nd6.c revision 196481
1/*-
2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the project nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet6/nd6.c 196481 2009-08-23 20:40:19Z rwatson $");
34
35#include "opt_inet.h"
36#include "opt_inet6.h"
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/callout.h>
41#include <sys/malloc.h>
42#include <sys/mbuf.h>
43#include <sys/socket.h>
44#include <sys/sockio.h>
45#include <sys/time.h>
46#include <sys/kernel.h>
47#include <sys/protosw.h>
48#include <sys/errno.h>
49#include <sys/syslog.h>
50#include <sys/lock.h>
51#include <sys/rwlock.h>
52#include <sys/queue.h>
53#include <sys/sysctl.h>
54
55#include <net/if.h>
56#include <net/if_arc.h>
57#include <net/if_dl.h>
58#include <net/if_types.h>
59#include <net/iso88025.h>
60#include <net/fddi.h>
61#include <net/route.h>
62#include <net/vnet.h>
63
64#include <netinet/in.h>
65#include <net/if_llatbl.h>
66#define	L3_ADDR_SIN6(le)	((struct sockaddr_in6 *) L3_ADDR(le))
67#include <netinet/if_ether.h>
68#include <netinet6/in6_var.h>
69#include <netinet/ip6.h>
70#include <netinet6/ip6_var.h>
71#include <netinet6/scope6_var.h>
72#include <netinet6/nd6.h>
73#include <netinet/icmp6.h>
74
75#include <sys/limits.h>
76
77#include <security/mac/mac_framework.h>
78
79#define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
80#define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
81
82#define SIN6(s) ((struct sockaddr_in6 *)s)
83
84VNET_DEFINE(int, nd6_prune);
85VNET_DEFINE(int, nd6_delay);
86VNET_DEFINE(int, nd6_umaxtries);
87VNET_DEFINE(int, nd6_mmaxtries);
88VNET_DEFINE(int, nd6_useloopback);
89VNET_DEFINE(int, nd6_gctimer);
90
91/* preventing too many loops in ND option parsing */
92static VNET_DEFINE(int, nd6_maxndopt);
93VNET_DEFINE(int, nd6_maxnudhint);
94static VNET_DEFINE(int, nd6_maxqueuelen);
95#define	V_nd6_maxndopt			VNET(nd6_maxndopt)
96#define	V_nd6_maxqueuelen		VNET(nd6_maxqueuelen)
97
98VNET_DEFINE(int, nd6_debug);
99
100/* for debugging? */
101#if 0
102static int nd6_inuse, nd6_allocated;
103#endif
104
105VNET_DEFINE(struct nd_drhead, nd_defrouter);
106VNET_DEFINE(struct nd_prhead, nd_prefix);
107
108VNET_DEFINE(int, nd6_recalc_reachtm_interval);
109#define	V_nd6_recalc_reachtm_interval	VNET(nd6_recalc_reachtm_interval)
110
111static struct sockaddr_in6 all1_sa;
112
113static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *,
114	struct ifnet *));
115static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
116static void nd6_slowtimo(void *);
117static int regen_tmpaddr(struct in6_ifaddr *);
118static struct llentry *nd6_free(struct llentry *, int);
119static void nd6_llinfo_timer(void *);
120static void clear_llinfo_pqueue(struct llentry *);
121
122static VNET_DEFINE(struct callout, nd6_slowtimo_ch);
123#define	V_nd6_slowtimo_ch		VNET(nd6_slowtimo_ch)
124
125VNET_DEFINE(struct callout, nd6_timer_ch);
126
127VNET_DECLARE(int, dad_ignore_ns);
128VNET_DECLARE(int, dad_maxtry);
129#define	V_dad_ignore_ns			VNET(dad_ignore_ns)
130#define	V_dad_maxtry			VNET(dad_maxtry)
131
132void
133nd6_init(void)
134{
135	int i;
136
137	V_nd6_prune	= 1;	/* walk list every 1 seconds */
138	V_nd6_delay	= 5;	/* delay first probe time 5 second */
139	V_nd6_umaxtries	= 3;	/* maximum unicast query */
140	V_nd6_mmaxtries	= 3;	/* maximum multicast query */
141	V_nd6_useloopback = 1;	/* use loopback interface for local traffic */
142	V_nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
143
144	/* preventing too many loops in ND option parsing */
145	V_nd6_maxndopt = 10;	/* max # of ND options allowed */
146
147	V_nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
148	V_nd6_maxqueuelen = 1;	/* max pkts cached in unresolved ND entries */
149
150#ifdef ND6_DEBUG
151	V_nd6_debug = 1;
152#else
153	V_nd6_debug = 0;
154#endif
155
156	V_nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
157
158	V_dad_ignore_ns = 0;	/* ignore NS in DAD - specwise incorrect*/
159	V_dad_maxtry = 15;	/* max # of *tries* to transmit DAD packet */
160
161	/*
162	 * XXX just to get this to compile KMM
163	 */
164#ifdef notyet
165	V_llinfo_nd6.ln_next = &V_llinfo_nd6;
166	V_llinfo_nd6.ln_prev = &V_llinfo_nd6;
167#endif
168	LIST_INIT(&V_nd_prefix);
169
170	V_ip6_use_tempaddr = 0;
171	V_ip6_temp_preferred_lifetime = DEF_TEMP_PREFERRED_LIFETIME;
172	V_ip6_temp_valid_lifetime = DEF_TEMP_VALID_LIFETIME;
173	V_ip6_temp_regen_advance = TEMPADDR_REGEN_ADVANCE;
174
175	V_ip6_desync_factor = 0;
176
177	all1_sa.sin6_family = AF_INET6;
178	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
179	for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
180		all1_sa.sin6_addr.s6_addr[i] = 0xff;
181
182	/* initialization of the default router list */
183	TAILQ_INIT(&V_nd_defrouter);
184	/* start timer */
185	callout_init(&V_nd6_slowtimo_ch, 0);
186	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
187	    nd6_slowtimo, curvnet);
188}
189
190
191#ifdef VIMAGE
192void
193nd6_destroy()
194{
195
196	callout_drain(&V_nd6_slowtimo_ch);
197	callout_drain(&V_nd6_timer_ch);
198}
199#endif
200
201struct nd_ifinfo *
202nd6_ifattach(struct ifnet *ifp)
203{
204	struct nd_ifinfo *nd;
205
206	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
207	bzero(nd, sizeof(*nd));
208
209	nd->initialized = 1;
210
211	nd->chlim = IPV6_DEFHLIM;
212	nd->basereachable = REACHABLE_TIME;
213	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
214	nd->retrans = RETRANS_TIMER;
215	/*
216	 * Note that the default value of ip6_accept_rtadv is 0, which means
217	 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
218	 * here.
219	 */
220	nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
221
222	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
223	nd6_setmtu0(ifp, nd);
224
225	return nd;
226}
227
228void
229nd6_ifdetach(struct nd_ifinfo *nd)
230{
231
232	free(nd, M_IP6NDP);
233}
234
235/*
236 * Reset ND level link MTU. This function is called when the physical MTU
237 * changes, which means we might have to adjust the ND level MTU.
238 */
239void
240nd6_setmtu(struct ifnet *ifp)
241{
242
243	nd6_setmtu0(ifp, ND_IFINFO(ifp));
244}
245
246/* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
247void
248nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
249{
250	u_int32_t omaxmtu;
251
252	omaxmtu = ndi->maxmtu;
253
254	switch (ifp->if_type) {
255	case IFT_ARCNET:
256		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
257		break;
258	case IFT_FDDI:
259		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
260		break;
261	case IFT_ISO88025:
262		 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
263		 break;
264	default:
265		ndi->maxmtu = ifp->if_mtu;
266		break;
267	}
268
269	/*
270	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
271	 * undesirable situation.  We thus notify the operator of the change
272	 * explicitly.  The check for omaxmtu is necessary to restrict the
273	 * log to the case of changing the MTU, not initializing it.
274	 */
275	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
276		log(LOG_NOTICE, "nd6_setmtu0: "
277		    "new link MTU on %s (%lu) is too small for IPv6\n",
278		    if_name(ifp), (unsigned long)ndi->maxmtu);
279	}
280
281	if (ndi->maxmtu > V_in6_maxmtu)
282		in6_setmaxmtu(); /* check all interfaces just in case */
283
284}
285
286void
287nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
288{
289
290	bzero(ndopts, sizeof(*ndopts));
291	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
292	ndopts->nd_opts_last
293		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
294
295	if (icmp6len == 0) {
296		ndopts->nd_opts_done = 1;
297		ndopts->nd_opts_search = NULL;
298	}
299}
300
301/*
302 * Take one ND option.
303 */
304struct nd_opt_hdr *
305nd6_option(union nd_opts *ndopts)
306{
307	struct nd_opt_hdr *nd_opt;
308	int olen;
309
310	if (ndopts == NULL)
311		panic("ndopts == NULL in nd6_option");
312	if (ndopts->nd_opts_last == NULL)
313		panic("uninitialized ndopts in nd6_option");
314	if (ndopts->nd_opts_search == NULL)
315		return NULL;
316	if (ndopts->nd_opts_done)
317		return NULL;
318
319	nd_opt = ndopts->nd_opts_search;
320
321	/* make sure nd_opt_len is inside the buffer */
322	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
323		bzero(ndopts, sizeof(*ndopts));
324		return NULL;
325	}
326
327	olen = nd_opt->nd_opt_len << 3;
328	if (olen == 0) {
329		/*
330		 * Message validation requires that all included
331		 * options have a length that is greater than zero.
332		 */
333		bzero(ndopts, sizeof(*ndopts));
334		return NULL;
335	}
336
337	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
338	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
339		/* option overruns the end of buffer, invalid */
340		bzero(ndopts, sizeof(*ndopts));
341		return NULL;
342	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
343		/* reached the end of options chain */
344		ndopts->nd_opts_done = 1;
345		ndopts->nd_opts_search = NULL;
346	}
347	return nd_opt;
348}
349
350/*
351 * Parse multiple ND options.
352 * This function is much easier to use, for ND routines that do not need
353 * multiple options of the same type.
354 */
355int
356nd6_options(union nd_opts *ndopts)
357{
358	struct nd_opt_hdr *nd_opt;
359	int i = 0;
360
361	if (ndopts == NULL)
362		panic("ndopts == NULL in nd6_options");
363	if (ndopts->nd_opts_last == NULL)
364		panic("uninitialized ndopts in nd6_options");
365	if (ndopts->nd_opts_search == NULL)
366		return 0;
367
368	while (1) {
369		nd_opt = nd6_option(ndopts);
370		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
371			/*
372			 * Message validation requires that all included
373			 * options have a length that is greater than zero.
374			 */
375			ICMP6STAT_INC(icp6s_nd_badopt);
376			bzero(ndopts, sizeof(*ndopts));
377			return -1;
378		}
379
380		if (nd_opt == NULL)
381			goto skip1;
382
383		switch (nd_opt->nd_opt_type) {
384		case ND_OPT_SOURCE_LINKADDR:
385		case ND_OPT_TARGET_LINKADDR:
386		case ND_OPT_MTU:
387		case ND_OPT_REDIRECTED_HEADER:
388			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
389				nd6log((LOG_INFO,
390				    "duplicated ND6 option found (type=%d)\n",
391				    nd_opt->nd_opt_type));
392				/* XXX bark? */
393			} else {
394				ndopts->nd_opt_array[nd_opt->nd_opt_type]
395					= nd_opt;
396			}
397			break;
398		case ND_OPT_PREFIX_INFORMATION:
399			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
400				ndopts->nd_opt_array[nd_opt->nd_opt_type]
401					= nd_opt;
402			}
403			ndopts->nd_opts_pi_end =
404				(struct nd_opt_prefix_info *)nd_opt;
405			break;
406		default:
407			/*
408			 * Unknown options must be silently ignored,
409			 * to accomodate future extension to the protocol.
410			 */
411			nd6log((LOG_DEBUG,
412			    "nd6_options: unsupported option %d - "
413			    "option ignored\n", nd_opt->nd_opt_type));
414		}
415
416skip1:
417		i++;
418		if (i > V_nd6_maxndopt) {
419			ICMP6STAT_INC(icp6s_nd_toomanyopt);
420			nd6log((LOG_INFO, "too many loop in nd opt\n"));
421			break;
422		}
423
424		if (ndopts->nd_opts_done)
425			break;
426	}
427
428	return 0;
429}
430
431/*
432 * ND6 timer routine to handle ND6 entries
433 */
434void
435nd6_llinfo_settimer_locked(struct llentry *ln, long tick)
436{
437	if (tick < 0) {
438		ln->la_expire = 0;
439		ln->ln_ntick = 0;
440		callout_stop(&ln->ln_timer_ch);
441		/*
442		 * XXX - do we know that there is
443		 * callout installed? i.e. are we
444		 * guaranteed that we're not dropping
445		 * a reference that we did not add?
446		 * KMM
447		 */
448		LLE_REMREF(ln);
449	} else {
450		ln->la_expire = time_second + tick / hz;
451		LLE_ADDREF(ln);
452		if (tick > INT_MAX) {
453			ln->ln_ntick = tick - INT_MAX;
454			callout_reset(&ln->ln_timer_ch, INT_MAX,
455			    nd6_llinfo_timer, ln);
456		} else {
457			ln->ln_ntick = 0;
458			callout_reset(&ln->ln_timer_ch, tick,
459			    nd6_llinfo_timer, ln);
460		}
461	}
462}
463
464void
465nd6_llinfo_settimer(struct llentry *ln, long tick)
466{
467
468	LLE_WLOCK(ln);
469	nd6_llinfo_settimer_locked(ln, tick);
470	LLE_WUNLOCK(ln);
471}
472
473static void
474nd6_llinfo_timer(void *arg)
475{
476	struct llentry *ln;
477	struct in6_addr *dst;
478	struct ifnet *ifp;
479	struct nd_ifinfo *ndi = NULL;
480
481	ln = (struct llentry *)arg;
482	if (ln == NULL) {
483		panic("%s: NULL entry!\n", __func__);
484		return;
485	}
486
487	if ((ifp = ((ln->lle_tbl != NULL) ? ln->lle_tbl->llt_ifp : NULL)) == NULL)
488		panic("ln ifp == NULL");
489
490	CURVNET_SET(ifp->if_vnet);
491
492	if (ln->ln_ntick > 0) {
493		if (ln->ln_ntick > INT_MAX) {
494			ln->ln_ntick -= INT_MAX;
495			nd6_llinfo_settimer(ln, INT_MAX);
496		} else {
497			ln->ln_ntick = 0;
498			nd6_llinfo_settimer(ln, ln->ln_ntick);
499		}
500		goto done;
501	}
502
503	ndi = ND_IFINFO(ifp);
504	dst = &L3_ADDR_SIN6(ln)->sin6_addr;
505	if ((ln->la_flags & LLE_STATIC) || (ln->la_expire > time_second)) {
506		goto done;
507	}
508
509	if (ln->la_flags & LLE_DELETED) {
510		(void)nd6_free(ln, 0);
511		goto done;
512	}
513
514	switch (ln->ln_state) {
515	case ND6_LLINFO_INCOMPLETE:
516		if (ln->la_asked < V_nd6_mmaxtries) {
517			ln->la_asked++;
518			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
519			nd6_ns_output(ifp, NULL, dst, ln, 0);
520		} else {
521			struct mbuf *m = ln->la_hold;
522			if (m) {
523				struct mbuf *m0;
524
525				/*
526				 * assuming every packet in la_hold has the
527				 * same IP header
528				 */
529				m0 = m->m_nextpkt;
530				m->m_nextpkt = NULL;
531				icmp6_error2(m, ICMP6_DST_UNREACH,
532				    ICMP6_DST_UNREACH_ADDR, 0, ifp);
533
534				ln->la_hold = m0;
535				clear_llinfo_pqueue(ln);
536			}
537			(void)nd6_free(ln, 0);
538			ln = NULL;
539		}
540		break;
541	case ND6_LLINFO_REACHABLE:
542		if (!ND6_LLINFO_PERMANENT(ln)) {
543			ln->ln_state = ND6_LLINFO_STALE;
544			nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz);
545		}
546		break;
547
548	case ND6_LLINFO_STALE:
549		/* Garbage Collection(RFC 2461 5.3) */
550		if (!ND6_LLINFO_PERMANENT(ln)) {
551			(void)nd6_free(ln, 1);
552			ln = NULL;
553		}
554		break;
555
556	case ND6_LLINFO_DELAY:
557		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
558			/* We need NUD */
559			ln->la_asked = 1;
560			ln->ln_state = ND6_LLINFO_PROBE;
561			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
562			nd6_ns_output(ifp, dst, dst, ln, 0);
563		} else {
564			ln->ln_state = ND6_LLINFO_STALE; /* XXX */
565			nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz);
566		}
567		break;
568	case ND6_LLINFO_PROBE:
569		if (ln->la_asked < V_nd6_umaxtries) {
570			ln->la_asked++;
571			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
572			nd6_ns_output(ifp, dst, dst, ln, 0);
573		} else {
574			(void)nd6_free(ln, 0);
575			ln = NULL;
576		}
577		break;
578	}
579	CURVNET_RESTORE();
580done:
581	if (ln != NULL)
582		LLE_FREE(ln);
583}
584
585
586/*
587 * ND6 timer routine to expire default route list and prefix list
588 */
589void
590nd6_timer(void *arg)
591{
592	CURVNET_SET((struct vnet *) arg);
593	int s;
594	struct nd_defrouter *dr;
595	struct nd_prefix *pr;
596	struct in6_ifaddr *ia6, *nia6;
597	struct in6_addrlifetime *lt6;
598
599	callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz,
600	    nd6_timer, curvnet);
601
602	/* expire default router list */
603	s = splnet();
604	dr = TAILQ_FIRST(&V_nd_defrouter);
605	while (dr) {
606		if (dr->expire && dr->expire < time_second) {
607			struct nd_defrouter *t;
608			t = TAILQ_NEXT(dr, dr_entry);
609			defrtrlist_del(dr);
610			dr = t;
611		} else {
612			dr = TAILQ_NEXT(dr, dr_entry);
613		}
614	}
615
616	/*
617	 * expire interface addresses.
618	 * in the past the loop was inside prefix expiry processing.
619	 * However, from a stricter speci-confrmance standpoint, we should
620	 * rather separate address lifetimes and prefix lifetimes.
621	 *
622	 * XXXRW: in6_ifaddrhead locking.
623	 */
624  addrloop:
625	TAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) {
626		/* check address lifetime */
627		lt6 = &ia6->ia6_lifetime;
628		if (IFA6_IS_INVALID(ia6)) {
629			int regen = 0;
630
631			/*
632			 * If the expiring address is temporary, try
633			 * regenerating a new one.  This would be useful when
634			 * we suspended a laptop PC, then turned it on after a
635			 * period that could invalidate all temporary
636			 * addresses.  Although we may have to restart the
637			 * loop (see below), it must be after purging the
638			 * address.  Otherwise, we'd see an infinite loop of
639			 * regeneration.
640			 */
641			if (V_ip6_use_tempaddr &&
642			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
643				if (regen_tmpaddr(ia6) == 0)
644					regen = 1;
645			}
646
647			in6_purgeaddr(&ia6->ia_ifa);
648
649			if (regen)
650				goto addrloop; /* XXX: see below */
651		} else if (IFA6_IS_DEPRECATED(ia6)) {
652			int oldflags = ia6->ia6_flags;
653
654			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
655
656			/*
657			 * If a temporary address has just become deprecated,
658			 * regenerate a new one if possible.
659			 */
660			if (V_ip6_use_tempaddr &&
661			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
662			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
663
664				if (regen_tmpaddr(ia6) == 0) {
665					/*
666					 * A new temporary address is
667					 * generated.
668					 * XXX: this means the address chain
669					 * has changed while we are still in
670					 * the loop.  Although the change
671					 * would not cause disaster (because
672					 * it's not a deletion, but an
673					 * addition,) we'd rather restart the
674					 * loop just for safety.  Or does this
675					 * significantly reduce performance??
676					 */
677					goto addrloop;
678				}
679			}
680		} else {
681			/*
682			 * A new RA might have made a deprecated address
683			 * preferred.
684			 */
685			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
686		}
687	}
688
689	/* expire prefix list */
690	pr = V_nd_prefix.lh_first;
691	while (pr) {
692		/*
693		 * check prefix lifetime.
694		 * since pltime is just for autoconf, pltime processing for
695		 * prefix is not necessary.
696		 */
697		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
698		    time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
699			struct nd_prefix *t;
700			t = pr->ndpr_next;
701
702			/*
703			 * address expiration and prefix expiration are
704			 * separate.  NEVER perform in6_purgeaddr here.
705			 */
706
707			prelist_remove(pr);
708			pr = t;
709		} else
710			pr = pr->ndpr_next;
711	}
712	splx(s);
713	CURVNET_RESTORE();
714}
715
716/*
717 * ia6 - deprecated/invalidated temporary address
718 */
719static int
720regen_tmpaddr(struct in6_ifaddr *ia6)
721{
722	struct ifaddr *ifa;
723	struct ifnet *ifp;
724	struct in6_ifaddr *public_ifa6 = NULL;
725
726	ifp = ia6->ia_ifa.ifa_ifp;
727	IF_ADDR_LOCK(ifp);
728	TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
729		struct in6_ifaddr *it6;
730
731		if (ifa->ifa_addr->sa_family != AF_INET6)
732			continue;
733
734		it6 = (struct in6_ifaddr *)ifa;
735
736		/* ignore no autoconf addresses. */
737		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
738			continue;
739
740		/* ignore autoconf addresses with different prefixes. */
741		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
742			continue;
743
744		/*
745		 * Now we are looking at an autoconf address with the same
746		 * prefix as ours.  If the address is temporary and is still
747		 * preferred, do not create another one.  It would be rare, but
748		 * could happen, for example, when we resume a laptop PC after
749		 * a long period.
750		 */
751		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
752		    !IFA6_IS_DEPRECATED(it6)) {
753			public_ifa6 = NULL;
754			break;
755		}
756
757		/*
758		 * This is a public autoconf address that has the same prefix
759		 * as ours.  If it is preferred, keep it.  We can't break the
760		 * loop here, because there may be a still-preferred temporary
761		 * address with the prefix.
762		 */
763		if (!IFA6_IS_DEPRECATED(it6))
764		    public_ifa6 = it6;
765	}
766
767	if (public_ifa6 != NULL) {
768		int e;
769
770		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
771			IF_ADDR_UNLOCK(ifp);
772			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
773			    " tmp addr,errno=%d\n", e);
774			return (-1);
775		}
776		IF_ADDR_UNLOCK(ifp);
777		return (0);
778	}
779
780	IF_ADDR_UNLOCK(ifp);
781	return (-1);
782}
783
784/*
785 * Nuke neighbor cache/prefix/default router management table, right before
786 * ifp goes away.
787 */
788void
789nd6_purge(struct ifnet *ifp)
790{
791	struct nd_defrouter *dr, *ndr;
792	struct nd_prefix *pr, *npr;
793
794	/*
795	 * Nuke default router list entries toward ifp.
796	 * We defer removal of default router list entries that is installed
797	 * in the routing table, in order to keep additional side effects as
798	 * small as possible.
799	 */
800	for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; dr = ndr) {
801		ndr = TAILQ_NEXT(dr, dr_entry);
802		if (dr->installed)
803			continue;
804
805		if (dr->ifp == ifp)
806			defrtrlist_del(dr);
807	}
808
809	for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; dr = ndr) {
810		ndr = TAILQ_NEXT(dr, dr_entry);
811		if (!dr->installed)
812			continue;
813
814		if (dr->ifp == ifp)
815			defrtrlist_del(dr);
816	}
817
818	/* Nuke prefix list entries toward ifp */
819	for (pr = V_nd_prefix.lh_first; pr; pr = npr) {
820		npr = pr->ndpr_next;
821		if (pr->ndpr_ifp == ifp) {
822			/*
823			 * Because if_detach() does *not* release prefixes
824			 * while purging addresses the reference count will
825			 * still be above zero. We therefore reset it to
826			 * make sure that the prefix really gets purged.
827			 */
828			pr->ndpr_refcnt = 0;
829
830			/*
831			 * Previously, pr->ndpr_addr is removed as well,
832			 * but I strongly believe we don't have to do it.
833			 * nd6_purge() is only called from in6_ifdetach(),
834			 * which removes all the associated interface addresses
835			 * by itself.
836			 * (jinmei@kame.net 20010129)
837			 */
838			prelist_remove(pr);
839		}
840	}
841
842	/* cancel default outgoing interface setting */
843	if (V_nd6_defifindex == ifp->if_index)
844		nd6_setdefaultiface(0);
845
846	if (!V_ip6_forwarding && V_ip6_accept_rtadv) { /* XXX: too restrictive? */
847		/* refresh default router list
848		 *
849		 *
850		 */
851		defrouter_select();
852
853	}
854
855	/* XXXXX
856	 * We do not nuke the neighbor cache entries here any more
857	 * because the neighbor cache is kept in if_afdata[AF_INET6].
858	 * nd6_purge() is invoked by in6_ifdetach() which is called
859	 * from if_detach() where everything gets purged. So let
860	 * in6_domifdetach() do the actual L2 table purging work.
861	 */
862}
863
864/*
865 * the caller acquires and releases the lock on the lltbls
866 * Returns the llentry locked
867 */
868struct llentry *
869nd6_lookup(struct in6_addr *addr6, int flags, struct ifnet *ifp)
870{
871	struct sockaddr_in6 sin6;
872	struct llentry *ln;
873	int llflags = 0;
874
875	bzero(&sin6, sizeof(sin6));
876	sin6.sin6_len = sizeof(struct sockaddr_in6);
877	sin6.sin6_family = AF_INET6;
878	sin6.sin6_addr = *addr6;
879
880	IF_AFDATA_LOCK_ASSERT(ifp);
881
882	if (flags & ND6_CREATE)
883	    llflags |= LLE_CREATE;
884	if (flags & ND6_EXCLUSIVE)
885	    llflags |= LLE_EXCLUSIVE;
886
887	ln = lla_lookup(LLTABLE6(ifp), llflags, (struct sockaddr *)&sin6);
888	if ((ln != NULL) && (flags & LLE_CREATE)) {
889		ln->ln_state = ND6_LLINFO_NOSTATE;
890		callout_init(&ln->ln_timer_ch, 0);
891	}
892
893	return (ln);
894}
895
896/*
897 * Test whether a given IPv6 address is a neighbor or not, ignoring
898 * the actual neighbor cache.  The neighbor cache is ignored in order
899 * to not reenter the routing code from within itself.
900 */
901static int
902nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
903{
904	struct nd_prefix *pr;
905	struct ifaddr *dstaddr;
906
907	/*
908	 * A link-local address is always a neighbor.
909	 * XXX: a link does not necessarily specify a single interface.
910	 */
911	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
912		struct sockaddr_in6 sin6_copy;
913		u_int32_t zone;
914
915		/*
916		 * We need sin6_copy since sa6_recoverscope() may modify the
917		 * content (XXX).
918		 */
919		sin6_copy = *addr;
920		if (sa6_recoverscope(&sin6_copy))
921			return (0); /* XXX: should be impossible */
922		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
923			return (0);
924		if (sin6_copy.sin6_scope_id == zone)
925			return (1);
926		else
927			return (0);
928	}
929
930	/*
931	 * If the address matches one of our addresses,
932	 * it should be a neighbor.
933	 * If the address matches one of our on-link prefixes, it should be a
934	 * neighbor.
935	 */
936	for (pr = V_nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
937		if (pr->ndpr_ifp != ifp)
938			continue;
939
940		if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
941			continue;
942
943		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
944		    &addr->sin6_addr, &pr->ndpr_mask))
945			return (1);
946	}
947
948	/*
949	 * If the address is assigned on the node of the other side of
950	 * a p2p interface, the address should be a neighbor.
951	 */
952	dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr);
953	if (dstaddr != NULL) {
954		if (dstaddr->ifa_ifp == ifp) {
955			ifa_free(dstaddr);
956			return (1);
957		}
958		ifa_free(dstaddr);
959	}
960
961	/*
962	 * If the default router list is empty, all addresses are regarded
963	 * as on-link, and thus, as a neighbor.
964	 * XXX: we restrict the condition to hosts, because routers usually do
965	 * not have the "default router list".
966	 */
967	if (!V_ip6_forwarding && TAILQ_FIRST(&V_nd_defrouter) == NULL &&
968	    V_nd6_defifindex == ifp->if_index) {
969		return (1);
970	}
971
972	return (0);
973}
974
975
976/*
977 * Detect if a given IPv6 address identifies a neighbor on a given link.
978 * XXX: should take care of the destination of a p2p link?
979 */
980int
981nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
982{
983	struct llentry *lle;
984	int rc = 0;
985
986	IF_AFDATA_UNLOCK_ASSERT(ifp);
987	if (nd6_is_new_addr_neighbor(addr, ifp))
988		return (1);
989
990	/*
991	 * Even if the address matches none of our addresses, it might be
992	 * in the neighbor cache.
993	 */
994	IF_AFDATA_LOCK(ifp);
995	if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) {
996		LLE_RUNLOCK(lle);
997		rc = 1;
998	}
999	IF_AFDATA_UNLOCK(ifp);
1000	return (rc);
1001}
1002
1003/*
1004 * Free an nd6 llinfo entry.
1005 * Since the function would cause significant changes in the kernel, DO NOT
1006 * make it global, unless you have a strong reason for the change, and are sure
1007 * that the change is safe.
1008 */
1009static struct llentry *
1010nd6_free(struct llentry *ln, int gc)
1011{
1012        struct llentry *next;
1013	struct nd_defrouter *dr;
1014	struct ifnet *ifp=NULL;
1015
1016	/*
1017	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1018	 * even though it is not harmful, it was not really necessary.
1019	 */
1020
1021	/* cancel timer */
1022	nd6_llinfo_settimer(ln, -1);
1023
1024	if (!V_ip6_forwarding) {
1025		int s;
1026		s = splnet();
1027		dr = defrouter_lookup(&L3_ADDR_SIN6(ln)->sin6_addr, ln->lle_tbl->llt_ifp);
1028
1029		if (dr != NULL && dr->expire &&
1030		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1031			/*
1032			 * If the reason for the deletion is just garbage
1033			 * collection, and the neighbor is an active default
1034			 * router, do not delete it.  Instead, reset the GC
1035			 * timer using the router's lifetime.
1036			 * Simply deleting the entry would affect default
1037			 * router selection, which is not necessarily a good
1038			 * thing, especially when we're using router preference
1039			 * values.
1040			 * XXX: the check for ln_state would be redundant,
1041			 *      but we intentionally keep it just in case.
1042			 */
1043			if (dr->expire > time_second)
1044				nd6_llinfo_settimer(ln,
1045				    (dr->expire - time_second) * hz);
1046			else
1047				nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz);
1048			splx(s);
1049			return (LIST_NEXT(ln, lle_next));
1050		}
1051
1052		if (ln->ln_router || dr) {
1053			/*
1054			 * rt6_flush must be called whether or not the neighbor
1055			 * is in the Default Router List.
1056			 * See a corresponding comment in nd6_na_input().
1057			 */
1058			rt6_flush(&L3_ADDR_SIN6(ln)->sin6_addr, ln->lle_tbl->llt_ifp);
1059		}
1060
1061		if (dr) {
1062			/*
1063			 * Unreachablity of a router might affect the default
1064			 * router selection and on-link detection of advertised
1065			 * prefixes.
1066			 */
1067
1068			/*
1069			 * Temporarily fake the state to choose a new default
1070			 * router and to perform on-link determination of
1071			 * prefixes correctly.
1072			 * Below the state will be set correctly,
1073			 * or the entry itself will be deleted.
1074			 */
1075			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1076
1077			/*
1078			 * Since defrouter_select() does not affect the
1079			 * on-link determination and MIP6 needs the check
1080			 * before the default router selection, we perform
1081			 * the check now.
1082			 */
1083			pfxlist_onlink_check();
1084
1085			/*
1086			 * refresh default router list
1087			 */
1088			defrouter_select();
1089		}
1090		splx(s);
1091	}
1092
1093	/*
1094	 * Before deleting the entry, remember the next entry as the
1095	 * return value.  We need this because pfxlist_onlink_check() above
1096	 * might have freed other entries (particularly the old next entry) as
1097	 * a side effect (XXX).
1098	 */
1099	next = LIST_NEXT(ln, lle_next);
1100
1101	ifp = ln->lle_tbl->llt_ifp;
1102	IF_AFDATA_LOCK(ifp);
1103	LLE_WLOCK(ln);
1104	llentry_free(ln);
1105	IF_AFDATA_UNLOCK(ifp);
1106
1107	return (next);
1108}
1109
1110/*
1111 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1112 *
1113 * XXX cost-effective methods?
1114 */
1115void
1116nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1117{
1118	struct llentry *ln;
1119	struct ifnet *ifp;
1120
1121	if ((dst6 == NULL) || (rt == NULL))
1122		return;
1123
1124	ifp = rt->rt_ifp;
1125	IF_AFDATA_LOCK(ifp);
1126	ln = nd6_lookup(dst6, ND6_EXCLUSIVE, NULL);
1127	IF_AFDATA_UNLOCK(ifp);
1128	if (ln == NULL)
1129		return;
1130
1131	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1132		goto done;
1133
1134	/*
1135	 * if we get upper-layer reachability confirmation many times,
1136	 * it is possible we have false information.
1137	 */
1138	if (!force) {
1139		ln->ln_byhint++;
1140		if (ln->ln_byhint > V_nd6_maxnudhint) {
1141			goto done;
1142		}
1143	}
1144
1145 	ln->ln_state = ND6_LLINFO_REACHABLE;
1146	if (!ND6_LLINFO_PERMANENT(ln)) {
1147		nd6_llinfo_settimer(ln,
1148		    (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1149	}
1150done:
1151	LLE_WUNLOCK(ln);
1152}
1153
1154
1155int
1156nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
1157{
1158	struct in6_drlist *drl = (struct in6_drlist *)data;
1159	struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1160	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1161	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1162	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1163	struct nd_defrouter *dr;
1164	struct nd_prefix *pr;
1165	int i = 0, error = 0;
1166	int s;
1167
1168	switch (cmd) {
1169	case SIOCGDRLST_IN6:
1170		/*
1171		 * obsolete API, use sysctl under net.inet6.icmp6
1172		 */
1173		bzero(drl, sizeof(*drl));
1174		s = splnet();
1175		dr = TAILQ_FIRST(&V_nd_defrouter);
1176		while (dr && i < DRLSTSIZ) {
1177			drl->defrouter[i].rtaddr = dr->rtaddr;
1178			in6_clearscope(&drl->defrouter[i].rtaddr);
1179
1180			drl->defrouter[i].flags = dr->flags;
1181			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1182			drl->defrouter[i].expire = dr->expire;
1183			drl->defrouter[i].if_index = dr->ifp->if_index;
1184			i++;
1185			dr = TAILQ_NEXT(dr, dr_entry);
1186		}
1187		splx(s);
1188		break;
1189	case SIOCGPRLST_IN6:
1190		/*
1191		 * obsolete API, use sysctl under net.inet6.icmp6
1192		 *
1193		 * XXX the structure in6_prlist was changed in backward-
1194		 * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
1195		 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1196		 */
1197		/*
1198		 * XXX meaning of fields, especialy "raflags", is very
1199		 * differnet between RA prefix list and RR/static prefix list.
1200		 * how about separating ioctls into two?
1201		 */
1202		bzero(oprl, sizeof(*oprl));
1203		s = splnet();
1204		pr = V_nd_prefix.lh_first;
1205		while (pr && i < PRLSTSIZ) {
1206			struct nd_pfxrouter *pfr;
1207			int j;
1208
1209			oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1210			oprl->prefix[i].raflags = pr->ndpr_raf;
1211			oprl->prefix[i].prefixlen = pr->ndpr_plen;
1212			oprl->prefix[i].vltime = pr->ndpr_vltime;
1213			oprl->prefix[i].pltime = pr->ndpr_pltime;
1214			oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1215			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1216				oprl->prefix[i].expire = 0;
1217			else {
1218				time_t maxexpire;
1219
1220				/* XXX: we assume time_t is signed. */
1221				maxexpire = (-1) &
1222				    ~((time_t)1 <<
1223				    ((sizeof(maxexpire) * 8) - 1));
1224				if (pr->ndpr_vltime <
1225				    maxexpire - pr->ndpr_lastupdate) {
1226					oprl->prefix[i].expire =
1227					    pr->ndpr_lastupdate +
1228					    pr->ndpr_vltime;
1229				} else
1230					oprl->prefix[i].expire = maxexpire;
1231			}
1232
1233			pfr = pr->ndpr_advrtrs.lh_first;
1234			j = 0;
1235			while (pfr) {
1236				if (j < DRLSTSIZ) {
1237#define RTRADDR oprl->prefix[i].advrtr[j]
1238					RTRADDR = pfr->router->rtaddr;
1239					in6_clearscope(&RTRADDR);
1240#undef RTRADDR
1241				}
1242				j++;
1243				pfr = pfr->pfr_next;
1244			}
1245			oprl->prefix[i].advrtrs = j;
1246			oprl->prefix[i].origin = PR_ORIG_RA;
1247
1248			i++;
1249			pr = pr->ndpr_next;
1250		}
1251		splx(s);
1252
1253		break;
1254	case OSIOCGIFINFO_IN6:
1255#define ND	ndi->ndi
1256		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1257		bzero(&ND, sizeof(ND));
1258		ND.linkmtu = IN6_LINKMTU(ifp);
1259		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1260		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1261		ND.reachable = ND_IFINFO(ifp)->reachable;
1262		ND.retrans = ND_IFINFO(ifp)->retrans;
1263		ND.flags = ND_IFINFO(ifp)->flags;
1264		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1265		ND.chlim = ND_IFINFO(ifp)->chlim;
1266		break;
1267	case SIOCGIFINFO_IN6:
1268		ND = *ND_IFINFO(ifp);
1269		break;
1270	case SIOCSIFINFO_IN6:
1271		/*
1272		 * used to change host variables from userland.
1273		 * intented for a use on router to reflect RA configurations.
1274		 */
1275		/* 0 means 'unspecified' */
1276		if (ND.linkmtu != 0) {
1277			if (ND.linkmtu < IPV6_MMTU ||
1278			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1279				error = EINVAL;
1280				break;
1281			}
1282			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1283		}
1284
1285		if (ND.basereachable != 0) {
1286			int obasereachable = ND_IFINFO(ifp)->basereachable;
1287
1288			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1289			if (ND.basereachable != obasereachable)
1290				ND_IFINFO(ifp)->reachable =
1291				    ND_COMPUTE_RTIME(ND.basereachable);
1292		}
1293		if (ND.retrans != 0)
1294			ND_IFINFO(ifp)->retrans = ND.retrans;
1295		if (ND.chlim != 0)
1296			ND_IFINFO(ifp)->chlim = ND.chlim;
1297		/* FALLTHROUGH */
1298	case SIOCSIFINFO_FLAGS:
1299		ND_IFINFO(ifp)->flags = ND.flags;
1300		break;
1301#undef ND
1302	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1303		/* sync kernel routing table with the default router list */
1304		defrouter_reset();
1305		defrouter_select();
1306		break;
1307	case SIOCSPFXFLUSH_IN6:
1308	{
1309		/* flush all the prefix advertised by routers */
1310		struct nd_prefix *pr, *next;
1311
1312		s = splnet();
1313		for (pr = V_nd_prefix.lh_first; pr; pr = next) {
1314			struct in6_ifaddr *ia, *ia_next;
1315
1316			next = pr->ndpr_next;
1317
1318			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1319				continue; /* XXX */
1320
1321			/* do we really have to remove addresses as well? */
1322			/* XXXRW: in6_ifaddrhead locking. */
1323			TAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link,
1324			    ia_next) {
1325				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1326					continue;
1327
1328				if (ia->ia6_ndpr == pr)
1329					in6_purgeaddr(&ia->ia_ifa);
1330			}
1331			prelist_remove(pr);
1332		}
1333		splx(s);
1334		break;
1335	}
1336	case SIOCSRTRFLUSH_IN6:
1337	{
1338		/* flush all the default routers */
1339		struct nd_defrouter *dr, *next;
1340
1341		s = splnet();
1342		defrouter_reset();
1343		for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; dr = next) {
1344			next = TAILQ_NEXT(dr, dr_entry);
1345			defrtrlist_del(dr);
1346		}
1347		defrouter_select();
1348		splx(s);
1349		break;
1350	}
1351	case SIOCGNBRINFO_IN6:
1352	{
1353		struct llentry *ln;
1354		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1355
1356		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1357			return (error);
1358
1359		IF_AFDATA_LOCK(ifp);
1360		ln = nd6_lookup(&nb_addr, 0, ifp);
1361		IF_AFDATA_UNLOCK(ifp);
1362
1363		if (ln == NULL) {
1364			error = EINVAL;
1365			break;
1366		}
1367		nbi->state = ln->ln_state;
1368		nbi->asked = ln->la_asked;
1369		nbi->isrouter = ln->ln_router;
1370		nbi->expire = ln->la_expire;
1371		LLE_RUNLOCK(ln);
1372		break;
1373	}
1374	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1375		ndif->ifindex = V_nd6_defifindex;
1376		break;
1377	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1378		return (nd6_setdefaultiface(ndif->ifindex));
1379	}
1380	return (error);
1381}
1382
1383/*
1384 * Create neighbor cache entry and cache link-layer address,
1385 * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1386 *
1387 * type - ICMP6 type
1388 * code - type dependent information
1389 *
1390 * XXXXX
1391 *  The caller of this function already acquired the ndp
1392 *  cache table lock because the cache entry is returned.
1393 */
1394struct llentry *
1395nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1396    int lladdrlen, int type, int code)
1397{
1398	struct llentry *ln = NULL;
1399	int is_newentry;
1400	int do_update;
1401	int olladdr;
1402	int llchange;
1403	int flags = 0;
1404	int newstate = 0;
1405	uint16_t router = 0;
1406	struct sockaddr_in6 sin6;
1407	struct mbuf *chain = NULL;
1408	int static_route = 0;
1409
1410	IF_AFDATA_UNLOCK_ASSERT(ifp);
1411
1412	if (ifp == NULL)
1413		panic("ifp == NULL in nd6_cache_lladdr");
1414	if (from == NULL)
1415		panic("from == NULL in nd6_cache_lladdr");
1416
1417	/* nothing must be updated for unspecified address */
1418	if (IN6_IS_ADDR_UNSPECIFIED(from))
1419		return NULL;
1420
1421	/*
1422	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1423	 * the caller.
1424	 *
1425	 * XXX If the link does not have link-layer adderss, what should
1426	 * we do? (ifp->if_addrlen == 0)
1427	 * Spec says nothing in sections for RA, RS and NA.  There's small
1428	 * description on it in NS section (RFC 2461 7.2.3).
1429	 */
1430	flags |= lladdr ? ND6_EXCLUSIVE : 0;
1431	IF_AFDATA_LOCK(ifp);
1432	ln = nd6_lookup(from, flags, ifp);
1433
1434	if (ln == NULL) {
1435		flags |= LLE_EXCLUSIVE;
1436		ln = nd6_lookup(from, flags |ND6_CREATE, ifp);
1437		IF_AFDATA_UNLOCK(ifp);
1438		is_newentry = 1;
1439	} else {
1440		IF_AFDATA_UNLOCK(ifp);
1441		/* do nothing if static ndp is set */
1442		if (ln->la_flags & LLE_STATIC) {
1443			static_route = 1;
1444			goto done;
1445		}
1446		is_newentry = 0;
1447	}
1448	if (ln == NULL)
1449		return (NULL);
1450
1451	olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
1452	if (olladdr && lladdr) {
1453		llchange = bcmp(lladdr, &ln->ll_addr,
1454		    ifp->if_addrlen);
1455	} else
1456		llchange = 0;
1457
1458	/*
1459	 * newentry olladdr  lladdr  llchange	(*=record)
1460	 *	0	n	n	--	(1)
1461	 *	0	y	n	--	(2)
1462	 *	0	n	y	--	(3) * STALE
1463	 *	0	y	y	n	(4) *
1464	 *	0	y	y	y	(5) * STALE
1465	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1466	 *	1	--	y	--	(7) * STALE
1467	 */
1468
1469	if (lladdr) {		/* (3-5) and (7) */
1470		/*
1471		 * Record source link-layer address
1472		 * XXX is it dependent to ifp->if_type?
1473		 */
1474		bcopy(lladdr, &ln->ll_addr, ifp->if_addrlen);
1475		ln->la_flags |= LLE_VALID;
1476	}
1477
1478	if (!is_newentry) {
1479		if ((!olladdr && lladdr != NULL) ||	/* (3) */
1480		    (olladdr && lladdr != NULL && llchange)) {	/* (5) */
1481			do_update = 1;
1482			newstate = ND6_LLINFO_STALE;
1483		} else					/* (1-2,4) */
1484			do_update = 0;
1485	} else {
1486		do_update = 1;
1487		if (lladdr == NULL)			/* (6) */
1488			newstate = ND6_LLINFO_NOSTATE;
1489		else					/* (7) */
1490			newstate = ND6_LLINFO_STALE;
1491	}
1492
1493	if (do_update) {
1494		/*
1495		 * Update the state of the neighbor cache.
1496		 */
1497		ln->ln_state = newstate;
1498
1499		if (ln->ln_state == ND6_LLINFO_STALE) {
1500			/*
1501			 * XXX: since nd6_output() below will cause
1502			 * state tansition to DELAY and reset the timer,
1503			 * we must set the timer now, although it is actually
1504			 * meaningless.
1505			 */
1506			nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz);
1507
1508			if (ln->la_hold) {
1509				struct mbuf *m_hold, *m_hold_next;
1510
1511				/*
1512				 * reset the la_hold in advance, to explicitly
1513				 * prevent a la_hold lookup in nd6_output()
1514				 * (wouldn't happen, though...)
1515				 */
1516				for (m_hold = ln->la_hold, ln->la_hold = NULL;
1517				    m_hold; m_hold = m_hold_next) {
1518					m_hold_next = m_hold->m_nextpkt;
1519					m_hold->m_nextpkt = NULL;
1520
1521					/*
1522					 * we assume ifp is not a p2p here, so
1523					 * just set the 2nd argument as the
1524					 * 1st one.
1525					 */
1526					nd6_output_lle(ifp, ifp, m_hold, L3_ADDR_SIN6(ln), NULL, ln, &chain);
1527				}
1528				/*
1529				 * If we have mbufs in the chain we need to do
1530				 * deferred transmit. Copy the address from the
1531				 * llentry before dropping the lock down below.
1532				 */
1533				if (chain != NULL)
1534					memcpy(&sin6, L3_ADDR_SIN6(ln), sizeof(sin6));
1535			}
1536		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1537			/* probe right away */
1538			nd6_llinfo_settimer_locked((void *)ln, 0);
1539		}
1540	}
1541
1542	/*
1543	 * ICMP6 type dependent behavior.
1544	 *
1545	 * NS: clear IsRouter if new entry
1546	 * RS: clear IsRouter
1547	 * RA: set IsRouter if there's lladdr
1548	 * redir: clear IsRouter if new entry
1549	 *
1550	 * RA case, (1):
1551	 * The spec says that we must set IsRouter in the following cases:
1552	 * - If lladdr exist, set IsRouter.  This means (1-5).
1553	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1554	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1555	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1556	 * neighbor cache, this is similar to (6).
1557	 * This case is rare but we figured that we MUST NOT set IsRouter.
1558	 *
1559	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1560	 *							D R
1561	 *	0	n	n	--	(1)	c   ?     s
1562	 *	0	y	n	--	(2)	c   s     s
1563	 *	0	n	y	--	(3)	c   s     s
1564	 *	0	y	y	n	(4)	c   s     s
1565	 *	0	y	y	y	(5)	c   s     s
1566	 *	1	--	n	--	(6) c	c	c s
1567	 *	1	--	y	--	(7) c	c   s	c s
1568	 *
1569	 *					(c=clear s=set)
1570	 */
1571	switch (type & 0xff) {
1572	case ND_NEIGHBOR_SOLICIT:
1573		/*
1574		 * New entry must have is_router flag cleared.
1575		 */
1576		if (is_newentry)	/* (6-7) */
1577			ln->ln_router = 0;
1578		break;
1579	case ND_REDIRECT:
1580		/*
1581		 * If the icmp is a redirect to a better router, always set the
1582		 * is_router flag.  Otherwise, if the entry is newly created,
1583		 * clear the flag.  [RFC 2461, sec 8.3]
1584		 */
1585		if (code == ND_REDIRECT_ROUTER)
1586			ln->ln_router = 1;
1587		else if (is_newentry) /* (6-7) */
1588			ln->ln_router = 0;
1589		break;
1590	case ND_ROUTER_SOLICIT:
1591		/*
1592		 * is_router flag must always be cleared.
1593		 */
1594		ln->ln_router = 0;
1595		break;
1596	case ND_ROUTER_ADVERT:
1597		/*
1598		 * Mark an entry with lladdr as a router.
1599		 */
1600		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
1601		    (is_newentry && lladdr)) {			/* (7) */
1602			ln->ln_router = 1;
1603		}
1604		break;
1605	}
1606
1607	if (ln != NULL) {
1608		static_route = (ln->la_flags & LLE_STATIC);
1609		router = ln->ln_router;
1610
1611		if (flags & ND6_EXCLUSIVE)
1612			LLE_WUNLOCK(ln);
1613		else
1614			LLE_RUNLOCK(ln);
1615		if (static_route)
1616			ln = NULL;
1617	}
1618	if (chain)
1619		nd6_output_flush(ifp, ifp, chain, &sin6, NULL);
1620
1621	/*
1622	 * When the link-layer address of a router changes, select the
1623	 * best router again.  In particular, when the neighbor entry is newly
1624	 * created, it might affect the selection policy.
1625	 * Question: can we restrict the first condition to the "is_newentry"
1626	 * case?
1627	 * XXX: when we hear an RA from a new router with the link-layer
1628	 * address option, defrouter_select() is called twice, since
1629	 * defrtrlist_update called the function as well.  However, I believe
1630	 * we can compromise the overhead, since it only happens the first
1631	 * time.
1632	 * XXX: although defrouter_select() should not have a bad effect
1633	 * for those are not autoconfigured hosts, we explicitly avoid such
1634	 * cases for safety.
1635	 */
1636	if (do_update && router && !V_ip6_forwarding && V_ip6_accept_rtadv) {
1637		/*
1638		 * guaranteed recursion
1639		 */
1640		defrouter_select();
1641	}
1642
1643	return (ln);
1644done:
1645	if (ln != NULL) {
1646		if (flags & ND6_EXCLUSIVE)
1647			LLE_WUNLOCK(ln);
1648		else
1649			LLE_RUNLOCK(ln);
1650		if (static_route)
1651			ln = NULL;
1652	}
1653	return (ln);
1654}
1655
1656static void
1657nd6_slowtimo(void *arg)
1658{
1659	CURVNET_SET((struct vnet *) arg);
1660	struct nd_ifinfo *nd6if;
1661	struct ifnet *ifp;
1662
1663	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1664	    nd6_slowtimo, curvnet);
1665	IFNET_RLOCK_NOSLEEP();
1666	for (ifp = TAILQ_FIRST(&V_ifnet); ifp;
1667	    ifp = TAILQ_NEXT(ifp, if_list)) {
1668		nd6if = ND_IFINFO(ifp);
1669		if (nd6if->basereachable && /* already initialized */
1670		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1671			/*
1672			 * Since reachable time rarely changes by router
1673			 * advertisements, we SHOULD insure that a new random
1674			 * value gets recomputed at least once every few hours.
1675			 * (RFC 2461, 6.3.4)
1676			 */
1677			nd6if->recalctm = V_nd6_recalc_reachtm_interval;
1678			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1679		}
1680	}
1681	IFNET_RUNLOCK_NOSLEEP();
1682	CURVNET_RESTORE();
1683}
1684
1685int
1686nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
1687    struct sockaddr_in6 *dst, struct rtentry *rt0)
1688{
1689
1690	return (nd6_output_lle(ifp, origifp, m0, dst, rt0, NULL, NULL));
1691}
1692
1693
1694/*
1695 * Note that I'm not enforcing any global serialization
1696 * lle state or asked changes here as the logic is too
1697 * complicated to avoid having to always acquire an exclusive
1698 * lock
1699 * KMM
1700 *
1701 */
1702#define senderr(e) { error = (e); goto bad;}
1703
1704int
1705nd6_output_lle(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
1706    struct sockaddr_in6 *dst, struct rtentry *rt0, struct llentry *lle,
1707	struct mbuf **chain)
1708{
1709	struct mbuf *m = m0;
1710	struct llentry *ln = lle;
1711	int error = 0;
1712	int flags = 0;
1713
1714#ifdef INVARIANTS
1715	if (lle != NULL) {
1716
1717		LLE_WLOCK_ASSERT(lle);
1718
1719		KASSERT(chain != NULL, (" lle locked but no mbuf chain pointer passed"));
1720	}
1721#endif
1722	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1723		goto sendpkt;
1724
1725	if (nd6_need_cache(ifp) == 0)
1726		goto sendpkt;
1727
1728	/*
1729	 * next hop determination.  This routine is derived from ether_output.
1730	 */
1731
1732	/*
1733	 * Address resolution or Neighbor Unreachability Detection
1734	 * for the next hop.
1735	 * At this point, the destination of the packet must be a unicast
1736	 * or an anycast address(i.e. not a multicast).
1737	 */
1738
1739	flags = ((m != NULL) || (lle != NULL)) ? LLE_EXCLUSIVE : 0;
1740	if (ln == NULL) {
1741	retry:
1742		IF_AFDATA_LOCK(ifp);
1743		ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)dst);
1744		IF_AFDATA_UNLOCK(ifp);
1745		if ((ln == NULL) && nd6_is_addr_neighbor(dst, ifp))  {
1746			/*
1747			 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1748			 * the condition below is not very efficient.  But we believe
1749			 * it is tolerable, because this should be a rare case.
1750			 */
1751			flags = ND6_CREATE | (m ? ND6_EXCLUSIVE : 0);
1752			IF_AFDATA_LOCK(ifp);
1753			ln = nd6_lookup(&dst->sin6_addr, flags, ifp);
1754			IF_AFDATA_UNLOCK(ifp);
1755		}
1756	}
1757	if (ln == NULL) {
1758		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
1759		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
1760			char ip6buf[INET6_ADDRSTRLEN];
1761			log(LOG_DEBUG,
1762			    "nd6_output: can't allocate llinfo for %s "
1763			    "(ln=%p)\n",
1764			    ip6_sprintf(ip6buf, &dst->sin6_addr), ln);
1765			senderr(EIO);	/* XXX: good error? */
1766		}
1767		goto sendpkt;	/* send anyway */
1768	}
1769
1770	/* We don't have to do link-layer address resolution on a p2p link. */
1771	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
1772	    ln->ln_state < ND6_LLINFO_REACHABLE) {
1773		if ((flags & LLE_EXCLUSIVE) == 0) {
1774			flags |= LLE_EXCLUSIVE;
1775			goto retry;
1776		}
1777		ln->ln_state = ND6_LLINFO_STALE;
1778		nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz);
1779	}
1780
1781	/*
1782	 * The first time we send a packet to a neighbor whose entry is
1783	 * STALE, we have to change the state to DELAY and a sets a timer to
1784	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
1785	 * neighbor unreachability detection on expiration.
1786	 * (RFC 2461 7.3.3)
1787	 */
1788	if (ln->ln_state == ND6_LLINFO_STALE) {
1789		if ((flags & LLE_EXCLUSIVE) == 0) {
1790			flags |= LLE_EXCLUSIVE;
1791			LLE_RUNLOCK(ln);
1792			goto retry;
1793		}
1794		ln->la_asked = 0;
1795		ln->ln_state = ND6_LLINFO_DELAY;
1796		nd6_llinfo_settimer_locked(ln, (long)V_nd6_delay * hz);
1797	}
1798
1799	/*
1800	 * If the neighbor cache entry has a state other than INCOMPLETE
1801	 * (i.e. its link-layer address is already resolved), just
1802	 * send the packet.
1803	 */
1804	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
1805		goto sendpkt;
1806
1807	/*
1808	 * There is a neighbor cache entry, but no ethernet address
1809	 * response yet.  Append this latest packet to the end of the
1810	 * packet queue in the mbuf, unless the number of the packet
1811	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
1812	 * the oldest packet in the queue will be removed.
1813	 */
1814	if (ln->ln_state == ND6_LLINFO_NOSTATE)
1815		ln->ln_state = ND6_LLINFO_INCOMPLETE;
1816
1817	if ((flags & LLE_EXCLUSIVE) == 0) {
1818		flags |= LLE_EXCLUSIVE;
1819		LLE_RUNLOCK(ln);
1820		goto retry;
1821	}
1822	if (ln->la_hold) {
1823		struct mbuf *m_hold;
1824		int i;
1825
1826		i = 0;
1827		for (m_hold = ln->la_hold; m_hold; m_hold = m_hold->m_nextpkt) {
1828			i++;
1829			if (m_hold->m_nextpkt == NULL) {
1830				m_hold->m_nextpkt = m;
1831				break;
1832			}
1833		}
1834		while (i >= V_nd6_maxqueuelen) {
1835			m_hold = ln->la_hold;
1836			ln->la_hold = ln->la_hold->m_nextpkt;
1837			m_freem(m_hold);
1838			i--;
1839		}
1840	} else {
1841		ln->la_hold = m;
1842	}
1843	/*
1844	 * We did the lookup (no lle arg) so we
1845	 * need to do the unlock here
1846	 */
1847	if (lle == NULL) {
1848		if (flags & LLE_EXCLUSIVE)
1849			LLE_WUNLOCK(ln);
1850		else
1851			LLE_RUNLOCK(ln);
1852	}
1853
1854	/*
1855	 * If there has been no NS for the neighbor after entering the
1856	 * INCOMPLETE state, send the first solicitation.
1857	 */
1858	if (!ND6_LLINFO_PERMANENT(ln) && ln->la_asked == 0) {
1859		ln->la_asked++;
1860
1861		nd6_llinfo_settimer(ln,
1862		    (long)ND_IFINFO(ifp)->retrans * hz / 1000);
1863		nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
1864	}
1865	return (0);
1866
1867  sendpkt:
1868	/* discard the packet if IPv6 operation is disabled on the interface */
1869	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
1870		error = ENETDOWN; /* better error? */
1871		goto bad;
1872	}
1873	/*
1874	 * ln is valid and the caller did not pass in
1875	 * an llentry
1876	 */
1877	if ((ln != NULL) && (lle == NULL)) {
1878		if (flags & LLE_EXCLUSIVE)
1879			LLE_WUNLOCK(ln);
1880		else
1881			LLE_RUNLOCK(ln);
1882	}
1883
1884#ifdef MAC
1885	mac_netinet6_nd6_send(ifp, m);
1886#endif
1887	/*
1888	 * We were passed in a pointer to an lle with the lock held
1889	 * this means that we can't call if_output as we will
1890	 * recurse on the lle lock - so what we do is we create
1891	 * a list of mbufs to send and transmit them in the caller
1892	 * after the lock is dropped
1893	 */
1894	if (lle != NULL) {
1895		if (*chain == NULL)
1896			*chain = m;
1897		else {
1898			struct mbuf *m = *chain;
1899
1900			/*
1901			 * append mbuf to end of deferred chain
1902			 */
1903			while (m->m_nextpkt != NULL)
1904				m = m->m_nextpkt;
1905			m->m_nextpkt = m;
1906		}
1907		return (error);
1908	}
1909	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
1910		return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
1911		    NULL));
1912	}
1913	error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst, NULL);
1914	return (error);
1915
1916  bad:
1917	/*
1918	 * ln is valid and the caller did not pass in
1919	 * an llentry
1920	 */
1921	if ((ln != NULL) && (lle == NULL)) {
1922		if (flags & LLE_EXCLUSIVE)
1923			LLE_WUNLOCK(ln);
1924		else
1925			LLE_RUNLOCK(ln);
1926	}
1927	if (m)
1928		m_freem(m);
1929	return (error);
1930}
1931#undef senderr
1932
1933
1934int
1935nd6_output_flush(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *chain,
1936    struct sockaddr_in6 *dst, struct route *ro)
1937{
1938	struct mbuf *m, *m_head;
1939	struct ifnet *outifp;
1940	int error = 0;
1941
1942	m_head = chain;
1943	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
1944		outifp = origifp;
1945	else
1946		outifp = ifp;
1947
1948	while (m_head) {
1949		m = m_head;
1950		m_head = m_head->m_nextpkt;
1951		error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst, ro);
1952	}
1953
1954	/*
1955	 * XXX
1956	 * note that intermediate errors are blindly ignored - but this is
1957	 * the same convention as used with nd6_output when called by
1958	 * nd6_cache_lladdr
1959	 */
1960	return (error);
1961}
1962
1963
1964int
1965nd6_need_cache(struct ifnet *ifp)
1966{
1967	/*
1968	 * XXX: we currently do not make neighbor cache on any interface
1969	 * other than ARCnet, Ethernet, FDDI and GIF.
1970	 *
1971	 * RFC2893 says:
1972	 * - unidirectional tunnels needs no ND
1973	 */
1974	switch (ifp->if_type) {
1975	case IFT_ARCNET:
1976	case IFT_ETHER:
1977	case IFT_FDDI:
1978	case IFT_IEEE1394:
1979#ifdef IFT_L2VLAN
1980	case IFT_L2VLAN:
1981#endif
1982#ifdef IFT_IEEE80211
1983	case IFT_IEEE80211:
1984#endif
1985#ifdef IFT_CARP
1986	case IFT_CARP:
1987#endif
1988	case IFT_GIF:		/* XXX need more cases? */
1989	case IFT_PPP:
1990	case IFT_TUNNEL:
1991	case IFT_BRIDGE:
1992	case IFT_PROPVIRTUAL:
1993		return (1);
1994	default:
1995		return (0);
1996	}
1997}
1998
1999/*
2000 * the callers of this function need to be re-worked to drop
2001 * the lle lock, drop here for now
2002 */
2003int
2004nd6_storelladdr(struct ifnet *ifp, struct mbuf *m,
2005    struct sockaddr *dst, u_char *desten, struct llentry **lle)
2006{
2007	struct llentry *ln;
2008
2009	*lle = NULL;
2010	IF_AFDATA_UNLOCK_ASSERT(ifp);
2011	if (m->m_flags & M_MCAST) {
2012		int i;
2013
2014		switch (ifp->if_type) {
2015		case IFT_ETHER:
2016		case IFT_FDDI:
2017#ifdef IFT_L2VLAN
2018		case IFT_L2VLAN:
2019#endif
2020#ifdef IFT_IEEE80211
2021		case IFT_IEEE80211:
2022#endif
2023		case IFT_BRIDGE:
2024		case IFT_ISO88025:
2025			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2026						 desten);
2027			return (0);
2028		case IFT_IEEE1394:
2029			/*
2030			 * netbsd can use if_broadcastaddr, but we don't do so
2031			 * to reduce # of ifdef.
2032			 */
2033			for (i = 0; i < ifp->if_addrlen; i++)
2034				desten[i] = ~0;
2035			return (0);
2036		case IFT_ARCNET:
2037			*desten = 0;
2038			return (0);
2039		default:
2040			m_freem(m);
2041			return (EAFNOSUPPORT);
2042		}
2043	}
2044
2045
2046	/*
2047	 * the entry should have been created in nd6_store_lladdr
2048	 */
2049	IF_AFDATA_LOCK(ifp);
2050	ln = lla_lookup(LLTABLE6(ifp), 0, dst);
2051	IF_AFDATA_UNLOCK(ifp);
2052	if ((ln == NULL) || !(ln->la_flags & LLE_VALID)) {
2053		if (ln != NULL)
2054			LLE_RUNLOCK(ln);
2055		/* this could happen, if we could not allocate memory */
2056		m_freem(m);
2057		return (1);
2058	}
2059
2060	bcopy(&ln->ll_addr, desten, ifp->if_addrlen);
2061	*lle = ln;
2062	LLE_RUNLOCK(ln);
2063	/*
2064	 * A *small* use after free race exists here
2065	 */
2066	return (0);
2067}
2068
2069static void
2070clear_llinfo_pqueue(struct llentry *ln)
2071{
2072	struct mbuf *m_hold, *m_hold_next;
2073
2074	for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) {
2075		m_hold_next = m_hold->m_nextpkt;
2076		m_hold->m_nextpkt = NULL;
2077		m_freem(m_hold);
2078	}
2079
2080	ln->la_hold = NULL;
2081	return;
2082}
2083
2084static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2085static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2086#ifdef SYSCTL_DECL
2087SYSCTL_DECL(_net_inet6_icmp6);
2088#endif
2089SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2090	CTLFLAG_RD, nd6_sysctl_drlist, "");
2091SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2092	CTLFLAG_RD, nd6_sysctl_prlist, "");
2093SYSCTL_VNET_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2094	CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, "");
2095
2096static int
2097nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2098{
2099	int error;
2100	char buf[1024] __aligned(4);
2101	struct in6_defrouter *d, *de;
2102	struct nd_defrouter *dr;
2103
2104	if (req->newptr)
2105		return EPERM;
2106	error = 0;
2107
2108	for (dr = TAILQ_FIRST(&V_nd_defrouter); dr;
2109	     dr = TAILQ_NEXT(dr, dr_entry)) {
2110		d = (struct in6_defrouter *)buf;
2111		de = (struct in6_defrouter *)(buf + sizeof(buf));
2112
2113		if (d + 1 <= de) {
2114			bzero(d, sizeof(*d));
2115			d->rtaddr.sin6_family = AF_INET6;
2116			d->rtaddr.sin6_len = sizeof(d->rtaddr);
2117			d->rtaddr.sin6_addr = dr->rtaddr;
2118			error = sa6_recoverscope(&d->rtaddr);
2119			if (error != 0)
2120				return (error);
2121			d->flags = dr->flags;
2122			d->rtlifetime = dr->rtlifetime;
2123			d->expire = dr->expire;
2124			d->if_index = dr->ifp->if_index;
2125		} else
2126			panic("buffer too short");
2127
2128		error = SYSCTL_OUT(req, buf, sizeof(*d));
2129		if (error)
2130			break;
2131	}
2132
2133	return (error);
2134}
2135
2136static int
2137nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2138{
2139	int error;
2140	char buf[1024] __aligned(4);
2141	struct in6_prefix *p, *pe;
2142	struct nd_prefix *pr;
2143	char ip6buf[INET6_ADDRSTRLEN];
2144
2145	if (req->newptr)
2146		return EPERM;
2147	error = 0;
2148
2149	for (pr = V_nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2150		u_short advrtrs;
2151		size_t advance;
2152		struct sockaddr_in6 *sin6, *s6;
2153		struct nd_pfxrouter *pfr;
2154
2155		p = (struct in6_prefix *)buf;
2156		pe = (struct in6_prefix *)(buf + sizeof(buf));
2157
2158		if (p + 1 <= pe) {
2159			bzero(p, sizeof(*p));
2160			sin6 = (struct sockaddr_in6 *)(p + 1);
2161
2162			p->prefix = pr->ndpr_prefix;
2163			if (sa6_recoverscope(&p->prefix)) {
2164				log(LOG_ERR,
2165				    "scope error in prefix list (%s)\n",
2166				    ip6_sprintf(ip6buf, &p->prefix.sin6_addr));
2167				/* XXX: press on... */
2168			}
2169			p->raflags = pr->ndpr_raf;
2170			p->prefixlen = pr->ndpr_plen;
2171			p->vltime = pr->ndpr_vltime;
2172			p->pltime = pr->ndpr_pltime;
2173			p->if_index = pr->ndpr_ifp->if_index;
2174			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2175				p->expire = 0;
2176			else {
2177				time_t maxexpire;
2178
2179				/* XXX: we assume time_t is signed. */
2180				maxexpire = (-1) &
2181				    ~((time_t)1 <<
2182				    ((sizeof(maxexpire) * 8) - 1));
2183				if (pr->ndpr_vltime <
2184				    maxexpire - pr->ndpr_lastupdate) {
2185				    p->expire = pr->ndpr_lastupdate +
2186				        pr->ndpr_vltime;
2187				} else
2188					p->expire = maxexpire;
2189			}
2190			p->refcnt = pr->ndpr_refcnt;
2191			p->flags = pr->ndpr_stateflags;
2192			p->origin = PR_ORIG_RA;
2193			advrtrs = 0;
2194			for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2195			     pfr = pfr->pfr_next) {
2196				if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2197					advrtrs++;
2198					continue;
2199				}
2200				s6 = &sin6[advrtrs];
2201				bzero(s6, sizeof(*s6));
2202				s6->sin6_family = AF_INET6;
2203				s6->sin6_len = sizeof(*sin6);
2204				s6->sin6_addr = pfr->router->rtaddr;
2205				if (sa6_recoverscope(s6)) {
2206					log(LOG_ERR,
2207					    "scope error in "
2208					    "prefix list (%s)\n",
2209					    ip6_sprintf(ip6buf,
2210						    &pfr->router->rtaddr));
2211				}
2212				advrtrs++;
2213			}
2214			p->advrtrs = advrtrs;
2215		} else
2216			panic("buffer too short");
2217
2218		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2219		error = SYSCTL_OUT(req, buf, advance);
2220		if (error)
2221			break;
2222	}
2223
2224	return (error);
2225}
2226