipdn.h"
39#include "opt_inet.h"
40#ifndef INET
41#error IPFIREWALL requires INET.
42#endif /* INET */
43#endif
44#include "opt_inet6.h"
45#include "opt_ipsec.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/condvar.h>
50#include <sys/malloc.h>
51#include <sys/mbuf.h>
52#include <sys/kernel.h>
53#include <sys/jail.h>
54#include <sys/module.h>
55#include <sys/proc.h>
56#include <sys/socket.h>
57#include <sys/socketvar.h>
58#include <sys/sysctl.h>
59#include <sys/syslog.h>
60#include <sys/ucred.h>
61#include <net/if.h>
62#include <net/radix.h>
63#include <net/route.h>
64#include <netinet/in.h>
65#include <netinet/in_systm.h>
66#include <netinet/in_var.h>
67#include <netinet/in_pcb.h>
68#include <netinet/ip.h>
69#include <netinet/ip_var.h>
70#include <netinet/ip_icmp.h>
71#include <netinet/ip_fw.h>
72#include <netinet/ip_divert.h>
73#include <netinet/ip_dummynet.h>
74#include <netinet/tcp.h>
75#include <netinet/tcp_timer.h>
76#include <netinet/tcp_var.h>
77#include <netinet/tcpip.h>
78#include <netinet/udp.h>
79#include <netinet/udp_var.h>
80
81#include <netgraph/ng_ipfw.h>
82
83#include <altq/if_altq.h>
84
85#ifdef IPSEC
86#include <netinet6/ipsec.h>
87#endif
88
89#include <netinet/ip6.h>
90#include <netinet/icmp6.h>
91#ifdef INET6
92#include <netinet6/scope6_var.h>
93#endif
94
95#include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
96
97#include <machine/in_cksum.h>	/* XXX for in_cksum */
98
99/*
100 * set_disable contains one bit per set value (0..31).
101 * If the bit is set, all rules with the corresponding set
102 * are disabled. Set RESVD_SET(31) is reserved for the default rule
103 * and rules that are not deleted by the flush command,
104 * and CANNOT be disabled.
105 * Rules in set RESVD_SET can only be deleted explicitly.
106 */
107static u_int32_t set_disable;
108
109static int fw_verbose;
110static int verbose_limit;
111
112static struct callout ipfw_timeout;
113static uma_zone_t ipfw_dyn_rule_zone;
114#define	IPFW_DEFAULT_RULE	65535
115
116/*
117 * Data structure to cache our ucred related
118 * information. This structure only gets used if
119 * the user specified UID/GID based constraints in
120 * a firewall rule.
121 */
122struct ip_fw_ugid {
123	gid_t		fw_groups[NGROUPS];
124	int		fw_ngroups;
125	uid_t		fw_uid;
126	int		fw_prid;
127};
128
129struct ip_fw_chain {
130	struct ip_fw	*rules;		/* list of rules */
131	struct ip_fw	*reap;		/* list of rules to reap */
132	struct mtx	mtx;		/* lock guarding rule list */
133	int		busy_count;	/* busy count for rw locks */
134	int		want_write;
135	struct cv	cv;
136};
137#define	IPFW_LOCK_INIT(_chain) \
138	mtx_init(&(_chain)->mtx, "IPFW static rules", NULL, \
139		MTX_DEF | MTX_RECURSE)
140#define	IPFW_LOCK_DESTROY(_chain)	mtx_destroy(&(_chain)->mtx)
141#define	IPFW_WLOCK_ASSERT(_chain)	do {				\
142	mtx_assert(&(_chain)->mtx, MA_OWNED);				\
143	NET_ASSERT_GIANT();						\
144} while (0)
145
146static __inline void
147IPFW_RLOCK(struct ip_fw_chain *chain)
148{
149	mtx_lock(&chain->mtx);
150	chain->busy_count++;
151	mtx_unlock(&chain->mtx);
152}
153
154static __inline void
155IPFW_RUNLOCK(struct ip_fw_chain *chain)
156{
157	mtx_lock(&chain->mtx);
158	chain->busy_count--;
159	if (chain->busy_count == 0 && chain->want_write)
160		cv_signal(&chain->cv);
161	mtx_unlock(&chain->mtx);
162}
163
164static __inline void
165IPFW_WLOCK(struct ip_fw_chain *chain)
166{
167	mtx_lock(&chain->mtx);
168	chain->want_write++;
169	while (chain->busy_count > 0)
170		cv_wait(&chain->cv, &chain->mtx);
171}
172
173static __inline void
174IPFW_WUNLOCK(struct ip_fw_chain *chain)
175{
176	chain->want_write--;
177	cv_signal(&chain->cv);
178	mtx_unlock(&chain->mtx);
179}
180
181/*
182 * list of rules for layer 3
183 */
184static struct ip_fw_chain layer3_chain;
185
186MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
187MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
188
189struct table_entry {
190	struct radix_node	rn[2];
191	struct sockaddr_in	addr, mask;
192	u_int32_t		value;
193};
194
195#define	IPFW_TABLES_MAX		128
196static struct ip_fw_table {
197	struct radix_node_head	*rnh;
198	int			modified;
199	in_addr_t		last_addr;
200	int			last_match;
201	u_int32_t		last_value;
202} ipfw_tables[IPFW_TABLES_MAX];
203
204static int fw_debug = 1;
205static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
206
207#ifdef SYSCTL_NODE
208SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
209SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, enable,
210    CTLFLAG_RW | CTLFLAG_SECURE3,
211    &fw_enable, 0, "Enable ipfw");
212SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
213    &autoinc_step, 0, "Rule number autincrement step");
214SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
215    CTLFLAG_RW | CTLFLAG_SECURE3,
216    &fw_one_pass, 0,
217    "Only do a single pass through ipfw when using dummynet(4)");
218SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
219    &fw_debug, 0, "Enable printing of debug ip_fw statements");
220SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
221    CTLFLAG_RW | CTLFLAG_SECURE3,
222    &fw_verbose, 0, "Log matches to ipfw rules");
223SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
224    &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
225
226/*
227 * Description of dynamic rules.
228 *
229 * Dynamic rules are stored in lists accessed through a hash table
230 * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
231 * be modified through the sysctl variable dyn_buckets which is
232 * updated when the table becomes empty.
233 *
234 * XXX currently there is only one list, ipfw_dyn.
235 *
236 * When a packet is received, its address fields are first masked
237 * with the mask defined for the rule, then hashed, then matched
238 * against the entries in the corresponding list.
239 * Dynamic rules can be used for different purposes:
240 *  + stateful rules;
241 *  + enforcing limits on the number of sessions;
242 *  + in-kernel NAT (not implemented yet)
243 *
244 * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
245 * measured in seconds and depending on the flags.
246 *
247 * The total number of dynamic rules is stored in dyn_count.
248 * The max number of dynamic rules is dyn_max. When we reach
249 * the maximum number of rules we do not create anymore. This is
250 * done to avoid consuming too much memory, but also too much
251 * time when searching on each packet (ideally, we should try instead
252 * to put a limit on the length of the list on each bucket...).
253 *
254 * Each dynamic rule holds a pointer to the parent ipfw rule so
255 * we know what action to perform. Dynamic rules are removed when
256 * the parent rule is deleted. XXX we should make them survive.
257 *
258 * There are some limitations with dynamic rules -- we do not
259 * obey the 'randomized match', and we do not do multiple
260 * passes through the firewall. XXX check the latter!!!
261 */
262static ipfw_dyn_rule **ipfw_dyn_v = NULL;
263static u_int32_t dyn_buckets = 256; /* must be power of 2 */
264static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
265
266static struct mtx ipfw_dyn_mtx;		/* mutex guarding dynamic rules */
267#define	IPFW_DYN_LOCK_INIT() \
268	mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
269#define	IPFW_DYN_LOCK_DESTROY()	mtx_destroy(&ipfw_dyn_mtx)
270#define	IPFW_DYN_LOCK()		mtx_lock(&ipfw_dyn_mtx)
271#define	IPFW_DYN_UNLOCK()	mtx_unlock(&ipfw_dyn_mtx)
272#define	IPFW_DYN_LOCK_ASSERT()	mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
273
274/*
275 * Timeouts for various events in handing dynamic rules.
276 */
277static u_int32_t dyn_ack_lifetime = 300;
278static u_int32_t dyn_syn_lifetime = 20;
279static u_int32_t dyn_fin_lifetime = 1;
280static u_int32_t dyn_rst_lifetime = 1;
281static u_int32_t dyn_udp_lifetime = 10;
282static u_int32_t dyn_short_lifetime = 5;
283
284/*
285 * Keepalives are sent if dyn_keepalive is set. They are sent every
286 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
287 * seconds of lifetime of a rule.
288 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
289 * than dyn_keepalive_period.
290 */
291
292static u_int32_t dyn_keepalive_interval = 20;
293static u_int32_t dyn_keepalive_period = 5;
294static u_int32_t dyn_keepalive = 1;	/* do send keepalives */
295
296static u_int32_t static_count;	/* # of static rules */
297static u_int32_t static_len;	/* size in bytes of static rules */
298static u_int32_t dyn_count;		/* # of dynamic rules */
299static u_int32_t dyn_max = 4096;	/* max # of dynamic rules */
300
301SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
302    &dyn_buckets, 0, "Number of dyn. buckets");
303SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
304    &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
305SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
306    &dyn_count, 0, "Number of dyn. rules");
307SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
308    &dyn_max, 0, "Max number of dyn. rules");
309SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
310    &static_count, 0, "Number of static rules");
311SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
312    &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
313SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
314    &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
315SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
316    &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
317SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
318    &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
319SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
320    &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
321SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
322    &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
323SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
324    &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
325
326#ifdef INET6
327/*
328 * IPv6 specific variables
329 */
330SYSCTL_DECL(_net_inet6_ip6);
331
332static struct sysctl_ctx_list ip6_fw_sysctl_ctx;
333static struct sysctl_oid *ip6_fw_sysctl_tree;
334#endif /* INET6 */
335#endif /* SYSCTL_NODE */
336
337static int fw_deny_unknown_exthdrs = 1;
338
339
340/*
341 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
342 * Other macros just cast void * into the appropriate type
343 */
344#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
345#define	TCP(p)		((struct tcphdr *)(p))
346#define	UDP(p)		((struct udphdr *)(p))
347#define	ICMP(p)		((struct icmphdr *)(p))
348#define	ICMP6(p)	((struct icmp6_hdr *)(p))
349
350static __inline int
351icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
352{
353	int type = icmp->icmp_type;
354
355	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
356}
357
358#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
359    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
360
361static int
362is_icmp_query(struct icmphdr *icmp)
363{
364	int type = icmp->icmp_type;
365
366	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
367}
368#undef TT
369
370/*
371 * The following checks use two arrays of 8 or 16 bits to store the
372 * bits that we want set or clear, respectively. They are in the
373 * low and high half of cmd->arg1 or cmd->d[0].
374 *
375 * We scan options and store the bits we find set. We succeed if
376 *
377 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
378 *
379 * The code is sometimes optimized not to store additional variables.
380 */
381
382static int
383flags_match(ipfw_insn *cmd, u_int8_t bits)
384{
385	u_char want_clear;
386	bits = ~bits;
387
388	if ( ((cmd->arg1 & 0xff) & bits) != 0)
389		return 0; /* some bits we want set were clear */
390	want_clear = (cmd->arg1 >> 8) & 0xff;
391	if ( (want_clear & bits) != want_clear)
392		return 0; /* some bits we want clear were set */
393	return 1;
394}
395
396static int
397ipopts_match(struct ip *ip, ipfw_insn *cmd)
398{
399	int optlen, bits = 0;
400	u_char *cp = (u_char *)(ip + 1);
401	int x = (ip->ip_hl << 2) - sizeof (struct ip);
402
403	for (; x > 0; x -= optlen, cp += optlen) {
404		int opt = cp[IPOPT_OPTVAL];
405
406		if (opt == IPOPT_EOL)
407			break;
408		if (opt == IPOPT_NOP)
409			optlen = 1;
410		else {
411			optlen = cp[IPOPT_OLEN];
412			if (optlen <= 0 || optlen > x)
413				return 0; /* invalid or truncated */
414		}
415		switch (opt) {
416
417		default:
418			break;
419
420		case IPOPT_LSRR:
421			bits |= IP_FW_IPOPT_LSRR;
422			break;
423
424		case IPOPT_SSRR:
425			bits |= IP_FW_IPOPT_SSRR;
426			break;
427
428		case IPOPT_RR:
429			bits |= IP_FW_IPOPT_RR;
430			break;
431
432		case IPOPT_TS:
433			bits |= IP_FW_IPOPT_TS;
434			break;
435		}
436	}
437	return (flags_match(cmd, bits));
438}
439
440static int
441tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
442{
443	int optlen, bits = 0;
444	u_char *cp = (u_char *)(tcp + 1);
445	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
446
447	for (; x > 0; x -= optlen, cp += optlen) {
448		int opt = cp[0];
449		if (opt == TCPOPT_EOL)
450			break;
451		if (opt == TCPOPT_NOP)
452			optlen = 1;
453		else {
454			optlen = cp[1];
455			if (optlen <= 0)
456				break;
457		}
458
459		switch (opt) {
460
461		default:
462			break;
463
464		case TCPOPT_MAXSEG:
465			bits |= IP_FW_TCPOPT_MSS;
466			break;
467
468		case TCPOPT_WINDOW:
469			bits |= IP_FW_TCPOPT_WINDOW;
470			break;
471
472		case TCPOPT_SACK_PERMITTED:
473		case TCPOPT_SACK:
474			bits |= IP_FW_TCPOPT_SACK;
475			break;
476
477		case TCPOPT_TIMESTAMP:
478			bits |= IP_FW_TCPOPT_TS;
479			break;
480
481		}
482	}
483	return (flags_match(cmd, bits));
484}
485
486static int
487iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
488{
489	if (ifp == NULL)	/* no iface with this packet, match fails */
490		return 0;
491	/* Check by name or by IP address */
492	if (cmd->name[0] != '\0') { /* match by name */
493		/* Check name */
494		if (cmd->p.glob) {
495			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
496				return(1);
497		} else {
498			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
499				return(1);
500		}
501	} else {
502		struct ifaddr *ia;
503
504		/* XXX lock? */
505		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
506			if (ia->ifa_addr == NULL)
507				continue;
508			if (ia->ifa_addr->sa_family != AF_INET)
509				continue;
510			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
511			    (ia->ifa_addr))->sin_addr.s_addr)
512				return(1);	/* match */
513		}
514	}
515	return(0);	/* no match, fail ... */
516}
517
518/*
519 * The verify_path function checks if a route to the src exists and
520 * if it is reachable via ifp (when provided).
521 *
522 * The 'verrevpath' option checks that the interface that an IP packet
523 * arrives on is the same interface that traffic destined for the
524 * packet's source address would be routed out of.  The 'versrcreach'
525 * option just checks that the source address is reachable via any route
526 * (except default) in the routing table.  These two are a measure to block
527 * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
528 * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
529 * is purposely reminiscent of the Cisco IOS command,
530 *
531 *   ip verify unicast reverse-path
532 *   ip verify unicast source reachable-via any
533 *
534 * which implements the same functionality. But note that syntax is
535 * misleading. The check may be performed on all IP packets whether unicast,
536 * multicast, or broadcast.
537 */
538static int
539verify_path(struct in_addr src, struct ifnet *ifp)
540{
541	struct route ro;
542	struct sockaddr_in *dst;
543
544	bzero(&ro, sizeof(ro));
545
546	dst = (struct sockaddr_in *)&(ro.ro_dst);
547	dst->sin_family = AF_INET;
548	dst->sin_len = sizeof(*dst);
549	dst->sin_addr = src;
550	rtalloc_ign(&ro, RTF_CLONING);
551
552	if (ro.ro_rt == NULL)
553		return 0;
554
555	/* if ifp is provided, check for equality with rtentry */
556	if (ifp != NULL && ro.ro_rt->rt_ifp != ifp) {
557		RTFREE(ro.ro_rt);
558		return 0;
559	}
560
561	/* if no ifp provided, check if rtentry is not default route */
562	if (ifp == NULL &&
563	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
564		RTFREE(ro.ro_rt);
565		return 0;
566	}
567
568	/* or if this is a blackhole/reject route */
569	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
570		RTFREE(ro.ro_rt);
571		return 0;
572	}
573
574	/* found valid route */
575	RTFREE(ro.ro_rt);
576	return 1;
577}
578
579#ifdef INET6
580/*
581 * ipv6 specific rules here...
582 */
583static __inline int
584icmp6type_match (int type, ipfw_insn_u32 *cmd)
585{
586	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
587}
588
589static int
590flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
591{
592	int i;
593	for (i=0; i <= cmd->o.arg1; ++i )
594		if (curr_flow == cmd->d[i] )
595			return 1;
596	return 0;
597}
598
599/* support for IP6_*_ME opcodes */
600static int
601search_ip6_addr_net (struct in6_addr * ip6_addr)
602{
603	struct ifnet *mdc;
604	struct ifaddr *mdc2;
605	struct in6_ifaddr *fdm;
606	struct in6_addr copia;
607
608	TAILQ_FOREACH(mdc, &ifnet, if_link)
609		for (mdc2 = mdc->if_addrlist.tqh_first; mdc2;
610		    mdc2 = mdc2->ifa_list.tqe_next) {
611			if (!mdc2->ifa_addr)
612				continue;
613			if (mdc2->ifa_addr->sa_family == AF_INET6) {
614				fdm = (struct in6_ifaddr *)mdc2;
615				copia = fdm->ia_addr.sin6_addr;
616				/* need for leaving scope_id in the sock_addr */
617				in6_clearscope(&copia);
618				if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia))
619					return 1;
620			}
621		}
622	return 0;
623}
624
625static int
626verify_path6(struct in6_addr *src, struct ifnet *ifp)
627{
628	struct route_in6 ro;
629	struct sockaddr_in6 *dst;
630
631	bzero(&ro, sizeof(ro));
632
633	dst = (struct sockaddr_in6 * )&(ro.ro_dst);
634	dst->sin6_family = AF_INET6;
635	dst->sin6_len = sizeof(*dst);
636	dst->sin6_addr = *src;
637	rtalloc_ign((struct route *)&ro, RTF_CLONING);
638
639	if (ro.ro_rt == NULL)
640		return 0;
641
642	/*
643	 * if ifp is provided, check for equality with rtentry
644	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
645	 * to support the case of sending packets to an address of our own.
646	 * (where the former interface is the first argument of if_simloop()
647	 *  (=ifp), the latter is lo0)
648	 */
649	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
650		RTFREE(ro.ro_rt);
651		return 0;
652	}
653
654	/* if no ifp provided, check if rtentry is not default route */
655	if (ifp == NULL &&
656	    IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
657		RTFREE(ro.ro_rt);
658		return 0;
659	}
660
661	/* or if this is a blackhole/reject route */
662	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
663		RTFREE(ro.ro_rt);
664		return 0;
665	}
666
667	/* found valid route */
668	RTFREE(ro.ro_rt);
669	return 1;
670
671}
672static __inline int
673hash_packet6(struct ipfw_flow_id *id)
674{
675	u_int32_t i;
676	i = (id->dst_ip6.__u6_addr.__u6_addr32[0]) ^
677	    (id->dst_ip6.__u6_addr.__u6_addr32[1]) ^
678	    (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
679	    (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
680	    (id->dst_port) ^ (id->src_port) ^ (id->flow_id6);
681	return i;
682}
683
684static int
685is_icmp6_query(int icmp6_type)
686{
687	if ((icmp6_type <= ICMP6_MAXTYPE) &&
688	    (icmp6_type == ICMP6_ECHO_REQUEST ||
689	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
690	    icmp6_type == ICMP6_WRUREQUEST ||
691	    icmp6_type == ICMP6_FQDN_QUERY ||
692	    icmp6_type == ICMP6_NI_QUERY))
693		return (1);
694
695	return (0);
696}
697
698static void
699send_reject6(struct ip_fw_args *args, int code, u_short offset, u_int hlen)
700{
701	if (code == ICMP6_UNREACH_RST && offset == 0 &&
702	    args->f_id.proto == IPPROTO_TCP) {
703		struct ip6_hdr *ip6;
704		struct tcphdr *tcp;
705		tcp_seq ack, seq;
706		int flags;
707		struct {
708			struct ip6_hdr ip6;
709			struct tcphdr th;
710		} ti;
711
712		if (args->m->m_len < (hlen+sizeof(struct tcphdr))) {
713			args->m = m_pullup(args->m, hlen+sizeof(struct tcphdr));
714			if (args->m == NULL)
715				return;
716		}
717
718		ip6 = mtod(args->m, struct ip6_hdr *);
719		tcp = (struct tcphdr *)(mtod(args->m, char *) + hlen);
720
721		if ((tcp->th_flags & TH_RST) != 0) {
722			m_freem(args->m);
723			return;
724		}
725
726		ti.ip6 = *ip6;
727		ti.th = *tcp;
728		ti.th.th_seq = ntohl(ti.th.th_seq);
729		ti.th.th_ack = ntohl(ti.th.th_ack);
730		ti.ip6.ip6_nxt = IPPROTO_TCP;
731
732		if (ti.th.th_flags & TH_ACK) {
733			ack = 0;
734			seq = ti.th.th_ack;
735			flags = TH_RST;
736		} else {
737			ack = ti.th.th_seq;
738			if (((args->m)->m_flags & M_PKTHDR) != 0) {
739				ack += (args->m)->m_pkthdr.len - hlen
740					- (ti.th.th_off << 2);
741			} else if (ip6->ip6_plen) {
742				ack += ntohs(ip6->ip6_plen) + sizeof(*ip6)
743					- hlen - (ti.th.th_off << 2);
744			} else {
745				m_freem(args->m);
746				return;
747			}
748			if (tcp->th_flags & TH_SYN)
749				ack++;
750			seq = 0;
751			flags = TH_RST|TH_ACK;
752		}
753		bcopy(&ti, ip6, sizeof(ti));
754		tcp_respond(NULL, ip6, (struct tcphdr *)(ip6 + 1),
755			args->m, ack, seq, flags);
756
757	} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
758		icmp6_error(args->m, ICMP6_DST_UNREACH, code, 0);
759
760	} else
761		m_freem(args->m);
762
763	args->m = NULL;
764}
765
766#endif /* INET6 */
767
768static u_int64_t norule_counter;	/* counter for ipfw_log(NULL...) */
769
770#define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
771#define SNP(buf) buf, sizeof(buf)
772
773/*
774 * We enter here when we have a rule with O_LOG.
775 * XXX this function alone takes about 2Kbytes of code!
776 */
777static void
778ipfw_log(struct ip_fw *f, u_int hlen, struct ip_fw_args *args,
779	struct mbuf *m, struct ifnet *oif, u_short offset)
780{
781	struct ether_header *eh = args->eh;
782	char *action;
783	int limit_reached = 0;
784	char action2[40], proto[128], fragment[32];
785
786	fragment[0] = '\0';
787	proto[0] = '\0';
788
789	if (f == NULL) {	/* bogus pkt */
790		if (verbose_limit != 0 && norule_counter >= verbose_limit)
791			return;
792		norule_counter++;
793		if (norule_counter == verbose_limit)
794			limit_reached = verbose_limit;
795		action = "Refuse";
796	} else {	/* O_LOG is the first action, find the real one */
797		ipfw_insn *cmd = ACTION_PTR(f);
798		ipfw_insn_log *l = (ipfw_insn_log *)cmd;
799
800		if (l->max_log != 0 && l->log_left == 0)
801			return;
802		l->log_left--;
803		if (l->log_left == 0)
804			limit_reached = l->max_log;
805		cmd += F_LEN(cmd);	/* point to first action */
806		if (cmd->opcode == O_ALTQ) {
807			ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
808
809			snprintf(SNPARGS(action2, 0), "Altq %d",
810				altq->qid);
811			cmd += F_LEN(cmd);
812		}
813		if (cmd->opcode == O_PROB)
814			cmd += F_LEN(cmd);
815
816		action = action2;
817		switch (cmd->opcode) {
818		case O_DENY:
819			action = "Deny";
820			break;
821
822		case O_REJECT:
823			if (cmd->arg1==ICMP_REJECT_RST)
824				action = "Reset";
825			else if (cmd->arg1==ICMP_UNREACH_HOST)
826				action = "Reject";
827			else
828				snprintf(SNPARGS(action2, 0), "Unreach %d",
829					cmd->arg1);
830			break;
831
832		case O_UNREACH6:
833			if (cmd->arg1==ICMP6_UNREACH_RST)
834				action = "Reset";
835			else
836				snprintf(SNPARGS(action2, 0), "Unreach %d",
837					cmd->arg1);
838			break;
839
840		case O_ACCEPT:
841			action = "Accept";
842			break;
843		case O_COUNT:
844			action = "Count";
845			break;
846		case O_DIVERT:
847			snprintf(SNPARGS(action2, 0), "Divert %d",
848				cmd->arg1);
849			break;
850		case O_TEE:
851			snprintf(SNPARGS(action2, 0), "Tee %d",
852				cmd->arg1);
853			break;
854		case O_SKIPTO:
855			snprintf(SNPARGS(action2, 0), "SkipTo %d",
856				cmd->arg1);
857			break;
858		case O_PIPE:
859			snprintf(SNPARGS(action2, 0), "Pipe %d",
860				cmd->arg1);
861			break;
862		case O_QUEUE:
863			snprintf(SNPARGS(action2, 0), "Queue %d",
864				cmd->arg1);
865			break;
866		case O_FORWARD_IP: {
867			ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
868			int len;
869
870			len = snprintf(SNPARGS(action2, 0), "Forward to %s",
871				inet_ntoa(sa->sa.sin_addr));
872			if (sa->sa.sin_port)
873				snprintf(SNPARGS(action2, len), ":%d",
874				    sa->sa.sin_port);
875			}
876			break;
877		case O_NETGRAPH:
878			snprintf(SNPARGS(action2, 0), "Netgraph %d",
879				cmd->arg1);
880			break;
881		case O_NGTEE:
882			snprintf(SNPARGS(action2, 0), "Ngtee %d",
883				cmd->arg1);
884			break;
885		default:
886			action = "UNKNOWN";
887			break;
888		}
889	}
890
891	if (hlen == 0) {	/* non-ip */
892		snprintf(SNPARGS(proto, 0), "MAC");
893
894	} else {
895		int len;
896		char src[48], dst[48];
897		struct icmphdr *icmp;
898		struct tcphdr *tcp;
899		struct udphdr *udp;
900		/* Initialize to make compiler happy. */
901		struct ip *ip = NULL;
902#ifdef INET6
903		struct ip6_hdr *ip6 = NULL;
904		struct icmp6_hdr *icmp6;
905#endif
906		src[0] = '\0';
907		dst[0] = '\0';
908#ifdef INET6
909		if (args->f_id.addr_type == 6) {
910			snprintf(src, sizeof(src), "[%s]",
911			    ip6_sprintf(&args->f_id.src_ip6));
912			snprintf(dst, sizeof(dst), "[%s]",
913			    ip6_sprintf(&args->f_id.dst_ip6));
914
915			ip6 = (struct ip6_hdr *)mtod(m, struct ip6_hdr *);
916			tcp = (struct tcphdr *)(mtod(args->m, char *) + hlen);
917			udp = (struct udphdr *)(mtod(args->m, char *) + hlen);
918		} else
919#endif
920		{
921			ip = mtod(m, struct ip *);
922			tcp = L3HDR(struct tcphdr, ip);
923			udp = L3HDR(struct udphdr, ip);
924
925			inet_ntoa_r(ip->ip_src, src);
926			inet_ntoa_r(ip->ip_dst, dst);
927		}
928
929		switch (args->f_id.proto) {
930		case IPPROTO_TCP:
931			len = snprintf(SNPARGS(proto, 0), "TCP %s", src);
932			if (offset == 0)
933				snprintf(SNPARGS(proto, len), ":%d %s:%d",
934				    ntohs(tcp->th_sport),
935				    dst,
936				    ntohs(tcp->th_dport));
937			else
938				snprintf(SNPARGS(proto, len), " %s", dst);
939			break;
940
941		case IPPROTO_UDP:
942			len = snprintf(SNPARGS(proto, 0), "UDP %s", src);
943			if (offset == 0)
944				snprintf(SNPARGS(proto, len), ":%d %s:%d",
945				    ntohs(udp->uh_sport),
946				    dst,
947				    ntohs(udp->uh_dport));
948			else
949				snprintf(SNPARGS(proto, len), " %s", dst);
950			break;
951
952		case IPPROTO_ICMP:
953			icmp = L3HDR(struct icmphdr, ip);
954			if (offset == 0)
955				len = snprintf(SNPARGS(proto, 0),
956				    "ICMP:%u.%u ",
957				    icmp->icmp_type, icmp->icmp_code);
958			else
959				len = snprintf(SNPARGS(proto, 0), "ICMP ");
960			len += snprintf(SNPARGS(proto, len), "%s", src);
961			snprintf(SNPARGS(proto, len), " %s", dst);
962			break;
963#ifdef INET6
964		case IPPROTO_ICMPV6:
965			icmp6 = (struct icmp6_hdr *)(mtod(args->m, char *) + hlen);
966			if (offset == 0)
967				len = snprintf(SNPARGS(proto, 0),
968				    "ICMPv6:%u.%u ",
969				    icmp6->icmp6_type, icmp6->icmp6_code);
970			else
971				len = snprintf(SNPARGS(proto, 0), "ICMPv6 ");
972			len += snprintf(SNPARGS(proto, len), "%s", src);
973			snprintf(SNPARGS(proto, len), " %s", dst);
974			break;
975#endif
976		default:
977			len = snprintf(SNPARGS(proto, 0), "P:%d %s",
978			    args->f_id.proto, src);
979			snprintf(SNPARGS(proto, len), " %s", dst);
980			break;
981		}
982
983#ifdef INET6
984		if (args->f_id.addr_type == 6) {
985			if (offset & (IP6F_OFF_MASK | IP6F_MORE_FRAG))
986				snprintf(SNPARGS(fragment, 0),
987				    " (frag %08x:%d@%d%s)",
988				    args->f_id.frag_id6,
989				    ntohs(ip6->ip6_plen) - hlen,
990				    ntohs(offset & IP6F_OFF_MASK) << 3,
991				    (offset & IP6F_MORE_FRAG) ? "+" : "");
992		} else
993#endif
994		{
995			int ip_off, ip_len;
996			if (eh != NULL) { /* layer 2 packets are as on the wire */
997				ip_off = ntohs(ip->ip_off);
998				ip_len = ntohs(ip->ip_len);
999			} else {
1000				ip_off = ip->ip_off;
1001				ip_len = ip->ip_len;
1002			}
1003			if (ip_off & (IP_MF | IP_OFFMASK))
1004				snprintf(SNPARGS(fragment, 0),
1005				    " (frag %d:%d@%d%s)",
1006				    ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
1007				    offset << 3,
1008				    (ip_off & IP_MF) ? "+" : "");
1009		}
1010	}
1011	if (oif || m->m_pkthdr.rcvif)
1012		log(LOG_SECURITY | LOG_INFO,
1013		    "ipfw: %d %s %s %s via %s%s\n",
1014		    f ? f->rulenum : -1,
1015		    action, proto, oif ? "out" : "in",
1016		    oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
1017		    fragment);
1018	else
1019		log(LOG_SECURITY | LOG_INFO,
1020		    "ipfw: %d %s %s [no if info]%s\n",
1021		    f ? f->rulenum : -1,
1022		    action, proto, fragment);
1023	if (limit_reached)
1024		log(LOG_SECURITY | LOG_NOTICE,
1025		    "ipfw: limit %d reached on entry %d\n",
1026		    limit_reached, f ? f->rulenum : -1);
1027}
1028
1029/*
1030 * IMPORTANT: the hash function for dynamic rules must be commutative
1031 * in source and destination (ip,port), because rules are bidirectional
1032 * and we want to find both in the same bucket.
1033 */
1034static __inline int
1035hash_packet(struct ipfw_flow_id *id)
1036{
1037	u_int32_t i;
1038
1039#ifdef INET6
1040	if (IS_IP6_FLOW_ID(id))
1041		i = hash_packet6(id);
1042	else
1043#endif /* INET6 */
1044	i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
1045	i &= (curr_dyn_buckets - 1);
1046	return i;
1047}
1048
1049/**
1050 * unlink a dynamic rule from a chain. prev is a pointer to
1051 * the previous one, q is a pointer to the rule to delete,
1052 * head is a pointer to the head of the queue.
1053 * Modifies q and potentially also head.
1054 */
1055#define UNLINK_DYN_RULE(prev, head, q) {				\
1056	ipfw_dyn_rule *old_q = q;					\
1057									\
1058	/* remove a refcount to the parent */				\
1059	if (q->dyn_type == O_LIMIT)					\
1060		q->parent->count--;					\
1061	DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
1062		(q->id.src_ip), (q->id.src_port),			\
1063		(q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); )	\
1064	if (prev != NULL)						\
1065		prev->next = q = q->next;				\
1066	else								\
1067		head = q = q->next;					\
1068	dyn_count--;							\
1069	uma_zfree(ipfw_dyn_rule_zone, old_q); }
1070
1071#define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
1072
1073/**
1074 * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
1075 *
1076 * If keep_me == NULL, rules are deleted even if not expired,
1077 * otherwise only expired rules are removed.
1078 *
1079 * The value of the second parameter is also used to point to identify
1080 * a rule we absolutely do not want to remove (e.g. because we are
1081 * holding a reference to it -- this is the case with O_LIMIT_PARENT
1082 * rules). The pointer is only used for comparison, so any non-null
1083 * value will do.
1084 */
1085static void
1086remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
1087{
1088	static u_int32_t last_remove = 0;
1089
1090#define FORCE (keep_me == NULL)
1091
1092	ipfw_dyn_rule *prev, *q;
1093	int i, pass = 0, max_pass = 0;
1094
1095	IPFW_DYN_LOCK_ASSERT();
1096
1097	if (ipfw_dyn_v == NULL || dyn_count == 0)
1098		return;
1099	/* do not expire more than once per second, it is useless */
1100	if (!FORCE && last_remove == time_uptime)
1101		return;
1102	last_remove = time_uptime;
1103
1104	/*
1105	 * because O_LIMIT refer to parent rules, during the first pass only
1106	 * remove child and mark any pending LIMIT_PARENT, and remove
1107	 * them in a second pass.
1108	 */
1109next_pass:
1110	for (i = 0 ; i < curr_dyn_buckets ; i++) {
1111		for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
1112			/*
1113			 * Logic can become complex here, so we split tests.
1114			 */
1115			if (q == keep_me)
1116				goto next;
1117			if (rule != NULL && rule != q->rule)
1118				goto next; /* not the one we are looking for */
1119			if (q->dyn_type == O_LIMIT_PARENT) {
1120				/*
1121				 * handle parent in the second pass,
1122				 * record we need one.
1123				 */
1124				max_pass = 1;
1125				if (pass == 0)
1126					goto next;
1127				if (FORCE && q->count != 0 ) {
1128					/* XXX should not happen! */
1129					printf("ipfw: OUCH! cannot remove rule,"
1130					     " count %d\n", q->count);
1131				}
1132			} else {
1133				if (!FORCE &&
1134				    !TIME_LEQ( q->expire, time_uptime ))
1135					goto next;
1136			}
1137             if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
1138                     UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
1139                     continue;
1140             }
1141next:
1142			prev=q;
1143			q=q->next;
1144		}
1145	}
1146	if (pass++ < max_pass)
1147		goto next_pass;
1148}
1149
1150
1151/**
1152 * lookup a dynamic rule.
1153 */
1154static ipfw_dyn_rule *
1155lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
1156	struct tcphdr *tcp)
1157{
1158	/*
1159	 * stateful ipfw extensions.
1160	 * Lookup into dynamic session queue
1161	 */
1162#define MATCH_REVERSE	0
1163#define MATCH_FORWARD	1
1164#define MATCH_NONE	2
1165#define MATCH_UNKNOWN	3
1166	int i, dir = MATCH_NONE;
1167	ipfw_dyn_rule *prev, *q=NULL;
1168
1169	IPFW_DYN_LOCK_ASSERT();
1170
1171	if (ipfw_dyn_v == NULL)
1172		goto done;	/* not found */
1173	i = hash_packet( pkt );
1174	for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
1175		if (q->dyn_type == O_LIMIT_PARENT && q->count)
1176			goto next;
1177		if (TIME_LEQ( q->expire, time_uptime)) { /* expire entry */
1178			UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
1179			continue;
1180		}
1181		if (pkt->proto == q->id.proto &&
1182		    q->dyn_type != O_LIMIT_PARENT) {
1183			if (IS_IP6_FLOW_ID(pkt)) {
1184			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1185				&(q->id.src_ip6)) &&
1186			    IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1187				&(q->id.dst_ip6)) &&
1188			    pkt->src_port == q->id.src_port &&
1189			    pkt->dst_port == q->id.dst_port ) {
1190				dir = MATCH_FORWARD;
1191				break;
1192			    }
1193			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1194				    &(q->id.dst_ip6)) &&
1195				IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1196				    &(q->id.src_ip6)) &&
1197				pkt->src_port == q->id.dst_port &&
1198				pkt->dst_port == q->id.src_port ) {
1199				    dir = MATCH_REVERSE;
1200				    break;
1201			    }
1202			} else {
1203			    if (pkt->src_ip == q->id.src_ip &&
1204				pkt->dst_ip == q->id.dst_ip &&
1205				pkt->src_port == q->id.src_port &&
1206				pkt->dst_port == q->id.dst_port ) {
1207				    dir = MATCH_FORWARD;
1208				    break;
1209			    }
1210			    if (pkt->src_ip == q->id.dst_ip &&
1211				pkt->dst_ip == q->id.src_ip &&
1212				pkt->src_port == q->id.dst_port &&
1213				pkt->dst_port == q->id.src_port ) {
1214				    dir = MATCH_REVERSE;
1215				    break;
1216			    }
1217			}
1218		}
1219next:
1220		prev = q;
1221		q = q->next;
1222	}
1223	if (q == NULL)
1224		goto done; /* q = NULL, not found */
1225
1226	if ( prev != NULL) { /* found and not in front */
1227		prev->next = q->next;
1228		q->next = ipfw_dyn_v[i];
1229		ipfw_dyn_v[i] = q;
1230	}
1231	if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
1232		u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
1233
1234#define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
1235#define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
1236		q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
1237		switch (q->state) {
1238		case TH_SYN:				/* opening */
1239			q->expire = time_uptime + dyn_syn_lifetime;
1240			break;
1241
1242		case BOTH_SYN:			/* move to established */
1243		case BOTH_SYN | TH_FIN :	/* one side tries to close */
1244		case BOTH_SYN | (TH_FIN << 8) :
1245 			if (tcp) {
1246#define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
1247			    u_int32_t ack = ntohl(tcp->th_ack);
1248			    if (dir == MATCH_FORWARD) {
1249				if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
1250				    q->ack_fwd = ack;
1251				else { /* ignore out-of-sequence */
1252				    break;
1253				}
1254			    } else {
1255				if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
1256				    q->ack_rev = ack;
1257				else { /* ignore out-of-sequence */
1258				    break;
1259				}
1260			    }
1261			}
1262			q->expire = time_uptime + dyn_ack_lifetime;
1263			break;
1264
1265		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
1266			if (dyn_fin_lifetime >= dyn_keepalive_period)
1267				dyn_fin_lifetime = dyn_keepalive_period - 1;
1268			q->expire = time_uptime + dyn_fin_lifetime;
1269			break;
1270
1271		default:
1272#if 0
1273			/*
1274			 * reset or some invalid combination, but can also
1275			 * occur if we use keep-state the wrong way.
1276			 */
1277			if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
1278				printf("invalid state: 0x%x\n", q->state);
1279#endif
1280			if (dyn_rst_lifetime >= dyn_keepalive_period)
1281				dyn_rst_lifetime = dyn_keepalive_period - 1;
1282			q->expire = time_uptime + dyn_rst_lifetime;
1283			break;
1284		}
1285	} else if (pkt->proto == IPPROTO_UDP) {
1286		q->expire = time_uptime + dyn_udp_lifetime;
1287	} else {
1288		/* other protocols */
1289		q->expire = time_uptime + dyn_short_lifetime;
1290	}
1291done:
1292	if (match_direction)
1293		*match_direction = dir;
1294	return q;
1295}
1296
1297static ipfw_dyn_rule *
1298lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
1299	struct tcphdr *tcp)
1300{
1301	ipfw_dyn_rule *q;
1302
1303	IPFW_DYN_LOCK();
1304	q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
1305	if (q == NULL)
1306		IPFW_DYN_UNLOCK();
1307	/* NB: return table locked when q is not NULL */
1308	return q;
1309}
1310
1311static void
1312realloc_dynamic_table(void)
1313{
1314	IPFW_DYN_LOCK_ASSERT();
1315
1316	/*
1317	 * Try reallocation, make sure we have a power of 2 and do
1318	 * not allow more than 64k entries. In case of overflow,
1319	 * default to 1024.
1320	 */
1321
1322	if (dyn_buckets > 65536)
1323		dyn_buckets = 1024;
1324	if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
1325		dyn_buckets = curr_dyn_buckets; /* reset */
1326		return;
1327	}
1328	curr_dyn_buckets = dyn_buckets;
1329	if (ipfw_dyn_v != NULL)
1330		free(ipfw_dyn_v, M_IPFW);
1331	for (;;) {
1332		ipfw_dyn_v = malloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
1333		       M_IPFW, M_NOWAIT | M_ZERO);
1334		if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
1335			break;
1336		curr_dyn_buckets /= 2;
1337	}
1338}
1339
1340/**
1341 * Install state of type 'type' for a dynamic session.
1342 * The hash table contains two type of rules:
1343 * - regular rules (O_KEEP_STATE)
1344 * - rules for sessions with limited number of sess per user
1345 *   (O_LIMIT). When they are created, the parent is
1346 *   increased by 1, and decreased on delete. In this case,
1347 *   the third parameter is the parent rule and not the chain.
1348 * - "parent" rules for the above (O_LIMIT_PARENT).
1349 */
1350static ipfw_dyn_rule *
1351add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
1352{
1353	ipfw_dyn_rule *r;
1354	int i;
1355
1356	IPFW_DYN_LOCK_ASSERT();
1357
1358	if (ipfw_dyn_v == NULL ||
1359	    (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
1360		realloc_dynamic_table();
1361		if (ipfw_dyn_v == NULL)
1362			return NULL; /* failed ! */
1363	}
1364	i = hash_packet(id);
1365
1366	r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
1367	if (r == NULL) {
1368		printf ("ipfw: sorry cannot allocate state\n");
1369		return NULL;
1370	}
1371
1372	/* increase refcount on parent, and set pointer */
1373	if (dyn_type == O_LIMIT) {
1374		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
1375		if ( parent->dyn_type != O_LIMIT_PARENT)
1376			panic("invalid parent");
1377		parent->count++;
1378		r->parent = parent;
1379		rule = parent->rule;
1380	}
1381
1382	r->id = *id;
1383	r->expire = time_uptime + dyn_syn_lifetime;
1384	r->rule = rule;
1385	r->dyn_type = dyn_type;
1386	r->pcnt = r->bcnt = 0;
1387	r->count = 0;
1388
1389	r->bucket = i;
1390	r->next = ipfw_dyn_v[i];
1391	ipfw_dyn_v[i] = r;
1392	dyn_count++;
1393	DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1394	   dyn_type,
1395	   (r->id.src_ip), (r->id.src_port),
1396	   (r->id.dst_ip), (r->id.dst_port),
1397	   dyn_count ); )
1398	return r;
1399}
1400
1401/**
1402 * lookup dynamic parent rule using pkt and rule as search keys.
1403 * If the lookup fails, then install one.
1404 */
1405static ipfw_dyn_rule *
1406lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
1407{
1408	ipfw_dyn_rule *q;
1409	int i;
1410
1411	IPFW_DYN_LOCK_ASSERT();
1412
1413	if (ipfw_dyn_v) {
1414		int is_v6 = IS_IP6_FLOW_ID(pkt);
1415		i = hash_packet( pkt );
1416		for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
1417			if (q->dyn_type == O_LIMIT_PARENT &&
1418			    rule== q->rule &&
1419			    pkt->proto == q->id.proto &&
1420			    pkt->src_port == q->id.src_port &&
1421			    pkt->dst_port == q->id.dst_port &&
1422			    (
1423				(is_v6 &&
1424				 IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1425					&(q->id.src_ip6)) &&
1426				 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1427					&(q->id.dst_ip6))) ||
1428				(!is_v6 &&
1429				 pkt->src_ip == q->id.src_ip &&
1430				 pkt->dst_ip == q->id.dst_ip)
1431			    )
1432			) {
1433				q->expire = time_uptime + dyn_short_lifetime;
1434				DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
1435				return q;
1436			}
1437	}
1438	return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
1439}
1440
1441/**
1442 * Install dynamic state for rule type cmd->o.opcode
1443 *
1444 * Returns 1 (failure) if state is not installed because of errors or because
1445 * session limitations are enforced.
1446 */
1447static int
1448install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
1449	struct ip_fw_args *args)
1450{
1451	static int last_log;
1452
1453	ipfw_dyn_rule *q;
1454
1455	DEB(printf("ipfw: install state type %d 0x%08x %u -> 0x%08x %u\n",
1456	    cmd->o.opcode,
1457	    (args->f_id.src_ip), (args->f_id.src_port),
1458	    (args->f_id.dst_ip), (args->f_id.dst_port) );)
1459
1460	IPFW_DYN_LOCK();
1461
1462	q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1463
1464	if (q != NULL) { /* should never occur */
1465		if (last_log != time_uptime) {
1466			last_log = time_uptime;
1467			printf("ipfw: install_state: entry already present, done\n");
1468		}
1469		IPFW_DYN_UNLOCK();
1470		return 0;
1471	}
1472
1473	if (dyn_count >= dyn_max)
1474		/*
1475		 * Run out of slots, try to remove any expired rule.
1476		 */
1477		remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
1478
1479	if (dyn_count >= dyn_max) {
1480		if (last_log != time_uptime) {
1481			last_log = time_uptime;
1482			printf("ipfw: install_state: Too many dynamic rules\n");
1483		}
1484		IPFW_DYN_UNLOCK();
1485		return 1; /* cannot install, notify caller */
1486	}
1487
1488	switch (cmd->o.opcode) {
1489	case O_KEEP_STATE: /* bidir rule */
1490		add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
1491		break;
1492
1493	case O_LIMIT: /* limit number of sessions */
1494	    {
1495		u_int16_t limit_mask = cmd->limit_mask;
1496		struct ipfw_flow_id id;
1497		ipfw_dyn_rule *parent;
1498
1499		DEB(printf("ipfw: installing dyn-limit rule %d\n",
1500		    cmd->conn_limit);)
1501
1502		id.dst_ip = id.src_ip = 0;
1503		id.dst_port = id.src_port = 0;
1504		id.proto = args->f_id.proto;
1505
1506		if (IS_IP6_FLOW_ID (&(args->f_id))) {
1507			if (limit_mask & DYN_SRC_ADDR)
1508				id.src_ip6 = args->f_id.src_ip6;
1509			if (limit_mask & DYN_DST_ADDR)
1510				id.dst_ip6 = args->f_id.dst_ip6;
1511		} else {
1512			if (limit_mask & DYN_SRC_ADDR)
1513				id.src_ip = args->f_id.src_ip;
1514			if (limit_mask & DYN_DST_ADDR)
1515				id.dst_ip = args->f_id.dst_ip;
1516		}
1517		if (limit_mask & DYN_SRC_PORT)
1518			id.src_port = args->f_id.src_port;
1519		if (limit_mask & DYN_DST_PORT)
1520			id.dst_port = args->f_id.dst_port;
1521		parent = lookup_dyn_parent(&id, rule);
1522		if (parent == NULL) {
1523			printf("ipfw: add parent failed\n");
1524			IPFW_DYN_UNLOCK();
1525			return 1;
1526		}
1527		if (parent->count >= cmd->conn_limit) {
1528			/*
1529			 * See if we can remove some expired rule.
1530			 */
1531			remove_dyn_rule(rule, parent);
1532			if (parent->count >= cmd->conn_limit) {
1533				if (fw_verbose && last_log != time_uptime) {
1534					last_log = time_uptime;
1535					log(LOG_SECURITY | LOG_DEBUG,
1536					    "drop session, too many entries\n");
1537				}
1538				IPFW_DYN_UNLOCK();
1539				return 1;
1540			}
1541		}
1542		add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1543	    }
1544		break;
1545	default:
1546		printf("ipfw: unknown dynamic rule type %u\n", cmd->o.opcode);
1547		IPFW_DYN_UNLOCK();
1548		return 1;
1549	}
1550	lookup_dyn_rule_locked(&args->f_id, NULL, NULL); /* XXX just set lifetime */
1551	IPFW_DYN_UNLOCK();
1552	return 0;
1553}
1554
1555/*
1556 * Generate a TCP packet, containing either a RST or a keepalive.
1557 * When flags & TH_RST, we are sending a RST packet, because of a
1558 * "reset" action matched the packet.
1559 * Otherwise we are sending a keepalive, and flags & TH_
1560 */
1561static struct mbuf *
1562send_pkt(struct ipfw_flow_id *id, u_int32_t seq, u_int32_t ack, int flags)
1563{
1564	struct mbuf *m;
1565	struct ip *ip;
1566	struct tcphdr *tcp;
1567
1568	MGETHDR(m, M_DONTWAIT, MT_DATA);
1569	if (m == 0)
1570		return (NULL);
1571	m->m_pkthdr.rcvif = (struct ifnet *)0;
1572	m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1573	m->m_data += max_linkhdr;
1574
1575	ip = mtod(m, struct ip *);
1576	bzero(ip, m->m_len);
1577	tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1578	ip->ip_p = IPPROTO_TCP;
1579	tcp->th_off = 5;
1580	/*
1581	 * Assume we are sending a RST (or a keepalive in the reverse
1582	 * direction), swap src and destination addresses and ports.
1583	 */
1584	ip->ip_src.s_addr = htonl(id->dst_ip);
1585	ip->ip_dst.s_addr = htonl(id->src_ip);
1586	tcp->th_sport = htons(id->dst_port);
1587	tcp->th_dport = htons(id->src_port);
1588	if (flags & TH_RST) {	/* we are sending a RST */
1589		if (flags & TH_ACK) {
1590			tcp->th_seq = htonl(ack);
1591			tcp->th_ack = htonl(0);
1592			tcp->th_flags = TH_RST;
1593		} else {
1594			if (flags & TH_SYN)
1595				seq++;
1596			tcp->th_seq = htonl(0);
1597			tcp->th_ack = htonl(seq);
1598			tcp->th_flags = TH_RST | TH_ACK;
1599		}
1600	} else {
1601		/*
1602		 * We are sending a keepalive. flags & TH_SYN determines
1603		 * the direction, forward if set, reverse if clear.
1604		 * NOTE: seq and ack are always assumed to be correct
1605		 * as set by the caller. This may be confusing...
1606		 */
1607		if (flags & TH_SYN) {
1608			/*
1609			 * we have to rewrite the correct addresses!
1610			 */
1611			ip->ip_dst.s_addr = htonl(id->dst_ip);
1612			ip->ip_src.s_addr = htonl(id->src_ip);
1613			tcp->th_dport = htons(id->dst_port);
1614			tcp->th_sport = htons(id->src_port);
1615		}
1616		tcp->th_seq = htonl(seq);
1617		tcp->th_ack = htonl(ack);
1618		tcp->th_flags = TH_ACK;
1619	}
1620	/*
1621	 * set ip_len to the payload size so we can compute
1622	 * the tcp checksum on the pseudoheader
1623	 * XXX check this, could save a couple of words ?
1624	 */
1625	ip->ip_len = htons(sizeof(struct tcphdr));
1626	tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1627	/*
1628	 * now fill fields left out earlier
1629	 */
1630	ip->ip_ttl = ip_defttl;
1631	ip->ip_len = m->m_pkthdr.len;
1632	m->m_flags |= M_SKIP_FIREWALL;
1633	return (m);
1634}
1635
1636/*
1637 * sends a reject message, consuming the mbuf passed as an argument.
1638 */
1639static void
1640send_reject(struct ip_fw_args *args, int code, u_short offset, int ip_len)
1641{
1642
1643	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1644		/* We need the IP header in host order for icmp_error(). */
1645		if (args->eh != NULL) {
1646			struct ip *ip = mtod(args->m, struct ip *);
1647			ip->ip_len = ntohs(ip->ip_len);
1648			ip->ip_off = ntohs(ip->ip_off);
1649		}
1650		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1651	} else if (offset == 0 && args->f_id.proto == IPPROTO_TCP) {
1652		struct tcphdr *const tcp =
1653		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1654		if ( (tcp->th_flags & TH_RST) == 0) {
1655			struct mbuf *m;
1656			m = send_pkt(&(args->f_id), ntohl(tcp->th_seq),
1657				ntohl(tcp->th_ack),
1658				tcp->th_flags | TH_RST);
1659			if (m != NULL)
1660				ip_output(m, NULL, NULL, 0, NULL, NULL);
1661		}
1662		m_freem(args->m);
1663	} else
1664		m_freem(args->m);
1665	args->m = NULL;
1666}
1667
1668/**
1669 *
1670 * Given an ip_fw *, lookup_next_rule will return a pointer
1671 * to the next rule, which can be either the jump
1672 * target (for skipto instructions) or the next one in the list (in
1673 * all other cases including a missing jump target).
1674 * The result is also written in the "next_rule" field of the rule.
1675 * Backward jumps are not allowed, so start looking from the next
1676 * rule...
1677 *
1678 * This never returns NULL -- in case we do not have an exact match,
1679 * the next rule is returned. When the ruleset is changed,
1680 * pointers are flushed so we are always correct.
1681 */
1682
1683static struct ip_fw *
1684lookup_next_rule(struct ip_fw *me)
1685{
1686	struct ip_fw *rule = NULL;
1687	ipfw_insn *cmd;
1688
1689	/* look for action, in case it is a skipto */
1690	cmd = ACTION_PTR(me);
1691	if (cmd->opcode == O_LOG)
1692		cmd += F_LEN(cmd);
1693	if (cmd->opcode == O_ALTQ)
1694		cmd += F_LEN(cmd);
1695	if ( cmd->opcode == O_SKIPTO )
1696		for (rule = me->next; rule ; rule = rule->next)
1697			if (rule->rulenum >= cmd->arg1)
1698				break;
1699	if (rule == NULL)			/* failure or not a skipto */
1700		rule = me->next;
1701	me->next_rule = rule;
1702	return rule;
1703}
1704
1705static void
1706init_tables(void)
1707{
1708	int i;
1709
1710	for (i = 0; i < IPFW_TABLES_MAX; i++) {
1711		rn_inithead((void **)&ipfw_tables[i].rnh, 32);
1712		ipfw_tables[i].modified = 1;
1713	}
1714}
1715
1716static int
1717add_table_entry(u_int16_t tbl, in_addr_t addr, u_int8_t mlen, u_int32_t value)
1718{
1719	struct radix_node_head *rnh;
1720	struct table_entry *ent;
1721
1722	if (tbl >= IPFW_TABLES_MAX)
1723		return (EINVAL);
1724	rnh = ipfw_tables[tbl].rnh;
1725	ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
1726	if (ent == NULL)
1727		return (ENOMEM);
1728	ent->value = value;
1729	ent->addr.sin_len = ent->mask.sin_len = 8;
1730	ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1731	ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
1732	RADIX_NODE_HEAD_LOCK(rnh);
1733	if (rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent) ==
1734	    NULL) {
1735		RADIX_NODE_HEAD_UNLOCK(rnh);
1736		free(ent, M_IPFW_TBL);
1737		return (EEXIST);
1738	}
1739	ipfw_tables[tbl].modified = 1;
1740	RADIX_NODE_HEAD_UNLOCK(rnh);
1741	return (0);
1742}
1743
1744static int
1745del_table_entry(u_int16_t tbl, in_addr_t addr, u_int8_t mlen)
1746{
1747	struct radix_node_head *rnh;
1748	struct table_entry *ent;
1749	struct sockaddr_in sa, mask;
1750
1751	if (tbl >= IPFW_TABLES_MAX)
1752		return (EINVAL);
1753	rnh = ipfw_tables[tbl].rnh;
1754	sa.sin_len = mask.sin_len = 8;
1755	mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1756	sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
1757	RADIX_NODE_HEAD_LOCK(rnh);
1758	ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
1759	if (ent == NULL) {
1760		RADIX_NODE_HEAD_UNLOCK(rnh);
1761		return (ESRCH);
1762	}
1763	ipfw_tables[tbl].modified = 1;
1764	RADIX_NODE_HEAD_UNLOCK(rnh);
1765	free(ent, M_IPFW_TBL);
1766	return (0);
1767}
1768
1769static int
1770flush_table_entry(struct radix_node *rn, void *arg)
1771{
1772	struct radix_node_head * const rnh = arg;
1773	struct table_entry *ent;
1774
1775	ent = (struct table_entry *)
1776	    rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
1777	if (ent != NULL)
1778		free(ent, M_IPFW_TBL);
1779	return (0);
1780}
1781
1782static int
1783flush_table(u_int16_t tbl)
1784{
1785	struct radix_node_head *rnh;
1786
1787	if (tbl >= IPFW_TABLES_MAX)
1788		return (EINVAL);
1789	rnh = ipfw_tables[tbl].rnh;
1790	RADIX_NODE_HEAD_LOCK(rnh);
1791	rnh->rnh_walktree(rnh, flush_table_entry, rnh);
1792	ipfw_tables[tbl].modified = 1;
1793	RADIX_NODE_HEAD_UNLOCK(rnh);
1794	return (0);
1795}
1796
1797static void
1798flush_tables(void)
1799{
1800	u_int16_t tbl;
1801
1802	for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
1803		flush_table(tbl);
1804}
1805
1806static int
1807lookup_table(u_int16_t tbl, in_addr_t addr, u_int32_t *val)
1808{
1809	struct radix_node_head *rnh;
1810	struct ip_fw_table *table;
1811	struct table_entry *ent;
1812	struct sockaddr_in sa;
1813	int last_match;
1814
1815	if (tbl >= IPFW_TABLES_MAX)
1816		return (0);
1817	table = &ipfw_tables[tbl];
1818	rnh = table->rnh;
1819	RADIX_NODE_HEAD_LOCK(rnh);
1820	if (addr == table->last_addr && !table->modified) {
1821		last_match = table->last_match;
1822		if (last_match)
1823			*val = table->last_value;
1824		RADIX_NODE_HEAD_UNLOCK(rnh);
1825		return (last_match);
1826	}
1827	table->modified = 0;
1828	sa.sin_len = 8;
1829	sa.sin_addr.s_addr = addr;
1830	ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
1831	table->last_addr = addr;
1832	if (ent != NULL) {
1833		table->last_value = *val = ent->value;
1834		table->last_match = 1;
1835		RADIX_NODE_HEAD_UNLOCK(rnh);
1836		return (1);
1837	}
1838	table->last_match = 0;
1839	RADIX_NODE_HEAD_UNLOCK(rnh);
1840	return (0);
1841}
1842
1843static int
1844count_table_entry(struct radix_node *rn, void *arg)
1845{
1846	u_int32_t * const cnt = arg;
1847
1848	(*cnt)++;
1849	return (0);
1850}
1851
1852static int
1853count_table(u_int32_t tbl, u_int32_t *cnt)
1854{
1855	struct radix_node_head *rnh;
1856
1857	if (tbl >= IPFW_TABLES_MAX)
1858		return (EINVAL);
1859	rnh = ipfw_tables[tbl].rnh;
1860	*cnt = 0;
1861	RADIX_NODE_HEAD_LOCK(rnh);
1862	rnh->rnh_walktree(rnh, count_table_entry, cnt);
1863	RADIX_NODE_HEAD_UNLOCK(rnh);
1864	return (0);
1865}
1866
1867static int
1868dump_table_entry(struct radix_node *rn, void *arg)
1869{
1870	struct table_entry * const n = (struct table_entry *)rn;
1871	ipfw_table * const tbl = arg;
1872	ipfw_table_entry *ent;
1873
1874	if (tbl->cnt == tbl->size)
1875		return (1);
1876	ent = &tbl->ent[tbl->cnt];
1877	ent->tbl = tbl->tbl;
1878	if (in_nullhost(n->mask.sin_addr))
1879		ent->masklen = 0;
1880	else
1881		ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
1882	ent->addr = n->addr.sin_addr.s_addr;
1883	ent->value = n->value;
1884	tbl->cnt++;
1885	return (0);
1886}
1887
1888static int
1889dump_table(ipfw_table *tbl)
1890{
1891	struct radix_node_head *rnh;
1892
1893	if (tbl->tbl >= IPFW_TABLES_MAX)
1894		return (EINVAL);
1895	rnh = ipfw_tables[tbl->tbl].rnh;
1896	tbl->cnt = 0;
1897	RADIX_NODE_HEAD_LOCK(rnh);
1898	rnh->rnh_walktree(rnh, dump_table_entry, tbl);
1899	RADIX_NODE_HEAD_UNLOCK(rnh);
1900	return (0);
1901}
1902
1903static void
1904fill_ugid_cache(struct inpcb *inp, struct ip_fw_ugid *ugp)
1905{
1906	struct ucred *cr;
1907
1908	if (inp->inp_socket != NULL) {
1909		cr = inp->inp_socket->so_cred;
1910		ugp->fw_prid = jailed(cr) ?
1911		    cr->cr_prison->pr_id : -1;
1912		ugp->fw_uid = cr->cr_uid;
1913		ugp->fw_ngroups = cr->cr_ngroups;
1914		bcopy(cr->cr_groups, ugp->fw_groups,
1915		    sizeof(ugp->fw_groups));
1916	}
1917}
1918
1919static int
1920check_uidgid(ipfw_insn_u32 *insn,
1921	int proto, struct ifnet *oif,
1922	struct in_addr dst_ip, u_int16_t dst_port,
1923	struct in_addr src_ip, u_int16_t src_port,
1924	struct ip_fw_ugid *ugp, int *lookup, struct inpcb *inp)
1925{
1926	struct inpcbinfo *pi;
1927	int wildcard;
1928	struct inpcb *pcb;
1929	int match;
1930	gid_t *gp;
1931
1932	/*
1933	 * Check to see if the UDP or TCP stack supplied us with
1934	 * the PCB. If so, rather then holding a lock and looking
1935	 * up the PCB, we can use the one that was supplied.
1936	 */
1937	if (inp && *lookup == 0) {
1938		INP_LOCK_ASSERT(inp);
1939		if (inp->inp_socket != NULL) {
1940			fill_ugid_cache(inp, ugp);
1941			*lookup = 1;
1942		}
1943	}
1944	/*
1945	 * If we have already been here and the packet has no
1946	 * PCB entry associated with it, then we can safely
1947	 * assume that this is a no match.
1948	 */
1949	if (*lookup == -1)
1950		return (0);
1951	if (proto == IPPROTO_TCP) {
1952		wildcard = 0;
1953		pi = &tcbinfo;
1954	} else if (proto == IPPROTO_UDP) {
1955		wildcard = 1;
1956		pi = &udbinfo;
1957	} else
1958		return 0;
1959	match = 0;
1960	if (*lookup == 0) {
1961		INP_INFO_RLOCK(pi);
1962		pcb =  (oif) ?
1963			in_pcblookup_hash(pi,
1964				dst_ip, htons(dst_port),
1965				src_ip, htons(src_port),
1966				wildcard, oif) :
1967			in_pcblookup_hash(pi,
1968				src_ip, htons(src_port),
1969				dst_ip, htons(dst_port),
1970				wildcard, NULL);
1971		if (pcb != NULL) {
1972			INP_LOCK(pcb);
1973			if (pcb->inp_socket != NULL) {
1974				fill_ugid_cache(pcb, ugp);
1975				*lookup = 1;
1976			}
1977			INP_UNLOCK(pcb);
1978		}
1979		INP_INFO_RUNLOCK(pi);
1980		if (*lookup == 0) {
1981			/*
1982			 * If the lookup did not yield any results, there
1983			 * is no sense in coming back and trying again. So
1984			 * we can set lookup to -1 and ensure that we wont
1985			 * bother the pcb system again.
1986			 */
1987			*lookup = -1;
1988			return (0);
1989		}
1990	}
1991	if (insn->o.opcode == O_UID)
1992		match = (ugp->fw_uid == (uid_t)insn->d[0]);
1993	else if (insn->o.opcode == O_GID) {
1994		for (gp = ugp->fw_groups;
1995			gp < &ugp->fw_groups[ugp->fw_ngroups]; gp++)
1996			if (*gp == (gid_t)insn->d[0]) {
1997				match = 1;
1998				break;
1999			}
2000	} else if (insn->o.opcode == O_JAIL)
2001		match = (ugp->fw_prid == (int)insn->d[0]);
2002	return match;
2003}
2004
2005/*
2006 * The main check routine for the firewall.
2007 *
2008 * All arguments are in args so we can modify them and return them
2009 * back to the caller.
2010 *
2011 * Parameters:
2012 *
2013 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
2014 *		Starts with the IP header.
2015 *	args->eh (in)	Mac header if present, or NULL for layer3 packet.
2016 *	args->oif	Outgoing interface, or NULL if packet is incoming.
2017 *		The incoming interface is in the mbuf. (in)
2018 *	args->divert_rule (in/out)
2019 *		Skip up to the first rule past this rule number;
2020 *		upon return, non-zero port number for divert or tee.
2021 *
2022 *	args->rule	Pointer to the last matching rule (in/out)
2023 *	args->next_hop	Socket we are forwarding to (out).
2024 *	args->f_id	Addresses grabbed from the packet (out)
2025 * 	args->cookie	a cookie depending on rule action
2026 *
2027 * Return value:
2028 *
2029 *	IP_FW_PASS	the packet must be accepted
2030 *	IP_FW_DENY	the packet must be dropped
2031 *	IP_FW_DIVERT	divert packet, port in m_tag
2032 *	IP_FW_TEE	tee packet, port in m_tag
2033 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
2034 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
2035 *
2036 */
2037
2038int
2039ipfw_chk(struct ip_fw_args *args)
2040{
2041	/*
2042	 * Local variables hold state during the processing of a packet.
2043	 *
2044	 * IMPORTANT NOTE: to speed up the processing of rules, there
2045	 * are some assumption on the values of the variables, which
2046	 * are documented here. Should you change them, please check
2047	 * the implementation of the various instructions to make sure
2048	 * that they still work.
2049	 *
2050	 * args->eh	The MAC header. It is non-null for a layer2
2051	 *	packet, it is NULL for a layer-3 packet.
2052	 *
2053	 * m | args->m	Pointer to the mbuf, as received from the caller.
2054	 *	It may change if ipfw_chk() does an m_pullup, or if it
2055	 *	consumes the packet because it calls send_reject().
2056	 *	XXX This has to change, so that ipfw_chk() never modifies
2057	 *	or consumes the buffer.
2058	 * ip	is simply an alias of the value of m, and it is kept
2059	 *	in sync with it (the packet is	supposed to start with
2060	 *	the ip header).
2061	 */
2062	struct mbuf *m = args->m;
2063	struct ip *ip = mtod(m, struct ip *);
2064
2065	/*
2066	 * For rules which contain uid/gid or jail constraints, cache
2067	 * a copy of the users credentials after the pcb lookup has been
2068	 * executed. This will speed up the processing of rules with
2069	 * these types of constraints, as well as decrease contention
2070	 * on pcb related locks.
2071	 */
2072	struct ip_fw_ugid fw_ugid_cache;
2073	int ugid_lookup = 0;
2074
2075	/*
2076	 * divinput_flags	If non-zero, set to the IP_FW_DIVERT_*_FLAG
2077	 *	associated with a packet input on a divert socket.  This
2078	 *	will allow to distinguish traffic and its direction when
2079	 *	it originates from a divert socket.
2080	 */
2081	u_int divinput_flags = 0;
2082
2083	/*
2084	 * oif | args->oif	If NULL, ipfw_chk has been called on the
2085	 *	inbound path (ether_input, ip_input).
2086	 *	If non-NULL, ipfw_chk has been called on the outbound path
2087	 *	(ether_output, ip_output).
2088	 */
2089	struct ifnet *oif = args->oif;
2090
2091	struct ip_fw *f = NULL;		/* matching rule */
2092	int retval = 0;
2093
2094	/*
2095	 * hlen	The length of the IP header.
2096	 */
2097	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
2098
2099	/*
2100	 * offset	The offset of a fragment. offset != 0 means that
2101	 *	we have a fragment at this offset of an IPv4 packet.
2102	 *	offset == 0 means that (if this is an IPv4 packet)
2103	 *	this is the first or only fragment.
2104	 *	For IPv6 offset == 0 means there is no Fragment Header.
2105	 *	If offset != 0 for IPv6 always use correct mask to
2106	 *	get the correct offset because we add IP6F_MORE_FRAG
2107	 *	to be able to dectect the first fragment which would
2108	 *	otherwise have offset = 0.
2109	 */
2110	u_short offset = 0;
2111
2112	/*
2113	 * Local copies of addresses. They are only valid if we have
2114	 * an IP packet.
2115	 *
2116	 * proto	The protocol. Set to 0 for non-ip packets,
2117	 *	or to the protocol read from the packet otherwise.
2118	 *	proto != 0 means that we have an IPv4 packet.
2119	 *
2120	 * src_port, dst_port	port numbers, in HOST format. Only
2121	 *	valid for TCP and UDP packets.
2122	 *
2123	 * src_ip, dst_ip	ip addresses, in NETWORK format.
2124	 *	Only valid for IPv4 packets.
2125	 */
2126	u_int8_t proto;
2127	u_int16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
2128	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
2129	u_int16_t ip_len=0;
2130	int pktlen;
2131
2132	/*
2133	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
2134	 * 	MATCH_NONE when checked and not matched (q = NULL),
2135	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
2136	 */
2137	int dyn_dir = MATCH_UNKNOWN;
2138	ipfw_dyn_rule *q = NULL;
2139	struct ip_fw_chain *chain = &layer3_chain;
2140	struct m_tag *mtag;
2141
2142	/*
2143	 * We store in ulp a pointer to the upper layer protocol header.
2144	 * In the ipv4 case this is easy to determine from the header,
2145	 * but for ipv6 we might have some additional headers in the middle.
2146	 * ulp is NULL if not found.
2147	 */
2148	void *ulp = NULL;		/* upper layer protocol pointer. */
2149	/* XXX ipv6 variables */
2150	int is_ipv6 = 0;
2151	u_int16_t ext_hd = 0;	/* bits vector for extension header filtering */
2152	/* end of ipv6 variables */
2153	int is_ipv4 = 0;
2154
2155	if (m->m_flags & M_SKIP_FIREWALL)
2156		return (IP_FW_PASS);	/* accept */
2157
2158	pktlen = m->m_pkthdr.len;
2159	proto = args->f_id.proto = 0;	/* mark f_id invalid */
2160		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
2161
2162/*
2163 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
2164 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
2165 * pointer might become stale after other pullups (but we never use it
2166 * this way).
2167 */
2168#define PULLUP_TO(len, p, T)						\
2169do {									\
2170	int x = (len) + sizeof(T);					\
2171	if ((m)->m_len < x) {						\
2172		args->m = m = m_pullup(m, x);				\
2173		if (m == NULL)						\
2174			goto pullup_failed;				\
2175	}								\
2176	p = (mtod(m, char *) + (len));					\
2177} while (0)
2178
2179	/* Identify IP packets and fill up variables. */
2180	if (pktlen >= sizeof(struct ip6_hdr) &&
2181	    (args->eh == NULL || ntohs(args->eh->ether_type)==ETHERTYPE_IPV6) &&
2182	    mtod(m, struct ip *)->ip_v == 6) {
2183		is_ipv6 = 1;
2184		args->f_id.addr_type = 6;
2185		hlen = sizeof(struct ip6_hdr);
2186		proto = mtod(m, struct ip6_hdr *)->ip6_nxt;
2187
2188		/* Search extension headers to find upper layer protocols */
2189		while (ulp == NULL) {
2190			switch (proto) {
2191			case IPPROTO_ICMPV6:
2192				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
2193				args->f_id.flags = ICMP6(ulp)->icmp6_type;
2194				break;
2195
2196			case IPPROTO_TCP:
2197				PULLUP_TO(hlen, ulp, struct tcphdr);
2198				dst_port = TCP(ulp)->th_dport;
2199				src_port = TCP(ulp)->th_sport;
2200				args->f_id.flags = TCP(ulp)->th_flags;
2201				break;
2202
2203			case IPPROTO_UDP:
2204				PULLUP_TO(hlen, ulp, struct udphdr);
2205				dst_port = UDP(ulp)->uh_dport;
2206				src_port = UDP(ulp)->uh_sport;
2207				break;
2208
2209			case IPPROTO_HOPOPTS:	/* RFC 2460 */
2210				PULLUP_TO(hlen, ulp, struct ip6_hbh);
2211				ext_hd |= EXT_HOPOPTS;
2212				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2213				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2214				ulp = NULL;
2215				break;
2216
2217			case IPPROTO_ROUTING:	/* RFC 2460 */
2218				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
2219				if (((struct ip6_rthdr *)ulp)->ip6r_type != 0) {
2220					printf("IPFW2: IPV6 - Unknown Routing "
2221					    "Header type(%d)\n",
2222					    ((struct ip6_rthdr *)ulp)->ip6r_type);
2223					if (fw_deny_unknown_exthdrs)
2224					    return (IP_FW_DENY);
2225					break;
2226				}
2227				ext_hd |= EXT_ROUTING;
2228				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
2229				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
2230				ulp = NULL;
2231				break;
2232
2233			case IPPROTO_FRAGMENT:	/* RFC 2460 */
2234				PULLUP_TO(hlen, ulp, struct ip6_frag);
2235				ext_hd |= EXT_FRAGMENT;
2236				hlen += sizeof (struct ip6_frag);
2237				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
2238				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
2239					IP6F_OFF_MASK;
2240				/* Add IP6F_MORE_FRAG for offset of first
2241				 * fragment to be != 0. */
2242				offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
2243					IP6F_MORE_FRAG;
2244				if (offset == 0) {
2245					printf("IPFW2: IPV6 - Invalid Fragment "
2246					    "Header\n");
2247					if (fw_deny_unknown_exthdrs)
2248					    return (IP_FW_DENY);
2249					break;
2250				}
2251				args->f_id.frag_id6 =
2252				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
2253				ulp = NULL;
2254				break;
2255
2256			case IPPROTO_DSTOPTS:	/* RFC 2460 */
2257				PULLUP_TO(hlen, ulp, struct ip6_hbh);
2258				ext_hd |= EXT_DSTOPTS;
2259				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2260				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2261				ulp = NULL;
2262				break;
2263
2264			case IPPROTO_AH:	/* RFC 2402 */
2265				PULLUP_TO(hlen, ulp, struct ip6_ext);
2266				ext_hd |= EXT_AH;
2267				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
2268				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
2269				ulp = NULL;
2270				break;
2271
2272			case IPPROTO_ESP:	/* RFC 2406 */
2273				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
2274				/* Anything past Seq# is variable length and
2275				 * data past this ext. header is encrypted. */
2276				ext_hd |= EXT_ESP;
2277				break;
2278
2279			case IPPROTO_NONE:	/* RFC 2460 */
2280				PULLUP_TO(hlen, ulp, struct ip6_ext);
2281				/* Packet ends here. if ip6e_len!=0 octets
2282				 * must be ignored. */
2283				break;
2284
2285			case IPPROTO_OSPFIGP:
2286				/* XXX OSPF header check? */
2287				PULLUP_TO(hlen, ulp, struct ip6_ext);
2288				break;
2289
2290			default:
2291				printf("IPFW2: IPV6 - Unknown Extension "
2292				    "Header(%d), ext_hd=%x\n", proto, ext_hd);
2293				if (fw_deny_unknown_exthdrs)
2294				    return (IP_FW_DENY);
2295				break;
2296			} /*switch */
2297		}
2298		args->f_id.src_ip6 = mtod(m,struct ip6_hdr *)->ip6_src;
2299		args->f_id.dst_ip6 = mtod(m,struct ip6_hdr *)->ip6_dst;
2300		args->f_id.src_ip = 0;
2301		args->f_id.dst_ip = 0;
2302		args->f_id.flow_id6 = ntohl(mtod(m, struct ip6_hdr *)->ip6_flow);
2303	} else if (pktlen >= sizeof(struct ip) &&
2304	    (args->eh == NULL || ntohs(args->eh->ether_type) == ETHERTYPE_IP) &&
2305	    mtod(m, struct ip *)->ip_v == 4) {
2306	    	is_ipv4 = 1;
2307		ip = mtod(m, struct ip *);
2308		hlen = ip->ip_hl << 2;
2309		args->f_id.addr_type = 4;
2310
2311		/*
2312		 * Collect parameters into local variables for faster matching.
2313		 */
2314		proto = ip->ip_p;
2315		src_ip = ip->ip_src;
2316		dst_ip = ip->ip_dst;
2317		if (args->eh != NULL) { /* layer 2 packets are as on the wire */
2318			offset = ntohs(ip->ip_off) & IP_OFFMASK;
2319			ip_len = ntohs(ip->ip_len);
2320		} else {
2321			offset = ip->ip_off & IP_OFFMASK;
2322			ip_len = ip->ip_len;
2323		}
2324		pktlen = ip_len < pktlen ? ip_len : pktlen;
2325
2326		if (offset == 0) {
2327			switch (proto) {
2328			case IPPROTO_TCP:
2329				PULLUP_TO(hlen, ulp, struct tcphdr);
2330				dst_port = TCP(ulp)->th_dport;
2331				src_port = TCP(ulp)->th_sport;
2332				args->f_id.flags = TCP(ulp)->th_flags;
2333				break;
2334
2335			case IPPROTO_UDP:
2336				PULLUP_TO(hlen, ulp, struct udphdr);
2337				dst_port = UDP(ulp)->uh_dport;
2338				src_port = UDP(ulp)->uh_sport;
2339				break;
2340
2341			case IPPROTO_ICMP:
2342				PULLUP_TO(hlen, ulp, struct icmphdr);
2343				args->f_id.flags = ICMP(ulp)->icmp_type;
2344				break;
2345
2346			default:
2347				break;
2348			}
2349		}
2350
2351		args->f_id.src_ip = ntohl(src_ip.s_addr);
2352		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
2353	}
2354#undef PULLUP_TO
2355	if (proto) { /* we may have port numbers, store them */
2356		args->f_id.proto = proto;
2357		args->f_id.src_port = src_port = ntohs(src_port);
2358		args->f_id.dst_port = dst_port = ntohs(dst_port);
2359	}
2360
2361	IPFW_RLOCK(chain);
2362	mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
2363	if (args->rule) {
2364		/*
2365		 * Packet has already been tagged. Look for the next rule
2366		 * to restart processing.
2367		 *
2368		 * If fw_one_pass != 0 then just accept it.
2369		 * XXX should not happen here, but optimized out in
2370		 * the caller.
2371		 */
2372		if (fw_one_pass) {
2373			IPFW_RUNLOCK(chain);
2374			return (IP_FW_PASS);
2375		}
2376
2377		f = args->rule->next_rule;
2378		if (f == NULL)
2379			f = lookup_next_rule(args->rule);
2380	} else {
2381		/*
2382		 * Find the starting rule. It can be either the first
2383		 * one, or the one after divert_rule if asked so.
2384		 */
2385		int skipto = mtag ? divert_cookie(mtag) : 0;
2386
2387		f = chain->rules;
2388		if (args->eh == NULL && skipto != 0) {
2389			if (skipto >= IPFW_DEFAULT_RULE) {
2390				IPFW_RUNLOCK(chain);
2391				return (IP_FW_DENY); /* invalid */
2392			}
2393			while (f && f->rulenum <= skipto)
2394				f = f->next;
2395			if (f == NULL) {	/* drop packet */
2396				IPFW_RUNLOCK(chain);
2397				return (IP_FW_DENY);
2398			}
2399		}
2400	}
2401	/* reset divert rule to avoid confusion later */
2402	if (mtag) {
2403		divinput_flags = divert_info(mtag) &
2404		    (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
2405		m_tag_delete(m, mtag);
2406	}
2407
2408	/*
2409	 * Now scan the rules, and parse microinstructions for each rule.
2410	 */
2411	for (; f; f = f->next) {
2412		int l, cmdlen;
2413		ipfw_insn *cmd;
2414		int skip_or; /* skip rest of OR block */
2415
2416again:
2417		if (set_disable & (1 << f->set) )
2418			continue;
2419
2420		skip_or = 0;
2421		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
2422		    l -= cmdlen, cmd += cmdlen) {
2423			int match;
2424
2425			/*
2426			 * check_body is a jump target used when we find a
2427			 * CHECK_STATE, and need to jump to the body of
2428			 * the target rule.
2429			 */
2430
2431check_body:
2432			cmdlen = F_LEN(cmd);
2433			/*
2434			 * An OR block (insn_1 || .. || insn_n) has the
2435			 * F_OR bit set in all but the last instruction.
2436			 * The first match will set "skip_or", and cause
2437			 * the following instructions to be skipped until
2438			 * past the one with the F_OR bit clear.
2439			 */
2440			if (skip_or) {		/* skip this instruction */
2441				if ((cmd->len & F_OR) == 0)
2442					skip_or = 0;	/* next one is good */
2443				continue;
2444			}
2445			match = 0; /* set to 1 if we succeed */
2446
2447			switch (cmd->opcode) {
2448			/*
2449			 * The first set of opcodes compares the packet's
2450			 * fields with some pattern, setting 'match' if a
2451			 * match is found. At the end of the loop there is
2452			 * logic to deal with F_NOT and F_OR flags associated
2453			 * with the opcode.
2454			 */
2455			case O_NOP:
2456				match = 1;
2457				break;
2458
2459			case O_FORWARD_MAC:
2460				printf("ipfw: opcode %d unimplemented\n",
2461				    cmd->opcode);
2462				break;
2463
2464			case O_GID:
2465			case O_UID:
2466			case O_JAIL:
2467				/*
2468				 * We only check offset == 0 && proto != 0,
2469				 * as this ensures that we have a
2470				 * packet with the ports info.
2471				 */
2472				if (offset!=0)
2473					break;
2474				if (is_ipv6) /* XXX to be fixed later */
2475					break;
2476				if (proto == IPPROTO_TCP ||
2477				    proto == IPPROTO_UDP)
2478					match = check_uidgid(
2479						    (ipfw_insn_u32 *)cmd,
2480						    proto, oif,
2481						    dst_ip, dst_port,
2482						    src_ip, src_port, &fw_ugid_cache,
2483						    &ugid_lookup, args->inp);
2484				break;
2485
2486			case O_RECV:
2487				match = iface_match(m->m_pkthdr.rcvif,
2488				    (ipfw_insn_if *)cmd);
2489				break;
2490
2491			case O_XMIT:
2492				match = iface_match(oif, (ipfw_insn_if *)cmd);
2493				break;
2494
2495			case O_VIA:
2496				match = iface_match(oif ? oif :
2497				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
2498				break;
2499
2500			case O_MACADDR2:
2501				if (args->eh != NULL) {	/* have MAC header */
2502					u_int32_t *want = (u_int32_t *)
2503						((ipfw_insn_mac *)cmd)->addr;
2504					u_int32_t *mask = (u_int32_t *)
2505						((ipfw_insn_mac *)cmd)->mask;
2506					u_int32_t *hdr = (u_int32_t *)args->eh;
2507
2508					match =
2509					    ( want[0] == (hdr[0] & mask[0]) &&
2510					      want[1] == (hdr[1] & mask[1]) &&
2511					      want[2] == (hdr[2] & mask[2]) );
2512				}
2513				break;
2514
2515			case O_MAC_TYPE:
2516				if (args->eh != NULL) {
2517					u_int16_t t =
2518					    ntohs(args->eh->ether_type);
2519					u_int16_t *p =
2520					    ((ipfw_insn_u16 *)cmd)->ports;
2521					int i;
2522
2523					for (i = cmdlen - 1; !match && i>0;
2524					    i--, p += 2)
2525						match = (t>=p[0] && t<=p[1]);
2526				}
2527				break;
2528
2529			case O_FRAG:
2530				match = (offset != 0);
2531				break;
2532
2533			case O_IN:	/* "out" is "not in" */
2534				match = (oif == NULL);
2535				break;
2536
2537			case O_LAYER2:
2538				match = (args->eh != NULL);
2539				break;
2540
2541			case O_DIVERTED:
2542				match = (cmd->arg1 & 1 && divinput_flags &
2543				    IP_FW_DIVERT_LOOPBACK_FLAG) ||
2544					(cmd->arg1 & 2 && divinput_flags &
2545				    IP_FW_DIVERT_OUTPUT_FLAG);
2546				break;
2547
2548			case O_PROTO:
2549				/*
2550				 * We do not allow an arg of 0 so the
2551				 * check of "proto" only suffices.
2552				 */
2553				match = (proto == cmd->arg1);
2554				break;
2555
2556			case O_IP_SRC:
2557				match = is_ipv4 &&
2558				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2559				    src_ip.s_addr);
2560				break;
2561
2562			case O_IP_SRC_LOOKUP:
2563			case O_IP_DST_LOOKUP:
2564				if (is_ipv4) {
2565				    uint32_t a =
2566					(cmd->opcode == O_IP_DST_LOOKUP) ?
2567					    dst_ip.s_addr : src_ip.s_addr;
2568				    uint32_t v;
2569
2570				    match = lookup_table(cmd->arg1, a, &v);
2571				    if (!match)
2572					break;
2573				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2574					match =
2575					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
2576				}
2577				break;
2578
2579			case O_IP_SRC_MASK:
2580			case O_IP_DST_MASK:
2581				if (is_ipv4) {
2582				    uint32_t a =
2583					(cmd->opcode == O_IP_DST_MASK) ?
2584					    dst_ip.s_addr : src_ip.s_addr;
2585				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2586				    int i = cmdlen-1;
2587
2588				    for (; !match && i>0; i-= 2, p+= 2)
2589					match = (p[0] == (a & p[1]));
2590				}
2591				break;
2592
2593			case O_IP_SRC_ME:
2594				if (is_ipv4) {
2595					struct ifnet *tif;
2596
2597					INADDR_TO_IFP(src_ip, tif);
2598					match = (tif != NULL);
2599				}
2600				break;
2601
2602			case O_IP_DST_SET:
2603			case O_IP_SRC_SET:
2604				if (is_ipv4) {
2605					u_int32_t *d = (u_int32_t *)(cmd+1);
2606					u_int32_t addr =
2607					    cmd->opcode == O_IP_DST_SET ?
2608						args->f_id.dst_ip :
2609						args->f_id.src_ip;
2610
2611					    if (addr < d[0])
2612						    break;
2613					    addr -= d[0]; /* subtract base */
2614					    match = (addr < cmd->arg1) &&
2615						( d[ 1 + (addr>>5)] &
2616						  (1<<(addr & 0x1f)) );
2617				}
2618				break;
2619
2620			case O_IP_DST:
2621				match = is_ipv4 &&
2622				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2623				    dst_ip.s_addr);
2624				break;
2625
2626			case O_IP_DST_ME:
2627				if (is_ipv4) {
2628					struct ifnet *tif;
2629
2630					INADDR_TO_IFP(dst_ip, tif);
2631					match = (tif != NULL);
2632				}
2633				break;
2634
2635			case O_IP_SRCPORT:
2636			case O_IP_DSTPORT:
2637				/*
2638				 * offset == 0 && proto != 0 is enough
2639				 * to guarantee that we have a
2640				 * packet with port info.
2641				 */
2642				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
2643				    && offset == 0) {
2644					u_int16_t x =
2645					    (cmd->opcode == O_IP_SRCPORT) ?
2646						src_port : dst_port ;
2647					u_int16_t *p =
2648					    ((ipfw_insn_u16 *)cmd)->ports;
2649					int i;
2650
2651					for (i = cmdlen - 1; !match && i>0;
2652					    i--, p += 2)
2653						match = (x>=p[0] && x<=p[1]);
2654				}
2655				break;
2656
2657			case O_ICMPTYPE:
2658				match = (offset == 0 && proto==IPPROTO_ICMP &&
2659				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2660				break;
2661
2662#ifdef INET6
2663			case O_ICMP6TYPE:
2664				match = is_ipv6 && offset == 0 &&
2665				    proto==IPPROTO_ICMPV6 &&
2666				    icmp6type_match(
2667					ICMP6(ulp)->icmp6_type,
2668					(ipfw_insn_u32 *)cmd);
2669				break;
2670#endif /* INET6 */
2671
2672			case O_IPOPT:
2673				match = (is_ipv4 &&
2674				    ipopts_match(mtod(m, struct ip *), cmd) );
2675				break;
2676
2677			case O_IPVER:
2678				match = (is_ipv4 &&
2679				    cmd->arg1 == mtod(m, struct ip *)->ip_v);
2680				break;
2681
2682			case O_IPID:
2683			case O_IPLEN:
2684			case O_IPTTL:
2685				if (is_ipv4) {	/* only for IP packets */
2686				    uint16_t x;
2687				    uint16_t *p;
2688				    int i;
2689
2690				    if (cmd->opcode == O_IPLEN)
2691					x = ip_len;
2692				    else if (cmd->opcode == O_IPTTL)
2693					x = mtod(m, struct ip *)->ip_ttl;
2694				    else /* must be IPID */
2695					x = ntohs(mtod(m, struct ip *)->ip_id);
2696				    if (cmdlen == 1) {
2697					match = (cmd->arg1 == x);
2698					break;
2699				    }
2700				    /* otherwise we have ranges */
2701				    p = ((ipfw_insn_u16 *)cmd)->ports;
2702				    i = cmdlen - 1;
2703				    for (; !match && i>0; i--, p += 2)
2704					match = (x >= p[0] && x <= p[1]);
2705				}
2706				break;
2707
2708			case O_IPPRECEDENCE:
2709				match = (is_ipv4 &&
2710				    (cmd->arg1 == (mtod(m, struct ip *)->ip_tos & 0xe0)) );
2711				break;
2712
2713			case O_IPTOS:
2714				match = (is_ipv4 &&
2715				    flags_match(cmd, mtod(m, struct ip *)->ip_tos));
2716				break;
2717
2718			case O_TCPDATALEN:
2719				if (proto == IPPROTO_TCP && offset == 0) {
2720				    struct tcphdr *tcp;
2721				    uint16_t x;
2722				    uint16_t *p;
2723				    int i;
2724
2725				    tcp = TCP(ulp);
2726				    x = ip_len -
2727					((ip->ip_hl + tcp->th_off) << 2);
2728				    if (cmdlen == 1) {
2729					match = (cmd->arg1 == x);
2730					break;
2731				    }
2732				    /* otherwise we have ranges */
2733				    p = ((ipfw_insn_u16 *)cmd)->ports;
2734				    i = cmdlen - 1;
2735				    for (; !match && i>0; i--, p += 2)
2736					match = (x >= p[0] && x <= p[1]);
2737				}
2738				break;
2739
2740			case O_TCPFLAGS:
2741				match = (proto == IPPROTO_TCP && offset == 0 &&
2742				    flags_match(cmd, TCP(ulp)->th_flags));
2743				break;
2744
2745			case O_TCPOPTS:
2746				match = (proto == IPPROTO_TCP && offset == 0 &&
2747				    tcpopts_match(TCP(ulp), cmd));
2748				break;
2749
2750			case O_TCPSEQ:
2751				match = (proto == IPPROTO_TCP && offset == 0 &&
2752				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2753					TCP(ulp)->th_seq);
2754				break;
2755
2756			case O_TCPACK:
2757				match = (proto == IPPROTO_TCP && offset == 0 &&
2758				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2759					TCP(ulp)->th_ack);
2760				break;
2761
2762			case O_TCPWIN:
2763				match = (proto == IPPROTO_TCP && offset == 0 &&
2764				    cmd->arg1 == TCP(ulp)->th_win);
2765				break;
2766
2767			case O_ESTAB:
2768				/* reject packets which have SYN only */
2769				/* XXX should i also check for TH_ACK ? */
2770				match = (proto == IPPROTO_TCP && offset == 0 &&
2771				    (TCP(ulp)->th_flags &
2772				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2773				break;
2774
2775			case O_ALTQ: {
2776				struct altq_tag *at;
2777				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2778
2779				match = 1;
2780				mtag = m_tag_find(m, PACKET_TAG_PF_QID, NULL);
2781				if (mtag != NULL)
2782					break;
2783				mtag = m_tag_get(PACKET_TAG_PF_QID,
2784						sizeof(struct altq_tag),
2785						M_NOWAIT);
2786				if (mtag == NULL) {
2787					/*
2788					 * Let the packet fall back to the
2789					 * default ALTQ.
2790					 */
2791					break;
2792				}
2793				at = (struct altq_tag *)(mtag+1);
2794				at->qid = altq->qid;
2795				if (is_ipv4)
2796					at->af = AF_INET;
2797				else
2798					at->af = AF_LINK;
2799				at->hdr = ip;
2800				m_tag_prepend(m, mtag);
2801				break;
2802			}
2803
2804			case O_LOG:
2805				if (fw_verbose)
2806					ipfw_log(f, hlen, args, m, oif, offset);
2807				match = 1;
2808				break;
2809
2810			case O_PROB:
2811				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2812				break;
2813
2814			case O_VERREVPATH:
2815				/* Outgoing packets automatically pass/match */
2816				match = ((oif != NULL) ||
2817				    (m->m_pkthdr.rcvif == NULL) ||
2818				    (
2819#ifdef INET6
2820				    is_ipv6 ?
2821					verify_path6(&(args->f_id.src_ip6),
2822					    m->m_pkthdr.rcvif) :
2823#endif
2824				    verify_path(src_ip, m->m_pkthdr.rcvif)));
2825				break;
2826
2827			case O_VERSRCREACH:
2828				/* Outgoing packets automatically pass/match */
2829				match = (hlen > 0 && ((oif != NULL) ||
2830#ifdef INET6
2831				    is_ipv6 ?
2832				        verify_path6(&(args->f_id.src_ip6),
2833				            NULL) :
2834#endif
2835				    verify_path(src_ip, NULL)));
2836				break;
2837
2838			case O_ANTISPOOF:
2839				/* Outgoing packets automatically pass/match */
2840				if (oif == NULL && hlen > 0 &&
2841				    (  (is_ipv4 && in_localaddr(src_ip))
2842#ifdef INET6
2843				    || (is_ipv6 &&
2844				        in6_localaddr(&(args->f_id.src_ip6)))
2845#endif
2846				    ))
2847					match =
2848#ifdef INET6
2849					    is_ipv6 ? verify_path6(
2850					        &(args->f_id.src_ip6),
2851					        m->m_pkthdr.rcvif) :
2852#endif
2853					    verify_path(src_ip,
2854					        m->m_pkthdr.rcvif);
2855				else
2856					match = 1;
2857				break;
2858
2859			case O_IPSEC:
2860#ifdef FAST_IPSEC
2861				match = (m_tag_find(m,
2862				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2863#endif
2864#ifdef IPSEC
2865				match = (ipsec_getnhist(m) != 0);
2866#endif
2867				/* otherwise no match */
2868				break;
2869
2870#ifdef INET6
2871			case O_IP6_SRC:
2872				match = is_ipv6 &&
2873				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
2874				    &((ipfw_insn_ip6 *)cmd)->addr6);
2875				break;
2876
2877			case O_IP6_DST:
2878				match = is_ipv6 &&
2879				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
2880				    &((ipfw_insn_ip6 *)cmd)->addr6);
2881				break;
2882			case O_IP6_SRC_MASK:
2883				if (is_ipv6) {
2884					ipfw_insn_ip6 *te = (ipfw_insn_ip6 *)cmd;
2885					struct in6_addr p = args->f_id.src_ip6;
2886
2887					APPLY_MASK(&p, &te->mask6);
2888					match = IN6_ARE_ADDR_EQUAL(&te->addr6, &p);
2889				}
2890				break;
2891
2892			case O_IP6_DST_MASK:
2893				if (is_ipv6) {
2894					ipfw_insn_ip6 *te = (ipfw_insn_ip6 *)cmd;
2895					struct in6_addr p = args->f_id.dst_ip6;
2896
2897					APPLY_MASK(&p, &te->mask6);
2898					match = IN6_ARE_ADDR_EQUAL(&te->addr6, &p);
2899				}
2900				break;
2901
2902			case O_IP6_SRC_ME:
2903				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
2904				break;
2905
2906			case O_IP6_DST_ME:
2907				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
2908				break;
2909
2910			case O_FLOW6ID:
2911				match = is_ipv6 &&
2912				    flow6id_match(args->f_id.flow_id6,
2913				    (ipfw_insn_u32 *) cmd);
2914				break;
2915
2916			case O_EXT_HDR:
2917				match = is_ipv6 &&
2918				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
2919				break;
2920
2921			case O_IP6:
2922				match = is_ipv6;
2923				break;
2924#endif
2925
2926			case O_IP4:
2927				match = is_ipv4;
2928				break;
2929
2930			/*
2931			 * The second set of opcodes represents 'actions',
2932			 * i.e. the terminal part of a rule once the packet
2933			 * matches all previous patterns.
2934			 * Typically there is only one action for each rule,
2935			 * and the opcode is stored at the end of the rule
2936			 * (but there are exceptions -- see below).
2937			 *
2938			 * In general, here we set retval and terminate the
2939			 * outer loop (would be a 'break 3' in some language,
2940			 * but we need to do a 'goto done').
2941			 *
2942			 * Exceptions:
2943			 * O_COUNT and O_SKIPTO actions:
2944			 *   instead of terminating, we jump to the next rule
2945			 *   ('goto next_rule', equivalent to a 'break 2'),
2946			 *   or to the SKIPTO target ('goto again' after
2947			 *   having set f, cmd and l), respectively.
2948			 *
2949			 * O_LOG and O_ALTQ action parameters:
2950			 *   perform some action and set match = 1;
2951			 *
2952			 * O_LIMIT and O_KEEP_STATE: these opcodes are
2953			 *   not real 'actions', and are stored right
2954			 *   before the 'action' part of the rule.
2955			 *   These opcodes try to install an entry in the
2956			 *   state tables; if successful, we continue with
2957			 *   the next opcode (match=1; break;), otherwise
2958			 *   the packet *   must be dropped
2959			 *   ('goto done' after setting retval);
2960			 *
2961			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2962			 *   cause a lookup of the state table, and a jump
2963			 *   to the 'action' part of the parent rule
2964			 *   ('goto check_body') if an entry is found, or
2965			 *   (CHECK_STATE only) a jump to the next rule if
2966			 *   the entry is not found ('goto next_rule').
2967			 *   The result of the lookup is cached to make
2968			 *   further instances of these opcodes are
2969			 *   effectively NOPs.
2970			 */
2971			case O_LIMIT:
2972			case O_KEEP_STATE:
2973				if (install_state(f,
2974				    (ipfw_insn_limit *)cmd, args)) {
2975					retval = IP_FW_DENY;
2976					goto done; /* error/limit violation */
2977				}
2978				match = 1;
2979				break;
2980
2981			case O_PROBE_STATE:
2982			case O_CHECK_STATE:
2983				/*
2984				 * dynamic rules are checked at the first
2985				 * keep-state or check-state occurrence,
2986				 * with the result being stored in dyn_dir.
2987				 * The compiler introduces a PROBE_STATE
2988				 * instruction for us when we have a
2989				 * KEEP_STATE (because PROBE_STATE needs
2990				 * to be run first).
2991				 */
2992				if (dyn_dir == MATCH_UNKNOWN &&
2993				    (q = lookup_dyn_rule(&args->f_id,
2994				     &dyn_dir, proto == IPPROTO_TCP ?
2995					TCP(ulp) : NULL))
2996					!= NULL) {
2997					/*
2998					 * Found dynamic entry, update stats
2999					 * and jump to the 'action' part of
3000					 * the parent rule.
3001					 */
3002					q->pcnt++;
3003					q->bcnt += pktlen;
3004					f = q->rule;
3005					cmd = ACTION_PTR(f);
3006					l = f->cmd_len - f->act_ofs;
3007					IPFW_DYN_UNLOCK();
3008					goto check_body;
3009				}
3010				/*
3011				 * Dynamic entry not found. If CHECK_STATE,
3012				 * skip to next rule, if PROBE_STATE just
3013				 * ignore and continue with next opcode.
3014				 */
3015				if (cmd->opcode == O_CHECK_STATE)
3016					goto next_rule;
3017				match = 1;
3018				break;
3019
3020			case O_ACCEPT:
3021				retval = 0;	/* accept */
3022				goto done;
3023
3024			case O_PIPE:
3025			case O_QUEUE:
3026				args->rule = f; /* report matching rule */
3027				args->cookie = cmd->arg1;
3028				retval = IP_FW_DUMMYNET;
3029				goto done;
3030
3031			case O_DIVERT:
3032			case O_TEE: {
3033				struct divert_tag *dt;
3034
3035				if (args->eh) /* not on layer 2 */
3036					break;
3037				mtag = m_tag_get(PACKET_TAG_DIVERT,
3038						sizeof(struct divert_tag),
3039						M_NOWAIT);
3040				if (mtag == NULL) {
3041					/* XXX statistic */
3042					/* drop packet */
3043					IPFW_RUNLOCK(chain);
3044					return (IP_FW_DENY);
3045				}
3046				dt = (struct divert_tag *)(mtag+1);
3047				dt->cookie = f->rulenum;
3048				dt->info = cmd->arg1;
3049				m_tag_prepend(m, mtag);
3050				retval = (cmd->opcode == O_DIVERT) ?
3051				    IP_FW_DIVERT : IP_FW_TEE;
3052				goto done;
3053			}
3054
3055			case O_COUNT:
3056			case O_SKIPTO:
3057				f->pcnt++;	/* update stats */
3058				f->bcnt += pktlen;
3059				f->timestamp = time_uptime;
3060				if (cmd->opcode == O_COUNT)
3061					goto next_rule;
3062				/* handle skipto */
3063				if (f->next_rule == NULL)
3064					lookup_next_rule(f);
3065				f = f->next_rule;
3066				goto again;
3067
3068			case O_REJECT:
3069				/*
3070				 * Drop the packet and send a reject notice
3071				 * if the packet is not ICMP (or is an ICMP
3072				 * query), and it is not multicast/broadcast.
3073				 */
3074				if (hlen > 0 && is_ipv4 &&
3075				    (proto != IPPROTO_ICMP ||
3076				     is_icmp_query(ICMP(ulp))) &&
3077				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3078				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
3079					send_reject(args, cmd->arg1,
3080					    offset,ip_len);
3081					m = args->m;
3082				}
3083				/* FALLTHROUGH */
3084#ifdef INET6
3085			case O_UNREACH6:
3086				if (hlen > 0 && is_ipv6 &&
3087				    (proto != IPPROTO_ICMPV6 ||
3088				     (is_icmp6_query(args->f_id.flags) == 1)) &&
3089				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3090				    !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
3091					send_reject6(args, cmd->arg1,
3092					    offset, hlen);
3093					m = args->m;
3094				}
3095				/* FALLTHROUGH */
3096#endif
3097			case O_DENY:
3098				retval = IP_FW_DENY;
3099				goto done;
3100
3101			case O_FORWARD_IP:
3102				if (args->eh)	/* not valid on layer2 pkts */
3103					break;
3104				if (!q || dyn_dir == MATCH_FORWARD)
3105					args->next_hop =
3106					    &((ipfw_insn_sa *)cmd)->sa;
3107				retval = IP_FW_PASS;
3108				goto done;
3109
3110			case O_NETGRAPH:
3111			case O_NGTEE:
3112				args->rule = f;	/* report matching rule */
3113				args->cookie = cmd->arg1;
3114				retval = (cmd->opcode == O_NETGRAPH) ?
3115				    IP_FW_NETGRAPH : IP_FW_NGTEE;
3116				goto done;
3117
3118			default:
3119				panic("-- unknown opcode %d\n", cmd->opcode);
3120			} /* end of switch() on opcodes */
3121
3122			if (cmd->len & F_NOT)
3123				match = !match;
3124
3125			if (match) {
3126				if (cmd->len & F_OR)
3127					skip_or = 1;
3128			} else {
3129				if (!(cmd->len & F_OR)) /* not an OR block, */
3130					break;		/* try next rule    */
3131			}
3132
3133		}	/* end of inner for, scan opcodes */
3134
3135next_rule:;		/* try next rule		*/
3136
3137	}		/* end of outer for, scan rules */
3138	printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3139	IPFW_RUNLOCK(chain);
3140	return (IP_FW_DENY);
3141
3142done:
3143	/* Update statistics */
3144	f->pcnt++;
3145	f->bcnt += pktlen;
3146	f->timestamp = time_uptime;
3147	IPFW_RUNLOCK(chain);
3148	return (retval);
3149
3150pullup_failed:
3151	if (fw_verbose)
3152		printf("ipfw: pullup failed\n");
3153	return (IP_FW_DENY);
3154}
3155
3156/*
3157 * When a rule is added/deleted, clear the next_rule pointers in all rules.
3158 * These will be reconstructed on the fly as packets are matched.
3159 */
3160static void
3161flush_rule_ptrs(struct ip_fw_chain *chain)
3162{
3163	struct ip_fw *rule;
3164
3165	IPFW_WLOCK_ASSERT(chain);
3166
3167	for (rule = chain->rules; rule; rule = rule->next)
3168		rule->next_rule = NULL;
3169}
3170
3171/*
3172 * Add a new rule to the list. Copy the rule into a malloc'ed area, then
3173 * possibly create a rule number and add the rule to the list.
3174 * Update the rule_number in the input struct so the caller knows it as well.
3175 */
3176static int
3177add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
3178{
3179	struct ip_fw *rule, *f, *prev;
3180	int l = RULESIZE(input_rule);
3181
3182	if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
3183		return (EINVAL);
3184
3185	rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
3186	if (rule == NULL)
3187		return (ENOSPC);
3188
3189	bcopy(input_rule, rule, l);
3190
3191	rule->next = NULL;
3192	rule->next_rule = NULL;
3193
3194	rule->pcnt = 0;
3195	rule->bcnt = 0;
3196	rule->timestamp = 0;
3197
3198	IPFW_WLOCK(chain);
3199
3200	if (chain->rules == NULL) {	/* default rule */
3201		chain->rules = rule;
3202		goto done;
3203        }
3204
3205	/*
3206	 * If rulenum is 0, find highest numbered rule before the
3207	 * default rule, and add autoinc_step
3208	 */
3209	if (autoinc_step < 1)
3210		autoinc_step = 1;
3211	else if (autoinc_step > 1000)
3212		autoinc_step = 1000;
3213	if (rule->rulenum == 0) {
3214		/*
3215		 * locate the highest numbered rule before default
3216		 */
3217		for (f = chain->rules; f; f = f->next) {
3218			if (f->rulenum == IPFW_DEFAULT_RULE)
3219				break;
3220			rule->rulenum = f->rulenum;
3221		}
3222		if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
3223			rule->rulenum += autoinc_step;
3224		input_rule->rulenum = rule->rulenum;
3225	}
3226
3227	/*
3228	 * Now insert the new rule in the right place in the sorted list.
3229	 */
3230	for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
3231		if (f->rulenum > rule->rulenum) { /* found the location */
3232			if (prev) {
3233				rule->next = f;
3234				prev->next = rule;
3235			} else { /* head insert */
3236				rule->next = chain->rules;
3237				chain->rules = rule;
3238			}
3239			break;
3240		}
3241	}
3242	flush_rule_ptrs(chain);
3243done:
3244	static_count++;
3245	static_len += l;
3246	IPFW_WUNLOCK(chain);
3247	DEB(printf("ipfw: installed rule %d, static count now %d\n",
3248		rule->rulenum, static_count);)
3249	return (0);
3250}
3251
3252/**
3253 * Remove a static rule (including derived * dynamic rules)
3254 * and place it on the ``reap list'' for later reclamation.
3255 * The caller is in charge of clearing rule pointers to avoid
3256 * dangling pointers.
3257 * @return a pointer to the next entry.
3258 * Arguments are not checked, so they better be correct.
3259 */
3260static struct ip_fw *
3261remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule, struct ip_fw *prev)
3262{
3263	struct ip_fw *n;
3264	int l = RULESIZE(rule);
3265
3266	IPFW_WLOCK_ASSERT(chain);
3267
3268	n = rule->next;
3269	IPFW_DYN_LOCK();
3270	remove_dyn_rule(rule, NULL /* force removal */);
3271	IPFW_DYN_UNLOCK();
3272	if (prev == NULL)
3273		chain->rules = n;
3274	else
3275		prev->next = n;
3276	static_count--;
3277	static_len -= l;
3278
3279	rule->next = chain->reap;
3280	chain->reap = rule;
3281
3282	return n;
3283}
3284
3285/**
3286 * Reclaim storage associated with a list of rules.  This is
3287 * typically the list created using remove_rule.
3288 */
3289static void
3290reap_rules(struct ip_fw *head)
3291{
3292	struct ip_fw *rule;
3293
3294	while ((rule = head) != NULL) {
3295		head = head->next;
3296		if (DUMMYNET_LOADED)
3297			ip_dn_ruledel_ptr(rule);
3298		free(rule, M_IPFW);
3299	}
3300}
3301
3302/*
3303 * Remove all rules from a chain (except rules in set RESVD_SET
3304 * unless kill_default = 1).  The caller is responsible for
3305 * reclaiming storage for the rules left in chain->reap.
3306 */
3307static void
3308free_chain(struct ip_fw_chain *chain, int kill_default)
3309{
3310	struct ip_fw *prev, *rule;
3311
3312	IPFW_WLOCK_ASSERT(chain);
3313
3314	flush_rule_ptrs(chain); /* more efficient to do outside the loop */
3315	for (prev = NULL, rule = chain->rules; rule ; )
3316		if (kill_default || rule->set != RESVD_SET)
3317			rule = remove_rule(chain, rule, prev);
3318		else {
3319			prev = rule;
3320			rule = rule->next;
3321		}
3322}
3323
3324/**
3325 * Remove all rules with given number, and also do set manipulation.
3326 * Assumes chain != NULL && *chain != NULL.
3327 *
3328 * The argument is an u_int32_t. The low 16 bit are the rule or set number,
3329 * the next 8 bits are the new set, the top 8 bits are the command:
3330 *
3331 *	0	delete rules with given number
3332 *	1	delete rules with given set number
3333 *	2	move rules with given number to new set
3334 *	3	move rules with given set number to new set
3335 *	4	swap sets with given numbers
3336 */
3337static int
3338del_entry(struct ip_fw_chain *chain, u_int32_t arg)
3339{
3340	struct ip_fw *prev = NULL, *rule;
3341	u_int16_t rulenum;	/* rule or old_set */
3342	u_int8_t cmd, new_set;
3343
3344	rulenum = arg & 0xffff;
3345	cmd = (arg >> 24) & 0xff;
3346	new_set = (arg >> 16) & 0xff;
3347
3348	if (cmd > 4)
3349		return EINVAL;
3350	if (new_set > RESVD_SET)
3351		return EINVAL;
3352	if (cmd == 0 || cmd == 2) {
3353		if (rulenum >= IPFW_DEFAULT_RULE)
3354			return EINVAL;
3355	} else {
3356		if (rulenum > RESVD_SET)	/* old_set */
3357			return EINVAL;
3358	}
3359
3360	IPFW_WLOCK(chain);
3361	rule = chain->rules;
3362	chain->reap = NULL;
3363	switch (cmd) {
3364	case 0:	/* delete rules with given number */
3365		/*
3366		 * locate first rule to delete
3367		 */
3368		for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3369			;
3370		if (rule->rulenum != rulenum) {
3371			IPFW_WUNLOCK(chain);
3372			return EINVAL;
3373		}
3374
3375		/*
3376		 * flush pointers outside the loop, then delete all matching
3377		 * rules. prev remains the same throughout the cycle.
3378		 */
3379		flush_rule_ptrs(chain);
3380		while (rule->rulenum == rulenum)
3381			rule = remove_rule(chain, rule, prev);
3382		break;
3383
3384	case 1:	/* delete all rules with given set number */
3385		flush_rule_ptrs(chain);
3386		rule = chain->rules;
3387		while (rule->rulenum < IPFW_DEFAULT_RULE)
3388			if (rule->set == rulenum)
3389				rule = remove_rule(chain, rule, prev);
3390			else {
3391				prev = rule;
3392				rule = rule->next;
3393			}
3394		break;
3395
3396	case 2:	/* move rules with given number to new set */
3397		rule = chain->rules;
3398		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3399			if (rule->rulenum == rulenum)
3400				rule->set = new_set;
3401		break;
3402
3403	case 3: /* move rules with given set number to new set */
3404		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3405			if (rule->set == rulenum)
3406				rule->set = new_set;
3407		break;
3408
3409	case 4: /* swap two sets */
3410		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3411			if (rule->set == rulenum)
3412				rule->set = new_set;
3413			else if (rule->set == new_set)
3414				rule->set = rulenum;
3415		break;
3416	}
3417	/*
3418	 * Look for rules to reclaim.  We grab the list before
3419	 * releasing the lock then reclaim them w/o the lock to
3420	 * avoid a LOR with dummynet.
3421	 */
3422	rule = chain->reap;
3423	chain->reap = NULL;
3424	IPFW_WUNLOCK(chain);
3425	if (rule)
3426		reap_rules(rule);
3427	return 0;
3428}
3429
3430/*
3431 * Clear counters for a specific rule.
3432 * The enclosing "table" is assumed locked.
3433 */
3434static void
3435clear_counters(struct ip_fw *rule, int log_only)
3436{
3437	ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
3438
3439	if (log_only == 0) {
3440		rule->bcnt = rule->pcnt = 0;
3441		rule->timestamp = 0;
3442	}
3443	if (l->o.opcode == O_LOG)
3444		l->log_left = l->max_log;
3445}
3446
3447/**
3448 * Reset some or all counters on firewall rules.
3449 * @arg frwl is null to clear all entries, or contains a specific
3450 * rule number.
3451 * @arg log_only is 1 if we only want to reset logs, zero otherwise.
3452 */
3453static int
3454zero_entry(struct ip_fw_chain *chain, int rulenum, int log_only)
3455{
3456	struct ip_fw *rule;
3457	char *msg;
3458
3459	IPFW_WLOCK(chain);
3460	if (rulenum == 0) {
3461		norule_counter = 0;
3462		for (rule = chain->rules; rule; rule = rule->next)
3463			clear_counters(rule, log_only);
3464		msg = log_only ? "ipfw: All logging counts reset.\n" :
3465				"ipfw: Accounting cleared.\n";
3466	} else {
3467		int cleared = 0;
3468		/*
3469		 * We can have multiple rules with the same number, so we
3470		 * need to clear them all.
3471		 */
3472		for (rule = chain->rules; rule; rule = rule->next)
3473			if (rule->rulenum == rulenum) {
3474				while (rule && rule->rulenum == rulenum) {
3475					clear_counters(rule, log_only);
3476					rule = rule->next;
3477				}
3478				cleared = 1;
3479				break;
3480			}
3481		if (!cleared) {	/* we did not find any matching rules */
3482			IPFW_WUNLOCK(chain);
3483			return (EINVAL);
3484		}
3485		msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
3486				"ipfw: Entry %d cleared.\n";
3487	}
3488	IPFW_WUNLOCK(chain);
3489
3490	if (fw_verbose)
3491		log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
3492	return (0);
3493}
3494
3495/*
3496 * Check validity of the structure before insert.
3497 * Fortunately rules are simple, so this mostly need to check rule sizes.
3498 */
3499static int
3500check_ipfw_struct(struct ip_fw *rule, int size)
3501{
3502	int l, cmdlen = 0;
3503	int have_action=0;
3504	ipfw_insn *cmd;
3505
3506	if (size < sizeof(*rule)) {
3507		printf("ipfw: rule too short\n");
3508		return (EINVAL);
3509	}
3510	/* first, check for valid size */
3511	l = RULESIZE(rule);
3512	if (l != size) {
3513		printf("ipfw: size mismatch (have %d want %d)\n", size, l);
3514		return (EINVAL);
3515	}
3516	if (rule->act_ofs >= rule->cmd_len) {
3517		printf("ipfw: bogus action offset (%u > %u)\n",
3518		    rule->act_ofs, rule->cmd_len - 1);
3519		return (EINVAL);
3520	}
3521	/*
3522	 * Now go for the individual checks. Very simple ones, basically only
3523	 * instruction sizes.
3524	 */
3525	for (l = rule->cmd_len, cmd = rule->cmd ;
3526			l > 0 ; l -= cmdlen, cmd += cmdlen) {
3527		cmdlen = F_LEN(cmd);
3528		if (cmdlen > l) {
3529			printf("ipfw: opcode %d size truncated\n",
3530			    cmd->opcode);
3531			return EINVAL;
3532		}
3533		DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
3534		switch (cmd->opcode) {
3535		case O_PROBE_STATE:
3536		case O_KEEP_STATE:
3537		case O_PROTO:
3538		case O_IP_SRC_ME:
3539		case O_IP_DST_ME:
3540		case O_LAYER2:
3541		case O_IN:
3542		case O_FRAG:
3543		case O_DIVERTED:
3544		case O_IPOPT:
3545		case O_IPTOS:
3546		case O_IPPRECEDENCE:
3547		case O_IPVER:
3548		case O_TCPWIN:
3549		case O_TCPFLAGS:
3550		case O_TCPOPTS:
3551		case O_ESTAB:
3552		case O_VERREVPATH:
3553		case O_VERSRCREACH:
3554		case O_ANTISPOOF:
3555		case O_IPSEC:
3556#ifdef INET6
3557		case O_IP6_SRC_ME:
3558		case O_IP6_DST_ME:
3559		case O_EXT_HDR:
3560		case O_IP6:
3561#endif
3562		case O_IP4:
3563			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3564				goto bad_size;
3565			break;
3566
3567		case O_UID:
3568		case O_GID:
3569		case O_JAIL:
3570		case O_IP_SRC:
3571		case O_IP_DST:
3572		case O_TCPSEQ:
3573		case O_TCPACK:
3574		case O_PROB:
3575		case O_ICMPTYPE:
3576			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3577				goto bad_size;
3578			break;
3579
3580		case O_LIMIT:
3581			if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
3582				goto bad_size;
3583			break;
3584
3585		case O_LOG:
3586			if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
3587				goto bad_size;
3588
3589			((ipfw_insn_log *)cmd)->log_left =
3590			    ((ipfw_insn_log *)cmd)->max_log;
3591
3592			break;
3593
3594		case O_IP_SRC_MASK:
3595		case O_IP_DST_MASK:
3596			/* only odd command lengths */
3597			if ( !(cmdlen & 1) || cmdlen > 31)
3598				goto bad_size;
3599			break;
3600
3601		case O_IP_SRC_SET:
3602		case O_IP_DST_SET:
3603			if (cmd->arg1 == 0 || cmd->arg1 > 256) {
3604				printf("ipfw: invalid set size %d\n",
3605					cmd->arg1);
3606				return EINVAL;
3607			}
3608			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3609			    (cmd->arg1+31)/32 )
3610				goto bad_size;
3611			break;
3612
3613		case O_IP_SRC_LOOKUP:
3614		case O_IP_DST_LOOKUP:
3615			if (cmd->arg1 >= IPFW_TABLES_MAX) {
3616				printf("ipfw: invalid table number %d\n",
3617				    cmd->arg1);
3618				return (EINVAL);
3619			}
3620			if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
3621			    cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3622				goto bad_size;
3623			break;
3624
3625		case O_MACADDR2:
3626			if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
3627				goto bad_size;
3628			break;
3629
3630		case O_NOP:
3631		case O_IPID:
3632		case O_IPTTL:
3633		case O_IPLEN:
3634		case O_TCPDATALEN:
3635			if (cmdlen < 1 || cmdlen > 31)
3636				goto bad_size;
3637			break;
3638
3639		case O_MAC_TYPE:
3640		case O_IP_SRCPORT:
3641		case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
3642			if (cmdlen < 2 || cmdlen > 31)
3643				goto bad_size;
3644			break;
3645
3646		case O_RECV:
3647		case O_XMIT:
3648		case O_VIA:
3649			if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
3650				goto bad_size;
3651			break;
3652
3653		case O_ALTQ:
3654			if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
3655				goto bad_size;
3656			break;
3657
3658		case O_PIPE:
3659		case O_QUEUE:
3660			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3661				goto bad_size;
3662			goto check_action;
3663
3664		case O_FORWARD_IP:
3665#ifdef	IPFIREWALL_FORWARD
3666			if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
3667				goto bad_size;
3668			goto check_action;
3669#else
3670			return EINVAL;
3671#endif
3672
3673		case O_DIVERT:
3674		case O_TEE:
3675			if (ip_divert_ptr == NULL)
3676				return EINVAL;
3677			else
3678				goto check_size;
3679		case O_NETGRAPH:
3680		case O_NGTEE:
3681			if (!NG_IPFW_LOADED)
3682				return EINVAL;
3683			else
3684				goto check_size;
3685		case O_FORWARD_MAC: /* XXX not implemented yet */
3686		case O_CHECK_STATE:
3687		case O_COUNT:
3688		case O_ACCEPT:
3689		case O_DENY:
3690		case O_REJECT:
3691#ifdef INET6
3692		case O_UNREACH6:
3693#endif
3694		case O_SKIPTO:
3695check_size:
3696			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3697				goto bad_size;
3698check_action:
3699			if (have_action) {
3700				printf("ipfw: opcode %d, multiple actions"
3701					" not allowed\n",
3702					cmd->opcode);
3703				return EINVAL;
3704			}
3705			have_action = 1;
3706			if (l != cmdlen) {
3707				printf("ipfw: opcode %d, action must be"
3708					" last opcode\n",
3709					cmd->opcode);
3710				return EINVAL;
3711			}
3712			break;
3713#ifdef INET6
3714		case O_IP6_SRC:
3715		case O_IP6_DST:
3716			if (cmdlen != F_INSN_SIZE(struct in6_addr) +
3717			    F_INSN_SIZE(ipfw_insn))
3718				goto bad_size;
3719			break;
3720
3721		case O_FLOW6ID:
3722			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3723			    ((ipfw_insn_u32 *)cmd)->o.arg1)
3724				goto bad_size;
3725			break;
3726
3727		case O_IP6_SRC_MASK:
3728		case O_IP6_DST_MASK:
3729			if ( !(cmdlen & 1) || cmdlen > 127)
3730				goto bad_size;
3731			break;
3732		case O_ICMP6TYPE:
3733			if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
3734				goto bad_size;
3735			break;
3736#endif
3737
3738		default:
3739			switch (cmd->opcode) {
3740#ifndef INET6
3741			case O_IP6_SRC_ME:
3742			case O_IP6_DST_ME:
3743			case O_EXT_HDR:
3744			case O_IP6:
3745			case O_UNREACH6:
3746			case O_IP6_SRC:
3747			case O_IP6_DST:
3748			case O_FLOW6ID:
3749			case O_IP6_SRC_MASK:
3750			case O_IP6_DST_MASK:
3751			case O_ICMP6TYPE:
3752				printf("ipfw: no IPv6 support in kernel\n");
3753				return EPROTONOSUPPORT;
3754#endif
3755			default:
3756				printf("ipfw: opcode %d, unknown opcode\n",
3757					cmd->opcode);
3758				return EINVAL;
3759			}
3760		}
3761	}
3762	if (have_action == 0) {
3763		printf("ipfw: missing action\n");
3764		return EINVAL;
3765	}
3766	return 0;
3767
3768bad_size:
3769	printf("ipfw: opcode %d size %d wrong\n",
3770		cmd->opcode, cmdlen);
3771	return EINVAL;
3772}
3773
3774/*
3775 * Copy the static and dynamic rules to the supplied buffer
3776 * and return the amount of space actually used.
3777 */
3778static size_t
3779ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
3780{
3781	char *bp = buf;
3782	char *ep = bp + space;
3783	struct ip_fw *rule;
3784	int i;
3785
3786	/* XXX this can take a long time and locking will block packet flow */
3787	IPFW_RLOCK(chain);
3788	for (rule = chain->rules; rule ; rule = rule->next) {
3789		/*
3790		 * Verify the entry fits in the buffer in case the
3791		 * rules changed between calculating buffer space and
3792		 * now.  This would be better done using a generation
3793		 * number but should suffice for now.
3794		 */
3795		i = RULESIZE(rule);
3796		if (bp + i <= ep) {
3797			bcopy(rule, bp, i);
3798			bcopy(&set_disable, &(((struct ip_fw *)bp)->next_rule),
3799			    sizeof(set_disable));
3800			bp += i;
3801		}
3802	}
3803	IPFW_RUNLOCK(chain);
3804	if (ipfw_dyn_v) {
3805		ipfw_dyn_rule *p, *last = NULL;
3806
3807		IPFW_DYN_LOCK();
3808		for (i = 0 ; i < curr_dyn_buckets; i++)
3809			for (p = ipfw_dyn_v[i] ; p != NULL; p = p->next) {
3810				if (bp + sizeof *p <= ep) {
3811					ipfw_dyn_rule *dst =
3812						(ipfw_dyn_rule *)bp;
3813					bcopy(p, dst, sizeof *p);
3814					bcopy(&(p->rule->rulenum), &(dst->rule),
3815					    sizeof(p->rule->rulenum));
3816					/*
3817					 * store a non-null value in "next".
3818					 * The userland code will interpret a
3819					 * NULL here as a marker
3820					 * for the last dynamic rule.
3821					 */
3822					bcopy(&dst, &dst->next, sizeof(dst));
3823					last = dst;
3824					dst->expire =
3825					    TIME_LEQ(dst->expire, time_uptime) ?
3826						0 : dst->expire - time_uptime ;
3827					bp += sizeof(ipfw_dyn_rule);
3828				}
3829			}
3830		IPFW_DYN_UNLOCK();
3831		if (last != NULL) /* mark last dynamic rule */
3832			bzero(&last->next, sizeof(last));
3833	}
3834	return (bp - (char *)buf);
3835}
3836
3837
3838/**
3839 * {set|get}sockopt parser.
3840 */
3841static int
3842ipfw_ctl(struct sockopt *sopt)
3843{
3844#define	RULE_MAXSIZE	(256*sizeof(u_int32_t))
3845	int error, rule_num;
3846	size_t size;
3847	struct ip_fw *buf, *rule;
3848	u_int32_t rulenum[2];
3849
3850	error = suser(sopt->sopt_td);
3851	if (error)
3852		return (error);
3853
3854	/*
3855	 * Disallow modifications in really-really secure mode, but still allow
3856	 * the logging counters to be reset.
3857	 */
3858	if (sopt->sopt_name == IP_FW_ADD ||
3859	    (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
3860#if __FreeBSD_version >= 500034
3861		error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
3862		if (error)
3863			return (error);
3864#else /* FreeBSD 4.x */
3865		if (securelevel >= 3)
3866			return (EPERM);
3867#endif
3868	}
3869
3870	error = 0;
3871
3872	switch (sopt->sopt_name) {
3873	case IP_FW_GET:
3874		/*
3875		 * pass up a copy of the current rules. Static rules
3876		 * come first (the last of which has number IPFW_DEFAULT_RULE),
3877		 * followed by a possibly empty list of dynamic rule.
3878		 * The last dynamic rule has NULL in the "next" field.
3879		 *
3880		 * Note that the calculated size is used to bound the
3881		 * amount of data returned to the user.  The rule set may
3882		 * change between calculating the size and returning the
3883		 * data in which case we'll just return what fits.
3884		 */
3885		size = static_len;	/* size of static rules */
3886		if (ipfw_dyn_v)		/* add size of dyn.rules */
3887			size += (dyn_count * sizeof(ipfw_dyn_rule));
3888
3889		/*
3890		 * XXX todo: if the user passes a short length just to know
3891		 * how much room is needed, do not bother filling up the
3892		 * buffer, just jump to the sooptcopyout.
3893		 */
3894		buf = malloc(size, M_TEMP, M_WAITOK);
3895		error = sooptcopyout(sopt, buf,
3896				ipfw_getrules(&layer3_chain, buf, size));
3897		free(buf, M_TEMP);
3898		break;
3899
3900	case IP_FW_FLUSH:
3901		/*
3902		 * Normally we cannot release the lock on each iteration.
3903		 * We could do it here only because we start from the head all
3904		 * the times so there is no risk of missing some entries.
3905		 * On the other hand, the risk is that we end up with
3906		 * a very inconsistent ruleset, so better keep the lock
3907		 * around the whole cycle.
3908		 *
3909		 * XXX this code can be improved by resetting the head of
3910		 * the list to point to the default rule, and then freeing
3911		 * the old list without the need for a lock.
3912		 */
3913
3914		IPFW_WLOCK(&layer3_chain);
3915		layer3_chain.reap = NULL;
3916		free_chain(&layer3_chain, 0 /* keep default rule */);
3917		rule = layer3_chain.reap, layer3_chain.reap = NULL;
3918		IPFW_WUNLOCK(&layer3_chain);
3919		if (layer3_chain.reap != NULL)
3920			reap_rules(rule);
3921		break;
3922
3923	case IP_FW_ADD:
3924		rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
3925		error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
3926			sizeof(struct ip_fw) );
3927		if (error == 0)
3928			error = check_ipfw_struct(rule, sopt->sopt_valsize);
3929		if (error == 0) {
3930			error = add_rule(&layer3_chain, rule);
3931			size = RULESIZE(rule);
3932			if (!error && sopt->sopt_dir == SOPT_GET)
3933				error = sooptcopyout(sopt, rule, size);
3934		}
3935		free(rule, M_TEMP);
3936		break;
3937
3938	case IP_FW_DEL:
3939		/*
3940		 * IP_FW_DEL is used for deleting single rules or sets,
3941		 * and (ab)used to atomically manipulate sets. Argument size
3942		 * is used to distinguish between the two:
3943		 *    sizeof(u_int32_t)
3944		 *	delete single rule or set of rules,
3945		 *	or reassign rules (or sets) to a different set.
3946		 *    2*sizeof(u_int32_t)
3947		 *	atomic disable/enable sets.
3948		 *	first u_int32_t contains sets to be disabled,
3949		 *	second u_int32_t contains sets to be enabled.
3950		 */
3951		error = sooptcopyin(sopt, rulenum,
3952			2*sizeof(u_int32_t), sizeof(u_int32_t));
3953		if (error)
3954			break;
3955		size = sopt->sopt_valsize;
3956		if (size == sizeof(u_int32_t))	/* delete or reassign */
3957			error = del_entry(&layer3_chain, rulenum[0]);
3958		else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
3959			set_disable =
3960			    (set_disable | rulenum[0]) & ~rulenum[1] &
3961			    ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
3962		else
3963			error = EINVAL;
3964		break;
3965
3966	case IP_FW_ZERO:
3967	case IP_FW_RESETLOG: /* argument is an int, the rule number */
3968		rule_num = 0;
3969		if (sopt->sopt_val != 0) {
3970		    error = sooptcopyin(sopt, &rule_num,
3971			    sizeof(int), sizeof(int));
3972		    if (error)
3973			break;
3974		}
3975		error = zero_entry(&layer3_chain, rule_num,
3976			sopt->sopt_name == IP_FW_RESETLOG);
3977		break;
3978
3979	case IP_FW_TABLE_ADD:
3980		{
3981			ipfw_table_entry ent;
3982
3983			error = sooptcopyin(sopt, &ent,
3984			    sizeof(ent), sizeof(ent));
3985			if (error)
3986				break;
3987			error = add_table_entry(ent.tbl, ent.addr,
3988			    ent.masklen, ent.value);
3989		}
3990		break;
3991
3992	case IP_FW_TABLE_DEL:
3993		{
3994			ipfw_table_entry ent;
3995
3996			error = sooptcopyin(sopt, &ent,
3997			    sizeof(ent), sizeof(ent));
3998			if (error)
3999				break;
4000			error = del_table_entry(ent.tbl, ent.addr, ent.masklen);
4001		}
4002		break;
4003
4004	case IP_FW_TABLE_FLUSH:
4005		{
4006			u_int16_t tbl;
4007
4008			error = sooptcopyin(sopt, &tbl,
4009			    sizeof(tbl), sizeof(tbl));
4010			if (error)
4011				break;
4012			error = flush_table(tbl);
4013		}
4014		break;
4015
4016	case IP_FW_TABLE_GETSIZE:
4017		{
4018			u_int32_t tbl, cnt;
4019
4020			if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
4021			    sizeof(tbl))))
4022				break;
4023			if ((error = count_table(tbl, &cnt)))
4024				break;
4025			error = sooptcopyout(sopt, &cnt, sizeof(cnt));
4026		}
4027		break;
4028
4029	case IP_FW_TABLE_LIST:
4030		{
4031			ipfw_table *tbl;
4032
4033			if (sopt->sopt_valsize < sizeof(*tbl)) {
4034				error = EINVAL;
4035				break;
4036			}
4037			size = sopt->sopt_valsize;
4038			tbl = malloc(size, M_TEMP, M_WAITOK);
4039			if (tbl == NULL) {
4040				error = ENOMEM;
4041				break;
4042			}
4043			error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
4044			if (error) {
4045				free(tbl, M_TEMP);
4046				break;
4047			}
4048			tbl->size = (size - sizeof(*tbl)) /
4049			    sizeof(ipfw_table_entry);
4050			error = dump_table(tbl);
4051			if (error) {
4052				free(tbl, M_TEMP);
4053				break;
4054			}
4055			error = sooptcopyout(sopt, tbl, size);
4056			free(tbl, M_TEMP);
4057		}
4058		break;
4059
4060	default:
4061		printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
4062		error = EINVAL;
4063	}
4064
4065	return (error);
4066#undef RULE_MAXSIZE
4067}
4068
4069/**
4070 * dummynet needs a reference to the default rule, because rules can be
4071 * deleted while packets hold a reference to them. When this happens,
4072 * dummynet changes the reference to the default rule (it could well be a
4073 * NULL pointer, but this way we do not need to check for the special
4074 * case, plus here he have info on the default behaviour).
4075 */
4076struct ip_fw *ip_fw_default_rule;
4077
4078/*
4079 * This procedure is only used to handle keepalives. It is invoked
4080 * every dyn_keepalive_period
4081 */
4082static void
4083ipfw_tick(void * __unused unused)
4084{
4085	struct mbuf *m0, *m, *mnext, **mtailp;
4086	int i;
4087	ipfw_dyn_rule *q;
4088
4089	if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0)
4090		goto done;
4091
4092	/*
4093	 * We make a chain of packets to go out here -- not deferring
4094	 * until after we drop the IPFW dynamic rule lock would result
4095	 * in a lock order reversal with the normal packet input -> ipfw
4096	 * call stack.
4097	 */
4098	m0 = NULL;
4099	mtailp = &m0;
4100	IPFW_DYN_LOCK();
4101	for (i = 0 ; i < curr_dyn_buckets ; i++) {
4102		for (q = ipfw_dyn_v[i] ; q ; q = q->next ) {
4103			if (q->dyn_type == O_LIMIT_PARENT)
4104				continue;
4105			if (q->id.proto != IPPROTO_TCP)
4106				continue;
4107			if ( (q->state & BOTH_SYN) != BOTH_SYN)
4108				continue;
4109			if (TIME_LEQ( time_uptime+dyn_keepalive_interval,
4110			    q->expire))
4111				continue;	/* too early */
4112			if (TIME_LEQ(q->expire, time_uptime))
4113				continue;	/* too late, rule expired */
4114
4115			*mtailp = send_pkt(&(q->id), q->ack_rev - 1,
4116				q->ack_fwd, TH_SYN);
4117			if (*mtailp != NULL)
4118				mtailp = &(*mtailp)->m_nextpkt;
4119			*mtailp = send_pkt(&(q->id), q->ack_fwd - 1,
4120				q->ack_rev, 0);
4121			if (*mtailp != NULL)
4122				mtailp = &(*mtailp)->m_nextpkt;
4123		}
4124	}
4125	IPFW_DYN_UNLOCK();
4126	for (m = mnext = m0; m != NULL; m = mnext) {
4127		mnext = m->m_nextpkt;
4128		m->m_nextpkt = NULL;
4129		ip_output(m, NULL, NULL, 0, NULL, NULL);
4130	}
4131done:
4132	callout_reset(&ipfw_timeout, dyn_keepalive_period*hz, ipfw_tick, NULL);
4133}
4134
4135int
4136ipfw_init(void)
4137{
4138	struct ip_fw default_rule;
4139	int error;
4140
4141#ifdef INET6
4142	/* Setup IPv6 fw sysctl tree. */
4143	sysctl_ctx_init(&ip6_fw_sysctl_ctx);
4144	ip6_fw_sysctl_tree = SYSCTL_ADD_NODE(&ip6_fw_sysctl_ctx,
4145		SYSCTL_STATIC_CHILDREN(_net_inet6_ip6), OID_AUTO, "fw",
4146		CTLFLAG_RW | CTLFLAG_SECURE, 0, "Firewall");
4147	SYSCTL_ADD_INT(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4148		OID_AUTO, "deny_unknown_exthdrs", CTLFLAG_RW | CTLFLAG_SECURE,
4149		&fw_deny_unknown_exthdrs, 0,
4150		"Deny packets with unknown IPv6 Extension Headers");
4151#endif
4152
4153	layer3_chain.rules = NULL;
4154	layer3_chain.want_write = 0;
4155	layer3_chain.busy_count = 0;
4156	cv_init(&layer3_chain.cv, "Condition variable for IPFW rw locks");
4157	IPFW_LOCK_INIT(&layer3_chain);
4158	ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule zone",
4159	    sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
4160	    UMA_ALIGN_PTR, 0);
4161	IPFW_DYN_LOCK_INIT();
4162	callout_init(&ipfw_timeout, NET_CALLOUT_MPSAFE);
4163
4164	bzero(&default_rule, sizeof default_rule);
4165
4166	default_rule.act_ofs = 0;
4167	default_rule.rulenum = IPFW_DEFAULT_RULE;
4168	default_rule.cmd_len = 1;
4169	default_rule.set = RESVD_SET;
4170
4171	default_rule.cmd[0].len = 1;
4172	default_rule.cmd[0].opcode =
4173#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
4174				1 ? O_ACCEPT :
4175#endif
4176				O_DENY;
4177
4178	error = add_rule(&layer3_chain, &default_rule);
4179	if (error != 0) {
4180		printf("ipfw2: error %u initializing default rule "
4181			"(support disabled)\n", error);
4182		IPFW_DYN_LOCK_DESTROY();
4183		IPFW_LOCK_DESTROY(&layer3_chain);
4184		return (error);
4185	}
4186
4187	ip_fw_default_rule = layer3_chain.rules;
4188	printf("ipfw2 (+ipv6) initialized, divert %s, "
4189		"rule-based forwarding "
4190#ifdef IPFIREWALL_FORWARD
4191		"enabled, "
4192#else
4193		"disabled, "
4194#endif
4195		"default to %s, logging ",
4196#ifdef IPDIVERT
4197		"enabled",
4198#else
4199		"loadable",
4200#endif
4201		default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
4202
4203#ifdef IPFIREWALL_VERBOSE
4204	fw_verbose = 1;
4205#endif
4206#ifdef IPFIREWALL_VERBOSE_LIMIT
4207	verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
4208#endif
4209	if (fw_verbose == 0)
4210		printf("disabled\n");
4211	else if (verbose_limit == 0)
4212		printf("unlimited\n");
4213	else
4214		printf("limited to %d packets/entry by default\n",
4215		    verbose_limit);
4216
4217	init_tables();
4218	ip_fw_ctl_ptr = ipfw_ctl;
4219	ip_fw_chk_ptr = ipfw_chk;
4220	callout_reset(&ipfw_timeout, hz, ipfw_tick, NULL);
4221
4222	return (0);
4223}
4224
4225void
4226ipfw_destroy(void)
4227{
4228	struct ip_fw *reap;
4229
4230	ip_fw_chk_ptr = NULL;
4231	ip_fw_ctl_ptr = NULL;
4232	callout_drain(&ipfw_timeout);
4233	IPFW_WLOCK(&layer3_chain);
4234	layer3_chain.reap = NULL;
4235	free_chain(&layer3_chain, 1 /* kill default rule */);
4236	reap = layer3_chain.reap, layer3_chain.reap = NULL;
4237	IPFW_WUNLOCK(&layer3_chain);
4238	if (reap != NULL)
4239		reap_rules(reap);
4240	flush_tables();
4241	IPFW_DYN_LOCK_DESTROY();
4242	uma_zdestroy(ipfw_dyn_rule_zone);
4243	IPFW_LOCK_DESTROY(&layer3_chain);
4244
4245#ifdef INET6
4246	/* Free IPv6 fw sysctl tree. */
4247	sysctl_ctx_free(&ip6_fw_sysctl_ctx);
4248#endif
4249
4250	printf("IP firewall unloaded\n");
4251}
4252