key.c revision 139823
1208926Smjacob/*	$FreeBSD: head/sys/netipsec/key.c 139823 2005-01-07 01:45:51Z imp $	*/
2208926Smjacob/*	$KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $	*/
3208926Smjacob
4208926Smjacob/*-
5208926Smjacob * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6208926Smjacob * All rights reserved.
7208926Smjacob *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33/*
34 * This code is referd to RFC 2367
35 */
36
37#include "opt_inet.h"
38#include "opt_inet6.h"
39#include "opt_ipsec.h"
40
41#include <sys/types.h>
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/lock.h>
46#include <sys/mutex.h>
47#include <sys/mbuf.h>
48#include <sys/domain.h>
49#include <sys/protosw.h>
50#include <sys/malloc.h>
51#include <sys/socket.h>
52#include <sys/socketvar.h>
53#include <sys/sysctl.h>
54#include <sys/errno.h>
55#include <sys/proc.h>
56#include <sys/queue.h>
57#include <sys/syslog.h>
58
59#include <net/if.h>
60#include <net/route.h>
61#include <net/raw_cb.h>
62
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/ip.h>
66#include <netinet/in_var.h>
67
68#ifdef INET6
69#include <netinet/ip6.h>
70#include <netinet6/in6_var.h>
71#include <netinet6/ip6_var.h>
72#endif /* INET6 */
73
74#ifdef INET
75#include <netinet/in_pcb.h>
76#endif
77#ifdef INET6
78#include <netinet6/in6_pcb.h>
79#endif /* INET6 */
80
81#include <net/pfkeyv2.h>
82#include <netipsec/keydb.h>
83#include <netipsec/key.h>
84#include <netipsec/keysock.h>
85#include <netipsec/key_debug.h>
86
87#include <netipsec/ipsec.h>
88#ifdef INET6
89#include <netipsec/ipsec6.h>
90#endif
91
92#include <netipsec/xform.h>
93
94#include <machine/stdarg.h>
95
96/* randomness */
97#include <sys/random.h>
98
99#define FULLMASK	0xff
100#define	_BITS(bytes)	((bytes) << 3)
101
102/*
103 * Note on SA reference counting:
104 * - SAs that are not in DEAD state will have (total external reference + 1)
105 *   following value in reference count field.  they cannot be freed and are
106 *   referenced from SA header.
107 * - SAs that are in DEAD state will have (total external reference)
108 *   in reference count field.  they are ready to be freed.  reference from
109 *   SA header will be removed in key_delsav(), when the reference count
110 *   field hits 0 (= no external reference other than from SA header.
111 */
112
113u_int32_t key_debug_level = 0;
114static u_int key_spi_trycnt = 1000;
115static u_int32_t key_spi_minval = 0x100;
116static u_int32_t key_spi_maxval = 0x0fffffff;	/* XXX */
117static u_int32_t policy_id = 0;
118static u_int key_int_random = 60;	/*interval to initialize randseed,1(m)*/
119static u_int key_larval_lifetime = 30;	/* interval to expire acquiring, 30(s)*/
120static int key_blockacq_count = 10;	/* counter for blocking SADB_ACQUIRE.*/
121static int key_blockacq_lifetime = 20;	/* lifetime for blocking SADB_ACQUIRE.*/
122static int key_preferred_oldsa = 1;	/* preferred old sa rather than new sa.*/
123
124static u_int32_t acq_seq = 0;
125
126static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX];	/* SPD */
127static struct mtx sptree_lock;
128#define	SPTREE_LOCK_INIT() \
129	mtx_init(&sptree_lock, "sptree", \
130		"fast ipsec security policy database", MTX_DEF)
131#define	SPTREE_LOCK_DESTROY()	mtx_destroy(&sptree_lock)
132#define	SPTREE_LOCK()		mtx_lock(&sptree_lock)
133#define	SPTREE_UNLOCK()	mtx_unlock(&sptree_lock)
134#define	SPTREE_LOCK_ASSERT()	mtx_assert(&sptree_lock, MA_OWNED)
135
136static LIST_HEAD(_sahtree, secashead) sahtree;			/* SAD */
137static struct mtx sahtree_lock;
138#define	SAHTREE_LOCK_INIT() \
139	mtx_init(&sahtree_lock, "sahtree", \
140		"fast ipsec security association database", MTX_DEF)
141#define	SAHTREE_LOCK_DESTROY()	mtx_destroy(&sahtree_lock)
142#define	SAHTREE_LOCK()		mtx_lock(&sahtree_lock)
143#define	SAHTREE_UNLOCK()	mtx_unlock(&sahtree_lock)
144#define	SAHTREE_LOCK_ASSERT()	mtx_assert(&sahtree_lock, MA_OWNED)
145
146							/* registed list */
147static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
148static struct mtx regtree_lock;
149#define	REGTREE_LOCK_INIT() \
150	mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
151#define	REGTREE_LOCK_DESTROY()	mtx_destroy(&regtree_lock)
152#define	REGTREE_LOCK()		mtx_lock(&regtree_lock)
153#define	REGTREE_UNLOCK()	mtx_unlock(&regtree_lock)
154#define	REGTREE_LOCK_ASSERT()	mtx_assert(&regtree_lock, MA_OWNED)
155
156static LIST_HEAD(_acqtree, secacq) acqtree;		/* acquiring list */
157static struct mtx acq_lock;
158#define	ACQ_LOCK_INIT() \
159	mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF)
160#define	ACQ_LOCK_DESTROY()	mtx_destroy(&acq_lock)
161#define	ACQ_LOCK()		mtx_lock(&acq_lock)
162#define	ACQ_UNLOCK()		mtx_unlock(&acq_lock)
163#define	ACQ_LOCK_ASSERT()	mtx_assert(&acq_lock, MA_OWNED)
164
165static LIST_HEAD(_spacqtree, secspacq) spacqtree;	/* SP acquiring list */
166static struct mtx spacq_lock;
167#define	SPACQ_LOCK_INIT() \
168	mtx_init(&spacq_lock, "spacqtree", \
169		"fast ipsec security policy acquire list", MTX_DEF)
170#define	SPACQ_LOCK_DESTROY()	mtx_destroy(&spacq_lock)
171#define	SPACQ_LOCK()		mtx_lock(&spacq_lock)
172#define	SPACQ_UNLOCK()		mtx_unlock(&spacq_lock)
173#define	SPACQ_LOCK_ASSERT()	mtx_assert(&spacq_lock, MA_OWNED)
174
175/* search order for SAs */
176static const u_int saorder_state_valid_prefer_old[] = {
177	SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
178};
179static const u_int saorder_state_valid_prefer_new[] = {
180	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
181};
182static u_int saorder_state_alive[] = {
183	/* except DEAD */
184	SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
185};
186static u_int saorder_state_any[] = {
187	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
188	SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
189};
190
191static const int minsize[] = {
192	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
193	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
194	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
195	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
196	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
197	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_SRC */
198	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_DST */
199	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_PROXY */
200	sizeof(struct sadb_key),	/* SADB_EXT_KEY_AUTH */
201	sizeof(struct sadb_key),	/* SADB_EXT_KEY_ENCRYPT */
202	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_SRC */
203	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_DST */
204	sizeof(struct sadb_sens),	/* SADB_EXT_SENSITIVITY */
205	sizeof(struct sadb_prop),	/* SADB_EXT_PROPOSAL */
206	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_AUTH */
207	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_ENCRYPT */
208	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
209	0,				/* SADB_X_EXT_KMPRIVATE */
210	sizeof(struct sadb_x_policy),	/* SADB_X_EXT_POLICY */
211	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
212};
213static const int maxsize[] = {
214	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
215	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
216	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
217	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
218	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
219	0,				/* SADB_EXT_ADDRESS_SRC */
220	0,				/* SADB_EXT_ADDRESS_DST */
221	0,				/* SADB_EXT_ADDRESS_PROXY */
222	0,				/* SADB_EXT_KEY_AUTH */
223	0,				/* SADB_EXT_KEY_ENCRYPT */
224	0,				/* SADB_EXT_IDENTITY_SRC */
225	0,				/* SADB_EXT_IDENTITY_DST */
226	0,				/* SADB_EXT_SENSITIVITY */
227	0,				/* SADB_EXT_PROPOSAL */
228	0,				/* SADB_EXT_SUPPORTED_AUTH */
229	0,				/* SADB_EXT_SUPPORTED_ENCRYPT */
230	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
231	0,				/* SADB_X_EXT_KMPRIVATE */
232	0,				/* SADB_X_EXT_POLICY */
233	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
234};
235
236static int ipsec_esp_keymin = 256;
237static int ipsec_esp_auth = 0;
238static int ipsec_ah_keymin = 128;
239
240#ifdef SYSCTL_DECL
241SYSCTL_DECL(_net_key);
242#endif
243
244SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL,	debug,	CTLFLAG_RW, \
245	&key_debug_level,	0,	"");
246
247/* max count of trial for the decision of spi value */
248SYSCTL_INT(_net_key, KEYCTL_SPI_TRY,		spi_trycnt,	CTLFLAG_RW, \
249	&key_spi_trycnt,	0,	"");
250
251/* minimum spi value to allocate automatically. */
252SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE,	spi_minval,	CTLFLAG_RW, \
253	&key_spi_minval,	0,	"");
254
255/* maximun spi value to allocate automatically. */
256SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE,	spi_maxval,	CTLFLAG_RW, \
257	&key_spi_maxval,	0,	"");
258
259/* interval to initialize randseed */
260SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT,	int_random,	CTLFLAG_RW, \
261	&key_int_random,	0,	"");
262
263/* lifetime for larval SA */
264SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME,	larval_lifetime, CTLFLAG_RW, \
265	&key_larval_lifetime,	0,	"");
266
267/* counter for blocking to send SADB_ACQUIRE to IKEd */
268SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT,	blockacq_count,	CTLFLAG_RW, \
269	&key_blockacq_count,	0,	"");
270
271/* lifetime for blocking to send SADB_ACQUIRE to IKEd */
272SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME,	blockacq_lifetime, CTLFLAG_RW, \
273	&key_blockacq_lifetime,	0,	"");
274
275/* ESP auth */
276SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH,	esp_auth, CTLFLAG_RW, \
277	&ipsec_esp_auth,	0,	"");
278
279/* minimum ESP key length */
280SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN,	esp_keymin, CTLFLAG_RW, \
281	&ipsec_esp_keymin,	0,	"");
282
283/* minimum AH key length */
284SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN,	ah_keymin, CTLFLAG_RW, \
285	&ipsec_ah_keymin,	0,	"");
286
287/* perfered old SA rather than new SA */
288SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA,	preferred_oldsa, CTLFLAG_RW,\
289	&key_preferred_oldsa,	0,	"");
290
291#define __LIST_CHAINED(elm) \
292	(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
293#define LIST_INSERT_TAIL(head, elm, type, field) \
294do {\
295	struct type *curelm = LIST_FIRST(head); \
296	if (curelm == NULL) {\
297		LIST_INSERT_HEAD(head, elm, field); \
298	} else { \
299		while (LIST_NEXT(curelm, field)) \
300			curelm = LIST_NEXT(curelm, field);\
301		LIST_INSERT_AFTER(curelm, elm, field);\
302	}\
303} while (0)
304
305#define KEY_CHKSASTATE(head, sav, name) \
306do { \
307	if ((head) != (sav)) {						\
308		ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
309			(name), (head), (sav)));			\
310		continue;						\
311	}								\
312} while (0)
313
314#define KEY_CHKSPDIR(head, sp, name) \
315do { \
316	if ((head) != (sp)) {						\
317		ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
318			"anyway continue.\n",				\
319			(name), (head), (sp)));				\
320	}								\
321} while (0)
322
323MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
324MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
325MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
326MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
327MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
328MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
329MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
330
331/*
332 * set parameters into secpolicyindex buffer.
333 * Must allocate secpolicyindex buffer passed to this function.
334 */
335#define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
336do { \
337	bzero((idx), sizeof(struct secpolicyindex));                         \
338	(idx)->dir = (_dir);                                                 \
339	(idx)->prefs = (ps);                                                 \
340	(idx)->prefd = (pd);                                                 \
341	(idx)->ul_proto = (ulp);                                             \
342	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
343	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
344} while (0)
345
346/*
347 * set parameters into secasindex buffer.
348 * Must allocate secasindex buffer before calling this function.
349 */
350#define KEY_SETSECASIDX(p, m, r, s, d, idx) \
351do { \
352	bzero((idx), sizeof(struct secasindex));                             \
353	(idx)->proto = (p);                                                  \
354	(idx)->mode = (m);                                                   \
355	(idx)->reqid = (r);                                                  \
356	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
357	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
358} while (0)
359
360/* key statistics */
361struct _keystat {
362	u_long getspi_count; /* the avarage of count to try to get new SPI */
363} keystat;
364
365struct sadb_msghdr {
366	struct sadb_msg *msg;
367	struct sadb_ext *ext[SADB_EXT_MAX + 1];
368	int extoff[SADB_EXT_MAX + 1];
369	int extlen[SADB_EXT_MAX + 1];
370};
371
372static struct secasvar *key_allocsa_policy __P((const struct secasindex *));
373static void key_freesp_so __P((struct secpolicy **));
374static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
375static void key_delsp __P((struct secpolicy *));
376static struct secpolicy *key_getsp __P((struct secpolicyindex *));
377static void _key_delsp(struct secpolicy *sp);
378static struct secpolicy *key_getspbyid __P((u_int32_t));
379static u_int32_t key_newreqid __P((void));
380static struct mbuf *key_gather_mbuf __P((struct mbuf *,
381	const struct sadb_msghdr *, int, int, ...));
382static int key_spdadd __P((struct socket *, struct mbuf *,
383	const struct sadb_msghdr *));
384static u_int32_t key_getnewspid __P((void));
385static int key_spddelete __P((struct socket *, struct mbuf *,
386	const struct sadb_msghdr *));
387static int key_spddelete2 __P((struct socket *, struct mbuf *,
388	const struct sadb_msghdr *));
389static int key_spdget __P((struct socket *, struct mbuf *,
390	const struct sadb_msghdr *));
391static int key_spdflush __P((struct socket *, struct mbuf *,
392	const struct sadb_msghdr *));
393static int key_spddump __P((struct socket *, struct mbuf *,
394	const struct sadb_msghdr *));
395static struct mbuf *key_setdumpsp __P((struct secpolicy *,
396	u_int8_t, u_int32_t, u_int32_t));
397static u_int key_getspreqmsglen __P((struct secpolicy *));
398static int key_spdexpire __P((struct secpolicy *));
399static struct secashead *key_newsah __P((struct secasindex *));
400static void key_delsah __P((struct secashead *));
401static struct secasvar *key_newsav __P((struct mbuf *,
402	const struct sadb_msghdr *, struct secashead *, int *,
403	const char*, int));
404#define	KEY_NEWSAV(m, sadb, sah, e)				\
405	key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
406static void key_delsav __P((struct secasvar *));
407static struct secashead *key_getsah __P((struct secasindex *));
408static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
409static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
410static int key_setsaval __P((struct secasvar *, struct mbuf *,
411	const struct sadb_msghdr *));
412static int key_mature __P((struct secasvar *));
413static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
414	u_int8_t, u_int32_t, u_int32_t));
415static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
416	u_int32_t, pid_t, u_int16_t));
417static struct mbuf *key_setsadbsa __P((struct secasvar *));
418static struct mbuf *key_setsadbaddr __P((u_int16_t,
419	const struct sockaddr *, u_int8_t, u_int16_t));
420static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t));
421static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
422	u_int32_t));
423static void *key_dup(const void *, u_int, struct malloc_type *);
424#ifdef INET6
425static int key_ismyaddr6 __P((struct sockaddr_in6 *));
426#endif
427
428/* flags for key_cmpsaidx() */
429#define CMP_HEAD	1	/* protocol, addresses. */
430#define CMP_MODE_REQID	2	/* additionally HEAD, reqid, mode. */
431#define CMP_REQID	3	/* additionally HEAD, reaid. */
432#define CMP_EXACTLY	4	/* all elements. */
433static int key_cmpsaidx
434	__P((const struct secasindex *, const struct secasindex *, int));
435
436static int key_cmpspidx_exactly
437	__P((struct secpolicyindex *, struct secpolicyindex *));
438static int key_cmpspidx_withmask
439	__P((struct secpolicyindex *, struct secpolicyindex *));
440static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int));
441static int key_bbcmp __P((const void *, const void *, u_int));
442static u_int16_t key_satype2proto __P((u_int8_t));
443static u_int8_t key_proto2satype __P((u_int16_t));
444
445static int key_getspi __P((struct socket *, struct mbuf *,
446	const struct sadb_msghdr *));
447static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
448					struct secasindex *));
449static int key_update __P((struct socket *, struct mbuf *,
450	const struct sadb_msghdr *));
451#ifdef IPSEC_DOSEQCHECK
452static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
453#endif
454static int key_add __P((struct socket *, struct mbuf *,
455	const struct sadb_msghdr *));
456static int key_setident __P((struct secashead *, struct mbuf *,
457	const struct sadb_msghdr *));
458static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
459	const struct sadb_msghdr *));
460static int key_delete __P((struct socket *, struct mbuf *,
461	const struct sadb_msghdr *));
462static int key_get __P((struct socket *, struct mbuf *,
463	const struct sadb_msghdr *));
464
465static void key_getcomb_setlifetime __P((struct sadb_comb *));
466static struct mbuf *key_getcomb_esp __P((void));
467static struct mbuf *key_getcomb_ah __P((void));
468static struct mbuf *key_getcomb_ipcomp __P((void));
469static struct mbuf *key_getprop __P((const struct secasindex *));
470
471static int key_acquire __P((const struct secasindex *, struct secpolicy *));
472static struct secacq *key_newacq __P((const struct secasindex *));
473static struct secacq *key_getacq __P((const struct secasindex *));
474static struct secacq *key_getacqbyseq __P((u_int32_t));
475static struct secspacq *key_newspacq __P((struct secpolicyindex *));
476static struct secspacq *key_getspacq __P((struct secpolicyindex *));
477static int key_acquire2 __P((struct socket *, struct mbuf *,
478	const struct sadb_msghdr *));
479static int key_register __P((struct socket *, struct mbuf *,
480	const struct sadb_msghdr *));
481static int key_expire __P((struct secasvar *));
482static int key_flush __P((struct socket *, struct mbuf *,
483	const struct sadb_msghdr *));
484static int key_dump __P((struct socket *, struct mbuf *,
485	const struct sadb_msghdr *));
486static int key_promisc __P((struct socket *, struct mbuf *,
487	const struct sadb_msghdr *));
488static int key_senderror __P((struct socket *, struct mbuf *, int));
489static int key_validate_ext __P((const struct sadb_ext *, int));
490static int key_align __P((struct mbuf *, struct sadb_msghdr *));
491#if 0
492static const char *key_getfqdn __P((void));
493static const char *key_getuserfqdn __P((void));
494#endif
495static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
496static struct mbuf *key_alloc_mbuf __P((int));
497
498#define	SA_ADDREF(p) do {						\
499	(p)->refcnt++;							\
500	IPSEC_ASSERT((p)->refcnt != 0, ("SA refcnt overflow"));		\
501} while (0)
502#define	SA_DELREF(p) do {						\
503	IPSEC_ASSERT((p)->refcnt > 0, ("SA refcnt underflow"));		\
504	(p)->refcnt--;							\
505} while (0)
506
507#define	SP_ADDREF(p) do {						\
508	(p)->refcnt++;							\
509	IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow"));		\
510} while (0)
511#define	SP_DELREF(p) do {						\
512	IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow"));		\
513	(p)->refcnt--;							\
514} while (0)
515
516
517/*
518 * Update the refcnt while holding the SPTREE lock.
519 */
520void
521key_addref(struct secpolicy *sp)
522{
523	SPTREE_LOCK();
524	SP_ADDREF(sp);
525	SPTREE_UNLOCK();
526}
527
528/*
529 * Return 0 when there are known to be no SP's for the specified
530 * direction.  Otherwise return 1.  This is used by IPsec code
531 * to optimize performance.
532 */
533int
534key_havesp(u_int dir)
535{
536	return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
537		LIST_FIRST(&sptree[dir]) != NULL : 1);
538}
539
540/* %%% IPsec policy management */
541/*
542 * allocating a SP for OUTBOUND or INBOUND packet.
543 * Must call key_freesp() later.
544 * OUT:	NULL:	not found
545 *	others:	found and return the pointer.
546 */
547struct secpolicy *
548key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
549{
550	struct secpolicy *sp;
551
552	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
553	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
554		("invalid direction %u", dir));
555
556	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
557		printf("DP %s from %s:%u\n", __func__, where, tag));
558
559	/* get a SP entry */
560	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
561		printf("*** objects\n");
562		kdebug_secpolicyindex(spidx));
563
564	SPTREE_LOCK();
565	LIST_FOREACH(sp, &sptree[dir], chain) {
566		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
567			printf("*** in SPD\n");
568			kdebug_secpolicyindex(&sp->spidx));
569
570		if (sp->state == IPSEC_SPSTATE_DEAD)
571			continue;
572		if (key_cmpspidx_withmask(&sp->spidx, spidx))
573			goto found;
574	}
575	sp = NULL;
576found:
577	if (sp) {
578		/* sanity check */
579		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
580
581		/* found a SPD entry */
582		sp->lastused = time_second;
583		SP_ADDREF(sp);
584	}
585	SPTREE_UNLOCK();
586
587	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
588		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
589			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
590	return sp;
591}
592
593/*
594 * allocating a SP for OUTBOUND or INBOUND packet.
595 * Must call key_freesp() later.
596 * OUT:	NULL:	not found
597 *	others:	found and return the pointer.
598 */
599struct secpolicy *
600key_allocsp2(u_int32_t spi,
601	     union sockaddr_union *dst,
602	     u_int8_t proto,
603	     u_int dir,
604	     const char* where, int tag)
605{
606	struct secpolicy *sp;
607
608	IPSEC_ASSERT(dst != NULL, ("null dst"));
609	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
610		("invalid direction %u", dir));
611
612	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
613		printf("DP %s from %s:%u\n", __func__, where, tag));
614
615	/* get a SP entry */
616	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
617		printf("*** objects\n");
618		printf("spi %u proto %u dir %u\n", spi, proto, dir);
619		kdebug_sockaddr(&dst->sa));
620
621	SPTREE_LOCK();
622	LIST_FOREACH(sp, &sptree[dir], chain) {
623		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
624			printf("*** in SPD\n");
625			kdebug_secpolicyindex(&sp->spidx));
626
627		if (sp->state == IPSEC_SPSTATE_DEAD)
628			continue;
629		/* compare simple values, then dst address */
630		if (sp->spidx.ul_proto != proto)
631			continue;
632		/* NB: spi's must exist and match */
633		if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
634			continue;
635		if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
636			goto found;
637	}
638	sp = NULL;
639found:
640	if (sp) {
641		/* sanity check */
642		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
643
644		/* found a SPD entry */
645		sp->lastused = time_second;
646		SP_ADDREF(sp);
647	}
648	SPTREE_UNLOCK();
649
650	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
651		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
652			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
653	return sp;
654}
655
656/*
657 * return a policy that matches this particular inbound packet.
658 * XXX slow
659 */
660struct secpolicy *
661key_gettunnel(const struct sockaddr *osrc,
662	      const struct sockaddr *odst,
663	      const struct sockaddr *isrc,
664	      const struct sockaddr *idst,
665	      const char* where, int tag)
666{
667	struct secpolicy *sp;
668	const int dir = IPSEC_DIR_INBOUND;
669	struct ipsecrequest *r1, *r2, *p;
670	struct secpolicyindex spidx;
671
672	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
673		printf("DP %s from %s:%u\n", __func__, where, tag));
674
675	if (isrc->sa_family != idst->sa_family) {
676		ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.",
677			__func__, isrc->sa_family, idst->sa_family));
678		sp = NULL;
679		goto done;
680	}
681
682	SPTREE_LOCK();
683	LIST_FOREACH(sp, &sptree[dir], chain) {
684		if (sp->state == IPSEC_SPSTATE_DEAD)
685			continue;
686
687		r1 = r2 = NULL;
688		for (p = sp->req; p; p = p->next) {
689			if (p->saidx.mode != IPSEC_MODE_TUNNEL)
690				continue;
691
692			r1 = r2;
693			r2 = p;
694
695			if (!r1) {
696				/* here we look at address matches only */
697				spidx = sp->spidx;
698				if (isrc->sa_len > sizeof(spidx.src) ||
699				    idst->sa_len > sizeof(spidx.dst))
700					continue;
701				bcopy(isrc, &spidx.src, isrc->sa_len);
702				bcopy(idst, &spidx.dst, idst->sa_len);
703				if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
704					continue;
705			} else {
706				if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
707				    key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
708					continue;
709			}
710
711			if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
712			    key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
713				continue;
714
715			goto found;
716		}
717	}
718	sp = NULL;
719found:
720	if (sp) {
721		sp->lastused = time_second;
722		SP_ADDREF(sp);
723	}
724	SPTREE_UNLOCK();
725done:
726	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
727		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
728			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
729	return sp;
730}
731
732/*
733 * allocating an SA entry for an *OUTBOUND* packet.
734 * checking each request entries in SP, and acquire an SA if need.
735 * OUT:	0: there are valid requests.
736 *	ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
737 */
738int
739key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
740{
741	u_int level;
742	int error;
743
744	IPSEC_ASSERT(isr != NULL, ("null isr"));
745	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
746	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
747		saidx->mode == IPSEC_MODE_TUNNEL,
748		("unexpected policy %u", saidx->mode));
749
750	/*
751	 * XXX guard against protocol callbacks from the crypto
752	 * thread as they reference ipsecrequest.sav which we
753	 * temporarily null out below.  Need to rethink how we
754	 * handle bundled SA's in the callback thread.
755	 */
756	IPSECREQUEST_LOCK_ASSERT(isr);
757
758	/* get current level */
759	level = ipsec_get_reqlevel(isr);
760#if 0
761	/*
762	 * We do allocate new SA only if the state of SA in the holder is
763	 * SADB_SASTATE_DEAD.  The SA for outbound must be the oldest.
764	 */
765	if (isr->sav != NULL) {
766		if (isr->sav->sah == NULL)
767			panic("%s: sah is null.\n", __func__);
768		if (isr->sav == (struct secasvar *)LIST_FIRST(
769			    &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
770			KEY_FREESAV(&isr->sav);
771			isr->sav = NULL;
772		}
773	}
774#else
775	/*
776	 * we free any SA stashed in the IPsec request because a different
777	 * SA may be involved each time this request is checked, either
778	 * because new SAs are being configured, or this request is
779	 * associated with an unconnected datagram socket, or this request
780	 * is associated with a system default policy.
781	 *
782	 * The operation may have negative impact to performance.  We may
783	 * want to check cached SA carefully, rather than picking new SA
784	 * every time.
785	 */
786	if (isr->sav != NULL) {
787		KEY_FREESAV(&isr->sav);
788		isr->sav = NULL;
789	}
790#endif
791
792	/*
793	 * new SA allocation if no SA found.
794	 * key_allocsa_policy should allocate the oldest SA available.
795	 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
796	 */
797	if (isr->sav == NULL)
798		isr->sav = key_allocsa_policy(saidx);
799
800	/* When there is SA. */
801	if (isr->sav != NULL) {
802		if (isr->sav->state != SADB_SASTATE_MATURE &&
803		    isr->sav->state != SADB_SASTATE_DYING)
804			return EINVAL;
805		return 0;
806	}
807
808	/* there is no SA */
809	error = key_acquire(saidx, isr->sp);
810	if (error != 0) {
811		/* XXX What should I do ? */
812		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
813			__func__, error));
814		return error;
815	}
816
817	if (level != IPSEC_LEVEL_REQUIRE) {
818		/* XXX sigh, the interface to this routine is botched */
819		IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA"));
820		return 0;
821	} else {
822		return ENOENT;
823	}
824}
825
826/*
827 * allocating a SA for policy entry from SAD.
828 * NOTE: searching SAD of aliving state.
829 * OUT:	NULL:	not found.
830 *	others:	found and return the pointer.
831 */
832static struct secasvar *
833key_allocsa_policy(const struct secasindex *saidx)
834{
835#define	N(a)	_ARRAYLEN(a)
836	struct secashead *sah;
837	struct secasvar *sav;
838	u_int stateidx, arraysize;
839	const u_int *state_valid;
840
841	SAHTREE_LOCK();
842	LIST_FOREACH(sah, &sahtree, chain) {
843		if (sah->state == SADB_SASTATE_DEAD)
844			continue;
845		if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) {
846			if (key_preferred_oldsa) {
847				state_valid = saorder_state_valid_prefer_old;
848				arraysize = N(saorder_state_valid_prefer_old);
849			} else {
850				state_valid = saorder_state_valid_prefer_new;
851				arraysize = N(saorder_state_valid_prefer_new);
852			}
853			SAHTREE_UNLOCK();
854			goto found;
855		}
856	}
857	SAHTREE_UNLOCK();
858
859	return NULL;
860
861    found:
862	/* search valid state */
863	for (stateidx = 0; stateidx < arraysize; stateidx++) {
864		sav = key_do_allocsa_policy(sah, state_valid[stateidx]);
865		if (sav != NULL)
866			return sav;
867	}
868
869	return NULL;
870#undef N
871}
872
873/*
874 * searching SAD with direction, protocol, mode and state.
875 * called by key_allocsa_policy().
876 * OUT:
877 *	NULL	: not found
878 *	others	: found, pointer to a SA.
879 */
880static struct secasvar *
881key_do_allocsa_policy(struct secashead *sah, u_int state)
882{
883	struct secasvar *sav, *nextsav, *candidate, *d;
884
885	/* initilize */
886	candidate = NULL;
887
888	SAHTREE_LOCK();
889	for (sav = LIST_FIRST(&sah->savtree[state]);
890	     sav != NULL;
891	     sav = nextsav) {
892
893		nextsav = LIST_NEXT(sav, chain);
894
895		/* sanity check */
896		KEY_CHKSASTATE(sav->state, state, __func__);
897
898		/* initialize */
899		if (candidate == NULL) {
900			candidate = sav;
901			continue;
902		}
903
904		/* Which SA is the better ? */
905
906		IPSEC_ASSERT(candidate->lft_c != NULL,
907			("null candidate lifetime"));
908		IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime"));
909
910		/* What the best method is to compare ? */
911		if (key_preferred_oldsa) {
912			if (candidate->lft_c->sadb_lifetime_addtime >
913					sav->lft_c->sadb_lifetime_addtime) {
914				candidate = sav;
915			}
916			continue;
917			/*NOTREACHED*/
918		}
919
920		/* preferred new sa rather than old sa */
921		if (candidate->lft_c->sadb_lifetime_addtime <
922				sav->lft_c->sadb_lifetime_addtime) {
923			d = candidate;
924			candidate = sav;
925		} else
926			d = sav;
927
928		/*
929		 * prepared to delete the SA when there is more
930		 * suitable candidate and the lifetime of the SA is not
931		 * permanent.
932		 */
933		if (d->lft_c->sadb_lifetime_addtime != 0) {
934			struct mbuf *m, *result;
935			u_int8_t satype;
936
937			key_sa_chgstate(d, SADB_SASTATE_DEAD);
938
939			IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count"));
940
941			satype = key_proto2satype(d->sah->saidx.proto);
942			if (satype == 0)
943				goto msgfail;
944
945			m = key_setsadbmsg(SADB_DELETE, 0,
946			    satype, 0, 0, d->refcnt - 1);
947			if (!m)
948				goto msgfail;
949			result = m;
950
951			/* set sadb_address for saidx's. */
952			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
953				&d->sah->saidx.src.sa,
954				d->sah->saidx.src.sa.sa_len << 3,
955				IPSEC_ULPROTO_ANY);
956			if (!m)
957				goto msgfail;
958			m_cat(result, m);
959
960			/* set sadb_address for saidx's. */
961			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
962				&d->sah->saidx.dst.sa,
963				d->sah->saidx.dst.sa.sa_len << 3,
964				IPSEC_ULPROTO_ANY);
965			if (!m)
966				goto msgfail;
967			m_cat(result, m);
968
969			/* create SA extension */
970			m = key_setsadbsa(d);
971			if (!m)
972				goto msgfail;
973			m_cat(result, m);
974
975			if (result->m_len < sizeof(struct sadb_msg)) {
976				result = m_pullup(result,
977						sizeof(struct sadb_msg));
978				if (result == NULL)
979					goto msgfail;
980			}
981
982			result->m_pkthdr.len = 0;
983			for (m = result; m; m = m->m_next)
984				result->m_pkthdr.len += m->m_len;
985			mtod(result, struct sadb_msg *)->sadb_msg_len =
986				PFKEY_UNIT64(result->m_pkthdr.len);
987
988			if (key_sendup_mbuf(NULL, result,
989					KEY_SENDUP_REGISTERED))
990				goto msgfail;
991		 msgfail:
992			KEY_FREESAV(&d);
993		}
994	}
995	if (candidate) {
996		SA_ADDREF(candidate);
997		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
998			printf("DP %s cause refcnt++:%d SA:%p\n",
999				__func__, candidate->refcnt, candidate));
1000	}
1001	SAHTREE_UNLOCK();
1002
1003	return candidate;
1004}
1005
1006/*
1007 * allocating a usable SA entry for a *INBOUND* packet.
1008 * Must call key_freesav() later.
1009 * OUT: positive:	pointer to a usable sav (i.e. MATURE or DYING state).
1010 *	NULL:		not found, or error occured.
1011 *
1012 * In the comparison, no source address is used--for RFC2401 conformance.
1013 * To quote, from section 4.1:
1014 *	A security association is uniquely identified by a triple consisting
1015 *	of a Security Parameter Index (SPI), an IP Destination Address, and a
1016 *	security protocol (AH or ESP) identifier.
1017 * Note that, however, we do need to keep source address in IPsec SA.
1018 * IKE specification and PF_KEY specification do assume that we
1019 * keep source address in IPsec SA.  We see a tricky situation here.
1020 */
1021struct secasvar *
1022key_allocsa(
1023	union sockaddr_union *dst,
1024	u_int proto,
1025	u_int32_t spi,
1026	const char* where, int tag)
1027{
1028	struct secashead *sah;
1029	struct secasvar *sav;
1030	u_int stateidx, arraysize, state;
1031	const u_int *saorder_state_valid;
1032
1033	IPSEC_ASSERT(dst != NULL, ("null dst address"));
1034
1035	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1036		printf("DP %s from %s:%u\n", __func__, where, tag));
1037
1038	/*
1039	 * searching SAD.
1040	 * XXX: to be checked internal IP header somewhere.  Also when
1041	 * IPsec tunnel packet is received.  But ESP tunnel mode is
1042	 * encrypted so we can't check internal IP header.
1043	 */
1044	SAHTREE_LOCK();
1045	if (key_preferred_oldsa) {
1046		saorder_state_valid = saorder_state_valid_prefer_old;
1047		arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1048	} else {
1049		saorder_state_valid = saorder_state_valid_prefer_new;
1050		arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1051	}
1052	LIST_FOREACH(sah, &sahtree, chain) {
1053		/* search valid state */
1054		for (stateidx = 0; stateidx < arraysize; stateidx++) {
1055			state = saorder_state_valid[stateidx];
1056			LIST_FOREACH(sav, &sah->savtree[state], chain) {
1057				/* sanity check */
1058				KEY_CHKSASTATE(sav->state, state, __func__);
1059				/* do not return entries w/ unusable state */
1060				if (sav->state != SADB_SASTATE_MATURE &&
1061				    sav->state != SADB_SASTATE_DYING)
1062					continue;
1063				if (proto != sav->sah->saidx.proto)
1064					continue;
1065				if (spi != sav->spi)
1066					continue;
1067#if 0	/* don't check src */
1068				/* check src address */
1069				if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0)
1070					continue;
1071#endif
1072				/* check dst address */
1073				if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, 0) != 0)
1074					continue;
1075				SA_ADDREF(sav);
1076				goto done;
1077			}
1078		}
1079	}
1080	sav = NULL;
1081done:
1082	SAHTREE_UNLOCK();
1083
1084	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1085		printf("DP %s return SA:%p; refcnt %u\n", __func__,
1086			sav, sav ? sav->refcnt : 0));
1087	return sav;
1088}
1089
1090/*
1091 * Must be called after calling key_allocsp().
1092 * For both the packet without socket and key_freeso().
1093 */
1094void
1095_key_freesp(struct secpolicy **spp, const char* where, int tag)
1096{
1097	struct secpolicy *sp = *spp;
1098
1099	IPSEC_ASSERT(sp != NULL, ("null sp"));
1100
1101	SPTREE_LOCK();
1102	SP_DELREF(sp);
1103
1104	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1105		printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1106			__func__, sp, sp->id, where, tag, sp->refcnt));
1107
1108	if (sp->refcnt == 0) {
1109		*spp = NULL;
1110		key_delsp(sp);
1111	}
1112	SPTREE_UNLOCK();
1113}
1114
1115/*
1116 * Must be called after calling key_allocsp().
1117 * For the packet with socket.
1118 */
1119void
1120key_freeso(struct socket *so)
1121{
1122	IPSEC_ASSERT(so != NULL, ("null so"));
1123
1124	switch (so->so_proto->pr_domain->dom_family) {
1125#ifdef INET
1126	case PF_INET:
1127	    {
1128		struct inpcb *pcb = sotoinpcb(so);
1129
1130		/* Does it have a PCB ? */
1131		if (pcb == NULL)
1132			return;
1133		key_freesp_so(&pcb->inp_sp->sp_in);
1134		key_freesp_so(&pcb->inp_sp->sp_out);
1135	    }
1136		break;
1137#endif
1138#ifdef INET6
1139	case PF_INET6:
1140	    {
1141#ifdef HAVE_NRL_INPCB
1142		struct inpcb *pcb  = sotoinpcb(so);
1143
1144		/* Does it have a PCB ? */
1145		if (pcb == NULL)
1146			return;
1147		key_freesp_so(&pcb->inp_sp->sp_in);
1148		key_freesp_so(&pcb->inp_sp->sp_out);
1149#else
1150		struct in6pcb *pcb  = sotoin6pcb(so);
1151
1152		/* Does it have a PCB ? */
1153		if (pcb == NULL)
1154			return;
1155		key_freesp_so(&pcb->in6p_sp->sp_in);
1156		key_freesp_so(&pcb->in6p_sp->sp_out);
1157#endif
1158	    }
1159		break;
1160#endif /* INET6 */
1161	default:
1162		ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n",
1163		    __func__, so->so_proto->pr_domain->dom_family));
1164		return;
1165	}
1166}
1167
1168static void
1169key_freesp_so(struct secpolicy **sp)
1170{
1171	IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp"));
1172
1173	if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1174	    (*sp)->policy == IPSEC_POLICY_BYPASS)
1175		return;
1176
1177	IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1178		("invalid policy %u", (*sp)->policy));
1179	KEY_FREESP(sp);
1180}
1181
1182/*
1183 * Must be called after calling key_allocsa().
1184 * This function is called by key_freesp() to free some SA allocated
1185 * for a policy.
1186 */
1187void
1188key_freesav(struct secasvar **psav, const char* where, int tag)
1189{
1190	struct secasvar *sav = *psav;
1191
1192	IPSEC_ASSERT(sav != NULL, ("null sav"));
1193
1194	/* XXX unguarded? */
1195	SA_DELREF(sav);
1196
1197	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1198		printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1199			__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1200
1201	if (sav->refcnt == 0) {
1202		*psav = NULL;
1203		key_delsav(sav);
1204	}
1205}
1206
1207/* %%% SPD management */
1208/*
1209 * free security policy entry.
1210 */
1211static void
1212key_delsp(struct secpolicy *sp)
1213{
1214	struct ipsecrequest *isr, *nextisr;
1215
1216	IPSEC_ASSERT(sp != NULL, ("null sp"));
1217	SPTREE_LOCK_ASSERT();
1218
1219	sp->state = IPSEC_SPSTATE_DEAD;
1220
1221	IPSEC_ASSERT(sp->refcnt == 0,
1222		("SP with references deleted (refcnt %u)", sp->refcnt));
1223
1224	/* remove from SP index */
1225	if (__LIST_CHAINED(sp))
1226		LIST_REMOVE(sp, chain);
1227
1228	for (isr = sp->req; isr != NULL; isr = nextisr) {
1229		if (isr->sav != NULL) {
1230			KEY_FREESAV(&isr->sav);
1231			isr->sav = NULL;
1232		}
1233
1234		nextisr = isr->next;
1235		ipsec_delisr(isr);
1236	}
1237	_key_delsp(sp);
1238}
1239
1240/*
1241 * search SPD
1242 * OUT:	NULL	: not found
1243 *	others	: found, pointer to a SP.
1244 */
1245static struct secpolicy *
1246key_getsp(struct secpolicyindex *spidx)
1247{
1248	struct secpolicy *sp;
1249
1250	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1251
1252	SPTREE_LOCK();
1253	LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1254		if (sp->state == IPSEC_SPSTATE_DEAD)
1255			continue;
1256		if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1257			SP_ADDREF(sp);
1258			break;
1259		}
1260	}
1261	SPTREE_UNLOCK();
1262
1263	return sp;
1264}
1265
1266/*
1267 * get SP by index.
1268 * OUT:	NULL	: not found
1269 *	others	: found, pointer to a SP.
1270 */
1271static struct secpolicy *
1272key_getspbyid(u_int32_t id)
1273{
1274	struct secpolicy *sp;
1275
1276	SPTREE_LOCK();
1277	LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1278		if (sp->state == IPSEC_SPSTATE_DEAD)
1279			continue;
1280		if (sp->id == id) {
1281			SP_ADDREF(sp);
1282			goto done;
1283		}
1284	}
1285
1286	LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1287		if (sp->state == IPSEC_SPSTATE_DEAD)
1288			continue;
1289		if (sp->id == id) {
1290			SP_ADDREF(sp);
1291			goto done;
1292		}
1293	}
1294done:
1295	SPTREE_UNLOCK();
1296
1297	return sp;
1298}
1299
1300struct secpolicy *
1301key_newsp(const char* where, int tag)
1302{
1303	struct secpolicy *newsp = NULL;
1304
1305	newsp = (struct secpolicy *)
1306		malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO);
1307	if (newsp) {
1308		SECPOLICY_LOCK_INIT(newsp);
1309		newsp->refcnt = 1;
1310		newsp->req = NULL;
1311	}
1312
1313	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1314		printf("DP %s from %s:%u return SP:%p\n", __func__,
1315			where, tag, newsp));
1316	return newsp;
1317}
1318
1319static void
1320_key_delsp(struct secpolicy *sp)
1321{
1322	SECPOLICY_LOCK_DESTROY(sp);
1323	free(sp, M_IPSEC_SP);
1324}
1325
1326/*
1327 * create secpolicy structure from sadb_x_policy structure.
1328 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1329 * so must be set properly later.
1330 */
1331struct secpolicy *
1332key_msg2sp(xpl0, len, error)
1333	struct sadb_x_policy *xpl0;
1334	size_t len;
1335	int *error;
1336{
1337	struct secpolicy *newsp;
1338
1339	IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1340	IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1341
1342	if (len != PFKEY_EXTLEN(xpl0)) {
1343		ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1344		*error = EINVAL;
1345		return NULL;
1346	}
1347
1348	if ((newsp = KEY_NEWSP()) == NULL) {
1349		*error = ENOBUFS;
1350		return NULL;
1351	}
1352
1353	newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1354	newsp->policy = xpl0->sadb_x_policy_type;
1355
1356	/* check policy */
1357	switch (xpl0->sadb_x_policy_type) {
1358	case IPSEC_POLICY_DISCARD:
1359	case IPSEC_POLICY_NONE:
1360	case IPSEC_POLICY_ENTRUST:
1361	case IPSEC_POLICY_BYPASS:
1362		newsp->req = NULL;
1363		break;
1364
1365	case IPSEC_POLICY_IPSEC:
1366	    {
1367		int tlen;
1368		struct sadb_x_ipsecrequest *xisr;
1369		struct ipsecrequest **p_isr = &newsp->req;
1370
1371		/* validity check */
1372		if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1373			ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1374				__func__));
1375			KEY_FREESP(&newsp);
1376			*error = EINVAL;
1377			return NULL;
1378		}
1379
1380		tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1381		xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1382
1383		while (tlen > 0) {
1384			/* length check */
1385			if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1386				ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1387					"length.\n", __func__));
1388				KEY_FREESP(&newsp);
1389				*error = EINVAL;
1390				return NULL;
1391			}
1392
1393			/* allocate request buffer */
1394			/* NB: data structure is zero'd */
1395			*p_isr = ipsec_newisr();
1396			if ((*p_isr) == NULL) {
1397				ipseclog((LOG_DEBUG,
1398				    "%s: No more memory.\n", __func__));
1399				KEY_FREESP(&newsp);
1400				*error = ENOBUFS;
1401				return NULL;
1402			}
1403
1404			/* set values */
1405			switch (xisr->sadb_x_ipsecrequest_proto) {
1406			case IPPROTO_ESP:
1407			case IPPROTO_AH:
1408			case IPPROTO_IPCOMP:
1409				break;
1410			default:
1411				ipseclog((LOG_DEBUG,
1412				    "%s: invalid proto type=%u\n", __func__,
1413				    xisr->sadb_x_ipsecrequest_proto));
1414				KEY_FREESP(&newsp);
1415				*error = EPROTONOSUPPORT;
1416				return NULL;
1417			}
1418			(*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1419
1420			switch (xisr->sadb_x_ipsecrequest_mode) {
1421			case IPSEC_MODE_TRANSPORT:
1422			case IPSEC_MODE_TUNNEL:
1423				break;
1424			case IPSEC_MODE_ANY:
1425			default:
1426				ipseclog((LOG_DEBUG,
1427				    "%s: invalid mode=%u\n", __func__,
1428				    xisr->sadb_x_ipsecrequest_mode));
1429				KEY_FREESP(&newsp);
1430				*error = EINVAL;
1431				return NULL;
1432			}
1433			(*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1434
1435			switch (xisr->sadb_x_ipsecrequest_level) {
1436			case IPSEC_LEVEL_DEFAULT:
1437			case IPSEC_LEVEL_USE:
1438			case IPSEC_LEVEL_REQUIRE:
1439				break;
1440			case IPSEC_LEVEL_UNIQUE:
1441				/* validity check */
1442				/*
1443				 * If range violation of reqid, kernel will
1444				 * update it, don't refuse it.
1445				 */
1446				if (xisr->sadb_x_ipsecrequest_reqid
1447						> IPSEC_MANUAL_REQID_MAX) {
1448					ipseclog((LOG_DEBUG,
1449					    "%s: reqid=%d range "
1450					    "violation, updated by kernel.\n",
1451					    __func__,
1452					    xisr->sadb_x_ipsecrequest_reqid));
1453					xisr->sadb_x_ipsecrequest_reqid = 0;
1454				}
1455
1456				/* allocate new reqid id if reqid is zero. */
1457				if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1458					u_int32_t reqid;
1459					if ((reqid = key_newreqid()) == 0) {
1460						KEY_FREESP(&newsp);
1461						*error = ENOBUFS;
1462						return NULL;
1463					}
1464					(*p_isr)->saidx.reqid = reqid;
1465					xisr->sadb_x_ipsecrequest_reqid = reqid;
1466				} else {
1467				/* set it for manual keying. */
1468					(*p_isr)->saidx.reqid =
1469						xisr->sadb_x_ipsecrequest_reqid;
1470				}
1471				break;
1472
1473			default:
1474				ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1475					__func__,
1476					xisr->sadb_x_ipsecrequest_level));
1477				KEY_FREESP(&newsp);
1478				*error = EINVAL;
1479				return NULL;
1480			}
1481			(*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1482
1483			/* set IP addresses if there */
1484			if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1485				struct sockaddr *paddr;
1486
1487				paddr = (struct sockaddr *)(xisr + 1);
1488
1489				/* validity check */
1490				if (paddr->sa_len
1491				    > sizeof((*p_isr)->saidx.src)) {
1492					ipseclog((LOG_DEBUG, "%s: invalid "
1493						"request address length.\n",
1494						__func__));
1495					KEY_FREESP(&newsp);
1496					*error = EINVAL;
1497					return NULL;
1498				}
1499				bcopy(paddr, &(*p_isr)->saidx.src,
1500					paddr->sa_len);
1501
1502				paddr = (struct sockaddr *)((caddr_t)paddr
1503							+ paddr->sa_len);
1504
1505				/* validity check */
1506				if (paddr->sa_len
1507				    > sizeof((*p_isr)->saidx.dst)) {
1508					ipseclog((LOG_DEBUG, "%s: invalid "
1509						"request address length.\n",
1510						__func__));
1511					KEY_FREESP(&newsp);
1512					*error = EINVAL;
1513					return NULL;
1514				}
1515				bcopy(paddr, &(*p_isr)->saidx.dst,
1516					paddr->sa_len);
1517			}
1518
1519			(*p_isr)->sp = newsp;
1520
1521			/* initialization for the next. */
1522			p_isr = &(*p_isr)->next;
1523			tlen -= xisr->sadb_x_ipsecrequest_len;
1524
1525			/* validity check */
1526			if (tlen < 0) {
1527				ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1528					__func__));
1529				KEY_FREESP(&newsp);
1530				*error = EINVAL;
1531				return NULL;
1532			}
1533
1534			xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1535			                 + xisr->sadb_x_ipsecrequest_len);
1536		}
1537	    }
1538		break;
1539	default:
1540		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1541		KEY_FREESP(&newsp);
1542		*error = EINVAL;
1543		return NULL;
1544	}
1545
1546	*error = 0;
1547	return newsp;
1548}
1549
1550static u_int32_t
1551key_newreqid()
1552{
1553	static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1554
1555	auto_reqid = (auto_reqid == ~0
1556			? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1557
1558	/* XXX should be unique check */
1559
1560	return auto_reqid;
1561}
1562
1563/*
1564 * copy secpolicy struct to sadb_x_policy structure indicated.
1565 */
1566struct mbuf *
1567key_sp2msg(sp)
1568	struct secpolicy *sp;
1569{
1570	struct sadb_x_policy *xpl;
1571	int tlen;
1572	caddr_t p;
1573	struct mbuf *m;
1574
1575	IPSEC_ASSERT(sp != NULL, ("null policy"));
1576
1577	tlen = key_getspreqmsglen(sp);
1578
1579	m = key_alloc_mbuf(tlen);
1580	if (!m || m->m_next) {	/*XXX*/
1581		if (m)
1582			m_freem(m);
1583		return NULL;
1584	}
1585
1586	m->m_len = tlen;
1587	m->m_next = NULL;
1588	xpl = mtod(m, struct sadb_x_policy *);
1589	bzero(xpl, tlen);
1590
1591	xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1592	xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1593	xpl->sadb_x_policy_type = sp->policy;
1594	xpl->sadb_x_policy_dir = sp->spidx.dir;
1595	xpl->sadb_x_policy_id = sp->id;
1596	p = (caddr_t)xpl + sizeof(*xpl);
1597
1598	/* if is the policy for ipsec ? */
1599	if (sp->policy == IPSEC_POLICY_IPSEC) {
1600		struct sadb_x_ipsecrequest *xisr;
1601		struct ipsecrequest *isr;
1602
1603		for (isr = sp->req; isr != NULL; isr = isr->next) {
1604
1605			xisr = (struct sadb_x_ipsecrequest *)p;
1606
1607			xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1608			xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1609			xisr->sadb_x_ipsecrequest_level = isr->level;
1610			xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1611
1612			p += sizeof(*xisr);
1613			bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1614			p += isr->saidx.src.sa.sa_len;
1615			bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1616			p += isr->saidx.src.sa.sa_len;
1617
1618			xisr->sadb_x_ipsecrequest_len =
1619				PFKEY_ALIGN8(sizeof(*xisr)
1620					+ isr->saidx.src.sa.sa_len
1621					+ isr->saidx.dst.sa.sa_len);
1622		}
1623	}
1624
1625	return m;
1626}
1627
1628/* m will not be freed nor modified */
1629static struct mbuf *
1630#ifdef __STDC__
1631key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1632	int ndeep, int nitem, ...)
1633#else
1634key_gather_mbuf(m, mhp, ndeep, nitem, va_alist)
1635	struct mbuf *m;
1636	const struct sadb_msghdr *mhp;
1637	int ndeep;
1638	int nitem;
1639	va_dcl
1640#endif
1641{
1642	va_list ap;
1643	int idx;
1644	int i;
1645	struct mbuf *result = NULL, *n;
1646	int len;
1647
1648	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1649	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1650
1651	va_start(ap, nitem);
1652	for (i = 0; i < nitem; i++) {
1653		idx = va_arg(ap, int);
1654		if (idx < 0 || idx > SADB_EXT_MAX)
1655			goto fail;
1656		/* don't attempt to pull empty extension */
1657		if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1658			continue;
1659		if (idx != SADB_EXT_RESERVED  &&
1660		    (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1661			continue;
1662
1663		if (idx == SADB_EXT_RESERVED) {
1664			len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1665
1666			IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1667
1668			MGETHDR(n, M_DONTWAIT, MT_DATA);
1669			if (!n)
1670				goto fail;
1671			n->m_len = len;
1672			n->m_next = NULL;
1673			m_copydata(m, 0, sizeof(struct sadb_msg),
1674			    mtod(n, caddr_t));
1675		} else if (i < ndeep) {
1676			len = mhp->extlen[idx];
1677			n = key_alloc_mbuf(len);
1678			if (!n || n->m_next) {	/*XXX*/
1679				if (n)
1680					m_freem(n);
1681				goto fail;
1682			}
1683			m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1684			    mtod(n, caddr_t));
1685		} else {
1686			n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1687			    M_DONTWAIT);
1688		}
1689		if (n == NULL)
1690			goto fail;
1691
1692		if (result)
1693			m_cat(result, n);
1694		else
1695			result = n;
1696	}
1697	va_end(ap);
1698
1699	if ((result->m_flags & M_PKTHDR) != 0) {
1700		result->m_pkthdr.len = 0;
1701		for (n = result; n; n = n->m_next)
1702			result->m_pkthdr.len += n->m_len;
1703	}
1704
1705	return result;
1706
1707fail:
1708	m_freem(result);
1709	return NULL;
1710}
1711
1712/*
1713 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1714 * add an entry to SP database, when received
1715 *   <base, address(SD), (lifetime(H),) policy>
1716 * from the user(?).
1717 * Adding to SP database,
1718 * and send
1719 *   <base, address(SD), (lifetime(H),) policy>
1720 * to the socket which was send.
1721 *
1722 * SPDADD set a unique policy entry.
1723 * SPDSETIDX like SPDADD without a part of policy requests.
1724 * SPDUPDATE replace a unique policy entry.
1725 *
1726 * m will always be freed.
1727 */
1728static int
1729key_spdadd(so, m, mhp)
1730	struct socket *so;
1731	struct mbuf *m;
1732	const struct sadb_msghdr *mhp;
1733{
1734	struct sadb_address *src0, *dst0;
1735	struct sadb_x_policy *xpl0, *xpl;
1736	struct sadb_lifetime *lft = NULL;
1737	struct secpolicyindex spidx;
1738	struct secpolicy *newsp;
1739	int error;
1740
1741	IPSEC_ASSERT(so != NULL, ("null socket"));
1742	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1743	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1744	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1745
1746	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1747	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1748	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1749		ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1750		return key_senderror(so, m, EINVAL);
1751	}
1752	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1753	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1754	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1755		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1756			__func__));
1757		return key_senderror(so, m, EINVAL);
1758	}
1759	if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1760		if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1761			< sizeof(struct sadb_lifetime)) {
1762			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1763				__func__));
1764			return key_senderror(so, m, EINVAL);
1765		}
1766		lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1767	}
1768
1769	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1770	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1771	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1772
1773	/* make secindex */
1774	/* XXX boundary check against sa_len */
1775	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1776	                src0 + 1,
1777	                dst0 + 1,
1778	                src0->sadb_address_prefixlen,
1779	                dst0->sadb_address_prefixlen,
1780	                src0->sadb_address_proto,
1781	                &spidx);
1782
1783	/* checking the direciton. */
1784	switch (xpl0->sadb_x_policy_dir) {
1785	case IPSEC_DIR_INBOUND:
1786	case IPSEC_DIR_OUTBOUND:
1787		break;
1788	default:
1789		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
1790		mhp->msg->sadb_msg_errno = EINVAL;
1791		return 0;
1792	}
1793
1794	/* check policy */
1795	/* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1796	if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1797	 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1798		ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__));
1799		return key_senderror(so, m, EINVAL);
1800	}
1801
1802	/* policy requests are mandatory when action is ipsec. */
1803        if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1804	 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1805	 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1806		ipseclog((LOG_DEBUG, "%s: some policy requests part required\n",
1807			__func__));
1808		return key_senderror(so, m, EINVAL);
1809	}
1810
1811	/*
1812	 * checking there is SP already or not.
1813	 * SPDUPDATE doesn't depend on whether there is a SP or not.
1814	 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1815	 * then error.
1816	 */
1817	newsp = key_getsp(&spidx);
1818	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1819		if (newsp) {
1820			newsp->state = IPSEC_SPSTATE_DEAD;
1821			KEY_FREESP(&newsp);
1822		}
1823	} else {
1824		if (newsp != NULL) {
1825			KEY_FREESP(&newsp);
1826			ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n",
1827				__func__));
1828			return key_senderror(so, m, EEXIST);
1829		}
1830	}
1831
1832	/* allocation new SP entry */
1833	if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1834		return key_senderror(so, m, error);
1835	}
1836
1837	if ((newsp->id = key_getnewspid()) == 0) {
1838		_key_delsp(newsp);
1839		return key_senderror(so, m, ENOBUFS);
1840	}
1841
1842	/* XXX boundary check against sa_len */
1843	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1844	                src0 + 1,
1845	                dst0 + 1,
1846	                src0->sadb_address_prefixlen,
1847	                dst0->sadb_address_prefixlen,
1848	                src0->sadb_address_proto,
1849	                &newsp->spidx);
1850
1851	/* sanity check on addr pair */
1852	if (((struct sockaddr *)(src0 + 1))->sa_family !=
1853			((struct sockaddr *)(dst0+ 1))->sa_family) {
1854		_key_delsp(newsp);
1855		return key_senderror(so, m, EINVAL);
1856	}
1857	if (((struct sockaddr *)(src0 + 1))->sa_len !=
1858			((struct sockaddr *)(dst0+ 1))->sa_len) {
1859		_key_delsp(newsp);
1860		return key_senderror(so, m, EINVAL);
1861	}
1862#if 1
1863	if (newsp->req && newsp->req->saidx.src.sa.sa_family) {
1864		struct sockaddr *sa;
1865		sa = (struct sockaddr *)(src0 + 1);
1866		if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) {
1867			_key_delsp(newsp);
1868			return key_senderror(so, m, EINVAL);
1869		}
1870	}
1871	if (newsp->req && newsp->req->saidx.dst.sa.sa_family) {
1872		struct sockaddr *sa;
1873		sa = (struct sockaddr *)(dst0 + 1);
1874		if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) {
1875			_key_delsp(newsp);
1876			return key_senderror(so, m, EINVAL);
1877		}
1878	}
1879#endif
1880
1881	newsp->created = time_second;
1882	newsp->lastused = newsp->created;
1883	newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1884	newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1885
1886	newsp->refcnt = 1;	/* do not reclaim until I say I do */
1887	newsp->state = IPSEC_SPSTATE_ALIVE;
1888	LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1889
1890	/* delete the entry in spacqtree */
1891	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1892		struct secspacq *spacq = key_getspacq(&spidx);
1893		if (spacq != NULL) {
1894			/* reset counter in order to deletion by timehandler. */
1895			spacq->created = time_second;
1896			spacq->count = 0;
1897			SPACQ_UNLOCK();
1898		}
1899    	}
1900
1901    {
1902	struct mbuf *n, *mpolicy;
1903	struct sadb_msg *newmsg;
1904	int off;
1905
1906	/* create new sadb_msg to reply. */
1907	if (lft) {
1908		n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1909		    SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1910		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1911	} else {
1912		n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1913		    SADB_X_EXT_POLICY,
1914		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1915	}
1916	if (!n)
1917		return key_senderror(so, m, ENOBUFS);
1918
1919	if (n->m_len < sizeof(*newmsg)) {
1920		n = m_pullup(n, sizeof(*newmsg));
1921		if (!n)
1922			return key_senderror(so, m, ENOBUFS);
1923	}
1924	newmsg = mtod(n, struct sadb_msg *);
1925	newmsg->sadb_msg_errno = 0;
1926	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1927
1928	off = 0;
1929	mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1930	    sizeof(*xpl), &off);
1931	if (mpolicy == NULL) {
1932		/* n is already freed */
1933		return key_senderror(so, m, ENOBUFS);
1934	}
1935	xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
1936	if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
1937		m_freem(n);
1938		return key_senderror(so, m, EINVAL);
1939	}
1940	xpl->sadb_x_policy_id = newsp->id;
1941
1942	m_freem(m);
1943	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
1944    }
1945}
1946
1947/*
1948 * get new policy id.
1949 * OUT:
1950 *	0:	failure.
1951 *	others: success.
1952 */
1953static u_int32_t
1954key_getnewspid()
1955{
1956	u_int32_t newid = 0;
1957	int count = key_spi_trycnt;	/* XXX */
1958	struct secpolicy *sp;
1959
1960	/* when requesting to allocate spi ranged */
1961	while (count--) {
1962		newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
1963
1964		if ((sp = key_getspbyid(newid)) == NULL)
1965			break;
1966
1967		KEY_FREESP(&sp);
1968	}
1969
1970	if (count == 0 || newid == 0) {
1971		ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n",
1972			__func__));
1973		return 0;
1974	}
1975
1976	return newid;
1977}
1978
1979/*
1980 * SADB_SPDDELETE processing
1981 * receive
1982 *   <base, address(SD), policy(*)>
1983 * from the user(?), and set SADB_SASTATE_DEAD,
1984 * and send,
1985 *   <base, address(SD), policy(*)>
1986 * to the ikmpd.
1987 * policy(*) including direction of policy.
1988 *
1989 * m will always be freed.
1990 */
1991static int
1992key_spddelete(so, m, mhp)
1993	struct socket *so;
1994	struct mbuf *m;
1995	const struct sadb_msghdr *mhp;
1996{
1997	struct sadb_address *src0, *dst0;
1998	struct sadb_x_policy *xpl0;
1999	struct secpolicyindex spidx;
2000	struct secpolicy *sp;
2001
2002	IPSEC_ASSERT(so != NULL, ("null so"));
2003	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2004	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2005	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2006
2007	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2008	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2009	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2010		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2011			__func__));
2012		return key_senderror(so, m, EINVAL);
2013	}
2014	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2015	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2016	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2017		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2018			__func__));
2019		return key_senderror(so, m, EINVAL);
2020	}
2021
2022	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2023	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2024	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2025
2026	/* make secindex */
2027	/* XXX boundary check against sa_len */
2028	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2029	                src0 + 1,
2030	                dst0 + 1,
2031	                src0->sadb_address_prefixlen,
2032	                dst0->sadb_address_prefixlen,
2033	                src0->sadb_address_proto,
2034	                &spidx);
2035
2036	/* checking the direciton. */
2037	switch (xpl0->sadb_x_policy_dir) {
2038	case IPSEC_DIR_INBOUND:
2039	case IPSEC_DIR_OUTBOUND:
2040		break;
2041	default:
2042		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
2043		return key_senderror(so, m, EINVAL);
2044	}
2045
2046	/* Is there SP in SPD ? */
2047	if ((sp = key_getsp(&spidx)) == NULL) {
2048		ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2049		return key_senderror(so, m, EINVAL);
2050	}
2051
2052	/* save policy id to buffer to be returned. */
2053	xpl0->sadb_x_policy_id = sp->id;
2054
2055	sp->state = IPSEC_SPSTATE_DEAD;
2056	KEY_FREESP(&sp);
2057
2058    {
2059	struct mbuf *n;
2060	struct sadb_msg *newmsg;
2061
2062	/* create new sadb_msg to reply. */
2063	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2064	    SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2065	if (!n)
2066		return key_senderror(so, m, ENOBUFS);
2067
2068	newmsg = mtod(n, struct sadb_msg *);
2069	newmsg->sadb_msg_errno = 0;
2070	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2071
2072	m_freem(m);
2073	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2074    }
2075}
2076
2077/*
2078 * SADB_SPDDELETE2 processing
2079 * receive
2080 *   <base, policy(*)>
2081 * from the user(?), and set SADB_SASTATE_DEAD,
2082 * and send,
2083 *   <base, policy(*)>
2084 * to the ikmpd.
2085 * policy(*) including direction of policy.
2086 *
2087 * m will always be freed.
2088 */
2089static int
2090key_spddelete2(so, m, mhp)
2091	struct socket *so;
2092	struct mbuf *m;
2093	const struct sadb_msghdr *mhp;
2094{
2095	u_int32_t id;
2096	struct secpolicy *sp;
2097
2098	IPSEC_ASSERT(so != NULL, ("null socket"));
2099	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2100	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2101	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2102
2103	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2104	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2105		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__));
2106		key_senderror(so, m, EINVAL);
2107		return 0;
2108	}
2109
2110	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2111
2112	/* Is there SP in SPD ? */
2113	if ((sp = key_getspbyid(id)) == NULL) {
2114		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2115		key_senderror(so, m, EINVAL);
2116	}
2117
2118	sp->state = IPSEC_SPSTATE_DEAD;
2119	KEY_FREESP(&sp);
2120
2121    {
2122	struct mbuf *n, *nn;
2123	struct sadb_msg *newmsg;
2124	int off, len;
2125
2126	/* create new sadb_msg to reply. */
2127	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2128
2129	if (len > MCLBYTES)
2130		return key_senderror(so, m, ENOBUFS);
2131	MGETHDR(n, M_DONTWAIT, MT_DATA);
2132	if (n && len > MHLEN) {
2133		MCLGET(n, M_DONTWAIT);
2134		if ((n->m_flags & M_EXT) == 0) {
2135			m_freem(n);
2136			n = NULL;
2137		}
2138	}
2139	if (!n)
2140		return key_senderror(so, m, ENOBUFS);
2141
2142	n->m_len = len;
2143	n->m_next = NULL;
2144	off = 0;
2145
2146	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2147	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2148
2149	IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2150		off, len));
2151
2152	n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2153	    mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2154	if (!n->m_next) {
2155		m_freem(n);
2156		return key_senderror(so, m, ENOBUFS);
2157	}
2158
2159	n->m_pkthdr.len = 0;
2160	for (nn = n; nn; nn = nn->m_next)
2161		n->m_pkthdr.len += nn->m_len;
2162
2163	newmsg = mtod(n, struct sadb_msg *);
2164	newmsg->sadb_msg_errno = 0;
2165	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2166
2167	m_freem(m);
2168	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2169    }
2170}
2171
2172/*
2173 * SADB_X_GET processing
2174 * receive
2175 *   <base, policy(*)>
2176 * from the user(?),
2177 * and send,
2178 *   <base, address(SD), policy>
2179 * to the ikmpd.
2180 * policy(*) including direction of policy.
2181 *
2182 * m will always be freed.
2183 */
2184static int
2185key_spdget(so, m, mhp)
2186	struct socket *so;
2187	struct mbuf *m;
2188	const struct sadb_msghdr *mhp;
2189{
2190	u_int32_t id;
2191	struct secpolicy *sp;
2192	struct mbuf *n;
2193
2194	IPSEC_ASSERT(so != NULL, ("null socket"));
2195	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2196	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2197	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2198
2199	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2200	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2201		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2202			__func__));
2203		return key_senderror(so, m, EINVAL);
2204	}
2205
2206	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2207
2208	/* Is there SP in SPD ? */
2209	if ((sp = key_getspbyid(id)) == NULL) {
2210		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2211		return key_senderror(so, m, ENOENT);
2212	}
2213
2214	n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2215	if (n != NULL) {
2216		m_freem(m);
2217		return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2218	} else
2219		return key_senderror(so, m, ENOBUFS);
2220}
2221
2222/*
2223 * SADB_X_SPDACQUIRE processing.
2224 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2225 * send
2226 *   <base, policy(*)>
2227 * to KMD, and expect to receive
2228 *   <base> with SADB_X_SPDACQUIRE if error occured,
2229 * or
2230 *   <base, policy>
2231 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2232 * policy(*) is without policy requests.
2233 *
2234 *    0     : succeed
2235 *    others: error number
2236 */
2237int
2238key_spdacquire(sp)
2239	struct secpolicy *sp;
2240{
2241	struct mbuf *result = NULL, *m;
2242	struct secspacq *newspacq;
2243	int error;
2244
2245	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2246	IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2247	IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2248		("policy not IPSEC %u", sp->policy));
2249
2250	/* Get an entry to check whether sent message or not. */
2251	newspacq = key_getspacq(&sp->spidx);
2252	if (newspacq != NULL) {
2253		if (key_blockacq_count < newspacq->count) {
2254			/* reset counter and do send message. */
2255			newspacq->count = 0;
2256		} else {
2257			/* increment counter and do nothing. */
2258			newspacq->count++;
2259			return 0;
2260		}
2261		SPACQ_UNLOCK();
2262	} else {
2263		/* make new entry for blocking to send SADB_ACQUIRE. */
2264		newspacq = key_newspacq(&sp->spidx);
2265		if (newspacq == NULL)
2266			return ENOBUFS;
2267	}
2268
2269	/* create new sadb_msg to reply. */
2270	m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2271	if (!m) {
2272		error = ENOBUFS;
2273		goto fail;
2274	}
2275	result = m;
2276
2277	result->m_pkthdr.len = 0;
2278	for (m = result; m; m = m->m_next)
2279		result->m_pkthdr.len += m->m_len;
2280
2281	mtod(result, struct sadb_msg *)->sadb_msg_len =
2282	    PFKEY_UNIT64(result->m_pkthdr.len);
2283
2284	return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2285
2286fail:
2287	if (result)
2288		m_freem(result);
2289	return error;
2290}
2291
2292/*
2293 * SADB_SPDFLUSH processing
2294 * receive
2295 *   <base>
2296 * from the user, and free all entries in secpctree.
2297 * and send,
2298 *   <base>
2299 * to the user.
2300 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2301 *
2302 * m will always be freed.
2303 */
2304static int
2305key_spdflush(so, m, mhp)
2306	struct socket *so;
2307	struct mbuf *m;
2308	const struct sadb_msghdr *mhp;
2309{
2310	struct sadb_msg *newmsg;
2311	struct secpolicy *sp;
2312	u_int dir;
2313
2314	IPSEC_ASSERT(so != NULL, ("null socket"));
2315	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2316	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2317	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2318
2319	if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2320		return key_senderror(so, m, EINVAL);
2321
2322	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2323		SPTREE_LOCK();
2324		LIST_FOREACH(sp, &sptree[dir], chain)
2325			sp->state = IPSEC_SPSTATE_DEAD;
2326		SPTREE_UNLOCK();
2327	}
2328
2329	if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2330		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2331		return key_senderror(so, m, ENOBUFS);
2332	}
2333
2334	if (m->m_next)
2335		m_freem(m->m_next);
2336	m->m_next = NULL;
2337	m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2338	newmsg = mtod(m, struct sadb_msg *);
2339	newmsg->sadb_msg_errno = 0;
2340	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2341
2342	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2343}
2344
2345/*
2346 * SADB_SPDDUMP processing
2347 * receive
2348 *   <base>
2349 * from the user, and dump all SP leaves
2350 * and send,
2351 *   <base> .....
2352 * to the ikmpd.
2353 *
2354 * m will always be freed.
2355 */
2356static int
2357key_spddump(so, m, mhp)
2358	struct socket *so;
2359	struct mbuf *m;
2360	const struct sadb_msghdr *mhp;
2361{
2362	struct secpolicy *sp;
2363	int cnt;
2364	u_int dir;
2365	struct mbuf *n;
2366
2367	IPSEC_ASSERT(so != NULL, ("null socket"));
2368	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2369	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2370	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2371
2372	/* search SPD entry and get buffer size. */
2373	cnt = 0;
2374	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2375		LIST_FOREACH(sp, &sptree[dir], chain) {
2376			cnt++;
2377		}
2378	}
2379
2380	if (cnt == 0)
2381		return key_senderror(so, m, ENOENT);
2382
2383	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2384		LIST_FOREACH(sp, &sptree[dir], chain) {
2385			--cnt;
2386			n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2387			    mhp->msg->sadb_msg_pid);
2388
2389			if (n)
2390				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2391		}
2392	}
2393
2394	m_freem(m);
2395	return 0;
2396}
2397
2398static struct mbuf *
2399key_setdumpsp(sp, type, seq, pid)
2400	struct secpolicy *sp;
2401	u_int8_t type;
2402	u_int32_t seq, pid;
2403{
2404	struct mbuf *result = NULL, *m;
2405
2406	m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2407	if (!m)
2408		goto fail;
2409	result = m;
2410
2411	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2412	    &sp->spidx.src.sa, sp->spidx.prefs,
2413	    sp->spidx.ul_proto);
2414	if (!m)
2415		goto fail;
2416	m_cat(result, m);
2417
2418	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2419	    &sp->spidx.dst.sa, sp->spidx.prefd,
2420	    sp->spidx.ul_proto);
2421	if (!m)
2422		goto fail;
2423	m_cat(result, m);
2424
2425	m = key_sp2msg(sp);
2426	if (!m)
2427		goto fail;
2428	m_cat(result, m);
2429
2430	if ((result->m_flags & M_PKTHDR) == 0)
2431		goto fail;
2432
2433	if (result->m_len < sizeof(struct sadb_msg)) {
2434		result = m_pullup(result, sizeof(struct sadb_msg));
2435		if (result == NULL)
2436			goto fail;
2437	}
2438
2439	result->m_pkthdr.len = 0;
2440	for (m = result; m; m = m->m_next)
2441		result->m_pkthdr.len += m->m_len;
2442
2443	mtod(result, struct sadb_msg *)->sadb_msg_len =
2444	    PFKEY_UNIT64(result->m_pkthdr.len);
2445
2446	return result;
2447
2448fail:
2449	m_freem(result);
2450	return NULL;
2451}
2452
2453/*
2454 * get PFKEY message length for security policy and request.
2455 */
2456static u_int
2457key_getspreqmsglen(sp)
2458	struct secpolicy *sp;
2459{
2460	u_int tlen;
2461
2462	tlen = sizeof(struct sadb_x_policy);
2463
2464	/* if is the policy for ipsec ? */
2465	if (sp->policy != IPSEC_POLICY_IPSEC)
2466		return tlen;
2467
2468	/* get length of ipsec requests */
2469    {
2470	struct ipsecrequest *isr;
2471	int len;
2472
2473	for (isr = sp->req; isr != NULL; isr = isr->next) {
2474		len = sizeof(struct sadb_x_ipsecrequest)
2475			+ isr->saidx.src.sa.sa_len
2476			+ isr->saidx.dst.sa.sa_len;
2477
2478		tlen += PFKEY_ALIGN8(len);
2479	}
2480    }
2481
2482	return tlen;
2483}
2484
2485/*
2486 * SADB_SPDEXPIRE processing
2487 * send
2488 *   <base, address(SD), lifetime(CH), policy>
2489 * to KMD by PF_KEY.
2490 *
2491 * OUT:	0	: succeed
2492 *	others	: error number
2493 */
2494static int
2495key_spdexpire(sp)
2496	struct secpolicy *sp;
2497{
2498	struct mbuf *result = NULL, *m;
2499	int len;
2500	int error = -1;
2501	struct sadb_lifetime *lt;
2502
2503	/* XXX: Why do we lock ? */
2504
2505	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2506
2507	/* set msg header */
2508	m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2509	if (!m) {
2510		error = ENOBUFS;
2511		goto fail;
2512	}
2513	result = m;
2514
2515	/* create lifetime extension (current and hard) */
2516	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2517	m = key_alloc_mbuf(len);
2518	if (!m || m->m_next) {	/*XXX*/
2519		if (m)
2520			m_freem(m);
2521		error = ENOBUFS;
2522		goto fail;
2523	}
2524	bzero(mtod(m, caddr_t), len);
2525	lt = mtod(m, struct sadb_lifetime *);
2526	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2527	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2528	lt->sadb_lifetime_allocations = 0;
2529	lt->sadb_lifetime_bytes = 0;
2530	lt->sadb_lifetime_addtime = sp->created;
2531	lt->sadb_lifetime_usetime = sp->lastused;
2532	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2533	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2534	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2535	lt->sadb_lifetime_allocations = 0;
2536	lt->sadb_lifetime_bytes = 0;
2537	lt->sadb_lifetime_addtime = sp->lifetime;
2538	lt->sadb_lifetime_usetime = sp->validtime;
2539	m_cat(result, m);
2540
2541	/* set sadb_address for source */
2542	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2543	    &sp->spidx.src.sa,
2544	    sp->spidx.prefs, sp->spidx.ul_proto);
2545	if (!m) {
2546		error = ENOBUFS;
2547		goto fail;
2548	}
2549	m_cat(result, m);
2550
2551	/* set sadb_address for destination */
2552	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2553	    &sp->spidx.dst.sa,
2554	    sp->spidx.prefd, sp->spidx.ul_proto);
2555	if (!m) {
2556		error = ENOBUFS;
2557		goto fail;
2558	}
2559	m_cat(result, m);
2560
2561	/* set secpolicy */
2562	m = key_sp2msg(sp);
2563	if (!m) {
2564		error = ENOBUFS;
2565		goto fail;
2566	}
2567	m_cat(result, m);
2568
2569	if ((result->m_flags & M_PKTHDR) == 0) {
2570		error = EINVAL;
2571		goto fail;
2572	}
2573
2574	if (result->m_len < sizeof(struct sadb_msg)) {
2575		result = m_pullup(result, sizeof(struct sadb_msg));
2576		if (result == NULL) {
2577			error = ENOBUFS;
2578			goto fail;
2579		}
2580	}
2581
2582	result->m_pkthdr.len = 0;
2583	for (m = result; m; m = m->m_next)
2584		result->m_pkthdr.len += m->m_len;
2585
2586	mtod(result, struct sadb_msg *)->sadb_msg_len =
2587	    PFKEY_UNIT64(result->m_pkthdr.len);
2588
2589	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2590
2591 fail:
2592	if (result)
2593		m_freem(result);
2594	return error;
2595}
2596
2597/* %%% SAD management */
2598/*
2599 * allocating a memory for new SA head, and copy from the values of mhp.
2600 * OUT:	NULL	: failure due to the lack of memory.
2601 *	others	: pointer to new SA head.
2602 */
2603static struct secashead *
2604key_newsah(saidx)
2605	struct secasindex *saidx;
2606{
2607	struct secashead *newsah;
2608
2609	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
2610
2611	newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO);
2612	if (newsah != NULL) {
2613		int i;
2614		for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2615			LIST_INIT(&newsah->savtree[i]);
2616		newsah->saidx = *saidx;
2617
2618		/* add to saidxtree */
2619		newsah->state = SADB_SASTATE_MATURE;
2620
2621		SAHTREE_LOCK();
2622		LIST_INSERT_HEAD(&sahtree, newsah, chain);
2623		SAHTREE_UNLOCK();
2624	}
2625	return(newsah);
2626}
2627
2628/*
2629 * delete SA index and all SA registerd.
2630 */
2631static void
2632key_delsah(sah)
2633	struct secashead *sah;
2634{
2635	struct secasvar *sav, *nextsav;
2636	u_int stateidx;
2637	int zombie = 0;
2638
2639	IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2640	SAHTREE_LOCK_ASSERT();
2641
2642	/* searching all SA registerd in the secindex. */
2643	for (stateidx = 0;
2644	     stateidx < _ARRAYLEN(saorder_state_any);
2645	     stateidx++) {
2646		u_int state = saorder_state_any[stateidx];
2647		LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2648			if (sav->refcnt == 0) {
2649				/* sanity check */
2650				KEY_CHKSASTATE(state, sav->state, __func__);
2651				KEY_FREESAV(&sav);
2652			} else {
2653				/* give up to delete this sa */
2654				zombie++;
2655			}
2656		}
2657	}
2658	if (!zombie) {		/* delete only if there are savs */
2659		/* remove from tree of SA index */
2660		if (__LIST_CHAINED(sah))
2661			LIST_REMOVE(sah, chain);
2662		if (sah->sa_route.ro_rt) {
2663			RTFREE(sah->sa_route.ro_rt);
2664			sah->sa_route.ro_rt = (struct rtentry *)NULL;
2665		}
2666		free(sah, M_IPSEC_SAH);
2667	}
2668}
2669
2670/*
2671 * allocating a new SA with LARVAL state.  key_add() and key_getspi() call,
2672 * and copy the values of mhp into new buffer.
2673 * When SAD message type is GETSPI:
2674 *	to set sequence number from acq_seq++,
2675 *	to set zero to SPI.
2676 *	not to call key_setsava().
2677 * OUT:	NULL	: fail
2678 *	others	: pointer to new secasvar.
2679 *
2680 * does not modify mbuf.  does not free mbuf on error.
2681 */
2682static struct secasvar *
2683key_newsav(m, mhp, sah, errp, where, tag)
2684	struct mbuf *m;
2685	const struct sadb_msghdr *mhp;
2686	struct secashead *sah;
2687	int *errp;
2688	const char* where;
2689	int tag;
2690{
2691	struct secasvar *newsav;
2692	const struct sadb_sa *xsa;
2693
2694	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2695	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2696	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2697	IPSEC_ASSERT(sah != NULL, ("null secashead"));
2698
2699	newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO);
2700	if (newsav == NULL) {
2701		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2702		*errp = ENOBUFS;
2703		goto done;
2704	}
2705
2706	switch (mhp->msg->sadb_msg_type) {
2707	case SADB_GETSPI:
2708		newsav->spi = 0;
2709
2710#ifdef IPSEC_DOSEQCHECK
2711		/* sync sequence number */
2712		if (mhp->msg->sadb_msg_seq == 0)
2713			newsav->seq =
2714				(acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2715		else
2716#endif
2717			newsav->seq = mhp->msg->sadb_msg_seq;
2718		break;
2719
2720	case SADB_ADD:
2721		/* sanity check */
2722		if (mhp->ext[SADB_EXT_SA] == NULL) {
2723			free(newsav, M_IPSEC_SA);
2724			newsav = NULL;
2725			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2726				__func__));
2727			*errp = EINVAL;
2728			goto done;
2729		}
2730		xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2731		newsav->spi = xsa->sadb_sa_spi;
2732		newsav->seq = mhp->msg->sadb_msg_seq;
2733		break;
2734	default:
2735		free(newsav, M_IPSEC_SA);
2736		newsav = NULL;
2737		*errp = EINVAL;
2738		goto done;
2739	}
2740
2741
2742	/* copy sav values */
2743	if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2744		*errp = key_setsaval(newsav, m, mhp);
2745		if (*errp) {
2746			free(newsav, M_IPSEC_SA);
2747			newsav = NULL;
2748			goto done;
2749		}
2750	}
2751
2752	SECASVAR_LOCK_INIT(newsav);
2753
2754	/* reset created */
2755	newsav->created = time_second;
2756	newsav->pid = mhp->msg->sadb_msg_pid;
2757
2758	/* add to satree */
2759	newsav->sah = sah;
2760	newsav->refcnt = 1;
2761	newsav->state = SADB_SASTATE_LARVAL;
2762
2763	/* XXX locking??? */
2764	LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2765			secasvar, chain);
2766done:
2767	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2768		printf("DP %s from %s:%u return SP:%p\n", __func__,
2769			where, tag, newsav));
2770
2771	return newsav;
2772}
2773
2774/*
2775 * free() SA variable entry.
2776 */
2777static void
2778key_cleansav(struct secasvar *sav)
2779{
2780	/*
2781	 * Cleanup xform state.  Note that zeroize'ing causes the
2782	 * keys to be cleared; otherwise we must do it ourself.
2783	 */
2784	if (sav->tdb_xform != NULL) {
2785		sav->tdb_xform->xf_zeroize(sav);
2786		sav->tdb_xform = NULL;
2787	} else {
2788		KASSERT(sav->iv == NULL, ("iv but no xform"));
2789		if (sav->key_auth != NULL)
2790			bzero(_KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2791		if (sav->key_enc != NULL)
2792			bzero(_KEYBUF(sav->key_enc), _KEYLEN(sav->key_enc));
2793	}
2794	if (sav->key_auth != NULL) {
2795		free(sav->key_auth, M_IPSEC_MISC);
2796		sav->key_auth = NULL;
2797	}
2798	if (sav->key_enc != NULL) {
2799		free(sav->key_enc, M_IPSEC_MISC);
2800		sav->key_enc = NULL;
2801	}
2802	if (sav->sched) {
2803		bzero(sav->sched, sav->schedlen);
2804		free(sav->sched, M_IPSEC_MISC);
2805		sav->sched = NULL;
2806	}
2807	if (sav->replay != NULL) {
2808		free(sav->replay, M_IPSEC_MISC);
2809		sav->replay = NULL;
2810	}
2811	if (sav->lft_c != NULL) {
2812		free(sav->lft_c, M_IPSEC_MISC);
2813		sav->lft_c = NULL;
2814	}
2815	if (sav->lft_h != NULL) {
2816		free(sav->lft_h, M_IPSEC_MISC);
2817		sav->lft_h = NULL;
2818	}
2819	if (sav->lft_s != NULL) {
2820		free(sav->lft_s, M_IPSEC_MISC);
2821		sav->lft_s = NULL;
2822	}
2823}
2824
2825/*
2826 * free() SA variable entry.
2827 */
2828static void
2829key_delsav(sav)
2830	struct secasvar *sav;
2831{
2832	IPSEC_ASSERT(sav != NULL, ("null sav"));
2833	IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt));
2834
2835	/* remove from SA header */
2836	if (__LIST_CHAINED(sav))
2837		LIST_REMOVE(sav, chain);
2838	key_cleansav(sav);
2839	SECASVAR_LOCK_DESTROY(sav);
2840	free(sav, M_IPSEC_SA);
2841}
2842
2843/*
2844 * search SAD.
2845 * OUT:
2846 *	NULL	: not found
2847 *	others	: found, pointer to a SA.
2848 */
2849static struct secashead *
2850key_getsah(saidx)
2851	struct secasindex *saidx;
2852{
2853	struct secashead *sah;
2854
2855	SAHTREE_LOCK();
2856	LIST_FOREACH(sah, &sahtree, chain) {
2857		if (sah->state == SADB_SASTATE_DEAD)
2858			continue;
2859		if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
2860			break;
2861	}
2862	SAHTREE_UNLOCK();
2863
2864	return sah;
2865}
2866
2867/*
2868 * check not to be duplicated SPI.
2869 * NOTE: this function is too slow due to searching all SAD.
2870 * OUT:
2871 *	NULL	: not found
2872 *	others	: found, pointer to a SA.
2873 */
2874static struct secasvar *
2875key_checkspidup(saidx, spi)
2876	struct secasindex *saidx;
2877	u_int32_t spi;
2878{
2879	struct secashead *sah;
2880	struct secasvar *sav;
2881
2882	/* check address family */
2883	if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
2884		ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
2885			__func__));
2886		return NULL;
2887	}
2888
2889	sav = NULL;
2890	/* check all SAD */
2891	SAHTREE_LOCK();
2892	LIST_FOREACH(sah, &sahtree, chain) {
2893		if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
2894			continue;
2895		sav = key_getsavbyspi(sah, spi);
2896		if (sav != NULL)
2897			break;
2898	}
2899	SAHTREE_UNLOCK();
2900
2901	return sav;
2902}
2903
2904/*
2905 * search SAD litmited alive SA, protocol, SPI.
2906 * OUT:
2907 *	NULL	: not found
2908 *	others	: found, pointer to a SA.
2909 */
2910static struct secasvar *
2911key_getsavbyspi(sah, spi)
2912	struct secashead *sah;
2913	u_int32_t spi;
2914{
2915	struct secasvar *sav;
2916	u_int stateidx, state;
2917
2918	sav = NULL;
2919	SAHTREE_LOCK_ASSERT();
2920	/* search all status */
2921	for (stateidx = 0;
2922	     stateidx < _ARRAYLEN(saorder_state_alive);
2923	     stateidx++) {
2924
2925		state = saorder_state_alive[stateidx];
2926		LIST_FOREACH(sav, &sah->savtree[state], chain) {
2927
2928			/* sanity check */
2929			if (sav->state != state) {
2930				ipseclog((LOG_DEBUG, "%s: "
2931				    "invalid sav->state (queue: %d SA: %d)\n",
2932				    __func__, state, sav->state));
2933				continue;
2934			}
2935
2936			if (sav->spi == spi)
2937				return sav;
2938		}
2939	}
2940
2941	return NULL;
2942}
2943
2944/*
2945 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
2946 * You must update these if need.
2947 * OUT:	0:	success.
2948 *	!0:	failure.
2949 *
2950 * does not modify mbuf.  does not free mbuf on error.
2951 */
2952static int
2953key_setsaval(sav, m, mhp)
2954	struct secasvar *sav;
2955	struct mbuf *m;
2956	const struct sadb_msghdr *mhp;
2957{
2958	int error = 0;
2959
2960	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2961	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2962	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2963
2964	/* initialization */
2965	sav->replay = NULL;
2966	sav->key_auth = NULL;
2967	sav->key_enc = NULL;
2968	sav->sched = NULL;
2969	sav->schedlen = 0;
2970	sav->iv = NULL;
2971	sav->lft_c = NULL;
2972	sav->lft_h = NULL;
2973	sav->lft_s = NULL;
2974	sav->tdb_xform = NULL;		/* transform */
2975	sav->tdb_encalgxform = NULL;	/* encoding algorithm */
2976	sav->tdb_authalgxform = NULL;	/* authentication algorithm */
2977	sav->tdb_compalgxform = NULL;	/* compression algorithm */
2978
2979	/* SA */
2980	if (mhp->ext[SADB_EXT_SA] != NULL) {
2981		const struct sadb_sa *sa0;
2982
2983		sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2984		if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
2985			error = EINVAL;
2986			goto fail;
2987		}
2988
2989		sav->alg_auth = sa0->sadb_sa_auth;
2990		sav->alg_enc = sa0->sadb_sa_encrypt;
2991		sav->flags = sa0->sadb_sa_flags;
2992
2993		/* replay window */
2994		if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
2995			sav->replay = (struct secreplay *)
2996				malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO);
2997			if (sav->replay == NULL) {
2998				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
2999					__func__));
3000				error = ENOBUFS;
3001				goto fail;
3002			}
3003			if (sa0->sadb_sa_replay != 0)
3004				sav->replay->bitmap = (caddr_t)(sav->replay+1);
3005			sav->replay->wsize = sa0->sadb_sa_replay;
3006		}
3007	}
3008
3009	/* Authentication keys */
3010	if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3011		const struct sadb_key *key0;
3012		int len;
3013
3014		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3015		len = mhp->extlen[SADB_EXT_KEY_AUTH];
3016
3017		error = 0;
3018		if (len < sizeof(*key0)) {
3019			error = EINVAL;
3020			goto fail;
3021		}
3022		switch (mhp->msg->sadb_msg_satype) {
3023		case SADB_SATYPE_AH:
3024		case SADB_SATYPE_ESP:
3025		case SADB_X_SATYPE_TCPSIGNATURE:
3026			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3027			    sav->alg_auth != SADB_X_AALG_NULL)
3028				error = EINVAL;
3029			break;
3030		case SADB_X_SATYPE_IPCOMP:
3031		default:
3032			error = EINVAL;
3033			break;
3034		}
3035		if (error) {
3036			ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3037				__func__));
3038			goto fail;
3039		}
3040
3041		sav->key_auth = key_dup(key0, len, M_IPSEC_MISC);
3042		if (sav->key_auth == NULL) {
3043			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3044			error = ENOBUFS;
3045			goto fail;
3046		}
3047	}
3048
3049	/* Encryption key */
3050	if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3051		const struct sadb_key *key0;
3052		int len;
3053
3054		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3055		len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3056
3057		error = 0;
3058		if (len < sizeof(*key0)) {
3059			error = EINVAL;
3060			goto fail;
3061		}
3062		switch (mhp->msg->sadb_msg_satype) {
3063		case SADB_SATYPE_ESP:
3064			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3065			    sav->alg_enc != SADB_EALG_NULL) {
3066				error = EINVAL;
3067				break;
3068			}
3069			sav->key_enc = key_dup(key0, len, M_IPSEC_MISC);
3070			if (sav->key_enc == NULL) {
3071				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3072					__func__));
3073				error = ENOBUFS;
3074				goto fail;
3075			}
3076			break;
3077		case SADB_X_SATYPE_IPCOMP:
3078			if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3079				error = EINVAL;
3080			sav->key_enc = NULL;	/*just in case*/
3081			break;
3082		case SADB_SATYPE_AH:
3083		case SADB_X_SATYPE_TCPSIGNATURE:
3084		default:
3085			error = EINVAL;
3086			break;
3087		}
3088		if (error) {
3089			ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3090				__func__));
3091			goto fail;
3092		}
3093	}
3094
3095	/* set iv */
3096	sav->ivlen = 0;
3097
3098	switch (mhp->msg->sadb_msg_satype) {
3099	case SADB_SATYPE_AH:
3100		error = xform_init(sav, XF_AH);
3101		break;
3102	case SADB_SATYPE_ESP:
3103		error = xform_init(sav, XF_ESP);
3104		break;
3105	case SADB_X_SATYPE_IPCOMP:
3106		error = xform_init(sav, XF_IPCOMP);
3107		break;
3108	case SADB_X_SATYPE_TCPSIGNATURE:
3109		error = xform_init(sav, XF_TCPSIGNATURE);
3110		break;
3111	}
3112	if (error) {
3113		ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3114		        __func__, mhp->msg->sadb_msg_satype));
3115		goto fail;
3116	}
3117
3118	/* reset created */
3119	sav->created = time_second;
3120
3121	/* make lifetime for CURRENT */
3122	sav->lft_c = malloc(sizeof(struct sadb_lifetime), M_IPSEC_MISC, M_NOWAIT);
3123	if (sav->lft_c == NULL) {
3124		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3125		error = ENOBUFS;
3126		goto fail;
3127	}
3128
3129	sav->lft_c->sadb_lifetime_len =
3130	    PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3131	sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3132	sav->lft_c->sadb_lifetime_allocations = 0;
3133	sav->lft_c->sadb_lifetime_bytes = 0;
3134	sav->lft_c->sadb_lifetime_addtime = time_second;
3135	sav->lft_c->sadb_lifetime_usetime = 0;
3136
3137	/* lifetimes for HARD and SOFT */
3138    {
3139	const struct sadb_lifetime *lft0;
3140
3141	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3142	if (lft0 != NULL) {
3143		if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3144			error = EINVAL;
3145			goto fail;
3146		}
3147		sav->lft_h = key_dup(lft0, sizeof(*lft0), M_IPSEC_MISC);
3148		if (sav->lft_h == NULL) {
3149			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3150			error = ENOBUFS;
3151			goto fail;
3152		}
3153		/* to be initialize ? */
3154	}
3155
3156	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3157	if (lft0 != NULL) {
3158		if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3159			error = EINVAL;
3160			goto fail;
3161		}
3162		sav->lft_s = key_dup(lft0, sizeof(*lft0), M_IPSEC_MISC);
3163		if (sav->lft_s == NULL) {
3164			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3165			error = ENOBUFS;
3166			goto fail;
3167		}
3168		/* to be initialize ? */
3169	}
3170    }
3171
3172	return 0;
3173
3174 fail:
3175	/* initialization */
3176	key_cleansav(sav);
3177
3178	return error;
3179}
3180
3181/*
3182 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3183 * OUT:	0:	valid
3184 *	other:	errno
3185 */
3186static int
3187key_mature(struct secasvar *sav)
3188{
3189	int error;
3190
3191	/* check SPI value */
3192	switch (sav->sah->saidx.proto) {
3193	case IPPROTO_ESP:
3194	case IPPROTO_AH:
3195		if (ntohl(sav->spi) >= 0 && ntohl(sav->spi) <= 255) {
3196			ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
3197			    __func__, (u_int32_t)ntohl(sav->spi)));
3198			return EINVAL;
3199		}
3200		break;
3201	}
3202
3203	/* check satype */
3204	switch (sav->sah->saidx.proto) {
3205	case IPPROTO_ESP:
3206		/* check flags */
3207		if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3208		    (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3209			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3210				"given to old-esp.\n", __func__));
3211			return EINVAL;
3212		}
3213		error = xform_init(sav, XF_ESP);
3214		break;
3215	case IPPROTO_AH:
3216		/* check flags */
3217		if (sav->flags & SADB_X_EXT_DERIV) {
3218			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3219				"given to AH SA.\n", __func__));
3220			return EINVAL;
3221		}
3222		if (sav->alg_enc != SADB_EALG_NONE) {
3223			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3224				"mismated.\n", __func__));
3225			return(EINVAL);
3226		}
3227		error = xform_init(sav, XF_AH);
3228		break;
3229	case IPPROTO_IPCOMP:
3230		if (sav->alg_auth != SADB_AALG_NONE) {
3231			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3232				"mismated.\n", __func__));
3233			return(EINVAL);
3234		}
3235		if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3236		 && ntohl(sav->spi) >= 0x10000) {
3237			ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3238				__func__));
3239			return(EINVAL);
3240		}
3241		error = xform_init(sav, XF_IPCOMP);
3242		break;
3243	case IPPROTO_TCP:
3244		if (sav->alg_enc != SADB_EALG_NONE) {
3245			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3246				"mismated.\n", __func__));
3247			return(EINVAL);
3248		}
3249		error = xform_init(sav, XF_TCPSIGNATURE);
3250		break;
3251	default:
3252		ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3253		error = EPROTONOSUPPORT;
3254		break;
3255	}
3256	if (error == 0) {
3257		SAHTREE_LOCK();
3258		key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3259		SAHTREE_UNLOCK();
3260	}
3261	return (error);
3262}
3263
3264/*
3265 * subroutine for SADB_GET and SADB_DUMP.
3266 */
3267static struct mbuf *
3268key_setdumpsa(sav, type, satype, seq, pid)
3269	struct secasvar *sav;
3270	u_int8_t type, satype;
3271	u_int32_t seq, pid;
3272{
3273	struct mbuf *result = NULL, *tres = NULL, *m;
3274	int l = 0;
3275	int i;
3276	void *p;
3277	int dumporder[] = {
3278		SADB_EXT_SA, SADB_X_EXT_SA2,
3279		SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3280		SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3281		SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3282		SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3283		SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3284	};
3285
3286	m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3287	if (m == NULL)
3288		goto fail;
3289	result = m;
3290
3291	for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3292		m = NULL;
3293		p = NULL;
3294		switch (dumporder[i]) {
3295		case SADB_EXT_SA:
3296			m = key_setsadbsa(sav);
3297			if (!m)
3298				goto fail;
3299			break;
3300
3301		case SADB_X_EXT_SA2:
3302			m = key_setsadbxsa2(sav->sah->saidx.mode,
3303					sav->replay ? sav->replay->count : 0,
3304					sav->sah->saidx.reqid);
3305			if (!m)
3306				goto fail;
3307			break;
3308
3309		case SADB_EXT_ADDRESS_SRC:
3310			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3311			    &sav->sah->saidx.src.sa,
3312			    FULLMASK, IPSEC_ULPROTO_ANY);
3313			if (!m)
3314				goto fail;
3315			break;
3316
3317		case SADB_EXT_ADDRESS_DST:
3318			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3319			    &sav->sah->saidx.dst.sa,
3320			    FULLMASK, IPSEC_ULPROTO_ANY);
3321			if (!m)
3322				goto fail;
3323			break;
3324
3325		case SADB_EXT_KEY_AUTH:
3326			if (!sav->key_auth)
3327				continue;
3328			l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3329			p = sav->key_auth;
3330			break;
3331
3332		case SADB_EXT_KEY_ENCRYPT:
3333			if (!sav->key_enc)
3334				continue;
3335			l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3336			p = sav->key_enc;
3337			break;
3338
3339		case SADB_EXT_LIFETIME_CURRENT:
3340			if (!sav->lft_c)
3341				continue;
3342			l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3343			p = sav->lft_c;
3344			break;
3345
3346		case SADB_EXT_LIFETIME_HARD:
3347			if (!sav->lft_h)
3348				continue;
3349			l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3350			p = sav->lft_h;
3351			break;
3352
3353		case SADB_EXT_LIFETIME_SOFT:
3354			if (!sav->lft_s)
3355				continue;
3356			l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3357			p = sav->lft_s;
3358			break;
3359
3360		case SADB_EXT_ADDRESS_PROXY:
3361		case SADB_EXT_IDENTITY_SRC:
3362		case SADB_EXT_IDENTITY_DST:
3363			/* XXX: should we brought from SPD ? */
3364		case SADB_EXT_SENSITIVITY:
3365		default:
3366			continue;
3367		}
3368
3369		if ((!m && !p) || (m && p))
3370			goto fail;
3371		if (p && tres) {
3372			M_PREPEND(tres, l, M_DONTWAIT);
3373			if (!tres)
3374				goto fail;
3375			bcopy(p, mtod(tres, caddr_t), l);
3376			continue;
3377		}
3378		if (p) {
3379			m = key_alloc_mbuf(l);
3380			if (!m)
3381				goto fail;
3382			m_copyback(m, 0, l, p);
3383		}
3384
3385		if (tres)
3386			m_cat(m, tres);
3387		tres = m;
3388	}
3389
3390	m_cat(result, tres);
3391
3392	if (result->m_len < sizeof(struct sadb_msg)) {
3393		result = m_pullup(result, sizeof(struct sadb_msg));
3394		if (result == NULL)
3395			goto fail;
3396	}
3397
3398	result->m_pkthdr.len = 0;
3399	for (m = result; m; m = m->m_next)
3400		result->m_pkthdr.len += m->m_len;
3401
3402	mtod(result, struct sadb_msg *)->sadb_msg_len =
3403	    PFKEY_UNIT64(result->m_pkthdr.len);
3404
3405	return result;
3406
3407fail:
3408	m_freem(result);
3409	m_freem(tres);
3410	return NULL;
3411}
3412
3413/*
3414 * set data into sadb_msg.
3415 */
3416static struct mbuf *
3417key_setsadbmsg(type, tlen, satype, seq, pid, reserved)
3418	u_int8_t type, satype;
3419	u_int16_t tlen;
3420	u_int32_t seq;
3421	pid_t pid;
3422	u_int16_t reserved;
3423{
3424	struct mbuf *m;
3425	struct sadb_msg *p;
3426	int len;
3427
3428	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3429	if (len > MCLBYTES)
3430		return NULL;
3431	MGETHDR(m, M_DONTWAIT, MT_DATA);
3432	if (m && len > MHLEN) {
3433		MCLGET(m, M_DONTWAIT);
3434		if ((m->m_flags & M_EXT) == 0) {
3435			m_freem(m);
3436			m = NULL;
3437		}
3438	}
3439	if (!m)
3440		return NULL;
3441	m->m_pkthdr.len = m->m_len = len;
3442	m->m_next = NULL;
3443
3444	p = mtod(m, struct sadb_msg *);
3445
3446	bzero(p, len);
3447	p->sadb_msg_version = PF_KEY_V2;
3448	p->sadb_msg_type = type;
3449	p->sadb_msg_errno = 0;
3450	p->sadb_msg_satype = satype;
3451	p->sadb_msg_len = PFKEY_UNIT64(tlen);
3452	p->sadb_msg_reserved = reserved;
3453	p->sadb_msg_seq = seq;
3454	p->sadb_msg_pid = (u_int32_t)pid;
3455
3456	return m;
3457}
3458
3459/*
3460 * copy secasvar data into sadb_address.
3461 */
3462static struct mbuf *
3463key_setsadbsa(sav)
3464	struct secasvar *sav;
3465{
3466	struct mbuf *m;
3467	struct sadb_sa *p;
3468	int len;
3469
3470	len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3471	m = key_alloc_mbuf(len);
3472	if (!m || m->m_next) {	/*XXX*/
3473		if (m)
3474			m_freem(m);
3475		return NULL;
3476	}
3477
3478	p = mtod(m, struct sadb_sa *);
3479
3480	bzero(p, len);
3481	p->sadb_sa_len = PFKEY_UNIT64(len);
3482	p->sadb_sa_exttype = SADB_EXT_SA;
3483	p->sadb_sa_spi = sav->spi;
3484	p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3485	p->sadb_sa_state = sav->state;
3486	p->sadb_sa_auth = sav->alg_auth;
3487	p->sadb_sa_encrypt = sav->alg_enc;
3488	p->sadb_sa_flags = sav->flags;
3489
3490	return m;
3491}
3492
3493/*
3494 * set data into sadb_address.
3495 */
3496static struct mbuf *
3497key_setsadbaddr(exttype, saddr, prefixlen, ul_proto)
3498	u_int16_t exttype;
3499	const struct sockaddr *saddr;
3500	u_int8_t prefixlen;
3501	u_int16_t ul_proto;
3502{
3503	struct mbuf *m;
3504	struct sadb_address *p;
3505	size_t len;
3506
3507	len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3508	    PFKEY_ALIGN8(saddr->sa_len);
3509	m = key_alloc_mbuf(len);
3510	if (!m || m->m_next) {	/*XXX*/
3511		if (m)
3512			m_freem(m);
3513		return NULL;
3514	}
3515
3516	p = mtod(m, struct sadb_address *);
3517
3518	bzero(p, len);
3519	p->sadb_address_len = PFKEY_UNIT64(len);
3520	p->sadb_address_exttype = exttype;
3521	p->sadb_address_proto = ul_proto;
3522	if (prefixlen == FULLMASK) {
3523		switch (saddr->sa_family) {
3524		case AF_INET:
3525			prefixlen = sizeof(struct in_addr) << 3;
3526			break;
3527		case AF_INET6:
3528			prefixlen = sizeof(struct in6_addr) << 3;
3529			break;
3530		default:
3531			; /*XXX*/
3532		}
3533	}
3534	p->sadb_address_prefixlen = prefixlen;
3535	p->sadb_address_reserved = 0;
3536
3537	bcopy(saddr,
3538	    mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3539	    saddr->sa_len);
3540
3541	return m;
3542}
3543
3544/*
3545 * set data into sadb_x_sa2.
3546 */
3547static struct mbuf *
3548key_setsadbxsa2(mode, seq, reqid)
3549	u_int8_t mode;
3550	u_int32_t seq, reqid;
3551{
3552	struct mbuf *m;
3553	struct sadb_x_sa2 *p;
3554	size_t len;
3555
3556	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3557	m = key_alloc_mbuf(len);
3558	if (!m || m->m_next) {	/*XXX*/
3559		if (m)
3560			m_freem(m);
3561		return NULL;
3562	}
3563
3564	p = mtod(m, struct sadb_x_sa2 *);
3565
3566	bzero(p, len);
3567	p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3568	p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3569	p->sadb_x_sa2_mode = mode;
3570	p->sadb_x_sa2_reserved1 = 0;
3571	p->sadb_x_sa2_reserved2 = 0;
3572	p->sadb_x_sa2_sequence = seq;
3573	p->sadb_x_sa2_reqid = reqid;
3574
3575	return m;
3576}
3577
3578/*
3579 * set data into sadb_x_policy
3580 */
3581static struct mbuf *
3582key_setsadbxpolicy(type, dir, id)
3583	u_int16_t type;
3584	u_int8_t dir;
3585	u_int32_t id;
3586{
3587	struct mbuf *m;
3588	struct sadb_x_policy *p;
3589	size_t len;
3590
3591	len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3592	m = key_alloc_mbuf(len);
3593	if (!m || m->m_next) {	/*XXX*/
3594		if (m)
3595			m_freem(m);
3596		return NULL;
3597	}
3598
3599	p = mtod(m, struct sadb_x_policy *);
3600
3601	bzero(p, len);
3602	p->sadb_x_policy_len = PFKEY_UNIT64(len);
3603	p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3604	p->sadb_x_policy_type = type;
3605	p->sadb_x_policy_dir = dir;
3606	p->sadb_x_policy_id = id;
3607
3608	return m;
3609}
3610
3611/* %%% utilities */
3612/*
3613 * copy a buffer into the new buffer allocated.
3614 */
3615static void *
3616key_dup(const void *src, u_int len, struct malloc_type *type)
3617{
3618	void *copy;
3619
3620	copy = malloc(len, type, M_NOWAIT);
3621	if (copy == NULL) {
3622		/* XXX counter */
3623		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3624	} else
3625		bcopy(src, copy, len);
3626	return copy;
3627}
3628
3629/* compare my own address
3630 * OUT:	1: true, i.e. my address.
3631 *	0: false
3632 */
3633int
3634key_ismyaddr(sa)
3635	struct sockaddr *sa;
3636{
3637#ifdef INET
3638	struct sockaddr_in *sin;
3639	struct in_ifaddr *ia;
3640#endif
3641
3642	IPSEC_ASSERT(sa != NULL, ("null sockaddr"));
3643
3644	switch (sa->sa_family) {
3645#ifdef INET
3646	case AF_INET:
3647		sin = (struct sockaddr_in *)sa;
3648		for (ia = in_ifaddrhead.tqh_first; ia;
3649		     ia = ia->ia_link.tqe_next)
3650		{
3651			if (sin->sin_family == ia->ia_addr.sin_family &&
3652			    sin->sin_len == ia->ia_addr.sin_len &&
3653			    sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3654			{
3655				return 1;
3656			}
3657		}
3658		break;
3659#endif
3660#ifdef INET6
3661	case AF_INET6:
3662		return key_ismyaddr6((struct sockaddr_in6 *)sa);
3663#endif
3664	}
3665
3666	return 0;
3667}
3668
3669#ifdef INET6
3670/*
3671 * compare my own address for IPv6.
3672 * 1: ours
3673 * 0: other
3674 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3675 */
3676#include <netinet6/in6_var.h>
3677
3678static int
3679key_ismyaddr6(sin6)
3680	struct sockaddr_in6 *sin6;
3681{
3682	struct in6_ifaddr *ia;
3683	struct in6_multi *in6m;
3684
3685	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
3686		if (key_sockaddrcmp((struct sockaddr *)&sin6,
3687		    (struct sockaddr *)&ia->ia_addr, 0) == 0)
3688			return 1;
3689
3690		/*
3691		 * XXX Multicast
3692		 * XXX why do we care about multlicast here while we don't care
3693		 * about IPv4 multicast??
3694		 * XXX scope
3695		 */
3696		in6m = NULL;
3697		IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3698		if (in6m)
3699			return 1;
3700	}
3701
3702	/* loopback, just for safety */
3703	if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3704		return 1;
3705
3706	return 0;
3707}
3708#endif /*INET6*/
3709
3710/*
3711 * compare two secasindex structure.
3712 * flag can specify to compare 2 saidxes.
3713 * compare two secasindex structure without both mode and reqid.
3714 * don't compare port.
3715 * IN:
3716 *      saidx0: source, it can be in SAD.
3717 *      saidx1: object.
3718 * OUT:
3719 *      1 : equal
3720 *      0 : not equal
3721 */
3722static int
3723key_cmpsaidx(
3724	const struct secasindex *saidx0,
3725	const struct secasindex *saidx1,
3726	int flag)
3727{
3728	/* sanity */
3729	if (saidx0 == NULL && saidx1 == NULL)
3730		return 1;
3731
3732	if (saidx0 == NULL || saidx1 == NULL)
3733		return 0;
3734
3735	if (saidx0->proto != saidx1->proto)
3736		return 0;
3737
3738	if (flag == CMP_EXACTLY) {
3739		if (saidx0->mode != saidx1->mode)
3740			return 0;
3741		if (saidx0->reqid != saidx1->reqid)
3742			return 0;
3743		if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
3744		    bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
3745			return 0;
3746	} else {
3747
3748		/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
3749		if (flag == CMP_MODE_REQID
3750		  ||flag == CMP_REQID) {
3751			/*
3752			 * If reqid of SPD is non-zero, unique SA is required.
3753			 * The result must be of same reqid in this case.
3754			 */
3755			if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
3756				return 0;
3757		}
3758
3759		if (flag == CMP_MODE_REQID) {
3760			if (saidx0->mode != IPSEC_MODE_ANY
3761			 && saidx0->mode != saidx1->mode)
3762				return 0;
3763		}
3764
3765		if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) {
3766			return 0;
3767		}
3768		if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) {
3769			return 0;
3770		}
3771	}
3772
3773	return 1;
3774}
3775
3776/*
3777 * compare two secindex structure exactly.
3778 * IN:
3779 *	spidx0: source, it is often in SPD.
3780 *	spidx1: object, it is often from PFKEY message.
3781 * OUT:
3782 *	1 : equal
3783 *	0 : not equal
3784 */
3785static int
3786key_cmpspidx_exactly(
3787	struct secpolicyindex *spidx0,
3788	struct secpolicyindex *spidx1)
3789{
3790	/* sanity */
3791	if (spidx0 == NULL && spidx1 == NULL)
3792		return 1;
3793
3794	if (spidx0 == NULL || spidx1 == NULL)
3795		return 0;
3796
3797	if (spidx0->prefs != spidx1->prefs
3798	 || spidx0->prefd != spidx1->prefd
3799	 || spidx0->ul_proto != spidx1->ul_proto)
3800		return 0;
3801
3802	return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
3803	       key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
3804}
3805
3806/*
3807 * compare two secindex structure with mask.
3808 * IN:
3809 *	spidx0: source, it is often in SPD.
3810 *	spidx1: object, it is often from IP header.
3811 * OUT:
3812 *	1 : equal
3813 *	0 : not equal
3814 */
3815static int
3816key_cmpspidx_withmask(
3817	struct secpolicyindex *spidx0,
3818	struct secpolicyindex *spidx1)
3819{
3820	/* sanity */
3821	if (spidx0 == NULL && spidx1 == NULL)
3822		return 1;
3823
3824	if (spidx0 == NULL || spidx1 == NULL)
3825		return 0;
3826
3827	if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
3828	    spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
3829	    spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
3830	    spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
3831		return 0;
3832
3833	/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
3834	if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
3835	 && spidx0->ul_proto != spidx1->ul_proto)
3836		return 0;
3837
3838	switch (spidx0->src.sa.sa_family) {
3839	case AF_INET:
3840		if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
3841		 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
3842			return 0;
3843		if (!key_bbcmp(&spidx0->src.sin.sin_addr,
3844		    &spidx1->src.sin.sin_addr, spidx0->prefs))
3845			return 0;
3846		break;
3847	case AF_INET6:
3848		if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
3849		 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
3850			return 0;
3851		/*
3852		 * scope_id check. if sin6_scope_id is 0, we regard it
3853		 * as a wildcard scope, which matches any scope zone ID.
3854		 */
3855		if (spidx0->src.sin6.sin6_scope_id &&
3856		    spidx1->src.sin6.sin6_scope_id &&
3857		    spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
3858			return 0;
3859		if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
3860		    &spidx1->src.sin6.sin6_addr, spidx0->prefs))
3861			return 0;
3862		break;
3863	default:
3864		/* XXX */
3865		if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
3866			return 0;
3867		break;
3868	}
3869
3870	switch (spidx0->dst.sa.sa_family) {
3871	case AF_INET:
3872		if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
3873		 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
3874			return 0;
3875		if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
3876		    &spidx1->dst.sin.sin_addr, spidx0->prefd))
3877			return 0;
3878		break;
3879	case AF_INET6:
3880		if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
3881		 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
3882			return 0;
3883		/*
3884		 * scope_id check. if sin6_scope_id is 0, we regard it
3885		 * as a wildcard scope, which matches any scope zone ID.
3886		 */
3887		if (spidx0->dst.sin6.sin6_scope_id &&
3888		    spidx1->dst.sin6.sin6_scope_id &&
3889		    spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
3890			return 0;
3891		if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
3892		    &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
3893			return 0;
3894		break;
3895	default:
3896		/* XXX */
3897		if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
3898			return 0;
3899		break;
3900	}
3901
3902	/* XXX Do we check other field ?  e.g. flowinfo */
3903
3904	return 1;
3905}
3906
3907/* returns 0 on match */
3908static int
3909key_sockaddrcmp(
3910	const struct sockaddr *sa1,
3911	const struct sockaddr *sa2,
3912	int port)
3913{
3914#ifdef satosin
3915#undef satosin
3916#endif
3917#define satosin(s) ((const struct sockaddr_in *)s)
3918#ifdef satosin6
3919#undef satosin6
3920#endif
3921#define satosin6(s) ((const struct sockaddr_in6 *)s)
3922	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
3923		return 1;
3924
3925	switch (sa1->sa_family) {
3926	case AF_INET:
3927		if (sa1->sa_len != sizeof(struct sockaddr_in))
3928			return 1;
3929		if (satosin(sa1)->sin_addr.s_addr !=
3930		    satosin(sa2)->sin_addr.s_addr) {
3931			return 1;
3932		}
3933		if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
3934			return 1;
3935		break;
3936	case AF_INET6:
3937		if (sa1->sa_len != sizeof(struct sockaddr_in6))
3938			return 1;	/*EINVAL*/
3939		if (satosin6(sa1)->sin6_scope_id !=
3940		    satosin6(sa2)->sin6_scope_id) {
3941			return 1;
3942		}
3943		if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
3944		    &satosin6(sa2)->sin6_addr)) {
3945			return 1;
3946		}
3947		if (port &&
3948		    satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
3949			return 1;
3950		}
3951	default:
3952		if (bcmp(sa1, sa2, sa1->sa_len) != 0)
3953			return 1;
3954		break;
3955	}
3956
3957	return 0;
3958#undef satosin
3959#undef satosin6
3960}
3961
3962/*
3963 * compare two buffers with mask.
3964 * IN:
3965 *	addr1: source
3966 *	addr2: object
3967 *	bits:  Number of bits to compare
3968 * OUT:
3969 *	1 : equal
3970 *	0 : not equal
3971 */
3972static int
3973key_bbcmp(const void *a1, const void *a2, u_int bits)
3974{
3975	const unsigned char *p1 = a1;
3976	const unsigned char *p2 = a2;
3977
3978	/* XXX: This could be considerably faster if we compare a word
3979	 * at a time, but it is complicated on LSB Endian machines */
3980
3981	/* Handle null pointers */
3982	if (p1 == NULL || p2 == NULL)
3983		return (p1 == p2);
3984
3985	while (bits >= 8) {
3986		if (*p1++ != *p2++)
3987			return 0;
3988		bits -= 8;
3989	}
3990
3991	if (bits > 0) {
3992		u_int8_t mask = ~((1<<(8-bits))-1);
3993		if ((*p1 & mask) != (*p2 & mask))
3994			return 0;
3995	}
3996	return 1;	/* Match! */
3997}
3998
3999static void
4000key_flush_spd(time_t now)
4001{
4002	static u_int16_t sptree_scangen = 0;
4003	u_int16_t gen = sptree_scangen++;
4004	struct secpolicy *sp;
4005	u_int dir;
4006
4007	/* SPD */
4008	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4009restart:
4010		SPTREE_LOCK();
4011		LIST_FOREACH(sp, &sptree[dir], chain) {
4012			if (sp->scangen == gen)		/* previously handled */
4013				continue;
4014			sp->scangen = gen;
4015			if (sp->state == IPSEC_SPSTATE_DEAD) {
4016				/* NB: clean entries created by key_spdflush */
4017				SPTREE_UNLOCK();
4018				KEY_FREESP(&sp);
4019				goto restart;
4020			}
4021			if (sp->lifetime == 0 && sp->validtime == 0)
4022				continue;
4023			if ((sp->lifetime && now - sp->created > sp->lifetime)
4024			 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4025				sp->state = IPSEC_SPSTATE_DEAD;
4026				SPTREE_UNLOCK();
4027				key_spdexpire(sp);
4028				KEY_FREESP(&sp);
4029				goto restart;
4030			}
4031		}
4032		SPTREE_UNLOCK();
4033	}
4034}
4035
4036static void
4037key_flush_sad(time_t now)
4038{
4039	struct secashead *sah, *nextsah;
4040	struct secasvar *sav, *nextsav;
4041
4042	/* SAD */
4043	SAHTREE_LOCK();
4044	LIST_FOREACH_SAFE(sah, &sahtree, chain, nextsah) {
4045		/* if sah has been dead, then delete it and process next sah. */
4046		if (sah->state == SADB_SASTATE_DEAD) {
4047			key_delsah(sah);
4048			continue;
4049		}
4050
4051		/* if LARVAL entry doesn't become MATURE, delete it. */
4052		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) {
4053			if (now - sav->created > key_larval_lifetime)
4054				KEY_FREESAV(&sav);
4055		}
4056
4057		/*
4058		 * check MATURE entry to start to send expire message
4059		 * whether or not.
4060		 */
4061		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) {
4062			/* we don't need to check. */
4063			if (sav->lft_s == NULL)
4064				continue;
4065
4066			/* sanity check */
4067			if (sav->lft_c == NULL) {
4068				ipseclog((LOG_DEBUG,"%s: there is no CURRENT "
4069					"time, why?\n", __func__));
4070				continue;
4071			}
4072
4073			/* check SOFT lifetime */
4074			if (sav->lft_s->sadb_lifetime_addtime != 0 &&
4075			    now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4076				/*
4077				 * check SA to be used whether or not.
4078				 * when SA hasn't been used, delete it.
4079				 */
4080				if (sav->lft_c->sadb_lifetime_usetime == 0) {
4081					key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4082					KEY_FREESAV(&sav);
4083				} else {
4084					key_sa_chgstate(sav, SADB_SASTATE_DYING);
4085					/*
4086					 * XXX If we keep to send expire
4087					 * message in the status of
4088					 * DYING. Do remove below code.
4089					 */
4090					key_expire(sav);
4091				}
4092			}
4093			/* check SOFT lifetime by bytes */
4094			/*
4095			 * XXX I don't know the way to delete this SA
4096			 * when new SA is installed.  Caution when it's
4097			 * installed too big lifetime by time.
4098			 */
4099			else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
4100			    sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4101
4102				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4103				/*
4104				 * XXX If we keep to send expire
4105				 * message in the status of
4106				 * DYING. Do remove below code.
4107				 */
4108				key_expire(sav);
4109			}
4110		}
4111
4112		/* check DYING entry to change status to DEAD. */
4113		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) {
4114			/* we don't need to check. */
4115			if (sav->lft_h == NULL)
4116				continue;
4117
4118			/* sanity check */
4119			if (sav->lft_c == NULL) {
4120				ipseclog((LOG_DEBUG, "%s: there is no CURRENT "
4121					"time, why?\n", __func__));
4122				continue;
4123			}
4124
4125			if (sav->lft_h->sadb_lifetime_addtime != 0 &&
4126			    now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4127				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4128				KEY_FREESAV(&sav);
4129			}
4130#if 0	/* XXX Should we keep to send expire message until HARD lifetime ? */
4131			else if (sav->lft_s != NULL
4132			      && sav->lft_s->sadb_lifetime_addtime != 0
4133			      && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4134				/*
4135				 * XXX: should be checked to be
4136				 * installed the valid SA.
4137				 */
4138
4139				/*
4140				 * If there is no SA then sending
4141				 * expire message.
4142				 */
4143				key_expire(sav);
4144			}
4145#endif
4146			/* check HARD lifetime by bytes */
4147			else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
4148			    sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4149				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4150				KEY_FREESAV(&sav);
4151			}
4152		}
4153
4154		/* delete entry in DEAD */
4155		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) {
4156			/* sanity check */
4157			if (sav->state != SADB_SASTATE_DEAD) {
4158				ipseclog((LOG_DEBUG, "%s: invalid sav->state "
4159					"(queue: %d SA: %d): kill it anyway\n",
4160					__func__,
4161					SADB_SASTATE_DEAD, sav->state));
4162			}
4163			/*
4164			 * do not call key_freesav() here.
4165			 * sav should already be freed, and sav->refcnt
4166			 * shows other references to sav
4167			 * (such as from SPD).
4168			 */
4169		}
4170	}
4171	SAHTREE_UNLOCK();
4172}
4173
4174static void
4175key_flush_acq(time_t now)
4176{
4177	struct secacq *acq, *nextacq;
4178
4179	/* ACQ tree */
4180	ACQ_LOCK();
4181	for (acq = LIST_FIRST(&acqtree); acq != NULL; acq = nextacq) {
4182		nextacq = LIST_NEXT(acq, chain);
4183		if (now - acq->created > key_blockacq_lifetime
4184		 && __LIST_CHAINED(acq)) {
4185			LIST_REMOVE(acq, chain);
4186			free(acq, M_IPSEC_SAQ);
4187		}
4188	}
4189	ACQ_UNLOCK();
4190}
4191
4192static void
4193key_flush_spacq(time_t now)
4194{
4195	struct secspacq *acq, *nextacq;
4196
4197	/* SP ACQ tree */
4198	SPACQ_LOCK();
4199	for (acq = LIST_FIRST(&spacqtree); acq != NULL; acq = nextacq) {
4200		nextacq = LIST_NEXT(acq, chain);
4201		if (now - acq->created > key_blockacq_lifetime
4202		 && __LIST_CHAINED(acq)) {
4203			LIST_REMOVE(acq, chain);
4204			free(acq, M_IPSEC_SAQ);
4205		}
4206	}
4207	SPACQ_UNLOCK();
4208}
4209
4210/*
4211 * time handler.
4212 * scanning SPD and SAD to check status for each entries,
4213 * and do to remove or to expire.
4214 * XXX: year 2038 problem may remain.
4215 */
4216void
4217key_timehandler(void)
4218{
4219	time_t now = time_second;
4220
4221	key_flush_spd(now);
4222	key_flush_sad(now);
4223	key_flush_acq(now);
4224	key_flush_spacq(now);
4225
4226#ifndef IPSEC_DEBUG2
4227	/* do exchange to tick time !! */
4228	(void)timeout((void *)key_timehandler, (void *)0, hz);
4229#endif /* IPSEC_DEBUG2 */
4230}
4231
4232u_long
4233key_random()
4234{
4235	u_long value;
4236
4237	key_randomfill(&value, sizeof(value));
4238	return value;
4239}
4240
4241void
4242key_randomfill(p, l)
4243	void *p;
4244	size_t l;
4245{
4246	size_t n;
4247	u_long v;
4248	static int warn = 1;
4249
4250	n = 0;
4251	n = (size_t)read_random(p, (u_int)l);
4252	/* last resort */
4253	while (n < l) {
4254		v = random();
4255		bcopy(&v, (u_int8_t *)p + n,
4256		    l - n < sizeof(v) ? l - n : sizeof(v));
4257		n += sizeof(v);
4258
4259		if (warn) {
4260			printf("WARNING: pseudo-random number generator "
4261			    "used for IPsec processing\n");
4262			warn = 0;
4263		}
4264	}
4265}
4266
4267/*
4268 * map SADB_SATYPE_* to IPPROTO_*.
4269 * if satype == SADB_SATYPE then satype is mapped to ~0.
4270 * OUT:
4271 *	0: invalid satype.
4272 */
4273static u_int16_t
4274key_satype2proto(satype)
4275	u_int8_t satype;
4276{
4277	switch (satype) {
4278	case SADB_SATYPE_UNSPEC:
4279		return IPSEC_PROTO_ANY;
4280	case SADB_SATYPE_AH:
4281		return IPPROTO_AH;
4282	case SADB_SATYPE_ESP:
4283		return IPPROTO_ESP;
4284	case SADB_X_SATYPE_IPCOMP:
4285		return IPPROTO_IPCOMP;
4286	case SADB_X_SATYPE_TCPSIGNATURE:
4287		return IPPROTO_TCP;
4288	default:
4289		return 0;
4290	}
4291	/* NOTREACHED */
4292}
4293
4294/*
4295 * map IPPROTO_* to SADB_SATYPE_*
4296 * OUT:
4297 *	0: invalid protocol type.
4298 */
4299static u_int8_t
4300key_proto2satype(proto)
4301	u_int16_t proto;
4302{
4303	switch (proto) {
4304	case IPPROTO_AH:
4305		return SADB_SATYPE_AH;
4306	case IPPROTO_ESP:
4307		return SADB_SATYPE_ESP;
4308	case IPPROTO_IPCOMP:
4309		return SADB_X_SATYPE_IPCOMP;
4310	case IPPROTO_TCP:
4311		return SADB_X_SATYPE_TCPSIGNATURE;
4312	default:
4313		return 0;
4314	}
4315	/* NOTREACHED */
4316}
4317
4318/* %%% PF_KEY */
4319/*
4320 * SADB_GETSPI processing is to receive
4321 *	<base, (SA2), src address, dst address, (SPI range)>
4322 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4323 * tree with the status of LARVAL, and send
4324 *	<base, SA(*), address(SD)>
4325 * to the IKMPd.
4326 *
4327 * IN:	mhp: pointer to the pointer to each header.
4328 * OUT:	NULL if fail.
4329 *	other if success, return pointer to the message to send.
4330 */
4331static int
4332key_getspi(so, m, mhp)
4333	struct socket *so;
4334	struct mbuf *m;
4335	const struct sadb_msghdr *mhp;
4336{
4337	struct sadb_address *src0, *dst0;
4338	struct secasindex saidx;
4339	struct secashead *newsah;
4340	struct secasvar *newsav;
4341	u_int8_t proto;
4342	u_int32_t spi;
4343	u_int8_t mode;
4344	u_int32_t reqid;
4345	int error;
4346
4347	IPSEC_ASSERT(so != NULL, ("null socket"));
4348	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4349	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4350	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4351
4352	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4353	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4354		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4355			__func__));
4356		return key_senderror(so, m, EINVAL);
4357	}
4358	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4359	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4360		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4361			__func__));
4362		return key_senderror(so, m, EINVAL);
4363	}
4364	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4365		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4366		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4367	} else {
4368		mode = IPSEC_MODE_ANY;
4369		reqid = 0;
4370	}
4371
4372	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4373	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4374
4375	/* map satype to proto */
4376	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4377		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4378			__func__));
4379		return key_senderror(so, m, EINVAL);
4380	}
4381
4382	/* make sure if port number is zero. */
4383	switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4384	case AF_INET:
4385		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4386		    sizeof(struct sockaddr_in))
4387			return key_senderror(so, m, EINVAL);
4388		((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4389		break;
4390	case AF_INET6:
4391		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4392		    sizeof(struct sockaddr_in6))
4393			return key_senderror(so, m, EINVAL);
4394		((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4395		break;
4396	default:
4397		; /*???*/
4398	}
4399	switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4400	case AF_INET:
4401		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4402		    sizeof(struct sockaddr_in))
4403			return key_senderror(so, m, EINVAL);
4404		((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4405		break;
4406	case AF_INET6:
4407		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4408		    sizeof(struct sockaddr_in6))
4409			return key_senderror(so, m, EINVAL);
4410		((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4411		break;
4412	default:
4413		; /*???*/
4414	}
4415
4416	/* XXX boundary check against sa_len */
4417	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4418
4419	/* SPI allocation */
4420	spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4421	                       &saidx);
4422	if (spi == 0)
4423		return key_senderror(so, m, EINVAL);
4424
4425	/* get a SA index */
4426	if ((newsah = key_getsah(&saidx)) == NULL) {
4427		/* create a new SA index */
4428		if ((newsah = key_newsah(&saidx)) == NULL) {
4429			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4430			return key_senderror(so, m, ENOBUFS);
4431		}
4432	}
4433
4434	/* get a new SA */
4435	/* XXX rewrite */
4436	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4437	if (newsav == NULL) {
4438		/* XXX don't free new SA index allocated in above. */
4439		return key_senderror(so, m, error);
4440	}
4441
4442	/* set spi */
4443	newsav->spi = htonl(spi);
4444
4445	/* delete the entry in acqtree */
4446	if (mhp->msg->sadb_msg_seq != 0) {
4447		struct secacq *acq;
4448		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4449			/* reset counter in order to deletion by timehandler. */
4450			acq->created = time_second;
4451			acq->count = 0;
4452		}
4453    	}
4454
4455    {
4456	struct mbuf *n, *nn;
4457	struct sadb_sa *m_sa;
4458	struct sadb_msg *newmsg;
4459	int off, len;
4460
4461	/* create new sadb_msg to reply. */
4462	len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4463	    PFKEY_ALIGN8(sizeof(struct sadb_sa));
4464	if (len > MCLBYTES)
4465		return key_senderror(so, m, ENOBUFS);
4466
4467	MGETHDR(n, M_DONTWAIT, MT_DATA);
4468	if (len > MHLEN) {
4469		MCLGET(n, M_DONTWAIT);
4470		if ((n->m_flags & M_EXT) == 0) {
4471			m_freem(n);
4472			n = NULL;
4473		}
4474	}
4475	if (!n)
4476		return key_senderror(so, m, ENOBUFS);
4477
4478	n->m_len = len;
4479	n->m_next = NULL;
4480	off = 0;
4481
4482	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4483	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4484
4485	m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4486	m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4487	m_sa->sadb_sa_exttype = SADB_EXT_SA;
4488	m_sa->sadb_sa_spi = htonl(spi);
4489	off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4490
4491	IPSEC_ASSERT(off == len,
4492		("length inconsistency (off %u len %u)", off, len));
4493
4494	n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4495	    SADB_EXT_ADDRESS_DST);
4496	if (!n->m_next) {
4497		m_freem(n);
4498		return key_senderror(so, m, ENOBUFS);
4499	}
4500
4501	if (n->m_len < sizeof(struct sadb_msg)) {
4502		n = m_pullup(n, sizeof(struct sadb_msg));
4503		if (n == NULL)
4504			return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4505	}
4506
4507	n->m_pkthdr.len = 0;
4508	for (nn = n; nn; nn = nn->m_next)
4509		n->m_pkthdr.len += nn->m_len;
4510
4511	newmsg = mtod(n, struct sadb_msg *);
4512	newmsg->sadb_msg_seq = newsav->seq;
4513	newmsg->sadb_msg_errno = 0;
4514	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4515
4516	m_freem(m);
4517	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4518    }
4519}
4520
4521/*
4522 * allocating new SPI
4523 * called by key_getspi().
4524 * OUT:
4525 *	0:	failure.
4526 *	others: success.
4527 */
4528static u_int32_t
4529key_do_getnewspi(spirange, saidx)
4530	struct sadb_spirange *spirange;
4531	struct secasindex *saidx;
4532{
4533	u_int32_t newspi;
4534	u_int32_t min, max;
4535	int count = key_spi_trycnt;
4536
4537	/* set spi range to allocate */
4538	if (spirange != NULL) {
4539		min = spirange->sadb_spirange_min;
4540		max = spirange->sadb_spirange_max;
4541	} else {
4542		min = key_spi_minval;
4543		max = key_spi_maxval;
4544	}
4545	/* IPCOMP needs 2-byte SPI */
4546	if (saidx->proto == IPPROTO_IPCOMP) {
4547		u_int32_t t;
4548		if (min >= 0x10000)
4549			min = 0xffff;
4550		if (max >= 0x10000)
4551			max = 0xffff;
4552		if (min > max) {
4553			t = min; min = max; max = t;
4554		}
4555	}
4556
4557	if (min == max) {
4558		if (key_checkspidup(saidx, min) != NULL) {
4559			ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
4560				__func__, min));
4561			return 0;
4562		}
4563
4564		count--; /* taking one cost. */
4565		newspi = min;
4566
4567	} else {
4568
4569		/* init SPI */
4570		newspi = 0;
4571
4572		/* when requesting to allocate spi ranged */
4573		while (count--) {
4574			/* generate pseudo-random SPI value ranged. */
4575			newspi = min + (key_random() % (max - min + 1));
4576
4577			if (key_checkspidup(saidx, newspi) == NULL)
4578				break;
4579		}
4580
4581		if (count == 0 || newspi == 0) {
4582			ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n",
4583				__func__));
4584			return 0;
4585		}
4586	}
4587
4588	/* statistics */
4589	keystat.getspi_count =
4590		(keystat.getspi_count + key_spi_trycnt - count) / 2;
4591
4592	return newspi;
4593}
4594
4595/*
4596 * SADB_UPDATE processing
4597 * receive
4598 *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4599 *       key(AE), (identity(SD),) (sensitivity)>
4600 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4601 * and send
4602 *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4603 *       (identity(SD),) (sensitivity)>
4604 * to the ikmpd.
4605 *
4606 * m will always be freed.
4607 */
4608static int
4609key_update(so, m, mhp)
4610	struct socket *so;
4611	struct mbuf *m;
4612	const struct sadb_msghdr *mhp;
4613{
4614	struct sadb_sa *sa0;
4615	struct sadb_address *src0, *dst0;
4616	struct secasindex saidx;
4617	struct secashead *sah;
4618	struct secasvar *sav;
4619	u_int16_t proto;
4620	u_int8_t mode;
4621	u_int32_t reqid;
4622	int error;
4623
4624	IPSEC_ASSERT(so != NULL, ("null socket"));
4625	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4626	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4627	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4628
4629	/* map satype to proto */
4630	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4631		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4632			__func__));
4633		return key_senderror(so, m, EINVAL);
4634	}
4635
4636	if (mhp->ext[SADB_EXT_SA] == NULL ||
4637	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4638	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4639	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4640	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4641	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4642	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4643	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4644	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4645	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4646	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4647		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4648			__func__));
4649		return key_senderror(so, m, EINVAL);
4650	}
4651	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4652	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4653	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4654		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4655			__func__));
4656		return key_senderror(so, m, EINVAL);
4657	}
4658	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4659		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4660		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4661	} else {
4662		mode = IPSEC_MODE_ANY;
4663		reqid = 0;
4664	}
4665	/* XXX boundary checking for other extensions */
4666
4667	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4668	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4669	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4670
4671	/* XXX boundary check against sa_len */
4672	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4673
4674	/* get a SA header */
4675	if ((sah = key_getsah(&saidx)) == NULL) {
4676		ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__));
4677		return key_senderror(so, m, ENOENT);
4678	}
4679
4680	/* set spidx if there */
4681	/* XXX rewrite */
4682	error = key_setident(sah, m, mhp);
4683	if (error)
4684		return key_senderror(so, m, error);
4685
4686	/* find a SA with sequence number. */
4687#ifdef IPSEC_DOSEQCHECK
4688	if (mhp->msg->sadb_msg_seq != 0
4689	 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
4690		ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u "
4691			"exists.\n", __func__, mhp->msg->sadb_msg_seq));
4692		return key_senderror(so, m, ENOENT);
4693	}
4694#else
4695	SAHTREE_LOCK();
4696	sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
4697	SAHTREE_UNLOCK();
4698	if (sav == NULL) {
4699		ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n",
4700			__func__, (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4701		return key_senderror(so, m, EINVAL);
4702	}
4703#endif
4704
4705	/* validity check */
4706	if (sav->sah->saidx.proto != proto) {
4707		ipseclog((LOG_DEBUG, "%s: protocol mismatched "
4708			"(DB=%u param=%u)\n", __func__,
4709			sav->sah->saidx.proto, proto));
4710		return key_senderror(so, m, EINVAL);
4711	}
4712#ifdef IPSEC_DOSEQCHECK
4713	if (sav->spi != sa0->sadb_sa_spi) {
4714		ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n",
4715		    __func__,
4716		    (u_int32_t)ntohl(sav->spi),
4717		    (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4718		return key_senderror(so, m, EINVAL);
4719	}
4720#endif
4721	if (sav->pid != mhp->msg->sadb_msg_pid) {
4722		ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n",
4723		    __func__, sav->pid, mhp->msg->sadb_msg_pid));
4724		return key_senderror(so, m, EINVAL);
4725	}
4726
4727	/* copy sav values */
4728	error = key_setsaval(sav, m, mhp);
4729	if (error) {
4730		KEY_FREESAV(&sav);
4731		return key_senderror(so, m, error);
4732	}
4733
4734	/* check SA values to be mature. */
4735	if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
4736		KEY_FREESAV(&sav);
4737		return key_senderror(so, m, 0);
4738	}
4739
4740    {
4741	struct mbuf *n;
4742
4743	/* set msg buf from mhp */
4744	n = key_getmsgbuf_x1(m, mhp);
4745	if (n == NULL) {
4746		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4747		return key_senderror(so, m, ENOBUFS);
4748	}
4749
4750	m_freem(m);
4751	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
4752    }
4753}
4754
4755/*
4756 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
4757 * only called by key_update().
4758 * OUT:
4759 *	NULL	: not found
4760 *	others	: found, pointer to a SA.
4761 */
4762#ifdef IPSEC_DOSEQCHECK
4763static struct secasvar *
4764key_getsavbyseq(sah, seq)
4765	struct secashead *sah;
4766	u_int32_t seq;
4767{
4768	struct secasvar *sav;
4769	u_int state;
4770
4771	state = SADB_SASTATE_LARVAL;
4772
4773	/* search SAD with sequence number ? */
4774	LIST_FOREACH(sav, &sah->savtree[state], chain) {
4775
4776		KEY_CHKSASTATE(state, sav->state, __func__);
4777
4778		if (sav->seq == seq) {
4779			SA_ADDREF(sav);
4780			KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
4781				printf("DP %s cause refcnt++:%d SA:%p\n",
4782					__func__, sav->refcnt, sav));
4783			return sav;
4784		}
4785	}
4786
4787	return NULL;
4788}
4789#endif
4790
4791/*
4792 * SADB_ADD processing
4793 * add an entry to SA database, when received
4794 *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4795 *       key(AE), (identity(SD),) (sensitivity)>
4796 * from the ikmpd,
4797 * and send
4798 *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4799 *       (identity(SD),) (sensitivity)>
4800 * to the ikmpd.
4801 *
4802 * IGNORE identity and sensitivity messages.
4803 *
4804 * m will always be freed.
4805 */
4806static int
4807key_add(so, m, mhp)
4808	struct socket *so;
4809	struct mbuf *m;
4810	const struct sadb_msghdr *mhp;
4811{
4812	struct sadb_sa *sa0;
4813	struct sadb_address *src0, *dst0;
4814	struct secasindex saidx;
4815	struct secashead *newsah;
4816	struct secasvar *newsav;
4817	u_int16_t proto;
4818	u_int8_t mode;
4819	u_int32_t reqid;
4820	int error;
4821
4822	IPSEC_ASSERT(so != NULL, ("null socket"));
4823	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4824	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4825	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4826
4827	/* map satype to proto */
4828	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4829		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4830			__func__));
4831		return key_senderror(so, m, EINVAL);
4832	}
4833
4834	if (mhp->ext[SADB_EXT_SA] == NULL ||
4835	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4836	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4837	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4838	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4839	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4840	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4841	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4842	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4843	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4844	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4845		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4846			__func__));
4847		return key_senderror(so, m, EINVAL);
4848	}
4849	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4850	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4851	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4852		/* XXX need more */
4853		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4854			__func__));
4855		return key_senderror(so, m, EINVAL);
4856	}
4857	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4858		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4859		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4860	} else {
4861		mode = IPSEC_MODE_ANY;
4862		reqid = 0;
4863	}
4864
4865	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4866	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
4867	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
4868
4869	/* XXX boundary check against sa_len */
4870	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4871
4872	/* get a SA header */
4873	if ((newsah = key_getsah(&saidx)) == NULL) {
4874		/* create a new SA header */
4875		if ((newsah = key_newsah(&saidx)) == NULL) {
4876			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4877			return key_senderror(so, m, ENOBUFS);
4878		}
4879	}
4880
4881	/* set spidx if there */
4882	/* XXX rewrite */
4883	error = key_setident(newsah, m, mhp);
4884	if (error) {
4885		return key_senderror(so, m, error);
4886	}
4887
4888	/* create new SA entry. */
4889	/* We can create new SA only if SPI is differenct. */
4890	SAHTREE_LOCK();
4891	newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
4892	SAHTREE_UNLOCK();
4893	if (newsav != NULL) {
4894		ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
4895		return key_senderror(so, m, EEXIST);
4896	}
4897	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4898	if (newsav == NULL) {
4899		return key_senderror(so, m, error);
4900	}
4901
4902	/* check SA values to be mature. */
4903	if ((error = key_mature(newsav)) != 0) {
4904		KEY_FREESAV(&newsav);
4905		return key_senderror(so, m, error);
4906	}
4907
4908	/*
4909	 * don't call key_freesav() here, as we would like to keep the SA
4910	 * in the database on success.
4911	 */
4912
4913    {
4914	struct mbuf *n;
4915
4916	/* set msg buf from mhp */
4917	n = key_getmsgbuf_x1(m, mhp);
4918	if (n == NULL) {
4919		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4920		return key_senderror(so, m, ENOBUFS);
4921	}
4922
4923	m_freem(m);
4924	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
4925    }
4926}
4927
4928/* m is retained */
4929static int
4930key_setident(sah, m, mhp)
4931	struct secashead *sah;
4932	struct mbuf *m;
4933	const struct sadb_msghdr *mhp;
4934{
4935	const struct sadb_ident *idsrc, *iddst;
4936	int idsrclen, iddstlen;
4937
4938	IPSEC_ASSERT(sah != NULL, ("null secashead"));
4939	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4940	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4941	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4942
4943	/* don't make buffer if not there */
4944	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
4945	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
4946		sah->idents = NULL;
4947		sah->identd = NULL;
4948		return 0;
4949	}
4950
4951	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
4952	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
4953		ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
4954		return EINVAL;
4955	}
4956
4957	idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
4958	iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
4959	idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
4960	iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
4961
4962	/* validity check */
4963	if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
4964		ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
4965		return EINVAL;
4966	}
4967
4968	switch (idsrc->sadb_ident_type) {
4969	case SADB_IDENTTYPE_PREFIX:
4970	case SADB_IDENTTYPE_FQDN:
4971	case SADB_IDENTTYPE_USERFQDN:
4972	default:
4973		/* XXX do nothing */
4974		sah->idents = NULL;
4975		sah->identd = NULL;
4976	 	return 0;
4977	}
4978
4979	/* make structure */
4980	sah->idents = malloc(idsrclen, M_IPSEC_MISC, M_NOWAIT);
4981	if (sah->idents == NULL) {
4982		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4983		return ENOBUFS;
4984	}
4985	sah->identd = malloc(iddstlen, M_IPSEC_MISC, M_NOWAIT);
4986	if (sah->identd == NULL) {
4987		free(sah->idents, M_IPSEC_MISC);
4988		sah->idents = NULL;
4989		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4990		return ENOBUFS;
4991	}
4992	bcopy(idsrc, sah->idents, idsrclen);
4993	bcopy(iddst, sah->identd, iddstlen);
4994
4995	return 0;
4996}
4997
4998/*
4999 * m will not be freed on return.
5000 * it is caller's responsibility to free the result.
5001 */
5002static struct mbuf *
5003key_getmsgbuf_x1(m, mhp)
5004	struct mbuf *m;
5005	const struct sadb_msghdr *mhp;
5006{
5007	struct mbuf *n;
5008
5009	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5010	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5011	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5012
5013	/* create new sadb_msg to reply. */
5014	n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5015	    SADB_EXT_SA, SADB_X_EXT_SA2,
5016	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5017	    SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5018	    SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5019	if (!n)
5020		return NULL;
5021
5022	if (n->m_len < sizeof(struct sadb_msg)) {
5023		n = m_pullup(n, sizeof(struct sadb_msg));
5024		if (n == NULL)
5025			return NULL;
5026	}
5027	mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5028	mtod(n, struct sadb_msg *)->sadb_msg_len =
5029	    PFKEY_UNIT64(n->m_pkthdr.len);
5030
5031	return n;
5032}
5033
5034static int key_delete_all __P((struct socket *, struct mbuf *,
5035	const struct sadb_msghdr *, u_int16_t));
5036
5037/*
5038 * SADB_DELETE processing
5039 * receive
5040 *   <base, SA(*), address(SD)>
5041 * from the ikmpd, and set SADB_SASTATE_DEAD,
5042 * and send,
5043 *   <base, SA(*), address(SD)>
5044 * to the ikmpd.
5045 *
5046 * m will always be freed.
5047 */
5048static int
5049key_delete(so, m, mhp)
5050	struct socket *so;
5051	struct mbuf *m;
5052	const struct sadb_msghdr *mhp;
5053{
5054	struct sadb_sa *sa0;
5055	struct sadb_address *src0, *dst0;
5056	struct secasindex saidx;
5057	struct secashead *sah;
5058	struct secasvar *sav = NULL;
5059	u_int16_t proto;
5060
5061	IPSEC_ASSERT(so != NULL, ("null socket"));
5062	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5063	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5064	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5065
5066	/* map satype to proto */
5067	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5068		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5069			__func__));
5070		return key_senderror(so, m, EINVAL);
5071	}
5072
5073	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5074	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5075		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5076			__func__));
5077		return key_senderror(so, m, EINVAL);
5078	}
5079
5080	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5081	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5082		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5083			__func__));
5084		return key_senderror(so, m, EINVAL);
5085	}
5086
5087	if (mhp->ext[SADB_EXT_SA] == NULL) {
5088		/*
5089		 * Caller wants us to delete all non-LARVAL SAs
5090		 * that match the src/dst.  This is used during
5091		 * IKE INITIAL-CONTACT.
5092		 */
5093		ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
5094		return key_delete_all(so, m, mhp, proto);
5095	} else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5096		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5097			__func__));
5098		return key_senderror(so, m, EINVAL);
5099	}
5100
5101	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5102	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5103	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5104
5105	/* XXX boundary check against sa_len */
5106	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5107
5108	/* get a SA header */
5109	SAHTREE_LOCK();
5110	LIST_FOREACH(sah, &sahtree, chain) {
5111		if (sah->state == SADB_SASTATE_DEAD)
5112			continue;
5113		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5114			continue;
5115
5116		/* get a SA with SPI. */
5117		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5118		if (sav)
5119			break;
5120	}
5121	if (sah == NULL) {
5122		SAHTREE_UNLOCK();
5123		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5124		return key_senderror(so, m, ENOENT);
5125	}
5126
5127	key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5128	SAHTREE_UNLOCK();
5129	KEY_FREESAV(&sav);
5130
5131    {
5132	struct mbuf *n;
5133	struct sadb_msg *newmsg;
5134
5135	/* create new sadb_msg to reply. */
5136	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5137	    SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5138	if (!n)
5139		return key_senderror(so, m, ENOBUFS);
5140
5141	if (n->m_len < sizeof(struct sadb_msg)) {
5142		n = m_pullup(n, sizeof(struct sadb_msg));
5143		if (n == NULL)
5144			return key_senderror(so, m, ENOBUFS);
5145	}
5146	newmsg = mtod(n, struct sadb_msg *);
5147	newmsg->sadb_msg_errno = 0;
5148	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5149
5150	m_freem(m);
5151	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5152    }
5153}
5154
5155/*
5156 * delete all SAs for src/dst.  Called from key_delete().
5157 */
5158static int
5159key_delete_all(so, m, mhp, proto)
5160	struct socket *so;
5161	struct mbuf *m;
5162	const struct sadb_msghdr *mhp;
5163	u_int16_t proto;
5164{
5165	struct sadb_address *src0, *dst0;
5166	struct secasindex saidx;
5167	struct secashead *sah;
5168	struct secasvar *sav, *nextsav;
5169	u_int stateidx, state;
5170
5171	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5172	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5173
5174	/* XXX boundary check against sa_len */
5175	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5176
5177	SAHTREE_LOCK();
5178	LIST_FOREACH(sah, &sahtree, chain) {
5179		if (sah->state == SADB_SASTATE_DEAD)
5180			continue;
5181		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5182			continue;
5183
5184		/* Delete all non-LARVAL SAs. */
5185		for (stateidx = 0;
5186		     stateidx < _ARRAYLEN(saorder_state_alive);
5187		     stateidx++) {
5188			state = saorder_state_alive[stateidx];
5189			if (state == SADB_SASTATE_LARVAL)
5190				continue;
5191			for (sav = LIST_FIRST(&sah->savtree[state]);
5192			     sav != NULL; sav = nextsav) {
5193				nextsav = LIST_NEXT(sav, chain);
5194				/* sanity check */
5195				if (sav->state != state) {
5196					ipseclog((LOG_DEBUG, "%s: invalid "
5197						"sav->state (queue %d SA %d)\n",
5198						__func__, state, sav->state));
5199					continue;
5200				}
5201
5202				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5203				KEY_FREESAV(&sav);
5204			}
5205		}
5206	}
5207	SAHTREE_UNLOCK();
5208    {
5209	struct mbuf *n;
5210	struct sadb_msg *newmsg;
5211
5212	/* create new sadb_msg to reply. */
5213	n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5214	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5215	if (!n)
5216		return key_senderror(so, m, ENOBUFS);
5217
5218	if (n->m_len < sizeof(struct sadb_msg)) {
5219		n = m_pullup(n, sizeof(struct sadb_msg));
5220		if (n == NULL)
5221			return key_senderror(so, m, ENOBUFS);
5222	}
5223	newmsg = mtod(n, struct sadb_msg *);
5224	newmsg->sadb_msg_errno = 0;
5225	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5226
5227	m_freem(m);
5228	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5229    }
5230}
5231
5232/*
5233 * SADB_GET processing
5234 * receive
5235 *   <base, SA(*), address(SD)>
5236 * from the ikmpd, and get a SP and a SA to respond,
5237 * and send,
5238 *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5239 *       (identity(SD),) (sensitivity)>
5240 * to the ikmpd.
5241 *
5242 * m will always be freed.
5243 */
5244static int
5245key_get(so, m, mhp)
5246	struct socket *so;
5247	struct mbuf *m;
5248	const struct sadb_msghdr *mhp;
5249{
5250	struct sadb_sa *sa0;
5251	struct sadb_address *src0, *dst0;
5252	struct secasindex saidx;
5253	struct secashead *sah;
5254	struct secasvar *sav = NULL;
5255	u_int16_t proto;
5256
5257	IPSEC_ASSERT(so != NULL, ("null socket"));
5258	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5259	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5260	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5261
5262	/* map satype to proto */
5263	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5264		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5265			__func__));
5266		return key_senderror(so, m, EINVAL);
5267	}
5268
5269	if (mhp->ext[SADB_EXT_SA] == NULL ||
5270	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5271	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5272		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5273			__func__));
5274		return key_senderror(so, m, EINVAL);
5275	}
5276	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5277	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5278	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5279		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5280			__func__));
5281		return key_senderror(so, m, EINVAL);
5282	}
5283
5284	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5285	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5286	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5287
5288	/* XXX boundary check against sa_len */
5289	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5290
5291	/* get a SA header */
5292	SAHTREE_LOCK();
5293	LIST_FOREACH(sah, &sahtree, chain) {
5294		if (sah->state == SADB_SASTATE_DEAD)
5295			continue;
5296		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5297			continue;
5298
5299		/* get a SA with SPI. */
5300		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5301		if (sav)
5302			break;
5303	}
5304	SAHTREE_UNLOCK();
5305	if (sah == NULL) {
5306		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5307		return key_senderror(so, m, ENOENT);
5308	}
5309
5310    {
5311	struct mbuf *n;
5312	u_int8_t satype;
5313
5314	/* map proto to satype */
5315	if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5316		ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
5317			__func__));
5318		return key_senderror(so, m, EINVAL);
5319	}
5320
5321	/* create new sadb_msg to reply. */
5322	n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5323	    mhp->msg->sadb_msg_pid);
5324	if (!n)
5325		return key_senderror(so, m, ENOBUFS);
5326
5327	m_freem(m);
5328	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5329    }
5330}
5331
5332/* XXX make it sysctl-configurable? */
5333static void
5334key_getcomb_setlifetime(comb)
5335	struct sadb_comb *comb;
5336{
5337
5338	comb->sadb_comb_soft_allocations = 1;
5339	comb->sadb_comb_hard_allocations = 1;
5340	comb->sadb_comb_soft_bytes = 0;
5341	comb->sadb_comb_hard_bytes = 0;
5342	comb->sadb_comb_hard_addtime = 86400;	/* 1 day */
5343	comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5344	comb->sadb_comb_soft_usetime = 28800;	/* 8 hours */
5345	comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5346}
5347
5348/*
5349 * XXX reorder combinations by preference
5350 * XXX no idea if the user wants ESP authentication or not
5351 */
5352static struct mbuf *
5353key_getcomb_esp()
5354{
5355	struct sadb_comb *comb;
5356	struct enc_xform *algo;
5357	struct mbuf *result = NULL, *m, *n;
5358	int encmin;
5359	int i, off, o;
5360	int totlen;
5361	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5362
5363	m = NULL;
5364	for (i = 1; i <= SADB_EALG_MAX; i++) {
5365		algo = esp_algorithm_lookup(i);
5366		if (algo == NULL)
5367			continue;
5368
5369		/* discard algorithms with key size smaller than system min */
5370		if (_BITS(algo->maxkey) < ipsec_esp_keymin)
5371			continue;
5372		if (_BITS(algo->minkey) < ipsec_esp_keymin)
5373			encmin = ipsec_esp_keymin;
5374		else
5375			encmin = _BITS(algo->minkey);
5376
5377		if (ipsec_esp_auth)
5378			m = key_getcomb_ah();
5379		else {
5380			IPSEC_ASSERT(l <= MLEN,
5381				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5382			MGET(m, M_DONTWAIT, MT_DATA);
5383			if (m) {
5384				M_ALIGN(m, l);
5385				m->m_len = l;
5386				m->m_next = NULL;
5387				bzero(mtod(m, caddr_t), m->m_len);
5388			}
5389		}
5390		if (!m)
5391			goto fail;
5392
5393		totlen = 0;
5394		for (n = m; n; n = n->m_next)
5395			totlen += n->m_len;
5396		IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
5397
5398		for (off = 0; off < totlen; off += l) {
5399			n = m_pulldown(m, off, l, &o);
5400			if (!n) {
5401				/* m is already freed */
5402				goto fail;
5403			}
5404			comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
5405			bzero(comb, sizeof(*comb));
5406			key_getcomb_setlifetime(comb);
5407			comb->sadb_comb_encrypt = i;
5408			comb->sadb_comb_encrypt_minbits = encmin;
5409			comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
5410		}
5411
5412		if (!result)
5413			result = m;
5414		else
5415			m_cat(result, m);
5416	}
5417
5418	return result;
5419
5420 fail:
5421	if (result)
5422		m_freem(result);
5423	return NULL;
5424}
5425
5426static void
5427key_getsizes_ah(
5428	const struct auth_hash *ah,
5429	int alg,
5430	u_int16_t* min,
5431	u_int16_t* max)
5432{
5433	*min = *max = ah->keysize;
5434	if (ah->keysize == 0) {
5435		/*
5436		 * Transform takes arbitrary key size but algorithm
5437		 * key size is restricted.  Enforce this here.
5438		 */
5439		switch (alg) {
5440		case SADB_X_AALG_MD5:	*min = *max = 16; break;
5441		case SADB_X_AALG_SHA:	*min = *max = 20; break;
5442		case SADB_X_AALG_NULL:	*min = 1; *max = 256; break;
5443		default:
5444			DPRINTF(("%s: unknown AH algorithm %u\n",
5445				__func__, alg));
5446			break;
5447		}
5448	}
5449}
5450
5451/*
5452 * XXX reorder combinations by preference
5453 */
5454static struct mbuf *
5455key_getcomb_ah()
5456{
5457	struct sadb_comb *comb;
5458	struct auth_hash *algo;
5459	struct mbuf *m;
5460	u_int16_t minkeysize, maxkeysize;
5461	int i;
5462	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5463
5464	m = NULL;
5465	for (i = 1; i <= SADB_AALG_MAX; i++) {
5466#if 1
5467		/* we prefer HMAC algorithms, not old algorithms */
5468		if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC)
5469			continue;
5470#endif
5471		algo = ah_algorithm_lookup(i);
5472		if (!algo)
5473			continue;
5474		key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
5475		/* discard algorithms with key size smaller than system min */
5476		if (_BITS(minkeysize) < ipsec_ah_keymin)
5477			continue;
5478
5479		if (!m) {
5480			IPSEC_ASSERT(l <= MLEN,
5481				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5482			MGET(m, M_DONTWAIT, MT_DATA);
5483			if (m) {
5484				M_ALIGN(m, l);
5485				m->m_len = l;
5486				m->m_next = NULL;
5487			}
5488		} else
5489			M_PREPEND(m, l, M_DONTWAIT);
5490		if (!m)
5491			return NULL;
5492
5493		comb = mtod(m, struct sadb_comb *);
5494		bzero(comb, sizeof(*comb));
5495		key_getcomb_setlifetime(comb);
5496		comb->sadb_comb_auth = i;
5497		comb->sadb_comb_auth_minbits = _BITS(minkeysize);
5498		comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
5499	}
5500
5501	return m;
5502}
5503
5504/*
5505 * not really an official behavior.  discussed in pf_key@inner.net in Sep2000.
5506 * XXX reorder combinations by preference
5507 */
5508static struct mbuf *
5509key_getcomb_ipcomp()
5510{
5511	struct sadb_comb *comb;
5512	struct comp_algo *algo;
5513	struct mbuf *m;
5514	int i;
5515	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5516
5517	m = NULL;
5518	for (i = 1; i <= SADB_X_CALG_MAX; i++) {
5519		algo = ipcomp_algorithm_lookup(i);
5520		if (!algo)
5521			continue;
5522
5523		if (!m) {
5524			IPSEC_ASSERT(l <= MLEN,
5525				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5526			MGET(m, M_DONTWAIT, MT_DATA);
5527			if (m) {
5528				M_ALIGN(m, l);
5529				m->m_len = l;
5530				m->m_next = NULL;
5531			}
5532		} else
5533			M_PREPEND(m, l, M_DONTWAIT);
5534		if (!m)
5535			return NULL;
5536
5537		comb = mtod(m, struct sadb_comb *);
5538		bzero(comb, sizeof(*comb));
5539		key_getcomb_setlifetime(comb);
5540		comb->sadb_comb_encrypt = i;
5541		/* what should we set into sadb_comb_*_{min,max}bits? */
5542	}
5543
5544	return m;
5545}
5546
5547/*
5548 * XXX no way to pass mode (transport/tunnel) to userland
5549 * XXX replay checking?
5550 * XXX sysctl interface to ipsec_{ah,esp}_keymin
5551 */
5552static struct mbuf *
5553key_getprop(saidx)
5554	const struct secasindex *saidx;
5555{
5556	struct sadb_prop *prop;
5557	struct mbuf *m, *n;
5558	const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
5559	int totlen;
5560
5561	switch (saidx->proto)  {
5562	case IPPROTO_ESP:
5563		m = key_getcomb_esp();
5564		break;
5565	case IPPROTO_AH:
5566		m = key_getcomb_ah();
5567		break;
5568	case IPPROTO_IPCOMP:
5569		m = key_getcomb_ipcomp();
5570		break;
5571	default:
5572		return NULL;
5573	}
5574
5575	if (!m)
5576		return NULL;
5577	M_PREPEND(m, l, M_DONTWAIT);
5578	if (!m)
5579		return NULL;
5580
5581	totlen = 0;
5582	for (n = m; n; n = n->m_next)
5583		totlen += n->m_len;
5584
5585	prop = mtod(m, struct sadb_prop *);
5586	bzero(prop, sizeof(*prop));
5587	prop->sadb_prop_len = PFKEY_UNIT64(totlen);
5588	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
5589	prop->sadb_prop_replay = 32;	/* XXX */
5590
5591	return m;
5592}
5593
5594/*
5595 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
5596 * send
5597 *   <base, SA, address(SD), (address(P)), x_policy,
5598 *       (identity(SD),) (sensitivity,) proposal>
5599 * to KMD, and expect to receive
5600 *   <base> with SADB_ACQUIRE if error occured,
5601 * or
5602 *   <base, src address, dst address, (SPI range)> with SADB_GETSPI
5603 * from KMD by PF_KEY.
5604 *
5605 * XXX x_policy is outside of RFC2367 (KAME extension).
5606 * XXX sensitivity is not supported.
5607 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
5608 * see comment for key_getcomb_ipcomp().
5609 *
5610 * OUT:
5611 *    0     : succeed
5612 *    others: error number
5613 */
5614static int
5615key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
5616{
5617	struct mbuf *result = NULL, *m;
5618	struct secacq *newacq;
5619	u_int8_t satype;
5620	int error = -1;
5621	u_int32_t seq;
5622
5623	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
5624	satype = key_proto2satype(saidx->proto);
5625	IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
5626
5627	/*
5628	 * We never do anything about acquirng SA.  There is anather
5629	 * solution that kernel blocks to send SADB_ACQUIRE message until
5630	 * getting something message from IKEd.  In later case, to be
5631	 * managed with ACQUIRING list.
5632	 */
5633	/* Get an entry to check whether sending message or not. */
5634	if ((newacq = key_getacq(saidx)) != NULL) {
5635		if (key_blockacq_count < newacq->count) {
5636			/* reset counter and do send message. */
5637			newacq->count = 0;
5638		} else {
5639			/* increment counter and do nothing. */
5640			newacq->count++;
5641			return 0;
5642		}
5643	} else {
5644		/* make new entry for blocking to send SADB_ACQUIRE. */
5645		if ((newacq = key_newacq(saidx)) == NULL)
5646			return ENOBUFS;
5647	}
5648
5649
5650	seq = newacq->seq;
5651	m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
5652	if (!m) {
5653		error = ENOBUFS;
5654		goto fail;
5655	}
5656	result = m;
5657
5658	/* set sadb_address for saidx's. */
5659	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
5660	    &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5661	if (!m) {
5662		error = ENOBUFS;
5663		goto fail;
5664	}
5665	m_cat(result, m);
5666
5667	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
5668	    &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5669	if (!m) {
5670		error = ENOBUFS;
5671		goto fail;
5672	}
5673	m_cat(result, m);
5674
5675	/* XXX proxy address (optional) */
5676
5677	/* set sadb_x_policy */
5678	if (sp) {
5679		m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
5680		if (!m) {
5681			error = ENOBUFS;
5682			goto fail;
5683		}
5684		m_cat(result, m);
5685	}
5686
5687	/* XXX identity (optional) */
5688#if 0
5689	if (idexttype && fqdn) {
5690		/* create identity extension (FQDN) */
5691		struct sadb_ident *id;
5692		int fqdnlen;
5693
5694		fqdnlen = strlen(fqdn) + 1;	/* +1 for terminating-NUL */
5695		id = (struct sadb_ident *)p;
5696		bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5697		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5698		id->sadb_ident_exttype = idexttype;
5699		id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
5700		bcopy(fqdn, id + 1, fqdnlen);
5701		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
5702	}
5703
5704	if (idexttype) {
5705		/* create identity extension (USERFQDN) */
5706		struct sadb_ident *id;
5707		int userfqdnlen;
5708
5709		if (userfqdn) {
5710			/* +1 for terminating-NUL */
5711			userfqdnlen = strlen(userfqdn) + 1;
5712		} else
5713			userfqdnlen = 0;
5714		id = (struct sadb_ident *)p;
5715		bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5716		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5717		id->sadb_ident_exttype = idexttype;
5718		id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
5719		/* XXX is it correct? */
5720		if (curproc && curproc->p_cred)
5721			id->sadb_ident_id = curproc->p_cred->p_ruid;
5722		if (userfqdn && userfqdnlen)
5723			bcopy(userfqdn, id + 1, userfqdnlen);
5724		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
5725	}
5726#endif
5727
5728	/* XXX sensitivity (optional) */
5729
5730	/* create proposal/combination extension */
5731	m = key_getprop(saidx);
5732#if 0
5733	/*
5734	 * spec conformant: always attach proposal/combination extension,
5735	 * the problem is that we have no way to attach it for ipcomp,
5736	 * due to the way sadb_comb is declared in RFC2367.
5737	 */
5738	if (!m) {
5739		error = ENOBUFS;
5740		goto fail;
5741	}
5742	m_cat(result, m);
5743#else
5744	/*
5745	 * outside of spec; make proposal/combination extension optional.
5746	 */
5747	if (m)
5748		m_cat(result, m);
5749#endif
5750
5751	if ((result->m_flags & M_PKTHDR) == 0) {
5752		error = EINVAL;
5753		goto fail;
5754	}
5755
5756	if (result->m_len < sizeof(struct sadb_msg)) {
5757		result = m_pullup(result, sizeof(struct sadb_msg));
5758		if (result == NULL) {
5759			error = ENOBUFS;
5760			goto fail;
5761		}
5762	}
5763
5764	result->m_pkthdr.len = 0;
5765	for (m = result; m; m = m->m_next)
5766		result->m_pkthdr.len += m->m_len;
5767
5768	mtod(result, struct sadb_msg *)->sadb_msg_len =
5769	    PFKEY_UNIT64(result->m_pkthdr.len);
5770
5771	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
5772
5773 fail:
5774	if (result)
5775		m_freem(result);
5776	return error;
5777}
5778
5779static struct secacq *
5780key_newacq(const struct secasindex *saidx)
5781{
5782	struct secacq *newacq;
5783
5784	/* get new entry */
5785	newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
5786	if (newacq == NULL) {
5787		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5788		return NULL;
5789	}
5790
5791	/* copy secindex */
5792	bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
5793	newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
5794	newacq->created = time_second;
5795	newacq->count = 0;
5796
5797	/* add to acqtree */
5798	ACQ_LOCK();
5799	LIST_INSERT_HEAD(&acqtree, newacq, chain);
5800	ACQ_UNLOCK();
5801
5802	return newacq;
5803}
5804
5805static struct secacq *
5806key_getacq(const struct secasindex *saidx)
5807{
5808	struct secacq *acq;
5809
5810	ACQ_LOCK();
5811	LIST_FOREACH(acq, &acqtree, chain) {
5812		if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
5813			break;
5814	}
5815	ACQ_UNLOCK();
5816
5817	return acq;
5818}
5819
5820static struct secacq *
5821key_getacqbyseq(seq)
5822	u_int32_t seq;
5823{
5824	struct secacq *acq;
5825
5826	ACQ_LOCK();
5827	LIST_FOREACH(acq, &acqtree, chain) {
5828		if (acq->seq == seq)
5829			break;
5830	}
5831	ACQ_UNLOCK();
5832
5833	return acq;
5834}
5835
5836static struct secspacq *
5837key_newspacq(spidx)
5838	struct secpolicyindex *spidx;
5839{
5840	struct secspacq *acq;
5841
5842	/* get new entry */
5843	acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
5844	if (acq == NULL) {
5845		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5846		return NULL;
5847	}
5848
5849	/* copy secindex */
5850	bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
5851	acq->created = time_second;
5852	acq->count = 0;
5853
5854	/* add to spacqtree */
5855	SPACQ_LOCK();
5856	LIST_INSERT_HEAD(&spacqtree, acq, chain);
5857	SPACQ_UNLOCK();
5858
5859	return acq;
5860}
5861
5862static struct secspacq *
5863key_getspacq(spidx)
5864	struct secpolicyindex *spidx;
5865{
5866	struct secspacq *acq;
5867
5868	SPACQ_LOCK();
5869	LIST_FOREACH(acq, &spacqtree, chain) {
5870		if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
5871			/* NB: return holding spacq_lock */
5872			return acq;
5873		}
5874	}
5875	SPACQ_UNLOCK();
5876
5877	return NULL;
5878}
5879
5880/*
5881 * SADB_ACQUIRE processing,
5882 * in first situation, is receiving
5883 *   <base>
5884 * from the ikmpd, and clear sequence of its secasvar entry.
5885 *
5886 * In second situation, is receiving
5887 *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
5888 * from a user land process, and return
5889 *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
5890 * to the socket.
5891 *
5892 * m will always be freed.
5893 */
5894static int
5895key_acquire2(so, m, mhp)
5896	struct socket *so;
5897	struct mbuf *m;
5898	const struct sadb_msghdr *mhp;
5899{
5900	const struct sadb_address *src0, *dst0;
5901	struct secasindex saidx;
5902	struct secashead *sah;
5903	u_int16_t proto;
5904	int error;
5905
5906	IPSEC_ASSERT(so != NULL, ("null socket"));
5907	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5908	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5909	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5910
5911	/*
5912	 * Error message from KMd.
5913	 * We assume that if error was occured in IKEd, the length of PFKEY
5914	 * message is equal to the size of sadb_msg structure.
5915	 * We do not raise error even if error occured in this function.
5916	 */
5917	if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
5918		struct secacq *acq;
5919
5920		/* check sequence number */
5921		if (mhp->msg->sadb_msg_seq == 0) {
5922			ipseclog((LOG_DEBUG, "%s: must specify sequence "
5923				"number.\n", __func__));
5924			m_freem(m);
5925			return 0;
5926		}
5927
5928		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
5929			/*
5930			 * the specified larval SA is already gone, or we got
5931			 * a bogus sequence number.  we can silently ignore it.
5932			 */
5933			m_freem(m);
5934			return 0;
5935		}
5936
5937		/* reset acq counter in order to deletion by timehander. */
5938		acq->created = time_second;
5939		acq->count = 0;
5940		m_freem(m);
5941		return 0;
5942	}
5943
5944	/*
5945	 * This message is from user land.
5946	 */
5947
5948	/* map satype to proto */
5949	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5950		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5951			__func__));
5952		return key_senderror(so, m, EINVAL);
5953	}
5954
5955	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5956	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5957	    mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
5958		/* error */
5959		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5960			__func__));
5961		return key_senderror(so, m, EINVAL);
5962	}
5963	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5964	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
5965	    mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
5966		/* error */
5967		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5968			__func__));
5969		return key_senderror(so, m, EINVAL);
5970	}
5971
5972	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5973	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5974
5975	/* XXX boundary check against sa_len */
5976	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5977
5978	/* get a SA index */
5979	SAHTREE_LOCK();
5980	LIST_FOREACH(sah, &sahtree, chain) {
5981		if (sah->state == SADB_SASTATE_DEAD)
5982			continue;
5983		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
5984			break;
5985	}
5986	SAHTREE_UNLOCK();
5987	if (sah != NULL) {
5988		ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
5989		return key_senderror(so, m, EEXIST);
5990	}
5991
5992	error = key_acquire(&saidx, NULL);
5993	if (error != 0) {
5994		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
5995			__func__, mhp->msg->sadb_msg_errno));
5996		return key_senderror(so, m, error);
5997	}
5998
5999	return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6000}
6001
6002/*
6003 * SADB_REGISTER processing.
6004 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6005 * receive
6006 *   <base>
6007 * from the ikmpd, and register a socket to send PF_KEY messages,
6008 * and send
6009 *   <base, supported>
6010 * to KMD by PF_KEY.
6011 * If socket is detached, must free from regnode.
6012 *
6013 * m will always be freed.
6014 */
6015static int
6016key_register(so, m, mhp)
6017	struct socket *so;
6018	struct mbuf *m;
6019	const struct sadb_msghdr *mhp;
6020{
6021	struct secreg *reg, *newreg = 0;
6022
6023	IPSEC_ASSERT(so != NULL, ("null socket"));
6024	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6025	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6026	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6027
6028	/* check for invalid register message */
6029	if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0]))
6030		return key_senderror(so, m, EINVAL);
6031
6032	/* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6033	if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6034		goto setmsg;
6035
6036	/* check whether existing or not */
6037	REGTREE_LOCK();
6038	LIST_FOREACH(reg, &regtree[mhp->msg->sadb_msg_satype], chain) {
6039		if (reg->so == so) {
6040			REGTREE_UNLOCK();
6041			ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
6042				__func__));
6043			return key_senderror(so, m, EEXIST);
6044		}
6045	}
6046
6047	/* create regnode */
6048	newreg =  malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
6049	if (newreg == NULL) {
6050		REGTREE_UNLOCK();
6051		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6052		return key_senderror(so, m, ENOBUFS);
6053	}
6054
6055	newreg->so = so;
6056	((struct keycb *)sotorawcb(so))->kp_registered++;
6057
6058	/* add regnode to regtree. */
6059	LIST_INSERT_HEAD(&regtree[mhp->msg->sadb_msg_satype], newreg, chain);
6060	REGTREE_UNLOCK();
6061
6062  setmsg:
6063    {
6064	struct mbuf *n;
6065	struct sadb_msg *newmsg;
6066	struct sadb_supported *sup;
6067	u_int len, alen, elen;
6068	int off;
6069	int i;
6070	struct sadb_alg *alg;
6071
6072	/* create new sadb_msg to reply. */
6073	alen = 0;
6074	for (i = 1; i <= SADB_AALG_MAX; i++) {
6075		if (ah_algorithm_lookup(i))
6076			alen += sizeof(struct sadb_alg);
6077	}
6078	if (alen)
6079		alen += sizeof(struct sadb_supported);
6080	elen = 0;
6081	for (i = 1; i <= SADB_EALG_MAX; i++) {
6082		if (esp_algorithm_lookup(i))
6083			elen += sizeof(struct sadb_alg);
6084	}
6085	if (elen)
6086		elen += sizeof(struct sadb_supported);
6087
6088	len = sizeof(struct sadb_msg) + alen + elen;
6089
6090	if (len > MCLBYTES)
6091		return key_senderror(so, m, ENOBUFS);
6092
6093	MGETHDR(n, M_DONTWAIT, MT_DATA);
6094	if (len > MHLEN) {
6095		MCLGET(n, M_DONTWAIT);
6096		if ((n->m_flags & M_EXT) == 0) {
6097			m_freem(n);
6098			n = NULL;
6099		}
6100	}
6101	if (!n)
6102		return key_senderror(so, m, ENOBUFS);
6103
6104	n->m_pkthdr.len = n->m_len = len;
6105	n->m_next = NULL;
6106	off = 0;
6107
6108	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
6109	newmsg = mtod(n, struct sadb_msg *);
6110	newmsg->sadb_msg_errno = 0;
6111	newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6112	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6113
6114	/* for authentication algorithm */
6115	if (alen) {
6116		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6117		sup->sadb_supported_len = PFKEY_UNIT64(alen);
6118		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6119		off += PFKEY_ALIGN8(sizeof(*sup));
6120
6121		for (i = 1; i <= SADB_AALG_MAX; i++) {
6122			struct auth_hash *aalgo;
6123			u_int16_t minkeysize, maxkeysize;
6124
6125			aalgo = ah_algorithm_lookup(i);
6126			if (!aalgo)
6127				continue;
6128			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6129			alg->sadb_alg_id = i;
6130			alg->sadb_alg_ivlen = 0;
6131			key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6132			alg->sadb_alg_minbits = _BITS(minkeysize);
6133			alg->sadb_alg_maxbits = _BITS(maxkeysize);
6134			off += PFKEY_ALIGN8(sizeof(*alg));
6135		}
6136	}
6137
6138	/* for encryption algorithm */
6139	if (elen) {
6140		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6141		sup->sadb_supported_len = PFKEY_UNIT64(elen);
6142		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6143		off += PFKEY_ALIGN8(sizeof(*sup));
6144
6145		for (i = 1; i <= SADB_EALG_MAX; i++) {
6146			struct enc_xform *ealgo;
6147
6148			ealgo = esp_algorithm_lookup(i);
6149			if (!ealgo)
6150				continue;
6151			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6152			alg->sadb_alg_id = i;
6153			alg->sadb_alg_ivlen = ealgo->blocksize;
6154			alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6155			alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6156			off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6157		}
6158	}
6159
6160	IPSEC_ASSERT(off == len,
6161		("length assumption failed (off %u len %u)", off, len));
6162
6163	m_freem(m);
6164	return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6165    }
6166}
6167
6168/*
6169 * free secreg entry registered.
6170 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6171 */
6172void
6173key_freereg(struct socket *so)
6174{
6175	struct secreg *reg;
6176	int i;
6177
6178	IPSEC_ASSERT(so != NULL, ("NULL so"));
6179
6180	/*
6181	 * check whether existing or not.
6182	 * check all type of SA, because there is a potential that
6183	 * one socket is registered to multiple type of SA.
6184	 */
6185	REGTREE_LOCK();
6186	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6187		LIST_FOREACH(reg, &regtree[i], chain) {
6188			if (reg->so == so && __LIST_CHAINED(reg)) {
6189				LIST_REMOVE(reg, chain);
6190				free(reg, M_IPSEC_SAR);
6191				break;
6192			}
6193		}
6194	}
6195	REGTREE_UNLOCK();
6196}
6197
6198/*
6199 * SADB_EXPIRE processing
6200 * send
6201 *   <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6202 * to KMD by PF_KEY.
6203 * NOTE: We send only soft lifetime extension.
6204 *
6205 * OUT:	0	: succeed
6206 *	others	: error number
6207 */
6208static int
6209key_expire(struct secasvar *sav)
6210{
6211	int s;
6212	int satype;
6213	struct mbuf *result = NULL, *m;
6214	int len;
6215	int error = -1;
6216	struct sadb_lifetime *lt;
6217
6218	/* XXX: Why do we lock ? */
6219	s = splnet();	/*called from softclock()*/
6220
6221	IPSEC_ASSERT (sav != NULL, ("null sav"));
6222	IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
6223
6224	/* set msg header */
6225	satype = key_proto2satype(sav->sah->saidx.proto);
6226	IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
6227	m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6228	if (!m) {
6229		error = ENOBUFS;
6230		goto fail;
6231	}
6232	result = m;
6233
6234	/* create SA extension */
6235	m = key_setsadbsa(sav);
6236	if (!m) {
6237		error = ENOBUFS;
6238		goto fail;
6239	}
6240	m_cat(result, m);
6241
6242	/* create SA extension */
6243	m = key_setsadbxsa2(sav->sah->saidx.mode,
6244			sav->replay ? sav->replay->count : 0,
6245			sav->sah->saidx.reqid);
6246	if (!m) {
6247		error = ENOBUFS;
6248		goto fail;
6249	}
6250	m_cat(result, m);
6251
6252	/* create lifetime extension (current and soft) */
6253	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6254	m = key_alloc_mbuf(len);
6255	if (!m || m->m_next) {	/*XXX*/
6256		if (m)
6257			m_freem(m);
6258		error = ENOBUFS;
6259		goto fail;
6260	}
6261	bzero(mtod(m, caddr_t), len);
6262	lt = mtod(m, struct sadb_lifetime *);
6263	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6264	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6265	lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6266	lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6267	lt->sadb_lifetime_addtime = sav->lft_c->sadb_lifetime_addtime;
6268	lt->sadb_lifetime_usetime = sav->lft_c->sadb_lifetime_usetime;
6269	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
6270	bcopy(sav->lft_s, lt, sizeof(*lt));
6271	m_cat(result, m);
6272
6273	/* set sadb_address for source */
6274	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6275	    &sav->sah->saidx.src.sa,
6276	    FULLMASK, IPSEC_ULPROTO_ANY);
6277	if (!m) {
6278		error = ENOBUFS;
6279		goto fail;
6280	}
6281	m_cat(result, m);
6282
6283	/* set sadb_address for destination */
6284	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6285	    &sav->sah->saidx.dst.sa,
6286	    FULLMASK, IPSEC_ULPROTO_ANY);
6287	if (!m) {
6288		error = ENOBUFS;
6289		goto fail;
6290	}
6291	m_cat(result, m);
6292
6293	if ((result->m_flags & M_PKTHDR) == 0) {
6294		error = EINVAL;
6295		goto fail;
6296	}
6297
6298	if (result->m_len < sizeof(struct sadb_msg)) {
6299		result = m_pullup(result, sizeof(struct sadb_msg));
6300		if (result == NULL) {
6301			error = ENOBUFS;
6302			goto fail;
6303		}
6304	}
6305
6306	result->m_pkthdr.len = 0;
6307	for (m = result; m; m = m->m_next)
6308		result->m_pkthdr.len += m->m_len;
6309
6310	mtod(result, struct sadb_msg *)->sadb_msg_len =
6311	    PFKEY_UNIT64(result->m_pkthdr.len);
6312
6313	splx(s);
6314	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6315
6316 fail:
6317	if (result)
6318		m_freem(result);
6319	splx(s);
6320	return error;
6321}
6322
6323/*
6324 * SADB_FLUSH processing
6325 * receive
6326 *   <base>
6327 * from the ikmpd, and free all entries in secastree.
6328 * and send,
6329 *   <base>
6330 * to the ikmpd.
6331 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6332 *
6333 * m will always be freed.
6334 */
6335static int
6336key_flush(so, m, mhp)
6337	struct socket *so;
6338	struct mbuf *m;
6339	const struct sadb_msghdr *mhp;
6340{
6341	struct sadb_msg *newmsg;
6342	struct secashead *sah, *nextsah;
6343	struct secasvar *sav, *nextsav;
6344	u_int16_t proto;
6345	u_int8_t state;
6346	u_int stateidx;
6347
6348	IPSEC_ASSERT(so != NULL, ("null socket"));
6349	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6350	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6351
6352	/* map satype to proto */
6353	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6354		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6355			__func__));
6356		return key_senderror(so, m, EINVAL);
6357	}
6358
6359	/* no SATYPE specified, i.e. flushing all SA. */
6360	SAHTREE_LOCK();
6361	for (sah = LIST_FIRST(&sahtree);
6362	     sah != NULL;
6363	     sah = nextsah) {
6364		nextsah = LIST_NEXT(sah, chain);
6365
6366		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6367		 && proto != sah->saidx.proto)
6368			continue;
6369
6370		for (stateidx = 0;
6371		     stateidx < _ARRAYLEN(saorder_state_alive);
6372		     stateidx++) {
6373			state = saorder_state_any[stateidx];
6374			for (sav = LIST_FIRST(&sah->savtree[state]);
6375			     sav != NULL;
6376			     sav = nextsav) {
6377
6378				nextsav = LIST_NEXT(sav, chain);
6379
6380				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6381				KEY_FREESAV(&sav);
6382			}
6383		}
6384
6385		sah->state = SADB_SASTATE_DEAD;
6386	}
6387	SAHTREE_UNLOCK();
6388
6389	if (m->m_len < sizeof(struct sadb_msg) ||
6390	    sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6391		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6392		return key_senderror(so, m, ENOBUFS);
6393	}
6394
6395	if (m->m_next)
6396		m_freem(m->m_next);
6397	m->m_next = NULL;
6398	m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6399	newmsg = mtod(m, struct sadb_msg *);
6400	newmsg->sadb_msg_errno = 0;
6401	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6402
6403	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6404}
6405
6406/*
6407 * SADB_DUMP processing
6408 * dump all entries including status of DEAD in SAD.
6409 * receive
6410 *   <base>
6411 * from the ikmpd, and dump all secasvar leaves
6412 * and send,
6413 *   <base> .....
6414 * to the ikmpd.
6415 *
6416 * m will always be freed.
6417 */
6418static int
6419key_dump(so, m, mhp)
6420	struct socket *so;
6421	struct mbuf *m;
6422	const struct sadb_msghdr *mhp;
6423{
6424	struct secashead *sah;
6425	struct secasvar *sav;
6426	u_int16_t proto;
6427	u_int stateidx;
6428	u_int8_t satype;
6429	u_int8_t state;
6430	int cnt;
6431	struct sadb_msg *newmsg;
6432	struct mbuf *n;
6433
6434	IPSEC_ASSERT(so != NULL, ("null socket"));
6435	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6436	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6437	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6438
6439	/* map satype to proto */
6440	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6441		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6442			__func__));
6443		return key_senderror(so, m, EINVAL);
6444	}
6445
6446	/* count sav entries to be sent to the userland. */
6447	cnt = 0;
6448	SAHTREE_LOCK();
6449	LIST_FOREACH(sah, &sahtree, chain) {
6450		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6451		 && proto != sah->saidx.proto)
6452			continue;
6453
6454		for (stateidx = 0;
6455		     stateidx < _ARRAYLEN(saorder_state_any);
6456		     stateidx++) {
6457			state = saorder_state_any[stateidx];
6458			LIST_FOREACH(sav, &sah->savtree[state], chain) {
6459				cnt++;
6460			}
6461		}
6462	}
6463
6464	if (cnt == 0) {
6465		SAHTREE_UNLOCK();
6466		return key_senderror(so, m, ENOENT);
6467	}
6468
6469	/* send this to the userland, one at a time. */
6470	newmsg = NULL;
6471	LIST_FOREACH(sah, &sahtree, chain) {
6472		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6473		 && proto != sah->saidx.proto)
6474			continue;
6475
6476		/* map proto to satype */
6477		if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
6478			SAHTREE_UNLOCK();
6479			ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
6480				"SAD.\n", __func__));
6481			return key_senderror(so, m, EINVAL);
6482		}
6483
6484		for (stateidx = 0;
6485		     stateidx < _ARRAYLEN(saorder_state_any);
6486		     stateidx++) {
6487			state = saorder_state_any[stateidx];
6488			LIST_FOREACH(sav, &sah->savtree[state], chain) {
6489				n = key_setdumpsa(sav, SADB_DUMP, satype,
6490				    --cnt, mhp->msg->sadb_msg_pid);
6491				if (!n) {
6492					SAHTREE_UNLOCK();
6493					return key_senderror(so, m, ENOBUFS);
6494				}
6495				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6496			}
6497		}
6498	}
6499	SAHTREE_UNLOCK();
6500
6501	m_freem(m);
6502	return 0;
6503}
6504
6505/*
6506 * SADB_X_PROMISC processing
6507 *
6508 * m will always be freed.
6509 */
6510static int
6511key_promisc(so, m, mhp)
6512	struct socket *so;
6513	struct mbuf *m;
6514	const struct sadb_msghdr *mhp;
6515{
6516	int olen;
6517
6518	IPSEC_ASSERT(so != NULL, ("null socket"));
6519	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6520	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6521	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6522
6523	olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
6524
6525	if (olen < sizeof(struct sadb_msg)) {
6526#if 1
6527		return key_senderror(so, m, EINVAL);
6528#else
6529		m_freem(m);
6530		return 0;
6531#endif
6532	} else if (olen == sizeof(struct sadb_msg)) {
6533		/* enable/disable promisc mode */
6534		struct keycb *kp;
6535
6536		if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
6537			return key_senderror(so, m, EINVAL);
6538		mhp->msg->sadb_msg_errno = 0;
6539		switch (mhp->msg->sadb_msg_satype) {
6540		case 0:
6541		case 1:
6542			kp->kp_promisc = mhp->msg->sadb_msg_satype;
6543			break;
6544		default:
6545			return key_senderror(so, m, EINVAL);
6546		}
6547
6548		/* send the original message back to everyone */
6549		mhp->msg->sadb_msg_errno = 0;
6550		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6551	} else {
6552		/* send packet as is */
6553
6554		m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
6555
6556		/* TODO: if sadb_msg_seq is specified, send to specific pid */
6557		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6558	}
6559}
6560
6561static int (*key_typesw[]) __P((struct socket *, struct mbuf *,
6562		const struct sadb_msghdr *)) = {
6563	NULL,		/* SADB_RESERVED */
6564	key_getspi,	/* SADB_GETSPI */
6565	key_update,	/* SADB_UPDATE */
6566	key_add,	/* SADB_ADD */
6567	key_delete,	/* SADB_DELETE */
6568	key_get,	/* SADB_GET */
6569	key_acquire2,	/* SADB_ACQUIRE */
6570	key_register,	/* SADB_REGISTER */
6571	NULL,		/* SADB_EXPIRE */
6572	key_flush,	/* SADB_FLUSH */
6573	key_dump,	/* SADB_DUMP */
6574	key_promisc,	/* SADB_X_PROMISC */
6575	NULL,		/* SADB_X_PCHANGE */
6576	key_spdadd,	/* SADB_X_SPDUPDATE */
6577	key_spdadd,	/* SADB_X_SPDADD */
6578	key_spddelete,	/* SADB_X_SPDDELETE */
6579	key_spdget,	/* SADB_X_SPDGET */
6580	NULL,		/* SADB_X_SPDACQUIRE */
6581	key_spddump,	/* SADB_X_SPDDUMP */
6582	key_spdflush,	/* SADB_X_SPDFLUSH */
6583	key_spdadd,	/* SADB_X_SPDSETIDX */
6584	NULL,		/* SADB_X_SPDEXPIRE */
6585	key_spddelete2,	/* SADB_X_SPDDELETE2 */
6586};
6587
6588/*
6589 * parse sadb_msg buffer to process PFKEYv2,
6590 * and create a data to response if needed.
6591 * I think to be dealed with mbuf directly.
6592 * IN:
6593 *     msgp  : pointer to pointer to a received buffer pulluped.
6594 *             This is rewrited to response.
6595 *     so    : pointer to socket.
6596 * OUT:
6597 *    length for buffer to send to user process.
6598 */
6599int
6600key_parse(m, so)
6601	struct mbuf *m;
6602	struct socket *so;
6603{
6604	struct sadb_msg *msg;
6605	struct sadb_msghdr mh;
6606	u_int orglen;
6607	int error;
6608	int target;
6609
6610	IPSEC_ASSERT(so != NULL, ("null socket"));
6611	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6612
6613#if 0	/*kdebug_sadb assumes msg in linear buffer*/
6614	KEYDEBUG(KEYDEBUG_KEY_DUMP,
6615		ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__));
6616		kdebug_sadb(msg));
6617#endif
6618
6619	if (m->m_len < sizeof(struct sadb_msg)) {
6620		m = m_pullup(m, sizeof(struct sadb_msg));
6621		if (!m)
6622			return ENOBUFS;
6623	}
6624	msg = mtod(m, struct sadb_msg *);
6625	orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
6626	target = KEY_SENDUP_ONE;
6627
6628	if ((m->m_flags & M_PKTHDR) == 0 ||
6629	    m->m_pkthdr.len != m->m_pkthdr.len) {
6630		ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
6631		pfkeystat.out_invlen++;
6632		error = EINVAL;
6633		goto senderror;
6634	}
6635
6636	if (msg->sadb_msg_version != PF_KEY_V2) {
6637		ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
6638		    __func__, msg->sadb_msg_version));
6639		pfkeystat.out_invver++;
6640		error = EINVAL;
6641		goto senderror;
6642	}
6643
6644	if (msg->sadb_msg_type > SADB_MAX) {
6645		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
6646		    __func__, msg->sadb_msg_type));
6647		pfkeystat.out_invmsgtype++;
6648		error = EINVAL;
6649		goto senderror;
6650	}
6651
6652	/* for old-fashioned code - should be nuked */
6653	if (m->m_pkthdr.len > MCLBYTES) {
6654		m_freem(m);
6655		return ENOBUFS;
6656	}
6657	if (m->m_next) {
6658		struct mbuf *n;
6659
6660		MGETHDR(n, M_DONTWAIT, MT_DATA);
6661		if (n && m->m_pkthdr.len > MHLEN) {
6662			MCLGET(n, M_DONTWAIT);
6663			if ((n->m_flags & M_EXT) == 0) {
6664				m_free(n);
6665				n = NULL;
6666			}
6667		}
6668		if (!n) {
6669			m_freem(m);
6670			return ENOBUFS;
6671		}
6672		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
6673		n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
6674		n->m_next = NULL;
6675		m_freem(m);
6676		m = n;
6677	}
6678
6679	/* align the mbuf chain so that extensions are in contiguous region. */
6680	error = key_align(m, &mh);
6681	if (error)
6682		return error;
6683
6684	msg = mh.msg;
6685
6686	/* check SA type */
6687	switch (msg->sadb_msg_satype) {
6688	case SADB_SATYPE_UNSPEC:
6689		switch (msg->sadb_msg_type) {
6690		case SADB_GETSPI:
6691		case SADB_UPDATE:
6692		case SADB_ADD:
6693		case SADB_DELETE:
6694		case SADB_GET:
6695		case SADB_ACQUIRE:
6696		case SADB_EXPIRE:
6697			ipseclog((LOG_DEBUG, "%s: must specify satype "
6698			    "when msg type=%u.\n", __func__,
6699			    msg->sadb_msg_type));
6700			pfkeystat.out_invsatype++;
6701			error = EINVAL;
6702			goto senderror;
6703		}
6704		break;
6705	case SADB_SATYPE_AH:
6706	case SADB_SATYPE_ESP:
6707	case SADB_X_SATYPE_IPCOMP:
6708	case SADB_X_SATYPE_TCPSIGNATURE:
6709		switch (msg->sadb_msg_type) {
6710		case SADB_X_SPDADD:
6711		case SADB_X_SPDDELETE:
6712		case SADB_X_SPDGET:
6713		case SADB_X_SPDDUMP:
6714		case SADB_X_SPDFLUSH:
6715		case SADB_X_SPDSETIDX:
6716		case SADB_X_SPDUPDATE:
6717		case SADB_X_SPDDELETE2:
6718			ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
6719				__func__, msg->sadb_msg_type));
6720			pfkeystat.out_invsatype++;
6721			error = EINVAL;
6722			goto senderror;
6723		}
6724		break;
6725	case SADB_SATYPE_RSVP:
6726	case SADB_SATYPE_OSPFV2:
6727	case SADB_SATYPE_RIPV2:
6728	case SADB_SATYPE_MIP:
6729		ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
6730			__func__, msg->sadb_msg_satype));
6731		pfkeystat.out_invsatype++;
6732		error = EOPNOTSUPP;
6733		goto senderror;
6734	case 1:	/* XXX: What does it do? */
6735		if (msg->sadb_msg_type == SADB_X_PROMISC)
6736			break;
6737		/*FALLTHROUGH*/
6738	default:
6739		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
6740			__func__, msg->sadb_msg_satype));
6741		pfkeystat.out_invsatype++;
6742		error = EINVAL;
6743		goto senderror;
6744	}
6745
6746	/* check field of upper layer protocol and address family */
6747	if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
6748	 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
6749		struct sadb_address *src0, *dst0;
6750		u_int plen;
6751
6752		src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
6753		dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
6754
6755		/* check upper layer protocol */
6756		if (src0->sadb_address_proto != dst0->sadb_address_proto) {
6757			ipseclog((LOG_DEBUG, "%s: upper layer protocol "
6758				"mismatched.\n", __func__));
6759			pfkeystat.out_invaddr++;
6760			error = EINVAL;
6761			goto senderror;
6762		}
6763
6764		/* check family */
6765		if (PFKEY_ADDR_SADDR(src0)->sa_family !=
6766		    PFKEY_ADDR_SADDR(dst0)->sa_family) {
6767			ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
6768				__func__));
6769			pfkeystat.out_invaddr++;
6770			error = EINVAL;
6771			goto senderror;
6772		}
6773		if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6774		    PFKEY_ADDR_SADDR(dst0)->sa_len) {
6775			ipseclog((LOG_DEBUG, "%s: address struct size "
6776				"mismatched.\n", __func__));
6777			pfkeystat.out_invaddr++;
6778			error = EINVAL;
6779			goto senderror;
6780		}
6781
6782		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
6783		case AF_INET:
6784			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6785			    sizeof(struct sockaddr_in)) {
6786				pfkeystat.out_invaddr++;
6787				error = EINVAL;
6788				goto senderror;
6789			}
6790			break;
6791		case AF_INET6:
6792			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6793			    sizeof(struct sockaddr_in6)) {
6794				pfkeystat.out_invaddr++;
6795				error = EINVAL;
6796				goto senderror;
6797			}
6798			break;
6799		default:
6800			ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
6801				__func__));
6802			pfkeystat.out_invaddr++;
6803			error = EAFNOSUPPORT;
6804			goto senderror;
6805		}
6806
6807		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
6808		case AF_INET:
6809			plen = sizeof(struct in_addr) << 3;
6810			break;
6811		case AF_INET6:
6812			plen = sizeof(struct in6_addr) << 3;
6813			break;
6814		default:
6815			plen = 0;	/*fool gcc*/
6816			break;
6817		}
6818
6819		/* check max prefix length */
6820		if (src0->sadb_address_prefixlen > plen ||
6821		    dst0->sadb_address_prefixlen > plen) {
6822			ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
6823				__func__));
6824			pfkeystat.out_invaddr++;
6825			error = EINVAL;
6826			goto senderror;
6827		}
6828
6829		/*
6830		 * prefixlen == 0 is valid because there can be a case when
6831		 * all addresses are matched.
6832		 */
6833	}
6834
6835	if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
6836	    key_typesw[msg->sadb_msg_type] == NULL) {
6837		pfkeystat.out_invmsgtype++;
6838		error = EINVAL;
6839		goto senderror;
6840	}
6841
6842	return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
6843
6844senderror:
6845	msg->sadb_msg_errno = error;
6846	return key_sendup_mbuf(so, m, target);
6847}
6848
6849static int
6850key_senderror(so, m, code)
6851	struct socket *so;
6852	struct mbuf *m;
6853	int code;
6854{
6855	struct sadb_msg *msg;
6856
6857	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
6858		("mbuf too small, len %u", m->m_len));
6859
6860	msg = mtod(m, struct sadb_msg *);
6861	msg->sadb_msg_errno = code;
6862	return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
6863}
6864
6865/*
6866 * set the pointer to each header into message buffer.
6867 * m will be freed on error.
6868 * XXX larger-than-MCLBYTES extension?
6869 */
6870static int
6871key_align(m, mhp)
6872	struct mbuf *m;
6873	struct sadb_msghdr *mhp;
6874{
6875	struct mbuf *n;
6876	struct sadb_ext *ext;
6877	size_t off, end;
6878	int extlen;
6879	int toff;
6880
6881	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6882	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6883	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
6884		("mbuf too small, len %u", m->m_len));
6885
6886	/* initialize */
6887	bzero(mhp, sizeof(*mhp));
6888
6889	mhp->msg = mtod(m, struct sadb_msg *);
6890	mhp->ext[0] = (struct sadb_ext *)mhp->msg;	/*XXX backward compat */
6891
6892	end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
6893	extlen = end;	/*just in case extlen is not updated*/
6894	for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
6895		n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
6896		if (!n) {
6897			/* m is already freed */
6898			return ENOBUFS;
6899		}
6900		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
6901
6902		/* set pointer */
6903		switch (ext->sadb_ext_type) {
6904		case SADB_EXT_SA:
6905		case SADB_EXT_ADDRESS_SRC:
6906		case SADB_EXT_ADDRESS_DST:
6907		case SADB_EXT_ADDRESS_PROXY:
6908		case SADB_EXT_LIFETIME_CURRENT:
6909		case SADB_EXT_LIFETIME_HARD:
6910		case SADB_EXT_LIFETIME_SOFT:
6911		case SADB_EXT_KEY_AUTH:
6912		case SADB_EXT_KEY_ENCRYPT:
6913		case SADB_EXT_IDENTITY_SRC:
6914		case SADB_EXT_IDENTITY_DST:
6915		case SADB_EXT_SENSITIVITY:
6916		case SADB_EXT_PROPOSAL:
6917		case SADB_EXT_SUPPORTED_AUTH:
6918		case SADB_EXT_SUPPORTED_ENCRYPT:
6919		case SADB_EXT_SPIRANGE:
6920		case SADB_X_EXT_POLICY:
6921		case SADB_X_EXT_SA2:
6922			/* duplicate check */
6923			/*
6924			 * XXX Are there duplication payloads of either
6925			 * KEY_AUTH or KEY_ENCRYPT ?
6926			 */
6927			if (mhp->ext[ext->sadb_ext_type] != NULL) {
6928				ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
6929					"%u\n", __func__, ext->sadb_ext_type));
6930				m_freem(m);
6931				pfkeystat.out_dupext++;
6932				return EINVAL;
6933			}
6934			break;
6935		default:
6936			ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
6937				__func__, ext->sadb_ext_type));
6938			m_freem(m);
6939			pfkeystat.out_invexttype++;
6940			return EINVAL;
6941		}
6942
6943		extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
6944
6945		if (key_validate_ext(ext, extlen)) {
6946			m_freem(m);
6947			pfkeystat.out_invlen++;
6948			return EINVAL;
6949		}
6950
6951		n = m_pulldown(m, off, extlen, &toff);
6952		if (!n) {
6953			/* m is already freed */
6954			return ENOBUFS;
6955		}
6956		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
6957
6958		mhp->ext[ext->sadb_ext_type] = ext;
6959		mhp->extoff[ext->sadb_ext_type] = off;
6960		mhp->extlen[ext->sadb_ext_type] = extlen;
6961	}
6962
6963	if (off != end) {
6964		m_freem(m);
6965		pfkeystat.out_invlen++;
6966		return EINVAL;
6967	}
6968
6969	return 0;
6970}
6971
6972static int
6973key_validate_ext(ext, len)
6974	const struct sadb_ext *ext;
6975	int len;
6976{
6977	const struct sockaddr *sa;
6978	enum { NONE, ADDR } checktype = NONE;
6979	int baselen = 0;
6980	const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
6981
6982	if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
6983		return EINVAL;
6984
6985	/* if it does not match minimum/maximum length, bail */
6986	if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
6987	    ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
6988		return EINVAL;
6989	if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
6990		return EINVAL;
6991	if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
6992		return EINVAL;
6993
6994	/* more checks based on sadb_ext_type XXX need more */
6995	switch (ext->sadb_ext_type) {
6996	case SADB_EXT_ADDRESS_SRC:
6997	case SADB_EXT_ADDRESS_DST:
6998	case SADB_EXT_ADDRESS_PROXY:
6999		baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7000		checktype = ADDR;
7001		break;
7002	case SADB_EXT_IDENTITY_SRC:
7003	case SADB_EXT_IDENTITY_DST:
7004		if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7005		    SADB_X_IDENTTYPE_ADDR) {
7006			baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7007			checktype = ADDR;
7008		} else
7009			checktype = NONE;
7010		break;
7011	default:
7012		checktype = NONE;
7013		break;
7014	}
7015
7016	switch (checktype) {
7017	case NONE:
7018		break;
7019	case ADDR:
7020		sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7021		if (len < baselen + sal)
7022			return EINVAL;
7023		if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7024			return EINVAL;
7025		break;
7026	}
7027
7028	return 0;
7029}
7030
7031void
7032key_init()
7033{
7034	int i;
7035
7036	SPTREE_LOCK_INIT();
7037	REGTREE_LOCK_INIT();
7038	SAHTREE_LOCK_INIT();
7039	ACQ_LOCK_INIT();
7040	SPACQ_LOCK_INIT();
7041
7042	for (i = 0; i < IPSEC_DIR_MAX; i++)
7043		LIST_INIT(&sptree[i]);
7044
7045	LIST_INIT(&sahtree);
7046
7047	for (i = 0; i <= SADB_SATYPE_MAX; i++)
7048		LIST_INIT(&regtree[i]);
7049
7050	LIST_INIT(&acqtree);
7051	LIST_INIT(&spacqtree);
7052
7053	/* system default */
7054	ip4_def_policy.policy = IPSEC_POLICY_NONE;
7055	ip4_def_policy.refcnt++;	/*never reclaim this*/
7056
7057#ifndef IPSEC_DEBUG2
7058	timeout((void *)key_timehandler, (void *)0, hz);
7059#endif /*IPSEC_DEBUG2*/
7060
7061	/* initialize key statistics */
7062	keystat.getspi_count = 1;
7063
7064	printf("Fast IPsec: Initialized Security Association Processing.\n");
7065
7066	return;
7067}
7068
7069/*
7070 * XXX: maybe This function is called after INBOUND IPsec processing.
7071 *
7072 * Special check for tunnel-mode packets.
7073 * We must make some checks for consistency between inner and outer IP header.
7074 *
7075 * xxx more checks to be provided
7076 */
7077int
7078key_checktunnelsanity(sav, family, src, dst)
7079	struct secasvar *sav;
7080	u_int family;
7081	caddr_t src;
7082	caddr_t dst;
7083{
7084	IPSEC_ASSERT(sav->sah != NULL, ("null SA header"));
7085
7086	/* XXX: check inner IP header */
7087
7088	return 1;
7089}
7090
7091/* record data transfer on SA, and update timestamps */
7092void
7093key_sa_recordxfer(sav, m)
7094	struct secasvar *sav;
7095	struct mbuf *m;
7096{
7097	IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
7098	IPSEC_ASSERT(m != NULL, ("Null mbuf"));
7099	if (!sav->lft_c)
7100		return;
7101
7102	/*
7103	 * XXX Currently, there is a difference of bytes size
7104	 * between inbound and outbound processing.
7105	 */
7106	sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7107	/* to check bytes lifetime is done in key_timehandler(). */
7108
7109	/*
7110	 * We use the number of packets as the unit of
7111	 * sadb_lifetime_allocations.  We increment the variable
7112	 * whenever {esp,ah}_{in,out}put is called.
7113	 */
7114	sav->lft_c->sadb_lifetime_allocations++;
7115	/* XXX check for expires? */
7116
7117	/*
7118	 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7119	 * in seconds.  HARD and SOFT lifetime are measured by the time
7120	 * difference (again in seconds) from sadb_lifetime_usetime.
7121	 *
7122	 *	usetime
7123	 *	v     expire   expire
7124	 * -----+-----+--------+---> t
7125	 *	<--------------> HARD
7126	 *	<-----> SOFT
7127	 */
7128	sav->lft_c->sadb_lifetime_usetime = time_second;
7129	/* XXX check for expires? */
7130
7131	return;
7132}
7133
7134/* dumb version */
7135void
7136key_sa_routechange(dst)
7137	struct sockaddr *dst;
7138{
7139	struct secashead *sah;
7140	struct route *ro;
7141
7142	SAHTREE_LOCK();
7143	LIST_FOREACH(sah, &sahtree, chain) {
7144		ro = &sah->sa_route;
7145		if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len
7146		 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) {
7147			RTFREE(ro->ro_rt);
7148			ro->ro_rt = (struct rtentry *)NULL;
7149		}
7150	}
7151	SAHTREE_UNLOCK();
7152}
7153
7154static void
7155key_sa_chgstate(sav, state)
7156	struct secasvar *sav;
7157	u_int8_t state;
7158{
7159	IPSEC_ASSERT(sav != NULL, ("NULL sav"));
7160	SAHTREE_LOCK_ASSERT();
7161
7162	if (sav->state != state) {
7163		if (__LIST_CHAINED(sav))
7164			LIST_REMOVE(sav, chain);
7165		sav->state = state;
7166		LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7167	}
7168}
7169
7170void
7171key_sa_stir_iv(sav)
7172	struct secasvar *sav;
7173{
7174
7175	IPSEC_ASSERT(sav->iv != NULL, ("null IV"));
7176	key_randomfill(sav->iv, sav->ivlen);
7177}
7178
7179/* XXX too much? */
7180static struct mbuf *
7181key_alloc_mbuf(l)
7182	int l;
7183{
7184	struct mbuf *m = NULL, *n;
7185	int len, t;
7186
7187	len = l;
7188	while (len > 0) {
7189		MGET(n, M_DONTWAIT, MT_DATA);
7190		if (n && len > MLEN)
7191			MCLGET(n, M_DONTWAIT);
7192		if (!n) {
7193			m_freem(m);
7194			return NULL;
7195		}
7196
7197		n->m_next = NULL;
7198		n->m_len = 0;
7199		n->m_len = M_TRAILINGSPACE(n);
7200		/* use the bottom of mbuf, hoping we can prepend afterwards */
7201		if (n->m_len > len) {
7202			t = (n->m_len - len) & ~(sizeof(long) - 1);
7203			n->m_data += t;
7204			n->m_len = len;
7205		}
7206
7207		len -= n->m_len;
7208
7209		if (m)
7210			m_cat(m, n);
7211		else
7212			m = n;
7213	}
7214
7215	return m;
7216}
7217