nd6.c revision 163606
1/*	$FreeBSD: head/sys/netinet6/nd6.c 163606 2006-10-22 11:52:19Z rwatson $	*/
2/*	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $	*/
3
4/*-
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#include "opt_inet.h"
34#include "opt_inet6.h"
35#include "opt_mac.h"
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/callout.h>
40#include <sys/malloc.h>
41#include <sys/mbuf.h>
42#include <sys/socket.h>
43#include <sys/sockio.h>
44#include <sys/time.h>
45#include <sys/kernel.h>
46#include <sys/protosw.h>
47#include <sys/errno.h>
48#include <sys/syslog.h>
49#include <sys/queue.h>
50#include <sys/sysctl.h>
51
52#include <net/if.h>
53#include <net/if_arc.h>
54#include <net/if_dl.h>
55#include <net/if_types.h>
56#include <net/iso88025.h>
57#include <net/fddi.h>
58#include <net/route.h>
59
60#include <netinet/in.h>
61#include <netinet/if_ether.h>
62#include <netinet6/in6_var.h>
63#include <netinet/ip6.h>
64#include <netinet6/ip6_var.h>
65#include <netinet6/scope6_var.h>
66#include <netinet6/nd6.h>
67#include <netinet/icmp6.h>
68
69#include <sys/limits.h>
70
71#include <security/mac/mac_framework.h>
72
73#define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
74#define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
75
76#define SIN6(s) ((struct sockaddr_in6 *)s)
77#define SDL(s) ((struct sockaddr_dl *)s)
78
79/* timer values */
80int	nd6_prune	= 1;	/* walk list every 1 seconds */
81int	nd6_delay	= 5;	/* delay first probe time 5 second */
82int	nd6_umaxtries	= 3;	/* maximum unicast query */
83int	nd6_mmaxtries	= 3;	/* maximum multicast query */
84int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
85int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
86
87/* preventing too many loops in ND option parsing */
88int nd6_maxndopt = 10;	/* max # of ND options allowed */
89
90int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
91int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
92
93#ifdef ND6_DEBUG
94int nd6_debug = 1;
95#else
96int nd6_debug = 0;
97#endif
98
99/* for debugging? */
100static int nd6_inuse, nd6_allocated;
101
102struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
103struct nd_drhead nd_defrouter;
104struct nd_prhead nd_prefix = { 0 };
105
106int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
107static struct sockaddr_in6 all1_sa;
108
109static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *,
110	struct ifnet *));
111static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
112static void nd6_slowtimo __P((void *));
113static int regen_tmpaddr __P((struct in6_ifaddr *));
114static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
115static void nd6_llinfo_timer __P((void *));
116static void clear_llinfo_pqueue __P((struct llinfo_nd6 *));
117
118struct callout nd6_slowtimo_ch;
119struct callout nd6_timer_ch;
120extern struct callout in6_tmpaddrtimer_ch;
121
122void
123nd6_init()
124{
125	static int nd6_init_done = 0;
126	int i;
127
128	if (nd6_init_done) {
129		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
130		return;
131	}
132
133	all1_sa.sin6_family = AF_INET6;
134	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
135	for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
136		all1_sa.sin6_addr.s6_addr[i] = 0xff;
137
138	/* initialization of the default router list */
139	TAILQ_INIT(&nd_defrouter);
140
141	nd6_init_done = 1;
142
143	/* start timer */
144	callout_init(&nd6_slowtimo_ch, 0);
145	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
146	    nd6_slowtimo, NULL);
147}
148
149struct nd_ifinfo *
150nd6_ifattach(ifp)
151	struct ifnet *ifp;
152{
153	struct nd_ifinfo *nd;
154
155	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
156	bzero(nd, sizeof(*nd));
157
158	nd->initialized = 1;
159
160	nd->chlim = IPV6_DEFHLIM;
161	nd->basereachable = REACHABLE_TIME;
162	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
163	nd->retrans = RETRANS_TIMER;
164	/*
165	 * Note that the default value of ip6_accept_rtadv is 0, which means
166	 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
167	 * here.
168	 */
169	nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
170
171	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
172	nd6_setmtu0(ifp, nd);
173
174	return nd;
175}
176
177void
178nd6_ifdetach(nd)
179	struct nd_ifinfo *nd;
180{
181
182	free(nd, M_IP6NDP);
183}
184
185/*
186 * Reset ND level link MTU. This function is called when the physical MTU
187 * changes, which means we might have to adjust the ND level MTU.
188 */
189void
190nd6_setmtu(ifp)
191	struct ifnet *ifp;
192{
193
194	nd6_setmtu0(ifp, ND_IFINFO(ifp));
195}
196
197/* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
198void
199nd6_setmtu0(ifp, ndi)
200	struct ifnet *ifp;
201	struct nd_ifinfo *ndi;
202{
203	u_int32_t omaxmtu;
204
205	omaxmtu = ndi->maxmtu;
206
207	switch (ifp->if_type) {
208	case IFT_ARCNET:
209		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
210		break;
211	case IFT_FDDI:
212		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
213		break;
214	case IFT_ISO88025:
215		 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
216		 break;
217	default:
218		ndi->maxmtu = ifp->if_mtu;
219		break;
220	}
221
222	/*
223	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
224	 * undesirable situation.  We thus notify the operator of the change
225	 * explicitly.  The check for omaxmtu is necessary to restrict the
226	 * log to the case of changing the MTU, not initializing it.
227	 */
228	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
229		log(LOG_NOTICE, "nd6_setmtu0: "
230		    "new link MTU on %s (%lu) is too small for IPv6\n",
231		    if_name(ifp), (unsigned long)ndi->maxmtu);
232	}
233
234	if (ndi->maxmtu > in6_maxmtu)
235		in6_setmaxmtu(); /* check all interfaces just in case */
236
237#undef MIN
238}
239
240void
241nd6_option_init(opt, icmp6len, ndopts)
242	void *opt;
243	int icmp6len;
244	union nd_opts *ndopts;
245{
246
247	bzero(ndopts, sizeof(*ndopts));
248	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
249	ndopts->nd_opts_last
250		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
251
252	if (icmp6len == 0) {
253		ndopts->nd_opts_done = 1;
254		ndopts->nd_opts_search = NULL;
255	}
256}
257
258/*
259 * Take one ND option.
260 */
261struct nd_opt_hdr *
262nd6_option(ndopts)
263	union nd_opts *ndopts;
264{
265	struct nd_opt_hdr *nd_opt;
266	int olen;
267
268	if (ndopts == NULL)
269		panic("ndopts == NULL in nd6_option");
270	if (ndopts->nd_opts_last == NULL)
271		panic("uninitialized ndopts in nd6_option");
272	if (ndopts->nd_opts_search == NULL)
273		return NULL;
274	if (ndopts->nd_opts_done)
275		return NULL;
276
277	nd_opt = ndopts->nd_opts_search;
278
279	/* make sure nd_opt_len is inside the buffer */
280	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
281		bzero(ndopts, sizeof(*ndopts));
282		return NULL;
283	}
284
285	olen = nd_opt->nd_opt_len << 3;
286	if (olen == 0) {
287		/*
288		 * Message validation requires that all included
289		 * options have a length that is greater than zero.
290		 */
291		bzero(ndopts, sizeof(*ndopts));
292		return NULL;
293	}
294
295	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
296	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
297		/* option overruns the end of buffer, invalid */
298		bzero(ndopts, sizeof(*ndopts));
299		return NULL;
300	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
301		/* reached the end of options chain */
302		ndopts->nd_opts_done = 1;
303		ndopts->nd_opts_search = NULL;
304	}
305	return nd_opt;
306}
307
308/*
309 * Parse multiple ND options.
310 * This function is much easier to use, for ND routines that do not need
311 * multiple options of the same type.
312 */
313int
314nd6_options(ndopts)
315	union nd_opts *ndopts;
316{
317	struct nd_opt_hdr *nd_opt;
318	int i = 0;
319
320	if (ndopts == NULL)
321		panic("ndopts == NULL in nd6_options");
322	if (ndopts->nd_opts_last == NULL)
323		panic("uninitialized ndopts in nd6_options");
324	if (ndopts->nd_opts_search == NULL)
325		return 0;
326
327	while (1) {
328		nd_opt = nd6_option(ndopts);
329		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
330			/*
331			 * Message validation requires that all included
332			 * options have a length that is greater than zero.
333			 */
334			icmp6stat.icp6s_nd_badopt++;
335			bzero(ndopts, sizeof(*ndopts));
336			return -1;
337		}
338
339		if (nd_opt == NULL)
340			goto skip1;
341
342		switch (nd_opt->nd_opt_type) {
343		case ND_OPT_SOURCE_LINKADDR:
344		case ND_OPT_TARGET_LINKADDR:
345		case ND_OPT_MTU:
346		case ND_OPT_REDIRECTED_HEADER:
347			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
348				nd6log((LOG_INFO,
349				    "duplicated ND6 option found (type=%d)\n",
350				    nd_opt->nd_opt_type));
351				/* XXX bark? */
352			} else {
353				ndopts->nd_opt_array[nd_opt->nd_opt_type]
354					= nd_opt;
355			}
356			break;
357		case ND_OPT_PREFIX_INFORMATION:
358			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
359				ndopts->nd_opt_array[nd_opt->nd_opt_type]
360					= nd_opt;
361			}
362			ndopts->nd_opts_pi_end =
363				(struct nd_opt_prefix_info *)nd_opt;
364			break;
365		default:
366			/*
367			 * Unknown options must be silently ignored,
368			 * to accomodate future extension to the protocol.
369			 */
370			nd6log((LOG_DEBUG,
371			    "nd6_options: unsupported option %d - "
372			    "option ignored\n", nd_opt->nd_opt_type));
373		}
374
375skip1:
376		i++;
377		if (i > nd6_maxndopt) {
378			icmp6stat.icp6s_nd_toomanyopt++;
379			nd6log((LOG_INFO, "too many loop in nd opt\n"));
380			break;
381		}
382
383		if (ndopts->nd_opts_done)
384			break;
385	}
386
387	return 0;
388}
389
390/*
391 * ND6 timer routine to handle ND6 entries
392 */
393void
394nd6_llinfo_settimer(ln, tick)
395	struct llinfo_nd6 *ln;
396	long tick;
397{
398	if (tick < 0) {
399		ln->ln_expire = 0;
400		ln->ln_ntick = 0;
401		callout_stop(&ln->ln_timer_ch);
402	} else {
403		ln->ln_expire = time_second + tick / hz;
404		if (tick > INT_MAX) {
405			ln->ln_ntick = tick - INT_MAX;
406			callout_reset(&ln->ln_timer_ch, INT_MAX,
407			    nd6_llinfo_timer, ln);
408		} else {
409			ln->ln_ntick = 0;
410			callout_reset(&ln->ln_timer_ch, tick,
411			    nd6_llinfo_timer, ln);
412		}
413	}
414}
415
416static void
417nd6_llinfo_timer(arg)
418	void *arg;
419{
420	struct llinfo_nd6 *ln;
421	struct rtentry *rt;
422	struct in6_addr *dst;
423	struct ifnet *ifp;
424	struct nd_ifinfo *ndi = NULL;
425
426	ln = (struct llinfo_nd6 *)arg;
427
428	if (ln->ln_ntick > 0) {
429		if (ln->ln_ntick > INT_MAX) {
430			ln->ln_ntick -= INT_MAX;
431			nd6_llinfo_settimer(ln, INT_MAX);
432		} else {
433			ln->ln_ntick = 0;
434			nd6_llinfo_settimer(ln, ln->ln_ntick);
435		}
436		return;
437	}
438
439	if ((rt = ln->ln_rt) == NULL)
440		panic("ln->ln_rt == NULL");
441	if ((ifp = rt->rt_ifp) == NULL)
442		panic("ln->ln_rt->rt_ifp == NULL");
443	ndi = ND_IFINFO(ifp);
444
445	/* sanity check */
446	if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
447		panic("rt_llinfo(%p) is not equal to ln(%p)",
448		      rt->rt_llinfo, ln);
449	if (rt_key(rt) == NULL)
450		panic("rt key is NULL in nd6_timer(ln=%p)", ln);
451
452	dst = &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
453
454	switch (ln->ln_state) {
455	case ND6_LLINFO_INCOMPLETE:
456		if (ln->ln_asked < nd6_mmaxtries) {
457			ln->ln_asked++;
458			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
459			nd6_ns_output(ifp, NULL, dst, ln, 0);
460		} else {
461			struct mbuf *m = ln->ln_hold;
462			if (m) {
463				struct mbuf *m0;
464
465				/*
466				 * assuming every packet in ln_hold has the
467				 * same IP header
468				 */
469				m0 = m->m_nextpkt;
470				m->m_nextpkt = NULL;
471				icmp6_error2(m, ICMP6_DST_UNREACH,
472				    ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
473
474				ln->ln_hold = m0;
475				clear_llinfo_pqueue(ln);
476			}
477			if (rt)
478				(void)nd6_free(rt, 0);
479			ln = NULL;
480		}
481		break;
482	case ND6_LLINFO_REACHABLE:
483		if (!ND6_LLINFO_PERMANENT(ln)) {
484			ln->ln_state = ND6_LLINFO_STALE;
485			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
486		}
487		break;
488
489	case ND6_LLINFO_STALE:
490		/* Garbage Collection(RFC 2461 5.3) */
491		if (!ND6_LLINFO_PERMANENT(ln)) {
492			(void)nd6_free(rt, 1);
493			ln = NULL;
494		}
495		break;
496
497	case ND6_LLINFO_DELAY:
498		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
499			/* We need NUD */
500			ln->ln_asked = 1;
501			ln->ln_state = ND6_LLINFO_PROBE;
502			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
503			nd6_ns_output(ifp, dst, dst, ln, 0);
504		} else {
505			ln->ln_state = ND6_LLINFO_STALE; /* XXX */
506			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
507		}
508		break;
509	case ND6_LLINFO_PROBE:
510		if (ln->ln_asked < nd6_umaxtries) {
511			ln->ln_asked++;
512			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
513			nd6_ns_output(ifp, dst, dst, ln, 0);
514		} else if (rt->rt_ifa != NULL &&
515		    rt->rt_ifa->ifa_addr->sa_family == AF_INET6 &&
516		    (((struct in6_ifaddr *)rt->rt_ifa)->ia_flags & IFA_ROUTE)) {
517			/*
518			 * This is an unreachable neighbor whose address is
519			 * specified as the destination of a p2p interface
520			 * (see in6_ifinit()).  We should not free the entry
521			 * since this is sort of a "static" entry generated
522			 * via interface address configuration.
523			 */
524			ln->ln_asked = 0;
525			ln->ln_expire = 0; /* make it permanent */
526			ln->ln_state = ND6_LLINFO_STALE;
527		} else {
528			(void)nd6_free(rt, 0);
529			ln = NULL;
530		}
531		break;
532	}
533}
534
535
536/*
537 * ND6 timer routine to expire default route list and prefix list
538 */
539void
540nd6_timer(ignored_arg)
541	void	*ignored_arg;
542{
543	int s;
544	struct nd_defrouter *dr;
545	struct nd_prefix *pr;
546	struct in6_ifaddr *ia6, *nia6;
547	struct in6_addrlifetime *lt6;
548
549	callout_reset(&nd6_timer_ch, nd6_prune * hz,
550	    nd6_timer, NULL);
551
552	/* expire default router list */
553	s = splnet();
554	dr = TAILQ_FIRST(&nd_defrouter);
555	while (dr) {
556		if (dr->expire && dr->expire < time_second) {
557			struct nd_defrouter *t;
558			t = TAILQ_NEXT(dr, dr_entry);
559			defrtrlist_del(dr);
560			dr = t;
561		} else {
562			dr = TAILQ_NEXT(dr, dr_entry);
563		}
564	}
565
566	/*
567	 * expire interface addresses.
568	 * in the past the loop was inside prefix expiry processing.
569	 * However, from a stricter speci-confrmance standpoint, we should
570	 * rather separate address lifetimes and prefix lifetimes.
571	 */
572  addrloop:
573	for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
574		nia6 = ia6->ia_next;
575		/* check address lifetime */
576		lt6 = &ia6->ia6_lifetime;
577		if (IFA6_IS_INVALID(ia6)) {
578			int regen = 0;
579
580			/*
581			 * If the expiring address is temporary, try
582			 * regenerating a new one.  This would be useful when
583			 * we suspended a laptop PC, then turned it on after a
584			 * period that could invalidate all temporary
585			 * addresses.  Although we may have to restart the
586			 * loop (see below), it must be after purging the
587			 * address.  Otherwise, we'd see an infinite loop of
588			 * regeneration.
589			 */
590			if (ip6_use_tempaddr &&
591			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
592				if (regen_tmpaddr(ia6) == 0)
593					regen = 1;
594			}
595
596			in6_purgeaddr(&ia6->ia_ifa);
597
598			if (regen)
599				goto addrloop; /* XXX: see below */
600		} else if (IFA6_IS_DEPRECATED(ia6)) {
601			int oldflags = ia6->ia6_flags;
602
603			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
604
605			/*
606			 * If a temporary address has just become deprecated,
607			 * regenerate a new one if possible.
608			 */
609			if (ip6_use_tempaddr &&
610			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
611			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
612
613				if (regen_tmpaddr(ia6) == 0) {
614					/*
615					 * A new temporary address is
616					 * generated.
617					 * XXX: this means the address chain
618					 * has changed while we are still in
619					 * the loop.  Although the change
620					 * would not cause disaster (because
621					 * it's not a deletion, but an
622					 * addition,) we'd rather restart the
623					 * loop just for safety.  Or does this
624					 * significantly reduce performance??
625					 */
626					goto addrloop;
627				}
628			}
629		} else {
630			/*
631			 * A new RA might have made a deprecated address
632			 * preferred.
633			 */
634			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
635		}
636	}
637
638	/* expire prefix list */
639	pr = nd_prefix.lh_first;
640	while (pr) {
641		/*
642		 * check prefix lifetime.
643		 * since pltime is just for autoconf, pltime processing for
644		 * prefix is not necessary.
645		 */
646		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
647		    time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
648			struct nd_prefix *t;
649			t = pr->ndpr_next;
650
651			/*
652			 * address expiration and prefix expiration are
653			 * separate.  NEVER perform in6_purgeaddr here.
654			 */
655
656			prelist_remove(pr);
657			pr = t;
658		} else
659			pr = pr->ndpr_next;
660	}
661	splx(s);
662}
663
664static int
665regen_tmpaddr(ia6)
666	struct in6_ifaddr *ia6; /* deprecated/invalidated temporary address */
667{
668	struct ifaddr *ifa;
669	struct ifnet *ifp;
670	struct in6_ifaddr *public_ifa6 = NULL;
671
672	ifp = ia6->ia_ifa.ifa_ifp;
673	for (ifa = ifp->if_addrlist.tqh_first; ifa;
674	     ifa = ifa->ifa_list.tqe_next) {
675		struct in6_ifaddr *it6;
676
677		if (ifa->ifa_addr->sa_family != AF_INET6)
678			continue;
679
680		it6 = (struct in6_ifaddr *)ifa;
681
682		/* ignore no autoconf addresses. */
683		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
684			continue;
685
686		/* ignore autoconf addresses with different prefixes. */
687		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
688			continue;
689
690		/*
691		 * Now we are looking at an autoconf address with the same
692		 * prefix as ours.  If the address is temporary and is still
693		 * preferred, do not create another one.  It would be rare, but
694		 * could happen, for example, when we resume a laptop PC after
695		 * a long period.
696		 */
697		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
698		    !IFA6_IS_DEPRECATED(it6)) {
699			public_ifa6 = NULL;
700			break;
701		}
702
703		/*
704		 * This is a public autoconf address that has the same prefix
705		 * as ours.  If it is preferred, keep it.  We can't break the
706		 * loop here, because there may be a still-preferred temporary
707		 * address with the prefix.
708		 */
709		if (!IFA6_IS_DEPRECATED(it6))
710		    public_ifa6 = it6;
711	}
712
713	if (public_ifa6 != NULL) {
714		int e;
715
716		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
717			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
718			    " tmp addr,errno=%d\n", e);
719			return (-1);
720		}
721		return (0);
722	}
723
724	return (-1);
725}
726
727/*
728 * Nuke neighbor cache/prefix/default router management table, right before
729 * ifp goes away.
730 */
731void
732nd6_purge(ifp)
733	struct ifnet *ifp;
734{
735	struct llinfo_nd6 *ln, *nln;
736	struct nd_defrouter *dr, *ndr;
737	struct nd_prefix *pr, *npr;
738
739	/*
740	 * Nuke default router list entries toward ifp.
741	 * We defer removal of default router list entries that is installed
742	 * in the routing table, in order to keep additional side effects as
743	 * small as possible.
744	 */
745	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
746		ndr = TAILQ_NEXT(dr, dr_entry);
747		if (dr->installed)
748			continue;
749
750		if (dr->ifp == ifp)
751			defrtrlist_del(dr);
752	}
753
754	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
755		ndr = TAILQ_NEXT(dr, dr_entry);
756		if (!dr->installed)
757			continue;
758
759		if (dr->ifp == ifp)
760			defrtrlist_del(dr);
761	}
762
763	/* Nuke prefix list entries toward ifp */
764	for (pr = nd_prefix.lh_first; pr; pr = npr) {
765		npr = pr->ndpr_next;
766		if (pr->ndpr_ifp == ifp) {
767			/*
768			 * Because if_detach() does *not* release prefixes
769			 * while purging addresses the reference count will
770			 * still be above zero. We therefore reset it to
771			 * make sure that the prefix really gets purged.
772			 */
773			pr->ndpr_refcnt = 0;
774
775			/*
776			 * Previously, pr->ndpr_addr is removed as well,
777			 * but I strongly believe we don't have to do it.
778			 * nd6_purge() is only called from in6_ifdetach(),
779			 * which removes all the associated interface addresses
780			 * by itself.
781			 * (jinmei@kame.net 20010129)
782			 */
783			prelist_remove(pr);
784		}
785	}
786
787	/* cancel default outgoing interface setting */
788	if (nd6_defifindex == ifp->if_index)
789		nd6_setdefaultiface(0);
790
791	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
792		/* refresh default router list */
793		defrouter_select();
794	}
795
796	/*
797	 * Nuke neighbor cache entries for the ifp.
798	 * Note that rt->rt_ifp may not be the same as ifp,
799	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
800	 * nd6_rtrequest(), and ip6_input().
801	 */
802	ln = llinfo_nd6.ln_next;
803	while (ln && ln != &llinfo_nd6) {
804		struct rtentry *rt;
805		struct sockaddr_dl *sdl;
806
807		nln = ln->ln_next;
808		rt = ln->ln_rt;
809		if (rt && rt->rt_gateway &&
810		    rt->rt_gateway->sa_family == AF_LINK) {
811			sdl = (struct sockaddr_dl *)rt->rt_gateway;
812			if (sdl->sdl_index == ifp->if_index)
813				nln = nd6_free(rt, 0);
814		}
815		ln = nln;
816	}
817}
818
819struct rtentry *
820nd6_lookup(addr6, create, ifp)
821	struct in6_addr *addr6;
822	int create;
823	struct ifnet *ifp;
824{
825	struct rtentry *rt;
826	struct sockaddr_in6 sin6;
827
828	bzero(&sin6, sizeof(sin6));
829	sin6.sin6_len = sizeof(struct sockaddr_in6);
830	sin6.sin6_family = AF_INET6;
831	sin6.sin6_addr = *addr6;
832	rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL);
833	if (rt) {
834		if ((rt->rt_flags & RTF_LLINFO) == 0 && create) {
835			/*
836			 * This is the case for the default route.
837			 * If we want to create a neighbor cache for the
838			 * address, we should free the route for the
839			 * destination and allocate an interface route.
840			 */
841			RTFREE_LOCKED(rt);
842			rt = NULL;
843		}
844	}
845	if (rt == NULL) {
846		if (create && ifp) {
847			int e;
848
849			/*
850			 * If no route is available and create is set,
851			 * we allocate a host route for the destination
852			 * and treat it like an interface route.
853			 * This hack is necessary for a neighbor which can't
854			 * be covered by our own prefix.
855			 */
856			struct ifaddr *ifa =
857			    ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
858			if (ifa == NULL)
859				return (NULL);
860
861			/*
862			 * Create a new route.  RTF_LLINFO is necessary
863			 * to create a Neighbor Cache entry for the
864			 * destination in nd6_rtrequest which will be
865			 * called in rtrequest via ifa->ifa_rtrequest.
866			 */
867			if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
868			    ifa->ifa_addr, (struct sockaddr *)&all1_sa,
869			    (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
870			    ~RTF_CLONING, &rt)) != 0) {
871				log(LOG_ERR,
872				    "nd6_lookup: failed to add route for a "
873				    "neighbor(%s), errno=%d\n",
874				    ip6_sprintf(addr6), e);
875			}
876			if (rt == NULL)
877				return (NULL);
878			RT_LOCK(rt);
879			if (rt->rt_llinfo) {
880				struct llinfo_nd6 *ln =
881				    (struct llinfo_nd6 *)rt->rt_llinfo;
882				ln->ln_state = ND6_LLINFO_NOSTATE;
883			}
884		} else
885			return (NULL);
886	}
887	RT_LOCK_ASSERT(rt);
888	RT_REMREF(rt);
889	/*
890	 * Validation for the entry.
891	 * Note that the check for rt_llinfo is necessary because a cloned
892	 * route from a parent route that has the L flag (e.g. the default
893	 * route to a p2p interface) may have the flag, too, while the
894	 * destination is not actually a neighbor.
895	 * XXX: we can't use rt->rt_ifp to check for the interface, since
896	 *      it might be the loopback interface if the entry is for our
897	 *      own address on a non-loopback interface. Instead, we should
898	 *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
899	 *	interface.
900	 * Note also that ifa_ifp and ifp may differ when we connect two
901	 * interfaces to a same link, install a link prefix to an interface,
902	 * and try to install a neighbor cache on an interface that does not
903	 * have a route to the prefix.
904	 */
905	if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
906	    rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
907	    (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
908		if (create) {
909			nd6log((LOG_DEBUG,
910			    "nd6_lookup: failed to lookup %s (if = %s)\n",
911			    ip6_sprintf(addr6),
912			    ifp ? if_name(ifp) : "unspec"));
913		}
914		RT_UNLOCK(rt);
915		return (NULL);
916	}
917	RT_UNLOCK(rt);		/* XXX not ready to return rt locked */
918	return (rt);
919}
920
921/*
922 * Test whether a given IPv6 address is a neighbor or not, ignoring
923 * the actual neighbor cache.  The neighbor cache is ignored in order
924 * to not reenter the routing code from within itself.
925 */
926static int
927nd6_is_new_addr_neighbor(addr, ifp)
928	struct sockaddr_in6 *addr;
929	struct ifnet *ifp;
930{
931	struct nd_prefix *pr;
932	struct ifaddr *dstaddr;
933
934	/*
935	 * A link-local address is always a neighbor.
936	 * XXX: a link does not necessarily specify a single interface.
937	 */
938	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
939		struct sockaddr_in6 sin6_copy;
940		u_int32_t zone;
941
942		/*
943		 * We need sin6_copy since sa6_recoverscope() may modify the
944		 * content (XXX).
945		 */
946		sin6_copy = *addr;
947		if (sa6_recoverscope(&sin6_copy))
948			return (0); /* XXX: should be impossible */
949		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
950			return (0);
951		if (sin6_copy.sin6_scope_id == zone)
952			return (1);
953		else
954			return (0);
955	}
956
957	/*
958	 * If the address matches one of our addresses,
959	 * it should be a neighbor.
960	 * If the address matches one of our on-link prefixes, it should be a
961	 * neighbor.
962	 */
963	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
964		if (pr->ndpr_ifp != ifp)
965			continue;
966
967		if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
968			continue;
969
970		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
971		    &addr->sin6_addr, &pr->ndpr_mask))
972			return (1);
973	}
974
975	/*
976	 * If the address is assigned on the node of the other side of
977	 * a p2p interface, the address should be a neighbor.
978	 */
979	dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr);
980	if ((dstaddr != NULL) && (dstaddr->ifa_ifp == ifp))
981		return (1);
982
983	/*
984	 * If the default router list is empty, all addresses are regarded
985	 * as on-link, and thus, as a neighbor.
986	 * XXX: we restrict the condition to hosts, because routers usually do
987	 * not have the "default router list".
988	 */
989	if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
990	    nd6_defifindex == ifp->if_index) {
991		return (1);
992	}
993
994	return (0);
995}
996
997
998/*
999 * Detect if a given IPv6 address identifies a neighbor on a given link.
1000 * XXX: should take care of the destination of a p2p link?
1001 */
1002int
1003nd6_is_addr_neighbor(addr, ifp)
1004	struct sockaddr_in6 *addr;
1005	struct ifnet *ifp;
1006{
1007
1008	if (nd6_is_new_addr_neighbor(addr, ifp))
1009		return (1);
1010
1011	/*
1012	 * Even if the address matches none of our addresses, it might be
1013	 * in the neighbor cache.
1014	 */
1015	if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
1016		return (1);
1017
1018	return (0);
1019}
1020
1021/*
1022 * Free an nd6 llinfo entry.
1023 * Since the function would cause significant changes in the kernel, DO NOT
1024 * make it global, unless you have a strong reason for the change, and are sure
1025 * that the change is safe.
1026 */
1027static struct llinfo_nd6 *
1028nd6_free(rt, gc)
1029	struct rtentry *rt;
1030	int gc;
1031{
1032	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
1033	struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
1034	struct nd_defrouter *dr;
1035
1036	/*
1037	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1038	 * even though it is not harmful, it was not really necessary.
1039	 */
1040
1041	/* cancel timer */
1042	nd6_llinfo_settimer(ln, -1);
1043
1044	if (!ip6_forwarding) {
1045		int s;
1046		s = splnet();
1047		dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1048		    rt->rt_ifp);
1049
1050		if (dr != NULL && dr->expire &&
1051		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1052			/*
1053			 * If the reason for the deletion is just garbage
1054			 * collection, and the neighbor is an active default
1055			 * router, do not delete it.  Instead, reset the GC
1056			 * timer using the router's lifetime.
1057			 * Simply deleting the entry would affect default
1058			 * router selection, which is not necessarily a good
1059			 * thing, especially when we're using router preference
1060			 * values.
1061			 * XXX: the check for ln_state would be redundant,
1062			 *      but we intentionally keep it just in case.
1063			 */
1064			if (dr->expire > time_second)
1065				nd6_llinfo_settimer(ln,
1066				    (dr->expire - time_second) * hz);
1067			else
1068				nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1069			splx(s);
1070			return (ln->ln_next);
1071		}
1072
1073		if (ln->ln_router || dr) {
1074			/*
1075			 * rt6_flush must be called whether or not the neighbor
1076			 * is in the Default Router List.
1077			 * See a corresponding comment in nd6_na_input().
1078			 */
1079			rt6_flush(&in6, rt->rt_ifp);
1080		}
1081
1082		if (dr) {
1083			/*
1084			 * Unreachablity of a router might affect the default
1085			 * router selection and on-link detection of advertised
1086			 * prefixes.
1087			 */
1088
1089			/*
1090			 * Temporarily fake the state to choose a new default
1091			 * router and to perform on-link determination of
1092			 * prefixes correctly.
1093			 * Below the state will be set correctly,
1094			 * or the entry itself will be deleted.
1095			 */
1096			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1097
1098			/*
1099			 * Since defrouter_select() does not affect the
1100			 * on-link determination and MIP6 needs the check
1101			 * before the default router selection, we perform
1102			 * the check now.
1103			 */
1104			pfxlist_onlink_check();
1105
1106			/*
1107			 * refresh default router list
1108			 */
1109			defrouter_select();
1110		}
1111		splx(s);
1112	}
1113
1114	/*
1115	 * Before deleting the entry, remember the next entry as the
1116	 * return value.  We need this because pfxlist_onlink_check() above
1117	 * might have freed other entries (particularly the old next entry) as
1118	 * a side effect (XXX).
1119	 */
1120	next = ln->ln_next;
1121
1122	/*
1123	 * Detach the route from the routing tree and the list of neighbor
1124	 * caches, and disable the route entry not to be used in already
1125	 * cached routes.
1126	 */
1127	rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
1128	    rt_mask(rt), 0, (struct rtentry **)0);
1129
1130	return (next);
1131}
1132
1133/*
1134 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1135 *
1136 * XXX cost-effective methods?
1137 */
1138void
1139nd6_nud_hint(rt, dst6, force)
1140	struct rtentry *rt;
1141	struct in6_addr *dst6;
1142	int force;
1143{
1144	struct llinfo_nd6 *ln;
1145
1146	/*
1147	 * If the caller specified "rt", use that.  Otherwise, resolve the
1148	 * routing table by supplied "dst6".
1149	 */
1150	if (rt == NULL) {
1151		if (dst6 == NULL)
1152			return;
1153		if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
1154			return;
1155	}
1156
1157	if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1158	    (rt->rt_flags & RTF_LLINFO) == 0 ||
1159	    rt->rt_llinfo == NULL || rt->rt_gateway == NULL ||
1160	    rt->rt_gateway->sa_family != AF_LINK) {
1161		/* This is not a host route. */
1162		return;
1163	}
1164
1165	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1166	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1167		return;
1168
1169	/*
1170	 * if we get upper-layer reachability confirmation many times,
1171	 * it is possible we have false information.
1172	 */
1173	if (!force) {
1174		ln->ln_byhint++;
1175		if (ln->ln_byhint > nd6_maxnudhint)
1176			return;
1177	}
1178
1179	ln->ln_state = ND6_LLINFO_REACHABLE;
1180	if (!ND6_LLINFO_PERMANENT(ln)) {
1181		nd6_llinfo_settimer(ln,
1182		    (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1183	}
1184}
1185
1186void
1187nd6_rtrequest(req, rt, info)
1188	int	req;
1189	struct rtentry *rt;
1190	struct rt_addrinfo *info; /* xxx unused */
1191{
1192	struct sockaddr *gate = rt->rt_gateway;
1193	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1194	static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1195	struct ifnet *ifp = rt->rt_ifp;
1196	struct ifaddr *ifa;
1197
1198	RT_LOCK_ASSERT(rt);
1199
1200	if ((rt->rt_flags & RTF_GATEWAY) != 0)
1201		return;
1202
1203	if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1204		/*
1205		 * This is probably an interface direct route for a link
1206		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1207		 * We do not need special treatment below for such a route.
1208		 * Moreover, the RTF_LLINFO flag which would be set below
1209		 * would annoy the ndp(8) command.
1210		 */
1211		return;
1212	}
1213
1214	if (req == RTM_RESOLVE &&
1215	    (nd6_need_cache(ifp) == 0 || /* stf case */
1216	     !nd6_is_new_addr_neighbor((struct sockaddr_in6 *)rt_key(rt),
1217	     ifp))) {
1218		/*
1219		 * FreeBSD and BSD/OS often make a cloned host route based
1220		 * on a less-specific route (e.g. the default route).
1221		 * If the less specific route does not have a "gateway"
1222		 * (this is the case when the route just goes to a p2p or an
1223		 * stf interface), we'll mistakenly make a neighbor cache for
1224		 * the host route, and will see strange neighbor solicitation
1225		 * for the corresponding destination.  In order to avoid the
1226		 * confusion, we check if the destination of the route is
1227		 * a neighbor in terms of neighbor discovery, and stop the
1228		 * process if not.  Additionally, we remove the LLINFO flag
1229		 * so that ndp(8) will not try to get the neighbor information
1230		 * of the destination.
1231		 */
1232		rt->rt_flags &= ~RTF_LLINFO;
1233		return;
1234	}
1235
1236	switch (req) {
1237	case RTM_ADD:
1238		/*
1239		 * There is no backward compatibility :)
1240		 *
1241		 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1242		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1243		 *	   rt->rt_flags |= RTF_CLONING;
1244		 */
1245		if ((rt->rt_flags & RTF_CLONING) ||
1246		    ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
1247			/*
1248			 * Case 1: This route should come from a route to
1249			 * interface (RTF_CLONING case) or the route should be
1250			 * treated as on-link but is currently not
1251			 * (RTF_LLINFO && ln == NULL case).
1252			 */
1253			rt_setgate(rt, rt_key(rt),
1254				   (struct sockaddr *)&null_sdl);
1255			gate = rt->rt_gateway;
1256			SDL(gate)->sdl_type = ifp->if_type;
1257			SDL(gate)->sdl_index = ifp->if_index;
1258			if (ln)
1259				nd6_llinfo_settimer(ln, 0);
1260			if ((rt->rt_flags & RTF_CLONING) != 0)
1261				break;
1262		}
1263		/*
1264		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1265		 * We don't do that here since llinfo is not ready yet.
1266		 *
1267		 * There are also couple of other things to be discussed:
1268		 * - unsolicited NA code needs improvement beforehand
1269		 * - RFC2461 says we MAY send multicast unsolicited NA
1270		 *   (7.2.6 paragraph 4), however, it also says that we
1271		 *   SHOULD provide a mechanism to prevent multicast NA storm.
1272		 *   we don't have anything like it right now.
1273		 *   note that the mechanism needs a mutual agreement
1274		 *   between proxies, which means that we need to implement
1275		 *   a new protocol, or a new kludge.
1276		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1277		 *   we need to check ip6forwarding before sending it.
1278		 *   (or should we allow proxy ND configuration only for
1279		 *   routers?  there's no mention about proxy ND from hosts)
1280		 */
1281		/* FALLTHROUGH */
1282	case RTM_RESOLVE:
1283		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1284			/*
1285			 * Address resolution isn't necessary for a point to
1286			 * point link, so we can skip this test for a p2p link.
1287			 */
1288			if (gate->sa_family != AF_LINK ||
1289			    gate->sa_len < sizeof(null_sdl)) {
1290				log(LOG_DEBUG,
1291				    "nd6_rtrequest: bad gateway value: %s\n",
1292				    if_name(ifp));
1293				break;
1294			}
1295			SDL(gate)->sdl_type = ifp->if_type;
1296			SDL(gate)->sdl_index = ifp->if_index;
1297		}
1298		if (ln != NULL)
1299			break;	/* This happens on a route change */
1300		/*
1301		 * Case 2: This route may come from cloning, or a manual route
1302		 * add with a LL address.
1303		 */
1304		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1305		rt->rt_llinfo = (caddr_t)ln;
1306		if (ln == NULL) {
1307			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1308			break;
1309		}
1310		nd6_inuse++;
1311		nd6_allocated++;
1312		bzero(ln, sizeof(*ln));
1313		ln->ln_rt = rt;
1314		callout_init(&ln->ln_timer_ch, 0);
1315
1316		/* this is required for "ndp" command. - shin */
1317		if (req == RTM_ADD && (rt->rt_flags & RTF_STATIC)) {
1318		        /*
1319			 * gate should have some valid AF_LINK entry,
1320			 * and ln->ln_expire should have some lifetime
1321			 * which is specified by ndp command.
1322			 */
1323			ln->ln_state = ND6_LLINFO_REACHABLE;
1324			ln->ln_byhint = 0;
1325		} else {
1326		        /*
1327			 * When req == RTM_RESOLVE, rt is created and
1328			 * initialized in rtrequest(), so rt_expire is 0.
1329			 */
1330			ln->ln_state = ND6_LLINFO_NOSTATE;
1331			nd6_llinfo_settimer(ln, 0);
1332		}
1333		rt->rt_flags |= RTF_LLINFO;
1334		ln->ln_next = llinfo_nd6.ln_next;
1335		llinfo_nd6.ln_next = ln;
1336		ln->ln_prev = &llinfo_nd6;
1337		ln->ln_next->ln_prev = ln;
1338
1339		/*
1340		 * check if rt_key(rt) is one of my address assigned
1341		 * to the interface.
1342		 */
1343		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1344		    &SIN6(rt_key(rt))->sin6_addr);
1345		if (ifa) {
1346			caddr_t macp = nd6_ifptomac(ifp);
1347			nd6_llinfo_settimer(ln, -1);
1348			ln->ln_state = ND6_LLINFO_REACHABLE;
1349			ln->ln_byhint = 0;
1350			if (macp) {
1351				bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1352				SDL(gate)->sdl_alen = ifp->if_addrlen;
1353			}
1354			if (nd6_useloopback) {
1355				rt->rt_ifp = &loif[0];	/* XXX */
1356				/*
1357				 * Make sure rt_ifa be equal to the ifaddr
1358				 * corresponding to the address.
1359				 * We need this because when we refer
1360				 * rt_ifa->ia6_flags in ip6_input, we assume
1361				 * that the rt_ifa points to the address instead
1362				 * of the loopback address.
1363				 */
1364				if (ifa != rt->rt_ifa) {
1365					IFAFREE(rt->rt_ifa);
1366					IFAREF(ifa);
1367					rt->rt_ifa = ifa;
1368				}
1369			}
1370		} else if (rt->rt_flags & RTF_ANNOUNCE) {
1371			nd6_llinfo_settimer(ln, -1);
1372			ln->ln_state = ND6_LLINFO_REACHABLE;
1373			ln->ln_byhint = 0;
1374
1375			/* join solicited node multicast for proxy ND */
1376			if (ifp->if_flags & IFF_MULTICAST) {
1377				struct in6_addr llsol;
1378				int error;
1379
1380				llsol = SIN6(rt_key(rt))->sin6_addr;
1381				llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1382				llsol.s6_addr32[1] = 0;
1383				llsol.s6_addr32[2] = htonl(1);
1384				llsol.s6_addr8[12] = 0xff;
1385				if (in6_setscope(&llsol, ifp, NULL))
1386					break;
1387				if (in6_addmulti(&llsol, ifp,
1388				    &error, 0) == NULL) {
1389					nd6log((LOG_ERR, "%s: failed to join "
1390					    "%s (errno=%d)\n", if_name(ifp),
1391					    ip6_sprintf(&llsol), error));
1392				}
1393			}
1394		}
1395		break;
1396
1397	case RTM_DELETE:
1398		if (ln == NULL)
1399			break;
1400		/* leave from solicited node multicast for proxy ND */
1401		if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1402		    (ifp->if_flags & IFF_MULTICAST) != 0) {
1403			struct in6_addr llsol;
1404			struct in6_multi *in6m;
1405
1406			llsol = SIN6(rt_key(rt))->sin6_addr;
1407			llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1408			llsol.s6_addr32[1] = 0;
1409			llsol.s6_addr32[2] = htonl(1);
1410			llsol.s6_addr8[12] = 0xff;
1411			if (in6_setscope(&llsol, ifp, NULL) == 0) {
1412				IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1413				if (in6m)
1414					in6_delmulti(in6m);
1415			} else
1416				; /* XXX: should not happen. bark here? */
1417		}
1418		nd6_inuse--;
1419		ln->ln_next->ln_prev = ln->ln_prev;
1420		ln->ln_prev->ln_next = ln->ln_next;
1421		ln->ln_prev = NULL;
1422		nd6_llinfo_settimer(ln, -1);
1423		rt->rt_llinfo = 0;
1424		rt->rt_flags &= ~RTF_LLINFO;
1425		clear_llinfo_pqueue(ln);
1426		Free((caddr_t)ln);
1427	}
1428}
1429
1430int
1431nd6_ioctl(cmd, data, ifp)
1432	u_long cmd;
1433	caddr_t	data;
1434	struct ifnet *ifp;
1435{
1436	struct in6_drlist *drl = (struct in6_drlist *)data;
1437	struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1438	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1439	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1440	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1441	struct nd_defrouter *dr;
1442	struct nd_prefix *pr;
1443	struct rtentry *rt;
1444	int i = 0, error = 0;
1445	int s;
1446
1447	switch (cmd) {
1448	case SIOCGDRLST_IN6:
1449		/*
1450		 * obsolete API, use sysctl under net.inet6.icmp6
1451		 */
1452		bzero(drl, sizeof(*drl));
1453		s = splnet();
1454		dr = TAILQ_FIRST(&nd_defrouter);
1455		while (dr && i < DRLSTSIZ) {
1456			drl->defrouter[i].rtaddr = dr->rtaddr;
1457			in6_clearscope(&drl->defrouter[i].rtaddr);
1458
1459			drl->defrouter[i].flags = dr->flags;
1460			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1461			drl->defrouter[i].expire = dr->expire;
1462			drl->defrouter[i].if_index = dr->ifp->if_index;
1463			i++;
1464			dr = TAILQ_NEXT(dr, dr_entry);
1465		}
1466		splx(s);
1467		break;
1468	case SIOCGPRLST_IN6:
1469		/*
1470		 * obsolete API, use sysctl under net.inet6.icmp6
1471		 *
1472		 * XXX the structure in6_prlist was changed in backward-
1473		 * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
1474		 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1475		 */
1476		/*
1477		 * XXX meaning of fields, especialy "raflags", is very
1478		 * differnet between RA prefix list and RR/static prefix list.
1479		 * how about separating ioctls into two?
1480		 */
1481		bzero(oprl, sizeof(*oprl));
1482		s = splnet();
1483		pr = nd_prefix.lh_first;
1484		while (pr && i < PRLSTSIZ) {
1485			struct nd_pfxrouter *pfr;
1486			int j;
1487
1488			oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1489			oprl->prefix[i].raflags = pr->ndpr_raf;
1490			oprl->prefix[i].prefixlen = pr->ndpr_plen;
1491			oprl->prefix[i].vltime = pr->ndpr_vltime;
1492			oprl->prefix[i].pltime = pr->ndpr_pltime;
1493			oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1494			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1495				oprl->prefix[i].expire = 0;
1496			else {
1497				time_t maxexpire;
1498
1499				/* XXX: we assume time_t is signed. */
1500				maxexpire = (-1) &
1501				    ~((time_t)1 <<
1502				    ((sizeof(maxexpire) * 8) - 1));
1503				if (pr->ndpr_vltime <
1504				    maxexpire - pr->ndpr_lastupdate) {
1505					oprl->prefix[i].expire =
1506					    pr->ndpr_lastupdate +
1507					    pr->ndpr_vltime;
1508				} else
1509					oprl->prefix[i].expire = maxexpire;
1510			}
1511
1512			pfr = pr->ndpr_advrtrs.lh_first;
1513			j = 0;
1514			while (pfr) {
1515				if (j < DRLSTSIZ) {
1516#define RTRADDR oprl->prefix[i].advrtr[j]
1517					RTRADDR = pfr->router->rtaddr;
1518					in6_clearscope(&RTRADDR);
1519#undef RTRADDR
1520				}
1521				j++;
1522				pfr = pfr->pfr_next;
1523			}
1524			oprl->prefix[i].advrtrs = j;
1525			oprl->prefix[i].origin = PR_ORIG_RA;
1526
1527			i++;
1528			pr = pr->ndpr_next;
1529		}
1530		splx(s);
1531
1532		break;
1533	case OSIOCGIFINFO_IN6:
1534#define ND	ndi->ndi
1535		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1536		bzero(&ND, sizeof(ND));
1537		ND.linkmtu = IN6_LINKMTU(ifp);
1538		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1539		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1540		ND.reachable = ND_IFINFO(ifp)->reachable;
1541		ND.retrans = ND_IFINFO(ifp)->retrans;
1542		ND.flags = ND_IFINFO(ifp)->flags;
1543		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1544		ND.chlim = ND_IFINFO(ifp)->chlim;
1545		break;
1546	case SIOCGIFINFO_IN6:
1547		ND = *ND_IFINFO(ifp);
1548		break;
1549	case SIOCSIFINFO_IN6:
1550		/*
1551		 * used to change host variables from userland.
1552		 * intented for a use on router to reflect RA configurations.
1553		 */
1554		/* 0 means 'unspecified' */
1555		if (ND.linkmtu != 0) {
1556			if (ND.linkmtu < IPV6_MMTU ||
1557			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1558				error = EINVAL;
1559				break;
1560			}
1561			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1562		}
1563
1564		if (ND.basereachable != 0) {
1565			int obasereachable = ND_IFINFO(ifp)->basereachable;
1566
1567			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1568			if (ND.basereachable != obasereachable)
1569				ND_IFINFO(ifp)->reachable =
1570				    ND_COMPUTE_RTIME(ND.basereachable);
1571		}
1572		if (ND.retrans != 0)
1573			ND_IFINFO(ifp)->retrans = ND.retrans;
1574		if (ND.chlim != 0)
1575			ND_IFINFO(ifp)->chlim = ND.chlim;
1576		/* FALLTHROUGH */
1577	case SIOCSIFINFO_FLAGS:
1578		ND_IFINFO(ifp)->flags = ND.flags;
1579		break;
1580#undef ND
1581	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1582		/* sync kernel routing table with the default router list */
1583		defrouter_reset();
1584		defrouter_select();
1585		break;
1586	case SIOCSPFXFLUSH_IN6:
1587	{
1588		/* flush all the prefix advertised by routers */
1589		struct nd_prefix *pr, *next;
1590
1591		s = splnet();
1592		for (pr = nd_prefix.lh_first; pr; pr = next) {
1593			struct in6_ifaddr *ia, *ia_next;
1594
1595			next = pr->ndpr_next;
1596
1597			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1598				continue; /* XXX */
1599
1600			/* do we really have to remove addresses as well? */
1601			for (ia = in6_ifaddr; ia; ia = ia_next) {
1602				/* ia might be removed.  keep the next ptr. */
1603				ia_next = ia->ia_next;
1604
1605				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1606					continue;
1607
1608				if (ia->ia6_ndpr == pr)
1609					in6_purgeaddr(&ia->ia_ifa);
1610			}
1611			prelist_remove(pr);
1612		}
1613		splx(s);
1614		break;
1615	}
1616	case SIOCSRTRFLUSH_IN6:
1617	{
1618		/* flush all the default routers */
1619		struct nd_defrouter *dr, *next;
1620
1621		s = splnet();
1622		defrouter_reset();
1623		for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = next) {
1624			next = TAILQ_NEXT(dr, dr_entry);
1625			defrtrlist_del(dr);
1626		}
1627		defrouter_select();
1628		splx(s);
1629		break;
1630	}
1631	case SIOCGNBRINFO_IN6:
1632	{
1633		struct llinfo_nd6 *ln;
1634		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1635
1636		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1637			return (error);
1638
1639		s = splnet();
1640		if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1641			error = EINVAL;
1642			splx(s);
1643			break;
1644		}
1645		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1646		nbi->state = ln->ln_state;
1647		nbi->asked = ln->ln_asked;
1648		nbi->isrouter = ln->ln_router;
1649		nbi->expire = ln->ln_expire;
1650		splx(s);
1651
1652		break;
1653	}
1654	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1655		ndif->ifindex = nd6_defifindex;
1656		break;
1657	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1658		return (nd6_setdefaultiface(ndif->ifindex));
1659	}
1660	return (error);
1661}
1662
1663/*
1664 * Create neighbor cache entry and cache link-layer address,
1665 * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1666 */
1667struct rtentry *
1668nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
1669	struct ifnet *ifp;
1670	struct in6_addr *from;
1671	char *lladdr;
1672	int lladdrlen;
1673	int type;	/* ICMP6 type */
1674	int code;	/* type dependent information */
1675{
1676	struct rtentry *rt = NULL;
1677	struct llinfo_nd6 *ln = NULL;
1678	int is_newentry;
1679	struct sockaddr_dl *sdl = NULL;
1680	int do_update;
1681	int olladdr;
1682	int llchange;
1683	int newstate = 0;
1684
1685	if (ifp == NULL)
1686		panic("ifp == NULL in nd6_cache_lladdr");
1687	if (from == NULL)
1688		panic("from == NULL in nd6_cache_lladdr");
1689
1690	/* nothing must be updated for unspecified address */
1691	if (IN6_IS_ADDR_UNSPECIFIED(from))
1692		return NULL;
1693
1694	/*
1695	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1696	 * the caller.
1697	 *
1698	 * XXX If the link does not have link-layer adderss, what should
1699	 * we do? (ifp->if_addrlen == 0)
1700	 * Spec says nothing in sections for RA, RS and NA.  There's small
1701	 * description on it in NS section (RFC 2461 7.2.3).
1702	 */
1703
1704	rt = nd6_lookup(from, 0, ifp);
1705	if (rt == NULL) {
1706		rt = nd6_lookup(from, 1, ifp);
1707		is_newentry = 1;
1708	} else {
1709		/* do nothing if static ndp is set */
1710		if (rt->rt_flags & RTF_STATIC)
1711			return NULL;
1712		is_newentry = 0;
1713	}
1714
1715	if (rt == NULL)
1716		return NULL;
1717	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1718fail:
1719		(void)nd6_free(rt, 0);
1720		return NULL;
1721	}
1722	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1723	if (ln == NULL)
1724		goto fail;
1725	if (rt->rt_gateway == NULL)
1726		goto fail;
1727	if (rt->rt_gateway->sa_family != AF_LINK)
1728		goto fail;
1729	sdl = SDL(rt->rt_gateway);
1730
1731	olladdr = (sdl->sdl_alen) ? 1 : 0;
1732	if (olladdr && lladdr) {
1733		if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1734			llchange = 1;
1735		else
1736			llchange = 0;
1737	} else
1738		llchange = 0;
1739
1740	/*
1741	 * newentry olladdr  lladdr  llchange	(*=record)
1742	 *	0	n	n	--	(1)
1743	 *	0	y	n	--	(2)
1744	 *	0	n	y	--	(3) * STALE
1745	 *	0	y	y	n	(4) *
1746	 *	0	y	y	y	(5) * STALE
1747	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1748	 *	1	--	y	--	(7) * STALE
1749	 */
1750
1751	if (lladdr) {		/* (3-5) and (7) */
1752		/*
1753		 * Record source link-layer address
1754		 * XXX is it dependent to ifp->if_type?
1755		 */
1756		sdl->sdl_alen = ifp->if_addrlen;
1757		bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1758	}
1759
1760	if (!is_newentry) {
1761		if ((!olladdr && lladdr != NULL) ||	/* (3) */
1762		    (olladdr && lladdr != NULL && llchange)) {	/* (5) */
1763			do_update = 1;
1764			newstate = ND6_LLINFO_STALE;
1765		} else					/* (1-2,4) */
1766			do_update = 0;
1767	} else {
1768		do_update = 1;
1769		if (lladdr == NULL)			/* (6) */
1770			newstate = ND6_LLINFO_NOSTATE;
1771		else					/* (7) */
1772			newstate = ND6_LLINFO_STALE;
1773	}
1774
1775	if (do_update) {
1776		/*
1777		 * Update the state of the neighbor cache.
1778		 */
1779		ln->ln_state = newstate;
1780
1781		if (ln->ln_state == ND6_LLINFO_STALE) {
1782			/*
1783			 * XXX: since nd6_output() below will cause
1784			 * state tansition to DELAY and reset the timer,
1785			 * we must set the timer now, although it is actually
1786			 * meaningless.
1787			 */
1788			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1789
1790			if (ln->ln_hold) {
1791				struct mbuf *m_hold, *m_hold_next;
1792				for (m_hold = ln->ln_hold; m_hold;
1793				     m_hold = m_hold_next) {
1794					struct mbuf *mpkt = NULL;
1795
1796					m_hold_next = m_hold->m_nextpkt;
1797					mpkt = m_copym(m_hold, 0, M_COPYALL, M_DONTWAIT);
1798					if (mpkt == NULL) {
1799						m_freem(m_hold);
1800						break;
1801					}
1802					mpkt->m_nextpkt = NULL;
1803
1804					/*
1805					 * we assume ifp is not a p2p here, so
1806					 * just set the 2nd argument as the
1807					 * 1st one.
1808					 */
1809					nd6_output(ifp, ifp, mpkt,
1810					     (struct sockaddr_in6 *)rt_key(rt),
1811					     rt);
1812				}
1813				ln->ln_hold = NULL;
1814			}
1815		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1816			/* probe right away */
1817			nd6_llinfo_settimer((void *)ln, 0);
1818		}
1819	}
1820
1821	/*
1822	 * ICMP6 type dependent behavior.
1823	 *
1824	 * NS: clear IsRouter if new entry
1825	 * RS: clear IsRouter
1826	 * RA: set IsRouter if there's lladdr
1827	 * redir: clear IsRouter if new entry
1828	 *
1829	 * RA case, (1):
1830	 * The spec says that we must set IsRouter in the following cases:
1831	 * - If lladdr exist, set IsRouter.  This means (1-5).
1832	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1833	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1834	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1835	 * neighbor cache, this is similar to (6).
1836	 * This case is rare but we figured that we MUST NOT set IsRouter.
1837	 *
1838	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1839	 *							D R
1840	 *	0	n	n	--	(1)	c   ?     s
1841	 *	0	y	n	--	(2)	c   s     s
1842	 *	0	n	y	--	(3)	c   s     s
1843	 *	0	y	y	n	(4)	c   s     s
1844	 *	0	y	y	y	(5)	c   s     s
1845	 *	1	--	n	--	(6) c	c 	c s
1846	 *	1	--	y	--	(7) c	c   s	c s
1847	 *
1848	 *					(c=clear s=set)
1849	 */
1850	switch (type & 0xff) {
1851	case ND_NEIGHBOR_SOLICIT:
1852		/*
1853		 * New entry must have is_router flag cleared.
1854		 */
1855		if (is_newentry)	/* (6-7) */
1856			ln->ln_router = 0;
1857		break;
1858	case ND_REDIRECT:
1859		/*
1860		 * If the icmp is a redirect to a better router, always set the
1861		 * is_router flag.  Otherwise, if the entry is newly created,
1862		 * clear the flag.  [RFC 2461, sec 8.3]
1863		 */
1864		if (code == ND_REDIRECT_ROUTER)
1865			ln->ln_router = 1;
1866		else if (is_newentry) /* (6-7) */
1867			ln->ln_router = 0;
1868		break;
1869	case ND_ROUTER_SOLICIT:
1870		/*
1871		 * is_router flag must always be cleared.
1872		 */
1873		ln->ln_router = 0;
1874		break;
1875	case ND_ROUTER_ADVERT:
1876		/*
1877		 * Mark an entry with lladdr as a router.
1878		 */
1879		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
1880		    (is_newentry && lladdr)) {			/* (7) */
1881			ln->ln_router = 1;
1882		}
1883		break;
1884	}
1885
1886	/*
1887	 * When the link-layer address of a router changes, select the
1888	 * best router again.  In particular, when the neighbor entry is newly
1889	 * created, it might affect the selection policy.
1890	 * Question: can we restrict the first condition to the "is_newentry"
1891	 * case?
1892	 * XXX: when we hear an RA from a new router with the link-layer
1893	 * address option, defrouter_select() is called twice, since
1894	 * defrtrlist_update called the function as well.  However, I believe
1895	 * we can compromise the overhead, since it only happens the first
1896	 * time.
1897	 * XXX: although defrouter_select() should not have a bad effect
1898	 * for those are not autoconfigured hosts, we explicitly avoid such
1899	 * cases for safety.
1900	 */
1901	if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1902		defrouter_select();
1903
1904	return rt;
1905}
1906
1907static void
1908nd6_slowtimo(ignored_arg)
1909    void *ignored_arg;
1910{
1911	struct nd_ifinfo *nd6if;
1912	struct ifnet *ifp;
1913
1914	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1915	    nd6_slowtimo, NULL);
1916	IFNET_RLOCK();
1917	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
1918		nd6if = ND_IFINFO(ifp);
1919		if (nd6if->basereachable && /* already initialized */
1920		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1921			/*
1922			 * Since reachable time rarely changes by router
1923			 * advertisements, we SHOULD insure that a new random
1924			 * value gets recomputed at least once every few hours.
1925			 * (RFC 2461, 6.3.4)
1926			 */
1927			nd6if->recalctm = nd6_recalc_reachtm_interval;
1928			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1929		}
1930	}
1931	IFNET_RUNLOCK();
1932}
1933
1934#define senderr(e) { error = (e); goto bad;}
1935int
1936nd6_output(ifp, origifp, m0, dst, rt0)
1937	struct ifnet *ifp;
1938	struct ifnet *origifp;
1939	struct mbuf *m0;
1940	struct sockaddr_in6 *dst;
1941	struct rtentry *rt0;
1942{
1943	struct mbuf *m = m0;
1944	struct rtentry *rt = rt0;
1945	struct sockaddr_in6 *gw6 = NULL;
1946	struct llinfo_nd6 *ln = NULL;
1947	int error = 0;
1948
1949	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1950		goto sendpkt;
1951
1952	if (nd6_need_cache(ifp) == 0)
1953		goto sendpkt;
1954
1955	/*
1956	 * next hop determination.  This routine is derived from ether_output.
1957	 */
1958again:
1959	if (rt) {
1960		if ((rt->rt_flags & RTF_UP) == 0) {
1961			rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL);
1962			if (rt != NULL) {
1963				RT_REMREF(rt);
1964				RT_UNLOCK(rt);
1965				if (rt->rt_ifp != ifp)
1966					/*
1967					 * XXX maybe we should update ifp too,
1968					 * but the original code didn't and I
1969					 * don't know what is correct here.
1970					 */
1971					goto again;
1972			} else
1973				senderr(EHOSTUNREACH);
1974		}
1975
1976		if (rt->rt_flags & RTF_GATEWAY) {
1977			gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1978
1979			/*
1980			 * We skip link-layer address resolution and NUD
1981			 * if the gateway is not a neighbor from ND point
1982			 * of view, regardless of the value of nd_ifinfo.flags.
1983			 * The second condition is a bit tricky; we skip
1984			 * if the gateway is our own address, which is
1985			 * sometimes used to install a route to a p2p link.
1986			 */
1987			if (!nd6_is_addr_neighbor(gw6, ifp) ||
1988			    in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1989				/*
1990				 * We allow this kind of tricky route only
1991				 * when the outgoing interface is p2p.
1992				 * XXX: we may need a more generic rule here.
1993				 */
1994				if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1995					senderr(EHOSTUNREACH);
1996
1997				goto sendpkt;
1998			}
1999
2000			if (rt->rt_gwroute == 0)
2001				goto lookup;
2002			if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
2003				RT_LOCK(rt);
2004				rtfree(rt); rt = rt0;
2005			lookup:
2006				rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1, 0UL);
2007				if ((rt = rt->rt_gwroute) == 0)
2008					senderr(EHOSTUNREACH);
2009				RT_UNLOCK(rt);
2010			}
2011		}
2012	}
2013
2014	/*
2015	 * Address resolution or Neighbor Unreachability Detection
2016	 * for the next hop.
2017	 * At this point, the destination of the packet must be a unicast
2018	 * or an anycast address(i.e. not a multicast).
2019	 */
2020
2021	/* Look up the neighbor cache for the nexthop */
2022	if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
2023		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2024	else {
2025		/*
2026		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2027		 * the condition below is not very efficient.  But we believe
2028		 * it is tolerable, because this should be a rare case.
2029		 */
2030		if (nd6_is_addr_neighbor(dst, ifp) &&
2031		    (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
2032			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2033	}
2034	if (ln == NULL || rt == NULL) {
2035		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2036		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2037			log(LOG_DEBUG,
2038			    "nd6_output: can't allocate llinfo for %s "
2039			    "(ln=%p, rt=%p)\n",
2040			    ip6_sprintf(&dst->sin6_addr), ln, rt);
2041			senderr(EIO);	/* XXX: good error? */
2042		}
2043
2044		goto sendpkt;	/* send anyway */
2045	}
2046
2047	/* We don't have to do link-layer address resolution on a p2p link. */
2048	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2049	    ln->ln_state < ND6_LLINFO_REACHABLE) {
2050		ln->ln_state = ND6_LLINFO_STALE;
2051		nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
2052	}
2053
2054	/*
2055	 * The first time we send a packet to a neighbor whose entry is
2056	 * STALE, we have to change the state to DELAY and a sets a timer to
2057	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2058	 * neighbor unreachability detection on expiration.
2059	 * (RFC 2461 7.3.3)
2060	 */
2061	if (ln->ln_state == ND6_LLINFO_STALE) {
2062		ln->ln_asked = 0;
2063		ln->ln_state = ND6_LLINFO_DELAY;
2064		nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
2065	}
2066
2067	/*
2068	 * If the neighbor cache entry has a state other than INCOMPLETE
2069	 * (i.e. its link-layer address is already resolved), just
2070	 * send the packet.
2071	 */
2072	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2073		goto sendpkt;
2074
2075	/*
2076	 * There is a neighbor cache entry, but no ethernet address
2077	 * response yet.  Append this latest packet to the end of the
2078	 * packet queue in the mbuf, unless the number of the packet
2079	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
2080	 * the oldest packet in the queue will be removed.
2081	 */
2082	if (ln->ln_state == ND6_LLINFO_NOSTATE)
2083		ln->ln_state = ND6_LLINFO_INCOMPLETE;
2084	if (ln->ln_hold) {
2085		struct mbuf *m_hold;
2086		int i;
2087
2088		i = 0;
2089		for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2090			i++;
2091			if (m_hold->m_nextpkt == NULL) {
2092				m_hold->m_nextpkt = m;
2093				break;
2094			}
2095		}
2096		while (i >= nd6_maxqueuelen) {
2097			m_hold = ln->ln_hold;
2098			ln->ln_hold = ln->ln_hold->m_nextpkt;
2099			m_freem(m_hold);
2100			i--;
2101		}
2102	} else {
2103		ln->ln_hold = m;
2104	}
2105
2106	/*
2107	 * If there has been no NS for the neighbor after entering the
2108	 * INCOMPLETE state, send the first solicitation.
2109	 */
2110	if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2111		ln->ln_asked++;
2112		nd6_llinfo_settimer(ln,
2113		    (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2114		nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2115	}
2116	return (0);
2117
2118  sendpkt:
2119	/* discard the packet if IPv6 operation is disabled on the interface */
2120	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2121		error = ENETDOWN; /* better error? */
2122		goto bad;
2123	}
2124
2125#ifdef IPSEC
2126	/* clean ipsec history once it goes out of the node */
2127	ipsec_delaux(m);
2128#endif
2129
2130#ifdef MAC
2131	mac_create_mbuf_linklayer(ifp, m);
2132#endif
2133	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
2134		return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
2135		    rt));
2136	}
2137	return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
2138
2139  bad:
2140	if (m)
2141		m_freem(m);
2142	return (error);
2143}
2144#undef senderr
2145
2146int
2147nd6_need_cache(ifp)
2148	struct ifnet *ifp;
2149{
2150	/*
2151	 * XXX: we currently do not make neighbor cache on any interface
2152	 * other than ARCnet, Ethernet, FDDI and GIF.
2153	 *
2154	 * RFC2893 says:
2155	 * - unidirectional tunnels needs no ND
2156	 */
2157	switch (ifp->if_type) {
2158	case IFT_ARCNET:
2159	case IFT_ETHER:
2160	case IFT_FDDI:
2161	case IFT_IEEE1394:
2162#ifdef IFT_L2VLAN
2163	case IFT_L2VLAN:
2164#endif
2165#ifdef IFT_IEEE80211
2166	case IFT_IEEE80211:
2167#endif
2168#ifdef IFT_CARP
2169	case IFT_CARP:
2170#endif
2171	case IFT_GIF:		/* XXX need more cases? */
2172	case IFT_PPP:
2173	case IFT_TUNNEL:
2174	case IFT_BRIDGE:
2175		return (1);
2176	default:
2177		return (0);
2178	}
2179}
2180
2181int
2182nd6_storelladdr(ifp, rt0, m, dst, desten)
2183	struct ifnet *ifp;
2184	struct rtentry *rt0;
2185	struct mbuf *m;
2186	struct sockaddr *dst;
2187	u_char *desten;
2188{
2189	struct sockaddr_dl *sdl;
2190	struct rtentry *rt;
2191	int error;
2192
2193	if (m->m_flags & M_MCAST) {
2194		int i;
2195
2196		switch (ifp->if_type) {
2197		case IFT_ETHER:
2198		case IFT_FDDI:
2199#ifdef IFT_L2VLAN
2200		case IFT_L2VLAN:
2201#endif
2202#ifdef IFT_IEEE80211
2203		case IFT_IEEE80211:
2204#endif
2205		case IFT_BRIDGE:
2206		case IFT_ISO88025:
2207			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2208						 desten);
2209			return (0);
2210		case IFT_IEEE1394:
2211			/*
2212			 * netbsd can use if_broadcastaddr, but we don't do so
2213			 * to reduce # of ifdef.
2214			 */
2215			for (i = 0; i < ifp->if_addrlen; i++)
2216				desten[i] = ~0;
2217			return (0);
2218		case IFT_ARCNET:
2219			*desten = 0;
2220			return (0);
2221		default:
2222			m_freem(m);
2223			return (EAFNOSUPPORT);
2224		}
2225	}
2226
2227	if (rt0 == NULL) {
2228		/* this could happen, if we could not allocate memory */
2229		m_freem(m);
2230		return (ENOMEM);
2231	}
2232
2233	error = rt_check(&rt, &rt0, dst);
2234	if (error) {
2235		m_freem(m);
2236		return (error);
2237	}
2238	RT_UNLOCK(rt);
2239
2240	if (rt->rt_gateway->sa_family != AF_LINK) {
2241		printf("nd6_storelladdr: something odd happens\n");
2242		m_freem(m);
2243		return (EINVAL);
2244	}
2245	sdl = SDL(rt->rt_gateway);
2246	if (sdl->sdl_alen == 0) {
2247		/* this should be impossible, but we bark here for debugging */
2248		printf("nd6_storelladdr: sdl_alen == 0\n");
2249		m_freem(m);
2250		return (EINVAL);
2251	}
2252
2253	bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2254	return (0);
2255}
2256
2257static void
2258clear_llinfo_pqueue(ln)
2259	struct llinfo_nd6 *ln;
2260{
2261	struct mbuf *m_hold, *m_hold_next;
2262
2263	for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2264		m_hold_next = m_hold->m_nextpkt;
2265		m_hold->m_nextpkt = NULL;
2266		m_freem(m_hold);
2267	}
2268
2269	ln->ln_hold = NULL;
2270	return;
2271}
2272
2273static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2274static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2275#ifdef SYSCTL_DECL
2276SYSCTL_DECL(_net_inet6_icmp6);
2277#endif
2278SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2279	CTLFLAG_RD, nd6_sysctl_drlist, "");
2280SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2281	CTLFLAG_RD, nd6_sysctl_prlist, "");
2282SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2283	CTLFLAG_RW, &nd6_maxqueuelen, 1, "");
2284
2285static int
2286nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2287{
2288	int error;
2289	char buf[1024];
2290	struct in6_defrouter *d, *de;
2291	struct nd_defrouter *dr;
2292
2293	if (req->newptr)
2294		return EPERM;
2295	error = 0;
2296
2297	for (dr = TAILQ_FIRST(&nd_defrouter); dr;
2298	     dr = TAILQ_NEXT(dr, dr_entry)) {
2299		d = (struct in6_defrouter *)buf;
2300		de = (struct in6_defrouter *)(buf + sizeof(buf));
2301
2302		if (d + 1 <= de) {
2303			bzero(d, sizeof(*d));
2304			d->rtaddr.sin6_family = AF_INET6;
2305			d->rtaddr.sin6_len = sizeof(d->rtaddr);
2306			d->rtaddr.sin6_addr = dr->rtaddr;
2307			sa6_recoverscope(&d->rtaddr);
2308			d->flags = dr->flags;
2309			d->rtlifetime = dr->rtlifetime;
2310			d->expire = dr->expire;
2311			d->if_index = dr->ifp->if_index;
2312		} else
2313			panic("buffer too short");
2314
2315		error = SYSCTL_OUT(req, buf, sizeof(*d));
2316		if (error)
2317			break;
2318	}
2319
2320	return (error);
2321}
2322
2323static int
2324nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2325{
2326	int error;
2327	char buf[1024];
2328	struct in6_prefix *p, *pe;
2329	struct nd_prefix *pr;
2330
2331	if (req->newptr)
2332		return EPERM;
2333	error = 0;
2334
2335	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2336		u_short advrtrs;
2337		size_t advance;
2338		struct sockaddr_in6 *sin6, *s6;
2339		struct nd_pfxrouter *pfr;
2340
2341		p = (struct in6_prefix *)buf;
2342		pe = (struct in6_prefix *)(buf + sizeof(buf));
2343
2344		if (p + 1 <= pe) {
2345			bzero(p, sizeof(*p));
2346			sin6 = (struct sockaddr_in6 *)(p + 1);
2347
2348			p->prefix = pr->ndpr_prefix;
2349			if (sa6_recoverscope(&p->prefix)) {
2350				log(LOG_ERR,
2351				    "scope error in prefix list (%s)\n",
2352				    ip6_sprintf(&p->prefix.sin6_addr));
2353				/* XXX: press on... */
2354			}
2355			p->raflags = pr->ndpr_raf;
2356			p->prefixlen = pr->ndpr_plen;
2357			p->vltime = pr->ndpr_vltime;
2358			p->pltime = pr->ndpr_pltime;
2359			p->if_index = pr->ndpr_ifp->if_index;
2360			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2361				p->expire = 0;
2362			else {
2363				time_t maxexpire;
2364
2365				/* XXX: we assume time_t is signed. */
2366				maxexpire = (-1) &
2367				    ~((time_t)1 <<
2368				    ((sizeof(maxexpire) * 8) - 1));
2369				if (pr->ndpr_vltime <
2370				    maxexpire - pr->ndpr_lastupdate) {
2371				    p->expire = pr->ndpr_lastupdate +
2372				        pr->ndpr_vltime;
2373				} else
2374					p->expire = maxexpire;
2375			}
2376			p->refcnt = pr->ndpr_refcnt;
2377			p->flags = pr->ndpr_stateflags;
2378			p->origin = PR_ORIG_RA;
2379			advrtrs = 0;
2380			for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2381			     pfr = pfr->pfr_next) {
2382				if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2383					advrtrs++;
2384					continue;
2385				}
2386				s6 = &sin6[advrtrs];
2387				bzero(s6, sizeof(*s6));
2388				s6->sin6_family = AF_INET6;
2389				s6->sin6_len = sizeof(*sin6);
2390				s6->sin6_addr = pfr->router->rtaddr;
2391				if (sa6_recoverscope(s6)) {
2392					log(LOG_ERR,
2393					    "scope error in "
2394					    "prefix list (%s)\n",
2395					    ip6_sprintf(&pfr->router->rtaddr));
2396				}
2397				advrtrs++;
2398			}
2399			p->advrtrs = advrtrs;
2400		} else
2401			panic("buffer too short");
2402
2403		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2404		error = SYSCTL_OUT(req, buf, advance);
2405		if (error)
2406			break;
2407	}
2408
2409	return (error);
2410}
2411