ip_fw2.c revision 145565
1/*-
2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 * $FreeBSD: head/sys/netinet/ip_fw2.c 145565 2005-04-26 18:10:21Z brooks $
26 */
27
28#define        DEB(x)
29#define        DDB(x) x
30
31/*
32 * Implement IP packet firewall (new version)
33 */
34
35#if !defined(KLD_MODULE)
36#include "opt_ipfw.h"
37#include "opt_ipdn.h"
38#include "opt_inet.h"
39#include "opt_inet6.h"
40#include "opt_ipsec.h"
41#ifndef INET
42#error IPFIREWALL requires INET.
43#endif /* INET */
44#endif
45
46#define IPFW2	1
47#if IPFW2
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/condvar.h>
51#include <sys/malloc.h>
52#include <sys/mbuf.h>
53#include <sys/kernel.h>
54#include <sys/jail.h>
55#include <sys/module.h>
56#include <sys/proc.h>
57#include <sys/socket.h>
58#include <sys/socketvar.h>
59#include <sys/sysctl.h>
60#include <sys/syslog.h>
61#include <sys/ucred.h>
62#include <net/if.h>
63#include <net/radix.h>
64#include <net/route.h>
65#include <netinet/in.h>
66#include <netinet/in_systm.h>
67#include <netinet/in_var.h>
68#include <netinet/in_pcb.h>
69#include <netinet/ip.h>
70#include <netinet/ip_var.h>
71#include <netinet/ip_icmp.h>
72#include <netinet/ip_fw.h>
73#include <netinet/ip_divert.h>
74#include <netinet/ip_dummynet.h>
75#include <netinet/tcp.h>
76#include <netinet/tcp_timer.h>
77#include <netinet/tcp_var.h>
78#include <netinet/tcpip.h>
79#include <netinet/udp.h>
80#include <netinet/udp_var.h>
81
82#include <netgraph/ng_ipfw.h>
83
84#include <altq/if_altq.h>
85
86#ifdef IPSEC
87#include <netinet6/ipsec.h>
88#endif
89
90#include <netinet/ip6.h>
91#include <netinet/icmp6.h>
92
93#include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
94
95#include <machine/in_cksum.h>	/* XXX for in_cksum */
96
97/*
98 * set_disable contains one bit per set value (0..31).
99 * If the bit is set, all rules with the corresponding set
100 * are disabled. Set RESVD_SET(31) is reserved for the default rule
101 * and rules that are not deleted by the flush command,
102 * and CANNOT be disabled.
103 * Rules in set RESVD_SET can only be deleted explicitly.
104 */
105static u_int32_t set_disable;
106
107static int fw_verbose;
108static int verbose_limit;
109
110static struct callout ipfw_timeout;
111static uma_zone_t ipfw_dyn_rule_zone;
112#define	IPFW_DEFAULT_RULE	65535
113
114/*
115 * Data structure to cache our ucred related
116 * information. This structure only gets used if
117 * the user specified UID/GID based constraints in
118 * a firewall rule.
119 */
120struct ip_fw_ugid {
121	gid_t		fw_groups[NGROUPS];
122	int		fw_ngroups;
123	uid_t		fw_uid;
124	int		fw_prid;
125};
126
127struct ip_fw_chain {
128	struct ip_fw	*rules;		/* list of rules */
129	struct ip_fw	*reap;		/* list of rules to reap */
130	struct mtx	mtx;		/* lock guarding rule list */
131	int		busy_count;	/* busy count for rw locks */
132	int		want_write;
133	struct cv	cv;
134};
135#define	IPFW_LOCK_INIT(_chain) \
136	mtx_init(&(_chain)->mtx, "IPFW static rules", NULL, \
137		MTX_DEF | MTX_RECURSE)
138#define	IPFW_LOCK_DESTROY(_chain)	mtx_destroy(&(_chain)->mtx)
139#define	IPFW_WLOCK_ASSERT(_chain)	do {				\
140	mtx_assert(&(_chain)->mtx, MA_OWNED);				\
141	NET_ASSERT_GIANT();						\
142} while (0)
143
144static __inline void
145IPFW_RLOCK(struct ip_fw_chain *chain)
146{
147	mtx_lock(&chain->mtx);
148	chain->busy_count++;
149	mtx_unlock(&chain->mtx);
150}
151
152static __inline void
153IPFW_RUNLOCK(struct ip_fw_chain *chain)
154{
155	mtx_lock(&chain->mtx);
156	chain->busy_count--;
157	if (chain->busy_count == 0 && chain->want_write)
158		cv_signal(&chain->cv);
159	mtx_unlock(&chain->mtx);
160}
161
162static __inline void
163IPFW_WLOCK(struct ip_fw_chain *chain)
164{
165	mtx_lock(&chain->mtx);
166	chain->want_write++;
167	while (chain->busy_count > 0)
168		cv_wait(&chain->cv, &chain->mtx);
169}
170
171static __inline void
172IPFW_WUNLOCK(struct ip_fw_chain *chain)
173{
174	chain->want_write--;
175	cv_signal(&chain->cv);
176	mtx_unlock(&chain->mtx);
177}
178
179/*
180 * list of rules for layer 3
181 */
182static struct ip_fw_chain layer3_chain;
183
184MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
185MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
186
187struct table_entry {
188	struct radix_node	rn[2];
189	struct sockaddr_in	addr, mask;
190	u_int32_t		value;
191};
192
193#define	IPFW_TABLES_MAX		128
194static struct {
195	struct radix_node_head	*rnh;
196	int			modified;
197} ipfw_tables[IPFW_TABLES_MAX];
198
199static int fw_debug = 1;
200static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
201
202#ifdef SYSCTL_NODE
203SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
204SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, enable,
205    CTLFLAG_RW | CTLFLAG_SECURE3,
206    &fw_enable, 0, "Enable ipfw");
207SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
208    &autoinc_step, 0, "Rule number autincrement step");
209SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
210    CTLFLAG_RW | CTLFLAG_SECURE3,
211    &fw_one_pass, 0,
212    "Only do a single pass through ipfw when using dummynet(4)");
213SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
214    &fw_debug, 0, "Enable printing of debug ip_fw statements");
215SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
216    CTLFLAG_RW | CTLFLAG_SECURE3,
217    &fw_verbose, 0, "Log matches to ipfw rules");
218SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
219    &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
220
221/*
222 * Description of dynamic rules.
223 *
224 * Dynamic rules are stored in lists accessed through a hash table
225 * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
226 * be modified through the sysctl variable dyn_buckets which is
227 * updated when the table becomes empty.
228 *
229 * XXX currently there is only one list, ipfw_dyn.
230 *
231 * When a packet is received, its address fields are first masked
232 * with the mask defined for the rule, then hashed, then matched
233 * against the entries in the corresponding list.
234 * Dynamic rules can be used for different purposes:
235 *  + stateful rules;
236 *  + enforcing limits on the number of sessions;
237 *  + in-kernel NAT (not implemented yet)
238 *
239 * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
240 * measured in seconds and depending on the flags.
241 *
242 * The total number of dynamic rules is stored in dyn_count.
243 * The max number of dynamic rules is dyn_max. When we reach
244 * the maximum number of rules we do not create anymore. This is
245 * done to avoid consuming too much memory, but also too much
246 * time when searching on each packet (ideally, we should try instead
247 * to put a limit on the length of the list on each bucket...).
248 *
249 * Each dynamic rule holds a pointer to the parent ipfw rule so
250 * we know what action to perform. Dynamic rules are removed when
251 * the parent rule is deleted. XXX we should make them survive.
252 *
253 * There are some limitations with dynamic rules -- we do not
254 * obey the 'randomized match', and we do not do multiple
255 * passes through the firewall. XXX check the latter!!!
256 */
257static ipfw_dyn_rule **ipfw_dyn_v = NULL;
258static u_int32_t dyn_buckets = 256; /* must be power of 2 */
259static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
260
261static struct mtx ipfw_dyn_mtx;		/* mutex guarding dynamic rules */
262#define	IPFW_DYN_LOCK_INIT() \
263	mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
264#define	IPFW_DYN_LOCK_DESTROY()	mtx_destroy(&ipfw_dyn_mtx)
265#define	IPFW_DYN_LOCK()		mtx_lock(&ipfw_dyn_mtx)
266#define	IPFW_DYN_UNLOCK()	mtx_unlock(&ipfw_dyn_mtx)
267#define	IPFW_DYN_LOCK_ASSERT()	mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
268
269/*
270 * Timeouts for various events in handing dynamic rules.
271 */
272static u_int32_t dyn_ack_lifetime = 300;
273static u_int32_t dyn_syn_lifetime = 20;
274static u_int32_t dyn_fin_lifetime = 1;
275static u_int32_t dyn_rst_lifetime = 1;
276static u_int32_t dyn_udp_lifetime = 10;
277static u_int32_t dyn_short_lifetime = 5;
278
279/*
280 * Keepalives are sent if dyn_keepalive is set. They are sent every
281 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
282 * seconds of lifetime of a rule.
283 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
284 * than dyn_keepalive_period.
285 */
286
287static u_int32_t dyn_keepalive_interval = 20;
288static u_int32_t dyn_keepalive_period = 5;
289static u_int32_t dyn_keepalive = 1;	/* do send keepalives */
290
291static u_int32_t static_count;	/* # of static rules */
292static u_int32_t static_len;	/* size in bytes of static rules */
293static u_int32_t dyn_count;		/* # of dynamic rules */
294static u_int32_t dyn_max = 4096;	/* max # of dynamic rules */
295
296SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
297    &dyn_buckets, 0, "Number of dyn. buckets");
298SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
299    &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
300SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
301    &dyn_count, 0, "Number of dyn. rules");
302SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
303    &dyn_max, 0, "Max number of dyn. rules");
304SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
305    &static_count, 0, "Number of static rules");
306SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
307    &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
308SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
309    &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
310SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
311    &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
312SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
313    &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
314SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
315    &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
316SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
317    &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
318SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
319    &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
320
321#endif /* SYSCTL_NODE */
322
323
324/*
325 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
326 * Other macros just cast void * into the appropriate type
327 */
328#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
329#define	TCP(p)		((struct tcphdr *)(p))
330#define	UDP(p)		((struct udphdr *)(p))
331#define	ICMP(p)		((struct icmphdr *)(p))
332#define	ICMP6(p)	((struct icmp6_hdr *)(p))
333
334static __inline int
335icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
336{
337	int type = icmp->icmp_type;
338
339	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
340}
341
342#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
343    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
344
345static int
346is_icmp_query(struct icmphdr *icmp)
347{
348	int type = icmp->icmp_type;
349
350	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
351}
352#undef TT
353
354/*
355 * The following checks use two arrays of 8 or 16 bits to store the
356 * bits that we want set or clear, respectively. They are in the
357 * low and high half of cmd->arg1 or cmd->d[0].
358 *
359 * We scan options and store the bits we find set. We succeed if
360 *
361 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
362 *
363 * The code is sometimes optimized not to store additional variables.
364 */
365
366static int
367flags_match(ipfw_insn *cmd, u_int8_t bits)
368{
369	u_char want_clear;
370	bits = ~bits;
371
372	if ( ((cmd->arg1 & 0xff) & bits) != 0)
373		return 0; /* some bits we want set were clear */
374	want_clear = (cmd->arg1 >> 8) & 0xff;
375	if ( (want_clear & bits) != want_clear)
376		return 0; /* some bits we want clear were set */
377	return 1;
378}
379
380static int
381ipopts_match(struct ip *ip, ipfw_insn *cmd)
382{
383	int optlen, bits = 0;
384	u_char *cp = (u_char *)(ip + 1);
385	int x = (ip->ip_hl << 2) - sizeof (struct ip);
386
387	for (; x > 0; x -= optlen, cp += optlen) {
388		int opt = cp[IPOPT_OPTVAL];
389
390		if (opt == IPOPT_EOL)
391			break;
392		if (opt == IPOPT_NOP)
393			optlen = 1;
394		else {
395			optlen = cp[IPOPT_OLEN];
396			if (optlen <= 0 || optlen > x)
397				return 0; /* invalid or truncated */
398		}
399		switch (opt) {
400
401		default:
402			break;
403
404		case IPOPT_LSRR:
405			bits |= IP_FW_IPOPT_LSRR;
406			break;
407
408		case IPOPT_SSRR:
409			bits |= IP_FW_IPOPT_SSRR;
410			break;
411
412		case IPOPT_RR:
413			bits |= IP_FW_IPOPT_RR;
414			break;
415
416		case IPOPT_TS:
417			bits |= IP_FW_IPOPT_TS;
418			break;
419		}
420	}
421	return (flags_match(cmd, bits));
422}
423
424static int
425tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
426{
427	int optlen, bits = 0;
428	u_char *cp = (u_char *)(tcp + 1);
429	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
430
431	for (; x > 0; x -= optlen, cp += optlen) {
432		int opt = cp[0];
433		if (opt == TCPOPT_EOL)
434			break;
435		if (opt == TCPOPT_NOP)
436			optlen = 1;
437		else {
438			optlen = cp[1];
439			if (optlen <= 0)
440				break;
441		}
442
443		switch (opt) {
444
445		default:
446			break;
447
448		case TCPOPT_MAXSEG:
449			bits |= IP_FW_TCPOPT_MSS;
450			break;
451
452		case TCPOPT_WINDOW:
453			bits |= IP_FW_TCPOPT_WINDOW;
454			break;
455
456		case TCPOPT_SACK_PERMITTED:
457		case TCPOPT_SACK:
458			bits |= IP_FW_TCPOPT_SACK;
459			break;
460
461		case TCPOPT_TIMESTAMP:
462			bits |= IP_FW_TCPOPT_TS;
463			break;
464
465		}
466	}
467	return (flags_match(cmd, bits));
468}
469
470static int
471iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
472{
473	if (ifp == NULL)	/* no iface with this packet, match fails */
474		return 0;
475	/* Check by name or by IP address */
476	if (cmd->name[0] != '\0') { /* match by name */
477		/* Check name */
478		if (cmd->p.glob) {
479			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
480				return(1);
481		} else {
482			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
483				return(1);
484		}
485	} else {
486		struct ifaddr *ia;
487
488		/* XXX lock? */
489		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
490			if (ia->ifa_addr == NULL)
491				continue;
492			if (ia->ifa_addr->sa_family != AF_INET)
493				continue;
494			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
495			    (ia->ifa_addr))->sin_addr.s_addr)
496				return(1);	/* match */
497		}
498	}
499	return(0);	/* no match, fail ... */
500}
501
502/*
503 * The verify_path function checks if a route to the src exists and
504 * if it is reachable via ifp (when provided).
505 *
506 * The 'verrevpath' option checks that the interface that an IP packet
507 * arrives on is the same interface that traffic destined for the
508 * packet's source address would be routed out of.  The 'versrcreach'
509 * option just checks that the source address is reachable via any route
510 * (except default) in the routing table.  These two are a measure to block
511 * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
512 * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
513 * is purposely reminiscent of the Cisco IOS command,
514 *
515 *   ip verify unicast reverse-path
516 *   ip verify unicast source reachable-via any
517 *
518 * which implements the same functionality. But note that syntax is
519 * misleading. The check may be performed on all IP packets whether unicast,
520 * multicast, or broadcast.
521 */
522static int
523verify_path(struct in_addr src, struct ifnet *ifp)
524{
525	struct route ro;
526	struct sockaddr_in *dst;
527
528	bzero(&ro, sizeof(ro));
529
530	dst = (struct sockaddr_in *)&(ro.ro_dst);
531	dst->sin_family = AF_INET;
532	dst->sin_len = sizeof(*dst);
533	dst->sin_addr = src;
534	rtalloc_ign(&ro, RTF_CLONING);
535
536	if (ro.ro_rt == NULL)
537		return 0;
538
539	/* if ifp is provided, check for equality with rtentry */
540	if (ifp != NULL && ro.ro_rt->rt_ifp != ifp) {
541		RTFREE(ro.ro_rt);
542		return 0;
543	}
544
545	/* if no ifp provided, check if rtentry is not default route */
546	if (ifp == NULL &&
547	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
548		RTFREE(ro.ro_rt);
549		return 0;
550	}
551
552	/* or if this is a blackhole/reject route */
553	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
554		RTFREE(ro.ro_rt);
555		return 0;
556	}
557
558	/* found valid route */
559	RTFREE(ro.ro_rt);
560	return 1;
561}
562
563#ifdef INET6
564/*
565 * ipv6 specific rules here...
566 */
567static __inline int
568icmp6type_match (int type, ipfw_insn_u32 *cmd)
569{
570       return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
571}
572
573static int
574flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
575{
576       int i;
577       for (i=0; i <= cmd->o.arg1; ++i )
578               if (curr_flow == cmd->d[i] )
579                       return 1;
580       return 0;
581}
582
583/* support for IP6_*_ME opcodes */
584static int
585search_ip6_addr_net (struct in6_addr * ip6_addr)
586{
587       struct ifnet *mdc;
588       struct ifaddr *mdc2;
589       struct in6_ifaddr *fdm;
590       struct in6_addr copia;
591
592       TAILQ_FOREACH(mdc, &ifnet, if_link)
593               for (mdc2 = mdc->if_addrlist.tqh_first; mdc2;
594                   mdc2 = mdc2->ifa_list.tqe_next) {
595                       if (!mdc2->ifa_addr)
596                               continue;
597                       if (mdc2->ifa_addr->sa_family == AF_INET6) {
598                               fdm = (struct in6_ifaddr *)mdc2;
599                               copia = fdm->ia_addr.sin6_addr;
600                               /* need for leaving scope_id in the sock_addr */
601                               in6_clearscope(&copia);
602                               if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia))
603                                       return 1;
604                       }
605               }
606       return 0;
607}
608
609static int
610verify_rev_path6(struct in6_addr *src, struct ifnet *ifp)
611{
612       static struct route_in6 ro;
613       struct sockaddr_in6 *dst;
614
615       dst = (struct sockaddr_in6 * )&(ro.ro_dst);
616
617       if ( !(IN6_ARE_ADDR_EQUAL (src, &dst->sin6_addr) )) {
618               bzero(dst, sizeof(*dst));
619               dst->sin6_family = AF_INET6;
620               dst->sin6_len = sizeof(*dst);
621               dst->sin6_addr = *src;
622               rtalloc_ign((struct route *)&ro, RTF_CLONING);
623       }
624       if ((ro.ro_rt == NULL) || (ifp == NULL) ||
625           (ro.ro_rt->rt_ifp->if_index != ifp->if_index))
626               return 0;
627       return 1;
628}
629static __inline int
630hash_packet6(struct ipfw_flow_id *id)
631{
632       u_int32_t i;
633       i= (id->dst_ip6.__u6_addr.__u6_addr32[0]) ^
634       (id->dst_ip6.__u6_addr.__u6_addr32[1]) ^
635       (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
636       (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
637       (id->dst_port) ^ (id->src_port) ^ (id->flow_id6);
638       return i;
639}
640/* end of ipv6 opcodes */
641
642#endif /* INET6 */
643
644static u_int64_t norule_counter;	/* counter for ipfw_log(NULL...) */
645
646#define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
647#define SNP(buf) buf, sizeof(buf)
648
649/*
650 * We enter here when we have a rule with O_LOG.
651 * XXX this function alone takes about 2Kbytes of code!
652 */
653static void
654ipfw_log(struct ip_fw *f, u_int hlen, struct ether_header *eh,
655	struct mbuf *m, struct ifnet *oif)
656{
657	char *action;
658	int limit_reached = 0;
659	char action2[40], proto[48], fragment[28];
660
661	fragment[0] = '\0';
662	proto[0] = '\0';
663
664	if (f == NULL) {	/* bogus pkt */
665		if (verbose_limit != 0 && norule_counter >= verbose_limit)
666			return;
667		norule_counter++;
668		if (norule_counter == verbose_limit)
669			limit_reached = verbose_limit;
670		action = "Refuse";
671	} else {	/* O_LOG is the first action, find the real one */
672		ipfw_insn *cmd = ACTION_PTR(f);
673		ipfw_insn_log *l = (ipfw_insn_log *)cmd;
674
675		if (l->max_log != 0 && l->log_left == 0)
676			return;
677		l->log_left--;
678		if (l->log_left == 0)
679			limit_reached = l->max_log;
680		cmd += F_LEN(cmd);	/* point to first action */
681		if (cmd->opcode == O_ALTQ) {
682			ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
683
684			snprintf(SNPARGS(action2, 0), "Altq %d",
685				altq->qid);
686			cmd += F_LEN(cmd);
687		}
688		if (cmd->opcode == O_PROB)
689			cmd += F_LEN(cmd);
690
691		action = action2;
692		switch (cmd->opcode) {
693		case O_DENY:
694			action = "Deny";
695			break;
696
697		case O_REJECT:
698			if (cmd->arg1==ICMP_REJECT_RST)
699				action = "Reset";
700			else if (cmd->arg1==ICMP_UNREACH_HOST)
701				action = "Reject";
702			else
703				snprintf(SNPARGS(action2, 0), "Unreach %d",
704					cmd->arg1);
705			break;
706
707		case O_ACCEPT:
708			action = "Accept";
709			break;
710		case O_COUNT:
711			action = "Count";
712			break;
713		case O_DIVERT:
714			snprintf(SNPARGS(action2, 0), "Divert %d",
715				cmd->arg1);
716			break;
717		case O_TEE:
718			snprintf(SNPARGS(action2, 0), "Tee %d",
719				cmd->arg1);
720			break;
721		case O_SKIPTO:
722			snprintf(SNPARGS(action2, 0), "SkipTo %d",
723				cmd->arg1);
724			break;
725		case O_PIPE:
726			snprintf(SNPARGS(action2, 0), "Pipe %d",
727				cmd->arg1);
728			break;
729		case O_QUEUE:
730			snprintf(SNPARGS(action2, 0), "Queue %d",
731				cmd->arg1);
732			break;
733		case O_FORWARD_IP: {
734			ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
735			int len;
736
737			len = snprintf(SNPARGS(action2, 0), "Forward to %s",
738				inet_ntoa(sa->sa.sin_addr));
739			if (sa->sa.sin_port)
740				snprintf(SNPARGS(action2, len), ":%d",
741				    sa->sa.sin_port);
742			}
743			break;
744		case O_NETGRAPH:
745			snprintf(SNPARGS(action2, 0), "Netgraph %d",
746				cmd->arg1);
747			break;
748		case O_NGTEE:
749			snprintf(SNPARGS(action2, 0), "Ngtee %d",
750				cmd->arg1);
751			break;
752		default:
753			action = "UNKNOWN";
754			break;
755		}
756	}
757
758	if (hlen == 0) {	/* non-ip */
759		snprintf(SNPARGS(proto, 0), "MAC");
760	} else {
761		struct ip *ip = mtod(m, struct ip *);
762		/* these three are all aliases to the same thing */
763		struct icmphdr *const icmp = L3HDR(struct icmphdr, ip);
764		struct tcphdr *const tcp = (struct tcphdr *)icmp;
765		struct udphdr *const udp = (struct udphdr *)icmp;
766
767		int ip_off, offset, ip_len;
768
769		int len;
770
771		if (eh != NULL) { /* layer 2 packets are as on the wire */
772			ip_off = ntohs(ip->ip_off);
773			ip_len = ntohs(ip->ip_len);
774		} else {
775			ip_off = ip->ip_off;
776			ip_len = ip->ip_len;
777		}
778		offset = ip_off & IP_OFFMASK;
779		switch (ip->ip_p) {
780		case IPPROTO_TCP:
781			len = snprintf(SNPARGS(proto, 0), "TCP %s",
782			    inet_ntoa(ip->ip_src));
783			if (offset == 0)
784				snprintf(SNPARGS(proto, len), ":%d %s:%d",
785				    ntohs(tcp->th_sport),
786				    inet_ntoa(ip->ip_dst),
787				    ntohs(tcp->th_dport));
788			else
789				snprintf(SNPARGS(proto, len), " %s",
790				    inet_ntoa(ip->ip_dst));
791			break;
792
793		case IPPROTO_UDP:
794			len = snprintf(SNPARGS(proto, 0), "UDP %s",
795				inet_ntoa(ip->ip_src));
796			if (offset == 0)
797				snprintf(SNPARGS(proto, len), ":%d %s:%d",
798				    ntohs(udp->uh_sport),
799				    inet_ntoa(ip->ip_dst),
800				    ntohs(udp->uh_dport));
801			else
802				snprintf(SNPARGS(proto, len), " %s",
803				    inet_ntoa(ip->ip_dst));
804			break;
805
806		case IPPROTO_ICMP:
807			if (offset == 0)
808				len = snprintf(SNPARGS(proto, 0),
809				    "ICMP:%u.%u ",
810				    icmp->icmp_type, icmp->icmp_code);
811			else
812				len = snprintf(SNPARGS(proto, 0), "ICMP ");
813			len += snprintf(SNPARGS(proto, len), "%s",
814			    inet_ntoa(ip->ip_src));
815			snprintf(SNPARGS(proto, len), " %s",
816			    inet_ntoa(ip->ip_dst));
817			break;
818
819		default:
820			len = snprintf(SNPARGS(proto, 0), "P:%d %s", ip->ip_p,
821			    inet_ntoa(ip->ip_src));
822			snprintf(SNPARGS(proto, len), " %s",
823			    inet_ntoa(ip->ip_dst));
824			break;
825		}
826
827		if (ip_off & (IP_MF | IP_OFFMASK))
828			snprintf(SNPARGS(fragment, 0), " (frag %d:%d@%d%s)",
829			     ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
830			     offset << 3,
831			     (ip_off & IP_MF) ? "+" : "");
832	}
833	if (oif || m->m_pkthdr.rcvif)
834		log(LOG_SECURITY | LOG_INFO,
835		    "ipfw: %d %s %s %s via %s%s\n",
836		    f ? f->rulenum : -1,
837		    action, proto, oif ? "out" : "in",
838		    oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
839		    fragment);
840	else
841		log(LOG_SECURITY | LOG_INFO,
842		    "ipfw: %d %s %s [no if info]%s\n",
843		    f ? f->rulenum : -1,
844		    action, proto, fragment);
845	if (limit_reached)
846		log(LOG_SECURITY | LOG_NOTICE,
847		    "ipfw: limit %d reached on entry %d\n",
848		    limit_reached, f ? f->rulenum : -1);
849}
850
851/*
852 * IMPORTANT: the hash function for dynamic rules must be commutative
853 * in source and destination (ip,port), because rules are bidirectional
854 * and we want to find both in the same bucket.
855 */
856static __inline int
857hash_packet(struct ipfw_flow_id *id)
858{
859	u_int32_t i;
860
861#ifdef INET6
862	if (IS_IP6_FLOW_ID(id))
863		i = hash_packet6(id);
864	else
865#endif /* INET6 */
866	i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
867	i &= (curr_dyn_buckets - 1);
868	return i;
869}
870
871/**
872 * unlink a dynamic rule from a chain. prev is a pointer to
873 * the previous one, q is a pointer to the rule to delete,
874 * head is a pointer to the head of the queue.
875 * Modifies q and potentially also head.
876 */
877#define UNLINK_DYN_RULE(prev, head, q) {				\
878	ipfw_dyn_rule *old_q = q;					\
879									\
880	/* remove a refcount to the parent */				\
881	if (q->dyn_type == O_LIMIT)					\
882		q->parent->count--;					\
883	DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
884		(q->id.src_ip), (q->id.src_port),			\
885		(q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); )	\
886	if (prev != NULL)						\
887		prev->next = q = q->next;				\
888	else								\
889		head = q = q->next;					\
890	dyn_count--;							\
891	uma_zfree(ipfw_dyn_rule_zone, old_q); }
892
893#define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
894
895/**
896 * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
897 *
898 * If keep_me == NULL, rules are deleted even if not expired,
899 * otherwise only expired rules are removed.
900 *
901 * The value of the second parameter is also used to point to identify
902 * a rule we absolutely do not want to remove (e.g. because we are
903 * holding a reference to it -- this is the case with O_LIMIT_PARENT
904 * rules). The pointer is only used for comparison, so any non-null
905 * value will do.
906 */
907static void
908remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
909{
910	static u_int32_t last_remove = 0;
911
912#define FORCE (keep_me == NULL)
913
914	ipfw_dyn_rule *prev, *q;
915	int i, pass = 0, max_pass = 0;
916
917	IPFW_DYN_LOCK_ASSERT();
918
919	if (ipfw_dyn_v == NULL || dyn_count == 0)
920		return;
921	/* do not expire more than once per second, it is useless */
922	if (!FORCE && last_remove == time_second)
923		return;
924	last_remove = time_second;
925
926	/*
927	 * because O_LIMIT refer to parent rules, during the first pass only
928	 * remove child and mark any pending LIMIT_PARENT, and remove
929	 * them in a second pass.
930	 */
931next_pass:
932	for (i = 0 ; i < curr_dyn_buckets ; i++) {
933		for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
934			/*
935			 * Logic can become complex here, so we split tests.
936			 */
937			if (q == keep_me)
938				goto next;
939			if (rule != NULL && rule != q->rule)
940				goto next; /* not the one we are looking for */
941			if (q->dyn_type == O_LIMIT_PARENT) {
942				/*
943				 * handle parent in the second pass,
944				 * record we need one.
945				 */
946				max_pass = 1;
947				if (pass == 0)
948					goto next;
949				if (FORCE && q->count != 0 ) {
950					/* XXX should not happen! */
951					printf("ipfw: OUCH! cannot remove rule,"
952					     " count %d\n", q->count);
953				}
954			} else {
955				if (!FORCE &&
956				    !TIME_LEQ( q->expire, time_second ))
957					goto next;
958			}
959             if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
960                     UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
961                     continue;
962             }
963next:
964			prev=q;
965			q=q->next;
966		}
967	}
968	if (pass++ < max_pass)
969		goto next_pass;
970}
971
972
973/**
974 * lookup a dynamic rule.
975 */
976static ipfw_dyn_rule *
977lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
978	struct tcphdr *tcp)
979{
980	/*
981	 * stateful ipfw extensions.
982	 * Lookup into dynamic session queue
983	 */
984#define MATCH_REVERSE	0
985#define MATCH_FORWARD	1
986#define MATCH_NONE	2
987#define MATCH_UNKNOWN	3
988	int i, dir = MATCH_NONE;
989	ipfw_dyn_rule *prev, *q=NULL;
990
991	IPFW_DYN_LOCK_ASSERT();
992
993	if (ipfw_dyn_v == NULL)
994		goto done;	/* not found */
995	i = hash_packet( pkt );
996	for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
997		if (q->dyn_type == O_LIMIT_PARENT && q->count)
998			goto next;
999		if (TIME_LEQ( q->expire, time_second)) { /* expire entry */
1000			UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
1001			continue;
1002		}
1003		if (pkt->proto == q->id.proto &&
1004		    q->dyn_type != O_LIMIT_PARENT) {
1005			if (IS_IP6_FLOW_ID(pkt)) {
1006			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1007				&(q->id.src_ip6)) &&
1008			    IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1009				&(q->id.dst_ip6)) &&
1010			    pkt->src_port == q->id.src_port &&
1011			    pkt->dst_port == q->id.dst_port ) {
1012				dir = MATCH_FORWARD;
1013				break;
1014			    }
1015			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1016				    &(q->id.dst_ip6)) &&
1017				IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1018				    &(q->id.src_ip6)) &&
1019				pkt->src_port == q->id.dst_port &&
1020				pkt->dst_port == q->id.src_port ) {
1021				    dir = MATCH_REVERSE;
1022				    break;
1023			    }
1024			} else {
1025			    if (pkt->src_ip == q->id.src_ip &&
1026				pkt->dst_ip == q->id.dst_ip &&
1027				pkt->src_port == q->id.src_port &&
1028				pkt->dst_port == q->id.dst_port ) {
1029				    dir = MATCH_FORWARD;
1030				    break;
1031			    }
1032			    if (pkt->src_ip == q->id.dst_ip &&
1033				pkt->dst_ip == q->id.src_ip &&
1034				pkt->src_port == q->id.dst_port &&
1035				pkt->dst_port == q->id.src_port ) {
1036				    dir = MATCH_REVERSE;
1037				    break;
1038			    }
1039			}
1040		}
1041next:
1042		prev = q;
1043		q = q->next;
1044	}
1045	if (q == NULL)
1046		goto done; /* q = NULL, not found */
1047
1048	if ( prev != NULL) { /* found and not in front */
1049		prev->next = q->next;
1050		q->next = ipfw_dyn_v[i];
1051		ipfw_dyn_v[i] = q;
1052	}
1053	if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
1054		u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
1055
1056#define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
1057#define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
1058		q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
1059		switch (q->state) {
1060		case TH_SYN:				/* opening */
1061			q->expire = time_second + dyn_syn_lifetime;
1062			break;
1063
1064		case BOTH_SYN:			/* move to established */
1065		case BOTH_SYN | TH_FIN :	/* one side tries to close */
1066		case BOTH_SYN | (TH_FIN << 8) :
1067 			if (tcp) {
1068#define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
1069			    u_int32_t ack = ntohl(tcp->th_ack);
1070			    if (dir == MATCH_FORWARD) {
1071				if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
1072				    q->ack_fwd = ack;
1073				else { /* ignore out-of-sequence */
1074				    break;
1075				}
1076			    } else {
1077				if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
1078				    q->ack_rev = ack;
1079				else { /* ignore out-of-sequence */
1080				    break;
1081				}
1082			    }
1083			}
1084			q->expire = time_second + dyn_ack_lifetime;
1085			break;
1086
1087		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
1088			if (dyn_fin_lifetime >= dyn_keepalive_period)
1089				dyn_fin_lifetime = dyn_keepalive_period - 1;
1090			q->expire = time_second + dyn_fin_lifetime;
1091			break;
1092
1093		default:
1094#if 0
1095			/*
1096			 * reset or some invalid combination, but can also
1097			 * occur if we use keep-state the wrong way.
1098			 */
1099			if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
1100				printf("invalid state: 0x%x\n", q->state);
1101#endif
1102			if (dyn_rst_lifetime >= dyn_keepalive_period)
1103				dyn_rst_lifetime = dyn_keepalive_period - 1;
1104			q->expire = time_second + dyn_rst_lifetime;
1105			break;
1106		}
1107	} else if (pkt->proto == IPPROTO_UDP) {
1108		q->expire = time_second + dyn_udp_lifetime;
1109	} else {
1110		/* other protocols */
1111		q->expire = time_second + dyn_short_lifetime;
1112	}
1113done:
1114	if (match_direction)
1115		*match_direction = dir;
1116	return q;
1117}
1118
1119static ipfw_dyn_rule *
1120lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
1121	struct tcphdr *tcp)
1122{
1123	ipfw_dyn_rule *q;
1124
1125	IPFW_DYN_LOCK();
1126	q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
1127	if (q == NULL)
1128		IPFW_DYN_UNLOCK();
1129	/* NB: return table locked when q is not NULL */
1130	return q;
1131}
1132
1133static void
1134realloc_dynamic_table(void)
1135{
1136	IPFW_DYN_LOCK_ASSERT();
1137
1138	/*
1139	 * Try reallocation, make sure we have a power of 2 and do
1140	 * not allow more than 64k entries. In case of overflow,
1141	 * default to 1024.
1142	 */
1143
1144	if (dyn_buckets > 65536)
1145		dyn_buckets = 1024;
1146	if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
1147		dyn_buckets = curr_dyn_buckets; /* reset */
1148		return;
1149	}
1150	curr_dyn_buckets = dyn_buckets;
1151	if (ipfw_dyn_v != NULL)
1152		free(ipfw_dyn_v, M_IPFW);
1153	for (;;) {
1154		ipfw_dyn_v = malloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
1155		       M_IPFW, M_NOWAIT | M_ZERO);
1156		if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
1157			break;
1158		curr_dyn_buckets /= 2;
1159	}
1160}
1161
1162/**
1163 * Install state of type 'type' for a dynamic session.
1164 * The hash table contains two type of rules:
1165 * - regular rules (O_KEEP_STATE)
1166 * - rules for sessions with limited number of sess per user
1167 *   (O_LIMIT). When they are created, the parent is
1168 *   increased by 1, and decreased on delete. In this case,
1169 *   the third parameter is the parent rule and not the chain.
1170 * - "parent" rules for the above (O_LIMIT_PARENT).
1171 */
1172static ipfw_dyn_rule *
1173add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
1174{
1175	ipfw_dyn_rule *r;
1176	int i;
1177
1178	IPFW_DYN_LOCK_ASSERT();
1179
1180	if (ipfw_dyn_v == NULL ||
1181	    (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
1182		realloc_dynamic_table();
1183		if (ipfw_dyn_v == NULL)
1184			return NULL; /* failed ! */
1185	}
1186	i = hash_packet(id);
1187
1188	r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
1189	if (r == NULL) {
1190		printf ("ipfw: sorry cannot allocate state\n");
1191		return NULL;
1192	}
1193
1194	/* increase refcount on parent, and set pointer */
1195	if (dyn_type == O_LIMIT) {
1196		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
1197		if ( parent->dyn_type != O_LIMIT_PARENT)
1198			panic("invalid parent");
1199		parent->count++;
1200		r->parent = parent;
1201		rule = parent->rule;
1202	}
1203
1204	r->id = *id;
1205	r->expire = time_second + dyn_syn_lifetime;
1206	r->rule = rule;
1207	r->dyn_type = dyn_type;
1208	r->pcnt = r->bcnt = 0;
1209	r->count = 0;
1210
1211	r->bucket = i;
1212	r->next = ipfw_dyn_v[i];
1213	ipfw_dyn_v[i] = r;
1214	dyn_count++;
1215	DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1216	   dyn_type,
1217	   (r->id.src_ip), (r->id.src_port),
1218	   (r->id.dst_ip), (r->id.dst_port),
1219	   dyn_count ); )
1220	return r;
1221}
1222
1223/**
1224 * lookup dynamic parent rule using pkt and rule as search keys.
1225 * If the lookup fails, then install one.
1226 */
1227static ipfw_dyn_rule *
1228lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
1229{
1230	ipfw_dyn_rule *q;
1231	int i;
1232
1233	IPFW_DYN_LOCK_ASSERT();
1234
1235	if (ipfw_dyn_v) {
1236		int is_v6 = IS_IP6_FLOW_ID(pkt);
1237		i = hash_packet( pkt );
1238		for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
1239			if (q->dyn_type == O_LIMIT_PARENT &&
1240			    rule== q->rule &&
1241			    pkt->proto == q->id.proto &&
1242			    pkt->src_port == q->id.src_port &&
1243			    pkt->dst_port == q->id.dst_port &&
1244			    (
1245				(is_v6 &&
1246				 IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1247					&(q->id.src_ip6)) &&
1248				 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1249					&(q->id.dst_ip6))) ||
1250				(!is_v6 &&
1251				 pkt->src_ip == q->id.src_ip &&
1252				 pkt->dst_ip == q->id.dst_ip)
1253			    )
1254			) {
1255				q->expire = time_second + dyn_short_lifetime;
1256				DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
1257				return q;
1258			}
1259	}
1260	return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
1261}
1262
1263/**
1264 * Install dynamic state for rule type cmd->o.opcode
1265 *
1266 * Returns 1 (failure) if state is not installed because of errors or because
1267 * session limitations are enforced.
1268 */
1269static int
1270install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
1271	struct ip_fw_args *args)
1272{
1273	static int last_log;
1274
1275	ipfw_dyn_rule *q;
1276
1277	DEB(printf("ipfw: install state type %d 0x%08x %u -> 0x%08x %u\n",
1278	    cmd->o.opcode,
1279	    (args->f_id.src_ip), (args->f_id.src_port),
1280	    (args->f_id.dst_ip), (args->f_id.dst_port) );)
1281
1282	IPFW_DYN_LOCK();
1283
1284	q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1285
1286	if (q != NULL) { /* should never occur */
1287		if (last_log != time_second) {
1288			last_log = time_second;
1289			printf("ipfw: install_state: entry already present, done\n");
1290		}
1291		IPFW_DYN_UNLOCK();
1292		return 0;
1293	}
1294
1295	if (dyn_count >= dyn_max)
1296		/*
1297		 * Run out of slots, try to remove any expired rule.
1298		 */
1299		remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
1300
1301	if (dyn_count >= dyn_max) {
1302		if (last_log != time_second) {
1303			last_log = time_second;
1304			printf("ipfw: install_state: Too many dynamic rules\n");
1305		}
1306		IPFW_DYN_UNLOCK();
1307		return 1; /* cannot install, notify caller */
1308	}
1309
1310	switch (cmd->o.opcode) {
1311	case O_KEEP_STATE: /* bidir rule */
1312		add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
1313		break;
1314
1315	case O_LIMIT: /* limit number of sessions */
1316	    {
1317		u_int16_t limit_mask = cmd->limit_mask;
1318		struct ipfw_flow_id id;
1319		ipfw_dyn_rule *parent;
1320
1321		DEB(printf("ipfw: installing dyn-limit rule %d\n",
1322		    cmd->conn_limit);)
1323
1324		id.dst_ip = id.src_ip = 0;
1325		id.dst_port = id.src_port = 0;
1326		id.proto = args->f_id.proto;
1327
1328		if (IS_IP6_FLOW_ID (&(args->f_id))) {
1329			if (limit_mask & DYN_SRC_ADDR)
1330				id.src_ip6 = args->f_id.src_ip6;
1331			if (limit_mask & DYN_DST_ADDR)
1332				id.dst_ip6 = args->f_id.dst_ip6;
1333		} else {
1334			if (limit_mask & DYN_SRC_ADDR)
1335				id.src_ip = args->f_id.src_ip;
1336			if (limit_mask & DYN_DST_ADDR)
1337				id.dst_ip = args->f_id.dst_ip;
1338		}
1339		if (limit_mask & DYN_SRC_PORT)
1340			id.src_port = args->f_id.src_port;
1341		if (limit_mask & DYN_DST_PORT)
1342			id.dst_port = args->f_id.dst_port;
1343		parent = lookup_dyn_parent(&id, rule);
1344		if (parent == NULL) {
1345			printf("ipfw: add parent failed\n");
1346			return 1;
1347		}
1348		if (parent->count >= cmd->conn_limit) {
1349			/*
1350			 * See if we can remove some expired rule.
1351			 */
1352			remove_dyn_rule(rule, parent);
1353			if (parent->count >= cmd->conn_limit) {
1354				if (fw_verbose && last_log != time_second) {
1355					last_log = time_second;
1356					log(LOG_SECURITY | LOG_DEBUG,
1357					    "drop session, too many entries\n");
1358				}
1359				IPFW_DYN_UNLOCK();
1360				return 1;
1361			}
1362		}
1363		add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1364	    }
1365		break;
1366	default:
1367		printf("ipfw: unknown dynamic rule type %u\n", cmd->o.opcode);
1368		IPFW_DYN_UNLOCK();
1369		return 1;
1370	}
1371	lookup_dyn_rule_locked(&args->f_id, NULL, NULL); /* XXX just set lifetime */
1372	IPFW_DYN_UNLOCK();
1373	return 0;
1374}
1375
1376/*
1377 * Transmit a TCP packet, containing either a RST or a keepalive.
1378 * When flags & TH_RST, we are sending a RST packet, because of a
1379 * "reset" action matched the packet.
1380 * Otherwise we are sending a keepalive, and flags & TH_
1381 */
1382static void
1383send_pkt(struct ipfw_flow_id *id, u_int32_t seq, u_int32_t ack, int flags)
1384{
1385	struct mbuf *m;
1386	struct ip *ip;
1387	struct tcphdr *tcp;
1388
1389	MGETHDR(m, M_DONTWAIT, MT_HEADER);
1390	if (m == 0)
1391		return;
1392	m->m_pkthdr.rcvif = (struct ifnet *)0;
1393	m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1394	m->m_data += max_linkhdr;
1395
1396	ip = mtod(m, struct ip *);
1397	bzero(ip, m->m_len);
1398	tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1399	ip->ip_p = IPPROTO_TCP;
1400	tcp->th_off = 5;
1401	/*
1402	 * Assume we are sending a RST (or a keepalive in the reverse
1403	 * direction), swap src and destination addresses and ports.
1404	 */
1405	ip->ip_src.s_addr = htonl(id->dst_ip);
1406	ip->ip_dst.s_addr = htonl(id->src_ip);
1407	tcp->th_sport = htons(id->dst_port);
1408	tcp->th_dport = htons(id->src_port);
1409	if (flags & TH_RST) {	/* we are sending a RST */
1410		if (flags & TH_ACK) {
1411			tcp->th_seq = htonl(ack);
1412			tcp->th_ack = htonl(0);
1413			tcp->th_flags = TH_RST;
1414		} else {
1415			if (flags & TH_SYN)
1416				seq++;
1417			tcp->th_seq = htonl(0);
1418			tcp->th_ack = htonl(seq);
1419			tcp->th_flags = TH_RST | TH_ACK;
1420		}
1421	} else {
1422		/*
1423		 * We are sending a keepalive. flags & TH_SYN determines
1424		 * the direction, forward if set, reverse if clear.
1425		 * NOTE: seq and ack are always assumed to be correct
1426		 * as set by the caller. This may be confusing...
1427		 */
1428		if (flags & TH_SYN) {
1429			/*
1430			 * we have to rewrite the correct addresses!
1431			 */
1432			ip->ip_dst.s_addr = htonl(id->dst_ip);
1433			ip->ip_src.s_addr = htonl(id->src_ip);
1434			tcp->th_dport = htons(id->dst_port);
1435			tcp->th_sport = htons(id->src_port);
1436		}
1437		tcp->th_seq = htonl(seq);
1438		tcp->th_ack = htonl(ack);
1439		tcp->th_flags = TH_ACK;
1440	}
1441	/*
1442	 * set ip_len to the payload size so we can compute
1443	 * the tcp checksum on the pseudoheader
1444	 * XXX check this, could save a couple of words ?
1445	 */
1446	ip->ip_len = htons(sizeof(struct tcphdr));
1447	tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1448	/*
1449	 * now fill fields left out earlier
1450	 */
1451	ip->ip_ttl = ip_defttl;
1452	ip->ip_len = m->m_pkthdr.len;
1453	m->m_flags |= M_SKIP_FIREWALL;
1454	ip_output(m, NULL, NULL, 0, NULL, NULL);
1455}
1456
1457/*
1458 * sends a reject message, consuming the mbuf passed as an argument.
1459 */
1460static void
1461send_reject(struct ip_fw_args *args, int code, int offset, int ip_len)
1462{
1463
1464	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1465		/* We need the IP header in host order for icmp_error(). */
1466		if (args->eh != NULL) {
1467			struct ip *ip = mtod(args->m, struct ip *);
1468			ip->ip_len = ntohs(ip->ip_len);
1469			ip->ip_off = ntohs(ip->ip_off);
1470		}
1471		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1472	} else if (offset == 0 && args->f_id.proto == IPPROTO_TCP) {
1473		struct tcphdr *const tcp =
1474		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1475		if ( (tcp->th_flags & TH_RST) == 0)
1476			send_pkt(&(args->f_id), ntohl(tcp->th_seq),
1477				ntohl(tcp->th_ack),
1478				tcp->th_flags | TH_RST);
1479		m_freem(args->m);
1480	} else
1481		m_freem(args->m);
1482	args->m = NULL;
1483}
1484
1485/**
1486 *
1487 * Given an ip_fw *, lookup_next_rule will return a pointer
1488 * to the next rule, which can be either the jump
1489 * target (for skipto instructions) or the next one in the list (in
1490 * all other cases including a missing jump target).
1491 * The result is also written in the "next_rule" field of the rule.
1492 * Backward jumps are not allowed, so start looking from the next
1493 * rule...
1494 *
1495 * This never returns NULL -- in case we do not have an exact match,
1496 * the next rule is returned. When the ruleset is changed,
1497 * pointers are flushed so we are always correct.
1498 */
1499
1500static struct ip_fw *
1501lookup_next_rule(struct ip_fw *me)
1502{
1503	struct ip_fw *rule = NULL;
1504	ipfw_insn *cmd;
1505
1506	/* look for action, in case it is a skipto */
1507	cmd = ACTION_PTR(me);
1508	if (cmd->opcode == O_LOG)
1509		cmd += F_LEN(cmd);
1510	if (cmd->opcode == O_ALTQ)
1511		cmd += F_LEN(cmd);
1512	if ( cmd->opcode == O_SKIPTO )
1513		for (rule = me->next; rule ; rule = rule->next)
1514			if (rule->rulenum >= cmd->arg1)
1515				break;
1516	if (rule == NULL)			/* failure or not a skipto */
1517		rule = me->next;
1518	me->next_rule = rule;
1519	return rule;
1520}
1521
1522static void
1523init_tables(void)
1524{
1525	int i;
1526
1527	for (i = 0; i < IPFW_TABLES_MAX; i++) {
1528		rn_inithead((void **)&ipfw_tables[i].rnh, 32);
1529		ipfw_tables[i].modified = 1;
1530	}
1531}
1532
1533static int
1534add_table_entry(u_int16_t tbl, in_addr_t addr, u_int8_t mlen, u_int32_t value)
1535{
1536	struct radix_node_head *rnh;
1537	struct table_entry *ent;
1538
1539	if (tbl >= IPFW_TABLES_MAX)
1540		return (EINVAL);
1541	rnh = ipfw_tables[tbl].rnh;
1542	ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
1543	if (ent == NULL)
1544		return (ENOMEM);
1545	ent->value = value;
1546	ent->addr.sin_len = ent->mask.sin_len = 8;
1547	ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1548	ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
1549	RADIX_NODE_HEAD_LOCK(rnh);
1550	if (rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent) ==
1551	    NULL) {
1552		RADIX_NODE_HEAD_UNLOCK(rnh);
1553		free(ent, M_IPFW_TBL);
1554		return (EEXIST);
1555	}
1556	ipfw_tables[tbl].modified = 1;
1557	RADIX_NODE_HEAD_UNLOCK(rnh);
1558	return (0);
1559}
1560
1561static int
1562del_table_entry(u_int16_t tbl, in_addr_t addr, u_int8_t mlen)
1563{
1564	struct radix_node_head *rnh;
1565	struct table_entry *ent;
1566	struct sockaddr_in sa, mask;
1567
1568	if (tbl >= IPFW_TABLES_MAX)
1569		return (EINVAL);
1570	rnh = ipfw_tables[tbl].rnh;
1571	sa.sin_len = mask.sin_len = 8;
1572	mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1573	sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
1574	RADIX_NODE_HEAD_LOCK(rnh);
1575	ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
1576	if (ent == NULL) {
1577		RADIX_NODE_HEAD_UNLOCK(rnh);
1578		return (ESRCH);
1579	}
1580	ipfw_tables[tbl].modified = 1;
1581	RADIX_NODE_HEAD_UNLOCK(rnh);
1582	free(ent, M_IPFW_TBL);
1583	return (0);
1584}
1585
1586static int
1587flush_table_entry(struct radix_node *rn, void *arg)
1588{
1589	struct radix_node_head * const rnh = arg;
1590	struct table_entry *ent;
1591
1592	ent = (struct table_entry *)
1593	    rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
1594	if (ent != NULL)
1595		free(ent, M_IPFW_TBL);
1596	return (0);
1597}
1598
1599static int
1600flush_table(u_int16_t tbl)
1601{
1602	struct radix_node_head *rnh;
1603
1604	if (tbl >= IPFW_TABLES_MAX)
1605		return (EINVAL);
1606	rnh = ipfw_tables[tbl].rnh;
1607	RADIX_NODE_HEAD_LOCK(rnh);
1608	rnh->rnh_walktree(rnh, flush_table_entry, rnh);
1609	ipfw_tables[tbl].modified = 1;
1610	RADIX_NODE_HEAD_UNLOCK(rnh);
1611	return (0);
1612}
1613
1614static void
1615flush_tables(void)
1616{
1617	u_int16_t tbl;
1618
1619	for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
1620		flush_table(tbl);
1621}
1622
1623static int
1624lookup_table(u_int16_t tbl, in_addr_t addr, u_int32_t *val)
1625{
1626	struct radix_node_head *rnh;
1627	struct table_entry *ent;
1628	struct sockaddr_in sa;
1629	static in_addr_t last_addr;
1630	static int last_tbl;
1631	static int last_match;
1632	static u_int32_t last_value;
1633
1634	if (tbl >= IPFW_TABLES_MAX)
1635		return (0);
1636	if (tbl == last_tbl && addr == last_addr &&
1637	    !ipfw_tables[tbl].modified) {
1638		if (last_match)
1639			*val = last_value;
1640		return (last_match);
1641	}
1642	rnh = ipfw_tables[tbl].rnh;
1643	sa.sin_len = 8;
1644	sa.sin_addr.s_addr = addr;
1645	RADIX_NODE_HEAD_LOCK(rnh);
1646	ipfw_tables[tbl].modified = 0;
1647	ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
1648	RADIX_NODE_HEAD_UNLOCK(rnh);
1649	last_addr = addr;
1650	last_tbl = tbl;
1651	if (ent != NULL) {
1652		last_value = *val = ent->value;
1653		last_match = 1;
1654		return (1);
1655	}
1656	last_match = 0;
1657	return (0);
1658}
1659
1660static int
1661count_table_entry(struct radix_node *rn, void *arg)
1662{
1663	u_int32_t * const cnt = arg;
1664
1665	(*cnt)++;
1666	return (0);
1667}
1668
1669static int
1670count_table(u_int32_t tbl, u_int32_t *cnt)
1671{
1672	struct radix_node_head *rnh;
1673
1674	if (tbl >= IPFW_TABLES_MAX)
1675		return (EINVAL);
1676	rnh = ipfw_tables[tbl].rnh;
1677	*cnt = 0;
1678	RADIX_NODE_HEAD_LOCK(rnh);
1679	rnh->rnh_walktree(rnh, count_table_entry, cnt);
1680	RADIX_NODE_HEAD_UNLOCK(rnh);
1681	return (0);
1682}
1683
1684static int
1685dump_table_entry(struct radix_node *rn, void *arg)
1686{
1687	struct table_entry * const n = (struct table_entry *)rn;
1688	ipfw_table * const tbl = arg;
1689	ipfw_table_entry *ent;
1690
1691	if (tbl->cnt == tbl->size)
1692		return (1);
1693	ent = &tbl->ent[tbl->cnt];
1694	ent->tbl = tbl->tbl;
1695	if (in_nullhost(n->mask.sin_addr))
1696		ent->masklen = 0;
1697	else
1698		ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
1699	ent->addr = n->addr.sin_addr.s_addr;
1700	ent->value = n->value;
1701	tbl->cnt++;
1702	return (0);
1703}
1704
1705static int
1706dump_table(ipfw_table *tbl)
1707{
1708	struct radix_node_head *rnh;
1709
1710	if (tbl->tbl >= IPFW_TABLES_MAX)
1711		return (EINVAL);
1712	rnh = ipfw_tables[tbl->tbl].rnh;
1713	tbl->cnt = 0;
1714	RADIX_NODE_HEAD_LOCK(rnh);
1715	rnh->rnh_walktree(rnh, dump_table_entry, tbl);
1716	RADIX_NODE_HEAD_UNLOCK(rnh);
1717	return (0);
1718}
1719
1720static void
1721fill_ugid_cache(struct inpcb *inp, struct ip_fw_ugid *ugp)
1722{
1723	struct ucred *cr;
1724
1725	if (inp->inp_socket != NULL) {
1726		cr = inp->inp_socket->so_cred;
1727		ugp->fw_prid = jailed(cr) ?
1728		    cr->cr_prison->pr_id : -1;
1729		ugp->fw_uid = cr->cr_uid;
1730		ugp->fw_ngroups = cr->cr_ngroups;
1731		bcopy(cr->cr_groups, ugp->fw_groups,
1732		    sizeof(ugp->fw_groups));
1733	}
1734}
1735
1736static int
1737check_uidgid(ipfw_insn_u32 *insn,
1738	int proto, struct ifnet *oif,
1739	struct in_addr dst_ip, u_int16_t dst_port,
1740	struct in_addr src_ip, u_int16_t src_port,
1741	struct ip_fw_ugid *ugp, int *lookup, struct inpcb *inp)
1742{
1743	struct inpcbinfo *pi;
1744	int wildcard;
1745	struct inpcb *pcb;
1746	int match;
1747	gid_t *gp;
1748
1749	/*
1750	 * Check to see if the UDP or TCP stack supplied us with
1751	 * the PCB. If so, rather then holding a lock and looking
1752	 * up the PCB, we can use the one that was supplied.
1753	 */
1754	if (inp && *lookup == 0) {
1755		INP_LOCK_ASSERT(inp);
1756		if (inp->inp_socket != NULL) {
1757			fill_ugid_cache(inp, ugp);
1758			*lookup = 1;
1759		}
1760	}
1761	/*
1762	 * If we have already been here and the packet has no
1763	 * PCB entry associated with it, then we can safely
1764	 * assume that this is a no match.
1765	 */
1766	if (*lookup == -1)
1767		return (0);
1768	if (proto == IPPROTO_TCP) {
1769		wildcard = 0;
1770		pi = &tcbinfo;
1771	} else if (proto == IPPROTO_UDP) {
1772		wildcard = 1;
1773		pi = &udbinfo;
1774	} else
1775		return 0;
1776	match = 0;
1777	if (*lookup == 0) {
1778		INP_INFO_RLOCK(pi);
1779		pcb =  (oif) ?
1780			in_pcblookup_hash(pi,
1781				dst_ip, htons(dst_port),
1782				src_ip, htons(src_port),
1783				wildcard, oif) :
1784			in_pcblookup_hash(pi,
1785				src_ip, htons(src_port),
1786				dst_ip, htons(dst_port),
1787				wildcard, NULL);
1788		if (pcb != NULL) {
1789			INP_LOCK(pcb);
1790			if (pcb->inp_socket != NULL) {
1791				fill_ugid_cache(pcb, ugp);
1792				*lookup = 1;
1793			}
1794			INP_UNLOCK(pcb);
1795		}
1796		INP_INFO_RUNLOCK(pi);
1797		if (*lookup == 0) {
1798			/*
1799			 * If the lookup did not yield any results, there
1800			 * is no sense in coming back and trying again. So
1801			 * we can set lookup to -1 and ensure that we wont
1802			 * bother the pcb system again.
1803			 */
1804			*lookup = -1;
1805			return (0);
1806		}
1807	}
1808	if (insn->o.opcode == O_UID)
1809		match = (ugp->fw_uid == (uid_t)insn->d[0]);
1810	else if (insn->o.opcode == O_GID) {
1811		for (gp = ugp->fw_groups;
1812			gp < &ugp->fw_groups[ugp->fw_ngroups]; gp++)
1813			if (*gp == (gid_t)insn->d[0]) {
1814				match = 1;
1815				break;
1816			}
1817	} else if (insn->o.opcode == O_JAIL)
1818		match = (ugp->fw_prid == (int)insn->d[0]);
1819	return match;
1820}
1821
1822/*
1823 * The main check routine for the firewall.
1824 *
1825 * All arguments are in args so we can modify them and return them
1826 * back to the caller.
1827 *
1828 * Parameters:
1829 *
1830 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
1831 *		Starts with the IP header.
1832 *	args->eh (in)	Mac header if present, or NULL for layer3 packet.
1833 *	args->oif	Outgoing interface, or NULL if packet is incoming.
1834 *		The incoming interface is in the mbuf. (in)
1835 *	args->divert_rule (in/out)
1836 *		Skip up to the first rule past this rule number;
1837 *		upon return, non-zero port number for divert or tee.
1838 *
1839 *	args->rule	Pointer to the last matching rule (in/out)
1840 *	args->next_hop	Socket we are forwarding to (out).
1841 *	args->f_id	Addresses grabbed from the packet (out)
1842 * 	args->cookie	a cookie depending on rule action
1843 *
1844 * Return value:
1845 *
1846 *	IP_FW_PASS	the packet must be accepted
1847 *	IP_FW_DENY	the packet must be dropped
1848 *	IP_FW_DIVERT	divert packet, port in m_tag
1849 *	IP_FW_TEE	tee packet, port in m_tag
1850 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
1851 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
1852 *
1853 */
1854
1855int
1856ipfw_chk(struct ip_fw_args *args)
1857{
1858	/*
1859	 * Local variables hold state during the processing of a packet.
1860	 *
1861	 * IMPORTANT NOTE: to speed up the processing of rules, there
1862	 * are some assumption on the values of the variables, which
1863	 * are documented here. Should you change them, please check
1864	 * the implementation of the various instructions to make sure
1865	 * that they still work.
1866	 *
1867	 * args->eh	The MAC header. It is non-null for a layer2
1868	 *	packet, it is NULL for a layer-3 packet.
1869	 *
1870	 * m | args->m	Pointer to the mbuf, as received from the caller.
1871	 *	It may change if ipfw_chk() does an m_pullup, or if it
1872	 *	consumes the packet because it calls send_reject().
1873	 *	XXX This has to change, so that ipfw_chk() never modifies
1874	 *	or consumes the buffer.
1875	 * ip	is simply an alias of the value of m, and it is kept
1876	 *	in sync with it (the packet is	supposed to start with
1877	 *	the ip header).
1878	 */
1879	struct mbuf *m = args->m;
1880	struct ip *ip = mtod(m, struct ip *);
1881
1882	/*
1883	 * For rules which contain uid/gid or jail constraints, cache
1884	 * a copy of the users credentials after the pcb lookup has been
1885	 * executed. This will speed up the processing of rules with
1886	 * these types of constraints, as well as decrease contention
1887	 * on pcb related locks.
1888	 */
1889	struct ip_fw_ugid fw_ugid_cache;
1890	int ugid_lookup = 0;
1891
1892	/*
1893	 * divinput_flags	If non-zero, set to the IP_FW_DIVERT_*_FLAG
1894	 *	associated with a packet input on a divert socket.  This
1895	 *	will allow to distinguish traffic and its direction when
1896	 *	it originates from a divert socket.
1897	 */
1898	u_int divinput_flags = 0;
1899
1900	/*
1901	 * oif | args->oif	If NULL, ipfw_chk has been called on the
1902	 *	inbound path (ether_input, bdg_forward, ip_input).
1903	 *	If non-NULL, ipfw_chk has been called on the outbound path
1904	 *	(ether_output, ip_output).
1905	 */
1906	struct ifnet *oif = args->oif;
1907
1908	struct ip_fw *f = NULL;		/* matching rule */
1909	int retval = 0;
1910
1911	/*
1912	 * hlen	The length of the IPv4 header.
1913	 *	hlen >0 means we have an IPv4 packet.
1914	 */
1915	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
1916
1917	/*
1918	 * offset	The offset of a fragment. offset != 0 means that
1919	 *	we have a fragment at this offset of an IPv4 packet.
1920	 *	offset == 0 means that (if this is an IPv4 packet)
1921	 *	this is the first or only fragment.
1922	 */
1923	u_short offset = 0;
1924
1925	/*
1926	 * Local copies of addresses. They are only valid if we have
1927	 * an IP packet.
1928	 *
1929	 * proto	The protocol. Set to 0 for non-ip packets,
1930	 *	or to the protocol read from the packet otherwise.
1931	 *	proto != 0 means that we have an IPv4 packet.
1932	 *
1933	 * src_port, dst_port	port numbers, in HOST format. Only
1934	 *	valid for TCP and UDP packets.
1935	 *
1936	 * src_ip, dst_ip	ip addresses, in NETWORK format.
1937	 *	Only valid for IPv4 packets.
1938	 */
1939	u_int8_t proto;
1940	u_int16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
1941	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
1942	u_int16_t ip_len=0;
1943	int pktlen;
1944
1945	/*
1946	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
1947	 * 	MATCH_NONE when checked and not matched (q = NULL),
1948	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
1949	 */
1950	int dyn_dir = MATCH_UNKNOWN;
1951	ipfw_dyn_rule *q = NULL;
1952	struct ip_fw_chain *chain = &layer3_chain;
1953	struct m_tag *mtag;
1954
1955	/*
1956	 * We store in ulp a pointer to the upper layer protocol header.
1957	 * In the ipv4 case this is easy to determine from the header,
1958	 * but for ipv6 we might have some additional headers in the middle.
1959	 * ulp is NULL if not found.
1960	 */
1961	void *ulp = NULL;		/* upper layer protocol pointer. */
1962	/* XXX ipv6 variables */
1963	int is_ipv6 = 0;
1964	u_int16_t ext_hd = 0;	/* bits vector for extension header filtering */
1965	/* end of ipv6 variables */
1966
1967	if (m->m_flags & M_SKIP_FIREWALL)
1968		return (IP_FW_PASS);	/* accept */
1969
1970	pktlen = m->m_pkthdr.len;
1971	proto = args->f_id.proto = 0;	/* mark f_id invalid */
1972
1973/*
1974 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
1975 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
1976 * pointer might become stale after other pullups (but we never use it
1977 * this way).
1978 */
1979#define PULLUP_TO(len, p, T)						\
1980do {									\
1981	int x = (len) + sizeof(T);					\
1982	if ((m)->m_len < x) {						\
1983		args->m = m = m_pullup(m, x);				\
1984		if (m == NULL)						\
1985			goto pullup_failed;				\
1986	}								\
1987	p = (mtod(m, char *) + (len));					\
1988} while (0)
1989
1990	/* Identify IP packets and fill up variables. */
1991	if (pktlen >= sizeof(struct ip6_hdr) &&
1992	    (args->eh == NULL || ntohs(args->eh->ether_type)==ETHERTYPE_IPV6) &&
1993	    mtod(m, struct ip *)->ip_v == 6) {
1994		is_ipv6 = 1;
1995		args->f_id.addr_type = 6;
1996		hlen = sizeof(struct ip6_hdr);
1997		proto = mtod(m, struct ip6_hdr *)->ip6_nxt;
1998
1999		/* Search extension headers to find upper layer protocols */
2000		while (ulp == NULL) {
2001			switch (proto) {
2002			case IPPROTO_ICMPV6:
2003				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
2004				args->f_id.flags = ICMP6(ulp)->icmp6_type;
2005				break;
2006
2007			case IPPROTO_TCP:
2008				PULLUP_TO(hlen, ulp, struct tcphdr);
2009				dst_port = TCP(ulp)->th_dport;
2010				src_port = TCP(ulp)->th_sport;
2011				args->f_id.flags = TCP(ulp)->th_flags;
2012				break;
2013
2014			case IPPROTO_UDP:
2015				PULLUP_TO(hlen, ulp, struct udphdr);
2016				dst_port = UDP(ulp)->uh_dport;
2017				src_port = UDP(ulp)->uh_sport;
2018				break;
2019
2020			case IPPROTO_HOPOPTS:
2021				PULLUP_TO(hlen, ulp, struct ip6_hbh);
2022				ext_hd |= EXT_HOPOPTS;
2023				hlen += sizeof(struct ip6_hbh);
2024				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2025				ulp = NULL;
2026				break;
2027
2028			case IPPROTO_ROUTING:
2029				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
2030				ext_hd |= EXT_ROUTING;
2031				hlen += sizeof(struct ip6_rthdr);
2032				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
2033				ulp = NULL;
2034				break;
2035
2036			case IPPROTO_FRAGMENT:
2037				PULLUP_TO(hlen, ulp, struct ip6_frag);
2038				ext_hd |= EXT_FRAGMENT;
2039				hlen += sizeof (struct ip6_frag);
2040				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
2041				offset = 1;
2042				ulp = NULL; /* XXX is it correct ? */
2043				break;
2044
2045			case IPPROTO_AH:
2046			case IPPROTO_NONE:
2047			case IPPROTO_ESP:
2048				PULLUP_TO(hlen, ulp, struct ip6_ext);
2049				if (proto == IPPROTO_AH)
2050				ext_hd |= EXT_AH;
2051				else if (proto == IPPROTO_ESP)
2052				ext_hd |= EXT_ESP;
2053				hlen += ((struct ip6_ext *)ulp)->ip6e_len +
2054					    sizeof (struct ip6_ext);
2055				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
2056				ulp = NULL;
2057				break;
2058
2059			default:
2060				printf( "IPFW2: IPV6 - Unknown Extension Header (%d)\n",
2061				    proto);
2062				return 0; /* deny */
2063				break;
2064			} /*switch */
2065		}
2066		args->f_id.src_ip6 = mtod(m,struct ip6_hdr *)->ip6_src;
2067		args->f_id.dst_ip6 = mtod(m,struct ip6_hdr *)->ip6_dst;
2068		args->f_id.src_ip = 0;
2069		args->f_id.dst_ip = 0;
2070		args->f_id.flow_id6 = ntohs(mtod(m, struct ip6_hdr *)->ip6_flow);
2071		/* hlen != 0 is used to detect ipv4 packets, so clear it now */
2072		hlen = 0;
2073	} else if (pktlen >= sizeof(struct ip) &&
2074	    (args->eh == NULL || ntohs(args->eh->ether_type) == ETHERTYPE_IP) &&
2075	    mtod(m, struct ip *)->ip_v == 4) {
2076		ip = mtod(m, struct ip *);
2077		hlen = ip->ip_hl << 2;
2078		args->f_id.addr_type = 4;
2079
2080		/*
2081		 * Collect parameters into local variables for faster matching.
2082		 */
2083		proto = ip->ip_p;
2084		src_ip = ip->ip_src;
2085		dst_ip = ip->ip_dst;
2086		if (args->eh != NULL) { /* layer 2 packets are as on the wire */
2087			offset = ntohs(ip->ip_off) & IP_OFFMASK;
2088			ip_len = ntohs(ip->ip_len);
2089		} else {
2090			offset = ip->ip_off & IP_OFFMASK;
2091			ip_len = ip->ip_len;
2092		}
2093		pktlen = ip_len < pktlen ? ip_len : pktlen;
2094
2095		if (offset == 0) {
2096			switch (proto) {
2097			case IPPROTO_TCP:
2098				PULLUP_TO(hlen, ulp, struct tcphdr);
2099				dst_port = TCP(ulp)->th_dport;
2100				src_port = TCP(ulp)->th_sport;
2101				args->f_id.flags = TCP(ulp)->th_flags;
2102				break;
2103
2104			case IPPROTO_UDP:
2105				PULLUP_TO(hlen, ulp, struct udphdr);
2106				dst_port = UDP(ulp)->uh_dport;
2107				src_port = UDP(ulp)->uh_sport;
2108				break;
2109
2110			case IPPROTO_ICMP:
2111				PULLUP_TO(hlen, ulp, struct icmphdr);
2112				args->f_id.flags = ICMP(ulp)->icmp_type;
2113				break;
2114
2115			default:
2116				break;
2117			}
2118		}
2119
2120		args->f_id.src_ip = ntohl(src_ip.s_addr);
2121		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
2122	}
2123#undef PULLUP_TO
2124	if (proto) { /* we may have port numbers, store them */
2125		args->f_id.proto = proto;
2126		args->f_id.src_port = src_port = ntohs(src_port);
2127		args->f_id.dst_port = dst_port = ntohs(dst_port);
2128	}
2129
2130	IPFW_RLOCK(chain);
2131	mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
2132	if (args->rule) {
2133		/*
2134		 * Packet has already been tagged. Look for the next rule
2135		 * to restart processing.
2136		 *
2137		 * If fw_one_pass != 0 then just accept it.
2138		 * XXX should not happen here, but optimized out in
2139		 * the caller.
2140		 */
2141		if (fw_one_pass) {
2142			IPFW_RUNLOCK(chain);
2143			return (IP_FW_PASS);
2144		}
2145
2146		f = args->rule->next_rule;
2147		if (f == NULL)
2148			f = lookup_next_rule(args->rule);
2149	} else {
2150		/*
2151		 * Find the starting rule. It can be either the first
2152		 * one, or the one after divert_rule if asked so.
2153		 */
2154		int skipto = mtag ? divert_cookie(mtag) : 0;
2155
2156		f = chain->rules;
2157		if (args->eh == NULL && skipto != 0) {
2158			if (skipto >= IPFW_DEFAULT_RULE) {
2159				IPFW_RUNLOCK(chain);
2160				return (IP_FW_DENY); /* invalid */
2161			}
2162			while (f && f->rulenum <= skipto)
2163				f = f->next;
2164			if (f == NULL) {	/* drop packet */
2165				IPFW_RUNLOCK(chain);
2166				return (IP_FW_DENY);
2167			}
2168		}
2169	}
2170	/* reset divert rule to avoid confusion later */
2171	if (mtag) {
2172		divinput_flags = divert_info(mtag) &
2173		    (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
2174		m_tag_delete(m, mtag);
2175	}
2176
2177	/*
2178	 * Now scan the rules, and parse microinstructions for each rule.
2179	 */
2180	for (; f; f = f->next) {
2181		int l, cmdlen;
2182		ipfw_insn *cmd;
2183		int skip_or; /* skip rest of OR block */
2184
2185again:
2186		if (set_disable & (1 << f->set) )
2187			continue;
2188
2189		skip_or = 0;
2190		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
2191		    l -= cmdlen, cmd += cmdlen) {
2192			int match;
2193
2194			/*
2195			 * check_body is a jump target used when we find a
2196			 * CHECK_STATE, and need to jump to the body of
2197			 * the target rule.
2198			 */
2199
2200check_body:
2201			cmdlen = F_LEN(cmd);
2202			/*
2203			 * An OR block (insn_1 || .. || insn_n) has the
2204			 * F_OR bit set in all but the last instruction.
2205			 * The first match will set "skip_or", and cause
2206			 * the following instructions to be skipped until
2207			 * past the one with the F_OR bit clear.
2208			 */
2209			if (skip_or) {		/* skip this instruction */
2210				if ((cmd->len & F_OR) == 0)
2211					skip_or = 0;	/* next one is good */
2212				continue;
2213			}
2214			match = 0; /* set to 1 if we succeed */
2215
2216			switch (cmd->opcode) {
2217			/*
2218			 * The first set of opcodes compares the packet's
2219			 * fields with some pattern, setting 'match' if a
2220			 * match is found. At the end of the loop there is
2221			 * logic to deal with F_NOT and F_OR flags associated
2222			 * with the opcode.
2223			 */
2224			case O_NOP:
2225				match = 1;
2226				break;
2227
2228			case O_FORWARD_MAC:
2229				printf("ipfw: opcode %d unimplemented\n",
2230				    cmd->opcode);
2231				break;
2232
2233			case O_GID:
2234			case O_UID:
2235			case O_JAIL:
2236				/*
2237				 * We only check offset == 0 && proto != 0,
2238				 * as this ensures that we have a
2239				 * packet with the ports info.
2240				 */
2241				if (offset!=0)
2242					break;
2243				if (is_ipv6) /* XXX to be fixed later */
2244					break;
2245				if (proto == IPPROTO_TCP ||
2246				    proto == IPPROTO_UDP)
2247					match = check_uidgid(
2248						    (ipfw_insn_u32 *)cmd,
2249						    proto, oif,
2250						    dst_ip, dst_port,
2251						    src_ip, src_port, &fw_ugid_cache,
2252						    &ugid_lookup, args->inp);
2253				break;
2254
2255			case O_RECV:
2256				match = iface_match(m->m_pkthdr.rcvif,
2257				    (ipfw_insn_if *)cmd);
2258				break;
2259
2260			case O_XMIT:
2261				match = iface_match(oif, (ipfw_insn_if *)cmd);
2262				break;
2263
2264			case O_VIA:
2265				match = iface_match(oif ? oif :
2266				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
2267				break;
2268
2269			case O_MACADDR2:
2270				if (args->eh != NULL) {	/* have MAC header */
2271					u_int32_t *want = (u_int32_t *)
2272						((ipfw_insn_mac *)cmd)->addr;
2273					u_int32_t *mask = (u_int32_t *)
2274						((ipfw_insn_mac *)cmd)->mask;
2275					u_int32_t *hdr = (u_int32_t *)args->eh;
2276
2277					match =
2278					    ( want[0] == (hdr[0] & mask[0]) &&
2279					      want[1] == (hdr[1] & mask[1]) &&
2280					      want[2] == (hdr[2] & mask[2]) );
2281				}
2282				break;
2283
2284			case O_MAC_TYPE:
2285				if (args->eh != NULL) {
2286					u_int16_t t =
2287					    ntohs(args->eh->ether_type);
2288					u_int16_t *p =
2289					    ((ipfw_insn_u16 *)cmd)->ports;
2290					int i;
2291
2292					for (i = cmdlen - 1; !match && i>0;
2293					    i--, p += 2)
2294						match = (t>=p[0] && t<=p[1]);
2295				}
2296				break;
2297
2298			case O_FRAG:
2299				match = (offset != 0);
2300				break;
2301
2302			case O_IN:	/* "out" is "not in" */
2303				match = (oif == NULL);
2304				break;
2305
2306			case O_LAYER2:
2307				match = (args->eh != NULL);
2308				break;
2309
2310			case O_DIVERTED:
2311				match = (cmd->arg1 & 1 && divinput_flags &
2312				    IP_FW_DIVERT_LOOPBACK_FLAG) ||
2313					(cmd->arg1 & 2 && divinput_flags &
2314				    IP_FW_DIVERT_OUTPUT_FLAG);
2315				break;
2316
2317			case O_PROTO:
2318				/*
2319				 * We do not allow an arg of 0 so the
2320				 * check of "proto" only suffices.
2321				 */
2322				match = (proto == cmd->arg1);
2323				break;
2324
2325			case O_IP_SRC:
2326				match = (hlen > 0 &&
2327				    ((ipfw_insn_ip *)cmd)->addr.s_addr ==
2328				    src_ip.s_addr);
2329				break;
2330
2331			case O_IP_SRC_LOOKUP:
2332			case O_IP_DST_LOOKUP:
2333				if (hlen > 0) {
2334				    uint32_t a =
2335					(cmd->opcode == O_IP_DST_LOOKUP) ?
2336					    dst_ip.s_addr : src_ip.s_addr;
2337				    uint32_t v;
2338
2339				    match = lookup_table(cmd->arg1, a, &v);
2340				    if (!match)
2341					break;
2342				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2343					match =
2344					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
2345				}
2346				break;
2347
2348			case O_IP_SRC_MASK:
2349			case O_IP_DST_MASK:
2350				if (hlen > 0) {
2351				    uint32_t a =
2352					(cmd->opcode == O_IP_DST_MASK) ?
2353					    dst_ip.s_addr : src_ip.s_addr;
2354				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2355				    int i = cmdlen-1;
2356
2357				    for (; !match && i>0; i-= 2, p+= 2)
2358					match = (p[0] == (a & p[1]));
2359				}
2360				break;
2361
2362			case O_IP_SRC_ME:
2363				if (hlen > 0) {
2364					struct ifnet *tif;
2365
2366					INADDR_TO_IFP(src_ip, tif);
2367					match = (tif != NULL);
2368				}
2369				break;
2370
2371			case O_IP_DST_SET:
2372			case O_IP_SRC_SET:
2373				if (hlen > 0) {
2374					u_int32_t *d = (u_int32_t *)(cmd+1);
2375					u_int32_t addr =
2376					    cmd->opcode == O_IP_DST_SET ?
2377						args->f_id.dst_ip :
2378						args->f_id.src_ip;
2379
2380					    if (addr < d[0])
2381						    break;
2382					    addr -= d[0]; /* subtract base */
2383					    match = (addr < cmd->arg1) &&
2384						( d[ 1 + (addr>>5)] &
2385						  (1<<(addr & 0x1f)) );
2386				}
2387				break;
2388
2389			case O_IP_DST:
2390				match = (hlen > 0 &&
2391				    ((ipfw_insn_ip *)cmd)->addr.s_addr ==
2392				    dst_ip.s_addr);
2393				break;
2394
2395			case O_IP_DST_ME:
2396				if (hlen > 0) {
2397					struct ifnet *tif;
2398
2399					INADDR_TO_IFP(dst_ip, tif);
2400					match = (tif != NULL);
2401				}
2402				break;
2403
2404			case O_IP_SRCPORT:
2405			case O_IP_DSTPORT:
2406				/*
2407				 * offset == 0 && proto != 0 is enough
2408				 * to guarantee that we have a
2409				 * packet with port info.
2410				 */
2411				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
2412				    && offset == 0) {
2413					u_int16_t x =
2414					    (cmd->opcode == O_IP_SRCPORT) ?
2415						src_port : dst_port ;
2416					u_int16_t *p =
2417					    ((ipfw_insn_u16 *)cmd)->ports;
2418					int i;
2419
2420					for (i = cmdlen - 1; !match && i>0;
2421					    i--, p += 2)
2422						match = (x>=p[0] && x<=p[1]);
2423				}
2424				break;
2425
2426			case O_ICMPTYPE:
2427				match = (offset == 0 && proto==IPPROTO_ICMP &&
2428				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2429				break;
2430
2431#ifdef INET6
2432			case O_ICMP6TYPE:
2433				match = is_ipv6 && offset == 0 &&
2434				    proto==IPPROTO_ICMPV6 &&
2435				    icmp6type_match(
2436					ICMP6(ulp)->icmp6_type,
2437					(ipfw_insn_u32 *)cmd);
2438				break;
2439#endif /* INET6 */
2440
2441			case O_IPOPT:
2442				match = (hlen > 0 &&
2443				    ipopts_match(mtod(m, struct ip *), cmd) );
2444				break;
2445
2446			case O_IPVER:
2447				match = (hlen > 0 &&
2448				    cmd->arg1 == mtod(m, struct ip *)->ip_v);
2449				break;
2450
2451			case O_IPID:
2452			case O_IPLEN:
2453			case O_IPTTL:
2454				if (hlen > 0) {	/* only for IP packets */
2455				    uint16_t x;
2456				    uint16_t *p;
2457				    int i;
2458
2459				    if (cmd->opcode == O_IPLEN)
2460					x = ip_len;
2461				    else if (cmd->opcode == O_IPTTL)
2462					x = mtod(m, struct ip *)->ip_ttl;
2463				    else /* must be IPID */
2464					x = ntohs(mtod(m, struct ip *)->ip_id);
2465				    if (cmdlen == 1) {
2466					match = (cmd->arg1 == x);
2467					break;
2468				    }
2469				    /* otherwise we have ranges */
2470				    p = ((ipfw_insn_u16 *)cmd)->ports;
2471				    i = cmdlen - 1;
2472				    for (; !match && i>0; i--, p += 2)
2473					match = (x >= p[0] && x <= p[1]);
2474				}
2475				break;
2476
2477			case O_IPPRECEDENCE:
2478				match = (hlen > 0 &&
2479				    (cmd->arg1 == (mtod(m, struct ip *)->ip_tos & 0xe0)) );
2480				break;
2481
2482			case O_IPTOS:
2483				match = (hlen > 0 &&
2484				    flags_match(cmd, mtod(m, struct ip *)->ip_tos));
2485				break;
2486
2487			case O_TCPDATALEN:
2488				if (proto == IPPROTO_TCP && offset == 0) {
2489				    struct tcphdr *tcp;
2490				    uint16_t x;
2491				    uint16_t *p;
2492				    int i;
2493
2494				    tcp = TCP(ulp);
2495				    x = ip_len -
2496					((ip->ip_hl + tcp->th_off) << 2);
2497				    if (cmdlen == 1) {
2498					match = (cmd->arg1 == x);
2499					break;
2500				    }
2501				    /* otherwise we have ranges */
2502				    p = ((ipfw_insn_u16 *)cmd)->ports;
2503				    i = cmdlen - 1;
2504				    for (; !match && i>0; i--, p += 2)
2505					match = (x >= p[0] && x <= p[1]);
2506				}
2507				break;
2508
2509			case O_TCPFLAGS:
2510				match = (proto == IPPROTO_TCP && offset == 0 &&
2511				    flags_match(cmd, TCP(ulp)->th_flags));
2512				break;
2513
2514			case O_TCPOPTS:
2515				match = (proto == IPPROTO_TCP && offset == 0 &&
2516				    tcpopts_match(TCP(ulp), cmd));
2517				break;
2518
2519			case O_TCPSEQ:
2520				match = (proto == IPPROTO_TCP && offset == 0 &&
2521				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2522					TCP(ulp)->th_seq);
2523				break;
2524
2525			case O_TCPACK:
2526				match = (proto == IPPROTO_TCP && offset == 0 &&
2527				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2528					TCP(ulp)->th_ack);
2529				break;
2530
2531			case O_TCPWIN:
2532				match = (proto == IPPROTO_TCP && offset == 0 &&
2533				    cmd->arg1 == TCP(ulp)->th_win);
2534				break;
2535
2536			case O_ESTAB:
2537				/* reject packets which have SYN only */
2538				/* XXX should i also check for TH_ACK ? */
2539				match = (proto == IPPROTO_TCP && offset == 0 &&
2540				    (TCP(ulp)->th_flags &
2541				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2542				break;
2543
2544			case O_ALTQ: {
2545				struct altq_tag *at;
2546				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2547
2548				match = 1;
2549				mtag = m_tag_get(PACKET_TAG_PF_QID,
2550						sizeof(struct altq_tag),
2551						M_NOWAIT);
2552				if (mtag == NULL) {
2553					/*
2554					 * Let the packet fall back to the
2555					 * default ALTQ.
2556					 */
2557					break;
2558				}
2559				at = (struct altq_tag *)(mtag+1);
2560				at->qid = altq->qid;
2561				if (hlen != 0)
2562					at->af = AF_INET;
2563				else
2564					at->af = AF_LINK;
2565				at->hdr = ip;
2566				m_tag_prepend(m, mtag);
2567				break;
2568			}
2569
2570			case O_LOG:
2571				if (fw_verbose)
2572					ipfw_log(f, hlen, args->eh, m, oif);
2573				match = 1;
2574				break;
2575
2576			case O_PROB:
2577				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2578				break;
2579
2580			case O_VERREVPATH:
2581				/* Outgoing packets automatically pass/match */
2582				/* XXX BED: verify_path was verify_rev_path in the diff... */
2583				match = ((oif != NULL) ||
2584				    (m->m_pkthdr.rcvif == NULL) ||
2585				    (
2586#ifdef INET6
2587				    is_ipv6 ?
2588					verify_rev_path6(&(args->f_id.src_ip6),
2589					    m->m_pkthdr.rcvif) :
2590#endif
2591				    verify_path(src_ip, m->m_pkthdr.rcvif)));
2592				break;
2593
2594			case O_VERSRCREACH:
2595				/* Outgoing packets automatically pass/match */
2596				match = (hlen > 0 && ((oif != NULL) ||
2597				     verify_path(src_ip, NULL)));
2598				break;
2599
2600			case O_ANTISPOOF:
2601				/* Outgoing packets automatically pass/match */
2602				if (oif == NULL && hlen > 0 &&
2603				    in_localaddr(src_ip))
2604					match = verify_path(src_ip,
2605							m->m_pkthdr.rcvif);
2606				else
2607					match = 1;
2608				break;
2609
2610			case O_IPSEC:
2611#ifdef FAST_IPSEC
2612				match = (m_tag_find(m,
2613				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2614#endif
2615#ifdef IPSEC
2616				match = (ipsec_getnhist(m) != 0);
2617#endif
2618				/* otherwise no match */
2619				break;
2620
2621			case O_IP6_SRC:
2622				match = is_ipv6 &&
2623				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
2624				    &((ipfw_insn_ip6 *)cmd)->addr6);
2625				break;
2626
2627			case O_IP6_DST:
2628				match = is_ipv6 &&
2629				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
2630				    &((ipfw_insn_ip6 *)cmd)->addr6);
2631				break;
2632			case O_IP6_SRC_MASK:
2633				if (is_ipv6) {
2634					ipfw_insn_ip6 *te = (ipfw_insn_ip6 *)cmd;
2635					struct in6_addr p = args->f_id.src_ip6;
2636
2637					APPLY_MASK(&p, &te->mask6);
2638					match = IN6_ARE_ADDR_EQUAL(&te->addr6, &p);
2639				}
2640				break;
2641
2642			case O_IP6_DST_MASK:
2643				if (is_ipv6) {
2644					ipfw_insn_ip6 *te = (ipfw_insn_ip6 *)cmd;
2645					struct in6_addr p = args->f_id.dst_ip6;
2646
2647					APPLY_MASK(&p, &te->mask6);
2648					match = IN6_ARE_ADDR_EQUAL(&te->addr6, &p);
2649				}
2650				break;
2651
2652#ifdef INET6
2653			case O_IP6_SRC_ME:
2654				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
2655			break;
2656
2657			case O_IP6_DST_ME:
2658				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
2659			break;
2660
2661			case O_FLOW6ID:
2662				match = is_ipv6 &&
2663				    flow6id_match(args->f_id.flow_id6,
2664				    (ipfw_insn_u32 *) cmd);
2665				break;
2666
2667			case O_EXT_HDR:
2668				match = is_ipv6 &&
2669				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
2670				break;
2671
2672			case O_IP6:
2673				match = is_ipv6;
2674				break;
2675#endif
2676
2677			/*
2678			 * The second set of opcodes represents 'actions',
2679			 * i.e. the terminal part of a rule once the packet
2680			 * matches all previous patterns.
2681			 * Typically there is only one action for each rule,
2682			 * and the opcode is stored at the end of the rule
2683			 * (but there are exceptions -- see below).
2684			 *
2685			 * In general, here we set retval and terminate the
2686			 * outer loop (would be a 'break 3' in some language,
2687			 * but we need to do a 'goto done').
2688			 *
2689			 * Exceptions:
2690			 * O_COUNT and O_SKIPTO actions:
2691			 *   instead of terminating, we jump to the next rule
2692			 *   ('goto next_rule', equivalent to a 'break 2'),
2693			 *   or to the SKIPTO target ('goto again' after
2694			 *   having set f, cmd and l), respectively.
2695			 *
2696			 * O_LOG and O_ALTQ action parameters:
2697			 *   perform some action and set match = 1;
2698			 *
2699			 * O_LIMIT and O_KEEP_STATE: these opcodes are
2700			 *   not real 'actions', and are stored right
2701			 *   before the 'action' part of the rule.
2702			 *   These opcodes try to install an entry in the
2703			 *   state tables; if successful, we continue with
2704			 *   the next opcode (match=1; break;), otherwise
2705			 *   the packet *   must be dropped
2706			 *   ('goto done' after setting retval);
2707			 *
2708			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2709			 *   cause a lookup of the state table, and a jump
2710			 *   to the 'action' part of the parent rule
2711			 *   ('goto check_body') if an entry is found, or
2712			 *   (CHECK_STATE only) a jump to the next rule if
2713			 *   the entry is not found ('goto next_rule').
2714			 *   The result of the lookup is cached to make
2715			 *   further instances of these opcodes are
2716			 *   effectively NOPs.
2717			 */
2718			case O_LIMIT:
2719			case O_KEEP_STATE:
2720				if (install_state(f,
2721				    (ipfw_insn_limit *)cmd, args)) {
2722					retval = IP_FW_DENY;
2723					goto done; /* error/limit violation */
2724				}
2725				match = 1;
2726				break;
2727
2728			case O_PROBE_STATE:
2729			case O_CHECK_STATE:
2730				/*
2731				 * dynamic rules are checked at the first
2732				 * keep-state or check-state occurrence,
2733				 * with the result being stored in dyn_dir.
2734				 * The compiler introduces a PROBE_STATE
2735				 * instruction for us when we have a
2736				 * KEEP_STATE (because PROBE_STATE needs
2737				 * to be run first).
2738				 */
2739				if (dyn_dir == MATCH_UNKNOWN &&
2740				    (q = lookup_dyn_rule(&args->f_id,
2741				     &dyn_dir, proto == IPPROTO_TCP ?
2742					TCP(ulp) : NULL))
2743					!= NULL) {
2744					/*
2745					 * Found dynamic entry, update stats
2746					 * and jump to the 'action' part of
2747					 * the parent rule.
2748					 */
2749					q->pcnt++;
2750					q->bcnt += pktlen;
2751					f = q->rule;
2752					cmd = ACTION_PTR(f);
2753					l = f->cmd_len - f->act_ofs;
2754					IPFW_DYN_UNLOCK();
2755					goto check_body;
2756				}
2757				/*
2758				 * Dynamic entry not found. If CHECK_STATE,
2759				 * skip to next rule, if PROBE_STATE just
2760				 * ignore and continue with next opcode.
2761				 */
2762				if (cmd->opcode == O_CHECK_STATE)
2763					goto next_rule;
2764				match = 1;
2765				break;
2766
2767			case O_ACCEPT:
2768				retval = 0;	/* accept */
2769				goto done;
2770
2771			case O_PIPE:
2772			case O_QUEUE:
2773				args->rule = f; /* report matching rule */
2774				args->cookie = cmd->arg1;
2775				retval = IP_FW_DUMMYNET;
2776				goto done;
2777
2778			case O_DIVERT:
2779			case O_TEE: {
2780				struct divert_tag *dt;
2781
2782				if (args->eh) /* not on layer 2 */
2783					break;
2784				mtag = m_tag_get(PACKET_TAG_DIVERT,
2785						sizeof(struct divert_tag),
2786						M_NOWAIT);
2787				if (mtag == NULL) {
2788					/* XXX statistic */
2789					/* drop packet */
2790					IPFW_RUNLOCK(chain);
2791					return (IP_FW_DENY);
2792				}
2793				dt = (struct divert_tag *)(mtag+1);
2794				dt->cookie = f->rulenum;
2795				dt->info = cmd->arg1;
2796				m_tag_prepend(m, mtag);
2797				retval = (cmd->opcode == O_DIVERT) ?
2798				    IP_FW_DIVERT : IP_FW_TEE;
2799				goto done;
2800			}
2801
2802			case O_COUNT:
2803			case O_SKIPTO:
2804				f->pcnt++;	/* update stats */
2805				f->bcnt += pktlen;
2806				f->timestamp = time_second;
2807				if (cmd->opcode == O_COUNT)
2808					goto next_rule;
2809				/* handle skipto */
2810				if (f->next_rule == NULL)
2811					lookup_next_rule(f);
2812				f = f->next_rule;
2813				goto again;
2814
2815			case O_REJECT:
2816				/*
2817				 * Drop the packet and send a reject notice
2818				 * if the packet is not ICMP (or is an ICMP
2819				 * query), and it is not multicast/broadcast.
2820				 */
2821				if (hlen > 0 &&
2822				    (proto != IPPROTO_ICMP ||
2823				     is_icmp_query(ICMP(ulp))) &&
2824				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2825				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
2826					send_reject(args, cmd->arg1,
2827					    offset,ip_len);
2828					m = args->m;
2829				}
2830				/* FALLTHROUGH */
2831			case O_DENY:
2832				retval = IP_FW_DENY;
2833				goto done;
2834
2835			case O_FORWARD_IP:
2836				if (args->eh)	/* not valid on layer2 pkts */
2837					break;
2838				if (!q || dyn_dir == MATCH_FORWARD)
2839					args->next_hop =
2840					    &((ipfw_insn_sa *)cmd)->sa;
2841				retval = IP_FW_PASS;
2842				goto done;
2843
2844			case O_NETGRAPH:
2845			case O_NGTEE:
2846				args->rule = f;	/* report matching rule */
2847				args->cookie = cmd->arg1;
2848				retval = (cmd->opcode == O_NETGRAPH) ?
2849				    IP_FW_NETGRAPH : IP_FW_NGTEE;
2850				goto done;
2851
2852			default:
2853				panic("-- unknown opcode %d\n", cmd->opcode);
2854			} /* end of switch() on opcodes */
2855
2856			if (cmd->len & F_NOT)
2857				match = !match;
2858
2859			if (match) {
2860				if (cmd->len & F_OR)
2861					skip_or = 1;
2862			} else {
2863				if (!(cmd->len & F_OR)) /* not an OR block, */
2864					break;		/* try next rule    */
2865			}
2866
2867		}	/* end of inner for, scan opcodes */
2868
2869next_rule:;		/* try next rule		*/
2870
2871	}		/* end of outer for, scan rules */
2872	printf("ipfw: ouch!, skip past end of rules, denying packet\n");
2873	IPFW_RUNLOCK(chain);
2874	return (IP_FW_DENY);
2875
2876done:
2877	/* Update statistics */
2878	f->pcnt++;
2879	f->bcnt += pktlen;
2880	f->timestamp = time_second;
2881	IPFW_RUNLOCK(chain);
2882	return (retval);
2883
2884pullup_failed:
2885	if (fw_verbose)
2886		printf("ipfw: pullup failed\n");
2887	return (IP_FW_DENY);
2888}
2889
2890/*
2891 * When a rule is added/deleted, clear the next_rule pointers in all rules.
2892 * These will be reconstructed on the fly as packets are matched.
2893 */
2894static void
2895flush_rule_ptrs(struct ip_fw_chain *chain)
2896{
2897	struct ip_fw *rule;
2898
2899	IPFW_WLOCK_ASSERT(chain);
2900
2901	for (rule = chain->rules; rule; rule = rule->next)
2902		rule->next_rule = NULL;
2903}
2904
2905/*
2906 * When pipes/queues are deleted, clear the "pipe_ptr" pointer to a given
2907 * pipe/queue, or to all of them (match == NULL).
2908 */
2909void
2910flush_pipe_ptrs(struct dn_flow_set *match)
2911{
2912	struct ip_fw *rule;
2913
2914	IPFW_WLOCK(&layer3_chain);
2915	for (rule = layer3_chain.rules; rule; rule = rule->next) {
2916		ipfw_insn_pipe *cmd = (ipfw_insn_pipe *)ACTION_PTR(rule);
2917
2918		if (cmd->o.opcode != O_PIPE && cmd->o.opcode != O_QUEUE)
2919			continue;
2920		/*
2921		 * XXX Use bcmp/bzero to handle pipe_ptr to overcome
2922		 * possible alignment problems on 64-bit architectures.
2923		 * This code is seldom used so we do not worry too
2924		 * much about efficiency.
2925		 */
2926		if (match == NULL ||
2927		    !bcmp(&cmd->pipe_ptr, &match, sizeof(match)) )
2928			bzero(&cmd->pipe_ptr, sizeof(cmd->pipe_ptr));
2929	}
2930	IPFW_WUNLOCK(&layer3_chain);
2931}
2932
2933/*
2934 * Add a new rule to the list. Copy the rule into a malloc'ed area, then
2935 * possibly create a rule number and add the rule to the list.
2936 * Update the rule_number in the input struct so the caller knows it as well.
2937 */
2938static int
2939add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
2940{
2941	struct ip_fw *rule, *f, *prev;
2942	int l = RULESIZE(input_rule);
2943
2944	if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
2945		return (EINVAL);
2946
2947	rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
2948	if (rule == NULL)
2949		return (ENOSPC);
2950
2951	bcopy(input_rule, rule, l);
2952
2953	rule->next = NULL;
2954	rule->next_rule = NULL;
2955
2956	rule->pcnt = 0;
2957	rule->bcnt = 0;
2958	rule->timestamp = 0;
2959
2960	IPFW_WLOCK(chain);
2961
2962	if (chain->rules == NULL) {	/* default rule */
2963		chain->rules = rule;
2964		goto done;
2965        }
2966
2967	/*
2968	 * If rulenum is 0, find highest numbered rule before the
2969	 * default rule, and add autoinc_step
2970	 */
2971	if (autoinc_step < 1)
2972		autoinc_step = 1;
2973	else if (autoinc_step > 1000)
2974		autoinc_step = 1000;
2975	if (rule->rulenum == 0) {
2976		/*
2977		 * locate the highest numbered rule before default
2978		 */
2979		for (f = chain->rules; f; f = f->next) {
2980			if (f->rulenum == IPFW_DEFAULT_RULE)
2981				break;
2982			rule->rulenum = f->rulenum;
2983		}
2984		if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
2985			rule->rulenum += autoinc_step;
2986		input_rule->rulenum = rule->rulenum;
2987	}
2988
2989	/*
2990	 * Now insert the new rule in the right place in the sorted list.
2991	 */
2992	for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
2993		if (f->rulenum > rule->rulenum) { /* found the location */
2994			if (prev) {
2995				rule->next = f;
2996				prev->next = rule;
2997			} else { /* head insert */
2998				rule->next = chain->rules;
2999				chain->rules = rule;
3000			}
3001			break;
3002		}
3003	}
3004	flush_rule_ptrs(chain);
3005done:
3006	static_count++;
3007	static_len += l;
3008	IPFW_WUNLOCK(chain);
3009	DEB(printf("ipfw: installed rule %d, static count now %d\n",
3010		rule->rulenum, static_count);)
3011	return (0);
3012}
3013
3014/**
3015 * Remove a static rule (including derived * dynamic rules)
3016 * and place it on the ``reap list'' for later reclamation.
3017 * The caller is in charge of clearing rule pointers to avoid
3018 * dangling pointers.
3019 * @return a pointer to the next entry.
3020 * Arguments are not checked, so they better be correct.
3021 */
3022static struct ip_fw *
3023remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule, struct ip_fw *prev)
3024{
3025	struct ip_fw *n;
3026	int l = RULESIZE(rule);
3027
3028	IPFW_WLOCK_ASSERT(chain);
3029
3030	n = rule->next;
3031	IPFW_DYN_LOCK();
3032	remove_dyn_rule(rule, NULL /* force removal */);
3033	IPFW_DYN_UNLOCK();
3034	if (prev == NULL)
3035		chain->rules = n;
3036	else
3037		prev->next = n;
3038	static_count--;
3039	static_len -= l;
3040
3041	rule->next = chain->reap;
3042	chain->reap = rule;
3043
3044	return n;
3045}
3046
3047/**
3048 * Reclaim storage associated with a list of rules.  This is
3049 * typically the list created using remove_rule.
3050 */
3051static void
3052reap_rules(struct ip_fw *head)
3053{
3054	struct ip_fw *rule;
3055
3056	while ((rule = head) != NULL) {
3057		head = head->next;
3058		if (DUMMYNET_LOADED)
3059			ip_dn_ruledel_ptr(rule);
3060		free(rule, M_IPFW);
3061	}
3062}
3063
3064/*
3065 * Remove all rules from a chain (except rules in set RESVD_SET
3066 * unless kill_default = 1).  The caller is responsible for
3067 * reclaiming storage for the rules left in chain->reap.
3068 */
3069static void
3070free_chain(struct ip_fw_chain *chain, int kill_default)
3071{
3072	struct ip_fw *prev, *rule;
3073
3074	IPFW_WLOCK_ASSERT(chain);
3075
3076	flush_rule_ptrs(chain); /* more efficient to do outside the loop */
3077	for (prev = NULL, rule = chain->rules; rule ; )
3078		if (kill_default || rule->set != RESVD_SET)
3079			rule = remove_rule(chain, rule, prev);
3080		else {
3081			prev = rule;
3082			rule = rule->next;
3083		}
3084}
3085
3086/**
3087 * Remove all rules with given number, and also do set manipulation.
3088 * Assumes chain != NULL && *chain != NULL.
3089 *
3090 * The argument is an u_int32_t. The low 16 bit are the rule or set number,
3091 * the next 8 bits are the new set, the top 8 bits are the command:
3092 *
3093 *	0	delete rules with given number
3094 *	1	delete rules with given set number
3095 *	2	move rules with given number to new set
3096 *	3	move rules with given set number to new set
3097 *	4	swap sets with given numbers
3098 */
3099static int
3100del_entry(struct ip_fw_chain *chain, u_int32_t arg)
3101{
3102	struct ip_fw *prev = NULL, *rule;
3103	u_int16_t rulenum;	/* rule or old_set */
3104	u_int8_t cmd, new_set;
3105
3106	rulenum = arg & 0xffff;
3107	cmd = (arg >> 24) & 0xff;
3108	new_set = (arg >> 16) & 0xff;
3109
3110	if (cmd > 4)
3111		return EINVAL;
3112	if (new_set > RESVD_SET)
3113		return EINVAL;
3114	if (cmd == 0 || cmd == 2) {
3115		if (rulenum >= IPFW_DEFAULT_RULE)
3116			return EINVAL;
3117	} else {
3118		if (rulenum > RESVD_SET)	/* old_set */
3119			return EINVAL;
3120	}
3121
3122	IPFW_WLOCK(chain);
3123	rule = chain->rules;
3124	chain->reap = NULL;
3125	switch (cmd) {
3126	case 0:	/* delete rules with given number */
3127		/*
3128		 * locate first rule to delete
3129		 */
3130		for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3131			;
3132		if (rule->rulenum != rulenum) {
3133			IPFW_WUNLOCK(chain);
3134			return EINVAL;
3135		}
3136
3137		/*
3138		 * flush pointers outside the loop, then delete all matching
3139		 * rules. prev remains the same throughout the cycle.
3140		 */
3141		flush_rule_ptrs(chain);
3142		while (rule->rulenum == rulenum)
3143			rule = remove_rule(chain, rule, prev);
3144		break;
3145
3146	case 1:	/* delete all rules with given set number */
3147		flush_rule_ptrs(chain);
3148		rule = chain->rules;
3149		while (rule->rulenum < IPFW_DEFAULT_RULE)
3150			if (rule->set == rulenum)
3151				rule = remove_rule(chain, rule, prev);
3152			else {
3153				prev = rule;
3154				rule = rule->next;
3155			}
3156		break;
3157
3158	case 2:	/* move rules with given number to new set */
3159		rule = chain->rules;
3160		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3161			if (rule->rulenum == rulenum)
3162				rule->set = new_set;
3163		break;
3164
3165	case 3: /* move rules with given set number to new set */
3166		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3167			if (rule->set == rulenum)
3168				rule->set = new_set;
3169		break;
3170
3171	case 4: /* swap two sets */
3172		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3173			if (rule->set == rulenum)
3174				rule->set = new_set;
3175			else if (rule->set == new_set)
3176				rule->set = rulenum;
3177		break;
3178	}
3179	/*
3180	 * Look for rules to reclaim.  We grab the list before
3181	 * releasing the lock then reclaim them w/o the lock to
3182	 * avoid a LOR with dummynet.
3183	 */
3184	rule = chain->reap;
3185	chain->reap = NULL;
3186	IPFW_WUNLOCK(chain);
3187	if (rule)
3188		reap_rules(rule);
3189	return 0;
3190}
3191
3192/*
3193 * Clear counters for a specific rule.
3194 * The enclosing "table" is assumed locked.
3195 */
3196static void
3197clear_counters(struct ip_fw *rule, int log_only)
3198{
3199	ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
3200
3201	if (log_only == 0) {
3202		rule->bcnt = rule->pcnt = 0;
3203		rule->timestamp = 0;
3204	}
3205	if (l->o.opcode == O_LOG)
3206		l->log_left = l->max_log;
3207}
3208
3209/**
3210 * Reset some or all counters on firewall rules.
3211 * @arg frwl is null to clear all entries, or contains a specific
3212 * rule number.
3213 * @arg log_only is 1 if we only want to reset logs, zero otherwise.
3214 */
3215static int
3216zero_entry(struct ip_fw_chain *chain, int rulenum, int log_only)
3217{
3218	struct ip_fw *rule;
3219	char *msg;
3220
3221	IPFW_WLOCK(chain);
3222	if (rulenum == 0) {
3223		norule_counter = 0;
3224		for (rule = chain->rules; rule; rule = rule->next)
3225			clear_counters(rule, log_only);
3226		msg = log_only ? "ipfw: All logging counts reset.\n" :
3227				"ipfw: Accounting cleared.\n";
3228	} else {
3229		int cleared = 0;
3230		/*
3231		 * We can have multiple rules with the same number, so we
3232		 * need to clear them all.
3233		 */
3234		for (rule = chain->rules; rule; rule = rule->next)
3235			if (rule->rulenum == rulenum) {
3236				while (rule && rule->rulenum == rulenum) {
3237					clear_counters(rule, log_only);
3238					rule = rule->next;
3239				}
3240				cleared = 1;
3241				break;
3242			}
3243		if (!cleared) {	/* we did not find any matching rules */
3244			IPFW_WUNLOCK(chain);
3245			return (EINVAL);
3246		}
3247		msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
3248				"ipfw: Entry %d cleared.\n";
3249	}
3250	IPFW_WUNLOCK(chain);
3251
3252	if (fw_verbose)
3253		log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
3254	return (0);
3255}
3256
3257/*
3258 * Check validity of the structure before insert.
3259 * Fortunately rules are simple, so this mostly need to check rule sizes.
3260 */
3261static int
3262check_ipfw_struct(struct ip_fw *rule, int size)
3263{
3264	int l, cmdlen = 0;
3265	int have_action=0;
3266	ipfw_insn *cmd;
3267
3268	if (size < sizeof(*rule)) {
3269		printf("ipfw: rule too short\n");
3270		return (EINVAL);
3271	}
3272	/* first, check for valid size */
3273	l = RULESIZE(rule);
3274	if (l != size) {
3275		printf("ipfw: size mismatch (have %d want %d)\n", size, l);
3276		return (EINVAL);
3277	}
3278	if (rule->act_ofs >= rule->cmd_len) {
3279		printf("ipfw: bogus action offset (%u > %u)\n",
3280		    rule->act_ofs, rule->cmd_len - 1);
3281		return (EINVAL);
3282	}
3283	/*
3284	 * Now go for the individual checks. Very simple ones, basically only
3285	 * instruction sizes.
3286	 */
3287	for (l = rule->cmd_len, cmd = rule->cmd ;
3288			l > 0 ; l -= cmdlen, cmd += cmdlen) {
3289		cmdlen = F_LEN(cmd);
3290		if (cmdlen > l) {
3291			printf("ipfw: opcode %d size truncated\n",
3292			    cmd->opcode);
3293			return EINVAL;
3294		}
3295		DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
3296		switch (cmd->opcode) {
3297		case O_PROBE_STATE:
3298		case O_KEEP_STATE:
3299		case O_PROTO:
3300		case O_IP_SRC_ME:
3301		case O_IP_DST_ME:
3302		case O_LAYER2:
3303		case O_IN:
3304		case O_FRAG:
3305		case O_DIVERTED:
3306		case O_IPOPT:
3307		case O_IPTOS:
3308		case O_IPPRECEDENCE:
3309		case O_IPVER:
3310		case O_TCPWIN:
3311		case O_TCPFLAGS:
3312		case O_TCPOPTS:
3313		case O_ESTAB:
3314		case O_VERREVPATH:
3315		case O_VERSRCREACH:
3316		case O_ANTISPOOF:
3317		case O_IPSEC:
3318		case O_IP6_SRC_ME:
3319		case O_IP6_DST_ME:
3320		case O_EXT_HDR:
3321		case O_IP6:
3322			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3323				goto bad_size;
3324			break;
3325
3326		case O_UID:
3327		case O_GID:
3328		case O_JAIL:
3329		case O_IP_SRC:
3330		case O_IP_DST:
3331		case O_TCPSEQ:
3332		case O_TCPACK:
3333		case O_PROB:
3334		case O_ICMPTYPE:
3335			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3336				goto bad_size;
3337			break;
3338
3339		case O_LIMIT:
3340			if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
3341				goto bad_size;
3342			break;
3343
3344		case O_LOG:
3345			if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
3346				goto bad_size;
3347
3348			((ipfw_insn_log *)cmd)->log_left =
3349			    ((ipfw_insn_log *)cmd)->max_log;
3350
3351			break;
3352
3353		case O_IP_SRC_MASK:
3354		case O_IP_DST_MASK:
3355			/* only odd command lengths */
3356			if ( !(cmdlen & 1) || cmdlen > 31)
3357				goto bad_size;
3358			break;
3359
3360		case O_IP_SRC_SET:
3361		case O_IP_DST_SET:
3362			if (cmd->arg1 == 0 || cmd->arg1 > 256) {
3363				printf("ipfw: invalid set size %d\n",
3364					cmd->arg1);
3365				return EINVAL;
3366			}
3367			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3368			    (cmd->arg1+31)/32 )
3369				goto bad_size;
3370			break;
3371
3372		case O_IP_SRC_LOOKUP:
3373		case O_IP_DST_LOOKUP:
3374			if (cmd->arg1 >= IPFW_TABLES_MAX) {
3375				printf("ipfw: invalid table number %d\n",
3376				    cmd->arg1);
3377				return (EINVAL);
3378			}
3379			if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
3380			    cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3381				goto bad_size;
3382			break;
3383
3384		case O_MACADDR2:
3385			if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
3386				goto bad_size;
3387			break;
3388
3389		case O_NOP:
3390		case O_IPID:
3391		case O_IPTTL:
3392		case O_IPLEN:
3393		case O_TCPDATALEN:
3394			if (cmdlen < 1 || cmdlen > 31)
3395				goto bad_size;
3396			break;
3397
3398		case O_MAC_TYPE:
3399		case O_IP_SRCPORT:
3400		case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
3401			if (cmdlen < 2 || cmdlen > 31)
3402				goto bad_size;
3403			break;
3404
3405		case O_RECV:
3406		case O_XMIT:
3407		case O_VIA:
3408			if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
3409				goto bad_size;
3410			break;
3411
3412		case O_ALTQ:
3413			if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
3414				goto bad_size;
3415			break;
3416
3417		case O_PIPE:
3418		case O_QUEUE:
3419			if (cmdlen != F_INSN_SIZE(ipfw_insn_pipe))
3420				goto bad_size;
3421			goto check_action;
3422
3423		case O_FORWARD_IP:
3424#ifdef	IPFIREWALL_FORWARD
3425			if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
3426				goto bad_size;
3427			goto check_action;
3428#else
3429			return EINVAL;
3430#endif
3431
3432		case O_DIVERT:
3433		case O_TEE:
3434			if (ip_divert_ptr == NULL)
3435				return EINVAL;
3436			else
3437				goto check_size;
3438		case O_NETGRAPH:
3439		case O_NGTEE:
3440			if (!NG_IPFW_LOADED)
3441				return EINVAL;
3442			else
3443				goto check_size;
3444		case O_FORWARD_MAC: /* XXX not implemented yet */
3445		case O_CHECK_STATE:
3446		case O_COUNT:
3447		case O_ACCEPT:
3448		case O_DENY:
3449		case O_REJECT:
3450		case O_SKIPTO:
3451check_size:
3452			if (cmdlen != F_INSN_SIZE(ipfw_insn))
3453				goto bad_size;
3454check_action:
3455			if (have_action) {
3456				printf("ipfw: opcode %d, multiple actions"
3457					" not allowed\n",
3458					cmd->opcode);
3459				return EINVAL;
3460			}
3461			have_action = 1;
3462			if (l != cmdlen) {
3463				printf("ipfw: opcode %d, action must be"
3464					" last opcode\n",
3465					cmd->opcode);
3466				return EINVAL;
3467			}
3468			break;
3469		case O_IP6_SRC:
3470		case O_IP6_DST:
3471			if (cmdlen != F_INSN_SIZE(struct in6_addr) +
3472			    F_INSN_SIZE(ipfw_insn))
3473				goto bad_size;
3474			break;
3475
3476		case O_FLOW6ID:
3477			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3478			    ((ipfw_insn_u32 *)cmd)->o.arg1)
3479				goto bad_size;
3480			break;
3481
3482		case O_IP6_SRC_MASK:
3483		case O_IP6_DST_MASK:
3484			if ( !(cmdlen & 1) || cmdlen > 127)
3485				goto bad_size;
3486			break;
3487		case O_ICMP6TYPE:
3488			if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
3489				goto bad_size;
3490			break;
3491
3492		default:
3493			printf("ipfw: opcode %d, unknown opcode\n",
3494				cmd->opcode);
3495			return EINVAL;
3496		}
3497	}
3498	if (have_action == 0) {
3499		printf("ipfw: missing action\n");
3500		return EINVAL;
3501	}
3502	return 0;
3503
3504bad_size:
3505	printf("ipfw: opcode %d size %d wrong\n",
3506		cmd->opcode, cmdlen);
3507	return EINVAL;
3508}
3509
3510/*
3511 * Copy the static and dynamic rules to the supplied buffer
3512 * and return the amount of space actually used.
3513 */
3514static size_t
3515ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
3516{
3517	char *bp = buf;
3518	char *ep = bp + space;
3519	struct ip_fw *rule;
3520	int i;
3521
3522	/* XXX this can take a long time and locking will block packet flow */
3523	IPFW_RLOCK(chain);
3524	for (rule = chain->rules; rule ; rule = rule->next) {
3525		/*
3526		 * Verify the entry fits in the buffer in case the
3527		 * rules changed between calculating buffer space and
3528		 * now.  This would be better done using a generation
3529		 * number but should suffice for now.
3530		 */
3531		i = RULESIZE(rule);
3532		if (bp + i <= ep) {
3533			bcopy(rule, bp, i);
3534			bcopy(&set_disable, &(((struct ip_fw *)bp)->next_rule),
3535			    sizeof(set_disable));
3536			bp += i;
3537		}
3538	}
3539	IPFW_RUNLOCK(chain);
3540	if (ipfw_dyn_v) {
3541		ipfw_dyn_rule *p, *last = NULL;
3542
3543		IPFW_DYN_LOCK();
3544		for (i = 0 ; i < curr_dyn_buckets; i++)
3545			for (p = ipfw_dyn_v[i] ; p != NULL; p = p->next) {
3546				if (bp + sizeof *p <= ep) {
3547					ipfw_dyn_rule *dst =
3548						(ipfw_dyn_rule *)bp;
3549					bcopy(p, dst, sizeof *p);
3550					bcopy(&(p->rule->rulenum), &(dst->rule),
3551					    sizeof(p->rule->rulenum));
3552					/*
3553					 * store a non-null value in "next".
3554					 * The userland code will interpret a
3555					 * NULL here as a marker
3556					 * for the last dynamic rule.
3557					 */
3558					bcopy(&dst, &dst->next, sizeof(dst));
3559					last = dst;
3560					dst->expire =
3561					    TIME_LEQ(dst->expire, time_second) ?
3562						0 : dst->expire - time_second ;
3563					bp += sizeof(ipfw_dyn_rule);
3564				}
3565			}
3566		IPFW_DYN_UNLOCK();
3567		if (last != NULL) /* mark last dynamic rule */
3568			bzero(&last->next, sizeof(last));
3569	}
3570	return (bp - (char *)buf);
3571}
3572
3573
3574/**
3575 * {set|get}sockopt parser.
3576 */
3577static int
3578ipfw_ctl(struct sockopt *sopt)
3579{
3580#define	RULE_MAXSIZE	(256*sizeof(u_int32_t))
3581	int error, rule_num;
3582	size_t size;
3583	struct ip_fw *buf, *rule;
3584	u_int32_t rulenum[2];
3585
3586	error = suser(sopt->sopt_td);
3587	if (error)
3588		return (error);
3589
3590	/*
3591	 * Disallow modifications in really-really secure mode, but still allow
3592	 * the logging counters to be reset.
3593	 */
3594	if (sopt->sopt_name == IP_FW_ADD ||
3595	    (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
3596#if __FreeBSD_version >= 500034
3597		error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
3598		if (error)
3599			return (error);
3600#else /* FreeBSD 4.x */
3601		if (securelevel >= 3)
3602			return (EPERM);
3603#endif
3604	}
3605
3606	error = 0;
3607
3608	switch (sopt->sopt_name) {
3609	case IP_FW_GET:
3610		/*
3611		 * pass up a copy of the current rules. Static rules
3612		 * come first (the last of which has number IPFW_DEFAULT_RULE),
3613		 * followed by a possibly empty list of dynamic rule.
3614		 * The last dynamic rule has NULL in the "next" field.
3615		 *
3616		 * Note that the calculated size is used to bound the
3617		 * amount of data returned to the user.  The rule set may
3618		 * change between calculating the size and returning the
3619		 * data in which case we'll just return what fits.
3620		 */
3621		size = static_len;	/* size of static rules */
3622		if (ipfw_dyn_v)		/* add size of dyn.rules */
3623			size += (dyn_count * sizeof(ipfw_dyn_rule));
3624
3625		/*
3626		 * XXX todo: if the user passes a short length just to know
3627		 * how much room is needed, do not bother filling up the
3628		 * buffer, just jump to the sooptcopyout.
3629		 */
3630		buf = malloc(size, M_TEMP, M_WAITOK);
3631		error = sooptcopyout(sopt, buf,
3632				ipfw_getrules(&layer3_chain, buf, size));
3633		free(buf, M_TEMP);
3634		break;
3635
3636	case IP_FW_FLUSH:
3637		/*
3638		 * Normally we cannot release the lock on each iteration.
3639		 * We could do it here only because we start from the head all
3640		 * the times so there is no risk of missing some entries.
3641		 * On the other hand, the risk is that we end up with
3642		 * a very inconsistent ruleset, so better keep the lock
3643		 * around the whole cycle.
3644		 *
3645		 * XXX this code can be improved by resetting the head of
3646		 * the list to point to the default rule, and then freeing
3647		 * the old list without the need for a lock.
3648		 */
3649
3650		IPFW_WLOCK(&layer3_chain);
3651		layer3_chain.reap = NULL;
3652		free_chain(&layer3_chain, 0 /* keep default rule */);
3653		rule = layer3_chain.reap, layer3_chain.reap = NULL;
3654		IPFW_WUNLOCK(&layer3_chain);
3655		if (layer3_chain.reap != NULL)
3656			reap_rules(rule);
3657		break;
3658
3659	case IP_FW_ADD:
3660		rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
3661		error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
3662			sizeof(struct ip_fw) );
3663		if (error == 0)
3664			error = check_ipfw_struct(rule, sopt->sopt_valsize);
3665		if (error == 0) {
3666			error = add_rule(&layer3_chain, rule);
3667			size = RULESIZE(rule);
3668			if (!error && sopt->sopt_dir == SOPT_GET)
3669				error = sooptcopyout(sopt, rule, size);
3670		}
3671		free(rule, M_TEMP);
3672		break;
3673
3674	case IP_FW_DEL:
3675		/*
3676		 * IP_FW_DEL is used for deleting single rules or sets,
3677		 * and (ab)used to atomically manipulate sets. Argument size
3678		 * is used to distinguish between the two:
3679		 *    sizeof(u_int32_t)
3680		 *	delete single rule or set of rules,
3681		 *	or reassign rules (or sets) to a different set.
3682		 *    2*sizeof(u_int32_t)
3683		 *	atomic disable/enable sets.
3684		 *	first u_int32_t contains sets to be disabled,
3685		 *	second u_int32_t contains sets to be enabled.
3686		 */
3687		error = sooptcopyin(sopt, rulenum,
3688			2*sizeof(u_int32_t), sizeof(u_int32_t));
3689		if (error)
3690			break;
3691		size = sopt->sopt_valsize;
3692		if (size == sizeof(u_int32_t))	/* delete or reassign */
3693			error = del_entry(&layer3_chain, rulenum[0]);
3694		else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
3695			set_disable =
3696			    (set_disable | rulenum[0]) & ~rulenum[1] &
3697			    ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
3698		else
3699			error = EINVAL;
3700		break;
3701
3702	case IP_FW_ZERO:
3703	case IP_FW_RESETLOG: /* argument is an int, the rule number */
3704		rule_num = 0;
3705		if (sopt->sopt_val != 0) {
3706		    error = sooptcopyin(sopt, &rule_num,
3707			    sizeof(int), sizeof(int));
3708		    if (error)
3709			break;
3710		}
3711		error = zero_entry(&layer3_chain, rule_num,
3712			sopt->sopt_name == IP_FW_RESETLOG);
3713		break;
3714
3715	case IP_FW_TABLE_ADD:
3716		{
3717			ipfw_table_entry ent;
3718
3719			error = sooptcopyin(sopt, &ent,
3720			    sizeof(ent), sizeof(ent));
3721			if (error)
3722				break;
3723			error = add_table_entry(ent.tbl, ent.addr,
3724			    ent.masklen, ent.value);
3725		}
3726		break;
3727
3728	case IP_FW_TABLE_DEL:
3729		{
3730			ipfw_table_entry ent;
3731
3732			error = sooptcopyin(sopt, &ent,
3733			    sizeof(ent), sizeof(ent));
3734			if (error)
3735				break;
3736			error = del_table_entry(ent.tbl, ent.addr, ent.masklen);
3737		}
3738		break;
3739
3740	case IP_FW_TABLE_FLUSH:
3741		{
3742			u_int16_t tbl;
3743
3744			error = sooptcopyin(sopt, &tbl,
3745			    sizeof(tbl), sizeof(tbl));
3746			if (error)
3747				break;
3748			error = flush_table(tbl);
3749		}
3750		break;
3751
3752	case IP_FW_TABLE_GETSIZE:
3753		{
3754			u_int32_t tbl, cnt;
3755
3756			if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
3757			    sizeof(tbl))))
3758				break;
3759			if ((error = count_table(tbl, &cnt)))
3760				break;
3761			error = sooptcopyout(sopt, &cnt, sizeof(cnt));
3762		}
3763		break;
3764
3765	case IP_FW_TABLE_LIST:
3766		{
3767			ipfw_table *tbl;
3768
3769			if (sopt->sopt_valsize < sizeof(*tbl)) {
3770				error = EINVAL;
3771				break;
3772			}
3773			size = sopt->sopt_valsize;
3774			tbl = malloc(size, M_TEMP, M_WAITOK);
3775			if (tbl == NULL) {
3776				error = ENOMEM;
3777				break;
3778			}
3779			error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
3780			if (error) {
3781				free(tbl, M_TEMP);
3782				break;
3783			}
3784			tbl->size = (size - sizeof(*tbl)) /
3785			    sizeof(ipfw_table_entry);
3786			error = dump_table(tbl);
3787			if (error) {
3788				free(tbl, M_TEMP);
3789				break;
3790			}
3791			error = sooptcopyout(sopt, tbl, size);
3792			free(tbl, M_TEMP);
3793		}
3794		break;
3795
3796	default:
3797		printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
3798		error = EINVAL;
3799	}
3800
3801	return (error);
3802#undef RULE_MAXSIZE
3803}
3804
3805/**
3806 * dummynet needs a reference to the default rule, because rules can be
3807 * deleted while packets hold a reference to them. When this happens,
3808 * dummynet changes the reference to the default rule (it could well be a
3809 * NULL pointer, but this way we do not need to check for the special
3810 * case, plus here he have info on the default behaviour).
3811 */
3812struct ip_fw *ip_fw_default_rule;
3813
3814/*
3815 * This procedure is only used to handle keepalives. It is invoked
3816 * every dyn_keepalive_period
3817 */
3818static void
3819ipfw_tick(void * __unused unused)
3820{
3821	int i;
3822	ipfw_dyn_rule *q;
3823
3824	if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0)
3825		goto done;
3826
3827	IPFW_DYN_LOCK();
3828	for (i = 0 ; i < curr_dyn_buckets ; i++) {
3829		for (q = ipfw_dyn_v[i] ; q ; q = q->next ) {
3830			if (q->dyn_type == O_LIMIT_PARENT)
3831				continue;
3832			if (q->id.proto != IPPROTO_TCP)
3833				continue;
3834			if ( (q->state & BOTH_SYN) != BOTH_SYN)
3835				continue;
3836			if (TIME_LEQ( time_second+dyn_keepalive_interval,
3837			    q->expire))
3838				continue;	/* too early */
3839			if (TIME_LEQ(q->expire, time_second))
3840				continue;	/* too late, rule expired */
3841
3842			send_pkt(&(q->id), q->ack_rev - 1, q->ack_fwd, TH_SYN);
3843			send_pkt(&(q->id), q->ack_fwd - 1, q->ack_rev, 0);
3844		}
3845	}
3846	IPFW_DYN_UNLOCK();
3847done:
3848	callout_reset(&ipfw_timeout, dyn_keepalive_period*hz, ipfw_tick, NULL);
3849}
3850
3851int
3852ipfw_init(void)
3853{
3854	struct ip_fw default_rule;
3855	int error;
3856
3857	layer3_chain.rules = NULL;
3858	layer3_chain.want_write = 0;
3859	layer3_chain.busy_count = 0;
3860	cv_init(&layer3_chain.cv, "Condition variable for IPFW rw locks");
3861	IPFW_LOCK_INIT(&layer3_chain);
3862	ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule zone",
3863	    sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
3864	    UMA_ALIGN_PTR, 0);
3865	IPFW_DYN_LOCK_INIT();
3866	callout_init(&ipfw_timeout, NET_CALLOUT_MPSAFE);
3867
3868	bzero(&default_rule, sizeof default_rule);
3869
3870	default_rule.act_ofs = 0;
3871	default_rule.rulenum = IPFW_DEFAULT_RULE;
3872	default_rule.cmd_len = 1;
3873	default_rule.set = RESVD_SET;
3874
3875	default_rule.cmd[0].len = 1;
3876	default_rule.cmd[0].opcode =
3877#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
3878				1 ? O_ACCEPT :
3879#endif
3880				O_DENY;
3881
3882	error = add_rule(&layer3_chain, &default_rule);
3883	if (error != 0) {
3884		printf("ipfw2: error %u initializing default rule "
3885			"(support disabled)\n", error);
3886		IPFW_DYN_LOCK_DESTROY();
3887		IPFW_LOCK_DESTROY(&layer3_chain);
3888		return (error);
3889	}
3890
3891	ip_fw_default_rule = layer3_chain.rules;
3892	printf("ipfw2 (+ipv6) initialized, divert %s, "
3893		"rule-based forwarding "
3894#ifdef IPFIREWALL_FORWARD
3895		"enabled, "
3896#else
3897		"disabled, "
3898#endif
3899		"default to %s, logging ",
3900#ifdef IPDIVERT
3901		"enabled",
3902#else
3903		"loadable",
3904#endif
3905		default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
3906
3907#ifdef IPFIREWALL_VERBOSE
3908	fw_verbose = 1;
3909#endif
3910#ifdef IPFIREWALL_VERBOSE_LIMIT
3911	verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
3912#endif
3913	if (fw_verbose == 0)
3914		printf("disabled\n");
3915	else if (verbose_limit == 0)
3916		printf("unlimited\n");
3917	else
3918		printf("limited to %d packets/entry by default\n",
3919		    verbose_limit);
3920
3921	init_tables();
3922	ip_fw_ctl_ptr = ipfw_ctl;
3923	ip_fw_chk_ptr = ipfw_chk;
3924	callout_reset(&ipfw_timeout, hz, ipfw_tick, NULL);
3925
3926	return (0);
3927}
3928
3929void
3930ipfw_destroy(void)
3931{
3932	struct ip_fw *reap;
3933
3934	ip_fw_chk_ptr = NULL;
3935	ip_fw_ctl_ptr = NULL;
3936	callout_drain(&ipfw_timeout);
3937	IPFW_WLOCK(&layer3_chain);
3938	layer3_chain.reap = NULL;
3939	free_chain(&layer3_chain, 1 /* kill default rule */);
3940	reap = layer3_chain.reap, layer3_chain.reap = NULL;
3941	IPFW_WUNLOCK(&layer3_chain);
3942	if (reap != NULL)
3943		reap_rules(reap);
3944	flush_tables();
3945	IPFW_DYN_LOCK_DESTROY();
3946	uma_zdestroy(ipfw_dyn_rule_zone);
3947	IPFW_LOCK_DESTROY(&layer3_chain);
3948	printf("IP firewall unloaded\n");
3949}
3950
3951#endif /* IPFW2 */
3952