nd6.c revision 169273
1/*	$FreeBSD: head/sys/netinet6/nd6.c 169273 2007-05-05 04:24:01Z suz $	*/
2/*	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $	*/
3
4/*-
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#include "opt_inet.h"
34#include "opt_inet6.h"
35#include "opt_mac.h"
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/callout.h>
40#include <sys/malloc.h>
41#include <sys/mbuf.h>
42#include <sys/socket.h>
43#include <sys/sockio.h>
44#include <sys/time.h>
45#include <sys/kernel.h>
46#include <sys/protosw.h>
47#include <sys/errno.h>
48#include <sys/syslog.h>
49#include <sys/queue.h>
50#include <sys/sysctl.h>
51
52#include <net/if.h>
53#include <net/if_arc.h>
54#include <net/if_dl.h>
55#include <net/if_types.h>
56#include <net/iso88025.h>
57#include <net/fddi.h>
58#include <net/route.h>
59
60#include <netinet/in.h>
61#include <netinet/if_ether.h>
62#include <netinet6/in6_var.h>
63#include <netinet/ip6.h>
64#include <netinet6/ip6_var.h>
65#include <netinet6/scope6_var.h>
66#include <netinet6/nd6.h>
67#include <netinet/icmp6.h>
68
69#include <sys/limits.h>
70
71#include <security/mac/mac_framework.h>
72
73#define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
74#define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
75
76#define SIN6(s) ((struct sockaddr_in6 *)s)
77#define SDL(s) ((struct sockaddr_dl *)s)
78
79/* timer values */
80int	nd6_prune	= 1;	/* walk list every 1 seconds */
81int	nd6_delay	= 5;	/* delay first probe time 5 second */
82int	nd6_umaxtries	= 3;	/* maximum unicast query */
83int	nd6_mmaxtries	= 3;	/* maximum multicast query */
84int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
85int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
86
87/* preventing too many loops in ND option parsing */
88int nd6_maxndopt = 10;	/* max # of ND options allowed */
89
90int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
91int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
92
93#ifdef ND6_DEBUG
94int nd6_debug = 1;
95#else
96int nd6_debug = 0;
97#endif
98
99/* for debugging? */
100static int nd6_inuse, nd6_allocated;
101
102struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
103struct nd_drhead nd_defrouter;
104struct nd_prhead nd_prefix = { 0 };
105
106int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
107static struct sockaddr_in6 all1_sa;
108
109static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *,
110	struct ifnet *));
111static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
112static void nd6_slowtimo __P((void *));
113static int regen_tmpaddr __P((struct in6_ifaddr *));
114static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
115static void nd6_llinfo_timer __P((void *));
116static void clear_llinfo_pqueue __P((struct llinfo_nd6 *));
117
118struct callout nd6_slowtimo_ch;
119struct callout nd6_timer_ch;
120extern struct callout in6_tmpaddrtimer_ch;
121
122void
123nd6_init()
124{
125	static int nd6_init_done = 0;
126	int i;
127
128	if (nd6_init_done) {
129		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
130		return;
131	}
132
133	all1_sa.sin6_family = AF_INET6;
134	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
135	for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
136		all1_sa.sin6_addr.s6_addr[i] = 0xff;
137
138	/* initialization of the default router list */
139	TAILQ_INIT(&nd_defrouter);
140
141	nd6_init_done = 1;
142
143	/* start timer */
144	callout_init(&nd6_slowtimo_ch, 0);
145	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
146	    nd6_slowtimo, NULL);
147}
148
149struct nd_ifinfo *
150nd6_ifattach(ifp)
151	struct ifnet *ifp;
152{
153	struct nd_ifinfo *nd;
154
155	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
156	bzero(nd, sizeof(*nd));
157
158	nd->initialized = 1;
159
160	nd->chlim = IPV6_DEFHLIM;
161	nd->basereachable = REACHABLE_TIME;
162	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
163	nd->retrans = RETRANS_TIMER;
164	/*
165	 * Note that the default value of ip6_accept_rtadv is 0, which means
166	 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
167	 * here.
168	 */
169	nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
170
171	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
172	nd6_setmtu0(ifp, nd);
173
174	return nd;
175}
176
177void
178nd6_ifdetach(nd)
179	struct nd_ifinfo *nd;
180{
181
182	free(nd, M_IP6NDP);
183}
184
185/*
186 * Reset ND level link MTU. This function is called when the physical MTU
187 * changes, which means we might have to adjust the ND level MTU.
188 */
189void
190nd6_setmtu(ifp)
191	struct ifnet *ifp;
192{
193
194	nd6_setmtu0(ifp, ND_IFINFO(ifp));
195}
196
197/* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
198void
199nd6_setmtu0(ifp, ndi)
200	struct ifnet *ifp;
201	struct nd_ifinfo *ndi;
202{
203	u_int32_t omaxmtu;
204
205	omaxmtu = ndi->maxmtu;
206
207	switch (ifp->if_type) {
208	case IFT_ARCNET:
209		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
210		break;
211	case IFT_FDDI:
212		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
213		break;
214	case IFT_ISO88025:
215		 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
216		 break;
217	default:
218		ndi->maxmtu = ifp->if_mtu;
219		break;
220	}
221
222	/*
223	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
224	 * undesirable situation.  We thus notify the operator of the change
225	 * explicitly.  The check for omaxmtu is necessary to restrict the
226	 * log to the case of changing the MTU, not initializing it.
227	 */
228	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
229		log(LOG_NOTICE, "nd6_setmtu0: "
230		    "new link MTU on %s (%lu) is too small for IPv6\n",
231		    if_name(ifp), (unsigned long)ndi->maxmtu);
232	}
233
234	if (ndi->maxmtu > in6_maxmtu)
235		in6_setmaxmtu(); /* check all interfaces just in case */
236
237#undef MIN
238}
239
240void
241nd6_option_init(opt, icmp6len, ndopts)
242	void *opt;
243	int icmp6len;
244	union nd_opts *ndopts;
245{
246
247	bzero(ndopts, sizeof(*ndopts));
248	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
249	ndopts->nd_opts_last
250		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
251
252	if (icmp6len == 0) {
253		ndopts->nd_opts_done = 1;
254		ndopts->nd_opts_search = NULL;
255	}
256}
257
258/*
259 * Take one ND option.
260 */
261struct nd_opt_hdr *
262nd6_option(ndopts)
263	union nd_opts *ndopts;
264{
265	struct nd_opt_hdr *nd_opt;
266	int olen;
267
268	if (ndopts == NULL)
269		panic("ndopts == NULL in nd6_option");
270	if (ndopts->nd_opts_last == NULL)
271		panic("uninitialized ndopts in nd6_option");
272	if (ndopts->nd_opts_search == NULL)
273		return NULL;
274	if (ndopts->nd_opts_done)
275		return NULL;
276
277	nd_opt = ndopts->nd_opts_search;
278
279	/* make sure nd_opt_len is inside the buffer */
280	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
281		bzero(ndopts, sizeof(*ndopts));
282		return NULL;
283	}
284
285	olen = nd_opt->nd_opt_len << 3;
286	if (olen == 0) {
287		/*
288		 * Message validation requires that all included
289		 * options have a length that is greater than zero.
290		 */
291		bzero(ndopts, sizeof(*ndopts));
292		return NULL;
293	}
294
295	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
296	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
297		/* option overruns the end of buffer, invalid */
298		bzero(ndopts, sizeof(*ndopts));
299		return NULL;
300	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
301		/* reached the end of options chain */
302		ndopts->nd_opts_done = 1;
303		ndopts->nd_opts_search = NULL;
304	}
305	return nd_opt;
306}
307
308/*
309 * Parse multiple ND options.
310 * This function is much easier to use, for ND routines that do not need
311 * multiple options of the same type.
312 */
313int
314nd6_options(ndopts)
315	union nd_opts *ndopts;
316{
317	struct nd_opt_hdr *nd_opt;
318	int i = 0;
319
320	if (ndopts == NULL)
321		panic("ndopts == NULL in nd6_options");
322	if (ndopts->nd_opts_last == NULL)
323		panic("uninitialized ndopts in nd6_options");
324	if (ndopts->nd_opts_search == NULL)
325		return 0;
326
327	while (1) {
328		nd_opt = nd6_option(ndopts);
329		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
330			/*
331			 * Message validation requires that all included
332			 * options have a length that is greater than zero.
333			 */
334			icmp6stat.icp6s_nd_badopt++;
335			bzero(ndopts, sizeof(*ndopts));
336			return -1;
337		}
338
339		if (nd_opt == NULL)
340			goto skip1;
341
342		switch (nd_opt->nd_opt_type) {
343		case ND_OPT_SOURCE_LINKADDR:
344		case ND_OPT_TARGET_LINKADDR:
345		case ND_OPT_MTU:
346		case ND_OPT_REDIRECTED_HEADER:
347			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
348				nd6log((LOG_INFO,
349				    "duplicated ND6 option found (type=%d)\n",
350				    nd_opt->nd_opt_type));
351				/* XXX bark? */
352			} else {
353				ndopts->nd_opt_array[nd_opt->nd_opt_type]
354					= nd_opt;
355			}
356			break;
357		case ND_OPT_PREFIX_INFORMATION:
358			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
359				ndopts->nd_opt_array[nd_opt->nd_opt_type]
360					= nd_opt;
361			}
362			ndopts->nd_opts_pi_end =
363				(struct nd_opt_prefix_info *)nd_opt;
364			break;
365		default:
366			/*
367			 * Unknown options must be silently ignored,
368			 * to accomodate future extension to the protocol.
369			 */
370			nd6log((LOG_DEBUG,
371			    "nd6_options: unsupported option %d - "
372			    "option ignored\n", nd_opt->nd_opt_type));
373		}
374
375skip1:
376		i++;
377		if (i > nd6_maxndopt) {
378			icmp6stat.icp6s_nd_toomanyopt++;
379			nd6log((LOG_INFO, "too many loop in nd opt\n"));
380			break;
381		}
382
383		if (ndopts->nd_opts_done)
384			break;
385	}
386
387	return 0;
388}
389
390/*
391 * ND6 timer routine to handle ND6 entries
392 */
393void
394nd6_llinfo_settimer(ln, tick)
395	struct llinfo_nd6 *ln;
396	long tick;
397{
398	if (tick < 0) {
399		ln->ln_expire = 0;
400		ln->ln_ntick = 0;
401		callout_stop(&ln->ln_timer_ch);
402	} else {
403		ln->ln_expire = time_second + tick / hz;
404		if (tick > INT_MAX) {
405			ln->ln_ntick = tick - INT_MAX;
406			callout_reset(&ln->ln_timer_ch, INT_MAX,
407			    nd6_llinfo_timer, ln);
408		} else {
409			ln->ln_ntick = 0;
410			callout_reset(&ln->ln_timer_ch, tick,
411			    nd6_llinfo_timer, ln);
412		}
413	}
414}
415
416static void
417nd6_llinfo_timer(arg)
418	void *arg;
419{
420	struct llinfo_nd6 *ln;
421	struct rtentry *rt;
422	struct in6_addr *dst;
423	struct ifnet *ifp;
424	struct nd_ifinfo *ndi = NULL;
425
426	ln = (struct llinfo_nd6 *)arg;
427
428	if (ln->ln_ntick > 0) {
429		if (ln->ln_ntick > INT_MAX) {
430			ln->ln_ntick -= INT_MAX;
431			nd6_llinfo_settimer(ln, INT_MAX);
432		} else {
433			ln->ln_ntick = 0;
434			nd6_llinfo_settimer(ln, ln->ln_ntick);
435		}
436		return;
437	}
438
439	if ((rt = ln->ln_rt) == NULL)
440		panic("ln->ln_rt == NULL");
441	if ((ifp = rt->rt_ifp) == NULL)
442		panic("ln->ln_rt->rt_ifp == NULL");
443	ndi = ND_IFINFO(ifp);
444
445	/* sanity check */
446	if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
447		panic("rt_llinfo(%p) is not equal to ln(%p)",
448		      rt->rt_llinfo, ln);
449	if (rt_key(rt) == NULL)
450		panic("rt key is NULL in nd6_timer(ln=%p)", ln);
451
452	dst = &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
453
454	switch (ln->ln_state) {
455	case ND6_LLINFO_INCOMPLETE:
456		if (ln->ln_asked < nd6_mmaxtries) {
457			ln->ln_asked++;
458			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
459			nd6_ns_output(ifp, NULL, dst, ln, 0);
460		} else {
461			struct mbuf *m = ln->ln_hold;
462			if (m) {
463				struct mbuf *m0;
464
465				/*
466				 * assuming every packet in ln_hold has the
467				 * same IP header
468				 */
469				m0 = m->m_nextpkt;
470				m->m_nextpkt = NULL;
471				icmp6_error2(m, ICMP6_DST_UNREACH,
472				    ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
473
474				ln->ln_hold = m0;
475				clear_llinfo_pqueue(ln);
476			}
477			if (rt)
478				(void)nd6_free(rt, 0);
479			ln = NULL;
480		}
481		break;
482	case ND6_LLINFO_REACHABLE:
483		if (!ND6_LLINFO_PERMANENT(ln)) {
484			ln->ln_state = ND6_LLINFO_STALE;
485			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
486		}
487		break;
488
489	case ND6_LLINFO_STALE:
490		/* Garbage Collection(RFC 2461 5.3) */
491		if (!ND6_LLINFO_PERMANENT(ln)) {
492			(void)nd6_free(rt, 1);
493			ln = NULL;
494		}
495		break;
496
497	case ND6_LLINFO_DELAY:
498		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
499			/* We need NUD */
500			ln->ln_asked = 1;
501			ln->ln_state = ND6_LLINFO_PROBE;
502			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
503			nd6_ns_output(ifp, dst, dst, ln, 0);
504		} else {
505			ln->ln_state = ND6_LLINFO_STALE; /* XXX */
506			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
507		}
508		break;
509	case ND6_LLINFO_PROBE:
510		if (ln->ln_asked < nd6_umaxtries) {
511			ln->ln_asked++;
512			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
513			nd6_ns_output(ifp, dst, dst, ln, 0);
514		} else if (rt->rt_ifa != NULL &&
515		    rt->rt_ifa->ifa_addr->sa_family == AF_INET6 &&
516		    (((struct in6_ifaddr *)rt->rt_ifa)->ia_flags & IFA_ROUTE)) {
517			/*
518			 * This is an unreachable neighbor whose address is
519			 * specified as the destination of a p2p interface
520			 * (see in6_ifinit()).  We should not free the entry
521			 * since this is sort of a "static" entry generated
522			 * via interface address configuration.
523			 */
524			ln->ln_asked = 0;
525			ln->ln_expire = 0; /* make it permanent */
526			ln->ln_state = ND6_LLINFO_STALE;
527		} else {
528			(void)nd6_free(rt, 0);
529			ln = NULL;
530		}
531		break;
532	}
533}
534
535
536/*
537 * ND6 timer routine to expire default route list and prefix list
538 */
539void
540nd6_timer(ignored_arg)
541	void	*ignored_arg;
542{
543	int s;
544	struct nd_defrouter *dr;
545	struct nd_prefix *pr;
546	struct in6_ifaddr *ia6, *nia6;
547	struct in6_addrlifetime *lt6;
548
549	callout_reset(&nd6_timer_ch, nd6_prune * hz,
550	    nd6_timer, NULL);
551
552	/* expire default router list */
553	s = splnet();
554	dr = TAILQ_FIRST(&nd_defrouter);
555	while (dr) {
556		if (dr->expire && dr->expire < time_second) {
557			struct nd_defrouter *t;
558			t = TAILQ_NEXT(dr, dr_entry);
559			defrtrlist_del(dr);
560			dr = t;
561		} else {
562			dr = TAILQ_NEXT(dr, dr_entry);
563		}
564	}
565
566	/*
567	 * expire interface addresses.
568	 * in the past the loop was inside prefix expiry processing.
569	 * However, from a stricter speci-confrmance standpoint, we should
570	 * rather separate address lifetimes and prefix lifetimes.
571	 */
572  addrloop:
573	for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
574		nia6 = ia6->ia_next;
575		/* check address lifetime */
576		lt6 = &ia6->ia6_lifetime;
577		if (IFA6_IS_INVALID(ia6)) {
578			int regen = 0;
579
580			/*
581			 * If the expiring address is temporary, try
582			 * regenerating a new one.  This would be useful when
583			 * we suspended a laptop PC, then turned it on after a
584			 * period that could invalidate all temporary
585			 * addresses.  Although we may have to restart the
586			 * loop (see below), it must be after purging the
587			 * address.  Otherwise, we'd see an infinite loop of
588			 * regeneration.
589			 */
590			if (ip6_use_tempaddr &&
591			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
592				if (regen_tmpaddr(ia6) == 0)
593					regen = 1;
594			}
595
596			in6_purgeaddr(&ia6->ia_ifa);
597
598			if (regen)
599				goto addrloop; /* XXX: see below */
600		} else if (IFA6_IS_DEPRECATED(ia6)) {
601			int oldflags = ia6->ia6_flags;
602
603			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
604
605			/*
606			 * If a temporary address has just become deprecated,
607			 * regenerate a new one if possible.
608			 */
609			if (ip6_use_tempaddr &&
610			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
611			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
612
613				if (regen_tmpaddr(ia6) == 0) {
614					/*
615					 * A new temporary address is
616					 * generated.
617					 * XXX: this means the address chain
618					 * has changed while we are still in
619					 * the loop.  Although the change
620					 * would not cause disaster (because
621					 * it's not a deletion, but an
622					 * addition,) we'd rather restart the
623					 * loop just for safety.  Or does this
624					 * significantly reduce performance??
625					 */
626					goto addrloop;
627				}
628			}
629		} else {
630			/*
631			 * A new RA might have made a deprecated address
632			 * preferred.
633			 */
634			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
635		}
636	}
637
638	/* expire prefix list */
639	pr = nd_prefix.lh_first;
640	while (pr) {
641		/*
642		 * check prefix lifetime.
643		 * since pltime is just for autoconf, pltime processing for
644		 * prefix is not necessary.
645		 */
646		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
647		    time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
648			struct nd_prefix *t;
649			t = pr->ndpr_next;
650
651			/*
652			 * address expiration and prefix expiration are
653			 * separate.  NEVER perform in6_purgeaddr here.
654			 */
655
656			prelist_remove(pr);
657			pr = t;
658		} else
659			pr = pr->ndpr_next;
660	}
661	splx(s);
662}
663
664static int
665regen_tmpaddr(ia6)
666	struct in6_ifaddr *ia6; /* deprecated/invalidated temporary address */
667{
668	struct ifaddr *ifa;
669	struct ifnet *ifp;
670	struct in6_ifaddr *public_ifa6 = NULL;
671
672	ifp = ia6->ia_ifa.ifa_ifp;
673	for (ifa = ifp->if_addrlist.tqh_first; ifa;
674	     ifa = ifa->ifa_list.tqe_next) {
675		struct in6_ifaddr *it6;
676
677		if (ifa->ifa_addr->sa_family != AF_INET6)
678			continue;
679
680		it6 = (struct in6_ifaddr *)ifa;
681
682		/* ignore no autoconf addresses. */
683		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
684			continue;
685
686		/* ignore autoconf addresses with different prefixes. */
687		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
688			continue;
689
690		/*
691		 * Now we are looking at an autoconf address with the same
692		 * prefix as ours.  If the address is temporary and is still
693		 * preferred, do not create another one.  It would be rare, but
694		 * could happen, for example, when we resume a laptop PC after
695		 * a long period.
696		 */
697		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
698		    !IFA6_IS_DEPRECATED(it6)) {
699			public_ifa6 = NULL;
700			break;
701		}
702
703		/*
704		 * This is a public autoconf address that has the same prefix
705		 * as ours.  If it is preferred, keep it.  We can't break the
706		 * loop here, because there may be a still-preferred temporary
707		 * address with the prefix.
708		 */
709		if (!IFA6_IS_DEPRECATED(it6))
710		    public_ifa6 = it6;
711	}
712
713	if (public_ifa6 != NULL) {
714		int e;
715
716		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
717			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
718			    " tmp addr,errno=%d\n", e);
719			return (-1);
720		}
721		return (0);
722	}
723
724	return (-1);
725}
726
727/*
728 * Nuke neighbor cache/prefix/default router management table, right before
729 * ifp goes away.
730 */
731void
732nd6_purge(ifp)
733	struct ifnet *ifp;
734{
735	struct llinfo_nd6 *ln, *nln;
736	struct nd_defrouter *dr, *ndr;
737	struct nd_prefix *pr, *npr;
738
739	/*
740	 * Nuke default router list entries toward ifp.
741	 * We defer removal of default router list entries that is installed
742	 * in the routing table, in order to keep additional side effects as
743	 * small as possible.
744	 */
745	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
746		ndr = TAILQ_NEXT(dr, dr_entry);
747		if (dr->installed)
748			continue;
749
750		if (dr->ifp == ifp)
751			defrtrlist_del(dr);
752	}
753
754	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
755		ndr = TAILQ_NEXT(dr, dr_entry);
756		if (!dr->installed)
757			continue;
758
759		if (dr->ifp == ifp)
760			defrtrlist_del(dr);
761	}
762
763	/* Nuke prefix list entries toward ifp */
764	for (pr = nd_prefix.lh_first; pr; pr = npr) {
765		npr = pr->ndpr_next;
766		if (pr->ndpr_ifp == ifp) {
767			/*
768			 * Because if_detach() does *not* release prefixes
769			 * while purging addresses the reference count will
770			 * still be above zero. We therefore reset it to
771			 * make sure that the prefix really gets purged.
772			 */
773			pr->ndpr_refcnt = 0;
774
775			/*
776			 * Previously, pr->ndpr_addr is removed as well,
777			 * but I strongly believe we don't have to do it.
778			 * nd6_purge() is only called from in6_ifdetach(),
779			 * which removes all the associated interface addresses
780			 * by itself.
781			 * (jinmei@kame.net 20010129)
782			 */
783			prelist_remove(pr);
784		}
785	}
786
787	/* cancel default outgoing interface setting */
788	if (nd6_defifindex == ifp->if_index)
789		nd6_setdefaultiface(0);
790
791	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
792		/* refresh default router list */
793		defrouter_select();
794	}
795
796	/*
797	 * Nuke neighbor cache entries for the ifp.
798	 * Note that rt->rt_ifp may not be the same as ifp,
799	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
800	 * nd6_rtrequest(), and ip6_input().
801	 */
802	ln = llinfo_nd6.ln_next;
803	while (ln && ln != &llinfo_nd6) {
804		struct rtentry *rt;
805		struct sockaddr_dl *sdl;
806
807		nln = ln->ln_next;
808		rt = ln->ln_rt;
809		if (rt && rt->rt_gateway &&
810		    rt->rt_gateway->sa_family == AF_LINK) {
811			sdl = (struct sockaddr_dl *)rt->rt_gateway;
812			if (sdl->sdl_index == ifp->if_index)
813				nln = nd6_free(rt, 0);
814		}
815		ln = nln;
816	}
817}
818
819struct rtentry *
820nd6_lookup(addr6, create, ifp)
821	struct in6_addr *addr6;
822	int create;
823	struct ifnet *ifp;
824{
825	struct rtentry *rt;
826	struct sockaddr_in6 sin6;
827	char ip6buf[INET6_ADDRSTRLEN];
828
829	bzero(&sin6, sizeof(sin6));
830	sin6.sin6_len = sizeof(struct sockaddr_in6);
831	sin6.sin6_family = AF_INET6;
832	sin6.sin6_addr = *addr6;
833	rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL);
834	if (rt) {
835		if ((rt->rt_flags & RTF_LLINFO) == 0 && create) {
836			/*
837			 * This is the case for the default route.
838			 * If we want to create a neighbor cache for the
839			 * address, we should free the route for the
840			 * destination and allocate an interface route.
841			 */
842			RTFREE_LOCKED(rt);
843			rt = NULL;
844		}
845	}
846	if (rt == NULL) {
847		if (create && ifp) {
848			int e;
849
850			/*
851			 * If no route is available and create is set,
852			 * we allocate a host route for the destination
853			 * and treat it like an interface route.
854			 * This hack is necessary for a neighbor which can't
855			 * be covered by our own prefix.
856			 */
857			struct ifaddr *ifa =
858			    ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
859			if (ifa == NULL)
860				return (NULL);
861
862			/*
863			 * Create a new route.  RTF_LLINFO is necessary
864			 * to create a Neighbor Cache entry for the
865			 * destination in nd6_rtrequest which will be
866			 * called in rtrequest via ifa->ifa_rtrequest.
867			 */
868			if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
869			    ifa->ifa_addr, (struct sockaddr *)&all1_sa,
870			    (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
871			    ~RTF_CLONING, &rt)) != 0) {
872				log(LOG_ERR,
873				    "nd6_lookup: failed to add route for a "
874				    "neighbor(%s), errno=%d\n",
875				    ip6_sprintf(ip6buf, addr6), e);
876			}
877			if (rt == NULL)
878				return (NULL);
879			RT_LOCK(rt);
880			if (rt->rt_llinfo) {
881				struct llinfo_nd6 *ln =
882				    (struct llinfo_nd6 *)rt->rt_llinfo;
883				ln->ln_state = ND6_LLINFO_NOSTATE;
884			}
885		} else
886			return (NULL);
887	}
888	RT_LOCK_ASSERT(rt);
889	RT_REMREF(rt);
890	/*
891	 * Validation for the entry.
892	 * Note that the check for rt_llinfo is necessary because a cloned
893	 * route from a parent route that has the L flag (e.g. the default
894	 * route to a p2p interface) may have the flag, too, while the
895	 * destination is not actually a neighbor.
896	 * XXX: we can't use rt->rt_ifp to check for the interface, since
897	 *      it might be the loopback interface if the entry is for our
898	 *      own address on a non-loopback interface. Instead, we should
899	 *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
900	 *	interface.
901	 * Note also that ifa_ifp and ifp may differ when we connect two
902	 * interfaces to a same link, install a link prefix to an interface,
903	 * and try to install a neighbor cache on an interface that does not
904	 * have a route to the prefix.
905	 */
906	if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
907	    rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
908	    (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
909		if (create) {
910			nd6log((LOG_DEBUG,
911			    "nd6_lookup: failed to lookup %s (if = %s)\n",
912			    ip6_sprintf(ip6buf, addr6),
913			    ifp ? if_name(ifp) : "unspec"));
914		}
915		RT_UNLOCK(rt);
916		return (NULL);
917	}
918	RT_UNLOCK(rt);		/* XXX not ready to return rt locked */
919	return (rt);
920}
921
922/*
923 * Test whether a given IPv6 address is a neighbor or not, ignoring
924 * the actual neighbor cache.  The neighbor cache is ignored in order
925 * to not reenter the routing code from within itself.
926 */
927static int
928nd6_is_new_addr_neighbor(addr, ifp)
929	struct sockaddr_in6 *addr;
930	struct ifnet *ifp;
931{
932	struct nd_prefix *pr;
933	struct ifaddr *dstaddr;
934
935	/*
936	 * A link-local address is always a neighbor.
937	 * XXX: a link does not necessarily specify a single interface.
938	 */
939	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
940		struct sockaddr_in6 sin6_copy;
941		u_int32_t zone;
942
943		/*
944		 * We need sin6_copy since sa6_recoverscope() may modify the
945		 * content (XXX).
946		 */
947		sin6_copy = *addr;
948		if (sa6_recoverscope(&sin6_copy))
949			return (0); /* XXX: should be impossible */
950		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
951			return (0);
952		if (sin6_copy.sin6_scope_id == zone)
953			return (1);
954		else
955			return (0);
956	}
957
958	/*
959	 * If the address matches one of our addresses,
960	 * it should be a neighbor.
961	 * If the address matches one of our on-link prefixes, it should be a
962	 * neighbor.
963	 */
964	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
965		if (pr->ndpr_ifp != ifp)
966			continue;
967
968		if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
969			continue;
970
971		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
972		    &addr->sin6_addr, &pr->ndpr_mask))
973			return (1);
974	}
975
976	/*
977	 * If the address is assigned on the node of the other side of
978	 * a p2p interface, the address should be a neighbor.
979	 */
980	dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr);
981	if ((dstaddr != NULL) && (dstaddr->ifa_ifp == ifp))
982		return (1);
983
984	/*
985	 * If the default router list is empty, all addresses are regarded
986	 * as on-link, and thus, as a neighbor.
987	 * XXX: we restrict the condition to hosts, because routers usually do
988	 * not have the "default router list".
989	 */
990	if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
991	    nd6_defifindex == ifp->if_index) {
992		return (1);
993	}
994
995	return (0);
996}
997
998
999/*
1000 * Detect if a given IPv6 address identifies a neighbor on a given link.
1001 * XXX: should take care of the destination of a p2p link?
1002 */
1003int
1004nd6_is_addr_neighbor(addr, ifp)
1005	struct sockaddr_in6 *addr;
1006	struct ifnet *ifp;
1007{
1008
1009	if (nd6_is_new_addr_neighbor(addr, ifp))
1010		return (1);
1011
1012	/*
1013	 * Even if the address matches none of our addresses, it might be
1014	 * in the neighbor cache.
1015	 */
1016	if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
1017		return (1);
1018
1019	return (0);
1020}
1021
1022/*
1023 * Free an nd6 llinfo entry.
1024 * Since the function would cause significant changes in the kernel, DO NOT
1025 * make it global, unless you have a strong reason for the change, and are sure
1026 * that the change is safe.
1027 */
1028static struct llinfo_nd6 *
1029nd6_free(rt, gc)
1030	struct rtentry *rt;
1031	int gc;
1032{
1033	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
1034	struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
1035	struct nd_defrouter *dr;
1036
1037	/*
1038	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1039	 * even though it is not harmful, it was not really necessary.
1040	 */
1041
1042	/* cancel timer */
1043	nd6_llinfo_settimer(ln, -1);
1044
1045	if (!ip6_forwarding) {
1046		int s;
1047		s = splnet();
1048		dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1049		    rt->rt_ifp);
1050
1051		if (dr != NULL && dr->expire &&
1052		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1053			/*
1054			 * If the reason for the deletion is just garbage
1055			 * collection, and the neighbor is an active default
1056			 * router, do not delete it.  Instead, reset the GC
1057			 * timer using the router's lifetime.
1058			 * Simply deleting the entry would affect default
1059			 * router selection, which is not necessarily a good
1060			 * thing, especially when we're using router preference
1061			 * values.
1062			 * XXX: the check for ln_state would be redundant,
1063			 *      but we intentionally keep it just in case.
1064			 */
1065			if (dr->expire > time_second)
1066				nd6_llinfo_settimer(ln,
1067				    (dr->expire - time_second) * hz);
1068			else
1069				nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1070			splx(s);
1071			return (ln->ln_next);
1072		}
1073
1074		if (ln->ln_router || dr) {
1075			/*
1076			 * rt6_flush must be called whether or not the neighbor
1077			 * is in the Default Router List.
1078			 * See a corresponding comment in nd6_na_input().
1079			 */
1080			rt6_flush(&in6, rt->rt_ifp);
1081		}
1082
1083		if (dr) {
1084			/*
1085			 * Unreachablity of a router might affect the default
1086			 * router selection and on-link detection of advertised
1087			 * prefixes.
1088			 */
1089
1090			/*
1091			 * Temporarily fake the state to choose a new default
1092			 * router and to perform on-link determination of
1093			 * prefixes correctly.
1094			 * Below the state will be set correctly,
1095			 * or the entry itself will be deleted.
1096			 */
1097			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1098
1099			/*
1100			 * Since defrouter_select() does not affect the
1101			 * on-link determination and MIP6 needs the check
1102			 * before the default router selection, we perform
1103			 * the check now.
1104			 */
1105			pfxlist_onlink_check();
1106
1107			/*
1108			 * refresh default router list
1109			 */
1110			defrouter_select();
1111		}
1112		splx(s);
1113	}
1114
1115	/*
1116	 * Before deleting the entry, remember the next entry as the
1117	 * return value.  We need this because pfxlist_onlink_check() above
1118	 * might have freed other entries (particularly the old next entry) as
1119	 * a side effect (XXX).
1120	 */
1121	next = ln->ln_next;
1122
1123	/*
1124	 * Detach the route from the routing tree and the list of neighbor
1125	 * caches, and disable the route entry not to be used in already
1126	 * cached routes.
1127	 */
1128	rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
1129	    rt_mask(rt), 0, (struct rtentry **)0);
1130
1131	return (next);
1132}
1133
1134/*
1135 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1136 *
1137 * XXX cost-effective methods?
1138 */
1139void
1140nd6_nud_hint(rt, dst6, force)
1141	struct rtentry *rt;
1142	struct in6_addr *dst6;
1143	int force;
1144{
1145	struct llinfo_nd6 *ln;
1146
1147	/*
1148	 * If the caller specified "rt", use that.  Otherwise, resolve the
1149	 * routing table by supplied "dst6".
1150	 */
1151	if (rt == NULL) {
1152		if (dst6 == NULL)
1153			return;
1154		if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
1155			return;
1156	}
1157
1158	if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1159	    (rt->rt_flags & RTF_LLINFO) == 0 ||
1160	    rt->rt_llinfo == NULL || rt->rt_gateway == NULL ||
1161	    rt->rt_gateway->sa_family != AF_LINK) {
1162		/* This is not a host route. */
1163		return;
1164	}
1165
1166	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1167	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1168		return;
1169
1170	/*
1171	 * if we get upper-layer reachability confirmation many times,
1172	 * it is possible we have false information.
1173	 */
1174	if (!force) {
1175		ln->ln_byhint++;
1176		if (ln->ln_byhint > nd6_maxnudhint)
1177			return;
1178	}
1179
1180	ln->ln_state = ND6_LLINFO_REACHABLE;
1181	if (!ND6_LLINFO_PERMANENT(ln)) {
1182		nd6_llinfo_settimer(ln,
1183		    (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1184	}
1185}
1186
1187void
1188nd6_rtrequest(req, rt, info)
1189	int	req;
1190	struct rtentry *rt;
1191	struct rt_addrinfo *info; /* xxx unused */
1192{
1193	struct sockaddr *gate = rt->rt_gateway;
1194	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1195	static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1196	struct ifnet *ifp = rt->rt_ifp;
1197	struct ifaddr *ifa;
1198
1199	RT_LOCK_ASSERT(rt);
1200
1201	if ((rt->rt_flags & RTF_GATEWAY) != 0)
1202		return;
1203
1204	if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1205		/*
1206		 * This is probably an interface direct route for a link
1207		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1208		 * We do not need special treatment below for such a route.
1209		 * Moreover, the RTF_LLINFO flag which would be set below
1210		 * would annoy the ndp(8) command.
1211		 */
1212		return;
1213	}
1214
1215	if (req == RTM_RESOLVE &&
1216	    (nd6_need_cache(ifp) == 0 || /* stf case */
1217	     !nd6_is_new_addr_neighbor((struct sockaddr_in6 *)rt_key(rt),
1218	     ifp))) {
1219		/*
1220		 * FreeBSD and BSD/OS often make a cloned host route based
1221		 * on a less-specific route (e.g. the default route).
1222		 * If the less specific route does not have a "gateway"
1223		 * (this is the case when the route just goes to a p2p or an
1224		 * stf interface), we'll mistakenly make a neighbor cache for
1225		 * the host route, and will see strange neighbor solicitation
1226		 * for the corresponding destination.  In order to avoid the
1227		 * confusion, we check if the destination of the route is
1228		 * a neighbor in terms of neighbor discovery, and stop the
1229		 * process if not.  Additionally, we remove the LLINFO flag
1230		 * so that ndp(8) will not try to get the neighbor information
1231		 * of the destination.
1232		 */
1233		rt->rt_flags &= ~RTF_LLINFO;
1234		return;
1235	}
1236
1237	switch (req) {
1238	case RTM_ADD:
1239		/*
1240		 * There is no backward compatibility :)
1241		 *
1242		 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1243		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1244		 *	   rt->rt_flags |= RTF_CLONING;
1245		 */
1246		if ((rt->rt_flags & RTF_CLONING) ||
1247		    ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
1248			/*
1249			 * Case 1: This route should come from a route to
1250			 * interface (RTF_CLONING case) or the route should be
1251			 * treated as on-link but is currently not
1252			 * (RTF_LLINFO && ln == NULL case).
1253			 */
1254			rt_setgate(rt, rt_key(rt),
1255				   (struct sockaddr *)&null_sdl);
1256			gate = rt->rt_gateway;
1257			SDL(gate)->sdl_type = ifp->if_type;
1258			SDL(gate)->sdl_index = ifp->if_index;
1259			if (ln)
1260				nd6_llinfo_settimer(ln, 0);
1261			if ((rt->rt_flags & RTF_CLONING) != 0)
1262				break;
1263		}
1264		/*
1265		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1266		 * We don't do that here since llinfo is not ready yet.
1267		 *
1268		 * There are also couple of other things to be discussed:
1269		 * - unsolicited NA code needs improvement beforehand
1270		 * - RFC2461 says we MAY send multicast unsolicited NA
1271		 *   (7.2.6 paragraph 4), however, it also says that we
1272		 *   SHOULD provide a mechanism to prevent multicast NA storm.
1273		 *   we don't have anything like it right now.
1274		 *   note that the mechanism needs a mutual agreement
1275		 *   between proxies, which means that we need to implement
1276		 *   a new protocol, or a new kludge.
1277		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1278		 *   we need to check ip6forwarding before sending it.
1279		 *   (or should we allow proxy ND configuration only for
1280		 *   routers?  there's no mention about proxy ND from hosts)
1281		 */
1282		/* FALLTHROUGH */
1283	case RTM_RESOLVE:
1284		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1285			/*
1286			 * Address resolution isn't necessary for a point to
1287			 * point link, so we can skip this test for a p2p link.
1288			 */
1289			if (gate->sa_family != AF_LINK ||
1290			    gate->sa_len < sizeof(null_sdl)) {
1291				log(LOG_DEBUG,
1292				    "nd6_rtrequest: bad gateway value: %s\n",
1293				    if_name(ifp));
1294				break;
1295			}
1296			SDL(gate)->sdl_type = ifp->if_type;
1297			SDL(gate)->sdl_index = ifp->if_index;
1298		}
1299		if (ln != NULL)
1300			break;	/* This happens on a route change */
1301		/*
1302		 * Case 2: This route may come from cloning, or a manual route
1303		 * add with a LL address.
1304		 */
1305		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1306		rt->rt_llinfo = (caddr_t)ln;
1307		if (ln == NULL) {
1308			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1309			break;
1310		}
1311		nd6_inuse++;
1312		nd6_allocated++;
1313		bzero(ln, sizeof(*ln));
1314		RT_ADDREF(rt);
1315		ln->ln_rt = rt;
1316		callout_init(&ln->ln_timer_ch, 0);
1317
1318		/* this is required for "ndp" command. - shin */
1319		if (req == RTM_ADD) {
1320		        /*
1321			 * gate should have some valid AF_LINK entry,
1322			 * and ln->ln_expire should have some lifetime
1323			 * which is specified by ndp command.
1324			 */
1325			ln->ln_state = ND6_LLINFO_REACHABLE;
1326			ln->ln_byhint = 0;
1327		} else {
1328		        /*
1329			 * When req == RTM_RESOLVE, rt is created and
1330			 * initialized in rtrequest(), so rt_expire is 0.
1331			 */
1332			ln->ln_state = ND6_LLINFO_NOSTATE;
1333			nd6_llinfo_settimer(ln, 0);
1334		}
1335		rt->rt_flags |= RTF_LLINFO;
1336		ln->ln_next = llinfo_nd6.ln_next;
1337		llinfo_nd6.ln_next = ln;
1338		ln->ln_prev = &llinfo_nd6;
1339		ln->ln_next->ln_prev = ln;
1340
1341		/*
1342		 * check if rt_key(rt) is one of my address assigned
1343		 * to the interface.
1344		 */
1345		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1346		    &SIN6(rt_key(rt))->sin6_addr);
1347		if (ifa) {
1348			caddr_t macp = nd6_ifptomac(ifp);
1349			nd6_llinfo_settimer(ln, -1);
1350			ln->ln_state = ND6_LLINFO_REACHABLE;
1351			ln->ln_byhint = 0;
1352			if (macp) {
1353				bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1354				SDL(gate)->sdl_alen = ifp->if_addrlen;
1355			}
1356			if (nd6_useloopback) {
1357				rt->rt_ifp = &loif[0];	/* XXX */
1358				/*
1359				 * Make sure rt_ifa be equal to the ifaddr
1360				 * corresponding to the address.
1361				 * We need this because when we refer
1362				 * rt_ifa->ia6_flags in ip6_input, we assume
1363				 * that the rt_ifa points to the address instead
1364				 * of the loopback address.
1365				 */
1366				if (ifa != rt->rt_ifa) {
1367					IFAFREE(rt->rt_ifa);
1368					IFAREF(ifa);
1369					rt->rt_ifa = ifa;
1370				}
1371			}
1372		} else if (rt->rt_flags & RTF_ANNOUNCE) {
1373			nd6_llinfo_settimer(ln, -1);
1374			ln->ln_state = ND6_LLINFO_REACHABLE;
1375			ln->ln_byhint = 0;
1376
1377			/* join solicited node multicast for proxy ND */
1378			if (ifp->if_flags & IFF_MULTICAST) {
1379				struct in6_addr llsol;
1380				int error;
1381
1382				llsol = SIN6(rt_key(rt))->sin6_addr;
1383				llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1384				llsol.s6_addr32[1] = 0;
1385				llsol.s6_addr32[2] = htonl(1);
1386				llsol.s6_addr8[12] = 0xff;
1387				if (in6_setscope(&llsol, ifp, NULL))
1388					break;
1389				if (in6_addmulti(&llsol, ifp,
1390				    &error, 0) == NULL) {
1391					char ip6buf[INET6_ADDRSTRLEN];
1392					nd6log((LOG_ERR, "%s: failed to join "
1393					    "%s (errno=%d)\n", if_name(ifp),
1394					    ip6_sprintf(ip6buf, &llsol),
1395					    error));
1396				}
1397			}
1398		}
1399		break;
1400
1401	case RTM_DELETE:
1402		if (ln == NULL)
1403			break;
1404		/* leave from solicited node multicast for proxy ND */
1405		if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1406		    (ifp->if_flags & IFF_MULTICAST) != 0) {
1407			struct in6_addr llsol;
1408			struct in6_multi *in6m;
1409
1410			llsol = SIN6(rt_key(rt))->sin6_addr;
1411			llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1412			llsol.s6_addr32[1] = 0;
1413			llsol.s6_addr32[2] = htonl(1);
1414			llsol.s6_addr8[12] = 0xff;
1415			if (in6_setscope(&llsol, ifp, NULL) == 0) {
1416				IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1417				if (in6m)
1418					in6_delmulti(in6m);
1419			} else
1420				; /* XXX: should not happen. bark here? */
1421		}
1422		nd6_inuse--;
1423		ln->ln_next->ln_prev = ln->ln_prev;
1424		ln->ln_prev->ln_next = ln->ln_next;
1425		ln->ln_prev = NULL;
1426		nd6_llinfo_settimer(ln, -1);
1427		RT_REMREF(rt);
1428		rt->rt_llinfo = 0;
1429		rt->rt_flags &= ~RTF_LLINFO;
1430		clear_llinfo_pqueue(ln);
1431		Free((caddr_t)ln);
1432	}
1433}
1434
1435int
1436nd6_ioctl(cmd, data, ifp)
1437	u_long cmd;
1438	caddr_t	data;
1439	struct ifnet *ifp;
1440{
1441	struct in6_drlist *drl = (struct in6_drlist *)data;
1442	struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1443	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1444	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1445	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1446	struct nd_defrouter *dr;
1447	struct nd_prefix *pr;
1448	struct rtentry *rt;
1449	int i = 0, error = 0;
1450	int s;
1451
1452	switch (cmd) {
1453	case SIOCGDRLST_IN6:
1454		/*
1455		 * obsolete API, use sysctl under net.inet6.icmp6
1456		 */
1457		bzero(drl, sizeof(*drl));
1458		s = splnet();
1459		dr = TAILQ_FIRST(&nd_defrouter);
1460		while (dr && i < DRLSTSIZ) {
1461			drl->defrouter[i].rtaddr = dr->rtaddr;
1462			in6_clearscope(&drl->defrouter[i].rtaddr);
1463
1464			drl->defrouter[i].flags = dr->flags;
1465			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1466			drl->defrouter[i].expire = dr->expire;
1467			drl->defrouter[i].if_index = dr->ifp->if_index;
1468			i++;
1469			dr = TAILQ_NEXT(dr, dr_entry);
1470		}
1471		splx(s);
1472		break;
1473	case SIOCGPRLST_IN6:
1474		/*
1475		 * obsolete API, use sysctl under net.inet6.icmp6
1476		 *
1477		 * XXX the structure in6_prlist was changed in backward-
1478		 * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
1479		 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1480		 */
1481		/*
1482		 * XXX meaning of fields, especialy "raflags", is very
1483		 * differnet between RA prefix list and RR/static prefix list.
1484		 * how about separating ioctls into two?
1485		 */
1486		bzero(oprl, sizeof(*oprl));
1487		s = splnet();
1488		pr = nd_prefix.lh_first;
1489		while (pr && i < PRLSTSIZ) {
1490			struct nd_pfxrouter *pfr;
1491			int j;
1492
1493			oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1494			oprl->prefix[i].raflags = pr->ndpr_raf;
1495			oprl->prefix[i].prefixlen = pr->ndpr_plen;
1496			oprl->prefix[i].vltime = pr->ndpr_vltime;
1497			oprl->prefix[i].pltime = pr->ndpr_pltime;
1498			oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1499			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1500				oprl->prefix[i].expire = 0;
1501			else {
1502				time_t maxexpire;
1503
1504				/* XXX: we assume time_t is signed. */
1505				maxexpire = (-1) &
1506				    ~((time_t)1 <<
1507				    ((sizeof(maxexpire) * 8) - 1));
1508				if (pr->ndpr_vltime <
1509				    maxexpire - pr->ndpr_lastupdate) {
1510					oprl->prefix[i].expire =
1511					    pr->ndpr_lastupdate +
1512					    pr->ndpr_vltime;
1513				} else
1514					oprl->prefix[i].expire = maxexpire;
1515			}
1516
1517			pfr = pr->ndpr_advrtrs.lh_first;
1518			j = 0;
1519			while (pfr) {
1520				if (j < DRLSTSIZ) {
1521#define RTRADDR oprl->prefix[i].advrtr[j]
1522					RTRADDR = pfr->router->rtaddr;
1523					in6_clearscope(&RTRADDR);
1524#undef RTRADDR
1525				}
1526				j++;
1527				pfr = pfr->pfr_next;
1528			}
1529			oprl->prefix[i].advrtrs = j;
1530			oprl->prefix[i].origin = PR_ORIG_RA;
1531
1532			i++;
1533			pr = pr->ndpr_next;
1534		}
1535		splx(s);
1536
1537		break;
1538	case OSIOCGIFINFO_IN6:
1539#define ND	ndi->ndi
1540		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1541		bzero(&ND, sizeof(ND));
1542		ND.linkmtu = IN6_LINKMTU(ifp);
1543		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1544		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1545		ND.reachable = ND_IFINFO(ifp)->reachable;
1546		ND.retrans = ND_IFINFO(ifp)->retrans;
1547		ND.flags = ND_IFINFO(ifp)->flags;
1548		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1549		ND.chlim = ND_IFINFO(ifp)->chlim;
1550		break;
1551	case SIOCGIFINFO_IN6:
1552		ND = *ND_IFINFO(ifp);
1553		break;
1554	case SIOCSIFINFO_IN6:
1555		/*
1556		 * used to change host variables from userland.
1557		 * intented for a use on router to reflect RA configurations.
1558		 */
1559		/* 0 means 'unspecified' */
1560		if (ND.linkmtu != 0) {
1561			if (ND.linkmtu < IPV6_MMTU ||
1562			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1563				error = EINVAL;
1564				break;
1565			}
1566			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1567		}
1568
1569		if (ND.basereachable != 0) {
1570			int obasereachable = ND_IFINFO(ifp)->basereachable;
1571
1572			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1573			if (ND.basereachable != obasereachable)
1574				ND_IFINFO(ifp)->reachable =
1575				    ND_COMPUTE_RTIME(ND.basereachable);
1576		}
1577		if (ND.retrans != 0)
1578			ND_IFINFO(ifp)->retrans = ND.retrans;
1579		if (ND.chlim != 0)
1580			ND_IFINFO(ifp)->chlim = ND.chlim;
1581		/* FALLTHROUGH */
1582	case SIOCSIFINFO_FLAGS:
1583		ND_IFINFO(ifp)->flags = ND.flags;
1584		break;
1585#undef ND
1586	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1587		/* sync kernel routing table with the default router list */
1588		defrouter_reset();
1589		defrouter_select();
1590		break;
1591	case SIOCSPFXFLUSH_IN6:
1592	{
1593		/* flush all the prefix advertised by routers */
1594		struct nd_prefix *pr, *next;
1595
1596		s = splnet();
1597		for (pr = nd_prefix.lh_first; pr; pr = next) {
1598			struct in6_ifaddr *ia, *ia_next;
1599
1600			next = pr->ndpr_next;
1601
1602			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1603				continue; /* XXX */
1604
1605			/* do we really have to remove addresses as well? */
1606			for (ia = in6_ifaddr; ia; ia = ia_next) {
1607				/* ia might be removed.  keep the next ptr. */
1608				ia_next = ia->ia_next;
1609
1610				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1611					continue;
1612
1613				if (ia->ia6_ndpr == pr)
1614					in6_purgeaddr(&ia->ia_ifa);
1615			}
1616			prelist_remove(pr);
1617		}
1618		splx(s);
1619		break;
1620	}
1621	case SIOCSRTRFLUSH_IN6:
1622	{
1623		/* flush all the default routers */
1624		struct nd_defrouter *dr, *next;
1625
1626		s = splnet();
1627		defrouter_reset();
1628		for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = next) {
1629			next = TAILQ_NEXT(dr, dr_entry);
1630			defrtrlist_del(dr);
1631		}
1632		defrouter_select();
1633		splx(s);
1634		break;
1635	}
1636	case SIOCGNBRINFO_IN6:
1637	{
1638		struct llinfo_nd6 *ln;
1639		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1640
1641		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1642			return (error);
1643
1644		s = splnet();
1645		if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1646			error = EINVAL;
1647			splx(s);
1648			break;
1649		}
1650		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1651		nbi->state = ln->ln_state;
1652		nbi->asked = ln->ln_asked;
1653		nbi->isrouter = ln->ln_router;
1654		nbi->expire = ln->ln_expire;
1655		splx(s);
1656
1657		break;
1658	}
1659	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1660		ndif->ifindex = nd6_defifindex;
1661		break;
1662	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1663		return (nd6_setdefaultiface(ndif->ifindex));
1664	}
1665	return (error);
1666}
1667
1668/*
1669 * Create neighbor cache entry and cache link-layer address,
1670 * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1671 */
1672struct rtentry *
1673nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
1674	struct ifnet *ifp;
1675	struct in6_addr *from;
1676	char *lladdr;
1677	int lladdrlen;
1678	int type;	/* ICMP6 type */
1679	int code;	/* type dependent information */
1680{
1681	struct rtentry *rt = NULL;
1682	struct llinfo_nd6 *ln = NULL;
1683	int is_newentry;
1684	struct sockaddr_dl *sdl = NULL;
1685	int do_update;
1686	int olladdr;
1687	int llchange;
1688	int newstate = 0;
1689
1690	if (ifp == NULL)
1691		panic("ifp == NULL in nd6_cache_lladdr");
1692	if (from == NULL)
1693		panic("from == NULL in nd6_cache_lladdr");
1694
1695	/* nothing must be updated for unspecified address */
1696	if (IN6_IS_ADDR_UNSPECIFIED(from))
1697		return NULL;
1698
1699	/*
1700	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1701	 * the caller.
1702	 *
1703	 * XXX If the link does not have link-layer adderss, what should
1704	 * we do? (ifp->if_addrlen == 0)
1705	 * Spec says nothing in sections for RA, RS and NA.  There's small
1706	 * description on it in NS section (RFC 2461 7.2.3).
1707	 */
1708
1709	rt = nd6_lookup(from, 0, ifp);
1710	if (rt == NULL) {
1711		rt = nd6_lookup(from, 1, ifp);
1712		is_newentry = 1;
1713	} else {
1714		/* do nothing if static ndp is set */
1715		if (rt->rt_flags & RTF_STATIC)
1716			return NULL;
1717		is_newentry = 0;
1718	}
1719
1720	if (rt == NULL)
1721		return NULL;
1722	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1723fail:
1724		(void)nd6_free(rt, 0);
1725		return NULL;
1726	}
1727	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1728	if (ln == NULL)
1729		goto fail;
1730	if (rt->rt_gateway == NULL)
1731		goto fail;
1732	if (rt->rt_gateway->sa_family != AF_LINK)
1733		goto fail;
1734	sdl = SDL(rt->rt_gateway);
1735
1736	olladdr = (sdl->sdl_alen) ? 1 : 0;
1737	if (olladdr && lladdr) {
1738		if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1739			llchange = 1;
1740		else
1741			llchange = 0;
1742	} else
1743		llchange = 0;
1744
1745	/*
1746	 * newentry olladdr  lladdr  llchange	(*=record)
1747	 *	0	n	n	--	(1)
1748	 *	0	y	n	--	(2)
1749	 *	0	n	y	--	(3) * STALE
1750	 *	0	y	y	n	(4) *
1751	 *	0	y	y	y	(5) * STALE
1752	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1753	 *	1	--	y	--	(7) * STALE
1754	 */
1755
1756	if (lladdr) {		/* (3-5) and (7) */
1757		/*
1758		 * Record source link-layer address
1759		 * XXX is it dependent to ifp->if_type?
1760		 */
1761		sdl->sdl_alen = ifp->if_addrlen;
1762		bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1763	}
1764
1765	if (!is_newentry) {
1766		if ((!olladdr && lladdr != NULL) ||	/* (3) */
1767		    (olladdr && lladdr != NULL && llchange)) {	/* (5) */
1768			do_update = 1;
1769			newstate = ND6_LLINFO_STALE;
1770		} else					/* (1-2,4) */
1771			do_update = 0;
1772	} else {
1773		do_update = 1;
1774		if (lladdr == NULL)			/* (6) */
1775			newstate = ND6_LLINFO_NOSTATE;
1776		else					/* (7) */
1777			newstate = ND6_LLINFO_STALE;
1778	}
1779
1780	if (do_update) {
1781		/*
1782		 * Update the state of the neighbor cache.
1783		 */
1784		ln->ln_state = newstate;
1785
1786		if (ln->ln_state == ND6_LLINFO_STALE) {
1787			/*
1788			 * XXX: since nd6_output() below will cause
1789			 * state tansition to DELAY and reset the timer,
1790			 * we must set the timer now, although it is actually
1791			 * meaningless.
1792			 */
1793			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1794
1795			if (ln->ln_hold) {
1796				struct mbuf *m_hold, *m_hold_next;
1797
1798				/*
1799				 * reset the ln_hold in advance, to explicitly
1800				 * prevent a ln_hold lookup in nd6_output()
1801				 * (wouldn't happen, though...)
1802				 */
1803				for (m_hold = ln->ln_hold, ln->ln_hold = NULL;
1804				    m_hold; m_hold = m_hold_next) {
1805					m_hold_next = m_hold->m_nextpkt;
1806					m_hold->m_nextpkt = NULL;
1807
1808					/*
1809					 * we assume ifp is not a p2p here, so
1810					 * just set the 2nd argument as the
1811					 * 1st one.
1812					 */
1813					nd6_output(ifp, ifp, m_hold,
1814					     (struct sockaddr_in6 *)rt_key(rt),
1815					     rt);
1816				}
1817			}
1818		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1819			/* probe right away */
1820			nd6_llinfo_settimer((void *)ln, 0);
1821		}
1822	}
1823
1824	/*
1825	 * ICMP6 type dependent behavior.
1826	 *
1827	 * NS: clear IsRouter if new entry
1828	 * RS: clear IsRouter
1829	 * RA: set IsRouter if there's lladdr
1830	 * redir: clear IsRouter if new entry
1831	 *
1832	 * RA case, (1):
1833	 * The spec says that we must set IsRouter in the following cases:
1834	 * - If lladdr exist, set IsRouter.  This means (1-5).
1835	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1836	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1837	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1838	 * neighbor cache, this is similar to (6).
1839	 * This case is rare but we figured that we MUST NOT set IsRouter.
1840	 *
1841	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1842	 *							D R
1843	 *	0	n	n	--	(1)	c   ?     s
1844	 *	0	y	n	--	(2)	c   s     s
1845	 *	0	n	y	--	(3)	c   s     s
1846	 *	0	y	y	n	(4)	c   s     s
1847	 *	0	y	y	y	(5)	c   s     s
1848	 *	1	--	n	--	(6) c	c 	c s
1849	 *	1	--	y	--	(7) c	c   s	c s
1850	 *
1851	 *					(c=clear s=set)
1852	 */
1853	switch (type & 0xff) {
1854	case ND_NEIGHBOR_SOLICIT:
1855		/*
1856		 * New entry must have is_router flag cleared.
1857		 */
1858		if (is_newentry)	/* (6-7) */
1859			ln->ln_router = 0;
1860		break;
1861	case ND_REDIRECT:
1862		/*
1863		 * If the icmp is a redirect to a better router, always set the
1864		 * is_router flag.  Otherwise, if the entry is newly created,
1865		 * clear the flag.  [RFC 2461, sec 8.3]
1866		 */
1867		if (code == ND_REDIRECT_ROUTER)
1868			ln->ln_router = 1;
1869		else if (is_newentry) /* (6-7) */
1870			ln->ln_router = 0;
1871		break;
1872	case ND_ROUTER_SOLICIT:
1873		/*
1874		 * is_router flag must always be cleared.
1875		 */
1876		ln->ln_router = 0;
1877		break;
1878	case ND_ROUTER_ADVERT:
1879		/*
1880		 * Mark an entry with lladdr as a router.
1881		 */
1882		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
1883		    (is_newentry && lladdr)) {			/* (7) */
1884			ln->ln_router = 1;
1885		}
1886		break;
1887	}
1888
1889	/*
1890	 * When the link-layer address of a router changes, select the
1891	 * best router again.  In particular, when the neighbor entry is newly
1892	 * created, it might affect the selection policy.
1893	 * Question: can we restrict the first condition to the "is_newentry"
1894	 * case?
1895	 * XXX: when we hear an RA from a new router with the link-layer
1896	 * address option, defrouter_select() is called twice, since
1897	 * defrtrlist_update called the function as well.  However, I believe
1898	 * we can compromise the overhead, since it only happens the first
1899	 * time.
1900	 * XXX: although defrouter_select() should not have a bad effect
1901	 * for those are not autoconfigured hosts, we explicitly avoid such
1902	 * cases for safety.
1903	 */
1904	if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1905		defrouter_select();
1906
1907	return rt;
1908}
1909
1910static void
1911nd6_slowtimo(ignored_arg)
1912    void *ignored_arg;
1913{
1914	struct nd_ifinfo *nd6if;
1915	struct ifnet *ifp;
1916
1917	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1918	    nd6_slowtimo, NULL);
1919	IFNET_RLOCK();
1920	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
1921		nd6if = ND_IFINFO(ifp);
1922		if (nd6if->basereachable && /* already initialized */
1923		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1924			/*
1925			 * Since reachable time rarely changes by router
1926			 * advertisements, we SHOULD insure that a new random
1927			 * value gets recomputed at least once every few hours.
1928			 * (RFC 2461, 6.3.4)
1929			 */
1930			nd6if->recalctm = nd6_recalc_reachtm_interval;
1931			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1932		}
1933	}
1934	IFNET_RUNLOCK();
1935}
1936
1937#define senderr(e) { error = (e); goto bad;}
1938int
1939nd6_output(ifp, origifp, m0, dst, rt0)
1940	struct ifnet *ifp;
1941	struct ifnet *origifp;
1942	struct mbuf *m0;
1943	struct sockaddr_in6 *dst;
1944	struct rtentry *rt0;
1945{
1946	struct mbuf *m = m0;
1947	struct rtentry *rt = rt0;
1948	struct sockaddr_in6 *gw6 = NULL;
1949	struct llinfo_nd6 *ln = NULL;
1950	int error = 0;
1951
1952	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1953		goto sendpkt;
1954
1955	if (nd6_need_cache(ifp) == 0)
1956		goto sendpkt;
1957
1958	/*
1959	 * next hop determination.  This routine is derived from ether_output.
1960	 */
1961	/* NB: the locking here is tortuous... */
1962	if (rt != NULL)
1963		RT_LOCK(rt);
1964again:
1965	if (rt != NULL) {
1966		if ((rt->rt_flags & RTF_UP) == 0) {
1967			RT_UNLOCK(rt);
1968			rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL);
1969			if (rt != NULL) {
1970				RT_REMREF(rt);
1971				if (rt->rt_ifp != ifp)
1972					/*
1973					 * XXX maybe we should update ifp too,
1974					 * but the original code didn't and I
1975					 * don't know what is correct here.
1976					 */
1977					goto again;
1978			} else
1979				senderr(EHOSTUNREACH);
1980		}
1981
1982		if (rt->rt_flags & RTF_GATEWAY) {
1983			gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1984
1985			/*
1986			 * We skip link-layer address resolution and NUD
1987			 * if the gateway is not a neighbor from ND point
1988			 * of view, regardless of the value of nd_ifinfo.flags.
1989			 * The second condition is a bit tricky; we skip
1990			 * if the gateway is our own address, which is
1991			 * sometimes used to install a route to a p2p link.
1992			 */
1993			if (!nd6_is_addr_neighbor(gw6, ifp) ||
1994			    in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1995				RT_UNLOCK(rt);
1996				/*
1997				 * We allow this kind of tricky route only
1998				 * when the outgoing interface is p2p.
1999				 * XXX: we may need a more generic rule here.
2000				 */
2001				if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
2002					senderr(EHOSTUNREACH);
2003
2004				goto sendpkt;
2005			}
2006
2007			if (rt->rt_gwroute == NULL)
2008				goto lookup;
2009			rt = rt->rt_gwroute;
2010			RT_LOCK(rt);		/* NB: gwroute */
2011			if ((rt->rt_flags & RTF_UP) == 0) {
2012				rtfree(rt);	/* unlock gwroute */
2013				rt = rt0;
2014			lookup:
2015				RT_UNLOCK(rt0);
2016				rt = rtalloc1(rt->rt_gateway, 1, 0UL);
2017				if (rt == rt0) {
2018					rt0->rt_gwroute = NULL;
2019					RT_REMREF(rt0);
2020					RT_UNLOCK(rt0);
2021					senderr(EHOSTUNREACH);
2022				}
2023				RT_LOCK(rt0);
2024				rt0->rt_gwroute = rt;
2025				if (rt == NULL) {
2026					RT_UNLOCK(rt0);
2027					senderr(EHOSTUNREACH);
2028				}
2029			}
2030			RT_UNLOCK(rt0);
2031		}
2032		RT_UNLOCK(rt);
2033	}
2034
2035	/*
2036	 * Address resolution or Neighbor Unreachability Detection
2037	 * for the next hop.
2038	 * At this point, the destination of the packet must be a unicast
2039	 * or an anycast address(i.e. not a multicast).
2040	 */
2041
2042	/* Look up the neighbor cache for the nexthop */
2043	if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
2044		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2045	else {
2046		/*
2047		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2048		 * the condition below is not very efficient.  But we believe
2049		 * it is tolerable, because this should be a rare case.
2050		 */
2051		if (nd6_is_addr_neighbor(dst, ifp) &&
2052		    (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
2053			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2054	}
2055	if (ln == NULL || rt == NULL) {
2056		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2057		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2058			char ip6buf[INET6_ADDRSTRLEN];
2059			log(LOG_DEBUG,
2060			    "nd6_output: can't allocate llinfo for %s "
2061			    "(ln=%p, rt=%p)\n",
2062			    ip6_sprintf(ip6buf, &dst->sin6_addr), ln, rt);
2063			senderr(EIO);	/* XXX: good error? */
2064		}
2065
2066		goto sendpkt;	/* send anyway */
2067	}
2068
2069	/* We don't have to do link-layer address resolution on a p2p link. */
2070	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2071	    ln->ln_state < ND6_LLINFO_REACHABLE) {
2072		ln->ln_state = ND6_LLINFO_STALE;
2073		nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
2074	}
2075
2076	/*
2077	 * The first time we send a packet to a neighbor whose entry is
2078	 * STALE, we have to change the state to DELAY and a sets a timer to
2079	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2080	 * neighbor unreachability detection on expiration.
2081	 * (RFC 2461 7.3.3)
2082	 */
2083	if (ln->ln_state == ND6_LLINFO_STALE) {
2084		ln->ln_asked = 0;
2085		ln->ln_state = ND6_LLINFO_DELAY;
2086		nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
2087	}
2088
2089	/*
2090	 * If the neighbor cache entry has a state other than INCOMPLETE
2091	 * (i.e. its link-layer address is already resolved), just
2092	 * send the packet.
2093	 */
2094	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2095		goto sendpkt;
2096
2097	/*
2098	 * There is a neighbor cache entry, but no ethernet address
2099	 * response yet.  Append this latest packet to the end of the
2100	 * packet queue in the mbuf, unless the number of the packet
2101	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
2102	 * the oldest packet in the queue will be removed.
2103	 */
2104	if (ln->ln_state == ND6_LLINFO_NOSTATE)
2105		ln->ln_state = ND6_LLINFO_INCOMPLETE;
2106	if (ln->ln_hold) {
2107		struct mbuf *m_hold;
2108		int i;
2109
2110		i = 0;
2111		for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2112			i++;
2113			if (m_hold->m_nextpkt == NULL) {
2114				m_hold->m_nextpkt = m;
2115				break;
2116			}
2117		}
2118		while (i >= nd6_maxqueuelen) {
2119			m_hold = ln->ln_hold;
2120			ln->ln_hold = ln->ln_hold->m_nextpkt;
2121			m_freem(m_hold);
2122			i--;
2123		}
2124	} else {
2125		ln->ln_hold = m;
2126	}
2127
2128	/*
2129	 * If there has been no NS for the neighbor after entering the
2130	 * INCOMPLETE state, send the first solicitation.
2131	 */
2132	if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2133		ln->ln_asked++;
2134		nd6_llinfo_settimer(ln,
2135		    (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2136		nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2137	}
2138	return (0);
2139
2140  sendpkt:
2141	/* discard the packet if IPv6 operation is disabled on the interface */
2142	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2143		error = ENETDOWN; /* better error? */
2144		goto bad;
2145	}
2146
2147#ifdef IPSEC
2148	/* clean ipsec history once it goes out of the node */
2149	ipsec_delaux(m);
2150#endif
2151
2152#ifdef MAC
2153	mac_create_mbuf_linklayer(ifp, m);
2154#endif
2155	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
2156		return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
2157		    rt));
2158	}
2159	return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
2160
2161  bad:
2162	if (m)
2163		m_freem(m);
2164	return (error);
2165}
2166#undef senderr
2167
2168int
2169nd6_need_cache(ifp)
2170	struct ifnet *ifp;
2171{
2172	/*
2173	 * XXX: we currently do not make neighbor cache on any interface
2174	 * other than ARCnet, Ethernet, FDDI and GIF.
2175	 *
2176	 * RFC2893 says:
2177	 * - unidirectional tunnels needs no ND
2178	 */
2179	switch (ifp->if_type) {
2180	case IFT_ARCNET:
2181	case IFT_ETHER:
2182	case IFT_FDDI:
2183	case IFT_IEEE1394:
2184#ifdef IFT_L2VLAN
2185	case IFT_L2VLAN:
2186#endif
2187#ifdef IFT_IEEE80211
2188	case IFT_IEEE80211:
2189#endif
2190#ifdef IFT_CARP
2191	case IFT_CARP:
2192#endif
2193	case IFT_GIF:		/* XXX need more cases? */
2194	case IFT_PPP:
2195	case IFT_TUNNEL:
2196	case IFT_BRIDGE:
2197	case IFT_PROPVIRTUAL:
2198		return (1);
2199	default:
2200		return (0);
2201	}
2202}
2203
2204int
2205nd6_storelladdr(ifp, rt0, m, dst, desten)
2206	struct ifnet *ifp;
2207	struct rtentry *rt0;
2208	struct mbuf *m;
2209	struct sockaddr *dst;
2210	u_char *desten;
2211{
2212	struct sockaddr_dl *sdl;
2213	struct rtentry *rt;
2214	int error;
2215
2216	if (m->m_flags & M_MCAST) {
2217		int i;
2218
2219		switch (ifp->if_type) {
2220		case IFT_ETHER:
2221		case IFT_FDDI:
2222#ifdef IFT_L2VLAN
2223		case IFT_L2VLAN:
2224#endif
2225#ifdef IFT_IEEE80211
2226		case IFT_IEEE80211:
2227#endif
2228		case IFT_BRIDGE:
2229		case IFT_ISO88025:
2230			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2231						 desten);
2232			return (0);
2233		case IFT_IEEE1394:
2234			/*
2235			 * netbsd can use if_broadcastaddr, but we don't do so
2236			 * to reduce # of ifdef.
2237			 */
2238			for (i = 0; i < ifp->if_addrlen; i++)
2239				desten[i] = ~0;
2240			return (0);
2241		case IFT_ARCNET:
2242			*desten = 0;
2243			return (0);
2244		default:
2245			m_freem(m);
2246			return (EAFNOSUPPORT);
2247		}
2248	}
2249
2250	if (rt0 == NULL) {
2251		/* this could happen, if we could not allocate memory */
2252		m_freem(m);
2253		return (ENOMEM);
2254	}
2255
2256	error = rt_check(&rt, &rt0, dst);
2257	if (error) {
2258		m_freem(m);
2259		return (error);
2260	}
2261	RT_UNLOCK(rt);
2262
2263	if (rt->rt_gateway->sa_family != AF_LINK) {
2264		printf("nd6_storelladdr: something odd happens\n");
2265		m_freem(m);
2266		return (EINVAL);
2267	}
2268	sdl = SDL(rt->rt_gateway);
2269	if (sdl->sdl_alen == 0) {
2270		/* this should be impossible, but we bark here for debugging */
2271		printf("nd6_storelladdr: sdl_alen == 0\n");
2272		m_freem(m);
2273		return (EINVAL);
2274	}
2275
2276	bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2277	return (0);
2278}
2279
2280static void
2281clear_llinfo_pqueue(ln)
2282	struct llinfo_nd6 *ln;
2283{
2284	struct mbuf *m_hold, *m_hold_next;
2285
2286	for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2287		m_hold_next = m_hold->m_nextpkt;
2288		m_hold->m_nextpkt = NULL;
2289		m_freem(m_hold);
2290	}
2291
2292	ln->ln_hold = NULL;
2293	return;
2294}
2295
2296static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2297static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2298#ifdef SYSCTL_DECL
2299SYSCTL_DECL(_net_inet6_icmp6);
2300#endif
2301SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2302	CTLFLAG_RD, nd6_sysctl_drlist, "");
2303SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2304	CTLFLAG_RD, nd6_sysctl_prlist, "");
2305SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2306	CTLFLAG_RW, &nd6_maxqueuelen, 1, "");
2307
2308static int
2309nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2310{
2311	int error;
2312	char buf[1024];
2313	struct in6_defrouter *d, *de;
2314	struct nd_defrouter *dr;
2315
2316	if (req->newptr)
2317		return EPERM;
2318	error = 0;
2319
2320	for (dr = TAILQ_FIRST(&nd_defrouter); dr;
2321	     dr = TAILQ_NEXT(dr, dr_entry)) {
2322		d = (struct in6_defrouter *)buf;
2323		de = (struct in6_defrouter *)(buf + sizeof(buf));
2324
2325		if (d + 1 <= de) {
2326			bzero(d, sizeof(*d));
2327			d->rtaddr.sin6_family = AF_INET6;
2328			d->rtaddr.sin6_len = sizeof(d->rtaddr);
2329			d->rtaddr.sin6_addr = dr->rtaddr;
2330			sa6_recoverscope(&d->rtaddr);
2331			d->flags = dr->flags;
2332			d->rtlifetime = dr->rtlifetime;
2333			d->expire = dr->expire;
2334			d->if_index = dr->ifp->if_index;
2335		} else
2336			panic("buffer too short");
2337
2338		error = SYSCTL_OUT(req, buf, sizeof(*d));
2339		if (error)
2340			break;
2341	}
2342
2343	return (error);
2344}
2345
2346static int
2347nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2348{
2349	int error;
2350	char buf[1024];
2351	struct in6_prefix *p, *pe;
2352	struct nd_prefix *pr;
2353	char ip6buf[INET6_ADDRSTRLEN];
2354
2355	if (req->newptr)
2356		return EPERM;
2357	error = 0;
2358
2359	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2360		u_short advrtrs;
2361		size_t advance;
2362		struct sockaddr_in6 *sin6, *s6;
2363		struct nd_pfxrouter *pfr;
2364
2365		p = (struct in6_prefix *)buf;
2366		pe = (struct in6_prefix *)(buf + sizeof(buf));
2367
2368		if (p + 1 <= pe) {
2369			bzero(p, sizeof(*p));
2370			sin6 = (struct sockaddr_in6 *)(p + 1);
2371
2372			p->prefix = pr->ndpr_prefix;
2373			if (sa6_recoverscope(&p->prefix)) {
2374				log(LOG_ERR,
2375				    "scope error in prefix list (%s)\n",
2376				    ip6_sprintf(ip6buf, &p->prefix.sin6_addr));
2377				/* XXX: press on... */
2378			}
2379			p->raflags = pr->ndpr_raf;
2380			p->prefixlen = pr->ndpr_plen;
2381			p->vltime = pr->ndpr_vltime;
2382			p->pltime = pr->ndpr_pltime;
2383			p->if_index = pr->ndpr_ifp->if_index;
2384			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2385				p->expire = 0;
2386			else {
2387				time_t maxexpire;
2388
2389				/* XXX: we assume time_t is signed. */
2390				maxexpire = (-1) &
2391				    ~((time_t)1 <<
2392				    ((sizeof(maxexpire) * 8) - 1));
2393				if (pr->ndpr_vltime <
2394				    maxexpire - pr->ndpr_lastupdate) {
2395				    p->expire = pr->ndpr_lastupdate +
2396				        pr->ndpr_vltime;
2397				} else
2398					p->expire = maxexpire;
2399			}
2400			p->refcnt = pr->ndpr_refcnt;
2401			p->flags = pr->ndpr_stateflags;
2402			p->origin = PR_ORIG_RA;
2403			advrtrs = 0;
2404			for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2405			     pfr = pfr->pfr_next) {
2406				if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2407					advrtrs++;
2408					continue;
2409				}
2410				s6 = &sin6[advrtrs];
2411				bzero(s6, sizeof(*s6));
2412				s6->sin6_family = AF_INET6;
2413				s6->sin6_len = sizeof(*sin6);
2414				s6->sin6_addr = pfr->router->rtaddr;
2415				if (sa6_recoverscope(s6)) {
2416					log(LOG_ERR,
2417					    "scope error in "
2418					    "prefix list (%s)\n",
2419					    ip6_sprintf(ip6buf,
2420						    &pfr->router->rtaddr));
2421				}
2422				advrtrs++;
2423			}
2424			p->advrtrs = advrtrs;
2425		} else
2426			panic("buffer too short");
2427
2428		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2429		error = SYSCTL_OUT(req, buf, advance);
2430		if (error)
2431			break;
2432	}
2433
2434	return (error);
2435}
2436