ip_fw2.c revision 147247
1/*-
2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 * $FreeBSD: head/sys/netinet/ip_fw2.c 147247 2005-06-10 12:28:17Z green $
26 */
27
28#define        DEB(x)
29#define        DDB(x) x
30
31/*
32 * Implement IP packet firewall (new version)
33 */
34
35#if !defined(KLD_MODULE)
36#include "opt_ipfw.h"
37#include "opt_ipdn.h"
38#include "opt_inet.h"
39#include "opt_inet6.h"
40#include "opt_ipsec.h"
41#ifndef INET
42#error IPFIREWALL requires INET.
43#endif /* INET */
44#endif
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/condvar.h>
49#include <sys/malloc.h>
50#include <sys/mbuf.h>
51#include <sys/kernel.h>
52#include <sys/jail.h>
53#include <sys/module.h>
54#include <sys/proc.h>
55#include <sys/socket.h>
56#include <sys/socketvar.h>
57#include <sys/sysctl.h>
58#include <sys/syslog.h>
59#include <sys/ucred.h>
60#include <net/if.h>
61#include <net/radix.h>
62#include <net/route.h>
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/in_var.h>
66#include <netinet/in_pcb.h>
67#include <netinet/ip.h>
68#include <netinet/ip_var.h>
69#include <netinet/ip_icmp.h>
70#include <netinet/ip_fw.h>
71#include <netinet/ip_divert.h>
72#include <netinet/ip_dummynet.h>
73#include <netinet/tcp.h>
74#include <netinet/tcp_timer.h>
75#include <netinet/tcp_var.h>
76#include <netinet/tcpip.h>
77#include <netinet/udp.h>
78#include <netinet/udp_var.h>
79
80#include <netgraph/ng_ipfw.h>
81
82#include <altq/if_altq.h>
83
84#ifdef IPSEC
85#include <netinet6/ipsec.h>
86#endif
87
88#include <netinet/ip6.h>
89#include <netinet/icmp6.h>
90
91#include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
92
93#include <machine/in_cksum.h>	/* XXX for in_cksum */
94
95/*
96 * set_disable contains one bit per set value (0..31).
97 * If the bit is set, all rules with the corresponding set
98 * are disabled. Set RESVD_SET(31) is reserved for the default rule
99 * and rules that are not deleted by the flush command,
100 * and CANNOT be disabled.
101 * Rules in set RESVD_SET can only be deleted explicitly.
102 */
103static u_int32_t set_disable;
104
105static int fw_verbose;
106static int verbose_limit;
107
108static struct callout ipfw_timeout;
109static uma_zone_t ipfw_dyn_rule_zone;
110#define	IPFW_DEFAULT_RULE	65535
111
112/*
113 * Data structure to cache our ucred related
114 * information. This structure only gets used if
115 * the user specified UID/GID based constraints in
116 * a firewall rule.
117 */
118struct ip_fw_ugid {
119	gid_t		fw_groups[NGROUPS];
120	int		fw_ngroups;
121	uid_t		fw_uid;
122	int		fw_prid;
123};
124
125struct ip_fw_chain {
126	struct ip_fw	*rules;		/* list of rules */
127	struct ip_fw	*reap;		/* list of rules to reap */
128	struct mtx	mtx;		/* lock guarding rule list */
129	int		busy_count;	/* busy count for rw locks */
130	int		want_write;
131	struct cv	cv;
132};
133#define	IPFW_LOCK_INIT(_chain) \
134	mtx_init(&(_chain)->mtx, "IPFW static rules", NULL, \
135		MTX_DEF | MTX_RECURSE)
136#define	IPFW_LOCK_DESTROY(_chain)	mtx_destroy(&(_chain)->mtx)
137#define	IPFW_WLOCK_ASSERT(_chain)	do {				\
138	mtx_assert(&(_chain)->mtx, MA_OWNED);				\
139	NET_ASSERT_GIANT();						\
140} while (0)
141
142static __inline void
143IPFW_RLOCK(struct ip_fw_chain *chain)
144{
145	mtx_lock(&chain->mtx);
146	chain->busy_count++;
147	mtx_unlock(&chain->mtx);
148}
149
150static __inline void
151IPFW_RUNLOCK(struct ip_fw_chain *chain)
152{
153	mtx_lock(&chain->mtx);
154	chain->busy_count--;
155	if (chain->busy_count == 0 && chain->want_write)
156		cv_signal(&chain->cv);
157	mtx_unlock(&chain->mtx);
158}
159
160static __inline void
161IPFW_WLOCK(struct ip_fw_chain *chain)
162{
163	mtx_lock(&chain->mtx);
164	chain->want_write++;
165	while (chain->busy_count > 0)
166		cv_wait(&chain->cv, &chain->mtx);
167}
168
169static __inline void
170IPFW_WUNLOCK(struct ip_fw_chain *chain)
171{
172	chain->want_write--;
173	cv_signal(&chain->cv);
174	mtx_unlock(&chain->mtx);
175}
176
177/*
178 * list of rules for layer 3
179 */
180static struct ip_fw_chain layer3_chain;
181
182MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
183MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
184
185struct table_entry {
186	struct radix_node	rn[2];
187	struct sockaddr_in	addr, mask;
188	u_int32_t		value;
189};
190
191#define	IPFW_TABLES_MAX		128
192static struct {
193	struct radix_node_head	*rnh;
194	int			modified;
195} ipfw_tables[IPFW_TABLES_MAX];
196
197static int fw_debug = 1;
198static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
199
200#ifdef SYSCTL_NODE
201SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
202SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, enable,
203    CTLFLAG_RW | CTLFLAG_SECURE3,
204    &fw_enable, 0, "Enable ipfw");
205SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
206    &autoinc_step, 0, "Rule number autincrement step");
207SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
208    CTLFLAG_RW | CTLFLAG_SECURE3,
209    &fw_one_pass, 0,
210    "Only do a single pass through ipfw when using dummynet(4)");
211SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
212    &fw_debug, 0, "Enable printing of debug ip_fw statements");
213SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
214    CTLFLAG_RW | CTLFLAG_SECURE3,
215    &fw_verbose, 0, "Log matches to ipfw rules");
216SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
217    &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
218
219/*
220 * Description of dynamic rules.
221 *
222 * Dynamic rules are stored in lists accessed through a hash table
223 * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
224 * be modified through the sysctl variable dyn_buckets which is
225 * updated when the table becomes empty.
226 *
227 * XXX currently there is only one list, ipfw_dyn.
228 *
229 * When a packet is received, its address fields are first masked
230 * with the mask defined for the rule, then hashed, then matched
231 * against the entries in the corresponding list.
232 * Dynamic rules can be used for different purposes:
233 *  + stateful rules;
234 *  + enforcing limits on the number of sessions;
235 *  + in-kernel NAT (not implemented yet)
236 *
237 * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
238 * measured in seconds and depending on the flags.
239 *
240 * The total number of dynamic rules is stored in dyn_count.
241 * The max number of dynamic rules is dyn_max. When we reach
242 * the maximum number of rules we do not create anymore. This is
243 * done to avoid consuming too much memory, but also too much
244 * time when searching on each packet (ideally, we should try instead
245 * to put a limit on the length of the list on each bucket...).
246 *
247 * Each dynamic rule holds a pointer to the parent ipfw rule so
248 * we know what action to perform. Dynamic rules are removed when
249 * the parent rule is deleted. XXX we should make them survive.
250 *
251 * There are some limitations with dynamic rules -- we do not
252 * obey the 'randomized match', and we do not do multiple
253 * passes through the firewall. XXX check the latter!!!
254 */
255static ipfw_dyn_rule **ipfw_dyn_v = NULL;
256static u_int32_t dyn_buckets = 256; /* must be power of 2 */
257static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
258
259static struct mtx ipfw_dyn_mtx;		/* mutex guarding dynamic rules */
260#define	IPFW_DYN_LOCK_INIT() \
261	mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
262#define	IPFW_DYN_LOCK_DESTROY()	mtx_destroy(&ipfw_dyn_mtx)
263#define	IPFW_DYN_LOCK()		mtx_lock(&ipfw_dyn_mtx)
264#define	IPFW_DYN_UNLOCK()	mtx_unlock(&ipfw_dyn_mtx)
265#define	IPFW_DYN_LOCK_ASSERT()	mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
266
267/*
268 * Timeouts for various events in handing dynamic rules.
269 */
270static u_int32_t dyn_ack_lifetime = 300;
271static u_int32_t dyn_syn_lifetime = 20;
272static u_int32_t dyn_fin_lifetime = 1;
273static u_int32_t dyn_rst_lifetime = 1;
274static u_int32_t dyn_udp_lifetime = 10;
275static u_int32_t dyn_short_lifetime = 5;
276
277/*
278 * Keepalives are sent if dyn_keepalive is set. They are sent every
279 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
280 * seconds of lifetime of a rule.
281 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
282 * than dyn_keepalive_period.
283 */
284
285static u_int32_t dyn_keepalive_interval = 20;
286static u_int32_t dyn_keepalive_period = 5;
287static u_int32_t dyn_keepalive = 1;	/* do send keepalives */
288
289static u_int32_t static_count;	/* # of static rules */
290static u_int32_t static_len;	/* size in bytes of static rules */
291static u_int32_t dyn_count;		/* # of dynamic rules */
292static u_int32_t dyn_max = 4096;	/* max # of dynamic rules */
293
294SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
295    &dyn_buckets, 0, "Number of dyn. buckets");
296SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
297    &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
298SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
299    &dyn_count, 0, "Number of dyn. rules");
300SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
301    &dyn_max, 0, "Max number of dyn. rules");
302SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
303    &static_count, 0, "Number of static rules");
304SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
305    &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
306SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
307    &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
308SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
309    &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
310SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
311    &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
312SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
313    &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
314SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
315    &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
316SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
317    &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
318
319#endif /* SYSCTL_NODE */
320
321
322/*
323 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
324 * Other macros just cast void * into the appropriate type
325 */
326#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
327#define	TCP(p)		((struct tcphdr *)(p))
328#define	UDP(p)		((struct udphdr *)(p))
329#define	ICMP(p)		((struct icmphdr *)(p))
330#define	ICMP6(p)	((struct icmp6_hdr *)(p))
331
332static __inline int
333icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
334{
335	int type = icmp->icmp_type;
336
337	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
338}
339
340#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
341    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
342
343static int
344is_icmp_query(struct icmphdr *icmp)
345{
346	int type = icmp->icmp_type;
347
348	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
349}
350#undef TT
351
352/*
353 * The following checks use two arrays of 8 or 16 bits to store the
354 * bits that we want set or clear, respectively. They are in the
355 * low and high half of cmd->arg1 or cmd->d[0].
356 *
357 * We scan options and store the bits we find set. We succeed if
358 *
359 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
360 *
361 * The code is sometimes optimized not to store additional variables.
362 */
363
364static int
365flags_match(ipfw_insn *cmd, u_int8_t bits)
366{
367	u_char want_clear;
368	bits = ~bits;
369
370	if ( ((cmd->arg1 & 0xff) & bits) != 0)
371		return 0; /* some bits we want set were clear */
372	want_clear = (cmd->arg1 >> 8) & 0xff;
373	if ( (want_clear & bits) != want_clear)
374		return 0; /* some bits we want clear were set */
375	return 1;
376}
377
378static int
379ipopts_match(struct ip *ip, ipfw_insn *cmd)
380{
381	int optlen, bits = 0;
382	u_char *cp = (u_char *)(ip + 1);
383	int x = (ip->ip_hl << 2) - sizeof (struct ip);
384
385	for (; x > 0; x -= optlen, cp += optlen) {
386		int opt = cp[IPOPT_OPTVAL];
387
388		if (opt == IPOPT_EOL)
389			break;
390		if (opt == IPOPT_NOP)
391			optlen = 1;
392		else {
393			optlen = cp[IPOPT_OLEN];
394			if (optlen <= 0 || optlen > x)
395				return 0; /* invalid or truncated */
396		}
397		switch (opt) {
398
399		default:
400			break;
401
402		case IPOPT_LSRR:
403			bits |= IP_FW_IPOPT_LSRR;
404			break;
405
406		case IPOPT_SSRR:
407			bits |= IP_FW_IPOPT_SSRR;
408			break;
409
410		case IPOPT_RR:
411			bits |= IP_FW_IPOPT_RR;
412			break;
413
414		case IPOPT_TS:
415			bits |= IP_FW_IPOPT_TS;
416			break;
417		}
418	}
419	return (flags_match(cmd, bits));
420}
421
422static int
423tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
424{
425	int optlen, bits = 0;
426	u_char *cp = (u_char *)(tcp + 1);
427	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
428
429	for (; x > 0; x -= optlen, cp += optlen) {
430		int opt = cp[0];
431		if (opt == TCPOPT_EOL)
432			break;
433		if (opt == TCPOPT_NOP)
434			optlen = 1;
435		else {
436			optlen = cp[1];
437			if (optlen <= 0)
438				break;
439		}
440
441		switch (opt) {
442
443		default:
444			break;
445
446		case TCPOPT_MAXSEG:
447			bits |= IP_FW_TCPOPT_MSS;
448			break;
449
450		case TCPOPT_WINDOW:
451			bits |= IP_FW_TCPOPT_WINDOW;
452			break;
453
454		case TCPOPT_SACK_PERMITTED:
455		case TCPOPT_SACK:
456			bits |= IP_FW_TCPOPT_SACK;
457			break;
458
459		case TCPOPT_TIMESTAMP:
460			bits |= IP_FW_TCPOPT_TS;
461			break;
462
463		}
464	}
465	return (flags_match(cmd, bits));
466}
467
468static int
469iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
470{
471	if (ifp == NULL)	/* no iface with this packet, match fails */
472		return 0;
473	/* Check by name or by IP address */
474	if (cmd->name[0] != '\0') { /* match by name */
475		/* Check name */
476		if (cmd->p.glob) {
477			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
478				return(1);
479		} else {
480			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
481				return(1);
482		}
483	} else {
484		struct ifaddr *ia;
485
486		/* XXX lock? */
487		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
488			if (ia->ifa_addr == NULL)
489				continue;
490			if (ia->ifa_addr->sa_family != AF_INET)
491				continue;
492			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
493			    (ia->ifa_addr))->sin_addr.s_addr)
494				return(1);	/* match */
495		}
496	}
497	return(0);	/* no match, fail ... */
498}
499
500/*
501 * The verify_path function checks if a route to the src exists and
502 * if it is reachable via ifp (when provided).
503 *
504 * The 'verrevpath' option checks that the interface that an IP packet
505 * arrives on is the same interface that traffic destined for the
506 * packet's source address would be routed out of.  The 'versrcreach'
507 * option just checks that the source address is reachable via any route
508 * (except default) in the routing table.  These two are a measure to block
509 * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
510 * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
511 * is purposely reminiscent of the Cisco IOS command,
512 *
513 *   ip verify unicast reverse-path
514 *   ip verify unicast source reachable-via any
515 *
516 * which implements the same functionality. But note that syntax is
517 * misleading. The check may be performed on all IP packets whether unicast,
518 * multicast, or broadcast.
519 */
520static int
521verify_path(struct in_addr src, struct ifnet *ifp)
522{
523	struct route ro;
524	struct sockaddr_in *dst;
525
526	bzero(&ro, sizeof(ro));
527
528	dst = (struct sockaddr_in *)&(ro.ro_dst);
529	dst->sin_family = AF_INET;
530	dst->sin_len = sizeof(*dst);
531	dst->sin_addr = src;
532	rtalloc_ign(&ro, RTF_CLONING);
533
534	if (ro.ro_rt == NULL)
535		return 0;
536
537	/* if ifp is provided, check for equality with rtentry */
538	if (ifp != NULL && ro.ro_rt->rt_ifp != ifp) {
539		RTFREE(ro.ro_rt);
540		return 0;
541	}
542
543	/* if no ifp provided, check if rtentry is not default route */
544	if (ifp == NULL &&
545	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
546		RTFREE(ro.ro_rt);
547		return 0;
548	}
549
550	/* or if this is a blackhole/reject route */
551	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
552		RTFREE(ro.ro_rt);
553		return 0;
554	}
555
556	/* found valid route */
557	RTFREE(ro.ro_rt);
558	return 1;
559}
560
561#ifdef INET6
562/*
563 * ipv6 specific rules here...
564 */
565static __inline int
566icmp6type_match (int type, ipfw_insn_u32 *cmd)
567{
568       return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
569}
570
571static int
572flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
573{
574       int i;
575       for (i=0; i <= cmd->o.arg1; ++i )
576               if (curr_flow == cmd->d[i] )
577                       return 1;
578       return 0;
579}
580
581/* support for IP6_*_ME opcodes */
582static int
583search_ip6_addr_net (struct in6_addr * ip6_addr)
584{
585       struct ifnet *mdc;
586       struct ifaddr *mdc2;
587       struct in6_ifaddr *fdm;
588       struct in6_addr copia;
589
590       TAILQ_FOREACH(mdc, &ifnet, if_link)
591               for (mdc2 = mdc->if_addrlist.tqh_first; mdc2;
592                   mdc2 = mdc2->ifa_list.tqe_next) {
593                       if (!mdc2->ifa_addr)
594                               continue;
595                       if (mdc2->ifa_addr->sa_family == AF_INET6) {
596                               fdm = (struct in6_ifaddr *)mdc2;
597                               copia = fdm->ia_addr.sin6_addr;
598                               /* need for leaving scope_id in the sock_addr */
599                               in6_clearscope(&copia);
600                               if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia))
601                                       return 1;
602                       }
603               }
604       return 0;
605}
606
607static int
608verify_rev_path6(struct in6_addr *src, struct ifnet *ifp)
609{
610       static struct route_in6 ro;
611       struct sockaddr_in6 *dst;
612
613       dst = (struct sockaddr_in6 * )&(ro.ro_dst);
614
615       if ( !(IN6_ARE_ADDR_EQUAL (src, &dst->sin6_addr) )) {
616               bzero(dst, sizeof(*dst));
617               dst->sin6_family = AF_INET6;
618               dst->sin6_len = sizeof(*dst);
619               dst->sin6_addr = *src;
620               rtalloc_ign((struct route *)&ro, RTF_CLONING);
621       }
622       if ((ro.ro_rt == NULL) || (ifp == NULL) ||
623           (ro.ro_rt->rt_ifp->if_index != ifp->if_index))
624               return 0;
625       return 1;
626}
627static __inline int
628hash_packet6(struct ipfw_flow_id *id)
629{
630       u_int32_t i;
631       i= (id->dst_ip6.__u6_addr.__u6_addr32[0]) ^
632       (id->dst_ip6.__u6_addr.__u6_addr32[1]) ^
633       (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
634       (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
635       (id->dst_port) ^ (id->src_port) ^ (id->flow_id6);
636       return i;
637}
638/* end of ipv6 opcodes */
639
640#endif /* INET6 */
641
642static u_int64_t norule_counter;	/* counter for ipfw_log(NULL...) */
643
644#define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
645#define SNP(buf) buf, sizeof(buf)
646
647/*
648 * We enter here when we have a rule with O_LOG.
649 * XXX this function alone takes about 2Kbytes of code!
650 */
651static void
652ipfw_log(struct ip_fw *f, u_int hlen, struct ether_header *eh,
653	struct mbuf *m, struct ifnet *oif)
654{
655	char *action;
656	int limit_reached = 0;
657	char action2[40], proto[48], fragment[28];
658
659	fragment[0] = '\0';
660	proto[0] = '\0';
661
662	if (f == NULL) {	/* bogus pkt */
663		if (verbose_limit != 0 && norule_counter >= verbose_limit)
664			return;
665		norule_counter++;
666		if (norule_counter == verbose_limit)
667			limit_reached = verbose_limit;
668		action = "Refuse";
669	} else {	/* O_LOG is the first action, find the real one */
670		ipfw_insn *cmd = ACTION_PTR(f);
671		ipfw_insn_log *l = (ipfw_insn_log *)cmd;
672
673		if (l->max_log != 0 && l->log_left == 0)
674			return;
675		l->log_left--;
676		if (l->log_left == 0)
677			limit_reached = l->max_log;
678		cmd += F_LEN(cmd);	/* point to first action */
679		if (cmd->opcode == O_ALTQ) {
680			ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
681
682			snprintf(SNPARGS(action2, 0), "Altq %d",
683				altq->qid);
684			cmd += F_LEN(cmd);
685		}
686		if (cmd->opcode == O_PROB)
687			cmd += F_LEN(cmd);
688
689		action = action2;
690		switch (cmd->opcode) {
691		case O_DENY:
692			action = "Deny";
693			break;
694
695		case O_REJECT:
696			if (cmd->arg1==ICMP_REJECT_RST)
697				action = "Reset";
698			else if (cmd->arg1==ICMP_UNREACH_HOST)
699				action = "Reject";
700			else
701				snprintf(SNPARGS(action2, 0), "Unreach %d",
702					cmd->arg1);
703			break;
704
705		case O_ACCEPT:
706			action = "Accept";
707			break;
708		case O_COUNT:
709			action = "Count";
710			break;
711		case O_DIVERT:
712			snprintf(SNPARGS(action2, 0), "Divert %d",
713				cmd->arg1);
714			break;
715		case O_TEE:
716			snprintf(SNPARGS(action2, 0), "Tee %d",
717				cmd->arg1);
718			break;
719		case O_SKIPTO:
720			snprintf(SNPARGS(action2, 0), "SkipTo %d",
721				cmd->arg1);
722			break;
723		case O_PIPE:
724			snprintf(SNPARGS(action2, 0), "Pipe %d",
725				cmd->arg1);
726			break;
727		case O_QUEUE:
728			snprintf(SNPARGS(action2, 0), "Queue %d",
729				cmd->arg1);
730			break;
731		case O_FORWARD_IP: {
732			ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
733			int len;
734
735			len = snprintf(SNPARGS(action2, 0), "Forward to %s",
736				inet_ntoa(sa->sa.sin_addr));
737			if (sa->sa.sin_port)
738				snprintf(SNPARGS(action2, len), ":%d",
739				    sa->sa.sin_port);
740			}
741			break;
742		case O_NETGRAPH:
743			snprintf(SNPARGS(action2, 0), "Netgraph %d",
744				cmd->arg1);
745			break;
746		case O_NGTEE:
747			snprintf(SNPARGS(action2, 0), "Ngtee %d",
748				cmd->arg1);
749			break;
750		default:
751			action = "UNKNOWN";
752			break;
753		}
754	}
755
756	if (hlen == 0) {	/* non-ip */
757		snprintf(SNPARGS(proto, 0), "MAC");
758	} else {
759		struct ip *ip = mtod(m, struct ip *);
760		/* these three are all aliases to the same thing */
761		struct icmphdr *const icmp = L3HDR(struct icmphdr, ip);
762		struct tcphdr *const tcp = (struct tcphdr *)icmp;
763		struct udphdr *const udp = (struct udphdr *)icmp;
764
765		int ip_off, offset, ip_len;
766
767		int len;
768
769		if (eh != NULL) { /* layer 2 packets are as on the wire */
770			ip_off = ntohs(ip->ip_off);
771			ip_len = ntohs(ip->ip_len);
772		} else {
773			ip_off = ip->ip_off;
774			ip_len = ip->ip_len;
775		}
776		offset = ip_off & IP_OFFMASK;
777		switch (ip->ip_p) {
778		case IPPROTO_TCP:
779			len = snprintf(SNPARGS(proto, 0), "TCP %s",
780			    inet_ntoa(ip->ip_src));
781			if (offset == 0)
782				snprintf(SNPARGS(proto, len), ":%d %s:%d",
783				    ntohs(tcp->th_sport),
784				    inet_ntoa(ip->ip_dst),
785				    ntohs(tcp->th_dport));
786			else
787				snprintf(SNPARGS(proto, len), " %s",
788				    inet_ntoa(ip->ip_dst));
789			break;
790
791		case IPPROTO_UDP:
792			len = snprintf(SNPARGS(proto, 0), "UDP %s",
793				inet_ntoa(ip->ip_src));
794			if (offset == 0)
795				snprintf(SNPARGS(proto, len), ":%d %s:%d",
796				    ntohs(udp->uh_sport),
797				    inet_ntoa(ip->ip_dst),
798				    ntohs(udp->uh_dport));
799			else
800				snprintf(SNPARGS(proto, len), " %s",
801				    inet_ntoa(ip->ip_dst));
802			break;
803
804		case IPPROTO_ICMP:
805			if (offset == 0)
806				len = snprintf(SNPARGS(proto, 0),
807				    "ICMP:%u.%u ",
808				    icmp->icmp_type, icmp->icmp_code);
809			else
810				len = snprintf(SNPARGS(proto, 0), "ICMP ");
811			len += snprintf(SNPARGS(proto, len), "%s",
812			    inet_ntoa(ip->ip_src));
813			snprintf(SNPARGS(proto, len), " %s",
814			    inet_ntoa(ip->ip_dst));
815			break;
816
817		default:
818			len = snprintf(SNPARGS(proto, 0), "P:%d %s", ip->ip_p,
819			    inet_ntoa(ip->ip_src));
820			snprintf(SNPARGS(proto, len), " %s",
821			    inet_ntoa(ip->ip_dst));
822			break;
823		}
824
825		if (ip_off & (IP_MF | IP_OFFMASK))
826			snprintf(SNPARGS(fragment, 0), " (frag %d:%d@%d%s)",
827			     ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
828			     offset << 3,
829			     (ip_off & IP_MF) ? "+" : "");
830	}
831	if (oif || m->m_pkthdr.rcvif)
832		log(LOG_SECURITY | LOG_INFO,
833		    "ipfw: %d %s %s %s via %s%s\n",
834		    f ? f->rulenum : -1,
835		    action, proto, oif ? "out" : "in",
836		    oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
837		    fragment);
838	else
839		log(LOG_SECURITY | LOG_INFO,
840		    "ipfw: %d %s %s [no if info]%s\n",
841		    f ? f->rulenum : -1,
842		    action, proto, fragment);
843	if (limit_reached)
844		log(LOG_SECURITY | LOG_NOTICE,
845		    "ipfw: limit %d reached on entry %d\n",
846		    limit_reached, f ? f->rulenum : -1);
847}
848
849/*
850 * IMPORTANT: the hash function for dynamic rules must be commutative
851 * in source and destination (ip,port), because rules are bidirectional
852 * and we want to find both in the same bucket.
853 */
854static __inline int
855hash_packet(struct ipfw_flow_id *id)
856{
857	u_int32_t i;
858
859#ifdef INET6
860	if (IS_IP6_FLOW_ID(id))
861		i = hash_packet6(id);
862	else
863#endif /* INET6 */
864	i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
865	i &= (curr_dyn_buckets - 1);
866	return i;
867}
868
869/**
870 * unlink a dynamic rule from a chain. prev is a pointer to
871 * the previous one, q is a pointer to the rule to delete,
872 * head is a pointer to the head of the queue.
873 * Modifies q and potentially also head.
874 */
875#define UNLINK_DYN_RULE(prev, head, q) {				\
876	ipfw_dyn_rule *old_q = q;					\
877									\
878	/* remove a refcount to the parent */				\
879	if (q->dyn_type == O_LIMIT)					\
880		q->parent->count--;					\
881	DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
882		(q->id.src_ip), (q->id.src_port),			\
883		(q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); )	\
884	if (prev != NULL)						\
885		prev->next = q = q->next;				\
886	else								\
887		head = q = q->next;					\
888	dyn_count--;							\
889	uma_zfree(ipfw_dyn_rule_zone, old_q); }
890
891#define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
892
893/**
894 * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
895 *
896 * If keep_me == NULL, rules are deleted even if not expired,
897 * otherwise only expired rules are removed.
898 *
899 * The value of the second parameter is also used to point to identify
900 * a rule we absolutely do not want to remove (e.g. because we are
901 * holding a reference to it -- this is the case with O_LIMIT_PARENT
902 * rules). The pointer is only used for comparison, so any non-null
903 * value will do.
904 */
905static void
906remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
907{
908	static u_int32_t last_remove = 0;
909
910#define FORCE (keep_me == NULL)
911
912	ipfw_dyn_rule *prev, *q;
913	int i, pass = 0, max_pass = 0;
914
915	IPFW_DYN_LOCK_ASSERT();
916
917	if (ipfw_dyn_v == NULL || dyn_count == 0)
918		return;
919	/* do not expire more than once per second, it is useless */
920	if (!FORCE && last_remove == time_second)
921		return;
922	last_remove = time_second;
923
924	/*
925	 * because O_LIMIT refer to parent rules, during the first pass only
926	 * remove child and mark any pending LIMIT_PARENT, and remove
927	 * them in a second pass.
928	 */
929next_pass:
930	for (i = 0 ; i < curr_dyn_buckets ; i++) {
931		for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
932			/*
933			 * Logic can become complex here, so we split tests.
934			 */
935			if (q == keep_me)
936				goto next;
937			if (rule != NULL && rule != q->rule)
938				goto next; /* not the one we are looking for */
939			if (q->dyn_type == O_LIMIT_PARENT) {
940				/*
941				 * handle parent in the second pass,
942				 * record we need one.
943				 */
944				max_pass = 1;
945				if (pass == 0)
946					goto next;
947				if (FORCE && q->count != 0 ) {
948					/* XXX should not happen! */
949					printf("ipfw: OUCH! cannot remove rule,"
950					     " count %d\n", q->count);
951				}
952			} else {
953				if (!FORCE &&
954				    !TIME_LEQ( q->expire, time_second ))
955					goto next;
956			}
957             if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
958                     UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
959                     continue;
960             }
961next:
962			prev=q;
963			q=q->next;
964		}
965	}
966	if (pass++ < max_pass)
967		goto next_pass;
968}
969
970
971/**
972 * lookup a dynamic rule.
973 */
974static ipfw_dyn_rule *
975lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
976	struct tcphdr *tcp)
977{
978	/*
979	 * stateful ipfw extensions.
980	 * Lookup into dynamic session queue
981	 */
982#define MATCH_REVERSE	0
983#define MATCH_FORWARD	1
984#define MATCH_NONE	2
985#define MATCH_UNKNOWN	3
986	int i, dir = MATCH_NONE;
987	ipfw_dyn_rule *prev, *q=NULL;
988
989	IPFW_DYN_LOCK_ASSERT();
990
991	if (ipfw_dyn_v == NULL)
992		goto done;	/* not found */
993	i = hash_packet( pkt );
994	for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
995		if (q->dyn_type == O_LIMIT_PARENT && q->count)
996			goto next;
997		if (TIME_LEQ( q->expire, time_second)) { /* expire entry */
998			UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
999			continue;
1000		}
1001		if (pkt->proto == q->id.proto &&
1002		    q->dyn_type != O_LIMIT_PARENT) {
1003			if (IS_IP6_FLOW_ID(pkt)) {
1004			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1005				&(q->id.src_ip6)) &&
1006			    IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1007				&(q->id.dst_ip6)) &&
1008			    pkt->src_port == q->id.src_port &&
1009			    pkt->dst_port == q->id.dst_port ) {
1010				dir = MATCH_FORWARD;
1011				break;
1012			    }
1013			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1014				    &(q->id.dst_ip6)) &&
1015				IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1016				    &(q->id.src_ip6)) &&
1017				pkt->src_port == q->id.dst_port &&
1018				pkt->dst_port == q->id.src_port ) {
1019				    dir = MATCH_REVERSE;
1020				    break;
1021			    }
1022			} else {
1023			    if (pkt->src_ip == q->id.src_ip &&
1024				pkt->dst_ip == q->id.dst_ip &&
1025				pkt->src_port == q->id.src_port &&
1026				pkt->dst_port == q->id.dst_port ) {
1027				    dir = MATCH_FORWARD;
1028				    break;
1029			    }
1030			    if (pkt->src_ip == q->id.dst_ip &&
1031				pkt->dst_ip == q->id.src_ip &&
1032				pkt->src_port == q->id.dst_port &&
1033				pkt->dst_port == q->id.src_port ) {
1034				    dir = MATCH_REVERSE;
1035				    break;
1036			    }
1037			}
1038		}
1039next:
1040		prev = q;
1041		q = q->next;
1042	}
1043	if (q == NULL)
1044		goto done; /* q = NULL, not found */
1045
1046	if ( prev != NULL) { /* found and not in front */
1047		prev->next = q->next;
1048		q->next = ipfw_dyn_v[i];
1049		ipfw_dyn_v[i] = q;
1050	}
1051	if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
1052		u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
1053
1054#define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
1055#define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
1056		q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
1057		switch (q->state) {
1058		case TH_SYN:				/* opening */
1059			q->expire = time_second + dyn_syn_lifetime;
1060			break;
1061
1062		case BOTH_SYN:			/* move to established */
1063		case BOTH_SYN | TH_FIN :	/* one side tries to close */
1064		case BOTH_SYN | (TH_FIN << 8) :
1065 			if (tcp) {
1066#define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
1067			    u_int32_t ack = ntohl(tcp->th_ack);
1068			    if (dir == MATCH_FORWARD) {
1069				if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
1070				    q->ack_fwd = ack;
1071				else { /* ignore out-of-sequence */
1072				    break;
1073				}
1074			    } else {
1075				if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
1076				    q->ack_rev = ack;
1077				else { /* ignore out-of-sequence */
1078				    break;
1079				}
1080			    }
1081			}
1082			q->expire = time_second + dyn_ack_lifetime;
1083			break;
1084
1085		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
1086			if (dyn_fin_lifetime >= dyn_keepalive_period)
1087				dyn_fin_lifetime = dyn_keepalive_period - 1;
1088			q->expire = time_second + dyn_fin_lifetime;
1089			break;
1090
1091		default:
1092#if 0
1093			/*
1094			 * reset or some invalid combination, but can also
1095			 * occur if we use keep-state the wrong way.
1096			 */
1097			if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
1098				printf("invalid state: 0x%x\n", q->state);
1099#endif
1100			if (dyn_rst_lifetime >= dyn_keepalive_period)
1101				dyn_rst_lifetime = dyn_keepalive_period - 1;
1102			q->expire = time_second + dyn_rst_lifetime;
1103			break;
1104		}
1105	} else if (pkt->proto == IPPROTO_UDP) {
1106		q->expire = time_second + dyn_udp_lifetime;
1107	} else {
1108		/* other protocols */
1109		q->expire = time_second + dyn_short_lifetime;
1110	}
1111done:
1112	if (match_direction)
1113		*match_direction = dir;
1114	return q;
1115}
1116
1117static ipfw_dyn_rule *
1118lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
1119	struct tcphdr *tcp)
1120{
1121	ipfw_dyn_rule *q;
1122
1123	IPFW_DYN_LOCK();
1124	q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
1125	if (q == NULL)
1126		IPFW_DYN_UNLOCK();
1127	/* NB: return table locked when q is not NULL */
1128	return q;
1129}
1130
1131static void
1132realloc_dynamic_table(void)
1133{
1134	IPFW_DYN_LOCK_ASSERT();
1135
1136	/*
1137	 * Try reallocation, make sure we have a power of 2 and do
1138	 * not allow more than 64k entries. In case of overflow,
1139	 * default to 1024.
1140	 */
1141
1142	if (dyn_buckets > 65536)
1143		dyn_buckets = 1024;
1144	if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
1145		dyn_buckets = curr_dyn_buckets; /* reset */
1146		return;
1147	}
1148	curr_dyn_buckets = dyn_buckets;
1149	if (ipfw_dyn_v != NULL)
1150		free(ipfw_dyn_v, M_IPFW);
1151	for (;;) {
1152		ipfw_dyn_v = malloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
1153		       M_IPFW, M_NOWAIT | M_ZERO);
1154		if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
1155			break;
1156		curr_dyn_buckets /= 2;
1157	}
1158}
1159
1160/**
1161 * Install state of type 'type' for a dynamic session.
1162 * The hash table contains two type of rules:
1163 * - regular rules (O_KEEP_STATE)
1164 * - rules for sessions with limited number of sess per user
1165 *   (O_LIMIT). When they are created, the parent is
1166 *   increased by 1, and decreased on delete. In this case,
1167 *   the third parameter is the parent rule and not the chain.
1168 * - "parent" rules for the above (O_LIMIT_PARENT).
1169 */
1170static ipfw_dyn_rule *
1171add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
1172{
1173	ipfw_dyn_rule *r;
1174	int i;
1175
1176	IPFW_DYN_LOCK_ASSERT();
1177
1178	if (ipfw_dyn_v == NULL ||
1179	    (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
1180		realloc_dynamic_table();
1181		if (ipfw_dyn_v == NULL)
1182			return NULL; /* failed ! */
1183	}
1184	i = hash_packet(id);
1185
1186	r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
1187	if (r == NULL) {
1188		printf ("ipfw: sorry cannot allocate state\n");
1189		return NULL;
1190	}
1191
1192	/* increase refcount on parent, and set pointer */
1193	if (dyn_type == O_LIMIT) {
1194		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
1195		if ( parent->dyn_type != O_LIMIT_PARENT)
1196			panic("invalid parent");
1197		parent->count++;
1198		r->parent = parent;
1199		rule = parent->rule;
1200	}
1201
1202	r->id = *id;
1203	r->expire = time_second + dyn_syn_lifetime;
1204	r->rule = rule;
1205	r->dyn_type = dyn_type;
1206	r->pcnt = r->bcnt = 0;
1207	r->count = 0;
1208
1209	r->bucket = i;
1210	r->next = ipfw_dyn_v[i];
1211	ipfw_dyn_v[i] = r;
1212	dyn_count++;
1213	DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1214	   dyn_type,
1215	   (r->id.src_ip), (r->id.src_port),
1216	   (r->id.dst_ip), (r->id.dst_port),
1217	   dyn_count ); )
1218	return r;
1219}
1220
1221/**
1222 * lookup dynamic parent rule using pkt and rule as search keys.
1223 * If the lookup fails, then install one.
1224 */
1225static ipfw_dyn_rule *
1226lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
1227{
1228	ipfw_dyn_rule *q;
1229	int i;
1230
1231	IPFW_DYN_LOCK_ASSERT();
1232
1233	if (ipfw_dyn_v) {
1234		int is_v6 = IS_IP6_FLOW_ID(pkt);
1235		i = hash_packet( pkt );
1236		for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
1237			if (q->dyn_type == O_LIMIT_PARENT &&
1238			    rule== q->rule &&
1239			    pkt->proto == q->id.proto &&
1240			    pkt->src_port == q->id.src_port &&
1241			    pkt->dst_port == q->id.dst_port &&
1242			    (
1243				(is_v6 &&
1244				 IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1245					&(q->id.src_ip6)) &&
1246				 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1247					&(q->id.dst_ip6))) ||
1248				(!is_v6 &&
1249				 pkt->src_ip == q->id.src_ip &&
1250				 pkt->dst_ip == q->id.dst_ip)
1251			    )
1252			) {
1253				q->expire = time_second + dyn_short_lifetime;
1254				DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
1255				return q;
1256			}
1257	}
1258	return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
1259}
1260
1261/**
1262 * Install dynamic state for rule type cmd->o.opcode
1263 *
1264 * Returns 1 (failure) if state is not installed because of errors or because
1265 * session limitations are enforced.
1266 */
1267static int
1268install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
1269	struct ip_fw_args *args)
1270{
1271	static int last_log;
1272
1273	ipfw_dyn_rule *q;
1274
1275	DEB(printf("ipfw: install state type %d 0x%08x %u -> 0x%08x %u\n",
1276	    cmd->o.opcode,
1277	    (args->f_id.src_ip), (args->f_id.src_port),
1278	    (args->f_id.dst_ip), (args->f_id.dst_port) );)
1279
1280	IPFW_DYN_LOCK();
1281
1282	q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1283
1284	if (q != NULL) { /* should never occur */
1285		if (last_log != time_second) {
1286			last_log = time_second;
1287			printf("ipfw: install_state: entry already present, done\n");
1288		}
1289		IPFW_DYN_UNLOCK();
1290		return 0;
1291	}
1292
1293	if (dyn_count >= dyn_max)
1294		/*
1295		 * Run out of slots, try to remove any expired rule.
1296		 */
1297		remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
1298
1299	if (dyn_count >= dyn_max) {
1300		if (last_log != time_second) {
1301			last_log = time_second;
1302			printf("ipfw: install_state: Too many dynamic rules\n");
1303		}
1304		IPFW_DYN_UNLOCK();
1305		return 1; /* cannot install, notify caller */
1306	}
1307
1308	switch (cmd->o.opcode) {
1309	case O_KEEP_STATE: /* bidir rule */
1310		add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
1311		break;
1312
1313	case O_LIMIT: /* limit number of sessions */
1314	    {
1315		u_int16_t limit_mask = cmd->limit_mask;
1316		struct ipfw_flow_id id;
1317		ipfw_dyn_rule *parent;
1318
1319		DEB(printf("ipfw: installing dyn-limit rule %d\n",
1320		    cmd->conn_limit);)
1321
1322		id.dst_ip = id.src_ip = 0;
1323		id.dst_port = id.src_port = 0;
1324		id.proto = args->f_id.proto;
1325
1326		if (IS_IP6_FLOW_ID (&(args->f_id))) {
1327			if (limit_mask & DYN_SRC_ADDR)
1328				id.src_ip6 = args->f_id.src_ip6;
1329			if (limit_mask & DYN_DST_ADDR)
1330				id.dst_ip6 = args->f_id.dst_ip6;
1331		} else {
1332			if (limit_mask & DYN_SRC_ADDR)
1333				id.src_ip = args->f_id.src_ip;
1334			if (limit_mask & DYN_DST_ADDR)
1335				id.dst_ip = args->f_id.dst_ip;
1336		}
1337		if (limit_mask & DYN_SRC_PORT)
1338			id.src_port = args->f_id.src_port;
1339		if (limit_mask & DYN_DST_PORT)
1340			id.dst_port = args->f_id.dst_port;
1341		parent = lookup_dyn_parent(&id, rule);
1342		if (parent == NULL) {
1343			printf("ipfw: add parent failed\n");
1344			return 1;
1345		}
1346		if (parent->count >= cmd->conn_limit) {
1347			/*
1348			 * See if we can remove some expired rule.
1349			 */
1350			remove_dyn_rule(rule, parent);
1351			if (parent->count >= cmd->conn_limit) {
1352				if (fw_verbose && last_log != time_second) {
1353					last_log = time_second;
1354					log(LOG_SECURITY | LOG_DEBUG,
1355					    "drop session, too many entries\n");
1356				}
1357				IPFW_DYN_UNLOCK();
1358				return 1;
1359			}
1360		}
1361		add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1362	    }
1363		break;
1364	default:
1365		printf("ipfw: unknown dynamic rule type %u\n", cmd->o.opcode);
1366		IPFW_DYN_UNLOCK();
1367		return 1;
1368	}
1369	lookup_dyn_rule_locked(&args->f_id, NULL, NULL); /* XXX just set lifetime */
1370	IPFW_DYN_UNLOCK();
1371	return 0;
1372}
1373
1374/*
1375 * Generate a TCP packet, containing either a RST or a keepalive.
1376 * When flags & TH_RST, we are sending a RST packet, because of a
1377 * "reset" action matched the packet.
1378 * Otherwise we are sending a keepalive, and flags & TH_
1379 */
1380static struct mbuf *
1381send_pkt(struct ipfw_flow_id *id, u_int32_t seq, u_int32_t ack, int flags)
1382{
1383	struct mbuf *m;
1384	struct ip *ip;
1385	struct tcphdr *tcp;
1386
1387	MGETHDR(m, M_DONTWAIT, MT_HEADER);
1388	if (m == 0)
1389		return (NULL);
1390	m->m_pkthdr.rcvif = (struct ifnet *)0;
1391	m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1392	m->m_data += max_linkhdr;
1393
1394	ip = mtod(m, struct ip *);
1395	bzero(ip, m->m_len);
1396	tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1397	ip->ip_p = IPPROTO_TCP;
1398	tcp->th_off = 5;
1399	/*
1400	 * Assume we are sending a RST (or a keepalive in the reverse
1401	 * direction), swap src and destination addresses and ports.
1402	 */
1403	ip->ip_src.s_addr = htonl(id->dst_ip);
1404	ip->ip_dst.s_addr = htonl(id->src_ip);
1405	tcp->th_sport = htons(id->dst_port);
1406	tcp->th_dport = htons(id->src_port);
1407	if (flags & TH_RST) {	/* we are sending a RST */
1408		if (flags & TH_ACK) {
1409			tcp->th_seq = htonl(ack);
1410			tcp->th_ack = htonl(0);
1411			tcp->th_flags = TH_RST;
1412		} else {
1413			if (flags & TH_SYN)
1414				seq++;
1415			tcp->th_seq = htonl(0);
1416			tcp->th_ack = htonl(seq);
1417			tcp->th_flags = TH_RST | TH_ACK;
1418		}
1419	} else {
1420		/*
1421		 * We are sending a keepalive. flags & TH_SYN determines
1422		 * the direction, forward if set, reverse if clear.
1423		 * NOTE: seq and ack are always assumed to be correct
1424		 * as set by the caller. This may be confusing...
1425		 */
1426		if (flags & TH_SYN) {
1427			/*
1428			 * we have to rewrite the correct addresses!
1429			 */
1430			ip->ip_dst.s_addr = htonl(id->dst_ip);
1431			ip->ip_src.s_addr = htonl(id->src_ip);
1432			tcp->th_dport = htons(id->dst_port);
1433			tcp->th_sport = htons(id->src_port);
1434		}
1435		tcp->th_seq = htonl(seq);
1436		tcp->th_ack = htonl(ack);
1437		tcp->th_flags = TH_ACK;
1438	}
1439	/*
1440	 * set ip_len to the payload size so we can compute
1441	 * the tcp checksum on the pseudoheader
1442	 * XXX check this, could save a couple of words ?
1443	 */
1444	ip->ip_len = htons(sizeof(struct tcphdr));
1445	tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1446	/*
1447	 * now fill fields left out earlier
1448	 */
1449	ip->ip_ttl = ip_defttl;
1450	ip->ip_len = m->m_pkthdr.len;
1451	m->m_flags |= M_SKIP_FIREWALL;
1452	return (m);
1453}
1454
1455/*
1456 * sends a reject message, consuming the mbuf passed as an argument.
1457 */
1458static void
1459send_reject(struct ip_fw_args *args, int code, int offset, int ip_len)
1460{
1461
1462	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1463		/* We need the IP header in host order for icmp_error(). */
1464		if (args->eh != NULL) {
1465			struct ip *ip = mtod(args->m, struct ip *);
1466			ip->ip_len = ntohs(ip->ip_len);
1467			ip->ip_off = ntohs(ip->ip_off);
1468		}
1469		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1470	} else if (offset == 0 && args->f_id.proto == IPPROTO_TCP) {
1471		struct tcphdr *const tcp =
1472		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1473		if ( (tcp->th_flags & TH_RST) == 0) {
1474			struct mbuf *m;
1475			m = send_pkt(&(args->f_id), ntohl(tcp->th_seq),
1476				ntohl(tcp->th_ack),
1477				tcp->th_flags | TH_RST);
1478			if (m != NULL)
1479				ip_output(m, NULL, NULL, 0, NULL, NULL);
1480		}
1481		m_freem(args->m);
1482	} else
1483		m_freem(args->m);
1484	args->m = NULL;
1485}
1486
1487/**
1488 *
1489 * Given an ip_fw *, lookup_next_rule will return a pointer
1490 * to the next rule, which can be either the jump
1491 * target (for skipto instructions) or the next one in the list (in
1492 * all other cases including a missing jump target).
1493 * The result is also written in the "next_rule" field of the rule.
1494 * Backward jumps are not allowed, so start looking from the next
1495 * rule...
1496 *
1497 * This never returns NULL -- in case we do not have an exact match,
1498 * the next rule is returned. When the ruleset is changed,
1499 * pointers are flushed so we are always correct.
1500 */
1501
1502static struct ip_fw *
1503lookup_next_rule(struct ip_fw *me)
1504{
1505	struct ip_fw *rule = NULL;
1506	ipfw_insn *cmd;
1507
1508	/* look for action, in case it is a skipto */
1509	cmd = ACTION_PTR(me);
1510	if (cmd->opcode == O_LOG)
1511		cmd += F_LEN(cmd);
1512	if (cmd->opcode == O_ALTQ)
1513		cmd += F_LEN(cmd);
1514	if ( cmd->opcode == O_SKIPTO )
1515		for (rule = me->next; rule ; rule = rule->next)
1516			if (rule->rulenum >= cmd->arg1)
1517				break;
1518	if (rule == NULL)			/* failure or not a skipto */
1519		rule = me->next;
1520	me->next_rule = rule;
1521	return rule;
1522}
1523
1524static void
1525init_tables(void)
1526{
1527	int i;
1528
1529	for (i = 0; i < IPFW_TABLES_MAX; i++) {
1530		rn_inithead((void **)&ipfw_tables[i].rnh, 32);
1531		ipfw_tables[i].modified = 1;
1532	}
1533}
1534
1535static int
1536add_table_entry(u_int16_t tbl, in_addr_t addr, u_int8_t mlen, u_int32_t value)
1537{
1538	struct radix_node_head *rnh;
1539	struct table_entry *ent;
1540
1541	if (tbl >= IPFW_TABLES_MAX)
1542		return (EINVAL);
1543	rnh = ipfw_tables[tbl].rnh;
1544	ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
1545	if (ent == NULL)
1546		return (ENOMEM);
1547	ent->value = value;
1548	ent->addr.sin_len = ent->mask.sin_len = 8;
1549	ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1550	ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
1551	RADIX_NODE_HEAD_LOCK(rnh);
1552	if (rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent) ==
1553	    NULL) {
1554		RADIX_NODE_HEAD_UNLOCK(rnh);
1555		free(ent, M_IPFW_TBL);
1556		return (EEXIST);
1557	}
1558	ipfw_tables[tbl].modified = 1;
1559	RADIX_NODE_HEAD_UNLOCK(rnh);
1560	return (0);
1561}
1562
1563static int
1564del_table_entry(u_int16_t tbl, in_addr_t addr, u_int8_t mlen)
1565{
1566	struct radix_node_head *rnh;
1567	struct table_entry *ent;
1568	struct sockaddr_in sa, mask;
1569
1570	if (tbl >= IPFW_TABLES_MAX)
1571		return (EINVAL);
1572	rnh = ipfw_tables[tbl].rnh;
1573	sa.sin_len = mask.sin_len = 8;
1574	mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1575	sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
1576	RADIX_NODE_HEAD_LOCK(rnh);
1577	ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
1578	if (ent == NULL) {
1579		RADIX_NODE_HEAD_UNLOCK(rnh);
1580		return (ESRCH);
1581	}
1582	ipfw_tables[tbl].modified = 1;
1583	RADIX_NODE_HEAD_UNLOCK(rnh);
1584	free(ent, M_IPFW_TBL);
1585	return (0);
1586}
1587
1588static int
1589flush_table_entry(struct radix_node *rn, void *arg)
1590{
1591	struct radix_node_head * const rnh = arg;
1592	struct table_entry *ent;
1593
1594	ent = (struct table_entry *)
1595	    rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
1596	if (ent != NULL)
1597		free(ent, M_IPFW_TBL);
1598	return (0);
1599}
1600
1601static int
1602flush_table(u_int16_t tbl)
1603{
1604	struct radix_node_head *rnh;
1605
1606	if (tbl >= IPFW_TABLES_MAX)
1607		return (EINVAL);
1608	rnh = ipfw_tables[tbl].rnh;
1609	RADIX_NODE_HEAD_LOCK(rnh);
1610	rnh->rnh_walktree(rnh, flush_table_entry, rnh);
1611	ipfw_tables[tbl].modified = 1;
1612	RADIX_NODE_HEAD_UNLOCK(rnh);
1613	return (0);
1614}
1615
1616static void
1617flush_tables(void)
1618{
1619	u_int16_t tbl;
1620
1621	for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
1622		flush_table(tbl);
1623}
1624
1625static int
1626lookup_table(u_int16_t tbl, in_addr_t addr, u_int32_t *val)
1627{
1628	struct radix_node_head *rnh;
1629	struct table_entry *ent;
1630	struct sockaddr_in sa;
1631	static in_addr_t last_addr;
1632	static int last_tbl;
1633	static int last_match;
1634	static u_int32_t last_value;
1635
1636	if (tbl >= IPFW_TABLES_MAX)
1637		return (0);
1638	if (tbl == last_tbl && addr == last_addr &&
1639	    !ipfw_tables[tbl].modified) {
1640		if (last_match)
1641			*val = last_value;
1642		return (last_match);
1643	}
1644	rnh = ipfw_tables[tbl].rnh;
1645	sa.sin_len = 8;
1646	sa.sin_addr.s_addr = addr;
1647	RADIX_NODE_HEAD_LOCK(rnh);
1648	ipfw_tables[tbl].modified = 0;
1649	ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
1650	RADIX_NODE_HEAD_UNLOCK(rnh);
1651	last_addr = addr;
1652	last_tbl = tbl;
1653	if (ent != NULL) {
1654		last_value = *val = ent->value;
1655		last_match = 1;
1656		return (1);
1657	}
1658	last_match = 0;
1659	return (0);
1660}
1661
1662static int
1663count_table_entry(struct radix_node *rn, void *arg)
1664{
1665	u_int32_t * const cnt = arg;
1666
1667	(*cnt)++;
1668	return (0);
1669}
1670
1671static int
1672count_table(u_int32_t tbl, u_int32_t *cnt)
1673{
1674	struct radix_node_head *rnh;
1675
1676	if (tbl >= IPFW_TABLES_MAX)
1677		return (EINVAL);
1678	rnh = ipfw_tables[tbl].rnh;
1679	*cnt = 0;
1680	RADIX_NODE_HEAD_LOCK(rnh);
1681	rnh->rnh_walktree(rnh, count_table_entry, cnt);
1682	RADIX_NODE_HEAD_UNLOCK(rnh);
1683	return (0);
1684}
1685
1686static int
1687dump_table_entry(struct radix_node *rn, void *arg)
1688{
1689	struct table_entry * const n = (struct table_entry *)rn;
1690	ipfw_table * const tbl = arg;
1691	ipfw_table_entry *ent;
1692
1693	if (tbl->cnt == tbl->size)
1694		return (1);
1695	ent = &tbl->ent[tbl->cnt];
1696	ent->tbl = tbl->tbl;
1697	if (in_nullhost(n->mask.sin_addr))
1698		ent->masklen = 0;
1699	else
1700		ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
1701	ent->addr = n->addr.sin_addr.s_addr;
1702	ent->value = n->value;
1703	tbl->cnt++;
1704	return (0);
1705}
1706
1707static int
1708dump_table(ipfw_table *tbl)
1709{
1710	struct radix_node_head *rnh;
1711
1712	if (tbl->tbl >= IPFW_TABLES_MAX)
1713		return (EINVAL);
1714	rnh = ipfw_tables[tbl->tbl].rnh;
1715	tbl->cnt = 0;
1716	RADIX_NODE_HEAD_LOCK(rnh);
1717	rnh->rnh_walktree(rnh, dump_table_entry, tbl);
1718	RADIX_NODE_HEAD_UNLOCK(rnh);
1719	return (0);
1720}
1721
1722static void
1723fill_ugid_cache(struct inpcb *inp, struct ip_fw_ugid *ugp)
1724{
1725	struct ucred *cr;
1726
1727	if (inp->inp_socket != NULL) {
1728		cr = inp->inp_socket->so_cred;
1729		ugp->fw_prid = jailed(cr) ?
1730		    cr->cr_prison->pr_id : -1;
1731		ugp->fw_uid = cr->cr_uid;
1732		ugp->fw_ngroups = cr->cr_ngroups;
1733		bcopy(cr->cr_groups, ugp->fw_groups,
1734		    sizeof(ugp->fw_groups));
1735	}
1736}
1737
1738static int
1739check_uidgid(ipfw_insn_u32 *insn,
1740	int proto, struct ifnet *oif,
1741	struct in_addr dst_ip, u_int16_t dst_port,
1742	struct in_addr src_ip, u_int16_t src_port,
1743	struct ip_fw_ugid *ugp, int *lookup, struct inpcb *inp)
1744{
1745	struct inpcbinfo *pi;
1746	int wildcard;
1747	struct inpcb *pcb;
1748	int match;
1749	gid_t *gp;
1750
1751	/*
1752	 * Check to see if the UDP or TCP stack supplied us with
1753	 * the PCB. If so, rather then holding a lock and looking
1754	 * up the PCB, we can use the one that was supplied.
1755	 */
1756	if (inp && *lookup == 0) {
1757		INP_LOCK_ASSERT(inp);
1758		if (inp->inp_socket != NULL) {
1759			fill_ugid_cache(inp, ugp);
1760			*lookup = 1;
1761		}
1762	}
1763	/*
1764	 * If we have already been here and the packet has no
1765	 * PCB entry associated with it, then we can safely
1766	 * assume that this is a no match.
1767	 */
1768	if (*lookup == -1)
1769		return (0);
1770	if (proto == IPPROTO_TCP) {
1771		wildcard = 0;
1772		pi = &tcbinfo;
1773	} else if (proto == IPPROTO_UDP) {
1774		wildcard = 1;
1775		pi = &udbinfo;
1776	} else
1777		return 0;
1778	match = 0;
1779	if (*lookup == 0) {
1780		INP_INFO_RLOCK(pi);
1781		pcb =  (oif) ?
1782			in_pcblookup_hash(pi,
1783				dst_ip, htons(dst_port),
1784				src_ip, htons(src_port),
1785				wildcard, oif) :
1786			in_pcblookup_hash(pi,
1787				src_ip, htons(src_port),
1788				dst_ip, htons(dst_port),
1789				wildcard, NULL);
1790		if (pcb != NULL) {
1791			INP_LOCK(pcb);
1792			if (pcb->inp_socket != NULL) {
1793				fill_ugid_cache(pcb, ugp);
1794				*lookup = 1;
1795			}
1796			INP_UNLOCK(pcb);
1797		}
1798		INP_INFO_RUNLOCK(pi);
1799		if (*lookup == 0) {
1800			/*
1801			 * If the lookup did not yield any results, there
1802			 * is no sense in coming back and trying again. So
1803			 * we can set lookup to -1 and ensure that we wont
1804			 * bother the pcb system again.
1805			 */
1806			*lookup = -1;
1807			return (0);
1808		}
1809	}
1810	if (insn->o.opcode == O_UID)
1811		match = (ugp->fw_uid == (uid_t)insn->d[0]);
1812	else if (insn->o.opcode == O_GID) {
1813		for (gp = ugp->fw_groups;
1814			gp < &ugp->fw_groups[ugp->fw_ngroups]; gp++)
1815			if (*gp == (gid_t)insn->d[0]) {
1816				match = 1;
1817				break;
1818			}
1819	} else if (insn->o.opcode == O_JAIL)
1820		match = (ugp->fw_prid == (int)insn->d[0]);
1821	return match;
1822}
1823
1824/*
1825 * The main check routine for the firewall.
1826 *
1827 * All arguments are in args so we can modify them and return them
1828 * back to the caller.
1829 *
1830 * Parameters:
1831 *
1832 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
1833 *		Starts with the IP header.
1834 *	args->eh (in)	Mac header if present, or NULL for layer3 packet.
1835 *	args->oif	Outgoing interface, or NULL if packet is incoming.
1836 *		The incoming interface is in the mbuf. (in)
1837 *	args->divert_rule (in/out)
1838 *		Skip up to the first rule past this rule number;
1839 *		upon return, non-zero port number for divert or tee.
1840 *
1841 *	args->rule	Pointer to the last matching rule (in/out)
1842 *	args->next_hop	Socket we are forwarding to (out).
1843 *	args->f_id	Addresses grabbed from the packet (out)
1844 * 	args->cookie	a cookie depending on rule action
1845 *
1846 * Return value:
1847 *
1848 *	IP_FW_PASS	the packet must be accepted
1849 *	IP_FW_DENY	the packet must be dropped
1850 *	IP_FW_DIVERT	divert packet, port in m_tag
1851 *	IP_FW_TEE	tee packet, port in m_tag
1852 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
1853 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
1854 *
1855 */
1856
1857int
1858ipfw_chk(struct ip_fw_args *args)
1859{
1860	/*
1861	 * Local variables hold state during the processing of a packet.
1862	 *
1863	 * IMPORTANT NOTE: to speed up the processing of rules, there
1864	 * are some assumption on the values of the variables, which
1865	 * are documented here. Should you change them, please check
1866	 * the implementation of the various instructions to make sure
1867	 * that they still work.
1868	 *
1869	 * args->eh	The MAC header. It is non-null for a layer2
1870	 *	packet, it is NULL for a layer-3 packet.
1871	 *
1872	 * m | args->m	Pointer to the mbuf, as received from the caller.
1873	 *	It may change if ipfw_chk() does an m_pullup, or if it
1874	 *	consumes the packet because it calls send_reject().
1875	 *	XXX This has to change, so that ipfw_chk() never modifies
1876	 *	or consumes the buffer.
1877	 * ip	is simply an alias of the value of m, and it is kept
1878	 *	in sync with it (the packet is	supposed to start with
1879	 *	the ip header).
1880	 */
1881	struct mbuf *m = args->m;
1882	struct ip *ip = mtod(m, struct ip *);
1883
1884	/*
1885	 * For rules which contain uid/gid or jail constraints, cache
1886	 * a copy of the users credentials after the pcb lookup has been
1887	 * executed. This will speed up the processing of rules with
1888	 * these types of constraints, as well as decrease contention
1889	 * on pcb related locks.
1890	 */
1891	struct ip_fw_ugid fw_ugid_cache;
1892	int ugid_lookup = 0;
1893
1894	/*
1895	 * divinput_flags	If non-zero, set to the IP_FW_DIVERT_*_FLAG
1896	 *	associated with a packet input on a divert socket.  This
1897	 *	will allow to distinguish traffic and its direction when
1898	 *	it originates from a divert socket.
1899	 */
1900	u_int divinput_flags = 0;
1901
1902	/*
1903	 * oif | args->oif	If NULL, ipfw_chk has been called on the
1904	 *	inbound path (ether_input, bdg_forward, ip_input).
1905	 *	If non-NULL, ipfw_chk has been called on the outbound path
1906	 *	(ether_output, ip_output).
1907	 */
1908	struct ifnet *oif = args->oif;
1909
1910	struct ip_fw *f = NULL;		/* matching rule */
1911	int retval = 0;
1912
1913	/*
1914	 * hlen	The length of the IPv4 header.
1915	 *	hlen >0 means we have an IPv4 packet.
1916	 */
1917	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
1918
1919	/*
1920	 * offset	The offset of a fragment. offset != 0 means that
1921	 *	we have a fragment at this offset of an IPv4 packet.
1922	 *	offset == 0 means that (if this is an IPv4 packet)
1923	 *	this is the first or only fragment.
1924	 */
1925	u_short offset = 0;
1926
1927	/*
1928	 * Local copies of addresses. They are only valid if we have
1929	 * an IP packet.
1930	 *
1931	 * proto	The protocol. Set to 0 for non-ip packets,
1932	 *	or to the protocol read from the packet otherwise.
1933	 *	proto != 0 means that we have an IPv4 packet.
1934	 *
1935	 * src_port, dst_port	port numbers, in HOST format. Only
1936	 *	valid for TCP and UDP packets.
1937	 *
1938	 * src_ip, dst_ip	ip addresses, in NETWORK format.
1939	 *	Only valid for IPv4 packets.
1940	 */
1941	u_int8_t proto;
1942	u_int16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
1943	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
1944	u_int16_t ip_len=0;
1945	int pktlen;
1946
1947	/*
1948	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
1949	 * 	MATCH_NONE when checked and not matched (q = NULL),
1950	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
1951	 */
1952	int dyn_dir = MATCH_UNKNOWN;
1953	ipfw_dyn_rule *q = NULL;
1954	struct ip_fw_chain *chain = &layer3_chain;
1955	struct m_tag *mtag;
1956
1957	/*
1958	 * We store in ulp a pointer to the upper layer protocol header.
1959	 * In the ipv4 case this is easy to determine from the header,
1960	 * but for ipv6 we might have some additional headers in the middle.
1961	 * ulp is NULL if not found.
1962	 */
1963	void *ulp = NULL;		/* upper layer protocol pointer. */
1964	/* XXX ipv6 variables */
1965	int is_ipv6 = 0;
1966	u_int16_t ext_hd = 0;	/* bits vector for extension header filtering */
1967	/* end of ipv6 variables */
1968	int is_ipv4 = 0;
1969
1970	if (m->m_flags & M_SKIP_FIREWALL)
1971		return (IP_FW_PASS);	/* accept */
1972
1973	pktlen = m->m_pkthdr.len;
1974	proto = args->f_id.proto = 0;	/* mark f_id invalid */
1975
1976/*
1977 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
1978 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
1979 * pointer might become stale after other pullups (but we never use it
1980 * this way).
1981 */
1982#define PULLUP_TO(len, p, T)						\
1983do {									\
1984	int x = (len) + sizeof(T);					\
1985	if ((m)->m_len < x) {						\
1986		args->m = m = m_pullup(m, x);				\
1987		if (m == NULL)						\
1988			goto pullup_failed;				\
1989	}								\
1990	p = (mtod(m, char *) + (len));					\
1991} while (0)
1992
1993	/* Identify IP packets and fill up variables. */
1994	if (pktlen >= sizeof(struct ip6_hdr) &&
1995	    (args->eh == NULL || ntohs(args->eh->ether_type)==ETHERTYPE_IPV6) &&
1996	    mtod(m, struct ip *)->ip_v == 6) {
1997		is_ipv6 = 1;
1998		args->f_id.addr_type = 6;
1999		hlen = sizeof(struct ip6_hdr);
2000		proto = mtod(m, struct ip6_hdr *)->ip6_nxt;
2001
2002		/* Search extension headers to find upper layer protocols */
2003		while (ulp == NULL) {
2004			switch (proto) {
2005			case IPPROTO_ICMPV6:
2006				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
2007				args->f_id.flags = ICMP6(ulp)->icmp6_type;
2008				break;
2009
2010			case IPPROTO_TCP:
2011				PULLUP_TO(hlen, ulp, struct tcphdr);
2012				dst_port = TCP(ulp)->th_dport;
2013				src_port = TCP(ulp)->th_sport;
2014				args->f_id.flags = TCP(ulp)->th_flags;
2015				break;
2016
2017			case IPPROTO_UDP:
2018				PULLUP_TO(hlen, ulp, struct udphdr);
2019				dst_port = UDP(ulp)->uh_dport;
2020				src_port = UDP(ulp)->uh_sport;
2021				break;
2022
2023			case IPPROTO_HOPOPTS:
2024				PULLUP_TO(hlen, ulp, struct ip6_hbh);
2025				ext_hd |= EXT_HOPOPTS;
2026				hlen += sizeof(struct ip6_hbh);
2027				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2028				ulp = NULL;
2029				break;
2030
2031			case IPPROTO_ROUTING:
2032				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
2033				ext_hd |= EXT_ROUTING;
2034				hlen += sizeof(struct ip6_rthdr);
2035				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
2036				ulp = NULL;
2037				break;
2038
2039			case IPPROTO_FRAGMENT:
2040				PULLUP_TO(hlen, ulp, struct ip6_frag);
2041				ext_hd |= EXT_FRAGMENT;
2042				hlen += sizeof (struct ip6_frag);
2043				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
2044				offset = 1;
2045				ulp = NULL; /* XXX is it correct ? */
2046				break;
2047
2048			case IPPROTO_AH:
2049			case IPPROTO_NONE:
2050			case IPPROTO_ESP:
2051				PULLUP_TO(hlen, ulp, struct ip6_ext);
2052				if (proto == IPPROTO_AH)
2053				ext_hd |= EXT_AH;
2054				else if (proto == IPPROTO_ESP)
2055				ext_hd |= EXT_ESP;
2056				hlen += ((struct ip6_ext *)ulp)->ip6e_len +
2057					    sizeof (struct ip6_ext);
2058				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
2059				ulp = NULL;
2060				break;
2061
2062			case IPPROTO_OSPFIGP:
2063				/* XXX OSPF header check? */
2064				PULLUP_TO(hlen, ulp, struct ip6_ext);
2065				break;
2066
2067			default:
2068				printf( "IPFW2: IPV6 - Unknown Extension Header (%d)\n",
2069				    proto);
2070				return 0; /* deny */
2071				break;
2072			} /*switch */
2073		}
2074		args->f_id.src_ip6 = mtod(m,struct ip6_hdr *)->ip6_src;
2075		args->f_id.dst_ip6 = mtod(m,struct ip6_hdr *)->ip6_dst;
2076		args->f_id.src_ip = 0;
2077		args->f_id.dst_ip = 0;
2078		args->f_id.flow_id6 = ntohs(mtod(m, struct ip6_hdr *)->ip6_flow);
2079		/* hlen != 0 is used to detect ipv4 packets, so clear it now */
2080		hlen = 0;
2081	} else if (pktlen >= sizeof(struct ip) &&
2082	    (args->eh == NULL || ntohs(args->eh->ether_type) == ETHERTYPE_IP) &&
2083	    mtod(m, struct ip *)->ip_v == 4) {
2084	    	is_ipv4 = 1;
2085		ip = mtod(m, struct ip *);
2086		hlen = ip->ip_hl << 2;
2087		args->f_id.addr_type = 4;
2088
2089		/*
2090		 * Collect parameters into local variables for faster matching.
2091		 */
2092		proto = ip->ip_p;
2093		src_ip = ip->ip_src;
2094		dst_ip = ip->ip_dst;
2095		if (args->eh != NULL) { /* layer 2 packets are as on the wire */
2096			offset = ntohs(ip->ip_off) & IP_OFFMASK;
2097			ip_len = ntohs(ip->ip_len);
2098		} else {
2099			offset = ip->ip_off & IP_OFFMASK;
2100			ip_len = ip->ip_len;
2101		}
2102		pktlen = ip_len < pktlen ? ip_len : pktlen;
2103
2104		if (offset == 0) {
2105			switch (proto) {
2106			case IPPROTO_TCP:
2107				PULLUP_TO(hlen, ulp, struct tcphdr);
2108				dst_port = TCP(ulp)->th_dport;
2109				src_port = TCP(ulp)->th_sport;
2110				args->f_id.flags = TCP(ulp)->th_flags;
2111				break;
2112
2113			case IPPROTO_UDP:
2114				PULLUP_TO(hlen, ulp, struct udphdr);
2115				dst_port = UDP(ulp)->uh_dport;
2116				src_port = UDP(ulp)->uh_sport;
2117				break;
2118
2119			case IPPROTO_ICMP:
2120				PULLUP_TO(hlen, ulp, struct icmphdr);
2121				args->f_id.flags = ICMP(ulp)->icmp_type;
2122				break;
2123
2124			default:
2125				break;
2126			}
2127		}
2128
2129		args->f_id.src_ip = ntohl(src_ip.s_addr);
2130		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
2131	}
2132#undef PULLUP_TO
2133	if (proto) { /* we may have port numbers, store them */
2134		args->f_id.proto = proto;
2135		args->f_id.src_port = src_port = ntohs(src_port);
2136		args->f_id.dst_port = dst_port = ntohs(dst_port);
2137	}
2138
2139	IPFW_RLOCK(chain);
2140	mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
2141	if (args->rule) {
2142		/*
2143		 * Packet has already been tagged. Look for the next rule
2144		 * to restart processing.
2145		 *
2146		 * If fw_one_pass != 0 then just accept it.
2147		 * XXX should not happen here, but optimized out in
2148		 * the caller.
2149		 */
2150		if (fw_one_pass) {
2151			IPFW_RUNLOCK(chain);
2152			return (IP_FW_PASS);
2153		}
2154
2155		f = args->rule->next_rule;
2156		if (f == NULL)
2157			f = lookup_next_rule(args->rule);
2158	} else {
2159		/*
2160		 * Find the starting rule. It can be either the first
2161		 * one, or the one after divert_rule if asked so.
2162		 */
2163		int skipto = mtag ? divert_cookie(mtag) : 0;
2164
2165		f = chain->rules;
2166		if (args->eh == NULL && skipto != 0) {
2167			if (skipto >= IPFW_DEFAULT_RULE) {
2168				IPFW_RUNLOCK(chain);
2169				return (IP_FW_DENY); /* invalid */
2170			}
2171			while (f && f->rulenum <= skipto)
2172				f = f->next;
2173			if (f == NULL) {	/* drop packet */
2174				IPFW_RUNLOCK(chain);
2175				return (IP_FW_DENY);
2176			}
2177		}
2178	}
2179	/* reset divert rule to avoid confusion later */
2180	if (mtag) {
2181		divinput_flags = divert_info(mtag) &
2182		    (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
2183		m_tag_delete(m, mtag);
2184	}
2185
2186	/*
2187	 * Now scan the rules, and parse microinstructions for each rule.
2188	 */
2189	for (; f; f = f->next) {
2190		int l, cmdlen;
2191		ipfw_insn *cmd;
2192		int skip_or; /* skip rest of OR block */
2193
2194again:
2195		if (set_disable & (1 << f->set) )
2196			continue;
2197
2198		skip_or = 0;
2199		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
2200		    l -= cmdlen, cmd += cmdlen) {
2201			int match;
2202
2203			/*
2204			 * check_body is a jump target used when we find a
2205			 * CHECK_STATE, and need to jump to the body of
2206			 * the target rule.
2207			 */
2208
2209check_body:
2210			cmdlen = F_LEN(cmd);
2211			/*
2212			 * An OR block (insn_1 || .. || insn_n) has the
2213			 * F_OR bit set in all but the last instruction.
2214			 * The first match will set "skip_or", and cause
2215			 * the following instructions to be skipped until
2216			 * past the one with the F_OR bit clear.
2217			 */
2218			if (skip_or) {		/* skip this instruction */
2219				if ((cmd->len & F_OR) == 0)
2220					skip_or = 0;	/* next one is good */
2221				continue;
2222			}
2223			match = 0; /* set to 1 if we succeed */
2224
2225			switch (cmd->opcode) {
2226			/*
2227			 * The first set of opcodes compares the packet's
2228			 * fields with some pattern, setting 'match' if a
2229			 * match is found. At the end of the loop there is
2230			 * logic to deal with F_NOT and F_OR flags associated
2231			 * with the opcode.
2232			 */
2233			case O_NOP:
2234				match = 1;
2235				break;
2236
2237			case O_FORWARD_MAC:
2238				printf("ipfw: opcode %d unimplemented\n",
2239				    cmd->opcode);
2240				break;
2241
2242			case O_GID:
2243			case O_UID:
2244			case O_JAIL:
2245				/*
2246				 * We only check offset == 0 && proto != 0,
2247				 * as this ensures that we have a
2248				 * packet with the ports info.
2249				 */
2250				if (offset!=0)
2251					break;
2252				if (is_ipv6) /* XXX to be fixed later */
2253					break;
2254				if (proto == IPPROTO_TCP ||
2255				    proto == IPPROTO_UDP)
2256					match = check_uidgid(
2257						    (ipfw_insn_u32 *)cmd,
2258						    proto, oif,
2259						    dst_ip, dst_port,
2260						    src_ip, src_port, &fw_ugid_cache,
2261						    &ugid_lookup, args->inp);
2262				break;
2263
2264			case O_RECV:
2265				match = iface_match(m->m_pkthdr.rcvif,
2266				    (ipfw_insn_if *)cmd);
2267				break;
2268
2269			case O_XMIT:
2270				match = iface_match(oif, (ipfw_insn_if *)cmd);
2271				break;
2272
2273			case O_VIA:
2274				match = iface_match(oif ? oif :
2275				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
2276				break;
2277
2278			case O_MACADDR2:
2279				if (args->eh != NULL) {	/* have MAC header */
2280					u_int32_t *want = (u_int32_t *)
2281						((ipfw_insn_mac *)cmd)->addr;
2282					u_int32_t *mask = (u_int32_t *)
2283						((ipfw_insn_mac *)cmd)->mask;
2284					u_int32_t *hdr = (u_int32_t *)args->eh;
2285
2286					match =
2287					    ( want[0] == (hdr[0] & mask[0]) &&
2288					      want[1] == (hdr[1] & mask[1]) &&
2289					      want[2] == (hdr[2] & mask[2]) );
2290				}
2291				break;
2292
2293			case O_MAC_TYPE:
2294				if (args->eh != NULL) {
2295					u_int16_t t =
2296					    ntohs(args->eh->ether_type);
2297					u_int16_t *p =
2298					    ((ipfw_insn_u16 *)cmd)->ports;
2299					int i;
2300
2301					for (i = cmdlen - 1; !match && i>0;
2302					    i--, p += 2)
2303						match = (t>=p[0] && t<=p[1]);
2304				}
2305				break;
2306
2307			case O_FRAG:
2308				match = (offset != 0);
2309				break;
2310
2311			case O_IN:	/* "out" is "not in" */
2312				match = (oif == NULL);
2313				break;
2314
2315			case O_LAYER2:
2316				match = (args->eh != NULL);
2317				break;
2318
2319			case O_DIVERTED:
2320				match = (cmd->arg1 & 1 && divinput_flags &
2321				    IP_FW_DIVERT_LOOPBACK_FLAG) ||
2322					(cmd->arg1 & 2 && divinput_flags &
2323				    IP_FW_DIVERT_OUTPUT_FLAG);
2324				break;
2325
2326			case O_PROTO:
2327				/*
2328				 * We do not allow an arg of 0 so the
2329				 * check of "proto" only suffices.
2330				 */
2331				match = (proto == cmd->arg1);
2332				break;
2333
2334			case O_IP_SRC:
2335				match = (hlen > 0 &&
2336				    ((ipfw_insn_ip *)cmd)->addr.s_addr ==
2337				    src_ip.s_addr);
2338				break;
2339
2340			case O_IP_SRC_LOOKUP:
2341			case O_IP_DST_LOOKUP:
2342				if (hlen > 0) {
2343				    uint32_t a =
2344					(cmd->opcode == O_IP_DST_LOOKUP) ?
2345					    dst_ip.s_addr : src_ip.s_addr;
2346				    uint32_t v;
2347
2348				    match = lookup_table(cmd->arg1, a, &v);
2349				    if (!match)
2350					break;
2351				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2352					match =
2353					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
2354				}
2355				break;
2356
2357			case O_IP_SRC_MASK:
2358			case O_IP_DST_MASK:
2359				if (hlen > 0) {
2360				    uint32_t a =
2361					(cmd->opcode == O_IP_DST_MASK) ?
2362					    dst_ip.s_addr : src_ip.s_addr;
2363				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2364				    int i = cmdlen-1;
2365
2366				    for (; !match && i>0; i-= 2, p+= 2)
2367					match = (p[0] == (a & p[1]));
2368				}
2369				break;
2370
2371			case O_IP_SRC_ME:
2372				if (hlen > 0) {
2373					struct ifnet *tif;
2374
2375					INADDR_TO_IFP(src_ip, tif);
2376					match = (tif != NULL);
2377				}
2378				break;
2379
2380			case O_IP_DST_SET:
2381			case O_IP_SRC_SET:
2382				if (hlen > 0) {
2383					u_int32_t *d = (u_int32_t *)(cmd+1);
2384					u_int32_t addr =
2385					    cmd->opcode == O_IP_DST_SET ?
2386						args->f_id.dst_ip :
2387						args->f_id.src_ip;
2388
2389					    if (addr < d[0])
2390						    break;
2391					    addr -= d[0]; /* subtract base */
2392					    match = (addr < cmd->arg1) &&
2393						( d[ 1 + (addr>>5)] &
2394						  (1<<(addr & 0x1f)) );
2395				}
2396				break;
2397
2398			case O_IP_DST:
2399				match = (hlen > 0 &&
2400				    ((ipfw_insn_ip *)cmd)->addr.s_addr ==
2401				    dst_ip.s_addr);
2402				break;
2403
2404			case O_IP_DST_ME:
2405				if (hlen > 0) {
2406					struct ifnet *tif;
2407
2408					INADDR_TO_IFP(dst_ip, tif);
2409					match = (tif != NULL);
2410				}
2411				break;
2412
2413			case O_IP_SRCPORT:
2414			case O_IP_DSTPORT:
2415				/*
2416				 * offset == 0 && proto != 0 is enough
2417				 * to guarantee that we have a
2418				 * packet with port info.
2419				 */
2420				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
2421				    && offset == 0) {
2422					u_int16_t x =
2423					    (cmd->opcode == O_IP_SRCPORT) ?
2424						src_port : dst_port ;
2425					u_int16_t *p =
2426					    ((ipfw_insn_u16 *)cmd)->ports;
2427					int i;
2428
2429					for (i = cmdlen - 1; !match && i>0;
2430					    i--, p += 2)
2431						match = (x>=p[0] && x<=p[1]);
2432				}
2433				break;
2434
2435			case O_ICMPTYPE:
2436				match = (offset == 0 && proto==IPPROTO_ICMP &&
2437				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2438				break;
2439
2440#ifdef INET6
2441			case O_ICMP6TYPE:
2442				match = is_ipv6 && offset == 0 &&
2443				    proto==IPPROTO_ICMPV6 &&
2444				    icmp6type_match(
2445					ICMP6(ulp)->icmp6_type,
2446					(ipfw_insn_u32 *)cmd);
2447				break;
2448#endif /* INET6 */
2449
2450			case O_IPOPT:
2451				match = (hlen > 0 &&
2452				    ipopts_match(mtod(m, struct ip *), cmd) );
2453				break;
2454
2455			case O_IPVER:
2456				match = (hlen > 0 &&
2457				    cmd->arg1 == mtod(m, struct ip *)->ip_v);
2458				break;
2459
2460			case O_IPID:
2461			case O_IPLEN:
2462			case O_IPTTL:
2463				if (hlen > 0) {	/* only for IP packets */
2464				    uint16_t x;
2465				    uint16_t *p;
2466				    int i;
2467
2468				    if (cmd->opcode == O_IPLEN)
2469					x = ip_len;
2470				    else if (cmd->opcode == O_IPTTL)
2471					x = mtod(m, struct ip *)->ip_ttl;
2472				    else /* must be IPID */
2473					x = ntohs(mtod(m, struct ip *)->ip_id);
2474				    if (cmdlen == 1) {
2475					match = (cmd->arg1 == x);
2476					break;
2477				    }
2478				    /* otherwise we have ranges */
2479				    p = ((ipfw_insn_u16 *)cmd)->ports;
2480				    i = cmdlen - 1;
2481				    for (; !match && i>0; i--, p += 2)
2482					match = (x >= p[0] && x <= p[1]);
2483				}
2484				break;
2485
2486			case O_IPPRECEDENCE:
2487				match = (hlen > 0 &&
2488				    (cmd->arg1 == (mtod(m, struct ip *)->ip_tos & 0xe0)) );
2489				break;
2490
2491			case O_IPTOS:
2492				match = (hlen > 0 &&
2493				    flags_match(cmd, mtod(m, struct ip *)->ip_tos));
2494				break;
2495
2496			case O_TCPDATALEN:
2497				if (proto == IPPROTO_TCP && offset == 0) {
2498				    struct tcphdr *tcp;
2499				    uint16_t x;
2500				    uint16_t *p;
2501				    int i;
2502
2503				    tcp = TCP(ulp);
2504				    x = ip_len -
2505					((ip->ip_hl + tcp->th_off) << 2);
2506				    if (cmdlen == 1) {
2507					match = (cmd->arg1 == x);
2508					break;
2509				    }
2510				    /* otherwise we have ranges */
2511				    p = ((ipfw_insn_u16 *)cmd)->ports;
2512				    i = cmdlen - 1;
2513				    for (; !match && i>0; i--, p += 2)
2514					match = (x >= p[0] && x <= p[1]);
2515				}
2516				break;
2517
2518			case O_TCPFLAGS:
2519				match = (proto == IPPROTO_TCP && offset == 0 &&
2520				    flags_match(cmd, TCP(ulp)->th_flags));
2521				break;
2522
2523			case O_TCPOPTS:
2524				match = (proto == IPPROTO_TCP && offset == 0 &&
2525				    tcpopts_match(TCP(ulp), cmd));
2526				break;
2527
2528			case O_TCPSEQ:
2529				match = (proto == IPPROTO_TCP && offset == 0 &&
2530				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2531					TCP(ulp)->th_seq);
2532				break;
2533
2534			case O_TCPACK:
2535				match = (proto == IPPROTO_TCP && offset == 0 &&
2536				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2537					TCP(ulp)->th_ack);
2538				break;
2539
2540			case O_TCPWIN:
2541				match = (proto == IPPROTO_TCP && offset == 0 &&
2542				    cmd->arg1 == TCP(ulp)->th_win);
2543				break;
2544
2545			case O_ESTAB:
2546				/* reject packets which have SYN only */
2547				/* XXX should i also check for TH_ACK ? */
2548				match = (proto == IPPROTO_TCP && offset == 0 &&
2549				    (TCP(ulp)->th_flags &
2550				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2551				break;
2552
2553			case O_ALTQ: {
2554				struct altq_tag *at;
2555				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2556
2557				match = 1;
2558				mtag = m_tag_find(m, PACKET_TAG_PF_QID, NULL);
2559				if (mtag != NULL)
2560					break;
2561				mtag = m_tag_get(PACKET_TAG_PF_QID,
2562						sizeof(struct altq_tag),
2563						M_NOWAIT);
2564				if (mtag == NULL) {
2565					/*
2566					 * Let the packet fall back to the
2567					 * default ALTQ.
2568					 */
2569					break;
2570				}
2571				at = (struct altq_tag *)(mtag+1);
2572				at->qid = altq->qid;
2573				if (hlen != 0)
2574					at->af = AF_INET;
2575				else
2576					at->af = AF_LINK;
2577				at->hdr = ip;
2578				m_tag_prepend(m, mtag);
2579				break;
2580			}
2581
2582			case O_LOG:
2583				if (fw_verbose)
2584					ipfw_log(f, hlen, args->eh, m, oif);
2585				match = 1;
2586				break;
2587
2588			case O_PROB:
2589				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2590				break;
2591
2592			case O_VERREVPATH:
2593				/* Outgoing packets automatically pass/match */
2594				/* XXX BED: verify_path was verify_rev_path in the diff... */
2595				match = ((oif != NULL) ||
2596				    (m->m_pkthdr.rcvif == NULL) ||
2597				    (
2598#ifdef INET6
2599				    is_ipv6 ?
2600					verify_rev_path6(&(args->f_id.src_ip6),
2601					    m->m_pkthdr.rcvif) :
2602#endif
2603				    verify_path(src_ip, m->m_pkthdr.rcvif)));
2604				break;
2605
2606			case O_VERSRCREACH:
2607				/* Outgoing packets automatically pass/match */
2608				match = (hlen > 0 && ((oif != NULL) ||
2609				     verify_path(src_ip, NULL)));
2610				break;
2611
2612			case O_ANTISPOOF:
2613				/* Outgoing packets automatically pass/match */
2614				if (oif == NULL && hlen > 0 &&
2615				    in_localaddr(src_ip))
2616					match = verify_path(src_ip,
2617							m->m_pkthdr.rcvif);
2618				else
2619					match = 1;
2620				break;
2621
2622			case O_IPSEC:
2623#ifdef FAST_IPSEC
2624				match = (m_tag_find(m,
2625				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2626#endif
2627#ifdef IPSEC
2628				match = (ipsec_getnhist(m) != 0);
2629#endif
2630				/* otherwise no match */
2631				break;
2632
2633			case O_IP6_SRC:
2634				match = is_ipv6 &&
2635				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
2636				    &((ipfw_insn_ip6 *)cmd)->addr6);
2637				break;
2638
2639			case O_IP6_DST:
2640				match = is_ipv6 &&
2641				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
2642				    &((ipfw_insn_ip6 *)cmd)->addr6);
2643				break;
2644			case O_IP6_SRC_MASK:
2645				if (is_ipv6) {
2646					ipfw_insn_ip6 *te = (ipfw_insn_ip6 *)cmd;
2647					struct in6_addr p = args->f_id.src_ip6;
2648
2649					APPLY_MASK(&p, &te->mask6);
2650					match = IN6_ARE_ADDR_EQUAL(&te->addr6, &p);
2651				}
2652				break;
2653
2654			case O_IP6_DST_MASK:
2655				if (is_ipv6) {
2656					ipfw_insn_ip6 *te = (ipfw_insn_ip6 *)cmd;
2657					struct in6_addr p = args->f_id.dst_ip6;
2658
2659					APPLY_MASK(&p, &te->mask6);
2660					match = IN6_ARE_ADDR_EQUAL(&te->addr6, &p);
2661				}
2662				break;
2663
2664#ifdef INET6
2665			case O_IP6_SRC_ME:
2666				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
2667			break;
2668
2669			case O_IP6_DST_ME:
2670				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
2671			break;
2672
2673			case O_FLOW6ID:
2674				match = is_ipv6 &&
2675				    flow6id_match(args->f_id.flow_id6,
2676				    (ipfw_insn_u32 *) cmd);
2677				break;
2678
2679			case O_EXT_HDR:
2680				match = is_ipv6 &&
2681				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
2682				break;
2683
2684			case O_IP6:
2685				match = is_ipv6;
2686				break;
2687#endif
2688
2689			case O_IP4:
2690				match = is_ipv4;
2691				break;
2692
2693			/*
2694			 * The second set of opcodes represents 'actions',
2695			 * i.e. the terminal part of a rule once the packet
2696			 * matches all previous patterns.
2697			 * Typically there is only one action for each rule,
2698			 * and the opcode is stored at the end of the rule
2699			 * (but there are exceptions -- see below).
2700			 *
2701			 * In general, here we set retval and terminate the
2702			 * outer loop (would be a 'break 3' in some language,
2703			 * but we need to do a 'goto done').
2704			 *
2705			 * Exceptions:
2706			 * O_COUNT and O_SKIPTO actions:
2707			 *   instead of terminating, we jump to the next rule
2708			 *   ('goto next_rule', equivalent to a 'break 2'),
2709			 *   or to the SKIPTO target ('goto again' after
2710			 *   having set f, cmd and l), respectively.
2711			 *
2712			 * O_LOG and O_ALTQ action parameters:
2713			 *   perform some action and set match = 1;
2714			 *
2715			 * O_LIMIT and O_KEEP_STATE: these opcodes are
2716			 *   not real 'actions', and are stored right
2717			 *   before the 'action' part of the rule.
2718			 *   These opcodes try to install an entry in the
2719			 *   state tables; if successful, we continue with
2720			 *   the next opcode (match=1; break;), otherwise
2721			 *   the packet *   must be dropped
2722			 *   ('goto done' after setting retval);
2723			 *
2724			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2725			 *   cause a lookup of the state table, and a jump
2726			 *   to the 'action' part of the parent rule
2727			 *   ('goto check_body') if an entry is found, or
2728			 *   (CHECK_STATE only) a jump to the next rule if
2729			 *   the entry is not found ('goto next_rule').
2730			 *   The result of the lookup is cached to make
2731			 *   further instances of these opcodes are
2732			 *   effectively NOPs.
2733			 */
2734			case O_LIMIT:
2735			case O_KEEP_STATE:
2736				if (install_state(f,
2737				    (ipfw_insn_limit *)cmd, args)) {
2738					retval = IP_FW_DENY;
2739					goto done; /* error/limit violation */
2740				}
2741				match = 1;
2742				break;
2743
2744			case O_PROBE_STATE:
2745			case O_CHECK_STATE:
2746				/*
2747				 * dynamic rules are checked at the first
2748				 * keep-state or check-state occurrence,
2749				 * with the result being stored in dyn_dir.
2750				 * The compiler introduces a PROBE_STATE
2751				 * instruction for us when we have a
2752				 * KEEP_STATE (because PROBE_STATE needs
2753				 * to be run first).
2754				 */
2755				if (dyn_dir == MATCH_UNKNOWN &&
2756				    (q = lookup_dyn_rule(&args->f_id,
2757				     &dyn_dir, proto == IPPROTO_TCP ?
2758					TCP(ulp) : NULL))
2759					!= NULL) {
2760					/*
2761					 * Found dynamic entry, update stats
2762					 * and jump to the 'action' part of
2763					 * the parent rule.
2764					 */
2765					q->pcnt++;
2766					q->bcnt += pktlen;
2767					f = q->rule;
2768					cmd = ACTION_PTR(f);
2769					l = f->cmd_len - f->act_ofs;
2770					IPFW_DYN_UNLOCK();
2771					goto check_body;
2772				}
2773				/*
2774				 * Dynamic entry not found. If CHECK_STATE,
2775				 * skip to next rule, if PROBE_STATE just
2776				 * ignore and continue with next opcode.
2777				 */
2778				if (cmd->opcode == O_CHECK_STATE)
2779					goto next_rule;
2780				match = 1;
2781				break;
2782
2783			case O_ACCEPT:
2784				retval = 0;	/* accept */
2785				goto done;
2786
2787			case O_PIPE:
2788			case O_QUEUE:
2789				args->rule = f; /* report matching rule */
2790				args->cookie = cmd->arg1;
2791				retval = IP_FW_DUMMYNET;
2792				goto done;
2793
2794			case O_DIVERT:
2795			case O_TEE: {
2796				struct divert_tag *dt;
2797
2798				if (args->eh) /* not on layer 2 */
2799					break;
2800				mtag = m_tag_get(PACKET_TAG_DIVERT,
2801						sizeof(struct divert_tag),
2802						M_NOWAIT);
2803				if (mtag == NULL) {
2804					/* XXX statistic */
2805					/* drop packet */
2806					IPFW_RUNLOCK(chain);
2807					return (IP_FW_DENY);
2808				}
2809				dt = (struct divert_tag *)(mtag+1);
2810				dt->cookie = f->rulenum;
2811				dt->info = cmd->arg1;
2812				m_tag_prepend(m, mtag);
2813				retval = (cmd->opcode == O_DIVERT) ?
2814				    IP_FW_DIVERT : IP_FW_TEE;
2815				goto done;
2816			}
2817
2818			case O_COUNT:
2819			case O_SKIPTO:
2820				f->pcnt++;	/* update stats */
2821				f->bcnt += pktlen;
2822				f->timestamp = time_second;
2823				if (cmd->opcode == O_COUNT)
2824					goto next_rule;
2825				/* handle skipto */
2826				if (f->next_rule == NULL)
2827					lookup_next_rule(f);
2828				f = f->next_rule;
2829				goto again;
2830
2831			case O_REJECT:
2832				/*
2833				 * Drop the packet and send a reject notice
2834				 * if the packet is not ICMP (or is an ICMP
2835				 * query), and it is not multicast/broadcast.
2836				 */
2837				if (hlen > 0 &&
2838				    (proto != IPPROTO_ICMP ||
2839				     is_icmp_query(ICMP(ulp))) &&
2840				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2841				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
2842					send_reject(args, cmd->arg1,
2843					    offset,ip_len);
2844					m = args->m;
2845				}
2846				/* FALLTHROUGH */
2847			case O_DENY:
2848				retval = IP_FW_DENY;
2849				goto done;
2850
2851			case O_FORWARD_IP:
2852				if (args->eh)	/* not valid on layer2 pkts */
2853					break;
2854				if (!q || dyn_dir == MATCH_FORWARD)
2855					args->next_hop =
2856					    &((ipfw_insn_sa *)cmd)->sa;
2857				retval = IP_FW_PASS;
2858				goto done;
2859
2860			case O_NETGRAPH:
2861			case O_NGTEE:
2862				args->rule = f;	/* report matching rule */
2863				args->cookie = cmd->arg1;
2864				retval = (cmd->opcode == O_NETGRAPH) ?
2865				    IP_FW_NETGRAPH : IP_FW_NGTEE;
2866				goto done;
2867
2868			default:
2869				panic("-- unknown opcode %d\n", cmd->opcode);
2870			} /* end of switch() on opcodes */
2871
2872			if (cmd->len & F_NOT)
2873				match = !match;
2874
2875			if (match) {
2876				if (cmd->len & F_OR)
2877					skip_or = 1;
2878			} else {
2879				if (!(cmd->len & F_OR)) /* not an OR block, */
2880					break;		/* try next rule    */
2881			}
2882
2883		}	/* end of inner for, scan opcodes */
2884
2885next_rule:;		/* try next rule		*/
2886
2887	}		/* end of outer for, scan rules */
2888	printf("ipfw: ouch!, skip past end of rules, denying packet\n");
2889	IPFW_RUNLOCK(chain);
2890	return (IP_FW_DENY);
2891
2892done:
2893	/* Update statistics */
2894	f->pcnt++;
2895	f->bcnt += pktlen;
2896	f->timestamp = time_second;
2897	IPFW_RUNLOCK(chain);
2898	return (retval);
2899
2900pullup_failed:
2901	if (fw_verbose)
2902		printf("ipfw: pullup failed\n");
2903	return (IP_FW_DENY);
2904}
2905
2906/*
2907 * When a rule is added/deleted, clear the next_rule pointers in all rules.
2908 * These will be reconstructed on the fly as packets are matched.
2909 */
2910static void
2911flush_rule_ptrs(struct ip_fw_chain *chain)
2912{
2913	struct ip_fw *rule;
2914
2915	IPFW_WLOCK_ASSERT(chain);
2916
2917	for (rule = chain->rules; rule; rule = rule->next)
2918		rule->next_rule = NULL;
2919}
2920
2921/*
2922 * When pipes/queues are deleted, clear the "pipe_ptr" pointer to a given
2923 * pipe/queue, or to all of them (match == NULL).
2924 */
2925void
2926flush_pipe_ptrs(struct dn_flow_set *match)
2927{
2928	struct ip_fw *rule;
2929
2930	IPFW_WLOCK(&layer3_chain);
2931	for (rule = layer3_chain.rules; rule; rule = rule->next) {
2932		ipfw_insn_pipe *cmd = (ipfw_insn_pipe *)ACTION_PTR(rule);
2933
2934		if (cmd->o.opcode != O_PIPE && cmd->o.opcode != O_QUEUE)
2935			continue;
2936		/*
2937		 * XXX Use bcmp/bzero to handle pipe_ptr to overcome
2938		 * possible alignment problems on 64-bit architectures.
2939		 * This code is seldom used so we do not worry too
2940		 * much about efficiency.
2941		 */
2942		if (match == NULL ||
2943		    !bcmp(&cmd->pipe_ptr, &match, sizeof(match)) )
2944			bzero(&cmd->pipe_ptr, sizeof(cmd->pipe_ptr));
2945	}
2946	IPFW_WUNLOCK(&layer3_chain);
2947}
2948
2949/*
2950 * Add a new rule to the list. Copy the rule into a malloc'ed area, then
2951 * possibly create a rule number and add the rule to the list.
2952 * Update the rule_number in the input struct so the caller knows it as well.
2953 */
2954static int
2955add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
2956{
2957	struct ip_fw *rule, *f, *prev;
2958	int l = RULESIZE(input_rule);
2959
2960	if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
2961		return (EINVAL);
2962
2963	rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
2964	if (rule == NULL)
2965		return (ENOSPC);
2966
2967	bcopy(input_rule, rule, l);
2968
2969	rule->next = NULL;
2970	rule->next_rule = NULL;
2971
2972	rule->pcnt = 0;
2973	rule->bcnt = 0;
2974	rule->timestamp = 0;
2975
2976	IPFW_WLOCK(chain);
2977
2978	if (chain->rules == NULL) {	/* default rule */
2979		chain->rules = rule;
2980		goto done;
2981        }
2982
2983	/*
2984	 * If rulenum is 0, find highest numbered rule before the
2985	 * default rule, and add autoinc_step
2986	 */
2987	if (autoinc_step < 1)
2988		autoinc_step = 1;
2989	else if (autoinc_step > 1000)
2990		autoinc_step = 1000;
2991	if (rule->rulenum == 0) {
2992		/*
2993		 * locate the highest numbered rule before default
2994		 */
2995		for (f = chain->rules; f; f = f->next) {
2996			if (f->rulenum == IPFW_DEFAULT_RULE)
2997				break;
2998			rule->rulenum = f->rulenum;
2999		}
3000		if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
3001			rule->rulenum += autoinc_step;
3002		input_rule->rulenum = rule->rulenum;
3003	}
3004
3005	/*
3006	 * Now insert the new rule in the right place in the sorted list.
3007	 */
3008	for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
3009		if (f->rulenum > rule->rulenum) { /* found the location */
3010			if (prev) {
3011				rule->next = f;
3012				prev->next = rule;
3013			} else { /* head insert */
3014				rule->next = chain->rules;
3015				chain->rules = rule;
3016			}
3017			break;
3018		}
3019	}
3020	flush_rule_ptrs(chain);
3021done:
3022	static_count++;
3023	static_len += l;
3024	IPFW_WUNLOCK(chain);
3025	DEB(printf("ipfw: installed rule %d, static count now %d\n",
3026		rule->rulenum, static_count);)
3027	return (0);
3028}
3029
3030/**
3031 * Remove a static rule (including derived * dynamic rules)
3032 * and place it on the ``reap list'' for later reclamation.
3033 * The caller is in charge of clearing rule pointers to avoid
3034 * dangling pointers.
3035 * @return a pointer to the next entry.
3036 * Arguments are not checked, so they better be correct.
3037 */
3038static struct ip_fw *
3039remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule, struct ip_fw *prev)
3040{
3041	struct ip_fw *n;
3042	int l = RULESIZE(rule);
3043
3044	IPFW_WLOCK_ASSERT(chain);
3045
3046	n = rule->next;
3047	IPFW_DYN_LOCK();
3048	remove_dyn_rule(rule, NULL /* force removal */);
3049	IPFW_DYN_UNLOCK();
3050	if (prev == NULL)
3051		chain->rules = n;
3052	else
3053		prev->next = n;
3054	static_count--;
3055	static_len -= l;
3056
3057	rule->next = chain->reap;
3058	chain->reap = rule;
3059
3060	return n;
3061}
3062
3063/**
3064 * Reclaim storage associated with a list of rules.  This is
3065 * typically the list created using remove_rule.
3066 */
3067static void
3068reap_rules(struct ip_fw *head)
3069{
3070	struct ip_fw *rule;
3071
3072	while ((rule = head) != NULL) {
3073		head = head->next;
3074		if (DUMMYNET_LOADED)
3075			ip_dn_ruledel_ptr(rule);
3076		free(rule, M_IPFW);
3077	}
3078}
3079
3080/*
3081 * Remove all rules from a chain (except rules in set RESVD_SET
3082 * unless kill_default = 1).  The caller is responsible for
3083 * reclaiming storage for the rules left in chain->reap.
3084 */
3085static void
3086free_chain(struct ip_fw_chain *chain, int kill_default)
3087{
3088	struct ip_fw *prev, *rule;
3089
3090	IPFW_WLOCK_ASSERT(chain);
3091
3092	flush_rule_ptrs(chain); /* more efficient to do outside the loop */
3093	for (prev = NULL, rule = chain->rules; rule ; )
3094		if (kill_default || rule->set != RESVD_SET)
3095			rule = remove_rule(chain, rule, prev);
3096		else {
3097			prev = rule;
3098			rule = rule->next;
3099		}
3100}
3101
3102/**
3103 * Remove all rules with given number, and also do set manipulation.
3104 * Assumes chain != NULL && *chain != NULL.
3105 *
3106 * The argument is an u_int32_t. The low 16 bit are the rule or set number,
3107 * the next 8 bits are the new set, the top 8 bits are the command:
3108 *
3109 *	0	delete rules with given number
3110 *	1	delete rules with given set number
3111 *	2	move rules with given number to new set
3112 *	3	move rules with given set number to new set
3113 *	4	swap sets with given numbers
3114 */
3115static int
3116del_entry(struct ip_fw_chain *chain, u_int32_t arg)
3117{
3118	struct ip_fw *prev = NULL, *rule;
3119	u_int16_t rulenum;	/* rule or old_set */
3120	u_int8_t cmd, new_set;
3121
3122	rulenum = arg & 0xffff;
3123	cmd = (arg >> 24) & 0xff;
3124	new_set = (arg >> 16) & 0xff;
3125
3126	if (cmd > 4)
3127		return EINVAL;
3128	if (new_set > RESVD_SET)
3129		return EINVAL;
3130	if (cmd == 0 || cmd == 2) {
3131		if (rulenum >= IPFW_DEFAULT_RULE)
3132			return EINVAL;
3133	} else {
3134		if (rulenum > RESVD_SET)	/* old_set */
3135			return EINVAL;
3136	}
3137
3138	IPFW_WLOCK(chain);
3139	rule = chain->rules;
3140	chain->reap = NULL;
3141	switch (cmd) {
3142	case 0:	/* delete rules with given number */
3143		/*
3144		 * locate first rule to delete
3145		 */
3146		for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3147			;
3148		if (rule->rulenum != rulenum) {
3149			IPFW_WUNLOCK(chain);
3150			return EINVAL;
3151		}
3152
3153		/*
3154		 * flush pointers outside the loop, then delete all matching
3155		 * rules. prev remains the same throughout the cycle.
3156		 */
3157		flush_rule_ptrs(chain);
3158		while (rule->rulenum == rulenum)
3159			rule = remove_rule(chain, rule, prev);
3160		break;
3161
3162	case 1:	/* delete all rules with given set number */
3163		flush_rule_ptrs(chain);
3164		rule = chain->rules;
3165		while (rule->rulenum < IPFW_DEFAULT_RULE)
3166			if (rule->set == rulenum)
3167				rule = remove_rule(chain, rule, prev);
3168			else {
3169				prev = rule;
3170				rule = rule->next;
3171			}
3172		break;
3173
3174	case 2:	/* move rules with given number to new set */
3175		rule = chain->rules;
3176		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3177			if (rule->rulenum == rulenum)
3178				rule->set = new_set;
3179		break;
3180
3181	case 3: /* move rules with given set number to new set */
3182		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3183			if (rule->set == rulenum)
3184				rule->set = new_set;
3185		break;
3186
3187	case 4: /* swap two sets */
3188		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3189			if (rule->set == rulenum)
3190				rule->set = new_set;
3191			else if (rule->set == new_set)
3192				rule->set = rulenum;
3193		break;
3194	}
3195	/*
3196	 * Look for rules to reclaim.  We grab the list before
3197	 * releasing the lock then reclaim them w/o the lock to
3198	 * avoid a LOR with dummynet.
3199	 */
3200	rule = chain->reap;
3201	chain->reap = NULL;
3202	IPFW_WUNLOCK(chain);
3203	if (rule)
3204		reap_rules(rule);
3205	return 0;
3206}
3207
3208/*
3209 * Clear counters for a specific rule.
3210 * The enclosing "table" is assumed locked.
3211 */
3212static void
3213clear_counters(struct ip_fw *rule, int log_only)
3214{
3215	ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
3216
3217	if (log_only == 0) {
3218		rule->bcnt = rule->pcnt = 0;
3219		rule->timestamp = 0;
3220	}
3221	if (l->o.opcode == O_LOG)
3222		l->log_left = l->max_log;
3223}
3224
3225/**
3226 * Reset some or all counters on firewall rules.
3227 * @arg frwl is null to clear all entries, or contains a specific
3228 * rule number.
3229 * @arg log_only is 1 if we only want to reset logs, zero otherwise.
3230 */
3231static int
3232zero_entry(struct ip_fw_chain *chain, int rulenum, int log_only)
3233{
3234	struct ip_fw *rule;
3235	char *msg;
3236
3237	IPFW_WLOCK(chain);
3238	if (rulenum == 0) {
3239		norule_counter = 0;
3240		for (rule = chain->rules; rule; rule = rule->next)
3241			clear_counters(rule, log_only);
3242		msg = log_only ? "ipfw: All logging counts reset.\n" :
3243				"ipfw: Accounting cleared.\n";
3244	} else {
3245		int cleared = 0;
3246		/*
3247		 * We can have multiple rules with the same number, so we
3248		 * need to clear them all.
3249		 */
3250		for (rule = chain->rules; rule; rule = rule->next)
3251			if (rule->rulenum == rulenum) {
3252				while (rule && rule->rulenum == rulenum) {
3253					clear_counters(rule, log_only);
3254					rule = rule->next;
3255				}
3256				cleared = 1;
3257				break;
3258			}
3259		if (!cleared) {	/* we did not find any matching rules */
3260			IPFW_WUNLOCK(chain);
3261			return (EINVAL);
3262		}
3263		msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
3264				"ipfw: Entry %d cleared.\n";
3265	}
3266	IPFW_WUNLOCK(chain);
3267
3268	if (fw_verbose)
3269		log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
3270	return (0);
3271}
3272
3273/*
3274 * Check validity of the structure before insert.
3275 * Fortunately rules are simple, so this mostly need to check rule sizes.
3276 */
3277static int
3278check_ipfw_struct(struct ip_fw *rule, int size)
3279{
3280	int l, cmdlen = 0;
3281	int have_action=0;
3282	ipfw_insn *cmd;
3283
3284	if (size < sizeof(*rule)) {
3285		printf("ipfw: rule too short\n");
3286		return (EINVAL);
3287	}
3288	/* first, check for valid size */
3289	l = RULESIZE(rule);
3290	if (l != size) {
3291		printf("ipfw: size mismatch (have %d want %d)\n", size, l);
3292		return (EINVAL);
3293	}
3294	if (rule->act_ofs >= rule->cmd_len) {
3295		printf("ipfw: bogus action offset (%u > %u)\n",
3296		    rule->act_ofs, rule->cmd_len - 1);
3297		return (EINVAL);
3298	}
3299	/*
3300	 * Now go for the individual checks. Very simple ones, basically only
3301	 * instruction sizes.
3302	 */
3303	for (l = rule->cmd_len, cmd = rule->cmd ;
3304			l > 0 ; l -= cmdlen, cmd += cmdlen) {
3305		cmdlen = F_LEN(cmd);
3306		if (cmdlen > l) {
3307			printf("ipfw: opcode %d size truncated\n",
3308			    cmd->opcode);
3309			return EINVAL;
3310		}
3311		DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
3312		switch (cmd->opcode) {
3313		case O_PROBE_STATE:
3314		case O_KEEP_STATE:
3315		case O_PROTO:
3316		case O_IP_SRC_ME:
3317		case O_IP_DST_ME:
3318		case O_LAYER2:
3319		case O_IN:
3320		case O_FRAG:
3321		case O_DIVERTED:
3322		case O_IPOPT:
3323		case O_IPTOS:
3324		case O_IPPRECEDENCE:
3325		case O_IPVER:
3326		case O_TCPWIN:
3327		case O_TCPFLAGS:
3328		case O_TCPOPTS:
3329		case O_ESTAB:
3330		case O_VERREVPATH:
3331		case O_VERSRCREACH:
3332		case O_ANTISPOOF:
3333		case O_IPSEC:
3334		case O_IP6_SRC_ME:
3335		case O_IP6_DST_ME:
3336		case O_EXT_HDR:
3337		case O_IP6:
3338		case O_IP4:
3339			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3340				goto bad_size;
3341			break;
3342
3343		case O_UID:
3344		case O_GID:
3345		case O_JAIL:
3346		case O_IP_SRC:
3347		case O_IP_DST:
3348		case O_TCPSEQ:
3349		case O_TCPACK:
3350		case O_PROB:
3351		case O_ICMPTYPE:
3352			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3353				goto bad_size;
3354			break;
3355
3356		case O_LIMIT:
3357			if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
3358				goto bad_size;
3359			break;
3360
3361		case O_LOG:
3362			if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
3363				goto bad_size;
3364
3365			((ipfw_insn_log *)cmd)->log_left =
3366			    ((ipfw_insn_log *)cmd)->max_log;
3367
3368			break;
3369
3370		case O_IP_SRC_MASK:
3371		case O_IP_DST_MASK:
3372			/* only odd command lengths */
3373			if ( !(cmdlen & 1) || cmdlen > 31)
3374				goto bad_size;
3375			break;
3376
3377		case O_IP_SRC_SET:
3378		case O_IP_DST_SET:
3379			if (cmd->arg1 == 0 || cmd->arg1 > 256) {
3380				printf("ipfw: invalid set size %d\n",
3381					cmd->arg1);
3382				return EINVAL;
3383			}
3384			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3385			    (cmd->arg1+31)/32 )
3386				goto bad_size;
3387			break;
3388
3389		case O_IP_SRC_LOOKUP:
3390		case O_IP_DST_LOOKUP:
3391			if (cmd->arg1 >= IPFW_TABLES_MAX) {
3392				printf("ipfw: invalid table number %d\n",
3393				    cmd->arg1);
3394				return (EINVAL);
3395			}
3396			if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
3397			    cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3398				goto bad_size;
3399			break;
3400
3401		case O_MACADDR2:
3402			if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
3403				goto bad_size;
3404			break;
3405
3406		case O_NOP:
3407		case O_IPID:
3408		case O_IPTTL:
3409		case O_IPLEN:
3410		case O_TCPDATALEN:
3411			if (cmdlen < 1 || cmdlen > 31)
3412				goto bad_size;
3413			break;
3414
3415		case O_MAC_TYPE:
3416		case O_IP_SRCPORT:
3417		case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
3418			if (cmdlen < 2 || cmdlen > 31)
3419				goto bad_size;
3420			break;
3421
3422		case O_RECV:
3423		case O_XMIT:
3424		case O_VIA:
3425			if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
3426				goto bad_size;
3427			break;
3428
3429		case O_ALTQ:
3430			if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
3431				goto bad_size;
3432			break;
3433
3434		case O_PIPE:
3435		case O_QUEUE:
3436			if (cmdlen != F_INSN_SIZE(ipfw_insn_pipe))
3437				goto bad_size;
3438			goto check_action;
3439
3440		case O_FORWARD_IP:
3441#ifdef	IPFIREWALL_FORWARD
3442			if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
3443				goto bad_size;
3444			goto check_action;
3445#else
3446			return EINVAL;
3447#endif
3448
3449		case O_DIVERT:
3450		case O_TEE:
3451			if (ip_divert_ptr == NULL)
3452				return EINVAL;
3453			else
3454				goto check_size;
3455		case O_NETGRAPH:
3456		case O_NGTEE:
3457			if (!NG_IPFW_LOADED)
3458				return EINVAL;
3459			else
3460				goto check_size;
3461		case O_FORWARD_MAC: /* XXX not implemented yet */
3462		case O_CHECK_STATE:
3463		case O_COUNT:
3464		case O_ACCEPT:
3465		case O_DENY:
3466		case O_REJECT:
3467		case O_SKIPTO:
3468check_size:
3469			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3470				goto bad_size;
3471check_action:
3472			if (have_action) {
3473				printf("ipfw: opcode %d, multiple actions"
3474					" not allowed\n",
3475					cmd->opcode);
3476				return EINVAL;
3477			}
3478			have_action = 1;
3479			if (l != cmdlen) {
3480				printf("ipfw: opcode %d, action must be"
3481					" last opcode\n",
3482					cmd->opcode);
3483				return EINVAL;
3484			}
3485			break;
3486		case O_IP6_SRC:
3487		case O_IP6_DST:
3488			if (cmdlen != F_INSN_SIZE(struct in6_addr) +
3489			    F_INSN_SIZE(ipfw_insn))
3490				goto bad_size;
3491			break;
3492
3493		case O_FLOW6ID:
3494			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3495			    ((ipfw_insn_u32 *)cmd)->o.arg1)
3496				goto bad_size;
3497			break;
3498
3499		case O_IP6_SRC_MASK:
3500		case O_IP6_DST_MASK:
3501			if ( !(cmdlen & 1) || cmdlen > 127)
3502				goto bad_size;
3503			break;
3504		case O_ICMP6TYPE:
3505			if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
3506				goto bad_size;
3507			break;
3508
3509		default:
3510			printf("ipfw: opcode %d, unknown opcode\n",
3511				cmd->opcode);
3512			return EINVAL;
3513		}
3514	}
3515	if (have_action == 0) {
3516		printf("ipfw: missing action\n");
3517		return EINVAL;
3518	}
3519	return 0;
3520
3521bad_size:
3522	printf("ipfw: opcode %d size %d wrong\n",
3523		cmd->opcode, cmdlen);
3524	return EINVAL;
3525}
3526
3527/*
3528 * Copy the static and dynamic rules to the supplied buffer
3529 * and return the amount of space actually used.
3530 */
3531static size_t
3532ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
3533{
3534	char *bp = buf;
3535	char *ep = bp + space;
3536	struct ip_fw *rule;
3537	int i;
3538
3539	/* XXX this can take a long time and locking will block packet flow */
3540	IPFW_RLOCK(chain);
3541	for (rule = chain->rules; rule ; rule = rule->next) {
3542		/*
3543		 * Verify the entry fits in the buffer in case the
3544		 * rules changed between calculating buffer space and
3545		 * now.  This would be better done using a generation
3546		 * number but should suffice for now.
3547		 */
3548		i = RULESIZE(rule);
3549		if (bp + i <= ep) {
3550			bcopy(rule, bp, i);
3551			bcopy(&set_disable, &(((struct ip_fw *)bp)->next_rule),
3552			    sizeof(set_disable));
3553			bp += i;
3554		}
3555	}
3556	IPFW_RUNLOCK(chain);
3557	if (ipfw_dyn_v) {
3558		ipfw_dyn_rule *p, *last = NULL;
3559
3560		IPFW_DYN_LOCK();
3561		for (i = 0 ; i < curr_dyn_buckets; i++)
3562			for (p = ipfw_dyn_v[i] ; p != NULL; p = p->next) {
3563				if (bp + sizeof *p <= ep) {
3564					ipfw_dyn_rule *dst =
3565						(ipfw_dyn_rule *)bp;
3566					bcopy(p, dst, sizeof *p);
3567					bcopy(&(p->rule->rulenum), &(dst->rule),
3568					    sizeof(p->rule->rulenum));
3569					/*
3570					 * store a non-null value in "next".
3571					 * The userland code will interpret a
3572					 * NULL here as a marker
3573					 * for the last dynamic rule.
3574					 */
3575					bcopy(&dst, &dst->next, sizeof(dst));
3576					last = dst;
3577					dst->expire =
3578					    TIME_LEQ(dst->expire, time_second) ?
3579						0 : dst->expire - time_second ;
3580					bp += sizeof(ipfw_dyn_rule);
3581				}
3582			}
3583		IPFW_DYN_UNLOCK();
3584		if (last != NULL) /* mark last dynamic rule */
3585			bzero(&last->next, sizeof(last));
3586	}
3587	return (bp - (char *)buf);
3588}
3589
3590
3591/**
3592 * {set|get}sockopt parser.
3593 */
3594static int
3595ipfw_ctl(struct sockopt *sopt)
3596{
3597#define	RULE_MAXSIZE	(256*sizeof(u_int32_t))
3598	int error, rule_num;
3599	size_t size;
3600	struct ip_fw *buf, *rule;
3601	u_int32_t rulenum[2];
3602
3603	error = suser(sopt->sopt_td);
3604	if (error)
3605		return (error);
3606
3607	/*
3608	 * Disallow modifications in really-really secure mode, but still allow
3609	 * the logging counters to be reset.
3610	 */
3611	if (sopt->sopt_name == IP_FW_ADD ||
3612	    (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
3613#if __FreeBSD_version >= 500034
3614		error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
3615		if (error)
3616			return (error);
3617#else /* FreeBSD 4.x */
3618		if (securelevel >= 3)
3619			return (EPERM);
3620#endif
3621	}
3622
3623	error = 0;
3624
3625	switch (sopt->sopt_name) {
3626	case IP_FW_GET:
3627		/*
3628		 * pass up a copy of the current rules. Static rules
3629		 * come first (the last of which has number IPFW_DEFAULT_RULE),
3630		 * followed by a possibly empty list of dynamic rule.
3631		 * The last dynamic rule has NULL in the "next" field.
3632		 *
3633		 * Note that the calculated size is used to bound the
3634		 * amount of data returned to the user.  The rule set may
3635		 * change between calculating the size and returning the
3636		 * data in which case we'll just return what fits.
3637		 */
3638		size = static_len;	/* size of static rules */
3639		if (ipfw_dyn_v)		/* add size of dyn.rules */
3640			size += (dyn_count * sizeof(ipfw_dyn_rule));
3641
3642		/*
3643		 * XXX todo: if the user passes a short length just to know
3644		 * how much room is needed, do not bother filling up the
3645		 * buffer, just jump to the sooptcopyout.
3646		 */
3647		buf = malloc(size, M_TEMP, M_WAITOK);
3648		error = sooptcopyout(sopt, buf,
3649				ipfw_getrules(&layer3_chain, buf, size));
3650		free(buf, M_TEMP);
3651		break;
3652
3653	case IP_FW_FLUSH:
3654		/*
3655		 * Normally we cannot release the lock on each iteration.
3656		 * We could do it here only because we start from the head all
3657		 * the times so there is no risk of missing some entries.
3658		 * On the other hand, the risk is that we end up with
3659		 * a very inconsistent ruleset, so better keep the lock
3660		 * around the whole cycle.
3661		 *
3662		 * XXX this code can be improved by resetting the head of
3663		 * the list to point to the default rule, and then freeing
3664		 * the old list without the need for a lock.
3665		 */
3666
3667		IPFW_WLOCK(&layer3_chain);
3668		layer3_chain.reap = NULL;
3669		free_chain(&layer3_chain, 0 /* keep default rule */);
3670		rule = layer3_chain.reap, layer3_chain.reap = NULL;
3671		IPFW_WUNLOCK(&layer3_chain);
3672		if (layer3_chain.reap != NULL)
3673			reap_rules(rule);
3674		break;
3675
3676	case IP_FW_ADD:
3677		rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
3678		error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
3679			sizeof(struct ip_fw) );
3680		if (error == 0)
3681			error = check_ipfw_struct(rule, sopt->sopt_valsize);
3682		if (error == 0) {
3683			error = add_rule(&layer3_chain, rule);
3684			size = RULESIZE(rule);
3685			if (!error && sopt->sopt_dir == SOPT_GET)
3686				error = sooptcopyout(sopt, rule, size);
3687		}
3688		free(rule, M_TEMP);
3689		break;
3690
3691	case IP_FW_DEL:
3692		/*
3693		 * IP_FW_DEL is used for deleting single rules or sets,
3694		 * and (ab)used to atomically manipulate sets. Argument size
3695		 * is used to distinguish between the two:
3696		 *    sizeof(u_int32_t)
3697		 *	delete single rule or set of rules,
3698		 *	or reassign rules (or sets) to a different set.
3699		 *    2*sizeof(u_int32_t)
3700		 *	atomic disable/enable sets.
3701		 *	first u_int32_t contains sets to be disabled,
3702		 *	second u_int32_t contains sets to be enabled.
3703		 */
3704		error = sooptcopyin(sopt, rulenum,
3705			2*sizeof(u_int32_t), sizeof(u_int32_t));
3706		if (error)
3707			break;
3708		size = sopt->sopt_valsize;
3709		if (size == sizeof(u_int32_t))	/* delete or reassign */
3710			error = del_entry(&layer3_chain, rulenum[0]);
3711		else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
3712			set_disable =
3713			    (set_disable | rulenum[0]) & ~rulenum[1] &
3714			    ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
3715		else
3716			error = EINVAL;
3717		break;
3718
3719	case IP_FW_ZERO:
3720	case IP_FW_RESETLOG: /* argument is an int, the rule number */
3721		rule_num = 0;
3722		if (sopt->sopt_val != 0) {
3723		    error = sooptcopyin(sopt, &rule_num,
3724			    sizeof(int), sizeof(int));
3725		    if (error)
3726			break;
3727		}
3728		error = zero_entry(&layer3_chain, rule_num,
3729			sopt->sopt_name == IP_FW_RESETLOG);
3730		break;
3731
3732	case IP_FW_TABLE_ADD:
3733		{
3734			ipfw_table_entry ent;
3735
3736			error = sooptcopyin(sopt, &ent,
3737			    sizeof(ent), sizeof(ent));
3738			if (error)
3739				break;
3740			error = add_table_entry(ent.tbl, ent.addr,
3741			    ent.masklen, ent.value);
3742		}
3743		break;
3744
3745	case IP_FW_TABLE_DEL:
3746		{
3747			ipfw_table_entry ent;
3748
3749			error = sooptcopyin(sopt, &ent,
3750			    sizeof(ent), sizeof(ent));
3751			if (error)
3752				break;
3753			error = del_table_entry(ent.tbl, ent.addr, ent.masklen);
3754		}
3755		break;
3756
3757	case IP_FW_TABLE_FLUSH:
3758		{
3759			u_int16_t tbl;
3760
3761			error = sooptcopyin(sopt, &tbl,
3762			    sizeof(tbl), sizeof(tbl));
3763			if (error)
3764				break;
3765			error = flush_table(tbl);
3766		}
3767		break;
3768
3769	case IP_FW_TABLE_GETSIZE:
3770		{
3771			u_int32_t tbl, cnt;
3772
3773			if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
3774			    sizeof(tbl))))
3775				break;
3776			if ((error = count_table(tbl, &cnt)))
3777				break;
3778			error = sooptcopyout(sopt, &cnt, sizeof(cnt));
3779		}
3780		break;
3781
3782	case IP_FW_TABLE_LIST:
3783		{
3784			ipfw_table *tbl;
3785
3786			if (sopt->sopt_valsize < sizeof(*tbl)) {
3787				error = EINVAL;
3788				break;
3789			}
3790			size = sopt->sopt_valsize;
3791			tbl = malloc(size, M_TEMP, M_WAITOK);
3792			if (tbl == NULL) {
3793				error = ENOMEM;
3794				break;
3795			}
3796			error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
3797			if (error) {
3798				free(tbl, M_TEMP);
3799				break;
3800			}
3801			tbl->size = (size - sizeof(*tbl)) /
3802			    sizeof(ipfw_table_entry);
3803			error = dump_table(tbl);
3804			if (error) {
3805				free(tbl, M_TEMP);
3806				break;
3807			}
3808			error = sooptcopyout(sopt, tbl, size);
3809			free(tbl, M_TEMP);
3810		}
3811		break;
3812
3813	default:
3814		printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
3815		error = EINVAL;
3816	}
3817
3818	return (error);
3819#undef RULE_MAXSIZE
3820}
3821
3822/**
3823 * dummynet needs a reference to the default rule, because rules can be
3824 * deleted while packets hold a reference to them. When this happens,
3825 * dummynet changes the reference to the default rule (it could well be a
3826 * NULL pointer, but this way we do not need to check for the special
3827 * case, plus here he have info on the default behaviour).
3828 */
3829struct ip_fw *ip_fw_default_rule;
3830
3831/*
3832 * This procedure is only used to handle keepalives. It is invoked
3833 * every dyn_keepalive_period
3834 */
3835static void
3836ipfw_tick(void * __unused unused)
3837{
3838	struct mbuf *m0, *m, *mnext, **mtailp;
3839	int i;
3840	ipfw_dyn_rule *q;
3841
3842	if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0)
3843		goto done;
3844
3845	/*
3846	 * We make a chain of packets to go out here -- not deferring
3847	 * until after we drop the IPFW dynamic rule lock would result
3848	 * in a lock order reversal with the normal packet input -> ipfw
3849	 * call stack.
3850	 */
3851	m0 = NULL;
3852	mtailp = &m0;
3853	IPFW_DYN_LOCK();
3854	for (i = 0 ; i < curr_dyn_buckets ; i++) {
3855		for (q = ipfw_dyn_v[i] ; q ; q = q->next ) {
3856			if (q->dyn_type == O_LIMIT_PARENT)
3857				continue;
3858			if (q->id.proto != IPPROTO_TCP)
3859				continue;
3860			if ( (q->state & BOTH_SYN) != BOTH_SYN)
3861				continue;
3862			if (TIME_LEQ( time_second+dyn_keepalive_interval,
3863			    q->expire))
3864				continue;	/* too early */
3865			if (TIME_LEQ(q->expire, time_second))
3866				continue;	/* too late, rule expired */
3867
3868			*mtailp = send_pkt(&(q->id), q->ack_rev - 1,
3869				q->ack_fwd, TH_SYN);
3870			if (*mtailp != NULL)
3871				mtailp = &(*mtailp)->m_nextpkt;
3872			*mtailp = send_pkt(&(q->id), q->ack_fwd - 1,
3873				q->ack_rev, 0);
3874			if (*mtailp != NULL)
3875				mtailp = &(*mtailp)->m_nextpkt;
3876		}
3877	}
3878	IPFW_DYN_UNLOCK();
3879	for (m = mnext = m0; m != NULL; m = mnext) {
3880		mnext = m->m_nextpkt;
3881		m->m_nextpkt = NULL;
3882		ip_output(m, NULL, NULL, 0, NULL, NULL);
3883	}
3884done:
3885	callout_reset(&ipfw_timeout, dyn_keepalive_period*hz, ipfw_tick, NULL);
3886}
3887
3888int
3889ipfw_init(void)
3890{
3891	struct ip_fw default_rule;
3892	int error;
3893
3894	layer3_chain.rules = NULL;
3895	layer3_chain.want_write = 0;
3896	layer3_chain.busy_count = 0;
3897	cv_init(&layer3_chain.cv, "Condition variable for IPFW rw locks");
3898	IPFW_LOCK_INIT(&layer3_chain);
3899	ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule zone",
3900	    sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
3901	    UMA_ALIGN_PTR, 0);
3902	IPFW_DYN_LOCK_INIT();
3903	callout_init(&ipfw_timeout, NET_CALLOUT_MPSAFE);
3904
3905	bzero(&default_rule, sizeof default_rule);
3906
3907	default_rule.act_ofs = 0;
3908	default_rule.rulenum = IPFW_DEFAULT_RULE;
3909	default_rule.cmd_len = 1;
3910	default_rule.set = RESVD_SET;
3911
3912	default_rule.cmd[0].len = 1;
3913	default_rule.cmd[0].opcode =
3914#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
3915				1 ? O_ACCEPT :
3916#endif
3917				O_DENY;
3918
3919	error = add_rule(&layer3_chain, &default_rule);
3920	if (error != 0) {
3921		printf("ipfw2: error %u initializing default rule "
3922			"(support disabled)\n", error);
3923		IPFW_DYN_LOCK_DESTROY();
3924		IPFW_LOCK_DESTROY(&layer3_chain);
3925		return (error);
3926	}
3927
3928	ip_fw_default_rule = layer3_chain.rules;
3929	printf("ipfw2 (+ipv6) initialized, divert %s, "
3930		"rule-based forwarding "
3931#ifdef IPFIREWALL_FORWARD
3932		"enabled, "
3933#else
3934		"disabled, "
3935#endif
3936		"default to %s, logging ",
3937#ifdef IPDIVERT
3938		"enabled",
3939#else
3940		"loadable",
3941#endif
3942		default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
3943
3944#ifdef IPFIREWALL_VERBOSE
3945	fw_verbose = 1;
3946#endif
3947#ifdef IPFIREWALL_VERBOSE_LIMIT
3948	verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
3949#endif
3950	if (fw_verbose == 0)
3951		printf("disabled\n");
3952	else if (verbose_limit == 0)
3953		printf("unlimited\n");
3954	else
3955		printf("limited to %d packets/entry by default\n",
3956		    verbose_limit);
3957
3958	init_tables();
3959	ip_fw_ctl_ptr = ipfw_ctl;
3960	ip_fw_chk_ptr = ipfw_chk;
3961	callout_reset(&ipfw_timeout, hz, ipfw_tick, NULL);
3962
3963	return (0);
3964}
3965
3966void
3967ipfw_destroy(void)
3968{
3969	struct ip_fw *reap;
3970
3971	ip_fw_chk_ptr = NULL;
3972	ip_fw_ctl_ptr = NULL;
3973	callout_drain(&ipfw_timeout);
3974	IPFW_WLOCK(&layer3_chain);
3975	layer3_chain.reap = NULL;
3976	free_chain(&layer3_chain, 1 /* kill default rule */);
3977	reap = layer3_chain.reap, layer3_chain.reap = NULL;
3978	IPFW_WUNLOCK(&layer3_chain);
3979	if (reap != NULL)
3980		reap_rules(reap);
3981	flush_tables();
3982	IPFW_DYN_LOCK_DESTROY();
3983	uma_zdestroy(ipfw_dyn_rule_zone);
3984	IPFW_LOCK_DESTROY(&layer3_chain);
3985	printf("IP firewall unloaded\n");
3986}
3987