key.c revision 205789
1/*	$FreeBSD: head/sys/netipsec/key.c 205789 2010-03-28 06:51:50Z bz $	*/
2/*	$KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $	*/
3
4/*-
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33/*
34 * This code is referd to RFC 2367
35 */
36
37#include "opt_inet.h"
38#include "opt_inet6.h"
39#include "opt_ipsec.h"
40
41#include <sys/types.h>
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/lock.h>
46#include <sys/mutex.h>
47#include <sys/mbuf.h>
48#include <sys/domain.h>
49#include <sys/protosw.h>
50#include <sys/malloc.h>
51#include <sys/socket.h>
52#include <sys/socketvar.h>
53#include <sys/sysctl.h>
54#include <sys/errno.h>
55#include <sys/proc.h>
56#include <sys/queue.h>
57#include <sys/refcount.h>
58#include <sys/syslog.h>
59
60#include <net/if.h>
61#include <net/route.h>
62#include <net/raw_cb.h>
63#include <net/vnet.h>
64
65#include <netinet/in.h>
66#include <netinet/in_systm.h>
67#include <netinet/ip.h>
68#include <netinet/in_var.h>
69
70#ifdef INET6
71#include <netinet/ip6.h>
72#include <netinet6/in6_var.h>
73#include <netinet6/ip6_var.h>
74#endif /* INET6 */
75
76#ifdef INET
77#include <netinet/in_pcb.h>
78#endif
79#ifdef INET6
80#include <netinet6/in6_pcb.h>
81#endif /* INET6 */
82
83#include <net/pfkeyv2.h>
84#include <netipsec/keydb.h>
85#include <netipsec/key.h>
86#include <netipsec/keysock.h>
87#include <netipsec/key_debug.h>
88
89#include <netipsec/ipsec.h>
90#ifdef INET6
91#include <netipsec/ipsec6.h>
92#endif
93
94#include <netipsec/xform.h>
95
96#include <machine/stdarg.h>
97
98/* randomness */
99#include <sys/random.h>
100
101#define FULLMASK	0xff
102#define	_BITS(bytes)	((bytes) << 3)
103
104/*
105 * Note on SA reference counting:
106 * - SAs that are not in DEAD state will have (total external reference + 1)
107 *   following value in reference count field.  they cannot be freed and are
108 *   referenced from SA header.
109 * - SAs that are in DEAD state will have (total external reference)
110 *   in reference count field.  they are ready to be freed.  reference from
111 *   SA header will be removed in key_delsav(), when the reference count
112 *   field hits 0 (= no external reference other than from SA header.
113 */
114
115VNET_DEFINE(u_int32_t, key_debug_level) = 0;
116static VNET_DEFINE(u_int, key_spi_trycnt) = 1000;
117#define	V_key_spi_trycnt	VNET(key_spi_trycnt)
118static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100;
119#define	V_key_spi_minval	VNET(key_spi_minval)
120static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff;	/* XXX */
121#define	V_key_spi_maxval	VNET(key_spi_maxval)
122static VNET_DEFINE(u_int32_t, policy_id) = 0;
123#define	V_policy_id		VNET(policy_id)
124/*interval to initialize randseed,1(m)*/
125static VNET_DEFINE(u_int, key_int_random) = 60;
126#define	V_key_int_random	VNET(key_int_random)
127/* interval to expire acquiring, 30(s)*/
128static VNET_DEFINE(u_int, key_larval_lifetime) = 30;
129#define	V_key_larval_lifetime	VNET(key_larval_lifetime)
130/* counter for blocking SADB_ACQUIRE.*/
131static VNET_DEFINE(int, key_blockacq_count) = 10;
132#define	V_key_blockacq_count	VNET(key_blockacq_count)
133/* lifetime for blocking SADB_ACQUIRE.*/
134static VNET_DEFINE(int, key_blockacq_lifetime) = 20;
135#define	V_key_blockacq_lifetime	VNET(key_blockacq_lifetime)
136/* preferred old sa rather than new sa.*/
137static VNET_DEFINE(int, key_preferred_oldsa) = 1;
138#define	V_key_preferred_oldsa	VNET(key_preferred_oldsa)
139
140static VNET_DEFINE(u_int32_t, acq_seq) = 0;
141#define	V_acq_seq		VNET(acq_seq)
142
143								/* SPD */
144static VNET_DEFINE(LIST_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]);
145#define	V_sptree		VNET(sptree)
146static struct mtx sptree_lock;
147#define	SPTREE_LOCK_INIT() \
148	mtx_init(&sptree_lock, "sptree", \
149		"fast ipsec security policy database", MTX_DEF)
150#define	SPTREE_LOCK_DESTROY()	mtx_destroy(&sptree_lock)
151#define	SPTREE_LOCK()		mtx_lock(&sptree_lock)
152#define	SPTREE_UNLOCK()	mtx_unlock(&sptree_lock)
153#define	SPTREE_LOCK_ASSERT()	mtx_assert(&sptree_lock, MA_OWNED)
154
155static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree);	/* SAD */
156#define	V_sahtree		VNET(sahtree)
157static struct mtx sahtree_lock;
158#define	SAHTREE_LOCK_INIT() \
159	mtx_init(&sahtree_lock, "sahtree", \
160		"fast ipsec security association database", MTX_DEF)
161#define	SAHTREE_LOCK_DESTROY()	mtx_destroy(&sahtree_lock)
162#define	SAHTREE_LOCK()		mtx_lock(&sahtree_lock)
163#define	SAHTREE_UNLOCK()	mtx_unlock(&sahtree_lock)
164#define	SAHTREE_LOCK_ASSERT()	mtx_assert(&sahtree_lock, MA_OWNED)
165
166							/* registed list */
167static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]);
168#define	V_regtree		VNET(regtree)
169static struct mtx regtree_lock;
170#define	REGTREE_LOCK_INIT() \
171	mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
172#define	REGTREE_LOCK_DESTROY()	mtx_destroy(&regtree_lock)
173#define	REGTREE_LOCK()		mtx_lock(&regtree_lock)
174#define	REGTREE_UNLOCK()	mtx_unlock(&regtree_lock)
175#define	REGTREE_LOCK_ASSERT()	mtx_assert(&regtree_lock, MA_OWNED)
176
177static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */
178#define	V_acqtree		VNET(acqtree)
179static struct mtx acq_lock;
180#define	ACQ_LOCK_INIT() \
181	mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF)
182#define	ACQ_LOCK_DESTROY()	mtx_destroy(&acq_lock)
183#define	ACQ_LOCK()		mtx_lock(&acq_lock)
184#define	ACQ_UNLOCK()		mtx_unlock(&acq_lock)
185#define	ACQ_LOCK_ASSERT()	mtx_assert(&acq_lock, MA_OWNED)
186
187							/* SP acquiring list */
188static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree);
189#define	V_spacqtree		VNET(spacqtree)
190static struct mtx spacq_lock;
191#define	SPACQ_LOCK_INIT() \
192	mtx_init(&spacq_lock, "spacqtree", \
193		"fast ipsec security policy acquire list", MTX_DEF)
194#define	SPACQ_LOCK_DESTROY()	mtx_destroy(&spacq_lock)
195#define	SPACQ_LOCK()		mtx_lock(&spacq_lock)
196#define	SPACQ_UNLOCK()		mtx_unlock(&spacq_lock)
197#define	SPACQ_LOCK_ASSERT()	mtx_assert(&spacq_lock, MA_OWNED)
198
199/* search order for SAs */
200static const u_int saorder_state_valid_prefer_old[] = {
201	SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
202};
203static const u_int saorder_state_valid_prefer_new[] = {
204	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
205};
206static const u_int saorder_state_alive[] = {
207	/* except DEAD */
208	SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
209};
210static const u_int saorder_state_any[] = {
211	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
212	SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
213};
214
215static const int minsize[] = {
216	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
217	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
218	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
219	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
220	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
221	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_SRC */
222	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_DST */
223	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_PROXY */
224	sizeof(struct sadb_key),	/* SADB_EXT_KEY_AUTH */
225	sizeof(struct sadb_key),	/* SADB_EXT_KEY_ENCRYPT */
226	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_SRC */
227	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_DST */
228	sizeof(struct sadb_sens),	/* SADB_EXT_SENSITIVITY */
229	sizeof(struct sadb_prop),	/* SADB_EXT_PROPOSAL */
230	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_AUTH */
231	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_ENCRYPT */
232	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
233	0,				/* SADB_X_EXT_KMPRIVATE */
234	sizeof(struct sadb_x_policy),	/* SADB_X_EXT_POLICY */
235	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
236	sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
237	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
238	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
239	sizeof(struct sadb_address),	/* SADB_X_EXT_NAT_T_OAI */
240	sizeof(struct sadb_address),	/* SADB_X_EXT_NAT_T_OAR */
241	sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
242};
243static const int maxsize[] = {
244	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
245	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
246	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
247	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
248	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
249	0,				/* SADB_EXT_ADDRESS_SRC */
250	0,				/* SADB_EXT_ADDRESS_DST */
251	0,				/* SADB_EXT_ADDRESS_PROXY */
252	0,				/* SADB_EXT_KEY_AUTH */
253	0,				/* SADB_EXT_KEY_ENCRYPT */
254	0,				/* SADB_EXT_IDENTITY_SRC */
255	0,				/* SADB_EXT_IDENTITY_DST */
256	0,				/* SADB_EXT_SENSITIVITY */
257	0,				/* SADB_EXT_PROPOSAL */
258	0,				/* SADB_EXT_SUPPORTED_AUTH */
259	0,				/* SADB_EXT_SUPPORTED_ENCRYPT */
260	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
261	0,				/* SADB_X_EXT_KMPRIVATE */
262	0,				/* SADB_X_EXT_POLICY */
263	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
264	sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
265	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
266	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
267	0,				/* SADB_X_EXT_NAT_T_OAI */
268	0,				/* SADB_X_EXT_NAT_T_OAR */
269	sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
270};
271
272static VNET_DEFINE(int, ipsec_esp_keymin) = 256;
273#define	V_ipsec_esp_keymin	VNET(ipsec_esp_keymin)
274static VNET_DEFINE(int, ipsec_esp_auth) = 0;
275#define	V_ipsec_esp_auth	VNET(ipsec_esp_auth)
276static VNET_DEFINE(int, ipsec_ah_keymin) = 128;
277#define	V_ipsec_ah_keymin	VNET(ipsec_ah_keymin)
278
279#ifdef SYSCTL_DECL
280SYSCTL_DECL(_net_key);
281#endif
282
283SYSCTL_VNET_INT(_net_key, KEYCTL_DEBUG_LEVEL,	debug,
284	CTLFLAG_RW, &VNET_NAME(key_debug_level),	0,	"");
285
286/* max count of trial for the decision of spi value */
287SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt,
288	CTLFLAG_RW, &VNET_NAME(key_spi_trycnt),	0,	"");
289
290/* minimum spi value to allocate automatically. */
291SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MIN_VALUE,
292	spi_minval,	CTLFLAG_RW, &VNET_NAME(key_spi_minval),	0,	"");
293
294/* maximun spi value to allocate automatically. */
295SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MAX_VALUE,
296	spi_maxval,	CTLFLAG_RW, &VNET_NAME(key_spi_maxval),	0,	"");
297
298/* interval to initialize randseed */
299SYSCTL_VNET_INT(_net_key, KEYCTL_RANDOM_INT,
300	int_random,	CTLFLAG_RW, &VNET_NAME(key_int_random),	0,	"");
301
302/* lifetime for larval SA */
303SYSCTL_VNET_INT(_net_key, KEYCTL_LARVAL_LIFETIME,
304	larval_lifetime, CTLFLAG_RW, &VNET_NAME(key_larval_lifetime),	0, "");
305
306/* counter for blocking to send SADB_ACQUIRE to IKEd */
307SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_COUNT,
308	blockacq_count,	CTLFLAG_RW, &VNET_NAME(key_blockacq_count),	0, "");
309
310/* lifetime for blocking to send SADB_ACQUIRE to IKEd */
311SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME,
312	blockacq_lifetime, CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, "");
313
314/* ESP auth */
315SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_AUTH,	esp_auth,
316	CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth),	0,	"");
317
318/* minimum ESP key length */
319SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_KEYMIN,
320	esp_keymin, CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin),	0,	"");
321
322/* minimum AH key length */
323SYSCTL_VNET_INT(_net_key, KEYCTL_AH_KEYMIN,	ah_keymin,
324	CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin),	0,	"");
325
326/* perfered old SA rather than new SA */
327SYSCTL_VNET_INT(_net_key, KEYCTL_PREFERED_OLDSA,
328	preferred_oldsa, CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa),	0, "");
329
330#define __LIST_CHAINED(elm) \
331	(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
332#define LIST_INSERT_TAIL(head, elm, type, field) \
333do {\
334	struct type *curelm = LIST_FIRST(head); \
335	if (curelm == NULL) {\
336		LIST_INSERT_HEAD(head, elm, field); \
337	} else { \
338		while (LIST_NEXT(curelm, field)) \
339			curelm = LIST_NEXT(curelm, field);\
340		LIST_INSERT_AFTER(curelm, elm, field);\
341	}\
342} while (0)
343
344#define KEY_CHKSASTATE(head, sav, name) \
345do { \
346	if ((head) != (sav)) {						\
347		ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
348			(name), (head), (sav)));			\
349		continue;						\
350	}								\
351} while (0)
352
353#define KEY_CHKSPDIR(head, sp, name) \
354do { \
355	if ((head) != (sp)) {						\
356		ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
357			"anyway continue.\n",				\
358			(name), (head), (sp)));				\
359	}								\
360} while (0)
361
362MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
363MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
364MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
365MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
366MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
367MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
368MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
369
370/*
371 * set parameters into secpolicyindex buffer.
372 * Must allocate secpolicyindex buffer passed to this function.
373 */
374#define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
375do { \
376	bzero((idx), sizeof(struct secpolicyindex));                         \
377	(idx)->dir = (_dir);                                                 \
378	(idx)->prefs = (ps);                                                 \
379	(idx)->prefd = (pd);                                                 \
380	(idx)->ul_proto = (ulp);                                             \
381	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
382	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
383} while (0)
384
385/*
386 * set parameters into secasindex buffer.
387 * Must allocate secasindex buffer before calling this function.
388 */
389#define KEY_SETSECASIDX(p, m, r, s, d, idx) \
390do { \
391	bzero((idx), sizeof(struct secasindex));                             \
392	(idx)->proto = (p);                                                  \
393	(idx)->mode = (m);                                                   \
394	(idx)->reqid = (r);                                                  \
395	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
396	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
397} while (0)
398
399/* key statistics */
400struct _keystat {
401	u_long getspi_count; /* the avarage of count to try to get new SPI */
402} keystat;
403
404struct sadb_msghdr {
405	struct sadb_msg *msg;
406	struct sadb_ext *ext[SADB_EXT_MAX + 1];
407	int extoff[SADB_EXT_MAX + 1];
408	int extlen[SADB_EXT_MAX + 1];
409};
410
411static struct secasvar *key_allocsa_policy __P((const struct secasindex *));
412static void key_freesp_so __P((struct secpolicy **));
413static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
414static void key_delsp __P((struct secpolicy *));
415static struct secpolicy *key_getsp __P((struct secpolicyindex *));
416static void _key_delsp(struct secpolicy *sp);
417static struct secpolicy *key_getspbyid __P((u_int32_t));
418static u_int32_t key_newreqid __P((void));
419static struct mbuf *key_gather_mbuf __P((struct mbuf *,
420	const struct sadb_msghdr *, int, int, ...));
421static int key_spdadd __P((struct socket *, struct mbuf *,
422	const struct sadb_msghdr *));
423static u_int32_t key_getnewspid __P((void));
424static int key_spddelete __P((struct socket *, struct mbuf *,
425	const struct sadb_msghdr *));
426static int key_spddelete2 __P((struct socket *, struct mbuf *,
427	const struct sadb_msghdr *));
428static int key_spdget __P((struct socket *, struct mbuf *,
429	const struct sadb_msghdr *));
430static int key_spdflush __P((struct socket *, struct mbuf *,
431	const struct sadb_msghdr *));
432static int key_spddump __P((struct socket *, struct mbuf *,
433	const struct sadb_msghdr *));
434static struct mbuf *key_setdumpsp __P((struct secpolicy *,
435	u_int8_t, u_int32_t, u_int32_t));
436static u_int key_getspreqmsglen __P((struct secpolicy *));
437static int key_spdexpire __P((struct secpolicy *));
438static struct secashead *key_newsah __P((struct secasindex *));
439static void key_delsah __P((struct secashead *));
440static struct secasvar *key_newsav __P((struct mbuf *,
441	const struct sadb_msghdr *, struct secashead *, int *,
442	const char*, int));
443#define	KEY_NEWSAV(m, sadb, sah, e)				\
444	key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
445static void key_delsav __P((struct secasvar *));
446static struct secashead *key_getsah __P((struct secasindex *));
447static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
448static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
449static int key_setsaval __P((struct secasvar *, struct mbuf *,
450	const struct sadb_msghdr *));
451static int key_mature __P((struct secasvar *));
452static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
453	u_int8_t, u_int32_t, u_int32_t));
454static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
455	u_int32_t, pid_t, u_int16_t));
456static struct mbuf *key_setsadbsa __P((struct secasvar *));
457static struct mbuf *key_setsadbaddr __P((u_int16_t,
458	const struct sockaddr *, u_int8_t, u_int16_t));
459#ifdef IPSEC_NAT_T
460static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t);
461static struct mbuf *key_setsadbxtype(u_int16_t);
462#endif
463static void key_porttosaddr(struct sockaddr *, u_int16_t);
464#define	KEY_PORTTOSADDR(saddr, port)				\
465	key_porttosaddr((struct sockaddr *)(saddr), (port))
466static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t));
467static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
468	u_int32_t));
469static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int,
470				     struct malloc_type *);
471static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
472					    struct malloc_type *type);
473#ifdef INET6
474static int key_ismyaddr6 __P((struct sockaddr_in6 *));
475#endif
476
477/* flags for key_cmpsaidx() */
478#define CMP_HEAD	1	/* protocol, addresses. */
479#define CMP_MODE_REQID	2	/* additionally HEAD, reqid, mode. */
480#define CMP_REQID	3	/* additionally HEAD, reaid. */
481#define CMP_EXACTLY	4	/* all elements. */
482static int key_cmpsaidx
483	__P((const struct secasindex *, const struct secasindex *, int));
484
485static int key_cmpspidx_exactly
486	__P((struct secpolicyindex *, struct secpolicyindex *));
487static int key_cmpspidx_withmask
488	__P((struct secpolicyindex *, struct secpolicyindex *));
489static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int));
490static int key_bbcmp __P((const void *, const void *, u_int));
491static u_int16_t key_satype2proto __P((u_int8_t));
492static u_int8_t key_proto2satype __P((u_int16_t));
493
494static int key_getspi __P((struct socket *, struct mbuf *,
495	const struct sadb_msghdr *));
496static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
497					struct secasindex *));
498static int key_update __P((struct socket *, struct mbuf *,
499	const struct sadb_msghdr *));
500#ifdef IPSEC_DOSEQCHECK
501static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
502#endif
503static int key_add __P((struct socket *, struct mbuf *,
504	const struct sadb_msghdr *));
505static int key_setident __P((struct secashead *, struct mbuf *,
506	const struct sadb_msghdr *));
507static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
508	const struct sadb_msghdr *));
509static int key_delete __P((struct socket *, struct mbuf *,
510	const struct sadb_msghdr *));
511static int key_get __P((struct socket *, struct mbuf *,
512	const struct sadb_msghdr *));
513
514static void key_getcomb_setlifetime __P((struct sadb_comb *));
515static struct mbuf *key_getcomb_esp __P((void));
516static struct mbuf *key_getcomb_ah __P((void));
517static struct mbuf *key_getcomb_ipcomp __P((void));
518static struct mbuf *key_getprop __P((const struct secasindex *));
519
520static int key_acquire __P((const struct secasindex *, struct secpolicy *));
521static struct secacq *key_newacq __P((const struct secasindex *));
522static struct secacq *key_getacq __P((const struct secasindex *));
523static struct secacq *key_getacqbyseq __P((u_int32_t));
524static struct secspacq *key_newspacq __P((struct secpolicyindex *));
525static struct secspacq *key_getspacq __P((struct secpolicyindex *));
526static int key_acquire2 __P((struct socket *, struct mbuf *,
527	const struct sadb_msghdr *));
528static int key_register __P((struct socket *, struct mbuf *,
529	const struct sadb_msghdr *));
530static int key_expire __P((struct secasvar *));
531static int key_flush __P((struct socket *, struct mbuf *,
532	const struct sadb_msghdr *));
533static int key_dump __P((struct socket *, struct mbuf *,
534	const struct sadb_msghdr *));
535static int key_promisc __P((struct socket *, struct mbuf *,
536	const struct sadb_msghdr *));
537static int key_senderror __P((struct socket *, struct mbuf *, int));
538static int key_validate_ext __P((const struct sadb_ext *, int));
539static int key_align __P((struct mbuf *, struct sadb_msghdr *));
540static struct mbuf *key_setlifetime(struct seclifetime *src,
541				     u_int16_t exttype);
542static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype);
543
544#if 0
545static const char *key_getfqdn __P((void));
546static const char *key_getuserfqdn __P((void));
547#endif
548static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
549static struct mbuf *key_alloc_mbuf __P((int));
550
551static __inline void
552sa_initref(struct secasvar *sav)
553{
554
555	refcount_init(&sav->refcnt, 1);
556}
557static __inline void
558sa_addref(struct secasvar *sav)
559{
560
561	refcount_acquire(&sav->refcnt);
562	IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow"));
563}
564static __inline int
565sa_delref(struct secasvar *sav)
566{
567
568	IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow"));
569	return (refcount_release(&sav->refcnt));
570}
571
572#define	SP_ADDREF(p) do {						\
573	(p)->refcnt++;							\
574	IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow"));		\
575} while (0)
576#define	SP_DELREF(p) do {						\
577	IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow"));		\
578	(p)->refcnt--;							\
579} while (0)
580
581
582/*
583 * Update the refcnt while holding the SPTREE lock.
584 */
585void
586key_addref(struct secpolicy *sp)
587{
588	SPTREE_LOCK();
589	SP_ADDREF(sp);
590	SPTREE_UNLOCK();
591}
592
593/*
594 * Return 0 when there are known to be no SP's for the specified
595 * direction.  Otherwise return 1.  This is used by IPsec code
596 * to optimize performance.
597 */
598int
599key_havesp(u_int dir)
600{
601
602	return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
603		LIST_FIRST(&V_sptree[dir]) != NULL : 1);
604}
605
606/* %%% IPsec policy management */
607/*
608 * allocating a SP for OUTBOUND or INBOUND packet.
609 * Must call key_freesp() later.
610 * OUT:	NULL:	not found
611 *	others:	found and return the pointer.
612 */
613struct secpolicy *
614key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
615{
616	struct secpolicy *sp;
617
618	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
619	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
620		("invalid direction %u", dir));
621
622	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
623		printf("DP %s from %s:%u\n", __func__, where, tag));
624
625	/* get a SP entry */
626	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
627		printf("*** objects\n");
628		kdebug_secpolicyindex(spidx));
629
630	SPTREE_LOCK();
631	LIST_FOREACH(sp, &V_sptree[dir], chain) {
632		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
633			printf("*** in SPD\n");
634			kdebug_secpolicyindex(&sp->spidx));
635
636		if (sp->state == IPSEC_SPSTATE_DEAD)
637			continue;
638		if (key_cmpspidx_withmask(&sp->spidx, spidx))
639			goto found;
640	}
641	sp = NULL;
642found:
643	if (sp) {
644		/* sanity check */
645		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
646
647		/* found a SPD entry */
648		sp->lastused = time_second;
649		SP_ADDREF(sp);
650	}
651	SPTREE_UNLOCK();
652
653	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
654		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
655			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
656	return sp;
657}
658
659/*
660 * allocating a SP for OUTBOUND or INBOUND packet.
661 * Must call key_freesp() later.
662 * OUT:	NULL:	not found
663 *	others:	found and return the pointer.
664 */
665struct secpolicy *
666key_allocsp2(u_int32_t spi,
667	     union sockaddr_union *dst,
668	     u_int8_t proto,
669	     u_int dir,
670	     const char* where, int tag)
671{
672	struct secpolicy *sp;
673
674	IPSEC_ASSERT(dst != NULL, ("null dst"));
675	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
676		("invalid direction %u", dir));
677
678	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
679		printf("DP %s from %s:%u\n", __func__, where, tag));
680
681	/* get a SP entry */
682	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
683		printf("*** objects\n");
684		printf("spi %u proto %u dir %u\n", spi, proto, dir);
685		kdebug_sockaddr(&dst->sa));
686
687	SPTREE_LOCK();
688	LIST_FOREACH(sp, &V_sptree[dir], chain) {
689		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
690			printf("*** in SPD\n");
691			kdebug_secpolicyindex(&sp->spidx));
692
693		if (sp->state == IPSEC_SPSTATE_DEAD)
694			continue;
695		/* compare simple values, then dst address */
696		if (sp->spidx.ul_proto != proto)
697			continue;
698		/* NB: spi's must exist and match */
699		if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
700			continue;
701		if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
702			goto found;
703	}
704	sp = NULL;
705found:
706	if (sp) {
707		/* sanity check */
708		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
709
710		/* found a SPD entry */
711		sp->lastused = time_second;
712		SP_ADDREF(sp);
713	}
714	SPTREE_UNLOCK();
715
716	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
717		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
718			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
719	return sp;
720}
721
722#if 0
723/*
724 * return a policy that matches this particular inbound packet.
725 * XXX slow
726 */
727struct secpolicy *
728key_gettunnel(const struct sockaddr *osrc,
729	      const struct sockaddr *odst,
730	      const struct sockaddr *isrc,
731	      const struct sockaddr *idst,
732	      const char* where, int tag)
733{
734	struct secpolicy *sp;
735	const int dir = IPSEC_DIR_INBOUND;
736	struct ipsecrequest *r1, *r2, *p;
737	struct secpolicyindex spidx;
738
739	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
740		printf("DP %s from %s:%u\n", __func__, where, tag));
741
742	if (isrc->sa_family != idst->sa_family) {
743		ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.",
744			__func__, isrc->sa_family, idst->sa_family));
745		sp = NULL;
746		goto done;
747	}
748
749	SPTREE_LOCK();
750	LIST_FOREACH(sp, &V_sptree[dir], chain) {
751		if (sp->state == IPSEC_SPSTATE_DEAD)
752			continue;
753
754		r1 = r2 = NULL;
755		for (p = sp->req; p; p = p->next) {
756			if (p->saidx.mode != IPSEC_MODE_TUNNEL)
757				continue;
758
759			r1 = r2;
760			r2 = p;
761
762			if (!r1) {
763				/* here we look at address matches only */
764				spidx = sp->spidx;
765				if (isrc->sa_len > sizeof(spidx.src) ||
766				    idst->sa_len > sizeof(spidx.dst))
767					continue;
768				bcopy(isrc, &spidx.src, isrc->sa_len);
769				bcopy(idst, &spidx.dst, idst->sa_len);
770				if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
771					continue;
772			} else {
773				if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
774				    key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
775					continue;
776			}
777
778			if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
779			    key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
780				continue;
781
782			goto found;
783		}
784	}
785	sp = NULL;
786found:
787	if (sp) {
788		sp->lastused = time_second;
789		SP_ADDREF(sp);
790	}
791	SPTREE_UNLOCK();
792done:
793	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
794		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
795			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
796	return sp;
797}
798#endif
799
800/*
801 * allocating an SA entry for an *OUTBOUND* packet.
802 * checking each request entries in SP, and acquire an SA if need.
803 * OUT:	0: there are valid requests.
804 *	ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
805 */
806int
807key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
808{
809	u_int level;
810	int error;
811
812	IPSEC_ASSERT(isr != NULL, ("null isr"));
813	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
814	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
815		saidx->mode == IPSEC_MODE_TUNNEL,
816		("unexpected policy %u", saidx->mode));
817
818	/*
819	 * XXX guard against protocol callbacks from the crypto
820	 * thread as they reference ipsecrequest.sav which we
821	 * temporarily null out below.  Need to rethink how we
822	 * handle bundled SA's in the callback thread.
823	 */
824	IPSECREQUEST_LOCK_ASSERT(isr);
825
826	/* get current level */
827	level = ipsec_get_reqlevel(isr);
828#if 0
829	/*
830	 * We do allocate new SA only if the state of SA in the holder is
831	 * SADB_SASTATE_DEAD.  The SA for outbound must be the oldest.
832	 */
833	if (isr->sav != NULL) {
834		if (isr->sav->sah == NULL)
835			panic("%s: sah is null.\n", __func__);
836		if (isr->sav == (struct secasvar *)LIST_FIRST(
837			    &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
838			KEY_FREESAV(&isr->sav);
839			isr->sav = NULL;
840		}
841	}
842#else
843	/*
844	 * we free any SA stashed in the IPsec request because a different
845	 * SA may be involved each time this request is checked, either
846	 * because new SAs are being configured, or this request is
847	 * associated with an unconnected datagram socket, or this request
848	 * is associated with a system default policy.
849	 *
850	 * The operation may have negative impact to performance.  We may
851	 * want to check cached SA carefully, rather than picking new SA
852	 * every time.
853	 */
854	if (isr->sav != NULL) {
855		KEY_FREESAV(&isr->sav);
856		isr->sav = NULL;
857	}
858#endif
859
860	/*
861	 * new SA allocation if no SA found.
862	 * key_allocsa_policy should allocate the oldest SA available.
863	 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
864	 */
865	if (isr->sav == NULL)
866		isr->sav = key_allocsa_policy(saidx);
867
868	/* When there is SA. */
869	if (isr->sav != NULL) {
870		if (isr->sav->state != SADB_SASTATE_MATURE &&
871		    isr->sav->state != SADB_SASTATE_DYING)
872			return EINVAL;
873		return 0;
874	}
875
876	/* there is no SA */
877	error = key_acquire(saidx, isr->sp);
878	if (error != 0) {
879		/* XXX What should I do ? */
880		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
881			__func__, error));
882		return error;
883	}
884
885	if (level != IPSEC_LEVEL_REQUIRE) {
886		/* XXX sigh, the interface to this routine is botched */
887		IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA"));
888		return 0;
889	} else {
890		return ENOENT;
891	}
892}
893
894/*
895 * allocating a SA for policy entry from SAD.
896 * NOTE: searching SAD of aliving state.
897 * OUT:	NULL:	not found.
898 *	others:	found and return the pointer.
899 */
900static struct secasvar *
901key_allocsa_policy(const struct secasindex *saidx)
902{
903#define	N(a)	_ARRAYLEN(a)
904	struct secashead *sah;
905	struct secasvar *sav;
906	u_int stateidx, arraysize;
907	const u_int *state_valid;
908
909	state_valid = NULL;	/* silence gcc */
910	arraysize = 0;		/* silence gcc */
911
912	SAHTREE_LOCK();
913	LIST_FOREACH(sah, &V_sahtree, chain) {
914		if (sah->state == SADB_SASTATE_DEAD)
915			continue;
916		if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) {
917			if (V_key_preferred_oldsa) {
918				state_valid = saorder_state_valid_prefer_old;
919				arraysize = N(saorder_state_valid_prefer_old);
920			} else {
921				state_valid = saorder_state_valid_prefer_new;
922				arraysize = N(saorder_state_valid_prefer_new);
923			}
924			break;
925		}
926	}
927	SAHTREE_UNLOCK();
928	if (sah == NULL)
929		return NULL;
930
931	/* search valid state */
932	for (stateidx = 0; stateidx < arraysize; stateidx++) {
933		sav = key_do_allocsa_policy(sah, state_valid[stateidx]);
934		if (sav != NULL)
935			return sav;
936	}
937
938	return NULL;
939#undef N
940}
941
942/*
943 * searching SAD with direction, protocol, mode and state.
944 * called by key_allocsa_policy().
945 * OUT:
946 *	NULL	: not found
947 *	others	: found, pointer to a SA.
948 */
949static struct secasvar *
950key_do_allocsa_policy(struct secashead *sah, u_int state)
951{
952	struct secasvar *sav, *nextsav, *candidate, *d;
953
954	/* initilize */
955	candidate = NULL;
956
957	SAHTREE_LOCK();
958	for (sav = LIST_FIRST(&sah->savtree[state]);
959	     sav != NULL;
960	     sav = nextsav) {
961
962		nextsav = LIST_NEXT(sav, chain);
963
964		/* sanity check */
965		KEY_CHKSASTATE(sav->state, state, __func__);
966
967		/* initialize */
968		if (candidate == NULL) {
969			candidate = sav;
970			continue;
971		}
972
973		/* Which SA is the better ? */
974
975		IPSEC_ASSERT(candidate->lft_c != NULL,
976			("null candidate lifetime"));
977		IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime"));
978
979		/* What the best method is to compare ? */
980		if (V_key_preferred_oldsa) {
981			if (candidate->lft_c->addtime >
982					sav->lft_c->addtime) {
983				candidate = sav;
984			}
985			continue;
986			/*NOTREACHED*/
987		}
988
989		/* preferred new sa rather than old sa */
990		if (candidate->lft_c->addtime <
991				sav->lft_c->addtime) {
992			d = candidate;
993			candidate = sav;
994		} else
995			d = sav;
996
997		/*
998		 * prepared to delete the SA when there is more
999		 * suitable candidate and the lifetime of the SA is not
1000		 * permanent.
1001		 */
1002		if (d->lft_h->addtime != 0) {
1003			struct mbuf *m, *result;
1004			u_int8_t satype;
1005
1006			key_sa_chgstate(d, SADB_SASTATE_DEAD);
1007
1008			IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count"));
1009
1010			satype = key_proto2satype(d->sah->saidx.proto);
1011			if (satype == 0)
1012				goto msgfail;
1013
1014			m = key_setsadbmsg(SADB_DELETE, 0,
1015			    satype, 0, 0, d->refcnt - 1);
1016			if (!m)
1017				goto msgfail;
1018			result = m;
1019
1020			/* set sadb_address for saidx's. */
1021			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1022				&d->sah->saidx.src.sa,
1023				d->sah->saidx.src.sa.sa_len << 3,
1024				IPSEC_ULPROTO_ANY);
1025			if (!m)
1026				goto msgfail;
1027			m_cat(result, m);
1028
1029			/* set sadb_address for saidx's. */
1030			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1031				&d->sah->saidx.dst.sa,
1032				d->sah->saidx.dst.sa.sa_len << 3,
1033				IPSEC_ULPROTO_ANY);
1034			if (!m)
1035				goto msgfail;
1036			m_cat(result, m);
1037
1038			/* create SA extension */
1039			m = key_setsadbsa(d);
1040			if (!m)
1041				goto msgfail;
1042			m_cat(result, m);
1043
1044			if (result->m_len < sizeof(struct sadb_msg)) {
1045				result = m_pullup(result,
1046						sizeof(struct sadb_msg));
1047				if (result == NULL)
1048					goto msgfail;
1049			}
1050
1051			result->m_pkthdr.len = 0;
1052			for (m = result; m; m = m->m_next)
1053				result->m_pkthdr.len += m->m_len;
1054			mtod(result, struct sadb_msg *)->sadb_msg_len =
1055				PFKEY_UNIT64(result->m_pkthdr.len);
1056
1057			if (key_sendup_mbuf(NULL, result,
1058					KEY_SENDUP_REGISTERED))
1059				goto msgfail;
1060		 msgfail:
1061			KEY_FREESAV(&d);
1062		}
1063	}
1064	if (candidate) {
1065		sa_addref(candidate);
1066		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1067			printf("DP %s cause refcnt++:%d SA:%p\n",
1068				__func__, candidate->refcnt, candidate));
1069	}
1070	SAHTREE_UNLOCK();
1071
1072	return candidate;
1073}
1074
1075/*
1076 * allocating a usable SA entry for a *INBOUND* packet.
1077 * Must call key_freesav() later.
1078 * OUT: positive:	pointer to a usable sav (i.e. MATURE or DYING state).
1079 *	NULL:		not found, or error occured.
1080 *
1081 * In the comparison, no source address is used--for RFC2401 conformance.
1082 * To quote, from section 4.1:
1083 *	A security association is uniquely identified by a triple consisting
1084 *	of a Security Parameter Index (SPI), an IP Destination Address, and a
1085 *	security protocol (AH or ESP) identifier.
1086 * Note that, however, we do need to keep source address in IPsec SA.
1087 * IKE specification and PF_KEY specification do assume that we
1088 * keep source address in IPsec SA.  We see a tricky situation here.
1089 */
1090struct secasvar *
1091key_allocsa(
1092	union sockaddr_union *dst,
1093	u_int proto,
1094	u_int32_t spi,
1095	const char* where, int tag)
1096{
1097	struct secashead *sah;
1098	struct secasvar *sav;
1099	u_int stateidx, arraysize, state;
1100	const u_int *saorder_state_valid;
1101	int chkport;
1102
1103	IPSEC_ASSERT(dst != NULL, ("null dst address"));
1104
1105	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1106		printf("DP %s from %s:%u\n", __func__, where, tag));
1107
1108#ifdef IPSEC_NAT_T
1109        chkport = (dst->sa.sa_family == AF_INET &&
1110	    dst->sa.sa_len == sizeof(struct sockaddr_in) &&
1111	    dst->sin.sin_port != 0);
1112#else
1113	chkport = 0;
1114#endif
1115
1116	/*
1117	 * searching SAD.
1118	 * XXX: to be checked internal IP header somewhere.  Also when
1119	 * IPsec tunnel packet is received.  But ESP tunnel mode is
1120	 * encrypted so we can't check internal IP header.
1121	 */
1122	SAHTREE_LOCK();
1123	if (V_key_preferred_oldsa) {
1124		saorder_state_valid = saorder_state_valid_prefer_old;
1125		arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1126	} else {
1127		saorder_state_valid = saorder_state_valid_prefer_new;
1128		arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1129	}
1130	LIST_FOREACH(sah, &V_sahtree, chain) {
1131		/* search valid state */
1132		for (stateidx = 0; stateidx < arraysize; stateidx++) {
1133			state = saorder_state_valid[stateidx];
1134			LIST_FOREACH(sav, &sah->savtree[state], chain) {
1135				/* sanity check */
1136				KEY_CHKSASTATE(sav->state, state, __func__);
1137				/* do not return entries w/ unusable state */
1138				if (sav->state != SADB_SASTATE_MATURE &&
1139				    sav->state != SADB_SASTATE_DYING)
1140					continue;
1141				if (proto != sav->sah->saidx.proto)
1142					continue;
1143				if (spi != sav->spi)
1144					continue;
1145#if 0	/* don't check src */
1146				/* check src address */
1147				if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, chkport) != 0)
1148					continue;
1149#endif
1150				/* check dst address */
1151				if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0)
1152					continue;
1153				sa_addref(sav);
1154				goto done;
1155			}
1156		}
1157	}
1158	sav = NULL;
1159done:
1160	SAHTREE_UNLOCK();
1161
1162	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1163		printf("DP %s return SA:%p; refcnt %u\n", __func__,
1164			sav, sav ? sav->refcnt : 0));
1165	return sav;
1166}
1167
1168/*
1169 * Must be called after calling key_allocsp().
1170 * For both the packet without socket and key_freeso().
1171 */
1172void
1173_key_freesp(struct secpolicy **spp, const char* where, int tag)
1174{
1175	struct secpolicy *sp = *spp;
1176
1177	IPSEC_ASSERT(sp != NULL, ("null sp"));
1178
1179	SPTREE_LOCK();
1180	SP_DELREF(sp);
1181
1182	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1183		printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1184			__func__, sp, sp->id, where, tag, sp->refcnt));
1185
1186	if (sp->refcnt == 0) {
1187		*spp = NULL;
1188		key_delsp(sp);
1189	}
1190	SPTREE_UNLOCK();
1191}
1192
1193/*
1194 * Must be called after calling key_allocsp().
1195 * For the packet with socket.
1196 */
1197void
1198key_freeso(struct socket *so)
1199{
1200	IPSEC_ASSERT(so != NULL, ("null so"));
1201
1202	switch (so->so_proto->pr_domain->dom_family) {
1203#if defined(INET) || defined(INET6)
1204#ifdef INET
1205	case PF_INET:
1206#endif
1207#ifdef INET6
1208	case PF_INET6:
1209#endif
1210	    {
1211		struct inpcb *pcb = sotoinpcb(so);
1212
1213		/* Does it have a PCB ? */
1214		if (pcb == NULL)
1215			return;
1216		key_freesp_so(&pcb->inp_sp->sp_in);
1217		key_freesp_so(&pcb->inp_sp->sp_out);
1218	    }
1219		break;
1220#endif /* INET || INET6 */
1221	default:
1222		ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n",
1223		    __func__, so->so_proto->pr_domain->dom_family));
1224		return;
1225	}
1226}
1227
1228static void
1229key_freesp_so(struct secpolicy **sp)
1230{
1231	IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp"));
1232
1233	if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1234	    (*sp)->policy == IPSEC_POLICY_BYPASS)
1235		return;
1236
1237	IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1238		("invalid policy %u", (*sp)->policy));
1239	KEY_FREESP(sp);
1240}
1241
1242/*
1243 * Must be called after calling key_allocsa().
1244 * This function is called by key_freesp() to free some SA allocated
1245 * for a policy.
1246 */
1247void
1248key_freesav(struct secasvar **psav, const char* where, int tag)
1249{
1250	struct secasvar *sav = *psav;
1251
1252	IPSEC_ASSERT(sav != NULL, ("null sav"));
1253
1254	if (sa_delref(sav)) {
1255		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1256			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1257				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1258		*psav = NULL;
1259		key_delsav(sav);
1260	} else {
1261		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1262			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1263				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1264	}
1265}
1266
1267/* %%% SPD management */
1268/*
1269 * free security policy entry.
1270 */
1271static void
1272key_delsp(struct secpolicy *sp)
1273{
1274	struct ipsecrequest *isr, *nextisr;
1275
1276	IPSEC_ASSERT(sp != NULL, ("null sp"));
1277	SPTREE_LOCK_ASSERT();
1278
1279	sp->state = IPSEC_SPSTATE_DEAD;
1280
1281	IPSEC_ASSERT(sp->refcnt == 0,
1282		("SP with references deleted (refcnt %u)", sp->refcnt));
1283
1284	/* remove from SP index */
1285	if (__LIST_CHAINED(sp))
1286		LIST_REMOVE(sp, chain);
1287
1288	for (isr = sp->req; isr != NULL; isr = nextisr) {
1289		if (isr->sav != NULL) {
1290			KEY_FREESAV(&isr->sav);
1291			isr->sav = NULL;
1292		}
1293
1294		nextisr = isr->next;
1295		ipsec_delisr(isr);
1296	}
1297	_key_delsp(sp);
1298}
1299
1300/*
1301 * search SPD
1302 * OUT:	NULL	: not found
1303 *	others	: found, pointer to a SP.
1304 */
1305static struct secpolicy *
1306key_getsp(struct secpolicyindex *spidx)
1307{
1308	struct secpolicy *sp;
1309
1310	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1311
1312	SPTREE_LOCK();
1313	LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) {
1314		if (sp->state == IPSEC_SPSTATE_DEAD)
1315			continue;
1316		if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1317			SP_ADDREF(sp);
1318			break;
1319		}
1320	}
1321	SPTREE_UNLOCK();
1322
1323	return sp;
1324}
1325
1326/*
1327 * get SP by index.
1328 * OUT:	NULL	: not found
1329 *	others	: found, pointer to a SP.
1330 */
1331static struct secpolicy *
1332key_getspbyid(u_int32_t id)
1333{
1334	struct secpolicy *sp;
1335
1336	SPTREE_LOCK();
1337	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) {
1338		if (sp->state == IPSEC_SPSTATE_DEAD)
1339			continue;
1340		if (sp->id == id) {
1341			SP_ADDREF(sp);
1342			goto done;
1343		}
1344	}
1345
1346	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) {
1347		if (sp->state == IPSEC_SPSTATE_DEAD)
1348			continue;
1349		if (sp->id == id) {
1350			SP_ADDREF(sp);
1351			goto done;
1352		}
1353	}
1354done:
1355	SPTREE_UNLOCK();
1356
1357	return sp;
1358}
1359
1360struct secpolicy *
1361key_newsp(const char* where, int tag)
1362{
1363	struct secpolicy *newsp = NULL;
1364
1365	newsp = (struct secpolicy *)
1366		malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO);
1367	if (newsp) {
1368		SECPOLICY_LOCK_INIT(newsp);
1369		newsp->refcnt = 1;
1370		newsp->req = NULL;
1371	}
1372
1373	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1374		printf("DP %s from %s:%u return SP:%p\n", __func__,
1375			where, tag, newsp));
1376	return newsp;
1377}
1378
1379static void
1380_key_delsp(struct secpolicy *sp)
1381{
1382	SECPOLICY_LOCK_DESTROY(sp);
1383	free(sp, M_IPSEC_SP);
1384}
1385
1386/*
1387 * create secpolicy structure from sadb_x_policy structure.
1388 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1389 * so must be set properly later.
1390 */
1391struct secpolicy *
1392key_msg2sp(xpl0, len, error)
1393	struct sadb_x_policy *xpl0;
1394	size_t len;
1395	int *error;
1396{
1397	struct secpolicy *newsp;
1398
1399	IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1400	IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1401
1402	if (len != PFKEY_EXTLEN(xpl0)) {
1403		ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1404		*error = EINVAL;
1405		return NULL;
1406	}
1407
1408	if ((newsp = KEY_NEWSP()) == NULL) {
1409		*error = ENOBUFS;
1410		return NULL;
1411	}
1412
1413	newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1414	newsp->policy = xpl0->sadb_x_policy_type;
1415
1416	/* check policy */
1417	switch (xpl0->sadb_x_policy_type) {
1418	case IPSEC_POLICY_DISCARD:
1419	case IPSEC_POLICY_NONE:
1420	case IPSEC_POLICY_ENTRUST:
1421	case IPSEC_POLICY_BYPASS:
1422		newsp->req = NULL;
1423		break;
1424
1425	case IPSEC_POLICY_IPSEC:
1426	    {
1427		int tlen;
1428		struct sadb_x_ipsecrequest *xisr;
1429		struct ipsecrequest **p_isr = &newsp->req;
1430
1431		/* validity check */
1432		if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1433			ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1434				__func__));
1435			KEY_FREESP(&newsp);
1436			*error = EINVAL;
1437			return NULL;
1438		}
1439
1440		tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1441		xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1442
1443		while (tlen > 0) {
1444			/* length check */
1445			if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1446				ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1447					"length.\n", __func__));
1448				KEY_FREESP(&newsp);
1449				*error = EINVAL;
1450				return NULL;
1451			}
1452
1453			/* allocate request buffer */
1454			/* NB: data structure is zero'd */
1455			*p_isr = ipsec_newisr();
1456			if ((*p_isr) == NULL) {
1457				ipseclog((LOG_DEBUG,
1458				    "%s: No more memory.\n", __func__));
1459				KEY_FREESP(&newsp);
1460				*error = ENOBUFS;
1461				return NULL;
1462			}
1463
1464			/* set values */
1465			switch (xisr->sadb_x_ipsecrequest_proto) {
1466			case IPPROTO_ESP:
1467			case IPPROTO_AH:
1468			case IPPROTO_IPCOMP:
1469				break;
1470			default:
1471				ipseclog((LOG_DEBUG,
1472				    "%s: invalid proto type=%u\n", __func__,
1473				    xisr->sadb_x_ipsecrequest_proto));
1474				KEY_FREESP(&newsp);
1475				*error = EPROTONOSUPPORT;
1476				return NULL;
1477			}
1478			(*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1479
1480			switch (xisr->sadb_x_ipsecrequest_mode) {
1481			case IPSEC_MODE_TRANSPORT:
1482			case IPSEC_MODE_TUNNEL:
1483				break;
1484			case IPSEC_MODE_ANY:
1485			default:
1486				ipseclog((LOG_DEBUG,
1487				    "%s: invalid mode=%u\n", __func__,
1488				    xisr->sadb_x_ipsecrequest_mode));
1489				KEY_FREESP(&newsp);
1490				*error = EINVAL;
1491				return NULL;
1492			}
1493			(*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1494
1495			switch (xisr->sadb_x_ipsecrequest_level) {
1496			case IPSEC_LEVEL_DEFAULT:
1497			case IPSEC_LEVEL_USE:
1498			case IPSEC_LEVEL_REQUIRE:
1499				break;
1500			case IPSEC_LEVEL_UNIQUE:
1501				/* validity check */
1502				/*
1503				 * If range violation of reqid, kernel will
1504				 * update it, don't refuse it.
1505				 */
1506				if (xisr->sadb_x_ipsecrequest_reqid
1507						> IPSEC_MANUAL_REQID_MAX) {
1508					ipseclog((LOG_DEBUG,
1509					    "%s: reqid=%d range "
1510					    "violation, updated by kernel.\n",
1511					    __func__,
1512					    xisr->sadb_x_ipsecrequest_reqid));
1513					xisr->sadb_x_ipsecrequest_reqid = 0;
1514				}
1515
1516				/* allocate new reqid id if reqid is zero. */
1517				if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1518					u_int32_t reqid;
1519					if ((reqid = key_newreqid()) == 0) {
1520						KEY_FREESP(&newsp);
1521						*error = ENOBUFS;
1522						return NULL;
1523					}
1524					(*p_isr)->saidx.reqid = reqid;
1525					xisr->sadb_x_ipsecrequest_reqid = reqid;
1526				} else {
1527				/* set it for manual keying. */
1528					(*p_isr)->saidx.reqid =
1529						xisr->sadb_x_ipsecrequest_reqid;
1530				}
1531				break;
1532
1533			default:
1534				ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1535					__func__,
1536					xisr->sadb_x_ipsecrequest_level));
1537				KEY_FREESP(&newsp);
1538				*error = EINVAL;
1539				return NULL;
1540			}
1541			(*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1542
1543			/* set IP addresses if there */
1544			if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1545				struct sockaddr *paddr;
1546
1547				paddr = (struct sockaddr *)(xisr + 1);
1548
1549				/* validity check */
1550				if (paddr->sa_len
1551				    > sizeof((*p_isr)->saidx.src)) {
1552					ipseclog((LOG_DEBUG, "%s: invalid "
1553						"request address length.\n",
1554						__func__));
1555					KEY_FREESP(&newsp);
1556					*error = EINVAL;
1557					return NULL;
1558				}
1559				bcopy(paddr, &(*p_isr)->saidx.src,
1560					paddr->sa_len);
1561
1562				paddr = (struct sockaddr *)((caddr_t)paddr
1563							+ paddr->sa_len);
1564
1565				/* validity check */
1566				if (paddr->sa_len
1567				    > sizeof((*p_isr)->saidx.dst)) {
1568					ipseclog((LOG_DEBUG, "%s: invalid "
1569						"request address length.\n",
1570						__func__));
1571					KEY_FREESP(&newsp);
1572					*error = EINVAL;
1573					return NULL;
1574				}
1575				bcopy(paddr, &(*p_isr)->saidx.dst,
1576					paddr->sa_len);
1577			}
1578
1579			(*p_isr)->sp = newsp;
1580
1581			/* initialization for the next. */
1582			p_isr = &(*p_isr)->next;
1583			tlen -= xisr->sadb_x_ipsecrequest_len;
1584
1585			/* validity check */
1586			if (tlen < 0) {
1587				ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1588					__func__));
1589				KEY_FREESP(&newsp);
1590				*error = EINVAL;
1591				return NULL;
1592			}
1593
1594			xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1595			                 + xisr->sadb_x_ipsecrequest_len);
1596		}
1597	    }
1598		break;
1599	default:
1600		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1601		KEY_FREESP(&newsp);
1602		*error = EINVAL;
1603		return NULL;
1604	}
1605
1606	*error = 0;
1607	return newsp;
1608}
1609
1610static u_int32_t
1611key_newreqid()
1612{
1613	static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1614
1615	auto_reqid = (auto_reqid == ~0
1616			? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1617
1618	/* XXX should be unique check */
1619
1620	return auto_reqid;
1621}
1622
1623/*
1624 * copy secpolicy struct to sadb_x_policy structure indicated.
1625 */
1626struct mbuf *
1627key_sp2msg(sp)
1628	struct secpolicy *sp;
1629{
1630	struct sadb_x_policy *xpl;
1631	int tlen;
1632	caddr_t p;
1633	struct mbuf *m;
1634
1635	IPSEC_ASSERT(sp != NULL, ("null policy"));
1636
1637	tlen = key_getspreqmsglen(sp);
1638
1639	m = key_alloc_mbuf(tlen);
1640	if (!m || m->m_next) {	/*XXX*/
1641		if (m)
1642			m_freem(m);
1643		return NULL;
1644	}
1645
1646	m->m_len = tlen;
1647	m->m_next = NULL;
1648	xpl = mtod(m, struct sadb_x_policy *);
1649	bzero(xpl, tlen);
1650
1651	xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1652	xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1653	xpl->sadb_x_policy_type = sp->policy;
1654	xpl->sadb_x_policy_dir = sp->spidx.dir;
1655	xpl->sadb_x_policy_id = sp->id;
1656	p = (caddr_t)xpl + sizeof(*xpl);
1657
1658	/* if is the policy for ipsec ? */
1659	if (sp->policy == IPSEC_POLICY_IPSEC) {
1660		struct sadb_x_ipsecrequest *xisr;
1661		struct ipsecrequest *isr;
1662
1663		for (isr = sp->req; isr != NULL; isr = isr->next) {
1664
1665			xisr = (struct sadb_x_ipsecrequest *)p;
1666
1667			xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1668			xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1669			xisr->sadb_x_ipsecrequest_level = isr->level;
1670			xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1671
1672			p += sizeof(*xisr);
1673			bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1674			p += isr->saidx.src.sa.sa_len;
1675			bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1676			p += isr->saidx.src.sa.sa_len;
1677
1678			xisr->sadb_x_ipsecrequest_len =
1679				PFKEY_ALIGN8(sizeof(*xisr)
1680					+ isr->saidx.src.sa.sa_len
1681					+ isr->saidx.dst.sa.sa_len);
1682		}
1683	}
1684
1685	return m;
1686}
1687
1688/* m will not be freed nor modified */
1689static struct mbuf *
1690#ifdef __STDC__
1691key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1692	int ndeep, int nitem, ...)
1693#else
1694key_gather_mbuf(m, mhp, ndeep, nitem, va_alist)
1695	struct mbuf *m;
1696	const struct sadb_msghdr *mhp;
1697	int ndeep;
1698	int nitem;
1699	va_dcl
1700#endif
1701{
1702	va_list ap;
1703	int idx;
1704	int i;
1705	struct mbuf *result = NULL, *n;
1706	int len;
1707
1708	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1709	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1710
1711	va_start(ap, nitem);
1712	for (i = 0; i < nitem; i++) {
1713		idx = va_arg(ap, int);
1714		if (idx < 0 || idx > SADB_EXT_MAX)
1715			goto fail;
1716		/* don't attempt to pull empty extension */
1717		if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1718			continue;
1719		if (idx != SADB_EXT_RESERVED  &&
1720		    (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1721			continue;
1722
1723		if (idx == SADB_EXT_RESERVED) {
1724			len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1725
1726			IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1727
1728			MGETHDR(n, M_DONTWAIT, MT_DATA);
1729			if (!n)
1730				goto fail;
1731			n->m_len = len;
1732			n->m_next = NULL;
1733			m_copydata(m, 0, sizeof(struct sadb_msg),
1734			    mtod(n, caddr_t));
1735		} else if (i < ndeep) {
1736			len = mhp->extlen[idx];
1737			n = key_alloc_mbuf(len);
1738			if (!n || n->m_next) {	/*XXX*/
1739				if (n)
1740					m_freem(n);
1741				goto fail;
1742			}
1743			m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1744			    mtod(n, caddr_t));
1745		} else {
1746			n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1747			    M_DONTWAIT);
1748		}
1749		if (n == NULL)
1750			goto fail;
1751
1752		if (result)
1753			m_cat(result, n);
1754		else
1755			result = n;
1756	}
1757	va_end(ap);
1758
1759	if ((result->m_flags & M_PKTHDR) != 0) {
1760		result->m_pkthdr.len = 0;
1761		for (n = result; n; n = n->m_next)
1762			result->m_pkthdr.len += n->m_len;
1763	}
1764
1765	return result;
1766
1767fail:
1768	m_freem(result);
1769	return NULL;
1770}
1771
1772/*
1773 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1774 * add an entry to SP database, when received
1775 *   <base, address(SD), (lifetime(H),) policy>
1776 * from the user(?).
1777 * Adding to SP database,
1778 * and send
1779 *   <base, address(SD), (lifetime(H),) policy>
1780 * to the socket which was send.
1781 *
1782 * SPDADD set a unique policy entry.
1783 * SPDSETIDX like SPDADD without a part of policy requests.
1784 * SPDUPDATE replace a unique policy entry.
1785 *
1786 * m will always be freed.
1787 */
1788static int
1789key_spdadd(so, m, mhp)
1790	struct socket *so;
1791	struct mbuf *m;
1792	const struct sadb_msghdr *mhp;
1793{
1794	struct sadb_address *src0, *dst0;
1795	struct sadb_x_policy *xpl0, *xpl;
1796	struct sadb_lifetime *lft = NULL;
1797	struct secpolicyindex spidx;
1798	struct secpolicy *newsp;
1799	int error;
1800
1801	IPSEC_ASSERT(so != NULL, ("null socket"));
1802	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1803	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1804	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1805
1806	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1807	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1808	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1809		ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1810		return key_senderror(so, m, EINVAL);
1811	}
1812	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1813	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1814	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1815		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1816			__func__));
1817		return key_senderror(so, m, EINVAL);
1818	}
1819	if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1820		if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1821			< sizeof(struct sadb_lifetime)) {
1822			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1823				__func__));
1824			return key_senderror(so, m, EINVAL);
1825		}
1826		lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1827	}
1828
1829	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1830	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1831	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1832
1833	/*
1834	 * Note: do not parse SADB_X_EXT_NAT_T_* here:
1835	 * we are processing traffic endpoints.
1836	 */
1837
1838	/* make secindex */
1839	/* XXX boundary check against sa_len */
1840	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1841	                src0 + 1,
1842	                dst0 + 1,
1843	                src0->sadb_address_prefixlen,
1844	                dst0->sadb_address_prefixlen,
1845	                src0->sadb_address_proto,
1846	                &spidx);
1847
1848	/* checking the direciton. */
1849	switch (xpl0->sadb_x_policy_dir) {
1850	case IPSEC_DIR_INBOUND:
1851	case IPSEC_DIR_OUTBOUND:
1852		break;
1853	default:
1854		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
1855		mhp->msg->sadb_msg_errno = EINVAL;
1856		return 0;
1857	}
1858
1859	/* check policy */
1860	/* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1861	if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1862	 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1863		ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__));
1864		return key_senderror(so, m, EINVAL);
1865	}
1866
1867	/* policy requests are mandatory when action is ipsec. */
1868        if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1869	 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1870	 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1871		ipseclog((LOG_DEBUG, "%s: some policy requests part required\n",
1872			__func__));
1873		return key_senderror(so, m, EINVAL);
1874	}
1875
1876	/*
1877	 * checking there is SP already or not.
1878	 * SPDUPDATE doesn't depend on whether there is a SP or not.
1879	 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1880	 * then error.
1881	 */
1882	newsp = key_getsp(&spidx);
1883	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1884		if (newsp) {
1885			newsp->state = IPSEC_SPSTATE_DEAD;
1886			KEY_FREESP(&newsp);
1887		}
1888	} else {
1889		if (newsp != NULL) {
1890			KEY_FREESP(&newsp);
1891			ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n",
1892				__func__));
1893			return key_senderror(so, m, EEXIST);
1894		}
1895	}
1896
1897	/* allocation new SP entry */
1898	if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1899		return key_senderror(so, m, error);
1900	}
1901
1902	if ((newsp->id = key_getnewspid()) == 0) {
1903		_key_delsp(newsp);
1904		return key_senderror(so, m, ENOBUFS);
1905	}
1906
1907	/* XXX boundary check against sa_len */
1908	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1909	                src0 + 1,
1910	                dst0 + 1,
1911	                src0->sadb_address_prefixlen,
1912	                dst0->sadb_address_prefixlen,
1913	                src0->sadb_address_proto,
1914	                &newsp->spidx);
1915
1916	/* sanity check on addr pair */
1917	if (((struct sockaddr *)(src0 + 1))->sa_family !=
1918			((struct sockaddr *)(dst0+ 1))->sa_family) {
1919		_key_delsp(newsp);
1920		return key_senderror(so, m, EINVAL);
1921	}
1922	if (((struct sockaddr *)(src0 + 1))->sa_len !=
1923			((struct sockaddr *)(dst0+ 1))->sa_len) {
1924		_key_delsp(newsp);
1925		return key_senderror(so, m, EINVAL);
1926	}
1927#if 1
1928	if (newsp->req && newsp->req->saidx.src.sa.sa_family && newsp->req->saidx.dst.sa.sa_family) {
1929		if (newsp->req->saidx.src.sa.sa_family != newsp->req->saidx.dst.sa.sa_family) {
1930			_key_delsp(newsp);
1931			return key_senderror(so, m, EINVAL);
1932		}
1933	}
1934#endif
1935
1936	newsp->created = time_second;
1937	newsp->lastused = newsp->created;
1938	newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1939	newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1940
1941	newsp->refcnt = 1;	/* do not reclaim until I say I do */
1942	newsp->state = IPSEC_SPSTATE_ALIVE;
1943	LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1944
1945	/* delete the entry in spacqtree */
1946	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1947		struct secspacq *spacq = key_getspacq(&spidx);
1948		if (spacq != NULL) {
1949			/* reset counter in order to deletion by timehandler. */
1950			spacq->created = time_second;
1951			spacq->count = 0;
1952			SPACQ_UNLOCK();
1953		}
1954    	}
1955
1956    {
1957	struct mbuf *n, *mpolicy;
1958	struct sadb_msg *newmsg;
1959	int off;
1960
1961	/*
1962	 * Note: do not send SADB_X_EXT_NAT_T_* here:
1963	 * we are sending traffic endpoints.
1964	 */
1965
1966	/* create new sadb_msg to reply. */
1967	if (lft) {
1968		n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1969		    SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1970		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1971	} else {
1972		n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1973		    SADB_X_EXT_POLICY,
1974		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1975	}
1976	if (!n)
1977		return key_senderror(so, m, ENOBUFS);
1978
1979	if (n->m_len < sizeof(*newmsg)) {
1980		n = m_pullup(n, sizeof(*newmsg));
1981		if (!n)
1982			return key_senderror(so, m, ENOBUFS);
1983	}
1984	newmsg = mtod(n, struct sadb_msg *);
1985	newmsg->sadb_msg_errno = 0;
1986	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1987
1988	off = 0;
1989	mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1990	    sizeof(*xpl), &off);
1991	if (mpolicy == NULL) {
1992		/* n is already freed */
1993		return key_senderror(so, m, ENOBUFS);
1994	}
1995	xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
1996	if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
1997		m_freem(n);
1998		return key_senderror(so, m, EINVAL);
1999	}
2000	xpl->sadb_x_policy_id = newsp->id;
2001
2002	m_freem(m);
2003	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2004    }
2005}
2006
2007/*
2008 * get new policy id.
2009 * OUT:
2010 *	0:	failure.
2011 *	others: success.
2012 */
2013static u_int32_t
2014key_getnewspid()
2015{
2016	u_int32_t newid = 0;
2017	int count = V_key_spi_trycnt;	/* XXX */
2018	struct secpolicy *sp;
2019
2020	/* when requesting to allocate spi ranged */
2021	while (count--) {
2022		newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1));
2023
2024		if ((sp = key_getspbyid(newid)) == NULL)
2025			break;
2026
2027		KEY_FREESP(&sp);
2028	}
2029
2030	if (count == 0 || newid == 0) {
2031		ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n",
2032			__func__));
2033		return 0;
2034	}
2035
2036	return newid;
2037}
2038
2039/*
2040 * SADB_SPDDELETE processing
2041 * receive
2042 *   <base, address(SD), policy(*)>
2043 * from the user(?), and set SADB_SASTATE_DEAD,
2044 * and send,
2045 *   <base, address(SD), policy(*)>
2046 * to the ikmpd.
2047 * policy(*) including direction of policy.
2048 *
2049 * m will always be freed.
2050 */
2051static int
2052key_spddelete(so, m, mhp)
2053	struct socket *so;
2054	struct mbuf *m;
2055	const struct sadb_msghdr *mhp;
2056{
2057	struct sadb_address *src0, *dst0;
2058	struct sadb_x_policy *xpl0;
2059	struct secpolicyindex spidx;
2060	struct secpolicy *sp;
2061
2062	IPSEC_ASSERT(so != NULL, ("null so"));
2063	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2064	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2065	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2066
2067	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2068	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2069	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2070		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2071			__func__));
2072		return key_senderror(so, m, EINVAL);
2073	}
2074	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2075	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2076	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2077		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2078			__func__));
2079		return key_senderror(so, m, EINVAL);
2080	}
2081
2082	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2083	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2084	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2085
2086	/*
2087	 * Note: do not parse SADB_X_EXT_NAT_T_* here:
2088	 * we are processing traffic endpoints.
2089	 */
2090
2091	/* make secindex */
2092	/* XXX boundary check against sa_len */
2093	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2094	                src0 + 1,
2095	                dst0 + 1,
2096	                src0->sadb_address_prefixlen,
2097	                dst0->sadb_address_prefixlen,
2098	                src0->sadb_address_proto,
2099	                &spidx);
2100
2101	/* checking the direciton. */
2102	switch (xpl0->sadb_x_policy_dir) {
2103	case IPSEC_DIR_INBOUND:
2104	case IPSEC_DIR_OUTBOUND:
2105		break;
2106	default:
2107		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
2108		return key_senderror(so, m, EINVAL);
2109	}
2110
2111	/* Is there SP in SPD ? */
2112	if ((sp = key_getsp(&spidx)) == NULL) {
2113		ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2114		return key_senderror(so, m, EINVAL);
2115	}
2116
2117	/* save policy id to buffer to be returned. */
2118	xpl0->sadb_x_policy_id = sp->id;
2119
2120	sp->state = IPSEC_SPSTATE_DEAD;
2121	KEY_FREESP(&sp);
2122
2123    {
2124	struct mbuf *n;
2125	struct sadb_msg *newmsg;
2126
2127	/*
2128	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2129	 * we are sending traffic endpoints.
2130	 */
2131
2132	/* create new sadb_msg to reply. */
2133	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2134	    SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2135	if (!n)
2136		return key_senderror(so, m, ENOBUFS);
2137
2138	newmsg = mtod(n, struct sadb_msg *);
2139	newmsg->sadb_msg_errno = 0;
2140	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2141
2142	m_freem(m);
2143	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2144    }
2145}
2146
2147/*
2148 * SADB_SPDDELETE2 processing
2149 * receive
2150 *   <base, policy(*)>
2151 * from the user(?), and set SADB_SASTATE_DEAD,
2152 * and send,
2153 *   <base, policy(*)>
2154 * to the ikmpd.
2155 * policy(*) including direction of policy.
2156 *
2157 * m will always be freed.
2158 */
2159static int
2160key_spddelete2(so, m, mhp)
2161	struct socket *so;
2162	struct mbuf *m;
2163	const struct sadb_msghdr *mhp;
2164{
2165	u_int32_t id;
2166	struct secpolicy *sp;
2167
2168	IPSEC_ASSERT(so != NULL, ("null socket"));
2169	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2170	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2171	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2172
2173	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2174	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2175		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__));
2176		return key_senderror(so, m, EINVAL);
2177	}
2178
2179	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2180
2181	/* Is there SP in SPD ? */
2182	if ((sp = key_getspbyid(id)) == NULL) {
2183		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2184		return key_senderror(so, m, EINVAL);
2185	}
2186
2187	sp->state = IPSEC_SPSTATE_DEAD;
2188	KEY_FREESP(&sp);
2189
2190    {
2191	struct mbuf *n, *nn;
2192	struct sadb_msg *newmsg;
2193	int off, len;
2194
2195	/* create new sadb_msg to reply. */
2196	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2197
2198	MGETHDR(n, M_DONTWAIT, MT_DATA);
2199	if (n && len > MHLEN) {
2200		MCLGET(n, M_DONTWAIT);
2201		if ((n->m_flags & M_EXT) == 0) {
2202			m_freem(n);
2203			n = NULL;
2204		}
2205	}
2206	if (!n)
2207		return key_senderror(so, m, ENOBUFS);
2208
2209	n->m_len = len;
2210	n->m_next = NULL;
2211	off = 0;
2212
2213	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2214	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2215
2216	IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2217		off, len));
2218
2219	n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2220	    mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2221	if (!n->m_next) {
2222		m_freem(n);
2223		return key_senderror(so, m, ENOBUFS);
2224	}
2225
2226	n->m_pkthdr.len = 0;
2227	for (nn = n; nn; nn = nn->m_next)
2228		n->m_pkthdr.len += nn->m_len;
2229
2230	newmsg = mtod(n, struct sadb_msg *);
2231	newmsg->sadb_msg_errno = 0;
2232	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2233
2234	m_freem(m);
2235	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2236    }
2237}
2238
2239/*
2240 * SADB_X_GET processing
2241 * receive
2242 *   <base, policy(*)>
2243 * from the user(?),
2244 * and send,
2245 *   <base, address(SD), policy>
2246 * to the ikmpd.
2247 * policy(*) including direction of policy.
2248 *
2249 * m will always be freed.
2250 */
2251static int
2252key_spdget(so, m, mhp)
2253	struct socket *so;
2254	struct mbuf *m;
2255	const struct sadb_msghdr *mhp;
2256{
2257	u_int32_t id;
2258	struct secpolicy *sp;
2259	struct mbuf *n;
2260
2261	IPSEC_ASSERT(so != NULL, ("null socket"));
2262	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2263	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2264	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2265
2266	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2267	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2268		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2269			__func__));
2270		return key_senderror(so, m, EINVAL);
2271	}
2272
2273	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2274
2275	/* Is there SP in SPD ? */
2276	if ((sp = key_getspbyid(id)) == NULL) {
2277		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2278		return key_senderror(so, m, ENOENT);
2279	}
2280
2281	n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2282	if (n != NULL) {
2283		m_freem(m);
2284		return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2285	} else
2286		return key_senderror(so, m, ENOBUFS);
2287}
2288
2289/*
2290 * SADB_X_SPDACQUIRE processing.
2291 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2292 * send
2293 *   <base, policy(*)>
2294 * to KMD, and expect to receive
2295 *   <base> with SADB_X_SPDACQUIRE if error occured,
2296 * or
2297 *   <base, policy>
2298 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2299 * policy(*) is without policy requests.
2300 *
2301 *    0     : succeed
2302 *    others: error number
2303 */
2304int
2305key_spdacquire(sp)
2306	struct secpolicy *sp;
2307{
2308	struct mbuf *result = NULL, *m;
2309	struct secspacq *newspacq;
2310
2311	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2312	IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2313	IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2314		("policy not IPSEC %u", sp->policy));
2315
2316	/* Get an entry to check whether sent message or not. */
2317	newspacq = key_getspacq(&sp->spidx);
2318	if (newspacq != NULL) {
2319		if (V_key_blockacq_count < newspacq->count) {
2320			/* reset counter and do send message. */
2321			newspacq->count = 0;
2322		} else {
2323			/* increment counter and do nothing. */
2324			newspacq->count++;
2325			return 0;
2326		}
2327		SPACQ_UNLOCK();
2328	} else {
2329		/* make new entry for blocking to send SADB_ACQUIRE. */
2330		newspacq = key_newspacq(&sp->spidx);
2331		if (newspacq == NULL)
2332			return ENOBUFS;
2333	}
2334
2335	/* create new sadb_msg to reply. */
2336	m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2337	if (!m)
2338		return ENOBUFS;
2339
2340	result = m;
2341
2342	result->m_pkthdr.len = 0;
2343	for (m = result; m; m = m->m_next)
2344		result->m_pkthdr.len += m->m_len;
2345
2346	mtod(result, struct sadb_msg *)->sadb_msg_len =
2347	    PFKEY_UNIT64(result->m_pkthdr.len);
2348
2349	return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2350}
2351
2352/*
2353 * SADB_SPDFLUSH processing
2354 * receive
2355 *   <base>
2356 * from the user, and free all entries in secpctree.
2357 * and send,
2358 *   <base>
2359 * to the user.
2360 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2361 *
2362 * m will always be freed.
2363 */
2364static int
2365key_spdflush(so, m, mhp)
2366	struct socket *so;
2367	struct mbuf *m;
2368	const struct sadb_msghdr *mhp;
2369{
2370	struct sadb_msg *newmsg;
2371	struct secpolicy *sp;
2372	u_int dir;
2373
2374	IPSEC_ASSERT(so != NULL, ("null socket"));
2375	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2376	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2377	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2378
2379	if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2380		return key_senderror(so, m, EINVAL);
2381
2382	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2383		SPTREE_LOCK();
2384		LIST_FOREACH(sp, &V_sptree[dir], chain)
2385			sp->state = IPSEC_SPSTATE_DEAD;
2386		SPTREE_UNLOCK();
2387	}
2388
2389	if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2390		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2391		return key_senderror(so, m, ENOBUFS);
2392	}
2393
2394	if (m->m_next)
2395		m_freem(m->m_next);
2396	m->m_next = NULL;
2397	m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2398	newmsg = mtod(m, struct sadb_msg *);
2399	newmsg->sadb_msg_errno = 0;
2400	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2401
2402	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2403}
2404
2405/*
2406 * SADB_SPDDUMP processing
2407 * receive
2408 *   <base>
2409 * from the user, and dump all SP leaves
2410 * and send,
2411 *   <base> .....
2412 * to the ikmpd.
2413 *
2414 * m will always be freed.
2415 */
2416static int
2417key_spddump(so, m, mhp)
2418	struct socket *so;
2419	struct mbuf *m;
2420	const struct sadb_msghdr *mhp;
2421{
2422	struct secpolicy *sp;
2423	int cnt;
2424	u_int dir;
2425	struct mbuf *n;
2426
2427	IPSEC_ASSERT(so != NULL, ("null socket"));
2428	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2429	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2430	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2431
2432	/* search SPD entry and get buffer size. */
2433	cnt = 0;
2434	SPTREE_LOCK();
2435	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2436		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2437			cnt++;
2438		}
2439	}
2440
2441	if (cnt == 0) {
2442		SPTREE_UNLOCK();
2443		return key_senderror(so, m, ENOENT);
2444	}
2445
2446	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2447		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2448			--cnt;
2449			n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2450			    mhp->msg->sadb_msg_pid);
2451
2452			if (n)
2453				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2454		}
2455	}
2456
2457	SPTREE_UNLOCK();
2458	m_freem(m);
2459	return 0;
2460}
2461
2462static struct mbuf *
2463key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid)
2464{
2465	struct mbuf *result = NULL, *m;
2466	struct seclifetime lt;
2467
2468	m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2469	if (!m)
2470		goto fail;
2471	result = m;
2472
2473	/*
2474	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2475	 * we are sending traffic endpoints.
2476	 */
2477	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2478	    &sp->spidx.src.sa, sp->spidx.prefs,
2479	    sp->spidx.ul_proto);
2480	if (!m)
2481		goto fail;
2482	m_cat(result, m);
2483
2484	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2485	    &sp->spidx.dst.sa, sp->spidx.prefd,
2486	    sp->spidx.ul_proto);
2487	if (!m)
2488		goto fail;
2489	m_cat(result, m);
2490
2491	m = key_sp2msg(sp);
2492	if (!m)
2493		goto fail;
2494	m_cat(result, m);
2495
2496	if(sp->lifetime){
2497		lt.addtime=sp->created;
2498		lt.usetime= sp->lastused;
2499		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_CURRENT);
2500		if (!m)
2501			goto fail;
2502		m_cat(result, m);
2503
2504		lt.addtime=sp->lifetime;
2505		lt.usetime= sp->validtime;
2506		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_HARD);
2507		if (!m)
2508			goto fail;
2509		m_cat(result, m);
2510	}
2511
2512	if ((result->m_flags & M_PKTHDR) == 0)
2513		goto fail;
2514
2515	if (result->m_len < sizeof(struct sadb_msg)) {
2516		result = m_pullup(result, sizeof(struct sadb_msg));
2517		if (result == NULL)
2518			goto fail;
2519	}
2520
2521	result->m_pkthdr.len = 0;
2522	for (m = result; m; m = m->m_next)
2523		result->m_pkthdr.len += m->m_len;
2524
2525	mtod(result, struct sadb_msg *)->sadb_msg_len =
2526	    PFKEY_UNIT64(result->m_pkthdr.len);
2527
2528	return result;
2529
2530fail:
2531	m_freem(result);
2532	return NULL;
2533}
2534
2535/*
2536 * get PFKEY message length for security policy and request.
2537 */
2538static u_int
2539key_getspreqmsglen(sp)
2540	struct secpolicy *sp;
2541{
2542	u_int tlen;
2543
2544	tlen = sizeof(struct sadb_x_policy);
2545
2546	/* if is the policy for ipsec ? */
2547	if (sp->policy != IPSEC_POLICY_IPSEC)
2548		return tlen;
2549
2550	/* get length of ipsec requests */
2551    {
2552	struct ipsecrequest *isr;
2553	int len;
2554
2555	for (isr = sp->req; isr != NULL; isr = isr->next) {
2556		len = sizeof(struct sadb_x_ipsecrequest)
2557			+ isr->saidx.src.sa.sa_len
2558			+ isr->saidx.dst.sa.sa_len;
2559
2560		tlen += PFKEY_ALIGN8(len);
2561	}
2562    }
2563
2564	return tlen;
2565}
2566
2567/*
2568 * SADB_SPDEXPIRE processing
2569 * send
2570 *   <base, address(SD), lifetime(CH), policy>
2571 * to KMD by PF_KEY.
2572 *
2573 * OUT:	0	: succeed
2574 *	others	: error number
2575 */
2576static int
2577key_spdexpire(sp)
2578	struct secpolicy *sp;
2579{
2580	struct mbuf *result = NULL, *m;
2581	int len;
2582	int error = -1;
2583	struct sadb_lifetime *lt;
2584
2585	/* XXX: Why do we lock ? */
2586
2587	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2588
2589	/* set msg header */
2590	m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2591	if (!m) {
2592		error = ENOBUFS;
2593		goto fail;
2594	}
2595	result = m;
2596
2597	/* create lifetime extension (current and hard) */
2598	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2599	m = key_alloc_mbuf(len);
2600	if (!m || m->m_next) {	/*XXX*/
2601		if (m)
2602			m_freem(m);
2603		error = ENOBUFS;
2604		goto fail;
2605	}
2606	bzero(mtod(m, caddr_t), len);
2607	lt = mtod(m, struct sadb_lifetime *);
2608	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2609	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2610	lt->sadb_lifetime_allocations = 0;
2611	lt->sadb_lifetime_bytes = 0;
2612	lt->sadb_lifetime_addtime = sp->created;
2613	lt->sadb_lifetime_usetime = sp->lastused;
2614	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2615	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2616	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2617	lt->sadb_lifetime_allocations = 0;
2618	lt->sadb_lifetime_bytes = 0;
2619	lt->sadb_lifetime_addtime = sp->lifetime;
2620	lt->sadb_lifetime_usetime = sp->validtime;
2621	m_cat(result, m);
2622
2623	/*
2624	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2625	 * we are sending traffic endpoints.
2626	 */
2627
2628	/* set sadb_address for source */
2629	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2630	    &sp->spidx.src.sa,
2631	    sp->spidx.prefs, sp->spidx.ul_proto);
2632	if (!m) {
2633		error = ENOBUFS;
2634		goto fail;
2635	}
2636	m_cat(result, m);
2637
2638	/* set sadb_address for destination */
2639	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2640	    &sp->spidx.dst.sa,
2641	    sp->spidx.prefd, sp->spidx.ul_proto);
2642	if (!m) {
2643		error = ENOBUFS;
2644		goto fail;
2645	}
2646	m_cat(result, m);
2647
2648	/* set secpolicy */
2649	m = key_sp2msg(sp);
2650	if (!m) {
2651		error = ENOBUFS;
2652		goto fail;
2653	}
2654	m_cat(result, m);
2655
2656	if ((result->m_flags & M_PKTHDR) == 0) {
2657		error = EINVAL;
2658		goto fail;
2659	}
2660
2661	if (result->m_len < sizeof(struct sadb_msg)) {
2662		result = m_pullup(result, sizeof(struct sadb_msg));
2663		if (result == NULL) {
2664			error = ENOBUFS;
2665			goto fail;
2666		}
2667	}
2668
2669	result->m_pkthdr.len = 0;
2670	for (m = result; m; m = m->m_next)
2671		result->m_pkthdr.len += m->m_len;
2672
2673	mtod(result, struct sadb_msg *)->sadb_msg_len =
2674	    PFKEY_UNIT64(result->m_pkthdr.len);
2675
2676	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2677
2678 fail:
2679	if (result)
2680		m_freem(result);
2681	return error;
2682}
2683
2684/* %%% SAD management */
2685/*
2686 * allocating a memory for new SA head, and copy from the values of mhp.
2687 * OUT:	NULL	: failure due to the lack of memory.
2688 *	others	: pointer to new SA head.
2689 */
2690static struct secashead *
2691key_newsah(saidx)
2692	struct secasindex *saidx;
2693{
2694	struct secashead *newsah;
2695
2696	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
2697
2698	newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO);
2699	if (newsah != NULL) {
2700		int i;
2701		for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2702			LIST_INIT(&newsah->savtree[i]);
2703		newsah->saidx = *saidx;
2704
2705		/* add to saidxtree */
2706		newsah->state = SADB_SASTATE_MATURE;
2707
2708		SAHTREE_LOCK();
2709		LIST_INSERT_HEAD(&V_sahtree, newsah, chain);
2710		SAHTREE_UNLOCK();
2711	}
2712	return(newsah);
2713}
2714
2715/*
2716 * delete SA index and all SA registerd.
2717 */
2718static void
2719key_delsah(sah)
2720	struct secashead *sah;
2721{
2722	struct secasvar *sav, *nextsav;
2723	u_int stateidx;
2724	int zombie = 0;
2725
2726	IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2727	SAHTREE_LOCK_ASSERT();
2728
2729	/* searching all SA registerd in the secindex. */
2730	for (stateidx = 0;
2731	     stateidx < _ARRAYLEN(saorder_state_any);
2732	     stateidx++) {
2733		u_int state = saorder_state_any[stateidx];
2734		LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2735			if (sav->refcnt == 0) {
2736				/* sanity check */
2737				KEY_CHKSASTATE(state, sav->state, __func__);
2738				/*
2739				 * do NOT call KEY_FREESAV here:
2740				 * it will only delete the sav if refcnt == 1,
2741				 * where we already know that refcnt == 0
2742				 */
2743				key_delsav(sav);
2744			} else {
2745				/* give up to delete this sa */
2746				zombie++;
2747			}
2748		}
2749	}
2750	if (!zombie) {		/* delete only if there are savs */
2751		/* remove from tree of SA index */
2752		if (__LIST_CHAINED(sah))
2753			LIST_REMOVE(sah, chain);
2754		if (sah->sa_route.ro_rt) {
2755			RTFREE(sah->sa_route.ro_rt);
2756			sah->sa_route.ro_rt = (struct rtentry *)NULL;
2757		}
2758		free(sah, M_IPSEC_SAH);
2759	}
2760}
2761
2762/*
2763 * allocating a new SA with LARVAL state.  key_add() and key_getspi() call,
2764 * and copy the values of mhp into new buffer.
2765 * When SAD message type is GETSPI:
2766 *	to set sequence number from acq_seq++,
2767 *	to set zero to SPI.
2768 *	not to call key_setsava().
2769 * OUT:	NULL	: fail
2770 *	others	: pointer to new secasvar.
2771 *
2772 * does not modify mbuf.  does not free mbuf on error.
2773 */
2774static struct secasvar *
2775key_newsav(m, mhp, sah, errp, where, tag)
2776	struct mbuf *m;
2777	const struct sadb_msghdr *mhp;
2778	struct secashead *sah;
2779	int *errp;
2780	const char* where;
2781	int tag;
2782{
2783	struct secasvar *newsav;
2784	const struct sadb_sa *xsa;
2785
2786	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2787	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2788	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2789	IPSEC_ASSERT(sah != NULL, ("null secashead"));
2790
2791	newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO);
2792	if (newsav == NULL) {
2793		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2794		*errp = ENOBUFS;
2795		goto done;
2796	}
2797
2798	switch (mhp->msg->sadb_msg_type) {
2799	case SADB_GETSPI:
2800		newsav->spi = 0;
2801
2802#ifdef IPSEC_DOSEQCHECK
2803		/* sync sequence number */
2804		if (mhp->msg->sadb_msg_seq == 0)
2805			newsav->seq =
2806				(V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq));
2807		else
2808#endif
2809			newsav->seq = mhp->msg->sadb_msg_seq;
2810		break;
2811
2812	case SADB_ADD:
2813		/* sanity check */
2814		if (mhp->ext[SADB_EXT_SA] == NULL) {
2815			free(newsav, M_IPSEC_SA);
2816			newsav = NULL;
2817			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2818				__func__));
2819			*errp = EINVAL;
2820			goto done;
2821		}
2822		xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2823		newsav->spi = xsa->sadb_sa_spi;
2824		newsav->seq = mhp->msg->sadb_msg_seq;
2825		break;
2826	default:
2827		free(newsav, M_IPSEC_SA);
2828		newsav = NULL;
2829		*errp = EINVAL;
2830		goto done;
2831	}
2832
2833
2834	/* copy sav values */
2835	if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2836		*errp = key_setsaval(newsav, m, mhp);
2837		if (*errp) {
2838			free(newsav, M_IPSEC_SA);
2839			newsav = NULL;
2840			goto done;
2841		}
2842	}
2843
2844	SECASVAR_LOCK_INIT(newsav);
2845
2846	/* reset created */
2847	newsav->created = time_second;
2848	newsav->pid = mhp->msg->sadb_msg_pid;
2849
2850	/* add to satree */
2851	newsav->sah = sah;
2852	sa_initref(newsav);
2853	newsav->state = SADB_SASTATE_LARVAL;
2854
2855	SAHTREE_LOCK();
2856	LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2857			secasvar, chain);
2858	SAHTREE_UNLOCK();
2859done:
2860	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2861		printf("DP %s from %s:%u return SP:%p\n", __func__,
2862			where, tag, newsav));
2863
2864	return newsav;
2865}
2866
2867/*
2868 * free() SA variable entry.
2869 */
2870static void
2871key_cleansav(struct secasvar *sav)
2872{
2873	/*
2874	 * Cleanup xform state.  Note that zeroize'ing causes the
2875	 * keys to be cleared; otherwise we must do it ourself.
2876	 */
2877	if (sav->tdb_xform != NULL) {
2878		sav->tdb_xform->xf_zeroize(sav);
2879		sav->tdb_xform = NULL;
2880	} else {
2881		KASSERT(sav->iv == NULL, ("iv but no xform"));
2882		if (sav->key_auth != NULL)
2883			bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2884		if (sav->key_enc != NULL)
2885			bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc));
2886	}
2887	if (sav->key_auth != NULL) {
2888		if (sav->key_auth->key_data != NULL)
2889			free(sav->key_auth->key_data, M_IPSEC_MISC);
2890		free(sav->key_auth, M_IPSEC_MISC);
2891		sav->key_auth = NULL;
2892	}
2893	if (sav->key_enc != NULL) {
2894		if (sav->key_enc->key_data != NULL)
2895			free(sav->key_enc->key_data, M_IPSEC_MISC);
2896		free(sav->key_enc, M_IPSEC_MISC);
2897		sav->key_enc = NULL;
2898	}
2899	if (sav->sched) {
2900		bzero(sav->sched, sav->schedlen);
2901		free(sav->sched, M_IPSEC_MISC);
2902		sav->sched = NULL;
2903	}
2904	if (sav->replay != NULL) {
2905		free(sav->replay, M_IPSEC_MISC);
2906		sav->replay = NULL;
2907	}
2908	if (sav->lft_c != NULL) {
2909		free(sav->lft_c, M_IPSEC_MISC);
2910		sav->lft_c = NULL;
2911	}
2912	if (sav->lft_h != NULL) {
2913		free(sav->lft_h, M_IPSEC_MISC);
2914		sav->lft_h = NULL;
2915	}
2916	if (sav->lft_s != NULL) {
2917		free(sav->lft_s, M_IPSEC_MISC);
2918		sav->lft_s = NULL;
2919	}
2920}
2921
2922/*
2923 * free() SA variable entry.
2924 */
2925static void
2926key_delsav(sav)
2927	struct secasvar *sav;
2928{
2929	IPSEC_ASSERT(sav != NULL, ("null sav"));
2930	IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt));
2931
2932	/* remove from SA header */
2933	if (__LIST_CHAINED(sav))
2934		LIST_REMOVE(sav, chain);
2935	key_cleansav(sav);
2936	SECASVAR_LOCK_DESTROY(sav);
2937	free(sav, M_IPSEC_SA);
2938}
2939
2940/*
2941 * search SAD.
2942 * OUT:
2943 *	NULL	: not found
2944 *	others	: found, pointer to a SA.
2945 */
2946static struct secashead *
2947key_getsah(saidx)
2948	struct secasindex *saidx;
2949{
2950	struct secashead *sah;
2951
2952	SAHTREE_LOCK();
2953	LIST_FOREACH(sah, &V_sahtree, chain) {
2954		if (sah->state == SADB_SASTATE_DEAD)
2955			continue;
2956		if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
2957			break;
2958	}
2959	SAHTREE_UNLOCK();
2960
2961	return sah;
2962}
2963
2964/*
2965 * check not to be duplicated SPI.
2966 * NOTE: this function is too slow due to searching all SAD.
2967 * OUT:
2968 *	NULL	: not found
2969 *	others	: found, pointer to a SA.
2970 */
2971static struct secasvar *
2972key_checkspidup(saidx, spi)
2973	struct secasindex *saidx;
2974	u_int32_t spi;
2975{
2976	struct secashead *sah;
2977	struct secasvar *sav;
2978
2979	/* check address family */
2980	if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
2981		ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
2982			__func__));
2983		return NULL;
2984	}
2985
2986	sav = NULL;
2987	/* check all SAD */
2988	SAHTREE_LOCK();
2989	LIST_FOREACH(sah, &V_sahtree, chain) {
2990		if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
2991			continue;
2992		sav = key_getsavbyspi(sah, spi);
2993		if (sav != NULL)
2994			break;
2995	}
2996	SAHTREE_UNLOCK();
2997
2998	return sav;
2999}
3000
3001/*
3002 * search SAD litmited alive SA, protocol, SPI.
3003 * OUT:
3004 *	NULL	: not found
3005 *	others	: found, pointer to a SA.
3006 */
3007static struct secasvar *
3008key_getsavbyspi(sah, spi)
3009	struct secashead *sah;
3010	u_int32_t spi;
3011{
3012	struct secasvar *sav;
3013	u_int stateidx, state;
3014
3015	sav = NULL;
3016	SAHTREE_LOCK_ASSERT();
3017	/* search all status */
3018	for (stateidx = 0;
3019	     stateidx < _ARRAYLEN(saorder_state_alive);
3020	     stateidx++) {
3021
3022		state = saorder_state_alive[stateidx];
3023		LIST_FOREACH(sav, &sah->savtree[state], chain) {
3024
3025			/* sanity check */
3026			if (sav->state != state) {
3027				ipseclog((LOG_DEBUG, "%s: "
3028				    "invalid sav->state (queue: %d SA: %d)\n",
3029				    __func__, state, sav->state));
3030				continue;
3031			}
3032
3033			if (sav->spi == spi)
3034				return sav;
3035		}
3036	}
3037
3038	return NULL;
3039}
3040
3041/*
3042 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3043 * You must update these if need.
3044 * OUT:	0:	success.
3045 *	!0:	failure.
3046 *
3047 * does not modify mbuf.  does not free mbuf on error.
3048 */
3049static int
3050key_setsaval(sav, m, mhp)
3051	struct secasvar *sav;
3052	struct mbuf *m;
3053	const struct sadb_msghdr *mhp;
3054{
3055	int error = 0;
3056
3057	IPSEC_ASSERT(m != NULL, ("null mbuf"));
3058	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
3059	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
3060
3061	/* initialization */
3062	sav->replay = NULL;
3063	sav->key_auth = NULL;
3064	sav->key_enc = NULL;
3065	sav->sched = NULL;
3066	sav->schedlen = 0;
3067	sav->iv = NULL;
3068	sav->lft_c = NULL;
3069	sav->lft_h = NULL;
3070	sav->lft_s = NULL;
3071	sav->tdb_xform = NULL;		/* transform */
3072	sav->tdb_encalgxform = NULL;	/* encoding algorithm */
3073	sav->tdb_authalgxform = NULL;	/* authentication algorithm */
3074	sav->tdb_compalgxform = NULL;	/* compression algorithm */
3075	/*  Initialize even if NAT-T not compiled in: */
3076	sav->natt_type = 0;
3077	sav->natt_esp_frag_len = 0;
3078
3079	/* SA */
3080	if (mhp->ext[SADB_EXT_SA] != NULL) {
3081		const struct sadb_sa *sa0;
3082
3083		sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3084		if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3085			error = EINVAL;
3086			goto fail;
3087		}
3088
3089		sav->alg_auth = sa0->sadb_sa_auth;
3090		sav->alg_enc = sa0->sadb_sa_encrypt;
3091		sav->flags = sa0->sadb_sa_flags;
3092
3093		/* replay window */
3094		if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3095			sav->replay = (struct secreplay *)
3096				malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO);
3097			if (sav->replay == NULL) {
3098				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3099					__func__));
3100				error = ENOBUFS;
3101				goto fail;
3102			}
3103			if (sa0->sadb_sa_replay != 0)
3104				sav->replay->bitmap = (caddr_t)(sav->replay+1);
3105			sav->replay->wsize = sa0->sadb_sa_replay;
3106		}
3107	}
3108
3109	/* Authentication keys */
3110	if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3111		const struct sadb_key *key0;
3112		int len;
3113
3114		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3115		len = mhp->extlen[SADB_EXT_KEY_AUTH];
3116
3117		error = 0;
3118		if (len < sizeof(*key0)) {
3119			error = EINVAL;
3120			goto fail;
3121		}
3122		switch (mhp->msg->sadb_msg_satype) {
3123		case SADB_SATYPE_AH:
3124		case SADB_SATYPE_ESP:
3125		case SADB_X_SATYPE_TCPSIGNATURE:
3126			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3127			    sav->alg_auth != SADB_X_AALG_NULL)
3128				error = EINVAL;
3129			break;
3130		case SADB_X_SATYPE_IPCOMP:
3131		default:
3132			error = EINVAL;
3133			break;
3134		}
3135		if (error) {
3136			ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3137				__func__));
3138			goto fail;
3139		}
3140
3141		sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len,
3142								M_IPSEC_MISC);
3143		if (sav->key_auth == NULL ) {
3144			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3145				  __func__));
3146			error = ENOBUFS;
3147			goto fail;
3148		}
3149	}
3150
3151	/* Encryption key */
3152	if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3153		const struct sadb_key *key0;
3154		int len;
3155
3156		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3157		len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3158
3159		error = 0;
3160		if (len < sizeof(*key0)) {
3161			error = EINVAL;
3162			goto fail;
3163		}
3164		switch (mhp->msg->sadb_msg_satype) {
3165		case SADB_SATYPE_ESP:
3166			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3167			    sav->alg_enc != SADB_EALG_NULL) {
3168				error = EINVAL;
3169				break;
3170			}
3171			sav->key_enc = (struct seckey *)key_dup_keymsg(key0,
3172								       len,
3173								       M_IPSEC_MISC);
3174			if (sav->key_enc == NULL) {
3175				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3176					__func__));
3177				error = ENOBUFS;
3178				goto fail;
3179			}
3180			break;
3181		case SADB_X_SATYPE_IPCOMP:
3182			if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3183				error = EINVAL;
3184			sav->key_enc = NULL;	/*just in case*/
3185			break;
3186		case SADB_SATYPE_AH:
3187		case SADB_X_SATYPE_TCPSIGNATURE:
3188		default:
3189			error = EINVAL;
3190			break;
3191		}
3192		if (error) {
3193			ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3194				__func__));
3195			goto fail;
3196		}
3197	}
3198
3199	/* set iv */
3200	sav->ivlen = 0;
3201
3202	switch (mhp->msg->sadb_msg_satype) {
3203	case SADB_SATYPE_AH:
3204		error = xform_init(sav, XF_AH);
3205		break;
3206	case SADB_SATYPE_ESP:
3207		error = xform_init(sav, XF_ESP);
3208		break;
3209	case SADB_X_SATYPE_IPCOMP:
3210		error = xform_init(sav, XF_IPCOMP);
3211		break;
3212	case SADB_X_SATYPE_TCPSIGNATURE:
3213		error = xform_init(sav, XF_TCPSIGNATURE);
3214		break;
3215	}
3216	if (error) {
3217		ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3218		        __func__, mhp->msg->sadb_msg_satype));
3219		goto fail;
3220	}
3221
3222	/* reset created */
3223	sav->created = time_second;
3224
3225	/* make lifetime for CURRENT */
3226	sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT);
3227	if (sav->lft_c == NULL) {
3228		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3229		error = ENOBUFS;
3230		goto fail;
3231	}
3232
3233	sav->lft_c->allocations = 0;
3234	sav->lft_c->bytes = 0;
3235	sav->lft_c->addtime = time_second;
3236	sav->lft_c->usetime = 0;
3237
3238	/* lifetimes for HARD and SOFT */
3239    {
3240	const struct sadb_lifetime *lft0;
3241
3242	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3243	if (lft0 != NULL) {
3244		if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3245			error = EINVAL;
3246			goto fail;
3247		}
3248		sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3249		if (sav->lft_h == NULL) {
3250			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3251			error = ENOBUFS;
3252			goto fail;
3253		}
3254		/* to be initialize ? */
3255	}
3256
3257	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3258	if (lft0 != NULL) {
3259		if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3260			error = EINVAL;
3261			goto fail;
3262		}
3263		sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3264		if (sav->lft_s == NULL) {
3265			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3266			error = ENOBUFS;
3267			goto fail;
3268		}
3269		/* to be initialize ? */
3270	}
3271    }
3272
3273	return 0;
3274
3275 fail:
3276	/* initialization */
3277	key_cleansav(sav);
3278
3279	return error;
3280}
3281
3282/*
3283 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3284 * OUT:	0:	valid
3285 *	other:	errno
3286 */
3287static int
3288key_mature(struct secasvar *sav)
3289{
3290	int error;
3291
3292	/* check SPI value */
3293	switch (sav->sah->saidx.proto) {
3294	case IPPROTO_ESP:
3295	case IPPROTO_AH:
3296		/*
3297		 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
3298		 * 1-255 reserved by IANA for future use,
3299		 * 0 for implementation specific, local use.
3300		 */
3301		if (ntohl(sav->spi) <= 255) {
3302			ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
3303			    __func__, (u_int32_t)ntohl(sav->spi)));
3304			return EINVAL;
3305		}
3306		break;
3307	}
3308
3309	/* check satype */
3310	switch (sav->sah->saidx.proto) {
3311	case IPPROTO_ESP:
3312		/* check flags */
3313		if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3314		    (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3315			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3316				"given to old-esp.\n", __func__));
3317			return EINVAL;
3318		}
3319		error = xform_init(sav, XF_ESP);
3320		break;
3321	case IPPROTO_AH:
3322		/* check flags */
3323		if (sav->flags & SADB_X_EXT_DERIV) {
3324			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3325				"given to AH SA.\n", __func__));
3326			return EINVAL;
3327		}
3328		if (sav->alg_enc != SADB_EALG_NONE) {
3329			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3330				"mismated.\n", __func__));
3331			return(EINVAL);
3332		}
3333		error = xform_init(sav, XF_AH);
3334		break;
3335	case IPPROTO_IPCOMP:
3336		if (sav->alg_auth != SADB_AALG_NONE) {
3337			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3338				"mismated.\n", __func__));
3339			return(EINVAL);
3340		}
3341		if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3342		 && ntohl(sav->spi) >= 0x10000) {
3343			ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3344				__func__));
3345			return(EINVAL);
3346		}
3347		error = xform_init(sav, XF_IPCOMP);
3348		break;
3349	case IPPROTO_TCP:
3350		if (sav->alg_enc != SADB_EALG_NONE) {
3351			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3352				"mismated.\n", __func__));
3353			return(EINVAL);
3354		}
3355		error = xform_init(sav, XF_TCPSIGNATURE);
3356		break;
3357	default:
3358		ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3359		error = EPROTONOSUPPORT;
3360		break;
3361	}
3362	if (error == 0) {
3363		SAHTREE_LOCK();
3364		key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3365		SAHTREE_UNLOCK();
3366	}
3367	return (error);
3368}
3369
3370/*
3371 * subroutine for SADB_GET and SADB_DUMP.
3372 */
3373static struct mbuf *
3374key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3375    u_int32_t seq, u_int32_t pid)
3376{
3377	struct mbuf *result = NULL, *tres = NULL, *m;
3378	int i;
3379	int dumporder[] = {
3380		SADB_EXT_SA, SADB_X_EXT_SA2,
3381		SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3382		SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3383		SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3384		SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3385		SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3386#ifdef IPSEC_NAT_T
3387		SADB_X_EXT_NAT_T_TYPE,
3388		SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3389		SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3390		SADB_X_EXT_NAT_T_FRAG,
3391#endif
3392	};
3393
3394	m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3395	if (m == NULL)
3396		goto fail;
3397	result = m;
3398
3399	for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3400		m = NULL;
3401		switch (dumporder[i]) {
3402		case SADB_EXT_SA:
3403			m = key_setsadbsa(sav);
3404			if (!m)
3405				goto fail;
3406			break;
3407
3408		case SADB_X_EXT_SA2:
3409			m = key_setsadbxsa2(sav->sah->saidx.mode,
3410					sav->replay ? sav->replay->count : 0,
3411					sav->sah->saidx.reqid);
3412			if (!m)
3413				goto fail;
3414			break;
3415
3416		case SADB_EXT_ADDRESS_SRC:
3417			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3418			    &sav->sah->saidx.src.sa,
3419			    FULLMASK, IPSEC_ULPROTO_ANY);
3420			if (!m)
3421				goto fail;
3422			break;
3423
3424		case SADB_EXT_ADDRESS_DST:
3425			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3426			    &sav->sah->saidx.dst.sa,
3427			    FULLMASK, IPSEC_ULPROTO_ANY);
3428			if (!m)
3429				goto fail;
3430			break;
3431
3432		case SADB_EXT_KEY_AUTH:
3433			if (!sav->key_auth)
3434				continue;
3435			m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
3436			if (!m)
3437				goto fail;
3438			break;
3439
3440		case SADB_EXT_KEY_ENCRYPT:
3441			if (!sav->key_enc)
3442				continue;
3443			m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
3444			if (!m)
3445				goto fail;
3446			break;
3447
3448		case SADB_EXT_LIFETIME_CURRENT:
3449			if (!sav->lft_c)
3450				continue;
3451			m = key_setlifetime(sav->lft_c,
3452					    SADB_EXT_LIFETIME_CURRENT);
3453			if (!m)
3454				goto fail;
3455			break;
3456
3457		case SADB_EXT_LIFETIME_HARD:
3458			if (!sav->lft_h)
3459				continue;
3460			m = key_setlifetime(sav->lft_h,
3461					    SADB_EXT_LIFETIME_HARD);
3462			if (!m)
3463				goto fail;
3464			break;
3465
3466		case SADB_EXT_LIFETIME_SOFT:
3467			if (!sav->lft_s)
3468				continue;
3469			m = key_setlifetime(sav->lft_s,
3470					    SADB_EXT_LIFETIME_SOFT);
3471
3472			if (!m)
3473				goto fail;
3474			break;
3475
3476#ifdef IPSEC_NAT_T
3477		case SADB_X_EXT_NAT_T_TYPE:
3478			m = key_setsadbxtype(sav->natt_type);
3479			if (!m)
3480				goto fail;
3481			break;
3482
3483		case SADB_X_EXT_NAT_T_DPORT:
3484			m = key_setsadbxport(
3485			    KEY_PORTFROMSADDR(&sav->sah->saidx.dst),
3486			    SADB_X_EXT_NAT_T_DPORT);
3487			if (!m)
3488				goto fail;
3489			break;
3490
3491		case SADB_X_EXT_NAT_T_SPORT:
3492			m = key_setsadbxport(
3493			    KEY_PORTFROMSADDR(&sav->sah->saidx.src),
3494			    SADB_X_EXT_NAT_T_SPORT);
3495			if (!m)
3496				goto fail;
3497			break;
3498
3499		case SADB_X_EXT_NAT_T_OAI:
3500		case SADB_X_EXT_NAT_T_OAR:
3501		case SADB_X_EXT_NAT_T_FRAG:
3502			/* We do not (yet) support those. */
3503			continue;
3504#endif
3505
3506		case SADB_EXT_ADDRESS_PROXY:
3507		case SADB_EXT_IDENTITY_SRC:
3508		case SADB_EXT_IDENTITY_DST:
3509			/* XXX: should we brought from SPD ? */
3510		case SADB_EXT_SENSITIVITY:
3511		default:
3512			continue;
3513		}
3514
3515		if (!m)
3516			goto fail;
3517		if (tres)
3518			m_cat(m, tres);
3519		tres = m;
3520
3521	}
3522
3523	m_cat(result, tres);
3524	if (result->m_len < sizeof(struct sadb_msg)) {
3525		result = m_pullup(result, sizeof(struct sadb_msg));
3526		if (result == NULL)
3527			goto fail;
3528	}
3529
3530	result->m_pkthdr.len = 0;
3531	for (m = result; m; m = m->m_next)
3532		result->m_pkthdr.len += m->m_len;
3533
3534	mtod(result, struct sadb_msg *)->sadb_msg_len =
3535	    PFKEY_UNIT64(result->m_pkthdr.len);
3536
3537	return result;
3538
3539fail:
3540	m_freem(result);
3541	m_freem(tres);
3542	return NULL;
3543}
3544
3545/*
3546 * set data into sadb_msg.
3547 */
3548static struct mbuf *
3549key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq,
3550    pid_t pid, u_int16_t reserved)
3551{
3552	struct mbuf *m;
3553	struct sadb_msg *p;
3554	int len;
3555
3556	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3557	if (len > MCLBYTES)
3558		return NULL;
3559	MGETHDR(m, M_DONTWAIT, MT_DATA);
3560	if (m && len > MHLEN) {
3561		MCLGET(m, M_DONTWAIT);
3562		if ((m->m_flags & M_EXT) == 0) {
3563			m_freem(m);
3564			m = NULL;
3565		}
3566	}
3567	if (!m)
3568		return NULL;
3569	m->m_pkthdr.len = m->m_len = len;
3570	m->m_next = NULL;
3571
3572	p = mtod(m, struct sadb_msg *);
3573
3574	bzero(p, len);
3575	p->sadb_msg_version = PF_KEY_V2;
3576	p->sadb_msg_type = type;
3577	p->sadb_msg_errno = 0;
3578	p->sadb_msg_satype = satype;
3579	p->sadb_msg_len = PFKEY_UNIT64(tlen);
3580	p->sadb_msg_reserved = reserved;
3581	p->sadb_msg_seq = seq;
3582	p->sadb_msg_pid = (u_int32_t)pid;
3583
3584	return m;
3585}
3586
3587/*
3588 * copy secasvar data into sadb_address.
3589 */
3590static struct mbuf *
3591key_setsadbsa(sav)
3592	struct secasvar *sav;
3593{
3594	struct mbuf *m;
3595	struct sadb_sa *p;
3596	int len;
3597
3598	len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3599	m = key_alloc_mbuf(len);
3600	if (!m || m->m_next) {	/*XXX*/
3601		if (m)
3602			m_freem(m);
3603		return NULL;
3604	}
3605
3606	p = mtod(m, struct sadb_sa *);
3607
3608	bzero(p, len);
3609	p->sadb_sa_len = PFKEY_UNIT64(len);
3610	p->sadb_sa_exttype = SADB_EXT_SA;
3611	p->sadb_sa_spi = sav->spi;
3612	p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3613	p->sadb_sa_state = sav->state;
3614	p->sadb_sa_auth = sav->alg_auth;
3615	p->sadb_sa_encrypt = sav->alg_enc;
3616	p->sadb_sa_flags = sav->flags;
3617
3618	return m;
3619}
3620
3621/*
3622 * set data into sadb_address.
3623 */
3624static struct mbuf *
3625key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto)
3626{
3627	struct mbuf *m;
3628	struct sadb_address *p;
3629	size_t len;
3630
3631	len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3632	    PFKEY_ALIGN8(saddr->sa_len);
3633	m = key_alloc_mbuf(len);
3634	if (!m || m->m_next) {	/*XXX*/
3635		if (m)
3636			m_freem(m);
3637		return NULL;
3638	}
3639
3640	p = mtod(m, struct sadb_address *);
3641
3642	bzero(p, len);
3643	p->sadb_address_len = PFKEY_UNIT64(len);
3644	p->sadb_address_exttype = exttype;
3645	p->sadb_address_proto = ul_proto;
3646	if (prefixlen == FULLMASK) {
3647		switch (saddr->sa_family) {
3648		case AF_INET:
3649			prefixlen = sizeof(struct in_addr) << 3;
3650			break;
3651		case AF_INET6:
3652			prefixlen = sizeof(struct in6_addr) << 3;
3653			break;
3654		default:
3655			; /*XXX*/
3656		}
3657	}
3658	p->sadb_address_prefixlen = prefixlen;
3659	p->sadb_address_reserved = 0;
3660
3661	bcopy(saddr,
3662	    mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3663	    saddr->sa_len);
3664
3665	return m;
3666}
3667
3668/*
3669 * set data into sadb_x_sa2.
3670 */
3671static struct mbuf *
3672key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid)
3673{
3674	struct mbuf *m;
3675	struct sadb_x_sa2 *p;
3676	size_t len;
3677
3678	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3679	m = key_alloc_mbuf(len);
3680	if (!m || m->m_next) {	/*XXX*/
3681		if (m)
3682			m_freem(m);
3683		return NULL;
3684	}
3685
3686	p = mtod(m, struct sadb_x_sa2 *);
3687
3688	bzero(p, len);
3689	p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3690	p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3691	p->sadb_x_sa2_mode = mode;
3692	p->sadb_x_sa2_reserved1 = 0;
3693	p->sadb_x_sa2_reserved2 = 0;
3694	p->sadb_x_sa2_sequence = seq;
3695	p->sadb_x_sa2_reqid = reqid;
3696
3697	return m;
3698}
3699
3700#ifdef IPSEC_NAT_T
3701/*
3702 * Set a type in sadb_x_nat_t_type.
3703 */
3704static struct mbuf *
3705key_setsadbxtype(u_int16_t type)
3706{
3707	struct mbuf *m;
3708	size_t len;
3709	struct sadb_x_nat_t_type *p;
3710
3711	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3712
3713	m = key_alloc_mbuf(len);
3714	if (!m || m->m_next) {	/*XXX*/
3715		if (m)
3716			m_freem(m);
3717		return (NULL);
3718	}
3719
3720	p = mtod(m, struct sadb_x_nat_t_type *);
3721
3722	bzero(p, len);
3723	p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3724	p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3725	p->sadb_x_nat_t_type_type = type;
3726
3727	return (m);
3728}
3729/*
3730 * Set a port in sadb_x_nat_t_port.
3731 * In contrast to default RFC 2367 behaviour, port is in network byte order.
3732 */
3733static struct mbuf *
3734key_setsadbxport(u_int16_t port, u_int16_t type)
3735{
3736	struct mbuf *m;
3737	size_t len;
3738	struct sadb_x_nat_t_port *p;
3739
3740	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3741
3742	m = key_alloc_mbuf(len);
3743	if (!m || m->m_next) {	/*XXX*/
3744		if (m)
3745			m_freem(m);
3746		return (NULL);
3747	}
3748
3749	p = mtod(m, struct sadb_x_nat_t_port *);
3750
3751	bzero(p, len);
3752	p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3753	p->sadb_x_nat_t_port_exttype = type;
3754	p->sadb_x_nat_t_port_port = port;
3755
3756	return (m);
3757}
3758
3759/*
3760 * Get port from sockaddr. Port is in network byte order.
3761 */
3762u_int16_t
3763key_portfromsaddr(struct sockaddr *sa)
3764{
3765
3766	switch (sa->sa_family) {
3767#ifdef INET
3768	case AF_INET:
3769		return ((struct sockaddr_in *)sa)->sin_port;
3770#endif
3771#ifdef INET6
3772	case AF_INET6:
3773		return ((struct sockaddr_in6 *)sa)->sin6_port;
3774#endif
3775	}
3776	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
3777		printf("DP %s unexpected address family %d\n",
3778			__func__, sa->sa_family));
3779	return (0);
3780}
3781#endif /* IPSEC_NAT_T */
3782
3783/*
3784 * Set port in struct sockaddr. Port is in network byte order.
3785 */
3786static void
3787key_porttosaddr(struct sockaddr *sa, u_int16_t port)
3788{
3789
3790	switch (sa->sa_family) {
3791#ifdef INET
3792	case AF_INET:
3793		((struct sockaddr_in *)sa)->sin_port = port;
3794		break;
3795#endif
3796#ifdef INET6
3797	case AF_INET6:
3798		((struct sockaddr_in6 *)sa)->sin6_port = port;
3799		break;
3800#endif
3801	default:
3802		ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n",
3803			__func__, sa->sa_family));
3804		break;
3805	}
3806}
3807
3808/*
3809 * set data into sadb_x_policy
3810 */
3811static struct mbuf *
3812key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3813{
3814	struct mbuf *m;
3815	struct sadb_x_policy *p;
3816	size_t len;
3817
3818	len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3819	m = key_alloc_mbuf(len);
3820	if (!m || m->m_next) {	/*XXX*/
3821		if (m)
3822			m_freem(m);
3823		return NULL;
3824	}
3825
3826	p = mtod(m, struct sadb_x_policy *);
3827
3828	bzero(p, len);
3829	p->sadb_x_policy_len = PFKEY_UNIT64(len);
3830	p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3831	p->sadb_x_policy_type = type;
3832	p->sadb_x_policy_dir = dir;
3833	p->sadb_x_policy_id = id;
3834
3835	return m;
3836}
3837
3838/* %%% utilities */
3839/* Take a key message (sadb_key) from the socket and turn it into one
3840 * of the kernel's key structures (seckey).
3841 *
3842 * IN: pointer to the src
3843 * OUT: NULL no more memory
3844 */
3845struct seckey *
3846key_dup_keymsg(const struct sadb_key *src, u_int len,
3847	       struct malloc_type *type)
3848{
3849	struct seckey *dst;
3850	dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT);
3851	if (dst != NULL) {
3852		dst->bits = src->sadb_key_bits;
3853		dst->key_data = (char *)malloc(len, type, M_NOWAIT);
3854		if (dst->key_data != NULL) {
3855			bcopy((const char *)src + sizeof(struct sadb_key),
3856			      dst->key_data, len);
3857		} else {
3858			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3859				  __func__));
3860			free(dst, type);
3861			dst = NULL;
3862		}
3863	} else {
3864		ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3865			  __func__));
3866
3867	}
3868	return dst;
3869}
3870
3871/* Take a lifetime message (sadb_lifetime) passed in on a socket and
3872 * turn it into one of the kernel's lifetime structures (seclifetime).
3873 *
3874 * IN: pointer to the destination, source and malloc type
3875 * OUT: NULL, no more memory
3876 */
3877
3878static struct seclifetime *
3879key_dup_lifemsg(const struct sadb_lifetime *src,
3880		 struct malloc_type *type)
3881{
3882	struct seclifetime *dst = NULL;
3883
3884	dst = (struct seclifetime *)malloc(sizeof(struct seclifetime),
3885					   type, M_NOWAIT);
3886	if (dst == NULL) {
3887		/* XXX counter */
3888		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3889	} else {
3890		dst->allocations = src->sadb_lifetime_allocations;
3891		dst->bytes = src->sadb_lifetime_bytes;
3892		dst->addtime = src->sadb_lifetime_addtime;
3893		dst->usetime = src->sadb_lifetime_usetime;
3894	}
3895	return dst;
3896}
3897
3898/* compare my own address
3899 * OUT:	1: true, i.e. my address.
3900 *	0: false
3901 */
3902int
3903key_ismyaddr(sa)
3904	struct sockaddr *sa;
3905{
3906#ifdef INET
3907	struct sockaddr_in *sin;
3908	struct in_ifaddr *ia;
3909#endif
3910
3911	IPSEC_ASSERT(sa != NULL, ("null sockaddr"));
3912
3913	switch (sa->sa_family) {
3914#ifdef INET
3915	case AF_INET:
3916		sin = (struct sockaddr_in *)sa;
3917		IN_IFADDR_RLOCK();
3918		for (ia = V_in_ifaddrhead.tqh_first; ia;
3919		     ia = ia->ia_link.tqe_next)
3920		{
3921			if (sin->sin_family == ia->ia_addr.sin_family &&
3922			    sin->sin_len == ia->ia_addr.sin_len &&
3923			    sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3924			{
3925				IN_IFADDR_RUNLOCK();
3926				return 1;
3927			}
3928		}
3929		IN_IFADDR_RUNLOCK();
3930		break;
3931#endif
3932#ifdef INET6
3933	case AF_INET6:
3934		return key_ismyaddr6((struct sockaddr_in6 *)sa);
3935#endif
3936	}
3937
3938	return 0;
3939}
3940
3941#ifdef INET6
3942/*
3943 * compare my own address for IPv6.
3944 * 1: ours
3945 * 0: other
3946 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3947 */
3948#include <netinet6/in6_var.h>
3949
3950static int
3951key_ismyaddr6(sin6)
3952	struct sockaddr_in6 *sin6;
3953{
3954	struct in6_ifaddr *ia;
3955#if 0
3956	struct in6_multi *in6m;
3957#endif
3958
3959	IN6_IFADDR_RLOCK();
3960	TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
3961		if (key_sockaddrcmp((struct sockaddr *)&sin6,
3962		    (struct sockaddr *)&ia->ia_addr, 0) == 0) {
3963			IN6_IFADDR_RUNLOCK();
3964			return 1;
3965		}
3966
3967#if 0
3968		/*
3969		 * XXX Multicast
3970		 * XXX why do we care about multlicast here while we don't care
3971		 * about IPv4 multicast??
3972		 * XXX scope
3973		 */
3974		in6m = NULL;
3975		IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3976		if (in6m) {
3977			IN6_IFADDR_RUNLOCK();
3978			return 1;
3979		}
3980#endif
3981	}
3982	IN6_IFADDR_RUNLOCK();
3983
3984	/* loopback, just for safety */
3985	if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3986		return 1;
3987
3988	return 0;
3989}
3990#endif /*INET6*/
3991
3992/*
3993 * compare two secasindex structure.
3994 * flag can specify to compare 2 saidxes.
3995 * compare two secasindex structure without both mode and reqid.
3996 * don't compare port.
3997 * IN:
3998 *      saidx0: source, it can be in SAD.
3999 *      saidx1: object.
4000 * OUT:
4001 *      1 : equal
4002 *      0 : not equal
4003 */
4004static int
4005key_cmpsaidx(
4006	const struct secasindex *saidx0,
4007	const struct secasindex *saidx1,
4008	int flag)
4009{
4010	int chkport = 0;
4011
4012	/* sanity */
4013	if (saidx0 == NULL && saidx1 == NULL)
4014		return 1;
4015
4016	if (saidx0 == NULL || saidx1 == NULL)
4017		return 0;
4018
4019	if (saidx0->proto != saidx1->proto)
4020		return 0;
4021
4022	if (flag == CMP_EXACTLY) {
4023		if (saidx0->mode != saidx1->mode)
4024			return 0;
4025		if (saidx0->reqid != saidx1->reqid)
4026			return 0;
4027		if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4028		    bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4029			return 0;
4030	} else {
4031
4032		/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4033		if (flag == CMP_MODE_REQID
4034		  ||flag == CMP_REQID) {
4035			/*
4036			 * If reqid of SPD is non-zero, unique SA is required.
4037			 * The result must be of same reqid in this case.
4038			 */
4039			if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4040				return 0;
4041		}
4042
4043		if (flag == CMP_MODE_REQID) {
4044			if (saidx0->mode != IPSEC_MODE_ANY
4045			 && saidx0->mode != saidx1->mode)
4046				return 0;
4047		}
4048
4049#ifdef IPSEC_NAT_T
4050		/*
4051		 * If NAT-T is enabled, check ports for tunnel mode.
4052		 * Do not check ports if they are set to zero in the SPD.
4053		 * Also do not do it for transport mode, as there is no
4054		 * port information available in the SP.
4055		 */
4056		if (saidx1->mode == IPSEC_MODE_TUNNEL &&
4057		    saidx1->src.sa.sa_family == AF_INET &&
4058		    saidx1->dst.sa.sa_family == AF_INET &&
4059		    ((const struct sockaddr_in *)(&saidx1->src))->sin_port &&
4060		    ((const struct sockaddr_in *)(&saidx1->dst))->sin_port)
4061			chkport = 1;
4062#endif /* IPSEC_NAT_T */
4063
4064		if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) {
4065			return 0;
4066		}
4067		if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) {
4068			return 0;
4069		}
4070	}
4071
4072	return 1;
4073}
4074
4075/*
4076 * compare two secindex structure exactly.
4077 * IN:
4078 *	spidx0: source, it is often in SPD.
4079 *	spidx1: object, it is often from PFKEY message.
4080 * OUT:
4081 *	1 : equal
4082 *	0 : not equal
4083 */
4084static int
4085key_cmpspidx_exactly(
4086	struct secpolicyindex *spidx0,
4087	struct secpolicyindex *spidx1)
4088{
4089	/* sanity */
4090	if (spidx0 == NULL && spidx1 == NULL)
4091		return 1;
4092
4093	if (spidx0 == NULL || spidx1 == NULL)
4094		return 0;
4095
4096	if (spidx0->prefs != spidx1->prefs
4097	 || spidx0->prefd != spidx1->prefd
4098	 || spidx0->ul_proto != spidx1->ul_proto)
4099		return 0;
4100
4101	return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4102	       key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4103}
4104
4105/*
4106 * compare two secindex structure with mask.
4107 * IN:
4108 *	spidx0: source, it is often in SPD.
4109 *	spidx1: object, it is often from IP header.
4110 * OUT:
4111 *	1 : equal
4112 *	0 : not equal
4113 */
4114static int
4115key_cmpspidx_withmask(
4116	struct secpolicyindex *spidx0,
4117	struct secpolicyindex *spidx1)
4118{
4119	/* sanity */
4120	if (spidx0 == NULL && spidx1 == NULL)
4121		return 1;
4122
4123	if (spidx0 == NULL || spidx1 == NULL)
4124		return 0;
4125
4126	if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4127	    spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4128	    spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4129	    spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4130		return 0;
4131
4132	/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4133	if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4134	 && spidx0->ul_proto != spidx1->ul_proto)
4135		return 0;
4136
4137	switch (spidx0->src.sa.sa_family) {
4138	case AF_INET:
4139		if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4140		 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4141			return 0;
4142		if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4143		    &spidx1->src.sin.sin_addr, spidx0->prefs))
4144			return 0;
4145		break;
4146	case AF_INET6:
4147		if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4148		 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4149			return 0;
4150		/*
4151		 * scope_id check. if sin6_scope_id is 0, we regard it
4152		 * as a wildcard scope, which matches any scope zone ID.
4153		 */
4154		if (spidx0->src.sin6.sin6_scope_id &&
4155		    spidx1->src.sin6.sin6_scope_id &&
4156		    spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4157			return 0;
4158		if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4159		    &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4160			return 0;
4161		break;
4162	default:
4163		/* XXX */
4164		if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4165			return 0;
4166		break;
4167	}
4168
4169	switch (spidx0->dst.sa.sa_family) {
4170	case AF_INET:
4171		if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4172		 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4173			return 0;
4174		if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4175		    &spidx1->dst.sin.sin_addr, spidx0->prefd))
4176			return 0;
4177		break;
4178	case AF_INET6:
4179		if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4180		 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4181			return 0;
4182		/*
4183		 * scope_id check. if sin6_scope_id is 0, we regard it
4184		 * as a wildcard scope, which matches any scope zone ID.
4185		 */
4186		if (spidx0->dst.sin6.sin6_scope_id &&
4187		    spidx1->dst.sin6.sin6_scope_id &&
4188		    spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4189			return 0;
4190		if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4191		    &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4192			return 0;
4193		break;
4194	default:
4195		/* XXX */
4196		if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4197			return 0;
4198		break;
4199	}
4200
4201	/* XXX Do we check other field ?  e.g. flowinfo */
4202
4203	return 1;
4204}
4205
4206/* returns 0 on match */
4207static int
4208key_sockaddrcmp(
4209	const struct sockaddr *sa1,
4210	const struct sockaddr *sa2,
4211	int port)
4212{
4213#ifdef satosin
4214#undef satosin
4215#endif
4216#define satosin(s) ((const struct sockaddr_in *)s)
4217#ifdef satosin6
4218#undef satosin6
4219#endif
4220#define satosin6(s) ((const struct sockaddr_in6 *)s)
4221	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4222		return 1;
4223
4224	switch (sa1->sa_family) {
4225	case AF_INET:
4226		if (sa1->sa_len != sizeof(struct sockaddr_in))
4227			return 1;
4228		if (satosin(sa1)->sin_addr.s_addr !=
4229		    satosin(sa2)->sin_addr.s_addr) {
4230			return 1;
4231		}
4232		if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4233			return 1;
4234		break;
4235	case AF_INET6:
4236		if (sa1->sa_len != sizeof(struct sockaddr_in6))
4237			return 1;	/*EINVAL*/
4238		if (satosin6(sa1)->sin6_scope_id !=
4239		    satosin6(sa2)->sin6_scope_id) {
4240			return 1;
4241		}
4242		if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4243		    &satosin6(sa2)->sin6_addr)) {
4244			return 1;
4245		}
4246		if (port &&
4247		    satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4248			return 1;
4249		}
4250		break;
4251	default:
4252		if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4253			return 1;
4254		break;
4255	}
4256
4257	return 0;
4258#undef satosin
4259#undef satosin6
4260}
4261
4262/*
4263 * compare two buffers with mask.
4264 * IN:
4265 *	addr1: source
4266 *	addr2: object
4267 *	bits:  Number of bits to compare
4268 * OUT:
4269 *	1 : equal
4270 *	0 : not equal
4271 */
4272static int
4273key_bbcmp(const void *a1, const void *a2, u_int bits)
4274{
4275	const unsigned char *p1 = a1;
4276	const unsigned char *p2 = a2;
4277
4278	/* XXX: This could be considerably faster if we compare a word
4279	 * at a time, but it is complicated on LSB Endian machines */
4280
4281	/* Handle null pointers */
4282	if (p1 == NULL || p2 == NULL)
4283		return (p1 == p2);
4284
4285	while (bits >= 8) {
4286		if (*p1++ != *p2++)
4287			return 0;
4288		bits -= 8;
4289	}
4290
4291	if (bits > 0) {
4292		u_int8_t mask = ~((1<<(8-bits))-1);
4293		if ((*p1 & mask) != (*p2 & mask))
4294			return 0;
4295	}
4296	return 1;	/* Match! */
4297}
4298
4299static void
4300key_flush_spd(time_t now)
4301{
4302	static u_int16_t sptree_scangen = 0;
4303	u_int16_t gen = sptree_scangen++;
4304	struct secpolicy *sp;
4305	u_int dir;
4306
4307	/* SPD */
4308	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4309restart:
4310		SPTREE_LOCK();
4311		LIST_FOREACH(sp, &V_sptree[dir], chain) {
4312			if (sp->scangen == gen)		/* previously handled */
4313				continue;
4314			sp->scangen = gen;
4315			if (sp->state == IPSEC_SPSTATE_DEAD &&
4316			    sp->refcnt == 1) {
4317				/*
4318				 * Ensure that we only decrease refcnt once,
4319				 * when we're the last consumer.
4320				 * Directly call SP_DELREF/key_delsp instead
4321				 * of KEY_FREESP to avoid unlocking/relocking
4322				 * SPTREE_LOCK before key_delsp: may refcnt
4323				 * be increased again during that time ?
4324				 * NB: also clean entries created by
4325				 * key_spdflush
4326				 */
4327				SP_DELREF(sp);
4328				key_delsp(sp);
4329				SPTREE_UNLOCK();
4330				goto restart;
4331			}
4332			if (sp->lifetime == 0 && sp->validtime == 0)
4333				continue;
4334			if ((sp->lifetime && now - sp->created > sp->lifetime)
4335			 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4336				sp->state = IPSEC_SPSTATE_DEAD;
4337				SPTREE_UNLOCK();
4338				key_spdexpire(sp);
4339				goto restart;
4340			}
4341		}
4342		SPTREE_UNLOCK();
4343	}
4344}
4345
4346static void
4347key_flush_sad(time_t now)
4348{
4349	struct secashead *sah, *nextsah;
4350	struct secasvar *sav, *nextsav;
4351
4352	/* SAD */
4353	SAHTREE_LOCK();
4354	LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) {
4355		/* if sah has been dead, then delete it and process next sah. */
4356		if (sah->state == SADB_SASTATE_DEAD) {
4357			key_delsah(sah);
4358			continue;
4359		}
4360
4361		/* if LARVAL entry doesn't become MATURE, delete it. */
4362		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) {
4363			/* Need to also check refcnt for a larval SA ??? */
4364			if (now - sav->created > V_key_larval_lifetime)
4365				KEY_FREESAV(&sav);
4366		}
4367
4368		/*
4369		 * check MATURE entry to start to send expire message
4370		 * whether or not.
4371		 */
4372		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) {
4373			/* we don't need to check. */
4374			if (sav->lft_s == NULL)
4375				continue;
4376
4377			/* sanity check */
4378			if (sav->lft_c == NULL) {
4379				ipseclog((LOG_DEBUG,"%s: there is no CURRENT "
4380					"time, why?\n", __func__));
4381				continue;
4382			}
4383
4384			/* check SOFT lifetime */
4385			if (sav->lft_s->addtime != 0 &&
4386			    now - sav->created > sav->lft_s->addtime) {
4387				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4388				/*
4389				 * Actually, only send expire message if
4390				 * SA has been used, as it was done before,
4391				 * but should we always send such message,
4392				 * and let IKE daemon decide if it should be
4393				 * renegotiated or not ?
4394				 * XXX expire message will actually NOT be
4395				 * sent if SA is only used after soft
4396				 * lifetime has been reached, see below
4397				 * (DYING state)
4398				 */
4399				if (sav->lft_c->usetime != 0)
4400					key_expire(sav);
4401			}
4402			/* check SOFT lifetime by bytes */
4403			/*
4404			 * XXX I don't know the way to delete this SA
4405			 * when new SA is installed.  Caution when it's
4406			 * installed too big lifetime by time.
4407			 */
4408			else if (sav->lft_s->bytes != 0 &&
4409			    sav->lft_s->bytes < sav->lft_c->bytes) {
4410
4411				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4412				/*
4413				 * XXX If we keep to send expire
4414				 * message in the status of
4415				 * DYING. Do remove below code.
4416				 */
4417				key_expire(sav);
4418			}
4419		}
4420
4421		/* check DYING entry to change status to DEAD. */
4422		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) {
4423			/* we don't need to check. */
4424			if (sav->lft_h == NULL)
4425				continue;
4426
4427			/* sanity check */
4428			if (sav->lft_c == NULL) {
4429				ipseclog((LOG_DEBUG, "%s: there is no CURRENT "
4430					"time, why?\n", __func__));
4431				continue;
4432			}
4433
4434			if (sav->lft_h->addtime != 0 &&
4435			    now - sav->created > sav->lft_h->addtime) {
4436				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4437				KEY_FREESAV(&sav);
4438			}
4439#if 0	/* XXX Should we keep to send expire message until HARD lifetime ? */
4440			else if (sav->lft_s != NULL
4441			      && sav->lft_s->addtime != 0
4442			      && now - sav->created > sav->lft_s->addtime) {
4443				/*
4444				 * XXX: should be checked to be
4445				 * installed the valid SA.
4446				 */
4447
4448				/*
4449				 * If there is no SA then sending
4450				 * expire message.
4451				 */
4452				key_expire(sav);
4453			}
4454#endif
4455			/* check HARD lifetime by bytes */
4456			else if (sav->lft_h->bytes != 0 &&
4457			    sav->lft_h->bytes < sav->lft_c->bytes) {
4458				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4459				KEY_FREESAV(&sav);
4460			}
4461		}
4462
4463		/* delete entry in DEAD */
4464		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) {
4465			/* sanity check */
4466			if (sav->state != SADB_SASTATE_DEAD) {
4467				ipseclog((LOG_DEBUG, "%s: invalid sav->state "
4468					"(queue: %d SA: %d): kill it anyway\n",
4469					__func__,
4470					SADB_SASTATE_DEAD, sav->state));
4471			}
4472			/*
4473			 * do not call key_freesav() here.
4474			 * sav should already be freed, and sav->refcnt
4475			 * shows other references to sav
4476			 * (such as from SPD).
4477			 */
4478		}
4479	}
4480	SAHTREE_UNLOCK();
4481}
4482
4483static void
4484key_flush_acq(time_t now)
4485{
4486	struct secacq *acq, *nextacq;
4487
4488	/* ACQ tree */
4489	ACQ_LOCK();
4490	for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
4491		nextacq = LIST_NEXT(acq, chain);
4492		if (now - acq->created > V_key_blockacq_lifetime
4493		 && __LIST_CHAINED(acq)) {
4494			LIST_REMOVE(acq, chain);
4495			free(acq, M_IPSEC_SAQ);
4496		}
4497	}
4498	ACQ_UNLOCK();
4499}
4500
4501static void
4502key_flush_spacq(time_t now)
4503{
4504	struct secspacq *acq, *nextacq;
4505
4506	/* SP ACQ tree */
4507	SPACQ_LOCK();
4508	for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
4509		nextacq = LIST_NEXT(acq, chain);
4510		if (now - acq->created > V_key_blockacq_lifetime
4511		 && __LIST_CHAINED(acq)) {
4512			LIST_REMOVE(acq, chain);
4513			free(acq, M_IPSEC_SAQ);
4514		}
4515	}
4516	SPACQ_UNLOCK();
4517}
4518
4519/*
4520 * time handler.
4521 * scanning SPD and SAD to check status for each entries,
4522 * and do to remove or to expire.
4523 * XXX: year 2038 problem may remain.
4524 */
4525void
4526key_timehandler(void)
4527{
4528	VNET_ITERATOR_DECL(vnet_iter);
4529	time_t now = time_second;
4530
4531	VNET_LIST_RLOCK_NOSLEEP();
4532	VNET_FOREACH(vnet_iter) {
4533		CURVNET_SET(vnet_iter);
4534		key_flush_spd(now);
4535		key_flush_sad(now);
4536		key_flush_acq(now);
4537		key_flush_spacq(now);
4538		CURVNET_RESTORE();
4539	}
4540	VNET_LIST_RUNLOCK_NOSLEEP();
4541
4542#ifndef IPSEC_DEBUG2
4543	/* do exchange to tick time !! */
4544	(void)timeout((void *)key_timehandler, (void *)0, hz);
4545#endif /* IPSEC_DEBUG2 */
4546}
4547
4548u_long
4549key_random()
4550{
4551	u_long value;
4552
4553	key_randomfill(&value, sizeof(value));
4554	return value;
4555}
4556
4557void
4558key_randomfill(p, l)
4559	void *p;
4560	size_t l;
4561{
4562	size_t n;
4563	u_long v;
4564	static int warn = 1;
4565
4566	n = 0;
4567	n = (size_t)read_random(p, (u_int)l);
4568	/* last resort */
4569	while (n < l) {
4570		v = random();
4571		bcopy(&v, (u_int8_t *)p + n,
4572		    l - n < sizeof(v) ? l - n : sizeof(v));
4573		n += sizeof(v);
4574
4575		if (warn) {
4576			printf("WARNING: pseudo-random number generator "
4577			    "used for IPsec processing\n");
4578			warn = 0;
4579		}
4580	}
4581}
4582
4583/*
4584 * map SADB_SATYPE_* to IPPROTO_*.
4585 * if satype == SADB_SATYPE then satype is mapped to ~0.
4586 * OUT:
4587 *	0: invalid satype.
4588 */
4589static u_int16_t
4590key_satype2proto(u_int8_t satype)
4591{
4592	switch (satype) {
4593	case SADB_SATYPE_UNSPEC:
4594		return IPSEC_PROTO_ANY;
4595	case SADB_SATYPE_AH:
4596		return IPPROTO_AH;
4597	case SADB_SATYPE_ESP:
4598		return IPPROTO_ESP;
4599	case SADB_X_SATYPE_IPCOMP:
4600		return IPPROTO_IPCOMP;
4601	case SADB_X_SATYPE_TCPSIGNATURE:
4602		return IPPROTO_TCP;
4603	default:
4604		return 0;
4605	}
4606	/* NOTREACHED */
4607}
4608
4609/*
4610 * map IPPROTO_* to SADB_SATYPE_*
4611 * OUT:
4612 *	0: invalid protocol type.
4613 */
4614static u_int8_t
4615key_proto2satype(u_int16_t proto)
4616{
4617	switch (proto) {
4618	case IPPROTO_AH:
4619		return SADB_SATYPE_AH;
4620	case IPPROTO_ESP:
4621		return SADB_SATYPE_ESP;
4622	case IPPROTO_IPCOMP:
4623		return SADB_X_SATYPE_IPCOMP;
4624	case IPPROTO_TCP:
4625		return SADB_X_SATYPE_TCPSIGNATURE;
4626	default:
4627		return 0;
4628	}
4629	/* NOTREACHED */
4630}
4631
4632/* %%% PF_KEY */
4633/*
4634 * SADB_GETSPI processing is to receive
4635 *	<base, (SA2), src address, dst address, (SPI range)>
4636 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4637 * tree with the status of LARVAL, and send
4638 *	<base, SA(*), address(SD)>
4639 * to the IKMPd.
4640 *
4641 * IN:	mhp: pointer to the pointer to each header.
4642 * OUT:	NULL if fail.
4643 *	other if success, return pointer to the message to send.
4644 */
4645static int
4646key_getspi(so, m, mhp)
4647	struct socket *so;
4648	struct mbuf *m;
4649	const struct sadb_msghdr *mhp;
4650{
4651	struct sadb_address *src0, *dst0;
4652	struct secasindex saidx;
4653	struct secashead *newsah;
4654	struct secasvar *newsav;
4655	u_int8_t proto;
4656	u_int32_t spi;
4657	u_int8_t mode;
4658	u_int32_t reqid;
4659	int error;
4660
4661	IPSEC_ASSERT(so != NULL, ("null socket"));
4662	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4663	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4664	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4665
4666	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4667	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4668		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4669			__func__));
4670		return key_senderror(so, m, EINVAL);
4671	}
4672	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4673	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4674		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4675			__func__));
4676		return key_senderror(so, m, EINVAL);
4677	}
4678	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4679		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4680		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4681	} else {
4682		mode = IPSEC_MODE_ANY;
4683		reqid = 0;
4684	}
4685
4686	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4687	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4688
4689	/* map satype to proto */
4690	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4691		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4692			__func__));
4693		return key_senderror(so, m, EINVAL);
4694	}
4695
4696	/*
4697	 * Make sure the port numbers are zero.
4698	 * In case of NAT-T we will update them later if needed.
4699	 */
4700	switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4701	case AF_INET:
4702		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4703		    sizeof(struct sockaddr_in))
4704			return key_senderror(so, m, EINVAL);
4705		((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4706		break;
4707	case AF_INET6:
4708		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4709		    sizeof(struct sockaddr_in6))
4710			return key_senderror(so, m, EINVAL);
4711		((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4712		break;
4713	default:
4714		; /*???*/
4715	}
4716	switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4717	case AF_INET:
4718		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4719		    sizeof(struct sockaddr_in))
4720			return key_senderror(so, m, EINVAL);
4721		((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4722		break;
4723	case AF_INET6:
4724		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4725		    sizeof(struct sockaddr_in6))
4726			return key_senderror(so, m, EINVAL);
4727		((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4728		break;
4729	default:
4730		; /*???*/
4731	}
4732
4733	/* XXX boundary check against sa_len */
4734	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4735
4736#ifdef IPSEC_NAT_T
4737	/*
4738	 * Handle NAT-T info if present.
4739	 * We made sure the port numbers are zero above, so we do
4740	 * not have to worry in case we do not update them.
4741	 */
4742	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
4743		ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__));
4744	if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
4745		ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__));
4746
4747	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
4748	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
4749	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
4750		struct sadb_x_nat_t_type *type;
4751		struct sadb_x_nat_t_port *sport, *dport;
4752
4753		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
4754		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
4755		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
4756			ipseclog((LOG_DEBUG, "%s: invalid nat-t message "
4757			    "passed.\n", __func__));
4758			return key_senderror(so, m, EINVAL);
4759		}
4760
4761		sport = (struct sadb_x_nat_t_port *)
4762		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
4763		dport = (struct sadb_x_nat_t_port *)
4764		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
4765
4766		if (sport)
4767			KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port);
4768		if (dport)
4769			KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port);
4770	}
4771#endif
4772
4773	/* SPI allocation */
4774	spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4775	                       &saidx);
4776	if (spi == 0)
4777		return key_senderror(so, m, EINVAL);
4778
4779	/* get a SA index */
4780	if ((newsah = key_getsah(&saidx)) == NULL) {
4781		/* create a new SA index */
4782		if ((newsah = key_newsah(&saidx)) == NULL) {
4783			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4784			return key_senderror(so, m, ENOBUFS);
4785		}
4786	}
4787
4788	/* get a new SA */
4789	/* XXX rewrite */
4790	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4791	if (newsav == NULL) {
4792		/* XXX don't free new SA index allocated in above. */
4793		return key_senderror(so, m, error);
4794	}
4795
4796	/* set spi */
4797	newsav->spi = htonl(spi);
4798
4799	/* delete the entry in acqtree */
4800	if (mhp->msg->sadb_msg_seq != 0) {
4801		struct secacq *acq;
4802		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4803			/* reset counter in order to deletion by timehandler. */
4804			acq->created = time_second;
4805			acq->count = 0;
4806		}
4807    	}
4808
4809    {
4810	struct mbuf *n, *nn;
4811	struct sadb_sa *m_sa;
4812	struct sadb_msg *newmsg;
4813	int off, len;
4814
4815	/* create new sadb_msg to reply. */
4816	len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4817	    PFKEY_ALIGN8(sizeof(struct sadb_sa));
4818
4819	MGETHDR(n, M_DONTWAIT, MT_DATA);
4820	if (len > MHLEN) {
4821		MCLGET(n, M_DONTWAIT);
4822		if ((n->m_flags & M_EXT) == 0) {
4823			m_freem(n);
4824			n = NULL;
4825		}
4826	}
4827	if (!n)
4828		return key_senderror(so, m, ENOBUFS);
4829
4830	n->m_len = len;
4831	n->m_next = NULL;
4832	off = 0;
4833
4834	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4835	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4836
4837	m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4838	m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4839	m_sa->sadb_sa_exttype = SADB_EXT_SA;
4840	m_sa->sadb_sa_spi = htonl(spi);
4841	off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4842
4843	IPSEC_ASSERT(off == len,
4844		("length inconsistency (off %u len %u)", off, len));
4845
4846	n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4847	    SADB_EXT_ADDRESS_DST);
4848	if (!n->m_next) {
4849		m_freem(n);
4850		return key_senderror(so, m, ENOBUFS);
4851	}
4852
4853	if (n->m_len < sizeof(struct sadb_msg)) {
4854		n = m_pullup(n, sizeof(struct sadb_msg));
4855		if (n == NULL)
4856			return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4857	}
4858
4859	n->m_pkthdr.len = 0;
4860	for (nn = n; nn; nn = nn->m_next)
4861		n->m_pkthdr.len += nn->m_len;
4862
4863	newmsg = mtod(n, struct sadb_msg *);
4864	newmsg->sadb_msg_seq = newsav->seq;
4865	newmsg->sadb_msg_errno = 0;
4866	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4867
4868	m_freem(m);
4869	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4870    }
4871}
4872
4873/*
4874 * allocating new SPI
4875 * called by key_getspi().
4876 * OUT:
4877 *	0:	failure.
4878 *	others: success.
4879 */
4880static u_int32_t
4881key_do_getnewspi(spirange, saidx)
4882	struct sadb_spirange *spirange;
4883	struct secasindex *saidx;
4884{
4885	u_int32_t newspi;
4886	u_int32_t min, max;
4887	int count = V_key_spi_trycnt;
4888
4889	/* set spi range to allocate */
4890	if (spirange != NULL) {
4891		min = spirange->sadb_spirange_min;
4892		max = spirange->sadb_spirange_max;
4893	} else {
4894		min = V_key_spi_minval;
4895		max = V_key_spi_maxval;
4896	}
4897	/* IPCOMP needs 2-byte SPI */
4898	if (saidx->proto == IPPROTO_IPCOMP) {
4899		u_int32_t t;
4900		if (min >= 0x10000)
4901			min = 0xffff;
4902		if (max >= 0x10000)
4903			max = 0xffff;
4904		if (min > max) {
4905			t = min; min = max; max = t;
4906		}
4907	}
4908
4909	if (min == max) {
4910		if (key_checkspidup(saidx, min) != NULL) {
4911			ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
4912				__func__, min));
4913			return 0;
4914		}
4915
4916		count--; /* taking one cost. */
4917		newspi = min;
4918
4919	} else {
4920
4921		/* init SPI */
4922		newspi = 0;
4923
4924		/* when requesting to allocate spi ranged */
4925		while (count--) {
4926			/* generate pseudo-random SPI value ranged. */
4927			newspi = min + (key_random() % (max - min + 1));
4928
4929			if (key_checkspidup(saidx, newspi) == NULL)
4930				break;
4931		}
4932
4933		if (count == 0 || newspi == 0) {
4934			ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n",
4935				__func__));
4936			return 0;
4937		}
4938	}
4939
4940	/* statistics */
4941	keystat.getspi_count =
4942		(keystat.getspi_count + V_key_spi_trycnt - count) / 2;
4943
4944	return newspi;
4945}
4946
4947/*
4948 * SADB_UPDATE processing
4949 * receive
4950 *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4951 *       key(AE), (identity(SD),) (sensitivity)>
4952 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4953 * and send
4954 *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4955 *       (identity(SD),) (sensitivity)>
4956 * to the ikmpd.
4957 *
4958 * m will always be freed.
4959 */
4960static int
4961key_update(so, m, mhp)
4962	struct socket *so;
4963	struct mbuf *m;
4964	const struct sadb_msghdr *mhp;
4965{
4966	struct sadb_sa *sa0;
4967	struct sadb_address *src0, *dst0;
4968#ifdef IPSEC_NAT_T
4969	struct sadb_x_nat_t_type *type;
4970	struct sadb_x_nat_t_port *sport, *dport;
4971	struct sadb_address *iaddr, *raddr;
4972	struct sadb_x_nat_t_frag *frag;
4973#endif
4974	struct secasindex saidx;
4975	struct secashead *sah;
4976	struct secasvar *sav;
4977	u_int16_t proto;
4978	u_int8_t mode;
4979	u_int32_t reqid;
4980	int error;
4981
4982	IPSEC_ASSERT(so != NULL, ("null socket"));
4983	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4984	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4985	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4986
4987	/* map satype to proto */
4988	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4989		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4990			__func__));
4991		return key_senderror(so, m, EINVAL);
4992	}
4993
4994	if (mhp->ext[SADB_EXT_SA] == NULL ||
4995	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4996	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4997	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4998	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4999	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5000	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5001	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5002	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5003	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5004	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5005		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5006			__func__));
5007		return key_senderror(so, m, EINVAL);
5008	}
5009	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5010	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5011	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5012		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5013			__func__));
5014		return key_senderror(so, m, EINVAL);
5015	}
5016	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5017		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5018		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5019	} else {
5020		mode = IPSEC_MODE_ANY;
5021		reqid = 0;
5022	}
5023	/* XXX boundary checking for other extensions */
5024
5025	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5026	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5027	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5028
5029	/* XXX boundary check against sa_len */
5030	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5031
5032	/*
5033	 * Make sure the port numbers are zero.
5034	 * In case of NAT-T we will update them later if needed.
5035	 */
5036	KEY_PORTTOSADDR(&saidx.src, 0);
5037	KEY_PORTTOSADDR(&saidx.dst, 0);
5038
5039#ifdef IPSEC_NAT_T
5040	/*
5041	 * Handle NAT-T info if present.
5042	 */
5043	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
5044	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5045	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5046
5047		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
5048		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5049		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5050			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5051			    __func__));
5052			return key_senderror(so, m, EINVAL);
5053		}
5054
5055		type = (struct sadb_x_nat_t_type *)
5056		    mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5057		sport = (struct sadb_x_nat_t_port *)
5058		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5059		dport = (struct sadb_x_nat_t_port *)
5060		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5061	} else {
5062		type = 0;
5063		sport = dport = 0;
5064	}
5065	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
5066	    mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5067		if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
5068		    mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5069			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5070			    __func__));
5071			return key_senderror(so, m, EINVAL);
5072		}
5073		iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5074		raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5075		ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
5076	} else {
5077		iaddr = raddr = NULL;
5078	}
5079	if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5080		if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5081			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5082			    __func__));
5083			return key_senderror(so, m, EINVAL);
5084		}
5085		frag = (struct sadb_x_nat_t_frag *)
5086		    mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5087	} else {
5088		frag = 0;
5089	}
5090#endif
5091
5092	/* get a SA header */
5093	if ((sah = key_getsah(&saidx)) == NULL) {
5094		ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__));
5095		return key_senderror(so, m, ENOENT);
5096	}
5097
5098	/* set spidx if there */
5099	/* XXX rewrite */
5100	error = key_setident(sah, m, mhp);
5101	if (error)
5102		return key_senderror(so, m, error);
5103
5104	/* find a SA with sequence number. */
5105#ifdef IPSEC_DOSEQCHECK
5106	if (mhp->msg->sadb_msg_seq != 0
5107	 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
5108		ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u "
5109			"exists.\n", __func__, mhp->msg->sadb_msg_seq));
5110		return key_senderror(so, m, ENOENT);
5111	}
5112#else
5113	SAHTREE_LOCK();
5114	sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5115	SAHTREE_UNLOCK();
5116	if (sav == NULL) {
5117		ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n",
5118			__func__, (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5119		return key_senderror(so, m, EINVAL);
5120	}
5121#endif
5122
5123	/* validity check */
5124	if (sav->sah->saidx.proto != proto) {
5125		ipseclog((LOG_DEBUG, "%s: protocol mismatched "
5126			"(DB=%u param=%u)\n", __func__,
5127			sav->sah->saidx.proto, proto));
5128		return key_senderror(so, m, EINVAL);
5129	}
5130#ifdef IPSEC_DOSEQCHECK
5131	if (sav->spi != sa0->sadb_sa_spi) {
5132		ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n",
5133		    __func__,
5134		    (u_int32_t)ntohl(sav->spi),
5135		    (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5136		return key_senderror(so, m, EINVAL);
5137	}
5138#endif
5139	if (sav->pid != mhp->msg->sadb_msg_pid) {
5140		ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n",
5141		    __func__, sav->pid, mhp->msg->sadb_msg_pid));
5142		return key_senderror(so, m, EINVAL);
5143	}
5144
5145	/* copy sav values */
5146	error = key_setsaval(sav, m, mhp);
5147	if (error) {
5148		KEY_FREESAV(&sav);
5149		return key_senderror(so, m, error);
5150	}
5151
5152	/* check SA values to be mature. */
5153	if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
5154		KEY_FREESAV(&sav);
5155		return key_senderror(so, m, 0);
5156	}
5157
5158#ifdef IPSEC_NAT_T
5159	/*
5160	 * Handle more NAT-T info if present,
5161	 * now that we have a sav to fill.
5162	 */
5163	if (type)
5164		sav->natt_type = type->sadb_x_nat_t_type_type;
5165
5166	if (sport)
5167		KEY_PORTTOSADDR(&sav->sah->saidx.src,
5168		    sport->sadb_x_nat_t_port_port);
5169	if (dport)
5170		KEY_PORTTOSADDR(&sav->sah->saidx.dst,
5171		    dport->sadb_x_nat_t_port_port);
5172
5173#if 0
5174	/*
5175	 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5176	 * We should actually check for a minimum MTU here, if we
5177	 * want to support it in ip_output.
5178	 */
5179	if (frag)
5180		sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5181#endif
5182#endif
5183
5184    {
5185	struct mbuf *n;
5186
5187	/* set msg buf from mhp */
5188	n = key_getmsgbuf_x1(m, mhp);
5189	if (n == NULL) {
5190		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5191		return key_senderror(so, m, ENOBUFS);
5192	}
5193
5194	m_freem(m);
5195	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5196    }
5197}
5198
5199/*
5200 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5201 * only called by key_update().
5202 * OUT:
5203 *	NULL	: not found
5204 *	others	: found, pointer to a SA.
5205 */
5206#ifdef IPSEC_DOSEQCHECK
5207static struct secasvar *
5208key_getsavbyseq(sah, seq)
5209	struct secashead *sah;
5210	u_int32_t seq;
5211{
5212	struct secasvar *sav;
5213	u_int state;
5214
5215	state = SADB_SASTATE_LARVAL;
5216
5217	/* search SAD with sequence number ? */
5218	LIST_FOREACH(sav, &sah->savtree[state], chain) {
5219
5220		KEY_CHKSASTATE(state, sav->state, __func__);
5221
5222		if (sav->seq == seq) {
5223			sa_addref(sav);
5224			KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
5225				printf("DP %s cause refcnt++:%d SA:%p\n",
5226					__func__, sav->refcnt, sav));
5227			return sav;
5228		}
5229	}
5230
5231	return NULL;
5232}
5233#endif
5234
5235/*
5236 * SADB_ADD processing
5237 * add an entry to SA database, when received
5238 *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5239 *       key(AE), (identity(SD),) (sensitivity)>
5240 * from the ikmpd,
5241 * and send
5242 *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5243 *       (identity(SD),) (sensitivity)>
5244 * to the ikmpd.
5245 *
5246 * IGNORE identity and sensitivity messages.
5247 *
5248 * m will always be freed.
5249 */
5250static int
5251key_add(so, m, mhp)
5252	struct socket *so;
5253	struct mbuf *m;
5254	const struct sadb_msghdr *mhp;
5255{
5256	struct sadb_sa *sa0;
5257	struct sadb_address *src0, *dst0;
5258#ifdef IPSEC_NAT_T
5259	struct sadb_x_nat_t_type *type;
5260	struct sadb_address *iaddr, *raddr;
5261	struct sadb_x_nat_t_frag *frag;
5262#endif
5263	struct secasindex saidx;
5264	struct secashead *newsah;
5265	struct secasvar *newsav;
5266	u_int16_t proto;
5267	u_int8_t mode;
5268	u_int32_t reqid;
5269	int error;
5270
5271	IPSEC_ASSERT(so != NULL, ("null socket"));
5272	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5273	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5274	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5275
5276	/* map satype to proto */
5277	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5278		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5279			__func__));
5280		return key_senderror(so, m, EINVAL);
5281	}
5282
5283	if (mhp->ext[SADB_EXT_SA] == NULL ||
5284	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5285	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5286	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5287	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5288	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5289	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5290	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5291	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5292	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5293	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5294		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5295			__func__));
5296		return key_senderror(so, m, EINVAL);
5297	}
5298	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5299	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5300	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5301		/* XXX need more */
5302		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5303			__func__));
5304		return key_senderror(so, m, EINVAL);
5305	}
5306	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5307		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5308		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5309	} else {
5310		mode = IPSEC_MODE_ANY;
5311		reqid = 0;
5312	}
5313
5314	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5315	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5316	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5317
5318	/* XXX boundary check against sa_len */
5319	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5320
5321	/*
5322	 * Make sure the port numbers are zero.
5323	 * In case of NAT-T we will update them later if needed.
5324	 */
5325	KEY_PORTTOSADDR(&saidx.src, 0);
5326	KEY_PORTTOSADDR(&saidx.dst, 0);
5327
5328#ifdef IPSEC_NAT_T
5329	/*
5330	 * Handle NAT-T info if present.
5331	 */
5332	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
5333	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5334	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5335		struct sadb_x_nat_t_port *sport, *dport;
5336
5337		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
5338		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5339		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5340			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5341			    __func__));
5342			return key_senderror(so, m, EINVAL);
5343		}
5344
5345		type = (struct sadb_x_nat_t_type *)
5346		    mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5347		sport = (struct sadb_x_nat_t_port *)
5348		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5349		dport = (struct sadb_x_nat_t_port *)
5350		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5351
5352		if (sport)
5353			KEY_PORTTOSADDR(&saidx.src,
5354			    sport->sadb_x_nat_t_port_port);
5355		if (dport)
5356			KEY_PORTTOSADDR(&saidx.dst,
5357			    dport->sadb_x_nat_t_port_port);
5358	} else {
5359		type = 0;
5360	}
5361	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
5362	    mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5363		if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
5364		    mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5365			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5366			    __func__));
5367			return key_senderror(so, m, EINVAL);
5368		}
5369		iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5370		raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5371		ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
5372	} else {
5373		iaddr = raddr = NULL;
5374	}
5375	if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5376		if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5377			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5378			    __func__));
5379			return key_senderror(so, m, EINVAL);
5380		}
5381		frag = (struct sadb_x_nat_t_frag *)
5382		    mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5383	} else {
5384		frag = 0;
5385	}
5386#endif
5387
5388	/* get a SA header */
5389	if ((newsah = key_getsah(&saidx)) == NULL) {
5390		/* create a new SA header */
5391		if ((newsah = key_newsah(&saidx)) == NULL) {
5392			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
5393			return key_senderror(so, m, ENOBUFS);
5394		}
5395	}
5396
5397	/* set spidx if there */
5398	/* XXX rewrite */
5399	error = key_setident(newsah, m, mhp);
5400	if (error) {
5401		return key_senderror(so, m, error);
5402	}
5403
5404	/* create new SA entry. */
5405	/* We can create new SA only if SPI is differenct. */
5406	SAHTREE_LOCK();
5407	newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
5408	SAHTREE_UNLOCK();
5409	if (newsav != NULL) {
5410		ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
5411		return key_senderror(so, m, EEXIST);
5412	}
5413	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5414	if (newsav == NULL) {
5415		return key_senderror(so, m, error);
5416	}
5417
5418	/* check SA values to be mature. */
5419	if ((error = key_mature(newsav)) != 0) {
5420		KEY_FREESAV(&newsav);
5421		return key_senderror(so, m, error);
5422	}
5423
5424#ifdef IPSEC_NAT_T
5425	/*
5426	 * Handle more NAT-T info if present,
5427	 * now that we have a sav to fill.
5428	 */
5429	if (type)
5430		newsav->natt_type = type->sadb_x_nat_t_type_type;
5431
5432#if 0
5433	/*
5434	 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5435	 * We should actually check for a minimum MTU here, if we
5436	 * want to support it in ip_output.
5437	 */
5438	if (frag)
5439		newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5440#endif
5441#endif
5442
5443	/*
5444	 * don't call key_freesav() here, as we would like to keep the SA
5445	 * in the database on success.
5446	 */
5447
5448    {
5449	struct mbuf *n;
5450
5451	/* set msg buf from mhp */
5452	n = key_getmsgbuf_x1(m, mhp);
5453	if (n == NULL) {
5454		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5455		return key_senderror(so, m, ENOBUFS);
5456	}
5457
5458	m_freem(m);
5459	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5460    }
5461}
5462
5463/* m is retained */
5464static int
5465key_setident(sah, m, mhp)
5466	struct secashead *sah;
5467	struct mbuf *m;
5468	const struct sadb_msghdr *mhp;
5469{
5470	const struct sadb_ident *idsrc, *iddst;
5471	int idsrclen, iddstlen;
5472
5473	IPSEC_ASSERT(sah != NULL, ("null secashead"));
5474	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5475	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5476	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5477
5478	/* don't make buffer if not there */
5479	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5480	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5481		sah->idents = NULL;
5482		sah->identd = NULL;
5483		return 0;
5484	}
5485
5486	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5487	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5488		ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
5489		return EINVAL;
5490	}
5491
5492	idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5493	iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5494	idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5495	iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5496
5497	/* validity check */
5498	if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5499		ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
5500		return EINVAL;
5501	}
5502
5503	switch (idsrc->sadb_ident_type) {
5504	case SADB_IDENTTYPE_PREFIX:
5505	case SADB_IDENTTYPE_FQDN:
5506	case SADB_IDENTTYPE_USERFQDN:
5507	default:
5508		/* XXX do nothing */
5509		sah->idents = NULL;
5510		sah->identd = NULL;
5511	 	return 0;
5512	}
5513
5514	/* make structure */
5515	sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5516	if (sah->idents == NULL) {
5517		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5518		return ENOBUFS;
5519	}
5520	sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5521	if (sah->identd == NULL) {
5522		free(sah->idents, M_IPSEC_MISC);
5523		sah->idents = NULL;
5524		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5525		return ENOBUFS;
5526	}
5527	sah->idents->type = idsrc->sadb_ident_type;
5528	sah->idents->id = idsrc->sadb_ident_id;
5529
5530	sah->identd->type = iddst->sadb_ident_type;
5531	sah->identd->id = iddst->sadb_ident_id;
5532
5533	return 0;
5534}
5535
5536/*
5537 * m will not be freed on return.
5538 * it is caller's responsibility to free the result.
5539 */
5540static struct mbuf *
5541key_getmsgbuf_x1(m, mhp)
5542	struct mbuf *m;
5543	const struct sadb_msghdr *mhp;
5544{
5545	struct mbuf *n;
5546
5547	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5548	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5549	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5550
5551	/* create new sadb_msg to reply. */
5552	n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5553	    SADB_EXT_SA, SADB_X_EXT_SA2,
5554	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5555	    SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5556	    SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5557	if (!n)
5558		return NULL;
5559
5560	if (n->m_len < sizeof(struct sadb_msg)) {
5561		n = m_pullup(n, sizeof(struct sadb_msg));
5562		if (n == NULL)
5563			return NULL;
5564	}
5565	mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5566	mtod(n, struct sadb_msg *)->sadb_msg_len =
5567	    PFKEY_UNIT64(n->m_pkthdr.len);
5568
5569	return n;
5570}
5571
5572static int key_delete_all __P((struct socket *, struct mbuf *,
5573	const struct sadb_msghdr *, u_int16_t));
5574
5575/*
5576 * SADB_DELETE processing
5577 * receive
5578 *   <base, SA(*), address(SD)>
5579 * from the ikmpd, and set SADB_SASTATE_DEAD,
5580 * and send,
5581 *   <base, SA(*), address(SD)>
5582 * to the ikmpd.
5583 *
5584 * m will always be freed.
5585 */
5586static int
5587key_delete(so, m, mhp)
5588	struct socket *so;
5589	struct mbuf *m;
5590	const struct sadb_msghdr *mhp;
5591{
5592	struct sadb_sa *sa0;
5593	struct sadb_address *src0, *dst0;
5594	struct secasindex saidx;
5595	struct secashead *sah;
5596	struct secasvar *sav = NULL;
5597	u_int16_t proto;
5598
5599	IPSEC_ASSERT(so != NULL, ("null socket"));
5600	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5601	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5602	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5603
5604	/* map satype to proto */
5605	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5606		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5607			__func__));
5608		return key_senderror(so, m, EINVAL);
5609	}
5610
5611	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5612	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5613		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5614			__func__));
5615		return key_senderror(so, m, EINVAL);
5616	}
5617
5618	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5619	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5620		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5621			__func__));
5622		return key_senderror(so, m, EINVAL);
5623	}
5624
5625	if (mhp->ext[SADB_EXT_SA] == NULL) {
5626		/*
5627		 * Caller wants us to delete all non-LARVAL SAs
5628		 * that match the src/dst.  This is used during
5629		 * IKE INITIAL-CONTACT.
5630		 */
5631		ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
5632		return key_delete_all(so, m, mhp, proto);
5633	} else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5634		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5635			__func__));
5636		return key_senderror(so, m, EINVAL);
5637	}
5638
5639	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5640	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5641	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5642
5643	/* XXX boundary check against sa_len */
5644	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5645
5646	/*
5647	 * Make sure the port numbers are zero.
5648	 * In case of NAT-T we will update them later if needed.
5649	 */
5650	KEY_PORTTOSADDR(&saidx.src, 0);
5651	KEY_PORTTOSADDR(&saidx.dst, 0);
5652
5653#ifdef IPSEC_NAT_T
5654	/*
5655	 * Handle NAT-T info if present.
5656	 */
5657	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5658	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5659		struct sadb_x_nat_t_port *sport, *dport;
5660
5661		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5662		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5663			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5664			    __func__));
5665			return key_senderror(so, m, EINVAL);
5666		}
5667
5668		sport = (struct sadb_x_nat_t_port *)
5669		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5670		dport = (struct sadb_x_nat_t_port *)
5671		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5672
5673		if (sport)
5674			KEY_PORTTOSADDR(&saidx.src,
5675			    sport->sadb_x_nat_t_port_port);
5676		if (dport)
5677			KEY_PORTTOSADDR(&saidx.dst,
5678			    dport->sadb_x_nat_t_port_port);
5679	}
5680#endif
5681
5682	/* get a SA header */
5683	SAHTREE_LOCK();
5684	LIST_FOREACH(sah, &V_sahtree, chain) {
5685		if (sah->state == SADB_SASTATE_DEAD)
5686			continue;
5687		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5688			continue;
5689
5690		/* get a SA with SPI. */
5691		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5692		if (sav)
5693			break;
5694	}
5695	if (sah == NULL) {
5696		SAHTREE_UNLOCK();
5697		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5698		return key_senderror(so, m, ENOENT);
5699	}
5700
5701	key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5702	KEY_FREESAV(&sav);
5703	SAHTREE_UNLOCK();
5704
5705    {
5706	struct mbuf *n;
5707	struct sadb_msg *newmsg;
5708
5709	/* create new sadb_msg to reply. */
5710	/* XXX-BZ NAT-T extensions? */
5711	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5712	    SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5713	if (!n)
5714		return key_senderror(so, m, ENOBUFS);
5715
5716	if (n->m_len < sizeof(struct sadb_msg)) {
5717		n = m_pullup(n, sizeof(struct sadb_msg));
5718		if (n == NULL)
5719			return key_senderror(so, m, ENOBUFS);
5720	}
5721	newmsg = mtod(n, struct sadb_msg *);
5722	newmsg->sadb_msg_errno = 0;
5723	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5724
5725	m_freem(m);
5726	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5727    }
5728}
5729
5730/*
5731 * delete all SAs for src/dst.  Called from key_delete().
5732 */
5733static int
5734key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp,
5735    u_int16_t proto)
5736{
5737	struct sadb_address *src0, *dst0;
5738	struct secasindex saidx;
5739	struct secashead *sah;
5740	struct secasvar *sav, *nextsav;
5741	u_int stateidx, state;
5742
5743	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5744	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5745
5746	/* XXX boundary check against sa_len */
5747	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5748
5749	/*
5750	 * Make sure the port numbers are zero.
5751	 * In case of NAT-T we will update them later if needed.
5752	 */
5753	KEY_PORTTOSADDR(&saidx.src, 0);
5754	KEY_PORTTOSADDR(&saidx.dst, 0);
5755
5756#ifdef IPSEC_NAT_T
5757	/*
5758	 * Handle NAT-T info if present.
5759	 */
5760
5761	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5762	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5763		struct sadb_x_nat_t_port *sport, *dport;
5764
5765		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5766		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5767			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5768			    __func__));
5769			return key_senderror(so, m, EINVAL);
5770		}
5771
5772		sport = (struct sadb_x_nat_t_port *)
5773		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5774		dport = (struct sadb_x_nat_t_port *)
5775		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5776
5777		if (sport)
5778			KEY_PORTTOSADDR(&saidx.src,
5779			    sport->sadb_x_nat_t_port_port);
5780		if (dport)
5781			KEY_PORTTOSADDR(&saidx.dst,
5782			    dport->sadb_x_nat_t_port_port);
5783	}
5784#endif
5785
5786	SAHTREE_LOCK();
5787	LIST_FOREACH(sah, &V_sahtree, chain) {
5788		if (sah->state == SADB_SASTATE_DEAD)
5789			continue;
5790		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5791			continue;
5792
5793		/* Delete all non-LARVAL SAs. */
5794		for (stateidx = 0;
5795		     stateidx < _ARRAYLEN(saorder_state_alive);
5796		     stateidx++) {
5797			state = saorder_state_alive[stateidx];
5798			if (state == SADB_SASTATE_LARVAL)
5799				continue;
5800			for (sav = LIST_FIRST(&sah->savtree[state]);
5801			     sav != NULL; sav = nextsav) {
5802				nextsav = LIST_NEXT(sav, chain);
5803				/* sanity check */
5804				if (sav->state != state) {
5805					ipseclog((LOG_DEBUG, "%s: invalid "
5806						"sav->state (queue %d SA %d)\n",
5807						__func__, state, sav->state));
5808					continue;
5809				}
5810
5811				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5812				KEY_FREESAV(&sav);
5813			}
5814		}
5815	}
5816	SAHTREE_UNLOCK();
5817    {
5818	struct mbuf *n;
5819	struct sadb_msg *newmsg;
5820
5821	/* create new sadb_msg to reply. */
5822	/* XXX-BZ NAT-T extensions? */
5823	n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5824	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5825	if (!n)
5826		return key_senderror(so, m, ENOBUFS);
5827
5828	if (n->m_len < sizeof(struct sadb_msg)) {
5829		n = m_pullup(n, sizeof(struct sadb_msg));
5830		if (n == NULL)
5831			return key_senderror(so, m, ENOBUFS);
5832	}
5833	newmsg = mtod(n, struct sadb_msg *);
5834	newmsg->sadb_msg_errno = 0;
5835	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5836
5837	m_freem(m);
5838	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5839    }
5840}
5841
5842/*
5843 * SADB_GET processing
5844 * receive
5845 *   <base, SA(*), address(SD)>
5846 * from the ikmpd, and get a SP and a SA to respond,
5847 * and send,
5848 *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5849 *       (identity(SD),) (sensitivity)>
5850 * to the ikmpd.
5851 *
5852 * m will always be freed.
5853 */
5854static int
5855key_get(so, m, mhp)
5856	struct socket *so;
5857	struct mbuf *m;
5858	const struct sadb_msghdr *mhp;
5859{
5860	struct sadb_sa *sa0;
5861	struct sadb_address *src0, *dst0;
5862	struct secasindex saidx;
5863	struct secashead *sah;
5864	struct secasvar *sav = NULL;
5865	u_int16_t proto;
5866
5867	IPSEC_ASSERT(so != NULL, ("null socket"));
5868	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5869	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5870	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5871
5872	/* map satype to proto */
5873	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5874		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5875			__func__));
5876		return key_senderror(so, m, EINVAL);
5877	}
5878
5879	if (mhp->ext[SADB_EXT_SA] == NULL ||
5880	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5881	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5882		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5883			__func__));
5884		return key_senderror(so, m, EINVAL);
5885	}
5886	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5887	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5888	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5889		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5890			__func__));
5891		return key_senderror(so, m, EINVAL);
5892	}
5893
5894	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5895	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5896	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5897
5898	/* XXX boundary check against sa_len */
5899	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5900
5901	/*
5902	 * Make sure the port numbers are zero.
5903	 * In case of NAT-T we will update them later if needed.
5904	 */
5905	KEY_PORTTOSADDR(&saidx.src, 0);
5906	KEY_PORTTOSADDR(&saidx.dst, 0);
5907
5908#ifdef IPSEC_NAT_T
5909	/*
5910	 * Handle NAT-T info if present.
5911	 */
5912
5913	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5914	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5915		struct sadb_x_nat_t_port *sport, *dport;
5916
5917		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5918		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5919			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5920			    __func__));
5921			return key_senderror(so, m, EINVAL);
5922		}
5923
5924		sport = (struct sadb_x_nat_t_port *)
5925		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5926		dport = (struct sadb_x_nat_t_port *)
5927		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5928
5929		if (sport)
5930			KEY_PORTTOSADDR(&saidx.src,
5931			    sport->sadb_x_nat_t_port_port);
5932		if (dport)
5933			KEY_PORTTOSADDR(&saidx.dst,
5934			    dport->sadb_x_nat_t_port_port);
5935	}
5936#endif
5937
5938	/* get a SA header */
5939	SAHTREE_LOCK();
5940	LIST_FOREACH(sah, &V_sahtree, chain) {
5941		if (sah->state == SADB_SASTATE_DEAD)
5942			continue;
5943		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5944			continue;
5945
5946		/* get a SA with SPI. */
5947		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5948		if (sav)
5949			break;
5950	}
5951	SAHTREE_UNLOCK();
5952	if (sah == NULL) {
5953		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5954		return key_senderror(so, m, ENOENT);
5955	}
5956
5957    {
5958	struct mbuf *n;
5959	u_int8_t satype;
5960
5961	/* map proto to satype */
5962	if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5963		ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
5964			__func__));
5965		return key_senderror(so, m, EINVAL);
5966	}
5967
5968	/* create new sadb_msg to reply. */
5969	n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5970	    mhp->msg->sadb_msg_pid);
5971	if (!n)
5972		return key_senderror(so, m, ENOBUFS);
5973
5974	m_freem(m);
5975	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5976    }
5977}
5978
5979/* XXX make it sysctl-configurable? */
5980static void
5981key_getcomb_setlifetime(comb)
5982	struct sadb_comb *comb;
5983{
5984
5985	comb->sadb_comb_soft_allocations = 1;
5986	comb->sadb_comb_hard_allocations = 1;
5987	comb->sadb_comb_soft_bytes = 0;
5988	comb->sadb_comb_hard_bytes = 0;
5989	comb->sadb_comb_hard_addtime = 86400;	/* 1 day */
5990	comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5991	comb->sadb_comb_soft_usetime = 28800;	/* 8 hours */
5992	comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5993}
5994
5995/*
5996 * XXX reorder combinations by preference
5997 * XXX no idea if the user wants ESP authentication or not
5998 */
5999static struct mbuf *
6000key_getcomb_esp()
6001{
6002	struct sadb_comb *comb;
6003	struct enc_xform *algo;
6004	struct mbuf *result = NULL, *m, *n;
6005	int encmin;
6006	int i, off, o;
6007	int totlen;
6008	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6009
6010	m = NULL;
6011	for (i = 1; i <= SADB_EALG_MAX; i++) {
6012		algo = esp_algorithm_lookup(i);
6013		if (algo == NULL)
6014			continue;
6015
6016		/* discard algorithms with key size smaller than system min */
6017		if (_BITS(algo->maxkey) < V_ipsec_esp_keymin)
6018			continue;
6019		if (_BITS(algo->minkey) < V_ipsec_esp_keymin)
6020			encmin = V_ipsec_esp_keymin;
6021		else
6022			encmin = _BITS(algo->minkey);
6023
6024		if (V_ipsec_esp_auth)
6025			m = key_getcomb_ah();
6026		else {
6027			IPSEC_ASSERT(l <= MLEN,
6028				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6029			MGET(m, M_DONTWAIT, MT_DATA);
6030			if (m) {
6031				M_ALIGN(m, l);
6032				m->m_len = l;
6033				m->m_next = NULL;
6034				bzero(mtod(m, caddr_t), m->m_len);
6035			}
6036		}
6037		if (!m)
6038			goto fail;
6039
6040		totlen = 0;
6041		for (n = m; n; n = n->m_next)
6042			totlen += n->m_len;
6043		IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
6044
6045		for (off = 0; off < totlen; off += l) {
6046			n = m_pulldown(m, off, l, &o);
6047			if (!n) {
6048				/* m is already freed */
6049				goto fail;
6050			}
6051			comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
6052			bzero(comb, sizeof(*comb));
6053			key_getcomb_setlifetime(comb);
6054			comb->sadb_comb_encrypt = i;
6055			comb->sadb_comb_encrypt_minbits = encmin;
6056			comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6057		}
6058
6059		if (!result)
6060			result = m;
6061		else
6062			m_cat(result, m);
6063	}
6064
6065	return result;
6066
6067 fail:
6068	if (result)
6069		m_freem(result);
6070	return NULL;
6071}
6072
6073static void
6074key_getsizes_ah(
6075	const struct auth_hash *ah,
6076	int alg,
6077	u_int16_t* min,
6078	u_int16_t* max)
6079{
6080
6081	*min = *max = ah->keysize;
6082	if (ah->keysize == 0) {
6083		/*
6084		 * Transform takes arbitrary key size but algorithm
6085		 * key size is restricted.  Enforce this here.
6086		 */
6087		switch (alg) {
6088		case SADB_X_AALG_MD5:	*min = *max = 16; break;
6089		case SADB_X_AALG_SHA:	*min = *max = 20; break;
6090		case SADB_X_AALG_NULL:	*min = 1; *max = 256; break;
6091		default:
6092			DPRINTF(("%s: unknown AH algorithm %u\n",
6093				__func__, alg));
6094			break;
6095		}
6096	}
6097}
6098
6099/*
6100 * XXX reorder combinations by preference
6101 */
6102static struct mbuf *
6103key_getcomb_ah()
6104{
6105	struct sadb_comb *comb;
6106	struct auth_hash *algo;
6107	struct mbuf *m;
6108	u_int16_t minkeysize, maxkeysize;
6109	int i;
6110	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6111
6112	m = NULL;
6113	for (i = 1; i <= SADB_AALG_MAX; i++) {
6114#if 1
6115		/* we prefer HMAC algorithms, not old algorithms */
6116		if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC)
6117			continue;
6118#endif
6119		algo = ah_algorithm_lookup(i);
6120		if (!algo)
6121			continue;
6122		key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6123		/* discard algorithms with key size smaller than system min */
6124		if (_BITS(minkeysize) < V_ipsec_ah_keymin)
6125			continue;
6126
6127		if (!m) {
6128			IPSEC_ASSERT(l <= MLEN,
6129				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6130			MGET(m, M_DONTWAIT, MT_DATA);
6131			if (m) {
6132				M_ALIGN(m, l);
6133				m->m_len = l;
6134				m->m_next = NULL;
6135			}
6136		} else
6137			M_PREPEND(m, l, M_DONTWAIT);
6138		if (!m)
6139			return NULL;
6140
6141		comb = mtod(m, struct sadb_comb *);
6142		bzero(comb, sizeof(*comb));
6143		key_getcomb_setlifetime(comb);
6144		comb->sadb_comb_auth = i;
6145		comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6146		comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6147	}
6148
6149	return m;
6150}
6151
6152/*
6153 * not really an official behavior.  discussed in pf_key@inner.net in Sep2000.
6154 * XXX reorder combinations by preference
6155 */
6156static struct mbuf *
6157key_getcomb_ipcomp()
6158{
6159	struct sadb_comb *comb;
6160	struct comp_algo *algo;
6161	struct mbuf *m;
6162	int i;
6163	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6164
6165	m = NULL;
6166	for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6167		algo = ipcomp_algorithm_lookup(i);
6168		if (!algo)
6169			continue;
6170
6171		if (!m) {
6172			IPSEC_ASSERT(l <= MLEN,
6173				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6174			MGET(m, M_DONTWAIT, MT_DATA);
6175			if (m) {
6176				M_ALIGN(m, l);
6177				m->m_len = l;
6178				m->m_next = NULL;
6179			}
6180		} else
6181			M_PREPEND(m, l, M_DONTWAIT);
6182		if (!m)
6183			return NULL;
6184
6185		comb = mtod(m, struct sadb_comb *);
6186		bzero(comb, sizeof(*comb));
6187		key_getcomb_setlifetime(comb);
6188		comb->sadb_comb_encrypt = i;
6189		/* what should we set into sadb_comb_*_{min,max}bits? */
6190	}
6191
6192	return m;
6193}
6194
6195/*
6196 * XXX no way to pass mode (transport/tunnel) to userland
6197 * XXX replay checking?
6198 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6199 */
6200static struct mbuf *
6201key_getprop(saidx)
6202	const struct secasindex *saidx;
6203{
6204	struct sadb_prop *prop;
6205	struct mbuf *m, *n;
6206	const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6207	int totlen;
6208
6209	switch (saidx->proto)  {
6210	case IPPROTO_ESP:
6211		m = key_getcomb_esp();
6212		break;
6213	case IPPROTO_AH:
6214		m = key_getcomb_ah();
6215		break;
6216	case IPPROTO_IPCOMP:
6217		m = key_getcomb_ipcomp();
6218		break;
6219	default:
6220		return NULL;
6221	}
6222
6223	if (!m)
6224		return NULL;
6225	M_PREPEND(m, l, M_DONTWAIT);
6226	if (!m)
6227		return NULL;
6228
6229	totlen = 0;
6230	for (n = m; n; n = n->m_next)
6231		totlen += n->m_len;
6232
6233	prop = mtod(m, struct sadb_prop *);
6234	bzero(prop, sizeof(*prop));
6235	prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6236	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6237	prop->sadb_prop_replay = 32;	/* XXX */
6238
6239	return m;
6240}
6241
6242/*
6243 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6244 * send
6245 *   <base, SA, address(SD), (address(P)), x_policy,
6246 *       (identity(SD),) (sensitivity,) proposal>
6247 * to KMD, and expect to receive
6248 *   <base> with SADB_ACQUIRE if error occured,
6249 * or
6250 *   <base, src address, dst address, (SPI range)> with SADB_GETSPI
6251 * from KMD by PF_KEY.
6252 *
6253 * XXX x_policy is outside of RFC2367 (KAME extension).
6254 * XXX sensitivity is not supported.
6255 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6256 * see comment for key_getcomb_ipcomp().
6257 *
6258 * OUT:
6259 *    0     : succeed
6260 *    others: error number
6261 */
6262static int
6263key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6264{
6265	struct mbuf *result = NULL, *m;
6266	struct secacq *newacq;
6267	u_int8_t satype;
6268	int error = -1;
6269	u_int32_t seq;
6270
6271	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
6272	satype = key_proto2satype(saidx->proto);
6273	IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
6274
6275	/*
6276	 * We never do anything about acquirng SA.  There is anather
6277	 * solution that kernel blocks to send SADB_ACQUIRE message until
6278	 * getting something message from IKEd.  In later case, to be
6279	 * managed with ACQUIRING list.
6280	 */
6281	/* Get an entry to check whether sending message or not. */
6282	if ((newacq = key_getacq(saidx)) != NULL) {
6283		if (V_key_blockacq_count < newacq->count) {
6284			/* reset counter and do send message. */
6285			newacq->count = 0;
6286		} else {
6287			/* increment counter and do nothing. */
6288			newacq->count++;
6289			return 0;
6290		}
6291	} else {
6292		/* make new entry for blocking to send SADB_ACQUIRE. */
6293		if ((newacq = key_newacq(saidx)) == NULL)
6294			return ENOBUFS;
6295	}
6296
6297
6298	seq = newacq->seq;
6299	m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6300	if (!m) {
6301		error = ENOBUFS;
6302		goto fail;
6303	}
6304	result = m;
6305
6306	/*
6307	 * No SADB_X_EXT_NAT_T_* here: we do not know
6308	 * anything related to NAT-T at this time.
6309	 */
6310
6311	/* set sadb_address for saidx's. */
6312	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6313	    &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6314	if (!m) {
6315		error = ENOBUFS;
6316		goto fail;
6317	}
6318	m_cat(result, m);
6319
6320	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6321	    &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6322	if (!m) {
6323		error = ENOBUFS;
6324		goto fail;
6325	}
6326	m_cat(result, m);
6327
6328	/* XXX proxy address (optional) */
6329
6330	/* set sadb_x_policy */
6331	if (sp) {
6332		m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6333		if (!m) {
6334			error = ENOBUFS;
6335			goto fail;
6336		}
6337		m_cat(result, m);
6338	}
6339
6340	/* XXX identity (optional) */
6341#if 0
6342	if (idexttype && fqdn) {
6343		/* create identity extension (FQDN) */
6344		struct sadb_ident *id;
6345		int fqdnlen;
6346
6347		fqdnlen = strlen(fqdn) + 1;	/* +1 for terminating-NUL */
6348		id = (struct sadb_ident *)p;
6349		bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6350		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6351		id->sadb_ident_exttype = idexttype;
6352		id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6353		bcopy(fqdn, id + 1, fqdnlen);
6354		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6355	}
6356
6357	if (idexttype) {
6358		/* create identity extension (USERFQDN) */
6359		struct sadb_ident *id;
6360		int userfqdnlen;
6361
6362		if (userfqdn) {
6363			/* +1 for terminating-NUL */
6364			userfqdnlen = strlen(userfqdn) + 1;
6365		} else
6366			userfqdnlen = 0;
6367		id = (struct sadb_ident *)p;
6368		bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6369		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6370		id->sadb_ident_exttype = idexttype;
6371		id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6372		/* XXX is it correct? */
6373		if (curproc && curproc->p_cred)
6374			id->sadb_ident_id = curproc->p_cred->p_ruid;
6375		if (userfqdn && userfqdnlen)
6376			bcopy(userfqdn, id + 1, userfqdnlen);
6377		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6378	}
6379#endif
6380
6381	/* XXX sensitivity (optional) */
6382
6383	/* create proposal/combination extension */
6384	m = key_getprop(saidx);
6385#if 0
6386	/*
6387	 * spec conformant: always attach proposal/combination extension,
6388	 * the problem is that we have no way to attach it for ipcomp,
6389	 * due to the way sadb_comb is declared in RFC2367.
6390	 */
6391	if (!m) {
6392		error = ENOBUFS;
6393		goto fail;
6394	}
6395	m_cat(result, m);
6396#else
6397	/*
6398	 * outside of spec; make proposal/combination extension optional.
6399	 */
6400	if (m)
6401		m_cat(result, m);
6402#endif
6403
6404	if ((result->m_flags & M_PKTHDR) == 0) {
6405		error = EINVAL;
6406		goto fail;
6407	}
6408
6409	if (result->m_len < sizeof(struct sadb_msg)) {
6410		result = m_pullup(result, sizeof(struct sadb_msg));
6411		if (result == NULL) {
6412			error = ENOBUFS;
6413			goto fail;
6414		}
6415	}
6416
6417	result->m_pkthdr.len = 0;
6418	for (m = result; m; m = m->m_next)
6419		result->m_pkthdr.len += m->m_len;
6420
6421	mtod(result, struct sadb_msg *)->sadb_msg_len =
6422	    PFKEY_UNIT64(result->m_pkthdr.len);
6423
6424	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6425
6426 fail:
6427	if (result)
6428		m_freem(result);
6429	return error;
6430}
6431
6432static struct secacq *
6433key_newacq(const struct secasindex *saidx)
6434{
6435	struct secacq *newacq;
6436
6437	/* get new entry */
6438	newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6439	if (newacq == NULL) {
6440		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6441		return NULL;
6442	}
6443
6444	/* copy secindex */
6445	bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
6446	newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq);
6447	newacq->created = time_second;
6448	newacq->count = 0;
6449
6450	/* add to acqtree */
6451	ACQ_LOCK();
6452	LIST_INSERT_HEAD(&V_acqtree, newacq, chain);
6453	ACQ_UNLOCK();
6454
6455	return newacq;
6456}
6457
6458static struct secacq *
6459key_getacq(const struct secasindex *saidx)
6460{
6461	struct secacq *acq;
6462
6463	ACQ_LOCK();
6464	LIST_FOREACH(acq, &V_acqtree, chain) {
6465		if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6466			break;
6467	}
6468	ACQ_UNLOCK();
6469
6470	return acq;
6471}
6472
6473static struct secacq *
6474key_getacqbyseq(seq)
6475	u_int32_t seq;
6476{
6477	struct secacq *acq;
6478
6479	ACQ_LOCK();
6480	LIST_FOREACH(acq, &V_acqtree, chain) {
6481		if (acq->seq == seq)
6482			break;
6483	}
6484	ACQ_UNLOCK();
6485
6486	return acq;
6487}
6488
6489static struct secspacq *
6490key_newspacq(spidx)
6491	struct secpolicyindex *spidx;
6492{
6493	struct secspacq *acq;
6494
6495	/* get new entry */
6496	acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6497	if (acq == NULL) {
6498		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6499		return NULL;
6500	}
6501
6502	/* copy secindex */
6503	bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
6504	acq->created = time_second;
6505	acq->count = 0;
6506
6507	/* add to spacqtree */
6508	SPACQ_LOCK();
6509	LIST_INSERT_HEAD(&V_spacqtree, acq, chain);
6510	SPACQ_UNLOCK();
6511
6512	return acq;
6513}
6514
6515static struct secspacq *
6516key_getspacq(spidx)
6517	struct secpolicyindex *spidx;
6518{
6519	struct secspacq *acq;
6520
6521	SPACQ_LOCK();
6522	LIST_FOREACH(acq, &V_spacqtree, chain) {
6523		if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
6524			/* NB: return holding spacq_lock */
6525			return acq;
6526		}
6527	}
6528	SPACQ_UNLOCK();
6529
6530	return NULL;
6531}
6532
6533/*
6534 * SADB_ACQUIRE processing,
6535 * in first situation, is receiving
6536 *   <base>
6537 * from the ikmpd, and clear sequence of its secasvar entry.
6538 *
6539 * In second situation, is receiving
6540 *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6541 * from a user land process, and return
6542 *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6543 * to the socket.
6544 *
6545 * m will always be freed.
6546 */
6547static int
6548key_acquire2(so, m, mhp)
6549	struct socket *so;
6550	struct mbuf *m;
6551	const struct sadb_msghdr *mhp;
6552{
6553	const struct sadb_address *src0, *dst0;
6554	struct secasindex saidx;
6555	struct secashead *sah;
6556	u_int16_t proto;
6557	int error;
6558
6559	IPSEC_ASSERT(so != NULL, ("null socket"));
6560	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6561	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6562	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6563
6564	/*
6565	 * Error message from KMd.
6566	 * We assume that if error was occured in IKEd, the length of PFKEY
6567	 * message is equal to the size of sadb_msg structure.
6568	 * We do not raise error even if error occured in this function.
6569	 */
6570	if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6571		struct secacq *acq;
6572
6573		/* check sequence number */
6574		if (mhp->msg->sadb_msg_seq == 0) {
6575			ipseclog((LOG_DEBUG, "%s: must specify sequence "
6576				"number.\n", __func__));
6577			m_freem(m);
6578			return 0;
6579		}
6580
6581		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6582			/*
6583			 * the specified larval SA is already gone, or we got
6584			 * a bogus sequence number.  we can silently ignore it.
6585			 */
6586			m_freem(m);
6587			return 0;
6588		}
6589
6590		/* reset acq counter in order to deletion by timehander. */
6591		acq->created = time_second;
6592		acq->count = 0;
6593		m_freem(m);
6594		return 0;
6595	}
6596
6597	/*
6598	 * This message is from user land.
6599	 */
6600
6601	/* map satype to proto */
6602	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6603		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6604			__func__));
6605		return key_senderror(so, m, EINVAL);
6606	}
6607
6608	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6609	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6610	    mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6611		/* error */
6612		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6613			__func__));
6614		return key_senderror(so, m, EINVAL);
6615	}
6616	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6617	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6618	    mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6619		/* error */
6620		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6621			__func__));
6622		return key_senderror(so, m, EINVAL);
6623	}
6624
6625	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6626	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6627
6628	/* XXX boundary check against sa_len */
6629	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6630
6631	/*
6632	 * Make sure the port numbers are zero.
6633	 * In case of NAT-T we will update them later if needed.
6634	 */
6635	KEY_PORTTOSADDR(&saidx.src, 0);
6636	KEY_PORTTOSADDR(&saidx.dst, 0);
6637
6638#ifndef IPSEC_NAT_T
6639	/*
6640	 * Handle NAT-T info if present.
6641	 */
6642
6643	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
6644	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
6645		struct sadb_x_nat_t_port *sport, *dport;
6646
6647		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
6648		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
6649			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
6650			    __func__));
6651			return key_senderror(so, m, EINVAL);
6652		}
6653
6654		sport = (struct sadb_x_nat_t_port *)
6655		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
6656		dport = (struct sadb_x_nat_t_port *)
6657		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
6658
6659		if (sport)
6660			KEY_PORTTOSADDR(&saidx.src,
6661			    sport->sadb_x_nat_t_port_port);
6662		if (dport)
6663			KEY_PORTTOSADDR(&saidx.dst,
6664			    dport->sadb_x_nat_t_port_port);
6665	}
6666#endif
6667
6668	/* get a SA index */
6669	SAHTREE_LOCK();
6670	LIST_FOREACH(sah, &V_sahtree, chain) {
6671		if (sah->state == SADB_SASTATE_DEAD)
6672			continue;
6673		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6674			break;
6675	}
6676	SAHTREE_UNLOCK();
6677	if (sah != NULL) {
6678		ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
6679		return key_senderror(so, m, EEXIST);
6680	}
6681
6682	error = key_acquire(&saidx, NULL);
6683	if (error != 0) {
6684		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
6685			__func__, mhp->msg->sadb_msg_errno));
6686		return key_senderror(so, m, error);
6687	}
6688
6689	return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6690}
6691
6692/*
6693 * SADB_REGISTER processing.
6694 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6695 * receive
6696 *   <base>
6697 * from the ikmpd, and register a socket to send PF_KEY messages,
6698 * and send
6699 *   <base, supported>
6700 * to KMD by PF_KEY.
6701 * If socket is detached, must free from regnode.
6702 *
6703 * m will always be freed.
6704 */
6705static int
6706key_register(so, m, mhp)
6707	struct socket *so;
6708	struct mbuf *m;
6709	const struct sadb_msghdr *mhp;
6710{
6711	struct secreg *reg, *newreg = 0;
6712
6713	IPSEC_ASSERT(so != NULL, ("null socket"));
6714	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6715	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6716	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6717
6718	/* check for invalid register message */
6719	if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0]))
6720		return key_senderror(so, m, EINVAL);
6721
6722	/* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6723	if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6724		goto setmsg;
6725
6726	/* check whether existing or not */
6727	REGTREE_LOCK();
6728	LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) {
6729		if (reg->so == so) {
6730			REGTREE_UNLOCK();
6731			ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
6732				__func__));
6733			return key_senderror(so, m, EEXIST);
6734		}
6735	}
6736
6737	/* create regnode */
6738	newreg =  malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
6739	if (newreg == NULL) {
6740		REGTREE_UNLOCK();
6741		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6742		return key_senderror(so, m, ENOBUFS);
6743	}
6744
6745	newreg->so = so;
6746	((struct keycb *)sotorawcb(so))->kp_registered++;
6747
6748	/* add regnode to regtree. */
6749	LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain);
6750	REGTREE_UNLOCK();
6751
6752  setmsg:
6753    {
6754	struct mbuf *n;
6755	struct sadb_msg *newmsg;
6756	struct sadb_supported *sup;
6757	u_int len, alen, elen;
6758	int off;
6759	int i;
6760	struct sadb_alg *alg;
6761
6762	/* create new sadb_msg to reply. */
6763	alen = 0;
6764	for (i = 1; i <= SADB_AALG_MAX; i++) {
6765		if (ah_algorithm_lookup(i))
6766			alen += sizeof(struct sadb_alg);
6767	}
6768	if (alen)
6769		alen += sizeof(struct sadb_supported);
6770	elen = 0;
6771	for (i = 1; i <= SADB_EALG_MAX; i++) {
6772		if (esp_algorithm_lookup(i))
6773			elen += sizeof(struct sadb_alg);
6774	}
6775	if (elen)
6776		elen += sizeof(struct sadb_supported);
6777
6778	len = sizeof(struct sadb_msg) + alen + elen;
6779
6780	if (len > MCLBYTES)
6781		return key_senderror(so, m, ENOBUFS);
6782
6783	MGETHDR(n, M_DONTWAIT, MT_DATA);
6784	if (len > MHLEN) {
6785		MCLGET(n, M_DONTWAIT);
6786		if ((n->m_flags & M_EXT) == 0) {
6787			m_freem(n);
6788			n = NULL;
6789		}
6790	}
6791	if (!n)
6792		return key_senderror(so, m, ENOBUFS);
6793
6794	n->m_pkthdr.len = n->m_len = len;
6795	n->m_next = NULL;
6796	off = 0;
6797
6798	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
6799	newmsg = mtod(n, struct sadb_msg *);
6800	newmsg->sadb_msg_errno = 0;
6801	newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6802	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6803
6804	/* for authentication algorithm */
6805	if (alen) {
6806		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6807		sup->sadb_supported_len = PFKEY_UNIT64(alen);
6808		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6809		off += PFKEY_ALIGN8(sizeof(*sup));
6810
6811		for (i = 1; i <= SADB_AALG_MAX; i++) {
6812			struct auth_hash *aalgo;
6813			u_int16_t minkeysize, maxkeysize;
6814
6815			aalgo = ah_algorithm_lookup(i);
6816			if (!aalgo)
6817				continue;
6818			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6819			alg->sadb_alg_id = i;
6820			alg->sadb_alg_ivlen = 0;
6821			key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6822			alg->sadb_alg_minbits = _BITS(minkeysize);
6823			alg->sadb_alg_maxbits = _BITS(maxkeysize);
6824			off += PFKEY_ALIGN8(sizeof(*alg));
6825		}
6826	}
6827
6828	/* for encryption algorithm */
6829	if (elen) {
6830		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6831		sup->sadb_supported_len = PFKEY_UNIT64(elen);
6832		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6833		off += PFKEY_ALIGN8(sizeof(*sup));
6834
6835		for (i = 1; i <= SADB_EALG_MAX; i++) {
6836			struct enc_xform *ealgo;
6837
6838			ealgo = esp_algorithm_lookup(i);
6839			if (!ealgo)
6840				continue;
6841			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6842			alg->sadb_alg_id = i;
6843			alg->sadb_alg_ivlen = ealgo->blocksize;
6844			alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6845			alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6846			off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6847		}
6848	}
6849
6850	IPSEC_ASSERT(off == len,
6851		("length assumption failed (off %u len %u)", off, len));
6852
6853	m_freem(m);
6854	return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6855    }
6856}
6857
6858/*
6859 * free secreg entry registered.
6860 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6861 */
6862void
6863key_freereg(struct socket *so)
6864{
6865	struct secreg *reg;
6866	int i;
6867
6868	IPSEC_ASSERT(so != NULL, ("NULL so"));
6869
6870	/*
6871	 * check whether existing or not.
6872	 * check all type of SA, because there is a potential that
6873	 * one socket is registered to multiple type of SA.
6874	 */
6875	REGTREE_LOCK();
6876	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6877		LIST_FOREACH(reg, &V_regtree[i], chain) {
6878			if (reg->so == so && __LIST_CHAINED(reg)) {
6879				LIST_REMOVE(reg, chain);
6880				free(reg, M_IPSEC_SAR);
6881				break;
6882			}
6883		}
6884	}
6885	REGTREE_UNLOCK();
6886}
6887
6888/*
6889 * SADB_EXPIRE processing
6890 * send
6891 *   <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6892 * to KMD by PF_KEY.
6893 * NOTE: We send only soft lifetime extension.
6894 *
6895 * OUT:	0	: succeed
6896 *	others	: error number
6897 */
6898static int
6899key_expire(struct secasvar *sav)
6900{
6901	int s;
6902	int satype;
6903	struct mbuf *result = NULL, *m;
6904	int len;
6905	int error = -1;
6906	struct sadb_lifetime *lt;
6907
6908	/* XXX: Why do we lock ? */
6909	s = splnet();	/*called from softclock()*/
6910
6911	IPSEC_ASSERT (sav != NULL, ("null sav"));
6912	IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
6913
6914	/* set msg header */
6915	satype = key_proto2satype(sav->sah->saidx.proto);
6916	IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
6917	m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6918	if (!m) {
6919		error = ENOBUFS;
6920		goto fail;
6921	}
6922	result = m;
6923
6924	/* create SA extension */
6925	m = key_setsadbsa(sav);
6926	if (!m) {
6927		error = ENOBUFS;
6928		goto fail;
6929	}
6930	m_cat(result, m);
6931
6932	/* create SA extension */
6933	m = key_setsadbxsa2(sav->sah->saidx.mode,
6934			sav->replay ? sav->replay->count : 0,
6935			sav->sah->saidx.reqid);
6936	if (!m) {
6937		error = ENOBUFS;
6938		goto fail;
6939	}
6940	m_cat(result, m);
6941
6942	/* create lifetime extension (current and soft) */
6943	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6944	m = key_alloc_mbuf(len);
6945	if (!m || m->m_next) {	/*XXX*/
6946		if (m)
6947			m_freem(m);
6948		error = ENOBUFS;
6949		goto fail;
6950	}
6951	bzero(mtod(m, caddr_t), len);
6952	lt = mtod(m, struct sadb_lifetime *);
6953	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6954	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6955	lt->sadb_lifetime_allocations = sav->lft_c->allocations;
6956	lt->sadb_lifetime_bytes = sav->lft_c->bytes;
6957	lt->sadb_lifetime_addtime = sav->lft_c->addtime;
6958	lt->sadb_lifetime_usetime = sav->lft_c->usetime;
6959	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
6960	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6961	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
6962	lt->sadb_lifetime_allocations = sav->lft_s->allocations;
6963	lt->sadb_lifetime_bytes = sav->lft_s->bytes;
6964	lt->sadb_lifetime_addtime = sav->lft_s->addtime;
6965	lt->sadb_lifetime_usetime = sav->lft_s->usetime;
6966	m_cat(result, m);
6967
6968	/* set sadb_address for source */
6969	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6970	    &sav->sah->saidx.src.sa,
6971	    FULLMASK, IPSEC_ULPROTO_ANY);
6972	if (!m) {
6973		error = ENOBUFS;
6974		goto fail;
6975	}
6976	m_cat(result, m);
6977
6978	/* set sadb_address for destination */
6979	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6980	    &sav->sah->saidx.dst.sa,
6981	    FULLMASK, IPSEC_ULPROTO_ANY);
6982	if (!m) {
6983		error = ENOBUFS;
6984		goto fail;
6985	}
6986	m_cat(result, m);
6987
6988	/*
6989	 * XXX-BZ Handle NAT-T extensions here.
6990	 */
6991
6992	if ((result->m_flags & M_PKTHDR) == 0) {
6993		error = EINVAL;
6994		goto fail;
6995	}
6996
6997	if (result->m_len < sizeof(struct sadb_msg)) {
6998		result = m_pullup(result, sizeof(struct sadb_msg));
6999		if (result == NULL) {
7000			error = ENOBUFS;
7001			goto fail;
7002		}
7003	}
7004
7005	result->m_pkthdr.len = 0;
7006	for (m = result; m; m = m->m_next)
7007		result->m_pkthdr.len += m->m_len;
7008
7009	mtod(result, struct sadb_msg *)->sadb_msg_len =
7010	    PFKEY_UNIT64(result->m_pkthdr.len);
7011
7012	splx(s);
7013	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
7014
7015 fail:
7016	if (result)
7017		m_freem(result);
7018	splx(s);
7019	return error;
7020}
7021
7022/*
7023 * SADB_FLUSH processing
7024 * receive
7025 *   <base>
7026 * from the ikmpd, and free all entries in secastree.
7027 * and send,
7028 *   <base>
7029 * to the ikmpd.
7030 * NOTE: to do is only marking SADB_SASTATE_DEAD.
7031 *
7032 * m will always be freed.
7033 */
7034static int
7035key_flush(so, m, mhp)
7036	struct socket *so;
7037	struct mbuf *m;
7038	const struct sadb_msghdr *mhp;
7039{
7040	struct sadb_msg *newmsg;
7041	struct secashead *sah, *nextsah;
7042	struct secasvar *sav, *nextsav;
7043	u_int16_t proto;
7044	u_int8_t state;
7045	u_int stateidx;
7046
7047	IPSEC_ASSERT(so != NULL, ("null socket"));
7048	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7049	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7050
7051	/* map satype to proto */
7052	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7053		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7054			__func__));
7055		return key_senderror(so, m, EINVAL);
7056	}
7057
7058	/* no SATYPE specified, i.e. flushing all SA. */
7059	SAHTREE_LOCK();
7060	for (sah = LIST_FIRST(&V_sahtree);
7061	     sah != NULL;
7062	     sah = nextsah) {
7063		nextsah = LIST_NEXT(sah, chain);
7064
7065		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7066		 && proto != sah->saidx.proto)
7067			continue;
7068
7069		for (stateidx = 0;
7070		     stateidx < _ARRAYLEN(saorder_state_alive);
7071		     stateidx++) {
7072			state = saorder_state_any[stateidx];
7073			for (sav = LIST_FIRST(&sah->savtree[state]);
7074			     sav != NULL;
7075			     sav = nextsav) {
7076
7077				nextsav = LIST_NEXT(sav, chain);
7078
7079				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
7080				KEY_FREESAV(&sav);
7081			}
7082		}
7083
7084		sah->state = SADB_SASTATE_DEAD;
7085	}
7086	SAHTREE_UNLOCK();
7087
7088	if (m->m_len < sizeof(struct sadb_msg) ||
7089	    sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7090		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
7091		return key_senderror(so, m, ENOBUFS);
7092	}
7093
7094	if (m->m_next)
7095		m_freem(m->m_next);
7096	m->m_next = NULL;
7097	m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7098	newmsg = mtod(m, struct sadb_msg *);
7099	newmsg->sadb_msg_errno = 0;
7100	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7101
7102	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7103}
7104
7105/*
7106 * SADB_DUMP processing
7107 * dump all entries including status of DEAD in SAD.
7108 * receive
7109 *   <base>
7110 * from the ikmpd, and dump all secasvar leaves
7111 * and send,
7112 *   <base> .....
7113 * to the ikmpd.
7114 *
7115 * m will always be freed.
7116 */
7117static int
7118key_dump(so, m, mhp)
7119	struct socket *so;
7120	struct mbuf *m;
7121	const struct sadb_msghdr *mhp;
7122{
7123	struct secashead *sah;
7124	struct secasvar *sav;
7125	u_int16_t proto;
7126	u_int stateidx;
7127	u_int8_t satype;
7128	u_int8_t state;
7129	int cnt;
7130	struct sadb_msg *newmsg;
7131	struct mbuf *n;
7132
7133	IPSEC_ASSERT(so != NULL, ("null socket"));
7134	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7135	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7136	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7137
7138	/* map satype to proto */
7139	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7140		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7141			__func__));
7142		return key_senderror(so, m, EINVAL);
7143	}
7144
7145	/* count sav entries to be sent to the userland. */
7146	cnt = 0;
7147	SAHTREE_LOCK();
7148	LIST_FOREACH(sah, &V_sahtree, chain) {
7149		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7150		 && proto != sah->saidx.proto)
7151			continue;
7152
7153		for (stateidx = 0;
7154		     stateidx < _ARRAYLEN(saorder_state_any);
7155		     stateidx++) {
7156			state = saorder_state_any[stateidx];
7157			LIST_FOREACH(sav, &sah->savtree[state], chain) {
7158				cnt++;
7159			}
7160		}
7161	}
7162
7163	if (cnt == 0) {
7164		SAHTREE_UNLOCK();
7165		return key_senderror(so, m, ENOENT);
7166	}
7167
7168	/* send this to the userland, one at a time. */
7169	newmsg = NULL;
7170	LIST_FOREACH(sah, &V_sahtree, chain) {
7171		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7172		 && proto != sah->saidx.proto)
7173			continue;
7174
7175		/* map proto to satype */
7176		if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7177			SAHTREE_UNLOCK();
7178			ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
7179				"SAD.\n", __func__));
7180			return key_senderror(so, m, EINVAL);
7181		}
7182
7183		for (stateidx = 0;
7184		     stateidx < _ARRAYLEN(saorder_state_any);
7185		     stateidx++) {
7186			state = saorder_state_any[stateidx];
7187			LIST_FOREACH(sav, &sah->savtree[state], chain) {
7188				n = key_setdumpsa(sav, SADB_DUMP, satype,
7189				    --cnt, mhp->msg->sadb_msg_pid);
7190				if (!n) {
7191					SAHTREE_UNLOCK();
7192					return key_senderror(so, m, ENOBUFS);
7193				}
7194				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
7195			}
7196		}
7197	}
7198	SAHTREE_UNLOCK();
7199
7200	m_freem(m);
7201	return 0;
7202}
7203
7204/*
7205 * SADB_X_PROMISC processing
7206 *
7207 * m will always be freed.
7208 */
7209static int
7210key_promisc(so, m, mhp)
7211	struct socket *so;
7212	struct mbuf *m;
7213	const struct sadb_msghdr *mhp;
7214{
7215	int olen;
7216
7217	IPSEC_ASSERT(so != NULL, ("null socket"));
7218	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7219	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7220	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7221
7222	olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7223
7224	if (olen < sizeof(struct sadb_msg)) {
7225#if 1
7226		return key_senderror(so, m, EINVAL);
7227#else
7228		m_freem(m);
7229		return 0;
7230#endif
7231	} else if (olen == sizeof(struct sadb_msg)) {
7232		/* enable/disable promisc mode */
7233		struct keycb *kp;
7234
7235		if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
7236			return key_senderror(so, m, EINVAL);
7237		mhp->msg->sadb_msg_errno = 0;
7238		switch (mhp->msg->sadb_msg_satype) {
7239		case 0:
7240		case 1:
7241			kp->kp_promisc = mhp->msg->sadb_msg_satype;
7242			break;
7243		default:
7244			return key_senderror(so, m, EINVAL);
7245		}
7246
7247		/* send the original message back to everyone */
7248		mhp->msg->sadb_msg_errno = 0;
7249		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7250	} else {
7251		/* send packet as is */
7252
7253		m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7254
7255		/* TODO: if sadb_msg_seq is specified, send to specific pid */
7256		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7257	}
7258}
7259
7260static int (*key_typesw[]) __P((struct socket *, struct mbuf *,
7261		const struct sadb_msghdr *)) = {
7262	NULL,		/* SADB_RESERVED */
7263	key_getspi,	/* SADB_GETSPI */
7264	key_update,	/* SADB_UPDATE */
7265	key_add,	/* SADB_ADD */
7266	key_delete,	/* SADB_DELETE */
7267	key_get,	/* SADB_GET */
7268	key_acquire2,	/* SADB_ACQUIRE */
7269	key_register,	/* SADB_REGISTER */
7270	NULL,		/* SADB_EXPIRE */
7271	key_flush,	/* SADB_FLUSH */
7272	key_dump,	/* SADB_DUMP */
7273	key_promisc,	/* SADB_X_PROMISC */
7274	NULL,		/* SADB_X_PCHANGE */
7275	key_spdadd,	/* SADB_X_SPDUPDATE */
7276	key_spdadd,	/* SADB_X_SPDADD */
7277	key_spddelete,	/* SADB_X_SPDDELETE */
7278	key_spdget,	/* SADB_X_SPDGET */
7279	NULL,		/* SADB_X_SPDACQUIRE */
7280	key_spddump,	/* SADB_X_SPDDUMP */
7281	key_spdflush,	/* SADB_X_SPDFLUSH */
7282	key_spdadd,	/* SADB_X_SPDSETIDX */
7283	NULL,		/* SADB_X_SPDEXPIRE */
7284	key_spddelete2,	/* SADB_X_SPDDELETE2 */
7285};
7286
7287/*
7288 * parse sadb_msg buffer to process PFKEYv2,
7289 * and create a data to response if needed.
7290 * I think to be dealed with mbuf directly.
7291 * IN:
7292 *     msgp  : pointer to pointer to a received buffer pulluped.
7293 *             This is rewrited to response.
7294 *     so    : pointer to socket.
7295 * OUT:
7296 *    length for buffer to send to user process.
7297 */
7298int
7299key_parse(m, so)
7300	struct mbuf *m;
7301	struct socket *so;
7302{
7303	struct sadb_msg *msg;
7304	struct sadb_msghdr mh;
7305	u_int orglen;
7306	int error;
7307	int target;
7308
7309	IPSEC_ASSERT(so != NULL, ("null socket"));
7310	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7311
7312#if 0	/*kdebug_sadb assumes msg in linear buffer*/
7313	KEYDEBUG(KEYDEBUG_KEY_DUMP,
7314		ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__));
7315		kdebug_sadb(msg));
7316#endif
7317
7318	if (m->m_len < sizeof(struct sadb_msg)) {
7319		m = m_pullup(m, sizeof(struct sadb_msg));
7320		if (!m)
7321			return ENOBUFS;
7322	}
7323	msg = mtod(m, struct sadb_msg *);
7324	orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7325	target = KEY_SENDUP_ONE;
7326
7327	if ((m->m_flags & M_PKTHDR) == 0 ||
7328	    m->m_pkthdr.len != m->m_pkthdr.len) {
7329		ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
7330		V_pfkeystat.out_invlen++;
7331		error = EINVAL;
7332		goto senderror;
7333	}
7334
7335	if (msg->sadb_msg_version != PF_KEY_V2) {
7336		ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
7337		    __func__, msg->sadb_msg_version));
7338		V_pfkeystat.out_invver++;
7339		error = EINVAL;
7340		goto senderror;
7341	}
7342
7343	if (msg->sadb_msg_type > SADB_MAX) {
7344		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7345		    __func__, msg->sadb_msg_type));
7346		V_pfkeystat.out_invmsgtype++;
7347		error = EINVAL;
7348		goto senderror;
7349	}
7350
7351	/* for old-fashioned code - should be nuked */
7352	if (m->m_pkthdr.len > MCLBYTES) {
7353		m_freem(m);
7354		return ENOBUFS;
7355	}
7356	if (m->m_next) {
7357		struct mbuf *n;
7358
7359		MGETHDR(n, M_DONTWAIT, MT_DATA);
7360		if (n && m->m_pkthdr.len > MHLEN) {
7361			MCLGET(n, M_DONTWAIT);
7362			if ((n->m_flags & M_EXT) == 0) {
7363				m_free(n);
7364				n = NULL;
7365			}
7366		}
7367		if (!n) {
7368			m_freem(m);
7369			return ENOBUFS;
7370		}
7371		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
7372		n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7373		n->m_next = NULL;
7374		m_freem(m);
7375		m = n;
7376	}
7377
7378	/* align the mbuf chain so that extensions are in contiguous region. */
7379	error = key_align(m, &mh);
7380	if (error)
7381		return error;
7382
7383	msg = mh.msg;
7384
7385	/* check SA type */
7386	switch (msg->sadb_msg_satype) {
7387	case SADB_SATYPE_UNSPEC:
7388		switch (msg->sadb_msg_type) {
7389		case SADB_GETSPI:
7390		case SADB_UPDATE:
7391		case SADB_ADD:
7392		case SADB_DELETE:
7393		case SADB_GET:
7394		case SADB_ACQUIRE:
7395		case SADB_EXPIRE:
7396			ipseclog((LOG_DEBUG, "%s: must specify satype "
7397			    "when msg type=%u.\n", __func__,
7398			    msg->sadb_msg_type));
7399			V_pfkeystat.out_invsatype++;
7400			error = EINVAL;
7401			goto senderror;
7402		}
7403		break;
7404	case SADB_SATYPE_AH:
7405	case SADB_SATYPE_ESP:
7406	case SADB_X_SATYPE_IPCOMP:
7407	case SADB_X_SATYPE_TCPSIGNATURE:
7408		switch (msg->sadb_msg_type) {
7409		case SADB_X_SPDADD:
7410		case SADB_X_SPDDELETE:
7411		case SADB_X_SPDGET:
7412		case SADB_X_SPDDUMP:
7413		case SADB_X_SPDFLUSH:
7414		case SADB_X_SPDSETIDX:
7415		case SADB_X_SPDUPDATE:
7416		case SADB_X_SPDDELETE2:
7417			ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
7418				__func__, msg->sadb_msg_type));
7419			V_pfkeystat.out_invsatype++;
7420			error = EINVAL;
7421			goto senderror;
7422		}
7423		break;
7424	case SADB_SATYPE_RSVP:
7425	case SADB_SATYPE_OSPFV2:
7426	case SADB_SATYPE_RIPV2:
7427	case SADB_SATYPE_MIP:
7428		ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
7429			__func__, msg->sadb_msg_satype));
7430		V_pfkeystat.out_invsatype++;
7431		error = EOPNOTSUPP;
7432		goto senderror;
7433	case 1:	/* XXX: What does it do? */
7434		if (msg->sadb_msg_type == SADB_X_PROMISC)
7435			break;
7436		/*FALLTHROUGH*/
7437	default:
7438		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7439			__func__, msg->sadb_msg_satype));
7440		V_pfkeystat.out_invsatype++;
7441		error = EINVAL;
7442		goto senderror;
7443	}
7444
7445	/* check field of upper layer protocol and address family */
7446	if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7447	 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7448		struct sadb_address *src0, *dst0;
7449		u_int plen;
7450
7451		src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7452		dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7453
7454		/* check upper layer protocol */
7455		if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7456			ipseclog((LOG_DEBUG, "%s: upper layer protocol "
7457				"mismatched.\n", __func__));
7458			V_pfkeystat.out_invaddr++;
7459			error = EINVAL;
7460			goto senderror;
7461		}
7462
7463		/* check family */
7464		if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7465		    PFKEY_ADDR_SADDR(dst0)->sa_family) {
7466			ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
7467				__func__));
7468			V_pfkeystat.out_invaddr++;
7469			error = EINVAL;
7470			goto senderror;
7471		}
7472		if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7473		    PFKEY_ADDR_SADDR(dst0)->sa_len) {
7474			ipseclog((LOG_DEBUG, "%s: address struct size "
7475				"mismatched.\n", __func__));
7476			V_pfkeystat.out_invaddr++;
7477			error = EINVAL;
7478			goto senderror;
7479		}
7480
7481		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7482		case AF_INET:
7483			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7484			    sizeof(struct sockaddr_in)) {
7485				V_pfkeystat.out_invaddr++;
7486				error = EINVAL;
7487				goto senderror;
7488			}
7489			break;
7490		case AF_INET6:
7491			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7492			    sizeof(struct sockaddr_in6)) {
7493				V_pfkeystat.out_invaddr++;
7494				error = EINVAL;
7495				goto senderror;
7496			}
7497			break;
7498		default:
7499			ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
7500				__func__));
7501			V_pfkeystat.out_invaddr++;
7502			error = EAFNOSUPPORT;
7503			goto senderror;
7504		}
7505
7506		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7507		case AF_INET:
7508			plen = sizeof(struct in_addr) << 3;
7509			break;
7510		case AF_INET6:
7511			plen = sizeof(struct in6_addr) << 3;
7512			break;
7513		default:
7514			plen = 0;	/*fool gcc*/
7515			break;
7516		}
7517
7518		/* check max prefix length */
7519		if (src0->sadb_address_prefixlen > plen ||
7520		    dst0->sadb_address_prefixlen > plen) {
7521			ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
7522				__func__));
7523			V_pfkeystat.out_invaddr++;
7524			error = EINVAL;
7525			goto senderror;
7526		}
7527
7528		/*
7529		 * prefixlen == 0 is valid because there can be a case when
7530		 * all addresses are matched.
7531		 */
7532	}
7533
7534	if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
7535	    key_typesw[msg->sadb_msg_type] == NULL) {
7536		V_pfkeystat.out_invmsgtype++;
7537		error = EINVAL;
7538		goto senderror;
7539	}
7540
7541	return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7542
7543senderror:
7544	msg->sadb_msg_errno = error;
7545	return key_sendup_mbuf(so, m, target);
7546}
7547
7548static int
7549key_senderror(so, m, code)
7550	struct socket *so;
7551	struct mbuf *m;
7552	int code;
7553{
7554	struct sadb_msg *msg;
7555
7556	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7557		("mbuf too small, len %u", m->m_len));
7558
7559	msg = mtod(m, struct sadb_msg *);
7560	msg->sadb_msg_errno = code;
7561	return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7562}
7563
7564/*
7565 * set the pointer to each header into message buffer.
7566 * m will be freed on error.
7567 * XXX larger-than-MCLBYTES extension?
7568 */
7569static int
7570key_align(m, mhp)
7571	struct mbuf *m;
7572	struct sadb_msghdr *mhp;
7573{
7574	struct mbuf *n;
7575	struct sadb_ext *ext;
7576	size_t off, end;
7577	int extlen;
7578	int toff;
7579
7580	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7581	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7582	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7583		("mbuf too small, len %u", m->m_len));
7584
7585	/* initialize */
7586	bzero(mhp, sizeof(*mhp));
7587
7588	mhp->msg = mtod(m, struct sadb_msg *);
7589	mhp->ext[0] = (struct sadb_ext *)mhp->msg;	/*XXX backward compat */
7590
7591	end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7592	extlen = end;	/*just in case extlen is not updated*/
7593	for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7594		n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7595		if (!n) {
7596			/* m is already freed */
7597			return ENOBUFS;
7598		}
7599		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7600
7601		/* set pointer */
7602		switch (ext->sadb_ext_type) {
7603		case SADB_EXT_SA:
7604		case SADB_EXT_ADDRESS_SRC:
7605		case SADB_EXT_ADDRESS_DST:
7606		case SADB_EXT_ADDRESS_PROXY:
7607		case SADB_EXT_LIFETIME_CURRENT:
7608		case SADB_EXT_LIFETIME_HARD:
7609		case SADB_EXT_LIFETIME_SOFT:
7610		case SADB_EXT_KEY_AUTH:
7611		case SADB_EXT_KEY_ENCRYPT:
7612		case SADB_EXT_IDENTITY_SRC:
7613		case SADB_EXT_IDENTITY_DST:
7614		case SADB_EXT_SENSITIVITY:
7615		case SADB_EXT_PROPOSAL:
7616		case SADB_EXT_SUPPORTED_AUTH:
7617		case SADB_EXT_SUPPORTED_ENCRYPT:
7618		case SADB_EXT_SPIRANGE:
7619		case SADB_X_EXT_POLICY:
7620		case SADB_X_EXT_SA2:
7621#ifdef IPSEC_NAT_T
7622		case SADB_X_EXT_NAT_T_TYPE:
7623		case SADB_X_EXT_NAT_T_SPORT:
7624		case SADB_X_EXT_NAT_T_DPORT:
7625		case SADB_X_EXT_NAT_T_OAI:
7626		case SADB_X_EXT_NAT_T_OAR:
7627		case SADB_X_EXT_NAT_T_FRAG:
7628#endif
7629			/* duplicate check */
7630			/*
7631			 * XXX Are there duplication payloads of either
7632			 * KEY_AUTH or KEY_ENCRYPT ?
7633			 */
7634			if (mhp->ext[ext->sadb_ext_type] != NULL) {
7635				ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
7636					"%u\n", __func__, ext->sadb_ext_type));
7637				m_freem(m);
7638				V_pfkeystat.out_dupext++;
7639				return EINVAL;
7640			}
7641			break;
7642		default:
7643			ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
7644				__func__, ext->sadb_ext_type));
7645			m_freem(m);
7646			V_pfkeystat.out_invexttype++;
7647			return EINVAL;
7648		}
7649
7650		extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7651
7652		if (key_validate_ext(ext, extlen)) {
7653			m_freem(m);
7654			V_pfkeystat.out_invlen++;
7655			return EINVAL;
7656		}
7657
7658		n = m_pulldown(m, off, extlen, &toff);
7659		if (!n) {
7660			/* m is already freed */
7661			return ENOBUFS;
7662		}
7663		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7664
7665		mhp->ext[ext->sadb_ext_type] = ext;
7666		mhp->extoff[ext->sadb_ext_type] = off;
7667		mhp->extlen[ext->sadb_ext_type] = extlen;
7668	}
7669
7670	if (off != end) {
7671		m_freem(m);
7672		V_pfkeystat.out_invlen++;
7673		return EINVAL;
7674	}
7675
7676	return 0;
7677}
7678
7679static int
7680key_validate_ext(ext, len)
7681	const struct sadb_ext *ext;
7682	int len;
7683{
7684	const struct sockaddr *sa;
7685	enum { NONE, ADDR } checktype = NONE;
7686	int baselen = 0;
7687	const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7688
7689	if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7690		return EINVAL;
7691
7692	/* if it does not match minimum/maximum length, bail */
7693	if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7694	    ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7695		return EINVAL;
7696	if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7697		return EINVAL;
7698	if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7699		return EINVAL;
7700
7701	/* more checks based on sadb_ext_type XXX need more */
7702	switch (ext->sadb_ext_type) {
7703	case SADB_EXT_ADDRESS_SRC:
7704	case SADB_EXT_ADDRESS_DST:
7705	case SADB_EXT_ADDRESS_PROXY:
7706		baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7707		checktype = ADDR;
7708		break;
7709	case SADB_EXT_IDENTITY_SRC:
7710	case SADB_EXT_IDENTITY_DST:
7711		if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7712		    SADB_X_IDENTTYPE_ADDR) {
7713			baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7714			checktype = ADDR;
7715		} else
7716			checktype = NONE;
7717		break;
7718	default:
7719		checktype = NONE;
7720		break;
7721	}
7722
7723	switch (checktype) {
7724	case NONE:
7725		break;
7726	case ADDR:
7727		sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7728		if (len < baselen + sal)
7729			return EINVAL;
7730		if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7731			return EINVAL;
7732		break;
7733	}
7734
7735	return 0;
7736}
7737
7738void
7739key_init(void)
7740{
7741	int i;
7742
7743	for (i = 0; i < IPSEC_DIR_MAX; i++)
7744		LIST_INIT(&V_sptree[i]);
7745
7746	LIST_INIT(&V_sahtree);
7747
7748	for (i = 0; i <= SADB_SATYPE_MAX; i++)
7749		LIST_INIT(&V_regtree[i]);
7750
7751	LIST_INIT(&V_acqtree);
7752	LIST_INIT(&V_spacqtree);
7753
7754	/* system default */
7755	V_ip4_def_policy.policy = IPSEC_POLICY_NONE;
7756	V_ip4_def_policy.refcnt++;	/*never reclaim this*/
7757
7758	if (!IS_DEFAULT_VNET(curvnet))
7759		return;
7760
7761	SPTREE_LOCK_INIT();
7762	REGTREE_LOCK_INIT();
7763	SAHTREE_LOCK_INIT();
7764	ACQ_LOCK_INIT();
7765	SPACQ_LOCK_INIT();
7766
7767#ifndef IPSEC_DEBUG2
7768	timeout((void *)key_timehandler, (void *)0, hz);
7769#endif /*IPSEC_DEBUG2*/
7770
7771	/* initialize key statistics */
7772	keystat.getspi_count = 1;
7773
7774	printf("IPsec: Initialized Security Association Processing.\n");
7775}
7776
7777#ifdef VIMAGE
7778void
7779key_destroy(void)
7780{
7781	struct secpolicy *sp, *nextsp;
7782	struct secacq *acq, *nextacq;
7783	struct secspacq *spacq, *nextspacq;
7784	struct secashead *sah, *nextsah;
7785	struct secreg *reg;
7786	int i;
7787
7788	SPTREE_LOCK();
7789	for (i = 0; i < IPSEC_DIR_MAX; i++) {
7790		for (sp = LIST_FIRST(&V_sptree[i]);
7791		    sp != NULL; sp = nextsp) {
7792			nextsp = LIST_NEXT(sp, chain);
7793			if (__LIST_CHAINED(sp)) {
7794				LIST_REMOVE(sp, chain);
7795				free(sp, M_IPSEC_SP);
7796			}
7797		}
7798	}
7799	SPTREE_UNLOCK();
7800
7801	SAHTREE_LOCK();
7802	for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) {
7803		nextsah = LIST_NEXT(sah, chain);
7804		if (__LIST_CHAINED(sah)) {
7805			LIST_REMOVE(sah, chain);
7806			free(sah, M_IPSEC_SAH);
7807		}
7808	}
7809	SAHTREE_UNLOCK();
7810
7811	REGTREE_LOCK();
7812	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7813		LIST_FOREACH(reg, &V_regtree[i], chain) {
7814			if (__LIST_CHAINED(reg)) {
7815				LIST_REMOVE(reg, chain);
7816				free(reg, M_IPSEC_SAR);
7817				break;
7818			}
7819		}
7820	}
7821	REGTREE_UNLOCK();
7822
7823	ACQ_LOCK();
7824	for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
7825		nextacq = LIST_NEXT(acq, chain);
7826		if (__LIST_CHAINED(acq)) {
7827			LIST_REMOVE(acq, chain);
7828			free(acq, M_IPSEC_SAQ);
7829		}
7830	}
7831	ACQ_UNLOCK();
7832
7833	SPACQ_LOCK();
7834	for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL;
7835	    spacq = nextspacq) {
7836		nextspacq = LIST_NEXT(spacq, chain);
7837		if (__LIST_CHAINED(spacq)) {
7838			LIST_REMOVE(spacq, chain);
7839			free(spacq, M_IPSEC_SAQ);
7840		}
7841	}
7842	SPACQ_UNLOCK();
7843}
7844#endif
7845
7846/*
7847 * XXX: maybe This function is called after INBOUND IPsec processing.
7848 *
7849 * Special check for tunnel-mode packets.
7850 * We must make some checks for consistency between inner and outer IP header.
7851 *
7852 * xxx more checks to be provided
7853 */
7854int
7855key_checktunnelsanity(sav, family, src, dst)
7856	struct secasvar *sav;
7857	u_int family;
7858	caddr_t src;
7859	caddr_t dst;
7860{
7861	IPSEC_ASSERT(sav->sah != NULL, ("null SA header"));
7862
7863	/* XXX: check inner IP header */
7864
7865	return 1;
7866}
7867
7868/* record data transfer on SA, and update timestamps */
7869void
7870key_sa_recordxfer(sav, m)
7871	struct secasvar *sav;
7872	struct mbuf *m;
7873{
7874	IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
7875	IPSEC_ASSERT(m != NULL, ("Null mbuf"));
7876	if (!sav->lft_c)
7877		return;
7878
7879	/*
7880	 * XXX Currently, there is a difference of bytes size
7881	 * between inbound and outbound processing.
7882	 */
7883	sav->lft_c->bytes += m->m_pkthdr.len;
7884	/* to check bytes lifetime is done in key_timehandler(). */
7885
7886	/*
7887	 * We use the number of packets as the unit of
7888	 * allocations.  We increment the variable
7889	 * whenever {esp,ah}_{in,out}put is called.
7890	 */
7891	sav->lft_c->allocations++;
7892	/* XXX check for expires? */
7893
7894	/*
7895	 * NOTE: We record CURRENT usetime by using wall clock,
7896	 * in seconds.  HARD and SOFT lifetime are measured by the time
7897	 * difference (again in seconds) from usetime.
7898	 *
7899	 *	usetime
7900	 *	v     expire   expire
7901	 * -----+-----+--------+---> t
7902	 *	<--------------> HARD
7903	 *	<-----> SOFT
7904	 */
7905	sav->lft_c->usetime = time_second;
7906	/* XXX check for expires? */
7907
7908	return;
7909}
7910
7911/* dumb version */
7912void
7913key_sa_routechange(dst)
7914	struct sockaddr *dst;
7915{
7916	struct secashead *sah;
7917	struct route *ro;
7918
7919	SAHTREE_LOCK();
7920	LIST_FOREACH(sah, &V_sahtree, chain) {
7921		ro = &sah->sa_route;
7922		if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len
7923		 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) {
7924			RTFREE(ro->ro_rt);
7925			ro->ro_rt = (struct rtentry *)NULL;
7926		}
7927	}
7928	SAHTREE_UNLOCK();
7929}
7930
7931static void
7932key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7933{
7934	IPSEC_ASSERT(sav != NULL, ("NULL sav"));
7935	SAHTREE_LOCK_ASSERT();
7936
7937	if (sav->state != state) {
7938		if (__LIST_CHAINED(sav))
7939			LIST_REMOVE(sav, chain);
7940		sav->state = state;
7941		LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7942	}
7943}
7944
7945void
7946key_sa_stir_iv(sav)
7947	struct secasvar *sav;
7948{
7949
7950	IPSEC_ASSERT(sav->iv != NULL, ("null IV"));
7951	key_randomfill(sav->iv, sav->ivlen);
7952}
7953
7954/* XXX too much? */
7955static struct mbuf *
7956key_alloc_mbuf(l)
7957	int l;
7958{
7959	struct mbuf *m = NULL, *n;
7960	int len, t;
7961
7962	len = l;
7963	while (len > 0) {
7964		MGET(n, M_DONTWAIT, MT_DATA);
7965		if (n && len > MLEN)
7966			MCLGET(n, M_DONTWAIT);
7967		if (!n) {
7968			m_freem(m);
7969			return NULL;
7970		}
7971
7972		n->m_next = NULL;
7973		n->m_len = 0;
7974		n->m_len = M_TRAILINGSPACE(n);
7975		/* use the bottom of mbuf, hoping we can prepend afterwards */
7976		if (n->m_len > len) {
7977			t = (n->m_len - len) & ~(sizeof(long) - 1);
7978			n->m_data += t;
7979			n->m_len = len;
7980		}
7981
7982		len -= n->m_len;
7983
7984		if (m)
7985			m_cat(m, n);
7986		else
7987			m = n;
7988	}
7989
7990	return m;
7991}
7992
7993/*
7994 * Take one of the kernel's security keys and convert it into a PF_KEY
7995 * structure within an mbuf, suitable for sending up to a waiting
7996 * application in user land.
7997 *
7998 * IN:
7999 *    src: A pointer to a kernel security key.
8000 *    exttype: Which type of key this is. Refer to the PF_KEY data structures.
8001 * OUT:
8002 *    a valid mbuf or NULL indicating an error
8003 *
8004 */
8005
8006static struct mbuf *
8007key_setkey(struct seckey *src, u_int16_t exttype)
8008{
8009	struct mbuf *m;
8010	struct sadb_key *p;
8011	int len;
8012
8013	if (src == NULL)
8014		return NULL;
8015
8016	len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src));
8017	m = key_alloc_mbuf(len);
8018	if (m == NULL)
8019		return NULL;
8020	p = mtod(m, struct sadb_key *);
8021	bzero(p, len);
8022	p->sadb_key_len = PFKEY_UNIT64(len);
8023	p->sadb_key_exttype = exttype;
8024	p->sadb_key_bits = src->bits;
8025	bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src));
8026
8027	return m;
8028}
8029
8030/*
8031 * Take one of the kernel's lifetime data structures and convert it
8032 * into a PF_KEY structure within an mbuf, suitable for sending up to
8033 * a waiting application in user land.
8034 *
8035 * IN:
8036 *    src: A pointer to a kernel lifetime structure.
8037 *    exttype: Which type of lifetime this is. Refer to the PF_KEY
8038 *             data structures for more information.
8039 * OUT:
8040 *    a valid mbuf or NULL indicating an error
8041 *
8042 */
8043
8044static struct mbuf *
8045key_setlifetime(struct seclifetime *src, u_int16_t exttype)
8046{
8047	struct mbuf *m = NULL;
8048	struct sadb_lifetime *p;
8049	int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime));
8050
8051	if (src == NULL)
8052		return NULL;
8053
8054	m = key_alloc_mbuf(len);
8055	if (m == NULL)
8056		return m;
8057	p = mtod(m, struct sadb_lifetime *);
8058
8059	bzero(p, len);
8060	p->sadb_lifetime_len = PFKEY_UNIT64(len);
8061	p->sadb_lifetime_exttype = exttype;
8062	p->sadb_lifetime_allocations = src->allocations;
8063	p->sadb_lifetime_bytes = src->bytes;
8064	p->sadb_lifetime_addtime = src->addtime;
8065	p->sadb_lifetime_usetime = src->usetime;
8066
8067	return m;
8068
8069}
8070