ip_fw2.c revision 147758
1/*-
2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 * $FreeBSD: head/sys/netinet/ip_fw2.c 147758 2005-07-03 15:42:22Z mlaier $
26 */
27
28#define        DEB(x)
29#define        DDB(x) x
30
31/*
32 * Implement IP packet firewall (new version)
33 */
34
35#if !defined(KLD_MODULE)
36#include "opt_ipfw.h"
37#include "opt_ipdn.h"
38#include "opt_inet.h"
39#include "opt_inet6.h"
40#include "opt_ipsec.h"
41#ifndef INET
42#error IPFIREWALL requires INET.
43#endif /* INET */
44#endif
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/condvar.h>
49#include <sys/malloc.h>
50#include <sys/mbuf.h>
51#include <sys/kernel.h>
52#include <sys/jail.h>
53#include <sys/module.h>
54#include <sys/proc.h>
55#include <sys/socket.h>
56#include <sys/socketvar.h>
57#include <sys/sysctl.h>
58#include <sys/syslog.h>
59#include <sys/ucred.h>
60#include <net/if.h>
61#include <net/radix.h>
62#include <net/route.h>
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/in_var.h>
66#include <netinet/in_pcb.h>
67#include <netinet/ip.h>
68#include <netinet/ip_var.h>
69#include <netinet/ip_icmp.h>
70#include <netinet/ip_fw.h>
71#include <netinet/ip_divert.h>
72#include <netinet/ip_dummynet.h>
73#include <netinet/tcp.h>
74#include <netinet/tcp_timer.h>
75#include <netinet/tcp_var.h>
76#include <netinet/tcpip.h>
77#include <netinet/udp.h>
78#include <netinet/udp_var.h>
79
80#include <netgraph/ng_ipfw.h>
81
82#include <altq/if_altq.h>
83
84#ifdef IPSEC
85#include <netinet6/ipsec.h>
86#endif
87
88#include <netinet/ip6.h>
89#include <netinet/icmp6.h>
90
91#include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
92
93#include <machine/in_cksum.h>	/* XXX for in_cksum */
94
95/*
96 * set_disable contains one bit per set value (0..31).
97 * If the bit is set, all rules with the corresponding set
98 * are disabled. Set RESVD_SET(31) is reserved for the default rule
99 * and rules that are not deleted by the flush command,
100 * and CANNOT be disabled.
101 * Rules in set RESVD_SET can only be deleted explicitly.
102 */
103static u_int32_t set_disable;
104
105static int fw_verbose;
106static int verbose_limit;
107
108static struct callout ipfw_timeout;
109static uma_zone_t ipfw_dyn_rule_zone;
110#define	IPFW_DEFAULT_RULE	65535
111
112/*
113 * Data structure to cache our ucred related
114 * information. This structure only gets used if
115 * the user specified UID/GID based constraints in
116 * a firewall rule.
117 */
118struct ip_fw_ugid {
119	gid_t		fw_groups[NGROUPS];
120	int		fw_ngroups;
121	uid_t		fw_uid;
122	int		fw_prid;
123};
124
125struct ip_fw_chain {
126	struct ip_fw	*rules;		/* list of rules */
127	struct ip_fw	*reap;		/* list of rules to reap */
128	struct mtx	mtx;		/* lock guarding rule list */
129	int		busy_count;	/* busy count for rw locks */
130	int		want_write;
131	struct cv	cv;
132};
133#define	IPFW_LOCK_INIT(_chain) \
134	mtx_init(&(_chain)->mtx, "IPFW static rules", NULL, \
135		MTX_DEF | MTX_RECURSE)
136#define	IPFW_LOCK_DESTROY(_chain)	mtx_destroy(&(_chain)->mtx)
137#define	IPFW_WLOCK_ASSERT(_chain)	do {				\
138	mtx_assert(&(_chain)->mtx, MA_OWNED);				\
139	NET_ASSERT_GIANT();						\
140} while (0)
141
142static __inline void
143IPFW_RLOCK(struct ip_fw_chain *chain)
144{
145	mtx_lock(&chain->mtx);
146	chain->busy_count++;
147	mtx_unlock(&chain->mtx);
148}
149
150static __inline void
151IPFW_RUNLOCK(struct ip_fw_chain *chain)
152{
153	mtx_lock(&chain->mtx);
154	chain->busy_count--;
155	if (chain->busy_count == 0 && chain->want_write)
156		cv_signal(&chain->cv);
157	mtx_unlock(&chain->mtx);
158}
159
160static __inline void
161IPFW_WLOCK(struct ip_fw_chain *chain)
162{
163	mtx_lock(&chain->mtx);
164	chain->want_write++;
165	while (chain->busy_count > 0)
166		cv_wait(&chain->cv, &chain->mtx);
167}
168
169static __inline void
170IPFW_WUNLOCK(struct ip_fw_chain *chain)
171{
172	chain->want_write--;
173	cv_signal(&chain->cv);
174	mtx_unlock(&chain->mtx);
175}
176
177/*
178 * list of rules for layer 3
179 */
180static struct ip_fw_chain layer3_chain;
181
182MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
183MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
184
185struct table_entry {
186	struct radix_node	rn[2];
187	struct sockaddr_in	addr, mask;
188	u_int32_t		value;
189};
190
191#define	IPFW_TABLES_MAX		128
192static struct ip_fw_table {
193	struct radix_node_head	*rnh;
194	int			modified;
195	in_addr_t		last_addr;
196	int			last_match;
197	u_int32_t		last_value;
198} ipfw_tables[IPFW_TABLES_MAX];
199
200static int fw_debug = 1;
201static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
202
203#ifdef SYSCTL_NODE
204SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
205SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, enable,
206    CTLFLAG_RW | CTLFLAG_SECURE3,
207    &fw_enable, 0, "Enable ipfw");
208SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
209    &autoinc_step, 0, "Rule number autincrement step");
210SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
211    CTLFLAG_RW | CTLFLAG_SECURE3,
212    &fw_one_pass, 0,
213    "Only do a single pass through ipfw when using dummynet(4)");
214SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
215    &fw_debug, 0, "Enable printing of debug ip_fw statements");
216SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
217    CTLFLAG_RW | CTLFLAG_SECURE3,
218    &fw_verbose, 0, "Log matches to ipfw rules");
219SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
220    &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
221
222/*
223 * Description of dynamic rules.
224 *
225 * Dynamic rules are stored in lists accessed through a hash table
226 * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
227 * be modified through the sysctl variable dyn_buckets which is
228 * updated when the table becomes empty.
229 *
230 * XXX currently there is only one list, ipfw_dyn.
231 *
232 * When a packet is received, its address fields are first masked
233 * with the mask defined for the rule, then hashed, then matched
234 * against the entries in the corresponding list.
235 * Dynamic rules can be used for different purposes:
236 *  + stateful rules;
237 *  + enforcing limits on the number of sessions;
238 *  + in-kernel NAT (not implemented yet)
239 *
240 * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
241 * measured in seconds and depending on the flags.
242 *
243 * The total number of dynamic rules is stored in dyn_count.
244 * The max number of dynamic rules is dyn_max. When we reach
245 * the maximum number of rules we do not create anymore. This is
246 * done to avoid consuming too much memory, but also too much
247 * time when searching on each packet (ideally, we should try instead
248 * to put a limit on the length of the list on each bucket...).
249 *
250 * Each dynamic rule holds a pointer to the parent ipfw rule so
251 * we know what action to perform. Dynamic rules are removed when
252 * the parent rule is deleted. XXX we should make them survive.
253 *
254 * There are some limitations with dynamic rules -- we do not
255 * obey the 'randomized match', and we do not do multiple
256 * passes through the firewall. XXX check the latter!!!
257 */
258static ipfw_dyn_rule **ipfw_dyn_v = NULL;
259static u_int32_t dyn_buckets = 256; /* must be power of 2 */
260static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
261
262static struct mtx ipfw_dyn_mtx;		/* mutex guarding dynamic rules */
263#define	IPFW_DYN_LOCK_INIT() \
264	mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
265#define	IPFW_DYN_LOCK_DESTROY()	mtx_destroy(&ipfw_dyn_mtx)
266#define	IPFW_DYN_LOCK()		mtx_lock(&ipfw_dyn_mtx)
267#define	IPFW_DYN_UNLOCK()	mtx_unlock(&ipfw_dyn_mtx)
268#define	IPFW_DYN_LOCK_ASSERT()	mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
269
270/*
271 * Timeouts for various events in handing dynamic rules.
272 */
273static u_int32_t dyn_ack_lifetime = 300;
274static u_int32_t dyn_syn_lifetime = 20;
275static u_int32_t dyn_fin_lifetime = 1;
276static u_int32_t dyn_rst_lifetime = 1;
277static u_int32_t dyn_udp_lifetime = 10;
278static u_int32_t dyn_short_lifetime = 5;
279
280/*
281 * Keepalives are sent if dyn_keepalive is set. They are sent every
282 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
283 * seconds of lifetime of a rule.
284 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
285 * than dyn_keepalive_period.
286 */
287
288static u_int32_t dyn_keepalive_interval = 20;
289static u_int32_t dyn_keepalive_period = 5;
290static u_int32_t dyn_keepalive = 1;	/* do send keepalives */
291
292static u_int32_t static_count;	/* # of static rules */
293static u_int32_t static_len;	/* size in bytes of static rules */
294static u_int32_t dyn_count;		/* # of dynamic rules */
295static u_int32_t dyn_max = 4096;	/* max # of dynamic rules */
296
297SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
298    &dyn_buckets, 0, "Number of dyn. buckets");
299SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
300    &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
301SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
302    &dyn_count, 0, "Number of dyn. rules");
303SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
304    &dyn_max, 0, "Max number of dyn. rules");
305SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
306    &static_count, 0, "Number of static rules");
307SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
308    &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
309SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
310    &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
311SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
312    &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
313SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
314    &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
315SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
316    &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
317SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
318    &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
319SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
320    &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
321
322#endif /* SYSCTL_NODE */
323
324
325/*
326 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
327 * Other macros just cast void * into the appropriate type
328 */
329#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
330#define	TCP(p)		((struct tcphdr *)(p))
331#define	UDP(p)		((struct udphdr *)(p))
332#define	ICMP(p)		((struct icmphdr *)(p))
333#define	ICMP6(p)	((struct icmp6_hdr *)(p))
334
335static __inline int
336icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
337{
338	int type = icmp->icmp_type;
339
340	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
341}
342
343#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
344    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
345
346static int
347is_icmp_query(struct icmphdr *icmp)
348{
349	int type = icmp->icmp_type;
350
351	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
352}
353#undef TT
354
355/*
356 * The following checks use two arrays of 8 or 16 bits to store the
357 * bits that we want set or clear, respectively. They are in the
358 * low and high half of cmd->arg1 or cmd->d[0].
359 *
360 * We scan options and store the bits we find set. We succeed if
361 *
362 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
363 *
364 * The code is sometimes optimized not to store additional variables.
365 */
366
367static int
368flags_match(ipfw_insn *cmd, u_int8_t bits)
369{
370	u_char want_clear;
371	bits = ~bits;
372
373	if ( ((cmd->arg1 & 0xff) & bits) != 0)
374		return 0; /* some bits we want set were clear */
375	want_clear = (cmd->arg1 >> 8) & 0xff;
376	if ( (want_clear & bits) != want_clear)
377		return 0; /* some bits we want clear were set */
378	return 1;
379}
380
381static int
382ipopts_match(struct ip *ip, ipfw_insn *cmd)
383{
384	int optlen, bits = 0;
385	u_char *cp = (u_char *)(ip + 1);
386	int x = (ip->ip_hl << 2) - sizeof (struct ip);
387
388	for (; x > 0; x -= optlen, cp += optlen) {
389		int opt = cp[IPOPT_OPTVAL];
390
391		if (opt == IPOPT_EOL)
392			break;
393		if (opt == IPOPT_NOP)
394			optlen = 1;
395		else {
396			optlen = cp[IPOPT_OLEN];
397			if (optlen <= 0 || optlen > x)
398				return 0; /* invalid or truncated */
399		}
400		switch (opt) {
401
402		default:
403			break;
404
405		case IPOPT_LSRR:
406			bits |= IP_FW_IPOPT_LSRR;
407			break;
408
409		case IPOPT_SSRR:
410			bits |= IP_FW_IPOPT_SSRR;
411			break;
412
413		case IPOPT_RR:
414			bits |= IP_FW_IPOPT_RR;
415			break;
416
417		case IPOPT_TS:
418			bits |= IP_FW_IPOPT_TS;
419			break;
420		}
421	}
422	return (flags_match(cmd, bits));
423}
424
425static int
426tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
427{
428	int optlen, bits = 0;
429	u_char *cp = (u_char *)(tcp + 1);
430	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
431
432	for (; x > 0; x -= optlen, cp += optlen) {
433		int opt = cp[0];
434		if (opt == TCPOPT_EOL)
435			break;
436		if (opt == TCPOPT_NOP)
437			optlen = 1;
438		else {
439			optlen = cp[1];
440			if (optlen <= 0)
441				break;
442		}
443
444		switch (opt) {
445
446		default:
447			break;
448
449		case TCPOPT_MAXSEG:
450			bits |= IP_FW_TCPOPT_MSS;
451			break;
452
453		case TCPOPT_WINDOW:
454			bits |= IP_FW_TCPOPT_WINDOW;
455			break;
456
457		case TCPOPT_SACK_PERMITTED:
458		case TCPOPT_SACK:
459			bits |= IP_FW_TCPOPT_SACK;
460			break;
461
462		case TCPOPT_TIMESTAMP:
463			bits |= IP_FW_TCPOPT_TS;
464			break;
465
466		}
467	}
468	return (flags_match(cmd, bits));
469}
470
471static int
472iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
473{
474	if (ifp == NULL)	/* no iface with this packet, match fails */
475		return 0;
476	/* Check by name or by IP address */
477	if (cmd->name[0] != '\0') { /* match by name */
478		/* Check name */
479		if (cmd->p.glob) {
480			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
481				return(1);
482		} else {
483			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
484				return(1);
485		}
486	} else {
487		struct ifaddr *ia;
488
489		/* XXX lock? */
490		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
491			if (ia->ifa_addr == NULL)
492				continue;
493			if (ia->ifa_addr->sa_family != AF_INET)
494				continue;
495			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
496			    (ia->ifa_addr))->sin_addr.s_addr)
497				return(1);	/* match */
498		}
499	}
500	return(0);	/* no match, fail ... */
501}
502
503/*
504 * The verify_path function checks if a route to the src exists and
505 * if it is reachable via ifp (when provided).
506 *
507 * The 'verrevpath' option checks that the interface that an IP packet
508 * arrives on is the same interface that traffic destined for the
509 * packet's source address would be routed out of.  The 'versrcreach'
510 * option just checks that the source address is reachable via any route
511 * (except default) in the routing table.  These two are a measure to block
512 * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
513 * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
514 * is purposely reminiscent of the Cisco IOS command,
515 *
516 *   ip verify unicast reverse-path
517 *   ip verify unicast source reachable-via any
518 *
519 * which implements the same functionality. But note that syntax is
520 * misleading. The check may be performed on all IP packets whether unicast,
521 * multicast, or broadcast.
522 */
523static int
524verify_path(struct in_addr src, struct ifnet *ifp)
525{
526	struct route ro;
527	struct sockaddr_in *dst;
528
529	bzero(&ro, sizeof(ro));
530
531	dst = (struct sockaddr_in *)&(ro.ro_dst);
532	dst->sin_family = AF_INET;
533	dst->sin_len = sizeof(*dst);
534	dst->sin_addr = src;
535	rtalloc_ign(&ro, RTF_CLONING);
536
537	if (ro.ro_rt == NULL)
538		return 0;
539
540	/* if ifp is provided, check for equality with rtentry */
541	if (ifp != NULL && ro.ro_rt->rt_ifp != ifp) {
542		RTFREE(ro.ro_rt);
543		return 0;
544	}
545
546	/* if no ifp provided, check if rtentry is not default route */
547	if (ifp == NULL &&
548	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
549		RTFREE(ro.ro_rt);
550		return 0;
551	}
552
553	/* or if this is a blackhole/reject route */
554	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
555		RTFREE(ro.ro_rt);
556		return 0;
557	}
558
559	/* found valid route */
560	RTFREE(ro.ro_rt);
561	return 1;
562}
563
564#ifdef INET6
565/*
566 * ipv6 specific rules here...
567 */
568static __inline int
569icmp6type_match (int type, ipfw_insn_u32 *cmd)
570{
571	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
572}
573
574static int
575flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
576{
577	int i;
578	for (i=0; i <= cmd->o.arg1; ++i )
579		if (curr_flow == cmd->d[i] )
580			return 1;
581	return 0;
582}
583
584/* support for IP6_*_ME opcodes */
585static int
586search_ip6_addr_net (struct in6_addr * ip6_addr)
587{
588	struct ifnet *mdc;
589	struct ifaddr *mdc2;
590	struct in6_ifaddr *fdm;
591	struct in6_addr copia;
592
593	TAILQ_FOREACH(mdc, &ifnet, if_link)
594		for (mdc2 = mdc->if_addrlist.tqh_first; mdc2;
595		    mdc2 = mdc2->ifa_list.tqe_next) {
596			if (!mdc2->ifa_addr)
597				continue;
598			if (mdc2->ifa_addr->sa_family == AF_INET6) {
599				fdm = (struct in6_ifaddr *)mdc2;
600				copia = fdm->ia_addr.sin6_addr;
601				/* need for leaving scope_id in the sock_addr */
602				in6_clearscope(&copia);
603				if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia))
604					return 1;
605			}
606		}
607	return 0;
608}
609
610static int
611verify_path6(struct in6_addr *src, struct ifnet *ifp)
612{
613	struct route_in6 ro;
614	struct sockaddr_in6 *dst;
615
616	bzero(&ro, sizeof(ro));
617
618	dst = (struct sockaddr_in6 * )&(ro.ro_dst);
619	dst->sin6_family = AF_INET6;
620	dst->sin6_len = sizeof(*dst);
621	dst->sin6_addr = *src;
622	rtalloc_ign((struct route *)&ro, RTF_CLONING);
623
624	if (ro.ro_rt == NULL)
625		return 0;
626
627	/* if ifp is provided, check for equality with rtentry */
628	if (ifp != NULL && ro.ro_rt->rt_ifp != ifp) {
629		RTFREE(ro.ro_rt);
630		return 0;
631	}
632
633	/* if no ifp provided, check if rtentry is not default route */
634	if (ifp == NULL &&
635	    IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
636		RTFREE(ro.ro_rt);
637		return 0;
638	}
639
640	/* or if this is a blackhole/reject route */
641	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
642		RTFREE(ro.ro_rt);
643		return 0;
644	}
645
646	/* found valid route */
647	RTFREE(ro.ro_rt);
648	return 1;
649
650}
651static __inline int
652hash_packet6(struct ipfw_flow_id *id)
653{
654	u_int32_t i;
655	i = (id->dst_ip6.__u6_addr.__u6_addr32[0]) ^
656	    (id->dst_ip6.__u6_addr.__u6_addr32[1]) ^
657	    (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
658	    (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
659	    (id->dst_port) ^ (id->src_port) ^ (id->flow_id6);
660	return i;
661}
662/* end of ipv6 opcodes */
663
664#endif /* INET6 */
665
666static u_int64_t norule_counter;	/* counter for ipfw_log(NULL...) */
667
668#define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
669#define SNP(buf) buf, sizeof(buf)
670
671/*
672 * We enter here when we have a rule with O_LOG.
673 * XXX this function alone takes about 2Kbytes of code!
674 */
675static void
676ipfw_log(struct ip_fw *f, u_int hlen, struct ether_header *eh,
677	struct mbuf *m, struct ifnet *oif)
678{
679	char *action;
680	int limit_reached = 0;
681	char action2[40], proto[48], fragment[28];
682
683	fragment[0] = '\0';
684	proto[0] = '\0';
685
686	if (f == NULL) {	/* bogus pkt */
687		if (verbose_limit != 0 && norule_counter >= verbose_limit)
688			return;
689		norule_counter++;
690		if (norule_counter == verbose_limit)
691			limit_reached = verbose_limit;
692		action = "Refuse";
693	} else {	/* O_LOG is the first action, find the real one */
694		ipfw_insn *cmd = ACTION_PTR(f);
695		ipfw_insn_log *l = (ipfw_insn_log *)cmd;
696
697		if (l->max_log != 0 && l->log_left == 0)
698			return;
699		l->log_left--;
700		if (l->log_left == 0)
701			limit_reached = l->max_log;
702		cmd += F_LEN(cmd);	/* point to first action */
703		if (cmd->opcode == O_ALTQ) {
704			ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
705
706			snprintf(SNPARGS(action2, 0), "Altq %d",
707				altq->qid);
708			cmd += F_LEN(cmd);
709		}
710		if (cmd->opcode == O_PROB)
711			cmd += F_LEN(cmd);
712
713		action = action2;
714		switch (cmd->opcode) {
715		case O_DENY:
716			action = "Deny";
717			break;
718
719		case O_REJECT:
720			if (cmd->arg1==ICMP_REJECT_RST)
721				action = "Reset";
722			else if (cmd->arg1==ICMP_UNREACH_HOST)
723				action = "Reject";
724			else
725				snprintf(SNPARGS(action2, 0), "Unreach %d",
726					cmd->arg1);
727			break;
728
729		case O_ACCEPT:
730			action = "Accept";
731			break;
732		case O_COUNT:
733			action = "Count";
734			break;
735		case O_DIVERT:
736			snprintf(SNPARGS(action2, 0), "Divert %d",
737				cmd->arg1);
738			break;
739		case O_TEE:
740			snprintf(SNPARGS(action2, 0), "Tee %d",
741				cmd->arg1);
742			break;
743		case O_SKIPTO:
744			snprintf(SNPARGS(action2, 0), "SkipTo %d",
745				cmd->arg1);
746			break;
747		case O_PIPE:
748			snprintf(SNPARGS(action2, 0), "Pipe %d",
749				cmd->arg1);
750			break;
751		case O_QUEUE:
752			snprintf(SNPARGS(action2, 0), "Queue %d",
753				cmd->arg1);
754			break;
755		case O_FORWARD_IP: {
756			ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
757			int len;
758
759			len = snprintf(SNPARGS(action2, 0), "Forward to %s",
760				inet_ntoa(sa->sa.sin_addr));
761			if (sa->sa.sin_port)
762				snprintf(SNPARGS(action2, len), ":%d",
763				    sa->sa.sin_port);
764			}
765			break;
766		case O_NETGRAPH:
767			snprintf(SNPARGS(action2, 0), "Netgraph %d",
768				cmd->arg1);
769			break;
770		case O_NGTEE:
771			snprintf(SNPARGS(action2, 0), "Ngtee %d",
772				cmd->arg1);
773			break;
774		default:
775			action = "UNKNOWN";
776			break;
777		}
778	}
779
780	if (hlen == 0) {	/* non-ip */
781		snprintf(SNPARGS(proto, 0), "MAC");
782	} else {
783		struct ip *ip = mtod(m, struct ip *);
784		/* these three are all aliases to the same thing */
785		struct icmphdr *const icmp = L3HDR(struct icmphdr, ip);
786		struct tcphdr *const tcp = (struct tcphdr *)icmp;
787		struct udphdr *const udp = (struct udphdr *)icmp;
788
789		int ip_off, offset, ip_len;
790
791		int len;
792
793		if (eh != NULL) { /* layer 2 packets are as on the wire */
794			ip_off = ntohs(ip->ip_off);
795			ip_len = ntohs(ip->ip_len);
796		} else {
797			ip_off = ip->ip_off;
798			ip_len = ip->ip_len;
799		}
800		offset = ip_off & IP_OFFMASK;
801		switch (ip->ip_p) {
802		case IPPROTO_TCP:
803			len = snprintf(SNPARGS(proto, 0), "TCP %s",
804			    inet_ntoa(ip->ip_src));
805			if (offset == 0)
806				snprintf(SNPARGS(proto, len), ":%d %s:%d",
807				    ntohs(tcp->th_sport),
808				    inet_ntoa(ip->ip_dst),
809				    ntohs(tcp->th_dport));
810			else
811				snprintf(SNPARGS(proto, len), " %s",
812				    inet_ntoa(ip->ip_dst));
813			break;
814
815		case IPPROTO_UDP:
816			len = snprintf(SNPARGS(proto, 0), "UDP %s",
817				inet_ntoa(ip->ip_src));
818			if (offset == 0)
819				snprintf(SNPARGS(proto, len), ":%d %s:%d",
820				    ntohs(udp->uh_sport),
821				    inet_ntoa(ip->ip_dst),
822				    ntohs(udp->uh_dport));
823			else
824				snprintf(SNPARGS(proto, len), " %s",
825				    inet_ntoa(ip->ip_dst));
826			break;
827
828		case IPPROTO_ICMP:
829			if (offset == 0)
830				len = snprintf(SNPARGS(proto, 0),
831				    "ICMP:%u.%u ",
832				    icmp->icmp_type, icmp->icmp_code);
833			else
834				len = snprintf(SNPARGS(proto, 0), "ICMP ");
835			len += snprintf(SNPARGS(proto, len), "%s",
836			    inet_ntoa(ip->ip_src));
837			snprintf(SNPARGS(proto, len), " %s",
838			    inet_ntoa(ip->ip_dst));
839			break;
840
841		default:
842			len = snprintf(SNPARGS(proto, 0), "P:%d %s", ip->ip_p,
843			    inet_ntoa(ip->ip_src));
844			snprintf(SNPARGS(proto, len), " %s",
845			    inet_ntoa(ip->ip_dst));
846			break;
847		}
848
849		if (ip_off & (IP_MF | IP_OFFMASK))
850			snprintf(SNPARGS(fragment, 0), " (frag %d:%d@%d%s)",
851			     ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
852			     offset << 3,
853			     (ip_off & IP_MF) ? "+" : "");
854	}
855	if (oif || m->m_pkthdr.rcvif)
856		log(LOG_SECURITY | LOG_INFO,
857		    "ipfw: %d %s %s %s via %s%s\n",
858		    f ? f->rulenum : -1,
859		    action, proto, oif ? "out" : "in",
860		    oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
861		    fragment);
862	else
863		log(LOG_SECURITY | LOG_INFO,
864		    "ipfw: %d %s %s [no if info]%s\n",
865		    f ? f->rulenum : -1,
866		    action, proto, fragment);
867	if (limit_reached)
868		log(LOG_SECURITY | LOG_NOTICE,
869		    "ipfw: limit %d reached on entry %d\n",
870		    limit_reached, f ? f->rulenum : -1);
871}
872
873/*
874 * IMPORTANT: the hash function for dynamic rules must be commutative
875 * in source and destination (ip,port), because rules are bidirectional
876 * and we want to find both in the same bucket.
877 */
878static __inline int
879hash_packet(struct ipfw_flow_id *id)
880{
881	u_int32_t i;
882
883#ifdef INET6
884	if (IS_IP6_FLOW_ID(id))
885		i = hash_packet6(id);
886	else
887#endif /* INET6 */
888	i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
889	i &= (curr_dyn_buckets - 1);
890	return i;
891}
892
893/**
894 * unlink a dynamic rule from a chain. prev is a pointer to
895 * the previous one, q is a pointer to the rule to delete,
896 * head is a pointer to the head of the queue.
897 * Modifies q and potentially also head.
898 */
899#define UNLINK_DYN_RULE(prev, head, q) {				\
900	ipfw_dyn_rule *old_q = q;					\
901									\
902	/* remove a refcount to the parent */				\
903	if (q->dyn_type == O_LIMIT)					\
904		q->parent->count--;					\
905	DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
906		(q->id.src_ip), (q->id.src_port),			\
907		(q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); )	\
908	if (prev != NULL)						\
909		prev->next = q = q->next;				\
910	else								\
911		head = q = q->next;					\
912	dyn_count--;							\
913	uma_zfree(ipfw_dyn_rule_zone, old_q); }
914
915#define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
916
917/**
918 * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
919 *
920 * If keep_me == NULL, rules are deleted even if not expired,
921 * otherwise only expired rules are removed.
922 *
923 * The value of the second parameter is also used to point to identify
924 * a rule we absolutely do not want to remove (e.g. because we are
925 * holding a reference to it -- this is the case with O_LIMIT_PARENT
926 * rules). The pointer is only used for comparison, so any non-null
927 * value will do.
928 */
929static void
930remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
931{
932	static u_int32_t last_remove = 0;
933
934#define FORCE (keep_me == NULL)
935
936	ipfw_dyn_rule *prev, *q;
937	int i, pass = 0, max_pass = 0;
938
939	IPFW_DYN_LOCK_ASSERT();
940
941	if (ipfw_dyn_v == NULL || dyn_count == 0)
942		return;
943	/* do not expire more than once per second, it is useless */
944	if (!FORCE && last_remove == time_second)
945		return;
946	last_remove = time_second;
947
948	/*
949	 * because O_LIMIT refer to parent rules, during the first pass only
950	 * remove child and mark any pending LIMIT_PARENT, and remove
951	 * them in a second pass.
952	 */
953next_pass:
954	for (i = 0 ; i < curr_dyn_buckets ; i++) {
955		for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
956			/*
957			 * Logic can become complex here, so we split tests.
958			 */
959			if (q == keep_me)
960				goto next;
961			if (rule != NULL && rule != q->rule)
962				goto next; /* not the one we are looking for */
963			if (q->dyn_type == O_LIMIT_PARENT) {
964				/*
965				 * handle parent in the second pass,
966				 * record we need one.
967				 */
968				max_pass = 1;
969				if (pass == 0)
970					goto next;
971				if (FORCE && q->count != 0 ) {
972					/* XXX should not happen! */
973					printf("ipfw: OUCH! cannot remove rule,"
974					     " count %d\n", q->count);
975				}
976			} else {
977				if (!FORCE &&
978				    !TIME_LEQ( q->expire, time_second ))
979					goto next;
980			}
981             if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
982                     UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
983                     continue;
984             }
985next:
986			prev=q;
987			q=q->next;
988		}
989	}
990	if (pass++ < max_pass)
991		goto next_pass;
992}
993
994
995/**
996 * lookup a dynamic rule.
997 */
998static ipfw_dyn_rule *
999lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
1000	struct tcphdr *tcp)
1001{
1002	/*
1003	 * stateful ipfw extensions.
1004	 * Lookup into dynamic session queue
1005	 */
1006#define MATCH_REVERSE	0
1007#define MATCH_FORWARD	1
1008#define MATCH_NONE	2
1009#define MATCH_UNKNOWN	3
1010	int i, dir = MATCH_NONE;
1011	ipfw_dyn_rule *prev, *q=NULL;
1012
1013	IPFW_DYN_LOCK_ASSERT();
1014
1015	if (ipfw_dyn_v == NULL)
1016		goto done;	/* not found */
1017	i = hash_packet( pkt );
1018	for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
1019		if (q->dyn_type == O_LIMIT_PARENT && q->count)
1020			goto next;
1021		if (TIME_LEQ( q->expire, time_second)) { /* expire entry */
1022			UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
1023			continue;
1024		}
1025		if (pkt->proto == q->id.proto &&
1026		    q->dyn_type != O_LIMIT_PARENT) {
1027			if (IS_IP6_FLOW_ID(pkt)) {
1028			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1029				&(q->id.src_ip6)) &&
1030			    IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1031				&(q->id.dst_ip6)) &&
1032			    pkt->src_port == q->id.src_port &&
1033			    pkt->dst_port == q->id.dst_port ) {
1034				dir = MATCH_FORWARD;
1035				break;
1036			    }
1037			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1038				    &(q->id.dst_ip6)) &&
1039				IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1040				    &(q->id.src_ip6)) &&
1041				pkt->src_port == q->id.dst_port &&
1042				pkt->dst_port == q->id.src_port ) {
1043				    dir = MATCH_REVERSE;
1044				    break;
1045			    }
1046			} else {
1047			    if (pkt->src_ip == q->id.src_ip &&
1048				pkt->dst_ip == q->id.dst_ip &&
1049				pkt->src_port == q->id.src_port &&
1050				pkt->dst_port == q->id.dst_port ) {
1051				    dir = MATCH_FORWARD;
1052				    break;
1053			    }
1054			    if (pkt->src_ip == q->id.dst_ip &&
1055				pkt->dst_ip == q->id.src_ip &&
1056				pkt->src_port == q->id.dst_port &&
1057				pkt->dst_port == q->id.src_port ) {
1058				    dir = MATCH_REVERSE;
1059				    break;
1060			    }
1061			}
1062		}
1063next:
1064		prev = q;
1065		q = q->next;
1066	}
1067	if (q == NULL)
1068		goto done; /* q = NULL, not found */
1069
1070	if ( prev != NULL) { /* found and not in front */
1071		prev->next = q->next;
1072		q->next = ipfw_dyn_v[i];
1073		ipfw_dyn_v[i] = q;
1074	}
1075	if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
1076		u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
1077
1078#define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
1079#define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
1080		q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
1081		switch (q->state) {
1082		case TH_SYN:				/* opening */
1083			q->expire = time_second + dyn_syn_lifetime;
1084			break;
1085
1086		case BOTH_SYN:			/* move to established */
1087		case BOTH_SYN | TH_FIN :	/* one side tries to close */
1088		case BOTH_SYN | (TH_FIN << 8) :
1089 			if (tcp) {
1090#define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
1091			    u_int32_t ack = ntohl(tcp->th_ack);
1092			    if (dir == MATCH_FORWARD) {
1093				if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
1094				    q->ack_fwd = ack;
1095				else { /* ignore out-of-sequence */
1096				    break;
1097				}
1098			    } else {
1099				if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
1100				    q->ack_rev = ack;
1101				else { /* ignore out-of-sequence */
1102				    break;
1103				}
1104			    }
1105			}
1106			q->expire = time_second + dyn_ack_lifetime;
1107			break;
1108
1109		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
1110			if (dyn_fin_lifetime >= dyn_keepalive_period)
1111				dyn_fin_lifetime = dyn_keepalive_period - 1;
1112			q->expire = time_second + dyn_fin_lifetime;
1113			break;
1114
1115		default:
1116#if 0
1117			/*
1118			 * reset or some invalid combination, but can also
1119			 * occur if we use keep-state the wrong way.
1120			 */
1121			if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
1122				printf("invalid state: 0x%x\n", q->state);
1123#endif
1124			if (dyn_rst_lifetime >= dyn_keepalive_period)
1125				dyn_rst_lifetime = dyn_keepalive_period - 1;
1126			q->expire = time_second + dyn_rst_lifetime;
1127			break;
1128		}
1129	} else if (pkt->proto == IPPROTO_UDP) {
1130		q->expire = time_second + dyn_udp_lifetime;
1131	} else {
1132		/* other protocols */
1133		q->expire = time_second + dyn_short_lifetime;
1134	}
1135done:
1136	if (match_direction)
1137		*match_direction = dir;
1138	return q;
1139}
1140
1141static ipfw_dyn_rule *
1142lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
1143	struct tcphdr *tcp)
1144{
1145	ipfw_dyn_rule *q;
1146
1147	IPFW_DYN_LOCK();
1148	q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
1149	if (q == NULL)
1150		IPFW_DYN_UNLOCK();
1151	/* NB: return table locked when q is not NULL */
1152	return q;
1153}
1154
1155static void
1156realloc_dynamic_table(void)
1157{
1158	IPFW_DYN_LOCK_ASSERT();
1159
1160	/*
1161	 * Try reallocation, make sure we have a power of 2 and do
1162	 * not allow more than 64k entries. In case of overflow,
1163	 * default to 1024.
1164	 */
1165
1166	if (dyn_buckets > 65536)
1167		dyn_buckets = 1024;
1168	if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
1169		dyn_buckets = curr_dyn_buckets; /* reset */
1170		return;
1171	}
1172	curr_dyn_buckets = dyn_buckets;
1173	if (ipfw_dyn_v != NULL)
1174		free(ipfw_dyn_v, M_IPFW);
1175	for (;;) {
1176		ipfw_dyn_v = malloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
1177		       M_IPFW, M_NOWAIT | M_ZERO);
1178		if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
1179			break;
1180		curr_dyn_buckets /= 2;
1181	}
1182}
1183
1184/**
1185 * Install state of type 'type' for a dynamic session.
1186 * The hash table contains two type of rules:
1187 * - regular rules (O_KEEP_STATE)
1188 * - rules for sessions with limited number of sess per user
1189 *   (O_LIMIT). When they are created, the parent is
1190 *   increased by 1, and decreased on delete. In this case,
1191 *   the third parameter is the parent rule and not the chain.
1192 * - "parent" rules for the above (O_LIMIT_PARENT).
1193 */
1194static ipfw_dyn_rule *
1195add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
1196{
1197	ipfw_dyn_rule *r;
1198	int i;
1199
1200	IPFW_DYN_LOCK_ASSERT();
1201
1202	if (ipfw_dyn_v == NULL ||
1203	    (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
1204		realloc_dynamic_table();
1205		if (ipfw_dyn_v == NULL)
1206			return NULL; /* failed ! */
1207	}
1208	i = hash_packet(id);
1209
1210	r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
1211	if (r == NULL) {
1212		printf ("ipfw: sorry cannot allocate state\n");
1213		return NULL;
1214	}
1215
1216	/* increase refcount on parent, and set pointer */
1217	if (dyn_type == O_LIMIT) {
1218		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
1219		if ( parent->dyn_type != O_LIMIT_PARENT)
1220			panic("invalid parent");
1221		parent->count++;
1222		r->parent = parent;
1223		rule = parent->rule;
1224	}
1225
1226	r->id = *id;
1227	r->expire = time_second + dyn_syn_lifetime;
1228	r->rule = rule;
1229	r->dyn_type = dyn_type;
1230	r->pcnt = r->bcnt = 0;
1231	r->count = 0;
1232
1233	r->bucket = i;
1234	r->next = ipfw_dyn_v[i];
1235	ipfw_dyn_v[i] = r;
1236	dyn_count++;
1237	DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1238	   dyn_type,
1239	   (r->id.src_ip), (r->id.src_port),
1240	   (r->id.dst_ip), (r->id.dst_port),
1241	   dyn_count ); )
1242	return r;
1243}
1244
1245/**
1246 * lookup dynamic parent rule using pkt and rule as search keys.
1247 * If the lookup fails, then install one.
1248 */
1249static ipfw_dyn_rule *
1250lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
1251{
1252	ipfw_dyn_rule *q;
1253	int i;
1254
1255	IPFW_DYN_LOCK_ASSERT();
1256
1257	if (ipfw_dyn_v) {
1258		int is_v6 = IS_IP6_FLOW_ID(pkt);
1259		i = hash_packet( pkt );
1260		for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
1261			if (q->dyn_type == O_LIMIT_PARENT &&
1262			    rule== q->rule &&
1263			    pkt->proto == q->id.proto &&
1264			    pkt->src_port == q->id.src_port &&
1265			    pkt->dst_port == q->id.dst_port &&
1266			    (
1267				(is_v6 &&
1268				 IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1269					&(q->id.src_ip6)) &&
1270				 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1271					&(q->id.dst_ip6))) ||
1272				(!is_v6 &&
1273				 pkt->src_ip == q->id.src_ip &&
1274				 pkt->dst_ip == q->id.dst_ip)
1275			    )
1276			) {
1277				q->expire = time_second + dyn_short_lifetime;
1278				DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
1279				return q;
1280			}
1281	}
1282	return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
1283}
1284
1285/**
1286 * Install dynamic state for rule type cmd->o.opcode
1287 *
1288 * Returns 1 (failure) if state is not installed because of errors or because
1289 * session limitations are enforced.
1290 */
1291static int
1292install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
1293	struct ip_fw_args *args)
1294{
1295	static int last_log;
1296
1297	ipfw_dyn_rule *q;
1298
1299	DEB(printf("ipfw: install state type %d 0x%08x %u -> 0x%08x %u\n",
1300	    cmd->o.opcode,
1301	    (args->f_id.src_ip), (args->f_id.src_port),
1302	    (args->f_id.dst_ip), (args->f_id.dst_port) );)
1303
1304	IPFW_DYN_LOCK();
1305
1306	q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1307
1308	if (q != NULL) { /* should never occur */
1309		if (last_log != time_second) {
1310			last_log = time_second;
1311			printf("ipfw: install_state: entry already present, done\n");
1312		}
1313		IPFW_DYN_UNLOCK();
1314		return 0;
1315	}
1316
1317	if (dyn_count >= dyn_max)
1318		/*
1319		 * Run out of slots, try to remove any expired rule.
1320		 */
1321		remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
1322
1323	if (dyn_count >= dyn_max) {
1324		if (last_log != time_second) {
1325			last_log = time_second;
1326			printf("ipfw: install_state: Too many dynamic rules\n");
1327		}
1328		IPFW_DYN_UNLOCK();
1329		return 1; /* cannot install, notify caller */
1330	}
1331
1332	switch (cmd->o.opcode) {
1333	case O_KEEP_STATE: /* bidir rule */
1334		add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
1335		break;
1336
1337	case O_LIMIT: /* limit number of sessions */
1338	    {
1339		u_int16_t limit_mask = cmd->limit_mask;
1340		struct ipfw_flow_id id;
1341		ipfw_dyn_rule *parent;
1342
1343		DEB(printf("ipfw: installing dyn-limit rule %d\n",
1344		    cmd->conn_limit);)
1345
1346		id.dst_ip = id.src_ip = 0;
1347		id.dst_port = id.src_port = 0;
1348		id.proto = args->f_id.proto;
1349
1350		if (IS_IP6_FLOW_ID (&(args->f_id))) {
1351			if (limit_mask & DYN_SRC_ADDR)
1352				id.src_ip6 = args->f_id.src_ip6;
1353			if (limit_mask & DYN_DST_ADDR)
1354				id.dst_ip6 = args->f_id.dst_ip6;
1355		} else {
1356			if (limit_mask & DYN_SRC_ADDR)
1357				id.src_ip = args->f_id.src_ip;
1358			if (limit_mask & DYN_DST_ADDR)
1359				id.dst_ip = args->f_id.dst_ip;
1360		}
1361		if (limit_mask & DYN_SRC_PORT)
1362			id.src_port = args->f_id.src_port;
1363		if (limit_mask & DYN_DST_PORT)
1364			id.dst_port = args->f_id.dst_port;
1365		parent = lookup_dyn_parent(&id, rule);
1366		if (parent == NULL) {
1367			printf("ipfw: add parent failed\n");
1368			return 1;
1369		}
1370		if (parent->count >= cmd->conn_limit) {
1371			/*
1372			 * See if we can remove some expired rule.
1373			 */
1374			remove_dyn_rule(rule, parent);
1375			if (parent->count >= cmd->conn_limit) {
1376				if (fw_verbose && last_log != time_second) {
1377					last_log = time_second;
1378					log(LOG_SECURITY | LOG_DEBUG,
1379					    "drop session, too many entries\n");
1380				}
1381				IPFW_DYN_UNLOCK();
1382				return 1;
1383			}
1384		}
1385		add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1386	    }
1387		break;
1388	default:
1389		printf("ipfw: unknown dynamic rule type %u\n", cmd->o.opcode);
1390		IPFW_DYN_UNLOCK();
1391		return 1;
1392	}
1393	lookup_dyn_rule_locked(&args->f_id, NULL, NULL); /* XXX just set lifetime */
1394	IPFW_DYN_UNLOCK();
1395	return 0;
1396}
1397
1398/*
1399 * Generate a TCP packet, containing either a RST or a keepalive.
1400 * When flags & TH_RST, we are sending a RST packet, because of a
1401 * "reset" action matched the packet.
1402 * Otherwise we are sending a keepalive, and flags & TH_
1403 */
1404static struct mbuf *
1405send_pkt(struct ipfw_flow_id *id, u_int32_t seq, u_int32_t ack, int flags)
1406{
1407	struct mbuf *m;
1408	struct ip *ip;
1409	struct tcphdr *tcp;
1410
1411	MGETHDR(m, M_DONTWAIT, MT_HEADER);
1412	if (m == 0)
1413		return (NULL);
1414	m->m_pkthdr.rcvif = (struct ifnet *)0;
1415	m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1416	m->m_data += max_linkhdr;
1417
1418	ip = mtod(m, struct ip *);
1419	bzero(ip, m->m_len);
1420	tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1421	ip->ip_p = IPPROTO_TCP;
1422	tcp->th_off = 5;
1423	/*
1424	 * Assume we are sending a RST (or a keepalive in the reverse
1425	 * direction), swap src and destination addresses and ports.
1426	 */
1427	ip->ip_src.s_addr = htonl(id->dst_ip);
1428	ip->ip_dst.s_addr = htonl(id->src_ip);
1429	tcp->th_sport = htons(id->dst_port);
1430	tcp->th_dport = htons(id->src_port);
1431	if (flags & TH_RST) {	/* we are sending a RST */
1432		if (flags & TH_ACK) {
1433			tcp->th_seq = htonl(ack);
1434			tcp->th_ack = htonl(0);
1435			tcp->th_flags = TH_RST;
1436		} else {
1437			if (flags & TH_SYN)
1438				seq++;
1439			tcp->th_seq = htonl(0);
1440			tcp->th_ack = htonl(seq);
1441			tcp->th_flags = TH_RST | TH_ACK;
1442		}
1443	} else {
1444		/*
1445		 * We are sending a keepalive. flags & TH_SYN determines
1446		 * the direction, forward if set, reverse if clear.
1447		 * NOTE: seq and ack are always assumed to be correct
1448		 * as set by the caller. This may be confusing...
1449		 */
1450		if (flags & TH_SYN) {
1451			/*
1452			 * we have to rewrite the correct addresses!
1453			 */
1454			ip->ip_dst.s_addr = htonl(id->dst_ip);
1455			ip->ip_src.s_addr = htonl(id->src_ip);
1456			tcp->th_dport = htons(id->dst_port);
1457			tcp->th_sport = htons(id->src_port);
1458		}
1459		tcp->th_seq = htonl(seq);
1460		tcp->th_ack = htonl(ack);
1461		tcp->th_flags = TH_ACK;
1462	}
1463	/*
1464	 * set ip_len to the payload size so we can compute
1465	 * the tcp checksum on the pseudoheader
1466	 * XXX check this, could save a couple of words ?
1467	 */
1468	ip->ip_len = htons(sizeof(struct tcphdr));
1469	tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1470	/*
1471	 * now fill fields left out earlier
1472	 */
1473	ip->ip_ttl = ip_defttl;
1474	ip->ip_len = m->m_pkthdr.len;
1475	m->m_flags |= M_SKIP_FIREWALL;
1476	return (m);
1477}
1478
1479/*
1480 * sends a reject message, consuming the mbuf passed as an argument.
1481 */
1482static void
1483send_reject(struct ip_fw_args *args, int code, int offset, int ip_len)
1484{
1485
1486	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1487		/* We need the IP header in host order for icmp_error(). */
1488		if (args->eh != NULL) {
1489			struct ip *ip = mtod(args->m, struct ip *);
1490			ip->ip_len = ntohs(ip->ip_len);
1491			ip->ip_off = ntohs(ip->ip_off);
1492		}
1493		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1494	} else if (offset == 0 && args->f_id.proto == IPPROTO_TCP) {
1495		struct tcphdr *const tcp =
1496		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1497		if ( (tcp->th_flags & TH_RST) == 0) {
1498			struct mbuf *m;
1499			m = send_pkt(&(args->f_id), ntohl(tcp->th_seq),
1500				ntohl(tcp->th_ack),
1501				tcp->th_flags | TH_RST);
1502			if (m != NULL)
1503				ip_output(m, NULL, NULL, 0, NULL, NULL);
1504		}
1505		m_freem(args->m);
1506	} else
1507		m_freem(args->m);
1508	args->m = NULL;
1509}
1510
1511/**
1512 *
1513 * Given an ip_fw *, lookup_next_rule will return a pointer
1514 * to the next rule, which can be either the jump
1515 * target (for skipto instructions) or the next one in the list (in
1516 * all other cases including a missing jump target).
1517 * The result is also written in the "next_rule" field of the rule.
1518 * Backward jumps are not allowed, so start looking from the next
1519 * rule...
1520 *
1521 * This never returns NULL -- in case we do not have an exact match,
1522 * the next rule is returned. When the ruleset is changed,
1523 * pointers are flushed so we are always correct.
1524 */
1525
1526static struct ip_fw *
1527lookup_next_rule(struct ip_fw *me)
1528{
1529	struct ip_fw *rule = NULL;
1530	ipfw_insn *cmd;
1531
1532	/* look for action, in case it is a skipto */
1533	cmd = ACTION_PTR(me);
1534	if (cmd->opcode == O_LOG)
1535		cmd += F_LEN(cmd);
1536	if (cmd->opcode == O_ALTQ)
1537		cmd += F_LEN(cmd);
1538	if ( cmd->opcode == O_SKIPTO )
1539		for (rule = me->next; rule ; rule = rule->next)
1540			if (rule->rulenum >= cmd->arg1)
1541				break;
1542	if (rule == NULL)			/* failure or not a skipto */
1543		rule = me->next;
1544	me->next_rule = rule;
1545	return rule;
1546}
1547
1548static void
1549init_tables(void)
1550{
1551	int i;
1552
1553	for (i = 0; i < IPFW_TABLES_MAX; i++) {
1554		rn_inithead((void **)&ipfw_tables[i].rnh, 32);
1555		ipfw_tables[i].modified = 1;
1556	}
1557}
1558
1559static int
1560add_table_entry(u_int16_t tbl, in_addr_t addr, u_int8_t mlen, u_int32_t value)
1561{
1562	struct radix_node_head *rnh;
1563	struct table_entry *ent;
1564
1565	if (tbl >= IPFW_TABLES_MAX)
1566		return (EINVAL);
1567	rnh = ipfw_tables[tbl].rnh;
1568	ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
1569	if (ent == NULL)
1570		return (ENOMEM);
1571	ent->value = value;
1572	ent->addr.sin_len = ent->mask.sin_len = 8;
1573	ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1574	ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
1575	RADIX_NODE_HEAD_LOCK(rnh);
1576	if (rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent) ==
1577	    NULL) {
1578		RADIX_NODE_HEAD_UNLOCK(rnh);
1579		free(ent, M_IPFW_TBL);
1580		return (EEXIST);
1581	}
1582	ipfw_tables[tbl].modified = 1;
1583	RADIX_NODE_HEAD_UNLOCK(rnh);
1584	return (0);
1585}
1586
1587static int
1588del_table_entry(u_int16_t tbl, in_addr_t addr, u_int8_t mlen)
1589{
1590	struct radix_node_head *rnh;
1591	struct table_entry *ent;
1592	struct sockaddr_in sa, mask;
1593
1594	if (tbl >= IPFW_TABLES_MAX)
1595		return (EINVAL);
1596	rnh = ipfw_tables[tbl].rnh;
1597	sa.sin_len = mask.sin_len = 8;
1598	mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1599	sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
1600	RADIX_NODE_HEAD_LOCK(rnh);
1601	ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
1602	if (ent == NULL) {
1603		RADIX_NODE_HEAD_UNLOCK(rnh);
1604		return (ESRCH);
1605	}
1606	ipfw_tables[tbl].modified = 1;
1607	RADIX_NODE_HEAD_UNLOCK(rnh);
1608	free(ent, M_IPFW_TBL);
1609	return (0);
1610}
1611
1612static int
1613flush_table_entry(struct radix_node *rn, void *arg)
1614{
1615	struct radix_node_head * const rnh = arg;
1616	struct table_entry *ent;
1617
1618	ent = (struct table_entry *)
1619	    rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
1620	if (ent != NULL)
1621		free(ent, M_IPFW_TBL);
1622	return (0);
1623}
1624
1625static int
1626flush_table(u_int16_t tbl)
1627{
1628	struct radix_node_head *rnh;
1629
1630	if (tbl >= IPFW_TABLES_MAX)
1631		return (EINVAL);
1632	rnh = ipfw_tables[tbl].rnh;
1633	RADIX_NODE_HEAD_LOCK(rnh);
1634	rnh->rnh_walktree(rnh, flush_table_entry, rnh);
1635	ipfw_tables[tbl].modified = 1;
1636	RADIX_NODE_HEAD_UNLOCK(rnh);
1637	return (0);
1638}
1639
1640static void
1641flush_tables(void)
1642{
1643	u_int16_t tbl;
1644
1645	for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
1646		flush_table(tbl);
1647}
1648
1649static int
1650lookup_table(u_int16_t tbl, in_addr_t addr, u_int32_t *val)
1651{
1652	struct radix_node_head *rnh;
1653	struct ip_fw_table *table;
1654	struct table_entry *ent;
1655	struct sockaddr_in sa;
1656	int last_match;
1657
1658	if (tbl >= IPFW_TABLES_MAX)
1659		return (0);
1660	table = &ipfw_tables[tbl];
1661	rnh = table->rnh;
1662	RADIX_NODE_HEAD_LOCK(rnh);
1663	if (addr == table->last_addr && !table->modified) {
1664		last_match = table->last_match;
1665		if (last_match)
1666			*val = table->last_value;
1667		RADIX_NODE_HEAD_UNLOCK(rnh);
1668		return (last_match);
1669	}
1670	table->modified = 0;
1671	sa.sin_len = 8;
1672	sa.sin_addr.s_addr = addr;
1673	ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
1674	table->last_addr = addr;
1675	if (ent != NULL) {
1676		table->last_value = *val = ent->value;
1677		table->last_match = 1;
1678		RADIX_NODE_HEAD_UNLOCK(rnh);
1679		return (1);
1680	}
1681	table->last_match = 0;
1682	RADIX_NODE_HEAD_UNLOCK(rnh);
1683	return (0);
1684}
1685
1686static int
1687count_table_entry(struct radix_node *rn, void *arg)
1688{
1689	u_int32_t * const cnt = arg;
1690
1691	(*cnt)++;
1692	return (0);
1693}
1694
1695static int
1696count_table(u_int32_t tbl, u_int32_t *cnt)
1697{
1698	struct radix_node_head *rnh;
1699
1700	if (tbl >= IPFW_TABLES_MAX)
1701		return (EINVAL);
1702	rnh = ipfw_tables[tbl].rnh;
1703	*cnt = 0;
1704	RADIX_NODE_HEAD_LOCK(rnh);
1705	rnh->rnh_walktree(rnh, count_table_entry, cnt);
1706	RADIX_NODE_HEAD_UNLOCK(rnh);
1707	return (0);
1708}
1709
1710static int
1711dump_table_entry(struct radix_node *rn, void *arg)
1712{
1713	struct table_entry * const n = (struct table_entry *)rn;
1714	ipfw_table * const tbl = arg;
1715	ipfw_table_entry *ent;
1716
1717	if (tbl->cnt == tbl->size)
1718		return (1);
1719	ent = &tbl->ent[tbl->cnt];
1720	ent->tbl = tbl->tbl;
1721	if (in_nullhost(n->mask.sin_addr))
1722		ent->masklen = 0;
1723	else
1724		ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
1725	ent->addr = n->addr.sin_addr.s_addr;
1726	ent->value = n->value;
1727	tbl->cnt++;
1728	return (0);
1729}
1730
1731static int
1732dump_table(ipfw_table *tbl)
1733{
1734	struct radix_node_head *rnh;
1735
1736	if (tbl->tbl >= IPFW_TABLES_MAX)
1737		return (EINVAL);
1738	rnh = ipfw_tables[tbl->tbl].rnh;
1739	tbl->cnt = 0;
1740	RADIX_NODE_HEAD_LOCK(rnh);
1741	rnh->rnh_walktree(rnh, dump_table_entry, tbl);
1742	RADIX_NODE_HEAD_UNLOCK(rnh);
1743	return (0);
1744}
1745
1746static void
1747fill_ugid_cache(struct inpcb *inp, struct ip_fw_ugid *ugp)
1748{
1749	struct ucred *cr;
1750
1751	if (inp->inp_socket != NULL) {
1752		cr = inp->inp_socket->so_cred;
1753		ugp->fw_prid = jailed(cr) ?
1754		    cr->cr_prison->pr_id : -1;
1755		ugp->fw_uid = cr->cr_uid;
1756		ugp->fw_ngroups = cr->cr_ngroups;
1757		bcopy(cr->cr_groups, ugp->fw_groups,
1758		    sizeof(ugp->fw_groups));
1759	}
1760}
1761
1762static int
1763check_uidgid(ipfw_insn_u32 *insn,
1764	int proto, struct ifnet *oif,
1765	struct in_addr dst_ip, u_int16_t dst_port,
1766	struct in_addr src_ip, u_int16_t src_port,
1767	struct ip_fw_ugid *ugp, int *lookup, struct inpcb *inp)
1768{
1769	struct inpcbinfo *pi;
1770	int wildcard;
1771	struct inpcb *pcb;
1772	int match;
1773	gid_t *gp;
1774
1775	/*
1776	 * Check to see if the UDP or TCP stack supplied us with
1777	 * the PCB. If so, rather then holding a lock and looking
1778	 * up the PCB, we can use the one that was supplied.
1779	 */
1780	if (inp && *lookup == 0) {
1781		INP_LOCK_ASSERT(inp);
1782		if (inp->inp_socket != NULL) {
1783			fill_ugid_cache(inp, ugp);
1784			*lookup = 1;
1785		}
1786	}
1787	/*
1788	 * If we have already been here and the packet has no
1789	 * PCB entry associated with it, then we can safely
1790	 * assume that this is a no match.
1791	 */
1792	if (*lookup == -1)
1793		return (0);
1794	if (proto == IPPROTO_TCP) {
1795		wildcard = 0;
1796		pi = &tcbinfo;
1797	} else if (proto == IPPROTO_UDP) {
1798		wildcard = 1;
1799		pi = &udbinfo;
1800	} else
1801		return 0;
1802	match = 0;
1803	if (*lookup == 0) {
1804		INP_INFO_RLOCK(pi);
1805		pcb =  (oif) ?
1806			in_pcblookup_hash(pi,
1807				dst_ip, htons(dst_port),
1808				src_ip, htons(src_port),
1809				wildcard, oif) :
1810			in_pcblookup_hash(pi,
1811				src_ip, htons(src_port),
1812				dst_ip, htons(dst_port),
1813				wildcard, NULL);
1814		if (pcb != NULL) {
1815			INP_LOCK(pcb);
1816			if (pcb->inp_socket != NULL) {
1817				fill_ugid_cache(pcb, ugp);
1818				*lookup = 1;
1819			}
1820			INP_UNLOCK(pcb);
1821		}
1822		INP_INFO_RUNLOCK(pi);
1823		if (*lookup == 0) {
1824			/*
1825			 * If the lookup did not yield any results, there
1826			 * is no sense in coming back and trying again. So
1827			 * we can set lookup to -1 and ensure that we wont
1828			 * bother the pcb system again.
1829			 */
1830			*lookup = -1;
1831			return (0);
1832		}
1833	}
1834	if (insn->o.opcode == O_UID)
1835		match = (ugp->fw_uid == (uid_t)insn->d[0]);
1836	else if (insn->o.opcode == O_GID) {
1837		for (gp = ugp->fw_groups;
1838			gp < &ugp->fw_groups[ugp->fw_ngroups]; gp++)
1839			if (*gp == (gid_t)insn->d[0]) {
1840				match = 1;
1841				break;
1842			}
1843	} else if (insn->o.opcode == O_JAIL)
1844		match = (ugp->fw_prid == (int)insn->d[0]);
1845	return match;
1846}
1847
1848/*
1849 * The main check routine for the firewall.
1850 *
1851 * All arguments are in args so we can modify them and return them
1852 * back to the caller.
1853 *
1854 * Parameters:
1855 *
1856 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
1857 *		Starts with the IP header.
1858 *	args->eh (in)	Mac header if present, or NULL for layer3 packet.
1859 *	args->oif	Outgoing interface, or NULL if packet is incoming.
1860 *		The incoming interface is in the mbuf. (in)
1861 *	args->divert_rule (in/out)
1862 *		Skip up to the first rule past this rule number;
1863 *		upon return, non-zero port number for divert or tee.
1864 *
1865 *	args->rule	Pointer to the last matching rule (in/out)
1866 *	args->next_hop	Socket we are forwarding to (out).
1867 *	args->f_id	Addresses grabbed from the packet (out)
1868 * 	args->cookie	a cookie depending on rule action
1869 *
1870 * Return value:
1871 *
1872 *	IP_FW_PASS	the packet must be accepted
1873 *	IP_FW_DENY	the packet must be dropped
1874 *	IP_FW_DIVERT	divert packet, port in m_tag
1875 *	IP_FW_TEE	tee packet, port in m_tag
1876 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
1877 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
1878 *
1879 */
1880
1881int
1882ipfw_chk(struct ip_fw_args *args)
1883{
1884	/*
1885	 * Local variables hold state during the processing of a packet.
1886	 *
1887	 * IMPORTANT NOTE: to speed up the processing of rules, there
1888	 * are some assumption on the values of the variables, which
1889	 * are documented here. Should you change them, please check
1890	 * the implementation of the various instructions to make sure
1891	 * that they still work.
1892	 *
1893	 * args->eh	The MAC header. It is non-null for a layer2
1894	 *	packet, it is NULL for a layer-3 packet.
1895	 *
1896	 * m | args->m	Pointer to the mbuf, as received from the caller.
1897	 *	It may change if ipfw_chk() does an m_pullup, or if it
1898	 *	consumes the packet because it calls send_reject().
1899	 *	XXX This has to change, so that ipfw_chk() never modifies
1900	 *	or consumes the buffer.
1901	 * ip	is simply an alias of the value of m, and it is kept
1902	 *	in sync with it (the packet is	supposed to start with
1903	 *	the ip header).
1904	 */
1905	struct mbuf *m = args->m;
1906	struct ip *ip = mtod(m, struct ip *);
1907
1908	/*
1909	 * For rules which contain uid/gid or jail constraints, cache
1910	 * a copy of the users credentials after the pcb lookup has been
1911	 * executed. This will speed up the processing of rules with
1912	 * these types of constraints, as well as decrease contention
1913	 * on pcb related locks.
1914	 */
1915	struct ip_fw_ugid fw_ugid_cache;
1916	int ugid_lookup = 0;
1917
1918	/*
1919	 * divinput_flags	If non-zero, set to the IP_FW_DIVERT_*_FLAG
1920	 *	associated with a packet input on a divert socket.  This
1921	 *	will allow to distinguish traffic and its direction when
1922	 *	it originates from a divert socket.
1923	 */
1924	u_int divinput_flags = 0;
1925
1926	/*
1927	 * oif | args->oif	If NULL, ipfw_chk has been called on the
1928	 *	inbound path (ether_input, bdg_forward, ip_input).
1929	 *	If non-NULL, ipfw_chk has been called on the outbound path
1930	 *	(ether_output, ip_output).
1931	 */
1932	struct ifnet *oif = args->oif;
1933
1934	struct ip_fw *f = NULL;		/* matching rule */
1935	int retval = 0;
1936
1937	/*
1938	 * hlen	The length of the IP header.
1939	 */
1940	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
1941
1942	/*
1943	 * offset	The offset of a fragment. offset != 0 means that
1944	 *	we have a fragment at this offset of an IPv4 packet.
1945	 *	offset == 0 means that (if this is an IPv4 packet)
1946	 *	this is the first or only fragment.
1947	 */
1948	u_short offset = 0;
1949
1950	/*
1951	 * Local copies of addresses. They are only valid if we have
1952	 * an IP packet.
1953	 *
1954	 * proto	The protocol. Set to 0 for non-ip packets,
1955	 *	or to the protocol read from the packet otherwise.
1956	 *	proto != 0 means that we have an IPv4 packet.
1957	 *
1958	 * src_port, dst_port	port numbers, in HOST format. Only
1959	 *	valid for TCP and UDP packets.
1960	 *
1961	 * src_ip, dst_ip	ip addresses, in NETWORK format.
1962	 *	Only valid for IPv4 packets.
1963	 */
1964	u_int8_t proto;
1965	u_int16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
1966	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
1967	u_int16_t ip_len=0;
1968	int pktlen;
1969
1970	/*
1971	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
1972	 * 	MATCH_NONE when checked and not matched (q = NULL),
1973	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
1974	 */
1975	int dyn_dir = MATCH_UNKNOWN;
1976	ipfw_dyn_rule *q = NULL;
1977	struct ip_fw_chain *chain = &layer3_chain;
1978	struct m_tag *mtag;
1979
1980	/*
1981	 * We store in ulp a pointer to the upper layer protocol header.
1982	 * In the ipv4 case this is easy to determine from the header,
1983	 * but for ipv6 we might have some additional headers in the middle.
1984	 * ulp is NULL if not found.
1985	 */
1986	void *ulp = NULL;		/* upper layer protocol pointer. */
1987	/* XXX ipv6 variables */
1988	int is_ipv6 = 0;
1989	u_int16_t ext_hd = 0;	/* bits vector for extension header filtering */
1990	/* end of ipv6 variables */
1991	int is_ipv4 = 0;
1992
1993	if (m->m_flags & M_SKIP_FIREWALL)
1994		return (IP_FW_PASS);	/* accept */
1995
1996	pktlen = m->m_pkthdr.len;
1997	proto = args->f_id.proto = 0;	/* mark f_id invalid */
1998
1999/*
2000 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
2001 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
2002 * pointer might become stale after other pullups (but we never use it
2003 * this way).
2004 */
2005#define PULLUP_TO(len, p, T)						\
2006do {									\
2007	int x = (len) + sizeof(T);					\
2008	if ((m)->m_len < x) {						\
2009		args->m = m = m_pullup(m, x);				\
2010		if (m == NULL)						\
2011			goto pullup_failed;				\
2012	}								\
2013	p = (mtod(m, char *) + (len));					\
2014} while (0)
2015
2016	/* Identify IP packets and fill up variables. */
2017	if (pktlen >= sizeof(struct ip6_hdr) &&
2018	    (args->eh == NULL || ntohs(args->eh->ether_type)==ETHERTYPE_IPV6) &&
2019	    mtod(m, struct ip *)->ip_v == 6) {
2020		is_ipv6 = 1;
2021		args->f_id.addr_type = 6;
2022		hlen = sizeof(struct ip6_hdr);
2023		proto = mtod(m, struct ip6_hdr *)->ip6_nxt;
2024
2025		/* Search extension headers to find upper layer protocols */
2026		while (ulp == NULL) {
2027			switch (proto) {
2028			case IPPROTO_ICMPV6:
2029				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
2030				args->f_id.flags = ICMP6(ulp)->icmp6_type;
2031				break;
2032
2033			case IPPROTO_TCP:
2034				PULLUP_TO(hlen, ulp, struct tcphdr);
2035				dst_port = TCP(ulp)->th_dport;
2036				src_port = TCP(ulp)->th_sport;
2037				args->f_id.flags = TCP(ulp)->th_flags;
2038				break;
2039
2040			case IPPROTO_UDP:
2041				PULLUP_TO(hlen, ulp, struct udphdr);
2042				dst_port = UDP(ulp)->uh_dport;
2043				src_port = UDP(ulp)->uh_sport;
2044				break;
2045
2046			case IPPROTO_HOPOPTS:
2047				PULLUP_TO(hlen, ulp, struct ip6_hbh);
2048				ext_hd |= EXT_HOPOPTS;
2049				hlen += sizeof(struct ip6_hbh);
2050				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2051				ulp = NULL;
2052				break;
2053
2054			case IPPROTO_ROUTING:
2055				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
2056				ext_hd |= EXT_ROUTING;
2057				hlen += sizeof(struct ip6_rthdr);
2058				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
2059				ulp = NULL;
2060				break;
2061
2062			case IPPROTO_FRAGMENT:
2063				PULLUP_TO(hlen, ulp, struct ip6_frag);
2064				ext_hd |= EXT_FRAGMENT;
2065				hlen += sizeof (struct ip6_frag);
2066				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
2067				offset = 1;
2068				ulp = NULL; /* XXX is it correct ? */
2069				break;
2070
2071			case IPPROTO_AH:
2072			case IPPROTO_NONE:
2073			case IPPROTO_ESP:
2074				PULLUP_TO(hlen, ulp, struct ip6_ext);
2075				if (proto == IPPROTO_AH)
2076				ext_hd |= EXT_AH;
2077				else if (proto == IPPROTO_ESP)
2078				ext_hd |= EXT_ESP;
2079				hlen += ((struct ip6_ext *)ulp)->ip6e_len +
2080					    sizeof (struct ip6_ext);
2081				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
2082				ulp = NULL;
2083				break;
2084
2085			case IPPROTO_OSPFIGP:
2086				/* XXX OSPF header check? */
2087				PULLUP_TO(hlen, ulp, struct ip6_ext);
2088				break;
2089
2090			default:
2091				printf( "IPFW2: IPV6 - Unknown Extension Header (%d)\n",
2092				    proto);
2093				return 0; /* deny */
2094				break;
2095			} /*switch */
2096		}
2097		args->f_id.src_ip6 = mtod(m,struct ip6_hdr *)->ip6_src;
2098		args->f_id.dst_ip6 = mtod(m,struct ip6_hdr *)->ip6_dst;
2099		args->f_id.src_ip = 0;
2100		args->f_id.dst_ip = 0;
2101		args->f_id.flow_id6 = ntohs(mtod(m, struct ip6_hdr *)->ip6_flow);
2102	} else if (pktlen >= sizeof(struct ip) &&
2103	    (args->eh == NULL || ntohs(args->eh->ether_type) == ETHERTYPE_IP) &&
2104	    mtod(m, struct ip *)->ip_v == 4) {
2105	    	is_ipv4 = 1;
2106		ip = mtod(m, struct ip *);
2107		hlen = ip->ip_hl << 2;
2108		args->f_id.addr_type = 4;
2109
2110		/*
2111		 * Collect parameters into local variables for faster matching.
2112		 */
2113		proto = ip->ip_p;
2114		src_ip = ip->ip_src;
2115		dst_ip = ip->ip_dst;
2116		if (args->eh != NULL) { /* layer 2 packets are as on the wire */
2117			offset = ntohs(ip->ip_off) & IP_OFFMASK;
2118			ip_len = ntohs(ip->ip_len);
2119		} else {
2120			offset = ip->ip_off & IP_OFFMASK;
2121			ip_len = ip->ip_len;
2122		}
2123		pktlen = ip_len < pktlen ? ip_len : pktlen;
2124
2125		if (offset == 0) {
2126			switch (proto) {
2127			case IPPROTO_TCP:
2128				PULLUP_TO(hlen, ulp, struct tcphdr);
2129				dst_port = TCP(ulp)->th_dport;
2130				src_port = TCP(ulp)->th_sport;
2131				args->f_id.flags = TCP(ulp)->th_flags;
2132				break;
2133
2134			case IPPROTO_UDP:
2135				PULLUP_TO(hlen, ulp, struct udphdr);
2136				dst_port = UDP(ulp)->uh_dport;
2137				src_port = UDP(ulp)->uh_sport;
2138				break;
2139
2140			case IPPROTO_ICMP:
2141				PULLUP_TO(hlen, ulp, struct icmphdr);
2142				args->f_id.flags = ICMP(ulp)->icmp_type;
2143				break;
2144
2145			default:
2146				break;
2147			}
2148		}
2149
2150		args->f_id.src_ip = ntohl(src_ip.s_addr);
2151		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
2152	}
2153#undef PULLUP_TO
2154	if (proto) { /* we may have port numbers, store them */
2155		args->f_id.proto = proto;
2156		args->f_id.src_port = src_port = ntohs(src_port);
2157		args->f_id.dst_port = dst_port = ntohs(dst_port);
2158	}
2159
2160	IPFW_RLOCK(chain);
2161	mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
2162	if (args->rule) {
2163		/*
2164		 * Packet has already been tagged. Look for the next rule
2165		 * to restart processing.
2166		 *
2167		 * If fw_one_pass != 0 then just accept it.
2168		 * XXX should not happen here, but optimized out in
2169		 * the caller.
2170		 */
2171		if (fw_one_pass) {
2172			IPFW_RUNLOCK(chain);
2173			return (IP_FW_PASS);
2174		}
2175
2176		f = args->rule->next_rule;
2177		if (f == NULL)
2178			f = lookup_next_rule(args->rule);
2179	} else {
2180		/*
2181		 * Find the starting rule. It can be either the first
2182		 * one, or the one after divert_rule if asked so.
2183		 */
2184		int skipto = mtag ? divert_cookie(mtag) : 0;
2185
2186		f = chain->rules;
2187		if (args->eh == NULL && skipto != 0) {
2188			if (skipto >= IPFW_DEFAULT_RULE) {
2189				IPFW_RUNLOCK(chain);
2190				return (IP_FW_DENY); /* invalid */
2191			}
2192			while (f && f->rulenum <= skipto)
2193				f = f->next;
2194			if (f == NULL) {	/* drop packet */
2195				IPFW_RUNLOCK(chain);
2196				return (IP_FW_DENY);
2197			}
2198		}
2199	}
2200	/* reset divert rule to avoid confusion later */
2201	if (mtag) {
2202		divinput_flags = divert_info(mtag) &
2203		    (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
2204		m_tag_delete(m, mtag);
2205	}
2206
2207	/*
2208	 * Now scan the rules, and parse microinstructions for each rule.
2209	 */
2210	for (; f; f = f->next) {
2211		int l, cmdlen;
2212		ipfw_insn *cmd;
2213		int skip_or; /* skip rest of OR block */
2214
2215again:
2216		if (set_disable & (1 << f->set) )
2217			continue;
2218
2219		skip_or = 0;
2220		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
2221		    l -= cmdlen, cmd += cmdlen) {
2222			int match;
2223
2224			/*
2225			 * check_body is a jump target used when we find a
2226			 * CHECK_STATE, and need to jump to the body of
2227			 * the target rule.
2228			 */
2229
2230check_body:
2231			cmdlen = F_LEN(cmd);
2232			/*
2233			 * An OR block (insn_1 || .. || insn_n) has the
2234			 * F_OR bit set in all but the last instruction.
2235			 * The first match will set "skip_or", and cause
2236			 * the following instructions to be skipped until
2237			 * past the one with the F_OR bit clear.
2238			 */
2239			if (skip_or) {		/* skip this instruction */
2240				if ((cmd->len & F_OR) == 0)
2241					skip_or = 0;	/* next one is good */
2242				continue;
2243			}
2244			match = 0; /* set to 1 if we succeed */
2245
2246			switch (cmd->opcode) {
2247			/*
2248			 * The first set of opcodes compares the packet's
2249			 * fields with some pattern, setting 'match' if a
2250			 * match is found. At the end of the loop there is
2251			 * logic to deal with F_NOT and F_OR flags associated
2252			 * with the opcode.
2253			 */
2254			case O_NOP:
2255				match = 1;
2256				break;
2257
2258			case O_FORWARD_MAC:
2259				printf("ipfw: opcode %d unimplemented\n",
2260				    cmd->opcode);
2261				break;
2262
2263			case O_GID:
2264			case O_UID:
2265			case O_JAIL:
2266				/*
2267				 * We only check offset == 0 && proto != 0,
2268				 * as this ensures that we have a
2269				 * packet with the ports info.
2270				 */
2271				if (offset!=0)
2272					break;
2273				if (is_ipv6) /* XXX to be fixed later */
2274					break;
2275				if (proto == IPPROTO_TCP ||
2276				    proto == IPPROTO_UDP)
2277					match = check_uidgid(
2278						    (ipfw_insn_u32 *)cmd,
2279						    proto, oif,
2280						    dst_ip, dst_port,
2281						    src_ip, src_port, &fw_ugid_cache,
2282						    &ugid_lookup, args->inp);
2283				break;
2284
2285			case O_RECV:
2286				match = iface_match(m->m_pkthdr.rcvif,
2287				    (ipfw_insn_if *)cmd);
2288				break;
2289
2290			case O_XMIT:
2291				match = iface_match(oif, (ipfw_insn_if *)cmd);
2292				break;
2293
2294			case O_VIA:
2295				match = iface_match(oif ? oif :
2296				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
2297				break;
2298
2299			case O_MACADDR2:
2300				if (args->eh != NULL) {	/* have MAC header */
2301					u_int32_t *want = (u_int32_t *)
2302						((ipfw_insn_mac *)cmd)->addr;
2303					u_int32_t *mask = (u_int32_t *)
2304						((ipfw_insn_mac *)cmd)->mask;
2305					u_int32_t *hdr = (u_int32_t *)args->eh;
2306
2307					match =
2308					    ( want[0] == (hdr[0] & mask[0]) &&
2309					      want[1] == (hdr[1] & mask[1]) &&
2310					      want[2] == (hdr[2] & mask[2]) );
2311				}
2312				break;
2313
2314			case O_MAC_TYPE:
2315				if (args->eh != NULL) {
2316					u_int16_t t =
2317					    ntohs(args->eh->ether_type);
2318					u_int16_t *p =
2319					    ((ipfw_insn_u16 *)cmd)->ports;
2320					int i;
2321
2322					for (i = cmdlen - 1; !match && i>0;
2323					    i--, p += 2)
2324						match = (t>=p[0] && t<=p[1]);
2325				}
2326				break;
2327
2328			case O_FRAG:
2329				match = (offset != 0);
2330				break;
2331
2332			case O_IN:	/* "out" is "not in" */
2333				match = (oif == NULL);
2334				break;
2335
2336			case O_LAYER2:
2337				match = (args->eh != NULL);
2338				break;
2339
2340			case O_DIVERTED:
2341				match = (cmd->arg1 & 1 && divinput_flags &
2342				    IP_FW_DIVERT_LOOPBACK_FLAG) ||
2343					(cmd->arg1 & 2 && divinput_flags &
2344				    IP_FW_DIVERT_OUTPUT_FLAG);
2345				break;
2346
2347			case O_PROTO:
2348				/*
2349				 * We do not allow an arg of 0 so the
2350				 * check of "proto" only suffices.
2351				 */
2352				match = (proto == cmd->arg1);
2353				break;
2354
2355			case O_IP_SRC:
2356				match = is_ipv4 &&
2357				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2358				    src_ip.s_addr);
2359				break;
2360
2361			case O_IP_SRC_LOOKUP:
2362			case O_IP_DST_LOOKUP:
2363				if (is_ipv4) {
2364				    uint32_t a =
2365					(cmd->opcode == O_IP_DST_LOOKUP) ?
2366					    dst_ip.s_addr : src_ip.s_addr;
2367				    uint32_t v;
2368
2369				    match = lookup_table(cmd->arg1, a, &v);
2370				    if (!match)
2371					break;
2372				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2373					match =
2374					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
2375				}
2376				break;
2377
2378			case O_IP_SRC_MASK:
2379			case O_IP_DST_MASK:
2380				if (is_ipv4) {
2381				    uint32_t a =
2382					(cmd->opcode == O_IP_DST_MASK) ?
2383					    dst_ip.s_addr : src_ip.s_addr;
2384				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2385				    int i = cmdlen-1;
2386
2387				    for (; !match && i>0; i-= 2, p+= 2)
2388					match = (p[0] == (a & p[1]));
2389				}
2390				break;
2391
2392			case O_IP_SRC_ME:
2393				if (is_ipv4) {
2394					struct ifnet *tif;
2395
2396					INADDR_TO_IFP(src_ip, tif);
2397					match = (tif != NULL);
2398				}
2399				break;
2400
2401			case O_IP_DST_SET:
2402			case O_IP_SRC_SET:
2403				if (is_ipv4) {
2404					u_int32_t *d = (u_int32_t *)(cmd+1);
2405					u_int32_t addr =
2406					    cmd->opcode == O_IP_DST_SET ?
2407						args->f_id.dst_ip :
2408						args->f_id.src_ip;
2409
2410					    if (addr < d[0])
2411						    break;
2412					    addr -= d[0]; /* subtract base */
2413					    match = (addr < cmd->arg1) &&
2414						( d[ 1 + (addr>>5)] &
2415						  (1<<(addr & 0x1f)) );
2416				}
2417				break;
2418
2419			case O_IP_DST:
2420				match = is_ipv4 &&
2421				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2422				    dst_ip.s_addr);
2423				break;
2424
2425			case O_IP_DST_ME:
2426				if (is_ipv4) {
2427					struct ifnet *tif;
2428
2429					INADDR_TO_IFP(dst_ip, tif);
2430					match = (tif != NULL);
2431				}
2432				break;
2433
2434			case O_IP_SRCPORT:
2435			case O_IP_DSTPORT:
2436				/*
2437				 * offset == 0 && proto != 0 is enough
2438				 * to guarantee that we have a
2439				 * packet with port info.
2440				 */
2441				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
2442				    && offset == 0) {
2443					u_int16_t x =
2444					    (cmd->opcode == O_IP_SRCPORT) ?
2445						src_port : dst_port ;
2446					u_int16_t *p =
2447					    ((ipfw_insn_u16 *)cmd)->ports;
2448					int i;
2449
2450					for (i = cmdlen - 1; !match && i>0;
2451					    i--, p += 2)
2452						match = (x>=p[0] && x<=p[1]);
2453				}
2454				break;
2455
2456			case O_ICMPTYPE:
2457				match = (offset == 0 && proto==IPPROTO_ICMP &&
2458				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2459				break;
2460
2461#ifdef INET6
2462			case O_ICMP6TYPE:
2463				match = is_ipv6 && offset == 0 &&
2464				    proto==IPPROTO_ICMPV6 &&
2465				    icmp6type_match(
2466					ICMP6(ulp)->icmp6_type,
2467					(ipfw_insn_u32 *)cmd);
2468				break;
2469#endif /* INET6 */
2470
2471			case O_IPOPT:
2472				match = (is_ipv4 &&
2473				    ipopts_match(mtod(m, struct ip *), cmd) );
2474				break;
2475
2476			case O_IPVER:
2477				match = (is_ipv4 &&
2478				    cmd->arg1 == mtod(m, struct ip *)->ip_v);
2479				break;
2480
2481			case O_IPID:
2482			case O_IPLEN:
2483			case O_IPTTL:
2484				if (is_ipv4) {	/* only for IP packets */
2485				    uint16_t x;
2486				    uint16_t *p;
2487				    int i;
2488
2489				    if (cmd->opcode == O_IPLEN)
2490					x = ip_len;
2491				    else if (cmd->opcode == O_IPTTL)
2492					x = mtod(m, struct ip *)->ip_ttl;
2493				    else /* must be IPID */
2494					x = ntohs(mtod(m, struct ip *)->ip_id);
2495				    if (cmdlen == 1) {
2496					match = (cmd->arg1 == x);
2497					break;
2498				    }
2499				    /* otherwise we have ranges */
2500				    p = ((ipfw_insn_u16 *)cmd)->ports;
2501				    i = cmdlen - 1;
2502				    for (; !match && i>0; i--, p += 2)
2503					match = (x >= p[0] && x <= p[1]);
2504				}
2505				break;
2506
2507			case O_IPPRECEDENCE:
2508				match = (is_ipv4 &&
2509				    (cmd->arg1 == (mtod(m, struct ip *)->ip_tos & 0xe0)) );
2510				break;
2511
2512			case O_IPTOS:
2513				match = (is_ipv4 &&
2514				    flags_match(cmd, mtod(m, struct ip *)->ip_tos));
2515				break;
2516
2517			case O_TCPDATALEN:
2518				if (proto == IPPROTO_TCP && offset == 0) {
2519				    struct tcphdr *tcp;
2520				    uint16_t x;
2521				    uint16_t *p;
2522				    int i;
2523
2524				    tcp = TCP(ulp);
2525				    x = ip_len -
2526					((ip->ip_hl + tcp->th_off) << 2);
2527				    if (cmdlen == 1) {
2528					match = (cmd->arg1 == x);
2529					break;
2530				    }
2531				    /* otherwise we have ranges */
2532				    p = ((ipfw_insn_u16 *)cmd)->ports;
2533				    i = cmdlen - 1;
2534				    for (; !match && i>0; i--, p += 2)
2535					match = (x >= p[0] && x <= p[1]);
2536				}
2537				break;
2538
2539			case O_TCPFLAGS:
2540				match = (proto == IPPROTO_TCP && offset == 0 &&
2541				    flags_match(cmd, TCP(ulp)->th_flags));
2542				break;
2543
2544			case O_TCPOPTS:
2545				match = (proto == IPPROTO_TCP && offset == 0 &&
2546				    tcpopts_match(TCP(ulp), cmd));
2547				break;
2548
2549			case O_TCPSEQ:
2550				match = (proto == IPPROTO_TCP && offset == 0 &&
2551				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2552					TCP(ulp)->th_seq);
2553				break;
2554
2555			case O_TCPACK:
2556				match = (proto == IPPROTO_TCP && offset == 0 &&
2557				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2558					TCP(ulp)->th_ack);
2559				break;
2560
2561			case O_TCPWIN:
2562				match = (proto == IPPROTO_TCP && offset == 0 &&
2563				    cmd->arg1 == TCP(ulp)->th_win);
2564				break;
2565
2566			case O_ESTAB:
2567				/* reject packets which have SYN only */
2568				/* XXX should i also check for TH_ACK ? */
2569				match = (proto == IPPROTO_TCP && offset == 0 &&
2570				    (TCP(ulp)->th_flags &
2571				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2572				break;
2573
2574			case O_ALTQ: {
2575				struct altq_tag *at;
2576				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2577
2578				match = 1;
2579				mtag = m_tag_find(m, PACKET_TAG_PF_QID, NULL);
2580				if (mtag != NULL)
2581					break;
2582				mtag = m_tag_get(PACKET_TAG_PF_QID,
2583						sizeof(struct altq_tag),
2584						M_NOWAIT);
2585				if (mtag == NULL) {
2586					/*
2587					 * Let the packet fall back to the
2588					 * default ALTQ.
2589					 */
2590					break;
2591				}
2592				at = (struct altq_tag *)(mtag+1);
2593				at->qid = altq->qid;
2594				if (is_ipv4)
2595					at->af = AF_INET;
2596				else
2597					at->af = AF_LINK;
2598				at->hdr = ip;
2599				m_tag_prepend(m, mtag);
2600				break;
2601			}
2602
2603			case O_LOG:
2604				if (fw_verbose && !is_ipv6)
2605					ipfw_log(f, hlen, args->eh, m, oif);
2606				match = 1;
2607				break;
2608
2609			case O_PROB:
2610				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2611				break;
2612
2613			case O_VERREVPATH:
2614				/* Outgoing packets automatically pass/match */
2615				match = ((oif != NULL) ||
2616				    (m->m_pkthdr.rcvif == NULL) ||
2617				    (
2618#ifdef INET6
2619				    is_ipv6 ?
2620					verify_path6(&(args->f_id.src_ip6),
2621					    m->m_pkthdr.rcvif) :
2622#endif
2623				    verify_path(src_ip, m->m_pkthdr.rcvif)));
2624				break;
2625
2626			case O_VERSRCREACH:
2627				/* Outgoing packets automatically pass/match */
2628				match = (hlen > 0 && ((oif != NULL) ||
2629#ifdef INET6
2630				    is_ipv6 ?
2631				        verify_path6(&(args->f_id.src_ip6),
2632				            NULL) :
2633#endif
2634				    verify_path(src_ip, NULL)));
2635				break;
2636
2637			case O_ANTISPOOF:
2638				/* Outgoing packets automatically pass/match */
2639				if (oif == NULL && hlen > 0 &&
2640				    (  (is_ipv4 && in_localaddr(src_ip))
2641#ifdef INET6
2642				    || (is_ipv6 &&
2643				        in6_localaddr(&(args->f_id.src_ip6)))
2644#endif
2645				    ))
2646					match =
2647#ifdef INET6
2648					    is_ipv6 ? verify_path6(
2649					        &(args->f_id.src_ip6),
2650					        m->m_pkthdr.rcvif) :
2651#endif
2652					    verify_path(src_ip,
2653					        m->m_pkthdr.rcvif);
2654				else
2655					match = 1;
2656				break;
2657
2658			case O_IPSEC:
2659#ifdef FAST_IPSEC
2660				match = (m_tag_find(m,
2661				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2662#endif
2663#ifdef IPSEC
2664				match = (ipsec_getnhist(m) != 0);
2665#endif
2666				/* otherwise no match */
2667				break;
2668
2669			case O_IP6_SRC:
2670				match = is_ipv6 &&
2671				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
2672				    &((ipfw_insn_ip6 *)cmd)->addr6);
2673				break;
2674
2675			case O_IP6_DST:
2676				match = is_ipv6 &&
2677				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
2678				    &((ipfw_insn_ip6 *)cmd)->addr6);
2679				break;
2680			case O_IP6_SRC_MASK:
2681				if (is_ipv6) {
2682					ipfw_insn_ip6 *te = (ipfw_insn_ip6 *)cmd;
2683					struct in6_addr p = args->f_id.src_ip6;
2684
2685					APPLY_MASK(&p, &te->mask6);
2686					match = IN6_ARE_ADDR_EQUAL(&te->addr6, &p);
2687				}
2688				break;
2689
2690			case O_IP6_DST_MASK:
2691				if (is_ipv6) {
2692					ipfw_insn_ip6 *te = (ipfw_insn_ip6 *)cmd;
2693					struct in6_addr p = args->f_id.dst_ip6;
2694
2695					APPLY_MASK(&p, &te->mask6);
2696					match = IN6_ARE_ADDR_EQUAL(&te->addr6, &p);
2697				}
2698				break;
2699
2700#ifdef INET6
2701			case O_IP6_SRC_ME:
2702				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
2703			break;
2704
2705			case O_IP6_DST_ME:
2706				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
2707			break;
2708
2709			case O_FLOW6ID:
2710				match = is_ipv6 &&
2711				    flow6id_match(args->f_id.flow_id6,
2712				    (ipfw_insn_u32 *) cmd);
2713				break;
2714
2715			case O_EXT_HDR:
2716				match = is_ipv6 &&
2717				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
2718				break;
2719
2720			case O_IP6:
2721				match = is_ipv6;
2722				break;
2723#endif
2724
2725			case O_IP4:
2726				match = is_ipv4;
2727				break;
2728
2729			/*
2730			 * The second set of opcodes represents 'actions',
2731			 * i.e. the terminal part of a rule once the packet
2732			 * matches all previous patterns.
2733			 * Typically there is only one action for each rule,
2734			 * and the opcode is stored at the end of the rule
2735			 * (but there are exceptions -- see below).
2736			 *
2737			 * In general, here we set retval and terminate the
2738			 * outer loop (would be a 'break 3' in some language,
2739			 * but we need to do a 'goto done').
2740			 *
2741			 * Exceptions:
2742			 * O_COUNT and O_SKIPTO actions:
2743			 *   instead of terminating, we jump to the next rule
2744			 *   ('goto next_rule', equivalent to a 'break 2'),
2745			 *   or to the SKIPTO target ('goto again' after
2746			 *   having set f, cmd and l), respectively.
2747			 *
2748			 * O_LOG and O_ALTQ action parameters:
2749			 *   perform some action and set match = 1;
2750			 *
2751			 * O_LIMIT and O_KEEP_STATE: these opcodes are
2752			 *   not real 'actions', and are stored right
2753			 *   before the 'action' part of the rule.
2754			 *   These opcodes try to install an entry in the
2755			 *   state tables; if successful, we continue with
2756			 *   the next opcode (match=1; break;), otherwise
2757			 *   the packet *   must be dropped
2758			 *   ('goto done' after setting retval);
2759			 *
2760			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2761			 *   cause a lookup of the state table, and a jump
2762			 *   to the 'action' part of the parent rule
2763			 *   ('goto check_body') if an entry is found, or
2764			 *   (CHECK_STATE only) a jump to the next rule if
2765			 *   the entry is not found ('goto next_rule').
2766			 *   The result of the lookup is cached to make
2767			 *   further instances of these opcodes are
2768			 *   effectively NOPs.
2769			 */
2770			case O_LIMIT:
2771			case O_KEEP_STATE:
2772				if (install_state(f,
2773				    (ipfw_insn_limit *)cmd, args)) {
2774					retval = IP_FW_DENY;
2775					goto done; /* error/limit violation */
2776				}
2777				match = 1;
2778				break;
2779
2780			case O_PROBE_STATE:
2781			case O_CHECK_STATE:
2782				/*
2783				 * dynamic rules are checked at the first
2784				 * keep-state or check-state occurrence,
2785				 * with the result being stored in dyn_dir.
2786				 * The compiler introduces a PROBE_STATE
2787				 * instruction for us when we have a
2788				 * KEEP_STATE (because PROBE_STATE needs
2789				 * to be run first).
2790				 */
2791				if (dyn_dir == MATCH_UNKNOWN &&
2792				    (q = lookup_dyn_rule(&args->f_id,
2793				     &dyn_dir, proto == IPPROTO_TCP ?
2794					TCP(ulp) : NULL))
2795					!= NULL) {
2796					/*
2797					 * Found dynamic entry, update stats
2798					 * and jump to the 'action' part of
2799					 * the parent rule.
2800					 */
2801					q->pcnt++;
2802					q->bcnt += pktlen;
2803					f = q->rule;
2804					cmd = ACTION_PTR(f);
2805					l = f->cmd_len - f->act_ofs;
2806					IPFW_DYN_UNLOCK();
2807					goto check_body;
2808				}
2809				/*
2810				 * Dynamic entry not found. If CHECK_STATE,
2811				 * skip to next rule, if PROBE_STATE just
2812				 * ignore and continue with next opcode.
2813				 */
2814				if (cmd->opcode == O_CHECK_STATE)
2815					goto next_rule;
2816				match = 1;
2817				break;
2818
2819			case O_ACCEPT:
2820				retval = 0;	/* accept */
2821				goto done;
2822
2823			case O_PIPE:
2824			case O_QUEUE:
2825				args->rule = f; /* report matching rule */
2826				args->cookie = cmd->arg1;
2827				retval = IP_FW_DUMMYNET;
2828				goto done;
2829
2830			case O_DIVERT:
2831			case O_TEE: {
2832				struct divert_tag *dt;
2833
2834				if (args->eh) /* not on layer 2 */
2835					break;
2836				mtag = m_tag_get(PACKET_TAG_DIVERT,
2837						sizeof(struct divert_tag),
2838						M_NOWAIT);
2839				if (mtag == NULL) {
2840					/* XXX statistic */
2841					/* drop packet */
2842					IPFW_RUNLOCK(chain);
2843					return (IP_FW_DENY);
2844				}
2845				dt = (struct divert_tag *)(mtag+1);
2846				dt->cookie = f->rulenum;
2847				dt->info = cmd->arg1;
2848				m_tag_prepend(m, mtag);
2849				retval = (cmd->opcode == O_DIVERT) ?
2850				    IP_FW_DIVERT : IP_FW_TEE;
2851				goto done;
2852			}
2853
2854			case O_COUNT:
2855			case O_SKIPTO:
2856				f->pcnt++;	/* update stats */
2857				f->bcnt += pktlen;
2858				f->timestamp = time_second;
2859				if (cmd->opcode == O_COUNT)
2860					goto next_rule;
2861				/* handle skipto */
2862				if (f->next_rule == NULL)
2863					lookup_next_rule(f);
2864				f = f->next_rule;
2865				goto again;
2866
2867			case O_REJECT:
2868				/*
2869				 * Drop the packet and send a reject notice
2870				 * if the packet is not ICMP (or is an ICMP
2871				 * query), and it is not multicast/broadcast.
2872				 */
2873				/* XXX: IPv6 missing!?! */
2874				if (hlen > 0 && is_ipv4 &&
2875				    (proto != IPPROTO_ICMP ||
2876				     is_icmp_query(ICMP(ulp))) &&
2877				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2878				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
2879					send_reject(args, cmd->arg1,
2880					    offset,ip_len);
2881					m = args->m;
2882				}
2883				/* FALLTHROUGH */
2884			case O_DENY:
2885				retval = IP_FW_DENY;
2886				goto done;
2887
2888			case O_FORWARD_IP:
2889				if (args->eh)	/* not valid on layer2 pkts */
2890					break;
2891				if (!q || dyn_dir == MATCH_FORWARD)
2892					args->next_hop =
2893					    &((ipfw_insn_sa *)cmd)->sa;
2894				retval = IP_FW_PASS;
2895				goto done;
2896
2897			case O_NETGRAPH:
2898			case O_NGTEE:
2899				args->rule = f;	/* report matching rule */
2900				args->cookie = cmd->arg1;
2901				retval = (cmd->opcode == O_NETGRAPH) ?
2902				    IP_FW_NETGRAPH : IP_FW_NGTEE;
2903				goto done;
2904
2905			default:
2906				panic("-- unknown opcode %d\n", cmd->opcode);
2907			} /* end of switch() on opcodes */
2908
2909			if (cmd->len & F_NOT)
2910				match = !match;
2911
2912			if (match) {
2913				if (cmd->len & F_OR)
2914					skip_or = 1;
2915			} else {
2916				if (!(cmd->len & F_OR)) /* not an OR block, */
2917					break;		/* try next rule    */
2918			}
2919
2920		}	/* end of inner for, scan opcodes */
2921
2922next_rule:;		/* try next rule		*/
2923
2924	}		/* end of outer for, scan rules */
2925	printf("ipfw: ouch!, skip past end of rules, denying packet\n");
2926	IPFW_RUNLOCK(chain);
2927	return (IP_FW_DENY);
2928
2929done:
2930	/* Update statistics */
2931	f->pcnt++;
2932	f->bcnt += pktlen;
2933	f->timestamp = time_second;
2934	IPFW_RUNLOCK(chain);
2935	return (retval);
2936
2937pullup_failed:
2938	if (fw_verbose)
2939		printf("ipfw: pullup failed\n");
2940	return (IP_FW_DENY);
2941}
2942
2943/*
2944 * When a rule is added/deleted, clear the next_rule pointers in all rules.
2945 * These will be reconstructed on the fly as packets are matched.
2946 */
2947static void
2948flush_rule_ptrs(struct ip_fw_chain *chain)
2949{
2950	struct ip_fw *rule;
2951
2952	IPFW_WLOCK_ASSERT(chain);
2953
2954	for (rule = chain->rules; rule; rule = rule->next)
2955		rule->next_rule = NULL;
2956}
2957
2958/*
2959 * When pipes/queues are deleted, clear the "pipe_ptr" pointer to a given
2960 * pipe/queue, or to all of them (match == NULL).
2961 */
2962void
2963flush_pipe_ptrs(struct dn_flow_set *match)
2964{
2965	struct ip_fw *rule;
2966
2967	IPFW_WLOCK(&layer3_chain);
2968	for (rule = layer3_chain.rules; rule; rule = rule->next) {
2969		ipfw_insn_pipe *cmd = (ipfw_insn_pipe *)ACTION_PTR(rule);
2970
2971		if (cmd->o.opcode != O_PIPE && cmd->o.opcode != O_QUEUE)
2972			continue;
2973		/*
2974		 * XXX Use bcmp/bzero to handle pipe_ptr to overcome
2975		 * possible alignment problems on 64-bit architectures.
2976		 * This code is seldom used so we do not worry too
2977		 * much about efficiency.
2978		 */
2979		if (match == NULL ||
2980		    !bcmp(&cmd->pipe_ptr, &match, sizeof(match)) )
2981			bzero(&cmd->pipe_ptr, sizeof(cmd->pipe_ptr));
2982	}
2983	IPFW_WUNLOCK(&layer3_chain);
2984}
2985
2986/*
2987 * Add a new rule to the list. Copy the rule into a malloc'ed area, then
2988 * possibly create a rule number and add the rule to the list.
2989 * Update the rule_number in the input struct so the caller knows it as well.
2990 */
2991static int
2992add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
2993{
2994	struct ip_fw *rule, *f, *prev;
2995	int l = RULESIZE(input_rule);
2996
2997	if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
2998		return (EINVAL);
2999
3000	rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
3001	if (rule == NULL)
3002		return (ENOSPC);
3003
3004	bcopy(input_rule, rule, l);
3005
3006	rule->next = NULL;
3007	rule->next_rule = NULL;
3008
3009	rule->pcnt = 0;
3010	rule->bcnt = 0;
3011	rule->timestamp = 0;
3012
3013	IPFW_WLOCK(chain);
3014
3015	if (chain->rules == NULL) {	/* default rule */
3016		chain->rules = rule;
3017		goto done;
3018        }
3019
3020	/*
3021	 * If rulenum is 0, find highest numbered rule before the
3022	 * default rule, and add autoinc_step
3023	 */
3024	if (autoinc_step < 1)
3025		autoinc_step = 1;
3026	else if (autoinc_step > 1000)
3027		autoinc_step = 1000;
3028	if (rule->rulenum == 0) {
3029		/*
3030		 * locate the highest numbered rule before default
3031		 */
3032		for (f = chain->rules; f; f = f->next) {
3033			if (f->rulenum == IPFW_DEFAULT_RULE)
3034				break;
3035			rule->rulenum = f->rulenum;
3036		}
3037		if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
3038			rule->rulenum += autoinc_step;
3039		input_rule->rulenum = rule->rulenum;
3040	}
3041
3042	/*
3043	 * Now insert the new rule in the right place in the sorted list.
3044	 */
3045	for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
3046		if (f->rulenum > rule->rulenum) { /* found the location */
3047			if (prev) {
3048				rule->next = f;
3049				prev->next = rule;
3050			} else { /* head insert */
3051				rule->next = chain->rules;
3052				chain->rules = rule;
3053			}
3054			break;
3055		}
3056	}
3057	flush_rule_ptrs(chain);
3058done:
3059	static_count++;
3060	static_len += l;
3061	IPFW_WUNLOCK(chain);
3062	DEB(printf("ipfw: installed rule %d, static count now %d\n",
3063		rule->rulenum, static_count);)
3064	return (0);
3065}
3066
3067/**
3068 * Remove a static rule (including derived * dynamic rules)
3069 * and place it on the ``reap list'' for later reclamation.
3070 * The caller is in charge of clearing rule pointers to avoid
3071 * dangling pointers.
3072 * @return a pointer to the next entry.
3073 * Arguments are not checked, so they better be correct.
3074 */
3075static struct ip_fw *
3076remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule, struct ip_fw *prev)
3077{
3078	struct ip_fw *n;
3079	int l = RULESIZE(rule);
3080
3081	IPFW_WLOCK_ASSERT(chain);
3082
3083	n = rule->next;
3084	IPFW_DYN_LOCK();
3085	remove_dyn_rule(rule, NULL /* force removal */);
3086	IPFW_DYN_UNLOCK();
3087	if (prev == NULL)
3088		chain->rules = n;
3089	else
3090		prev->next = n;
3091	static_count--;
3092	static_len -= l;
3093
3094	rule->next = chain->reap;
3095	chain->reap = rule;
3096
3097	return n;
3098}
3099
3100/**
3101 * Reclaim storage associated with a list of rules.  This is
3102 * typically the list created using remove_rule.
3103 */
3104static void
3105reap_rules(struct ip_fw *head)
3106{
3107	struct ip_fw *rule;
3108
3109	while ((rule = head) != NULL) {
3110		head = head->next;
3111		if (DUMMYNET_LOADED)
3112			ip_dn_ruledel_ptr(rule);
3113		free(rule, M_IPFW);
3114	}
3115}
3116
3117/*
3118 * Remove all rules from a chain (except rules in set RESVD_SET
3119 * unless kill_default = 1).  The caller is responsible for
3120 * reclaiming storage for the rules left in chain->reap.
3121 */
3122static void
3123free_chain(struct ip_fw_chain *chain, int kill_default)
3124{
3125	struct ip_fw *prev, *rule;
3126
3127	IPFW_WLOCK_ASSERT(chain);
3128
3129	flush_rule_ptrs(chain); /* more efficient to do outside the loop */
3130	for (prev = NULL, rule = chain->rules; rule ; )
3131		if (kill_default || rule->set != RESVD_SET)
3132			rule = remove_rule(chain, rule, prev);
3133		else {
3134			prev = rule;
3135			rule = rule->next;
3136		}
3137}
3138
3139/**
3140 * Remove all rules with given number, and also do set manipulation.
3141 * Assumes chain != NULL && *chain != NULL.
3142 *
3143 * The argument is an u_int32_t. The low 16 bit are the rule or set number,
3144 * the next 8 bits are the new set, the top 8 bits are the command:
3145 *
3146 *	0	delete rules with given number
3147 *	1	delete rules with given set number
3148 *	2	move rules with given number to new set
3149 *	3	move rules with given set number to new set
3150 *	4	swap sets with given numbers
3151 */
3152static int
3153del_entry(struct ip_fw_chain *chain, u_int32_t arg)
3154{
3155	struct ip_fw *prev = NULL, *rule;
3156	u_int16_t rulenum;	/* rule or old_set */
3157	u_int8_t cmd, new_set;
3158
3159	rulenum = arg & 0xffff;
3160	cmd = (arg >> 24) & 0xff;
3161	new_set = (arg >> 16) & 0xff;
3162
3163	if (cmd > 4)
3164		return EINVAL;
3165	if (new_set > RESVD_SET)
3166		return EINVAL;
3167	if (cmd == 0 || cmd == 2) {
3168		if (rulenum >= IPFW_DEFAULT_RULE)
3169			return EINVAL;
3170	} else {
3171		if (rulenum > RESVD_SET)	/* old_set */
3172			return EINVAL;
3173	}
3174
3175	IPFW_WLOCK(chain);
3176	rule = chain->rules;
3177	chain->reap = NULL;
3178	switch (cmd) {
3179	case 0:	/* delete rules with given number */
3180		/*
3181		 * locate first rule to delete
3182		 */
3183		for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3184			;
3185		if (rule->rulenum != rulenum) {
3186			IPFW_WUNLOCK(chain);
3187			return EINVAL;
3188		}
3189
3190		/*
3191		 * flush pointers outside the loop, then delete all matching
3192		 * rules. prev remains the same throughout the cycle.
3193		 */
3194		flush_rule_ptrs(chain);
3195		while (rule->rulenum == rulenum)
3196			rule = remove_rule(chain, rule, prev);
3197		break;
3198
3199	case 1:	/* delete all rules with given set number */
3200		flush_rule_ptrs(chain);
3201		rule = chain->rules;
3202		while (rule->rulenum < IPFW_DEFAULT_RULE)
3203			if (rule->set == rulenum)
3204				rule = remove_rule(chain, rule, prev);
3205			else {
3206				prev = rule;
3207				rule = rule->next;
3208			}
3209		break;
3210
3211	case 2:	/* move rules with given number to new set */
3212		rule = chain->rules;
3213		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3214			if (rule->rulenum == rulenum)
3215				rule->set = new_set;
3216		break;
3217
3218	case 3: /* move rules with given set number to new set */
3219		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3220			if (rule->set == rulenum)
3221				rule->set = new_set;
3222		break;
3223
3224	case 4: /* swap two sets */
3225		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3226			if (rule->set == rulenum)
3227				rule->set = new_set;
3228			else if (rule->set == new_set)
3229				rule->set = rulenum;
3230		break;
3231	}
3232	/*
3233	 * Look for rules to reclaim.  We grab the list before
3234	 * releasing the lock then reclaim them w/o the lock to
3235	 * avoid a LOR with dummynet.
3236	 */
3237	rule = chain->reap;
3238	chain->reap = NULL;
3239	IPFW_WUNLOCK(chain);
3240	if (rule)
3241		reap_rules(rule);
3242	return 0;
3243}
3244
3245/*
3246 * Clear counters for a specific rule.
3247 * The enclosing "table" is assumed locked.
3248 */
3249static void
3250clear_counters(struct ip_fw *rule, int log_only)
3251{
3252	ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
3253
3254	if (log_only == 0) {
3255		rule->bcnt = rule->pcnt = 0;
3256		rule->timestamp = 0;
3257	}
3258	if (l->o.opcode == O_LOG)
3259		l->log_left = l->max_log;
3260}
3261
3262/**
3263 * Reset some or all counters on firewall rules.
3264 * @arg frwl is null to clear all entries, or contains a specific
3265 * rule number.
3266 * @arg log_only is 1 if we only want to reset logs, zero otherwise.
3267 */
3268static int
3269zero_entry(struct ip_fw_chain *chain, int rulenum, int log_only)
3270{
3271	struct ip_fw *rule;
3272	char *msg;
3273
3274	IPFW_WLOCK(chain);
3275	if (rulenum == 0) {
3276		norule_counter = 0;
3277		for (rule = chain->rules; rule; rule = rule->next)
3278			clear_counters(rule, log_only);
3279		msg = log_only ? "ipfw: All logging counts reset.\n" :
3280				"ipfw: Accounting cleared.\n";
3281	} else {
3282		int cleared = 0;
3283		/*
3284		 * We can have multiple rules with the same number, so we
3285		 * need to clear them all.
3286		 */
3287		for (rule = chain->rules; rule; rule = rule->next)
3288			if (rule->rulenum == rulenum) {
3289				while (rule && rule->rulenum == rulenum) {
3290					clear_counters(rule, log_only);
3291					rule = rule->next;
3292				}
3293				cleared = 1;
3294				break;
3295			}
3296		if (!cleared) {	/* we did not find any matching rules */
3297			IPFW_WUNLOCK(chain);
3298			return (EINVAL);
3299		}
3300		msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
3301				"ipfw: Entry %d cleared.\n";
3302	}
3303	IPFW_WUNLOCK(chain);
3304
3305	if (fw_verbose)
3306		log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
3307	return (0);
3308}
3309
3310/*
3311 * Check validity of the structure before insert.
3312 * Fortunately rules are simple, so this mostly need to check rule sizes.
3313 */
3314static int
3315check_ipfw_struct(struct ip_fw *rule, int size)
3316{
3317	int l, cmdlen = 0;
3318	int have_action=0;
3319	ipfw_insn *cmd;
3320
3321	if (size < sizeof(*rule)) {
3322		printf("ipfw: rule too short\n");
3323		return (EINVAL);
3324	}
3325	/* first, check for valid size */
3326	l = RULESIZE(rule);
3327	if (l != size) {
3328		printf("ipfw: size mismatch (have %d want %d)\n", size, l);
3329		return (EINVAL);
3330	}
3331	if (rule->act_ofs >= rule->cmd_len) {
3332		printf("ipfw: bogus action offset (%u > %u)\n",
3333		    rule->act_ofs, rule->cmd_len - 1);
3334		return (EINVAL);
3335	}
3336	/*
3337	 * Now go for the individual checks. Very simple ones, basically only
3338	 * instruction sizes.
3339	 */
3340	for (l = rule->cmd_len, cmd = rule->cmd ;
3341			l > 0 ; l -= cmdlen, cmd += cmdlen) {
3342		cmdlen = F_LEN(cmd);
3343		if (cmdlen > l) {
3344			printf("ipfw: opcode %d size truncated\n",
3345			    cmd->opcode);
3346			return EINVAL;
3347		}
3348		DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
3349		switch (cmd->opcode) {
3350		case O_PROBE_STATE:
3351		case O_KEEP_STATE:
3352		case O_PROTO:
3353		case O_IP_SRC_ME:
3354		case O_IP_DST_ME:
3355		case O_LAYER2:
3356		case O_IN:
3357		case O_FRAG:
3358		case O_DIVERTED:
3359		case O_IPOPT:
3360		case O_IPTOS:
3361		case O_IPPRECEDENCE:
3362		case O_IPVER:
3363		case O_TCPWIN:
3364		case O_TCPFLAGS:
3365		case O_TCPOPTS:
3366		case O_ESTAB:
3367		case O_VERREVPATH:
3368		case O_VERSRCREACH:
3369		case O_ANTISPOOF:
3370		case O_IPSEC:
3371		case O_IP6_SRC_ME:
3372		case O_IP6_DST_ME:
3373		case O_EXT_HDR:
3374		case O_IP6:
3375		case O_IP4:
3376			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3377				goto bad_size;
3378			break;
3379
3380		case O_UID:
3381		case O_GID:
3382		case O_JAIL:
3383		case O_IP_SRC:
3384		case O_IP_DST:
3385		case O_TCPSEQ:
3386		case O_TCPACK:
3387		case O_PROB:
3388		case O_ICMPTYPE:
3389			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3390				goto bad_size;
3391			break;
3392
3393		case O_LIMIT:
3394			if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
3395				goto bad_size;
3396			break;
3397
3398		case O_LOG:
3399			if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
3400				goto bad_size;
3401
3402			((ipfw_insn_log *)cmd)->log_left =
3403			    ((ipfw_insn_log *)cmd)->max_log;
3404
3405			break;
3406
3407		case O_IP_SRC_MASK:
3408		case O_IP_DST_MASK:
3409			/* only odd command lengths */
3410			if ( !(cmdlen & 1) || cmdlen > 31)
3411				goto bad_size;
3412			break;
3413
3414		case O_IP_SRC_SET:
3415		case O_IP_DST_SET:
3416			if (cmd->arg1 == 0 || cmd->arg1 > 256) {
3417				printf("ipfw: invalid set size %d\n",
3418					cmd->arg1);
3419				return EINVAL;
3420			}
3421			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3422			    (cmd->arg1+31)/32 )
3423				goto bad_size;
3424			break;
3425
3426		case O_IP_SRC_LOOKUP:
3427		case O_IP_DST_LOOKUP:
3428			if (cmd->arg1 >= IPFW_TABLES_MAX) {
3429				printf("ipfw: invalid table number %d\n",
3430				    cmd->arg1);
3431				return (EINVAL);
3432			}
3433			if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
3434			    cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3435				goto bad_size;
3436			break;
3437
3438		case O_MACADDR2:
3439			if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
3440				goto bad_size;
3441			break;
3442
3443		case O_NOP:
3444		case O_IPID:
3445		case O_IPTTL:
3446		case O_IPLEN:
3447		case O_TCPDATALEN:
3448			if (cmdlen < 1 || cmdlen > 31)
3449				goto bad_size;
3450			break;
3451
3452		case O_MAC_TYPE:
3453		case O_IP_SRCPORT:
3454		case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
3455			if (cmdlen < 2 || cmdlen > 31)
3456				goto bad_size;
3457			break;
3458
3459		case O_RECV:
3460		case O_XMIT:
3461		case O_VIA:
3462			if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
3463				goto bad_size;
3464			break;
3465
3466		case O_ALTQ:
3467			if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
3468				goto bad_size;
3469			break;
3470
3471		case O_PIPE:
3472		case O_QUEUE:
3473			if (cmdlen != F_INSN_SIZE(ipfw_insn_pipe))
3474				goto bad_size;
3475			goto check_action;
3476
3477		case O_FORWARD_IP:
3478#ifdef	IPFIREWALL_FORWARD
3479			if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
3480				goto bad_size;
3481			goto check_action;
3482#else
3483			return EINVAL;
3484#endif
3485
3486		case O_DIVERT:
3487		case O_TEE:
3488			if (ip_divert_ptr == NULL)
3489				return EINVAL;
3490			else
3491				goto check_size;
3492		case O_NETGRAPH:
3493		case O_NGTEE:
3494			if (!NG_IPFW_LOADED)
3495				return EINVAL;
3496			else
3497				goto check_size;
3498		case O_FORWARD_MAC: /* XXX not implemented yet */
3499		case O_CHECK_STATE:
3500		case O_COUNT:
3501		case O_ACCEPT:
3502		case O_DENY:
3503		case O_REJECT:
3504		case O_SKIPTO:
3505check_size:
3506			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3507				goto bad_size;
3508check_action:
3509			if (have_action) {
3510				printf("ipfw: opcode %d, multiple actions"
3511					" not allowed\n",
3512					cmd->opcode);
3513				return EINVAL;
3514			}
3515			have_action = 1;
3516			if (l != cmdlen) {
3517				printf("ipfw: opcode %d, action must be"
3518					" last opcode\n",
3519					cmd->opcode);
3520				return EINVAL;
3521			}
3522			break;
3523		case O_IP6_SRC:
3524		case O_IP6_DST:
3525			if (cmdlen != F_INSN_SIZE(struct in6_addr) +
3526			    F_INSN_SIZE(ipfw_insn))
3527				goto bad_size;
3528			break;
3529
3530		case O_FLOW6ID:
3531			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3532			    ((ipfw_insn_u32 *)cmd)->o.arg1)
3533				goto bad_size;
3534			break;
3535
3536		case O_IP6_SRC_MASK:
3537		case O_IP6_DST_MASK:
3538			if ( !(cmdlen & 1) || cmdlen > 127)
3539				goto bad_size;
3540			break;
3541		case O_ICMP6TYPE:
3542			if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
3543				goto bad_size;
3544			break;
3545
3546		default:
3547			printf("ipfw: opcode %d, unknown opcode\n",
3548				cmd->opcode);
3549			return EINVAL;
3550		}
3551	}
3552	if (have_action == 0) {
3553		printf("ipfw: missing action\n");
3554		return EINVAL;
3555	}
3556	return 0;
3557
3558bad_size:
3559	printf("ipfw: opcode %d size %d wrong\n",
3560		cmd->opcode, cmdlen);
3561	return EINVAL;
3562}
3563
3564/*
3565 * Copy the static and dynamic rules to the supplied buffer
3566 * and return the amount of space actually used.
3567 */
3568static size_t
3569ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
3570{
3571	char *bp = buf;
3572	char *ep = bp + space;
3573	struct ip_fw *rule;
3574	int i;
3575
3576	/* XXX this can take a long time and locking will block packet flow */
3577	IPFW_RLOCK(chain);
3578	for (rule = chain->rules; rule ; rule = rule->next) {
3579		/*
3580		 * Verify the entry fits in the buffer in case the
3581		 * rules changed between calculating buffer space and
3582		 * now.  This would be better done using a generation
3583		 * number but should suffice for now.
3584		 */
3585		i = RULESIZE(rule);
3586		if (bp + i <= ep) {
3587			bcopy(rule, bp, i);
3588			bcopy(&set_disable, &(((struct ip_fw *)bp)->next_rule),
3589			    sizeof(set_disable));
3590			bp += i;
3591		}
3592	}
3593	IPFW_RUNLOCK(chain);
3594	if (ipfw_dyn_v) {
3595		ipfw_dyn_rule *p, *last = NULL;
3596
3597		IPFW_DYN_LOCK();
3598		for (i = 0 ; i < curr_dyn_buckets; i++)
3599			for (p = ipfw_dyn_v[i] ; p != NULL; p = p->next) {
3600				if (bp + sizeof *p <= ep) {
3601					ipfw_dyn_rule *dst =
3602						(ipfw_dyn_rule *)bp;
3603					bcopy(p, dst, sizeof *p);
3604					bcopy(&(p->rule->rulenum), &(dst->rule),
3605					    sizeof(p->rule->rulenum));
3606					/*
3607					 * store a non-null value in "next".
3608					 * The userland code will interpret a
3609					 * NULL here as a marker
3610					 * for the last dynamic rule.
3611					 */
3612					bcopy(&dst, &dst->next, sizeof(dst));
3613					last = dst;
3614					dst->expire =
3615					    TIME_LEQ(dst->expire, time_second) ?
3616						0 : dst->expire - time_second ;
3617					bp += sizeof(ipfw_dyn_rule);
3618				}
3619			}
3620		IPFW_DYN_UNLOCK();
3621		if (last != NULL) /* mark last dynamic rule */
3622			bzero(&last->next, sizeof(last));
3623	}
3624	return (bp - (char *)buf);
3625}
3626
3627
3628/**
3629 * {set|get}sockopt parser.
3630 */
3631static int
3632ipfw_ctl(struct sockopt *sopt)
3633{
3634#define	RULE_MAXSIZE	(256*sizeof(u_int32_t))
3635	int error, rule_num;
3636	size_t size;
3637	struct ip_fw *buf, *rule;
3638	u_int32_t rulenum[2];
3639
3640	error = suser(sopt->sopt_td);
3641	if (error)
3642		return (error);
3643
3644	/*
3645	 * Disallow modifications in really-really secure mode, but still allow
3646	 * the logging counters to be reset.
3647	 */
3648	if (sopt->sopt_name == IP_FW_ADD ||
3649	    (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
3650#if __FreeBSD_version >= 500034
3651		error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
3652		if (error)
3653			return (error);
3654#else /* FreeBSD 4.x */
3655		if (securelevel >= 3)
3656			return (EPERM);
3657#endif
3658	}
3659
3660	error = 0;
3661
3662	switch (sopt->sopt_name) {
3663	case IP_FW_GET:
3664		/*
3665		 * pass up a copy of the current rules. Static rules
3666		 * come first (the last of which has number IPFW_DEFAULT_RULE),
3667		 * followed by a possibly empty list of dynamic rule.
3668		 * The last dynamic rule has NULL in the "next" field.
3669		 *
3670		 * Note that the calculated size is used to bound the
3671		 * amount of data returned to the user.  The rule set may
3672		 * change between calculating the size and returning the
3673		 * data in which case we'll just return what fits.
3674		 */
3675		size = static_len;	/* size of static rules */
3676		if (ipfw_dyn_v)		/* add size of dyn.rules */
3677			size += (dyn_count * sizeof(ipfw_dyn_rule));
3678
3679		/*
3680		 * XXX todo: if the user passes a short length just to know
3681		 * how much room is needed, do not bother filling up the
3682		 * buffer, just jump to the sooptcopyout.
3683		 */
3684		buf = malloc(size, M_TEMP, M_WAITOK);
3685		error = sooptcopyout(sopt, buf,
3686				ipfw_getrules(&layer3_chain, buf, size));
3687		free(buf, M_TEMP);
3688		break;
3689
3690	case IP_FW_FLUSH:
3691		/*
3692		 * Normally we cannot release the lock on each iteration.
3693		 * We could do it here only because we start from the head all
3694		 * the times so there is no risk of missing some entries.
3695		 * On the other hand, the risk is that we end up with
3696		 * a very inconsistent ruleset, so better keep the lock
3697		 * around the whole cycle.
3698		 *
3699		 * XXX this code can be improved by resetting the head of
3700		 * the list to point to the default rule, and then freeing
3701		 * the old list without the need for a lock.
3702		 */
3703
3704		IPFW_WLOCK(&layer3_chain);
3705		layer3_chain.reap = NULL;
3706		free_chain(&layer3_chain, 0 /* keep default rule */);
3707		rule = layer3_chain.reap, layer3_chain.reap = NULL;
3708		IPFW_WUNLOCK(&layer3_chain);
3709		if (layer3_chain.reap != NULL)
3710			reap_rules(rule);
3711		break;
3712
3713	case IP_FW_ADD:
3714		rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
3715		error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
3716			sizeof(struct ip_fw) );
3717		if (error == 0)
3718			error = check_ipfw_struct(rule, sopt->sopt_valsize);
3719		if (error == 0) {
3720			error = add_rule(&layer3_chain, rule);
3721			size = RULESIZE(rule);
3722			if (!error && sopt->sopt_dir == SOPT_GET)
3723				error = sooptcopyout(sopt, rule, size);
3724		}
3725		free(rule, M_TEMP);
3726		break;
3727
3728	case IP_FW_DEL:
3729		/*
3730		 * IP_FW_DEL is used for deleting single rules or sets,
3731		 * and (ab)used to atomically manipulate sets. Argument size
3732		 * is used to distinguish between the two:
3733		 *    sizeof(u_int32_t)
3734		 *	delete single rule or set of rules,
3735		 *	or reassign rules (or sets) to a different set.
3736		 *    2*sizeof(u_int32_t)
3737		 *	atomic disable/enable sets.
3738		 *	first u_int32_t contains sets to be disabled,
3739		 *	second u_int32_t contains sets to be enabled.
3740		 */
3741		error = sooptcopyin(sopt, rulenum,
3742			2*sizeof(u_int32_t), sizeof(u_int32_t));
3743		if (error)
3744			break;
3745		size = sopt->sopt_valsize;
3746		if (size == sizeof(u_int32_t))	/* delete or reassign */
3747			error = del_entry(&layer3_chain, rulenum[0]);
3748		else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
3749			set_disable =
3750			    (set_disable | rulenum[0]) & ~rulenum[1] &
3751			    ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
3752		else
3753			error = EINVAL;
3754		break;
3755
3756	case IP_FW_ZERO:
3757	case IP_FW_RESETLOG: /* argument is an int, the rule number */
3758		rule_num = 0;
3759		if (sopt->sopt_val != 0) {
3760		    error = sooptcopyin(sopt, &rule_num,
3761			    sizeof(int), sizeof(int));
3762		    if (error)
3763			break;
3764		}
3765		error = zero_entry(&layer3_chain, rule_num,
3766			sopt->sopt_name == IP_FW_RESETLOG);
3767		break;
3768
3769	case IP_FW_TABLE_ADD:
3770		{
3771			ipfw_table_entry ent;
3772
3773			error = sooptcopyin(sopt, &ent,
3774			    sizeof(ent), sizeof(ent));
3775			if (error)
3776				break;
3777			error = add_table_entry(ent.tbl, ent.addr,
3778			    ent.masklen, ent.value);
3779		}
3780		break;
3781
3782	case IP_FW_TABLE_DEL:
3783		{
3784			ipfw_table_entry ent;
3785
3786			error = sooptcopyin(sopt, &ent,
3787			    sizeof(ent), sizeof(ent));
3788			if (error)
3789				break;
3790			error = del_table_entry(ent.tbl, ent.addr, ent.masklen);
3791		}
3792		break;
3793
3794	case IP_FW_TABLE_FLUSH:
3795		{
3796			u_int16_t tbl;
3797
3798			error = sooptcopyin(sopt, &tbl,
3799			    sizeof(tbl), sizeof(tbl));
3800			if (error)
3801				break;
3802			error = flush_table(tbl);
3803		}
3804		break;
3805
3806	case IP_FW_TABLE_GETSIZE:
3807		{
3808			u_int32_t tbl, cnt;
3809
3810			if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
3811			    sizeof(tbl))))
3812				break;
3813			if ((error = count_table(tbl, &cnt)))
3814				break;
3815			error = sooptcopyout(sopt, &cnt, sizeof(cnt));
3816		}
3817		break;
3818
3819	case IP_FW_TABLE_LIST:
3820		{
3821			ipfw_table *tbl;
3822
3823			if (sopt->sopt_valsize < sizeof(*tbl)) {
3824				error = EINVAL;
3825				break;
3826			}
3827			size = sopt->sopt_valsize;
3828			tbl = malloc(size, M_TEMP, M_WAITOK);
3829			if (tbl == NULL) {
3830				error = ENOMEM;
3831				break;
3832			}
3833			error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
3834			if (error) {
3835				free(tbl, M_TEMP);
3836				break;
3837			}
3838			tbl->size = (size - sizeof(*tbl)) /
3839			    sizeof(ipfw_table_entry);
3840			error = dump_table(tbl);
3841			if (error) {
3842				free(tbl, M_TEMP);
3843				break;
3844			}
3845			error = sooptcopyout(sopt, tbl, size);
3846			free(tbl, M_TEMP);
3847		}
3848		break;
3849
3850	default:
3851		printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
3852		error = EINVAL;
3853	}
3854
3855	return (error);
3856#undef RULE_MAXSIZE
3857}
3858
3859/**
3860 * dummynet needs a reference to the default rule, because rules can be
3861 * deleted while packets hold a reference to them. When this happens,
3862 * dummynet changes the reference to the default rule (it could well be a
3863 * NULL pointer, but this way we do not need to check for the special
3864 * case, plus here he have info on the default behaviour).
3865 */
3866struct ip_fw *ip_fw_default_rule;
3867
3868/*
3869 * This procedure is only used to handle keepalives. It is invoked
3870 * every dyn_keepalive_period
3871 */
3872static void
3873ipfw_tick(void * __unused unused)
3874{
3875	struct mbuf *m0, *m, *mnext, **mtailp;
3876	int i;
3877	ipfw_dyn_rule *q;
3878
3879	if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0)
3880		goto done;
3881
3882	/*
3883	 * We make a chain of packets to go out here -- not deferring
3884	 * until after we drop the IPFW dynamic rule lock would result
3885	 * in a lock order reversal with the normal packet input -> ipfw
3886	 * call stack.
3887	 */
3888	m0 = NULL;
3889	mtailp = &m0;
3890	IPFW_DYN_LOCK();
3891	for (i = 0 ; i < curr_dyn_buckets ; i++) {
3892		for (q = ipfw_dyn_v[i] ; q ; q = q->next ) {
3893			if (q->dyn_type == O_LIMIT_PARENT)
3894				continue;
3895			if (q->id.proto != IPPROTO_TCP)
3896				continue;
3897			if ( (q->state & BOTH_SYN) != BOTH_SYN)
3898				continue;
3899			if (TIME_LEQ( time_second+dyn_keepalive_interval,
3900			    q->expire))
3901				continue;	/* too early */
3902			if (TIME_LEQ(q->expire, time_second))
3903				continue;	/* too late, rule expired */
3904
3905			*mtailp = send_pkt(&(q->id), q->ack_rev - 1,
3906				q->ack_fwd, TH_SYN);
3907			if (*mtailp != NULL)
3908				mtailp = &(*mtailp)->m_nextpkt;
3909			*mtailp = send_pkt(&(q->id), q->ack_fwd - 1,
3910				q->ack_rev, 0);
3911			if (*mtailp != NULL)
3912				mtailp = &(*mtailp)->m_nextpkt;
3913		}
3914	}
3915	IPFW_DYN_UNLOCK();
3916	for (m = mnext = m0; m != NULL; m = mnext) {
3917		mnext = m->m_nextpkt;
3918		m->m_nextpkt = NULL;
3919		ip_output(m, NULL, NULL, 0, NULL, NULL);
3920	}
3921done:
3922	callout_reset(&ipfw_timeout, dyn_keepalive_period*hz, ipfw_tick, NULL);
3923}
3924
3925int
3926ipfw_init(void)
3927{
3928	struct ip_fw default_rule;
3929	int error;
3930
3931	layer3_chain.rules = NULL;
3932	layer3_chain.want_write = 0;
3933	layer3_chain.busy_count = 0;
3934	cv_init(&layer3_chain.cv, "Condition variable for IPFW rw locks");
3935	IPFW_LOCK_INIT(&layer3_chain);
3936	ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule zone",
3937	    sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
3938	    UMA_ALIGN_PTR, 0);
3939	IPFW_DYN_LOCK_INIT();
3940	callout_init(&ipfw_timeout, NET_CALLOUT_MPSAFE);
3941
3942	bzero(&default_rule, sizeof default_rule);
3943
3944	default_rule.act_ofs = 0;
3945	default_rule.rulenum = IPFW_DEFAULT_RULE;
3946	default_rule.cmd_len = 1;
3947	default_rule.set = RESVD_SET;
3948
3949	default_rule.cmd[0].len = 1;
3950	default_rule.cmd[0].opcode =
3951#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
3952				1 ? O_ACCEPT :
3953#endif
3954				O_DENY;
3955
3956	error = add_rule(&layer3_chain, &default_rule);
3957	if (error != 0) {
3958		printf("ipfw2: error %u initializing default rule "
3959			"(support disabled)\n", error);
3960		IPFW_DYN_LOCK_DESTROY();
3961		IPFW_LOCK_DESTROY(&layer3_chain);
3962		return (error);
3963	}
3964
3965	ip_fw_default_rule = layer3_chain.rules;
3966	printf("ipfw2 (+ipv6) initialized, divert %s, "
3967		"rule-based forwarding "
3968#ifdef IPFIREWALL_FORWARD
3969		"enabled, "
3970#else
3971		"disabled, "
3972#endif
3973		"default to %s, logging ",
3974#ifdef IPDIVERT
3975		"enabled",
3976#else
3977		"loadable",
3978#endif
3979		default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
3980
3981#ifdef IPFIREWALL_VERBOSE
3982	fw_verbose = 1;
3983#endif
3984#ifdef IPFIREWALL_VERBOSE_LIMIT
3985	verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
3986#endif
3987	if (fw_verbose == 0)
3988		printf("disabled\n");
3989	else if (verbose_limit == 0)
3990		printf("unlimited\n");
3991	else
3992		printf("limited to %d packets/entry by default\n",
3993		    verbose_limit);
3994
3995	init_tables();
3996	ip_fw_ctl_ptr = ipfw_ctl;
3997	ip_fw_chk_ptr = ipfw_chk;
3998	callout_reset(&ipfw_timeout, hz, ipfw_tick, NULL);
3999
4000	return (0);
4001}
4002
4003void
4004ipfw_destroy(void)
4005{
4006	struct ip_fw *reap;
4007
4008	ip_fw_chk_ptr = NULL;
4009	ip_fw_ctl_ptr = NULL;
4010	callout_drain(&ipfw_timeout);
4011	IPFW_WLOCK(&layer3_chain);
4012	layer3_chain.reap = NULL;
4013	free_chain(&layer3_chain, 1 /* kill default rule */);
4014	reap = layer3_chain.reap, layer3_chain.reap = NULL;
4015	IPFW_WUNLOCK(&layer3_chain);
4016	if (reap != NULL)
4017		reap_rules(reap);
4018	flush_tables();
4019	IPFW_DYN_LOCK_DESTROY();
4020	uma_zdestroy(ipfw_dyn_rule_zone);
4021	IPFW_LOCK_DESTROY(&layer3_chain);
4022	printf("IP firewall unloaded\n");
4023}
4024