nd6.c revision 157097
1/*	$FreeBSD: head/sys/netinet6/nd6.c 157097 2006-03-24 16:20:12Z suz $	*/
2/*	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $	*/
3
4/*-
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#include "opt_inet.h"
34#include "opt_inet6.h"
35#include "opt_mac.h"
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/callout.h>
40#include <sys/mac.h>
41#include <sys/malloc.h>
42#include <sys/mbuf.h>
43#include <sys/socket.h>
44#include <sys/sockio.h>
45#include <sys/time.h>
46#include <sys/kernel.h>
47#include <sys/protosw.h>
48#include <sys/errno.h>
49#include <sys/syslog.h>
50#include <sys/queue.h>
51#include <sys/sysctl.h>
52
53#include <net/if.h>
54#include <net/if_arc.h>
55#include <net/if_dl.h>
56#include <net/if_types.h>
57#include <net/iso88025.h>
58#include <net/fddi.h>
59#include <net/route.h>
60
61#include <netinet/in.h>
62#include <netinet/if_ether.h>
63#include <netinet6/in6_var.h>
64#include <netinet/ip6.h>
65#include <netinet6/ip6_var.h>
66#include <netinet6/scope6_var.h>
67#include <netinet6/nd6.h>
68#include <netinet/icmp6.h>
69
70#include <sys/limits.h>
71
72#include <net/net_osdep.h>
73
74#define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
75#define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
76
77#define SIN6(s) ((struct sockaddr_in6 *)s)
78#define SDL(s) ((struct sockaddr_dl *)s)
79
80/* timer values */
81int	nd6_prune	= 1;	/* walk list every 1 seconds */
82int	nd6_delay	= 5;	/* delay first probe time 5 second */
83int	nd6_umaxtries	= 3;	/* maximum unicast query */
84int	nd6_mmaxtries	= 3;	/* maximum multicast query */
85int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
86int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
87
88/* preventing too many loops in ND option parsing */
89int nd6_maxndopt = 10;	/* max # of ND options allowed */
90
91int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
92int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
93
94#ifdef ND6_DEBUG
95int nd6_debug = 1;
96#else
97int nd6_debug = 0;
98#endif
99
100/* for debugging? */
101static int nd6_inuse, nd6_allocated;
102
103struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
104struct nd_drhead nd_defrouter;
105struct nd_prhead nd_prefix = { 0 };
106
107int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
108static struct sockaddr_in6 all1_sa;
109
110static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *,
111	struct ifnet *));
112static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
113static void nd6_slowtimo __P((void *));
114static int regen_tmpaddr __P((struct in6_ifaddr *));
115static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
116static void nd6_llinfo_timer __P((void *));
117static void clear_llinfo_pqueue __P((struct llinfo_nd6 *));
118
119struct callout nd6_slowtimo_ch;
120struct callout nd6_timer_ch;
121extern struct callout in6_tmpaddrtimer_ch;
122
123void
124nd6_init()
125{
126	static int nd6_init_done = 0;
127	int i;
128
129	if (nd6_init_done) {
130		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
131		return;
132	}
133
134	all1_sa.sin6_family = AF_INET6;
135	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
136	for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
137		all1_sa.sin6_addr.s6_addr[i] = 0xff;
138
139	/* initialization of the default router list */
140	TAILQ_INIT(&nd_defrouter);
141
142	nd6_init_done = 1;
143
144	/* start timer */
145	callout_init(&nd6_slowtimo_ch, 0);
146	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
147	    nd6_slowtimo, NULL);
148}
149
150struct nd_ifinfo *
151nd6_ifattach(ifp)
152	struct ifnet *ifp;
153{
154	struct nd_ifinfo *nd;
155
156	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
157	bzero(nd, sizeof(*nd));
158
159	nd->initialized = 1;
160
161	nd->chlim = IPV6_DEFHLIM;
162	nd->basereachable = REACHABLE_TIME;
163	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
164	nd->retrans = RETRANS_TIMER;
165	/*
166	 * Note that the default value of ip6_accept_rtadv is 0, which means
167	 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
168	 * here.
169	 */
170	nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
171
172	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
173	nd6_setmtu0(ifp, nd);
174
175	return nd;
176}
177
178void
179nd6_ifdetach(nd)
180	struct nd_ifinfo *nd;
181{
182
183	free(nd, M_IP6NDP);
184}
185
186/*
187 * Reset ND level link MTU. This function is called when the physical MTU
188 * changes, which means we might have to adjust the ND level MTU.
189 */
190void
191nd6_setmtu(ifp)
192	struct ifnet *ifp;
193{
194
195	nd6_setmtu0(ifp, ND_IFINFO(ifp));
196}
197
198/* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
199void
200nd6_setmtu0(ifp, ndi)
201	struct ifnet *ifp;
202	struct nd_ifinfo *ndi;
203{
204	u_int32_t omaxmtu;
205
206	omaxmtu = ndi->maxmtu;
207
208	switch (ifp->if_type) {
209	case IFT_ARCNET:
210		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
211		break;
212	case IFT_FDDI:
213		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
214		break;
215	case IFT_ISO88025:
216		 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
217		 break;
218	default:
219		ndi->maxmtu = ifp->if_mtu;
220		break;
221	}
222
223	/*
224	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
225	 * undesirable situation.  We thus notify the operator of the change
226	 * explicitly.  The check for omaxmtu is necessary to restrict the
227	 * log to the case of changing the MTU, not initializing it.
228	 */
229	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
230		log(LOG_NOTICE, "nd6_setmtu0: "
231		    "new link MTU on %s (%lu) is too small for IPv6\n",
232		    if_name(ifp), (unsigned long)ndi->maxmtu);
233	}
234
235	if (ndi->maxmtu > in6_maxmtu)
236		in6_setmaxmtu(); /* check all interfaces just in case */
237
238#undef MIN
239}
240
241void
242nd6_option_init(opt, icmp6len, ndopts)
243	void *opt;
244	int icmp6len;
245	union nd_opts *ndopts;
246{
247
248	bzero(ndopts, sizeof(*ndopts));
249	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
250	ndopts->nd_opts_last
251		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
252
253	if (icmp6len == 0) {
254		ndopts->nd_opts_done = 1;
255		ndopts->nd_opts_search = NULL;
256	}
257}
258
259/*
260 * Take one ND option.
261 */
262struct nd_opt_hdr *
263nd6_option(ndopts)
264	union nd_opts *ndopts;
265{
266	struct nd_opt_hdr *nd_opt;
267	int olen;
268
269	if (ndopts == NULL)
270		panic("ndopts == NULL in nd6_option");
271	if (ndopts->nd_opts_last == NULL)
272		panic("uninitialized ndopts in nd6_option");
273	if (ndopts->nd_opts_search == NULL)
274		return NULL;
275	if (ndopts->nd_opts_done)
276		return NULL;
277
278	nd_opt = ndopts->nd_opts_search;
279
280	/* make sure nd_opt_len is inside the buffer */
281	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
282		bzero(ndopts, sizeof(*ndopts));
283		return NULL;
284	}
285
286	olen = nd_opt->nd_opt_len << 3;
287	if (olen == 0) {
288		/*
289		 * Message validation requires that all included
290		 * options have a length that is greater than zero.
291		 */
292		bzero(ndopts, sizeof(*ndopts));
293		return NULL;
294	}
295
296	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
297	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
298		/* option overruns the end of buffer, invalid */
299		bzero(ndopts, sizeof(*ndopts));
300		return NULL;
301	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
302		/* reached the end of options chain */
303		ndopts->nd_opts_done = 1;
304		ndopts->nd_opts_search = NULL;
305	}
306	return nd_opt;
307}
308
309/*
310 * Parse multiple ND options.
311 * This function is much easier to use, for ND routines that do not need
312 * multiple options of the same type.
313 */
314int
315nd6_options(ndopts)
316	union nd_opts *ndopts;
317{
318	struct nd_opt_hdr *nd_opt;
319	int i = 0;
320
321	if (ndopts == NULL)
322		panic("ndopts == NULL in nd6_options");
323	if (ndopts->nd_opts_last == NULL)
324		panic("uninitialized ndopts in nd6_options");
325	if (ndopts->nd_opts_search == NULL)
326		return 0;
327
328	while (1) {
329		nd_opt = nd6_option(ndopts);
330		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
331			/*
332			 * Message validation requires that all included
333			 * options have a length that is greater than zero.
334			 */
335			icmp6stat.icp6s_nd_badopt++;
336			bzero(ndopts, sizeof(*ndopts));
337			return -1;
338		}
339
340		if (nd_opt == NULL)
341			goto skip1;
342
343		switch (nd_opt->nd_opt_type) {
344		case ND_OPT_SOURCE_LINKADDR:
345		case ND_OPT_TARGET_LINKADDR:
346		case ND_OPT_MTU:
347		case ND_OPT_REDIRECTED_HEADER:
348			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
349				nd6log((LOG_INFO,
350				    "duplicated ND6 option found (type=%d)\n",
351				    nd_opt->nd_opt_type));
352				/* XXX bark? */
353			} else {
354				ndopts->nd_opt_array[nd_opt->nd_opt_type]
355					= nd_opt;
356			}
357			break;
358		case ND_OPT_PREFIX_INFORMATION:
359			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
360				ndopts->nd_opt_array[nd_opt->nd_opt_type]
361					= nd_opt;
362			}
363			ndopts->nd_opts_pi_end =
364				(struct nd_opt_prefix_info *)nd_opt;
365			break;
366		default:
367			/*
368			 * Unknown options must be silently ignored,
369			 * to accomodate future extension to the protocol.
370			 */
371			nd6log((LOG_DEBUG,
372			    "nd6_options: unsupported option %d - "
373			    "option ignored\n", nd_opt->nd_opt_type));
374		}
375
376skip1:
377		i++;
378		if (i > nd6_maxndopt) {
379			icmp6stat.icp6s_nd_toomanyopt++;
380			nd6log((LOG_INFO, "too many loop in nd opt\n"));
381			break;
382		}
383
384		if (ndopts->nd_opts_done)
385			break;
386	}
387
388	return 0;
389}
390
391/*
392 * ND6 timer routine to handle ND6 entries
393 */
394void
395nd6_llinfo_settimer(ln, tick)
396	struct llinfo_nd6 *ln;
397	long tick;
398{
399	if (tick < 0) {
400		ln->ln_expire = 0;
401		ln->ln_ntick = 0;
402		callout_stop(&ln->ln_timer_ch);
403	} else {
404		ln->ln_expire = time_second + tick / hz;
405		if (tick > INT_MAX) {
406			ln->ln_ntick = tick - INT_MAX;
407			callout_reset(&ln->ln_timer_ch, INT_MAX,
408			    nd6_llinfo_timer, ln);
409		} else {
410			ln->ln_ntick = 0;
411			callout_reset(&ln->ln_timer_ch, tick,
412			    nd6_llinfo_timer, ln);
413		}
414	}
415}
416
417static void
418nd6_llinfo_timer(arg)
419	void *arg;
420{
421	struct llinfo_nd6 *ln;
422	struct rtentry *rt;
423	struct in6_addr *dst;
424	struct ifnet *ifp;
425	struct nd_ifinfo *ndi = NULL;
426
427	ln = (struct llinfo_nd6 *)arg;
428
429	if (ln->ln_ntick > 0) {
430		if (ln->ln_ntick > INT_MAX) {
431			ln->ln_ntick -= INT_MAX;
432			nd6_llinfo_settimer(ln, INT_MAX);
433		} else {
434			ln->ln_ntick = 0;
435			nd6_llinfo_settimer(ln, ln->ln_ntick);
436		}
437		return;
438	}
439
440	if ((rt = ln->ln_rt) == NULL)
441		panic("ln->ln_rt == NULL");
442	if ((ifp = rt->rt_ifp) == NULL)
443		panic("ln->ln_rt->rt_ifp == NULL");
444	ndi = ND_IFINFO(ifp);
445
446	/* sanity check */
447	if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
448		panic("rt_llinfo(%p) is not equal to ln(%p)",
449		      rt->rt_llinfo, ln);
450	if (rt_key(rt) == NULL)
451		panic("rt key is NULL in nd6_timer(ln=%p)", ln);
452
453	dst = &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
454
455	switch (ln->ln_state) {
456	case ND6_LLINFO_INCOMPLETE:
457		if (ln->ln_asked < nd6_mmaxtries) {
458			ln->ln_asked++;
459			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
460			nd6_ns_output(ifp, NULL, dst, ln, 0);
461		} else {
462			struct mbuf *m = ln->ln_hold;
463			if (m) {
464				struct mbuf *m0;
465
466				/*
467				 * assuming every packet in ln_hold has the
468				 * same IP header
469				 */
470				m0 = m->m_nextpkt;
471				m->m_nextpkt = NULL;
472				icmp6_error2(m, ICMP6_DST_UNREACH,
473				    ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
474
475				ln->ln_hold = m0;
476				clear_llinfo_pqueue(ln);
477			}
478			if (rt)
479				(void)nd6_free(rt, 0);
480			ln = NULL;
481		}
482		break;
483	case ND6_LLINFO_REACHABLE:
484		if (!ND6_LLINFO_PERMANENT(ln)) {
485			ln->ln_state = ND6_LLINFO_STALE;
486			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
487		}
488		break;
489
490	case ND6_LLINFO_STALE:
491		/* Garbage Collection(RFC 2461 5.3) */
492		if (!ND6_LLINFO_PERMANENT(ln)) {
493			(void)nd6_free(rt, 1);
494			ln = NULL;
495		}
496		break;
497
498	case ND6_LLINFO_DELAY:
499		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
500			/* We need NUD */
501			ln->ln_asked = 1;
502			ln->ln_state = ND6_LLINFO_PROBE;
503			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
504			nd6_ns_output(ifp, dst, dst, ln, 0);
505		} else {
506			ln->ln_state = ND6_LLINFO_STALE; /* XXX */
507			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
508		}
509		break;
510	case ND6_LLINFO_PROBE:
511		if (ln->ln_asked < nd6_umaxtries) {
512			ln->ln_asked++;
513			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
514			nd6_ns_output(ifp, dst, dst, ln, 0);
515		} else {
516			(void)nd6_free(rt, 0);
517			ln = NULL;
518		}
519		break;
520	}
521}
522
523
524/*
525 * ND6 timer routine to expire default route list and prefix list
526 */
527void
528nd6_timer(ignored_arg)
529	void	*ignored_arg;
530{
531	int s;
532	struct nd_defrouter *dr;
533	struct nd_prefix *pr;
534	struct in6_ifaddr *ia6, *nia6;
535	struct in6_addrlifetime *lt6;
536
537	callout_reset(&nd6_timer_ch, nd6_prune * hz,
538	    nd6_timer, NULL);
539
540	/* expire default router list */
541	s = splnet();
542	dr = TAILQ_FIRST(&nd_defrouter);
543	while (dr) {
544		if (dr->expire && dr->expire < time_second) {
545			struct nd_defrouter *t;
546			t = TAILQ_NEXT(dr, dr_entry);
547			defrtrlist_del(dr);
548			dr = t;
549		} else {
550			dr = TAILQ_NEXT(dr, dr_entry);
551		}
552	}
553
554	/*
555	 * expire interface addresses.
556	 * in the past the loop was inside prefix expiry processing.
557	 * However, from a stricter speci-confrmance standpoint, we should
558	 * rather separate address lifetimes and prefix lifetimes.
559	 */
560  addrloop:
561	for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
562		nia6 = ia6->ia_next;
563		/* check address lifetime */
564		lt6 = &ia6->ia6_lifetime;
565		if (IFA6_IS_INVALID(ia6)) {
566			int regen = 0;
567
568			/*
569			 * If the expiring address is temporary, try
570			 * regenerating a new one.  This would be useful when
571			 * we suspended a laptop PC, then turned it on after a
572			 * period that could invalidate all temporary
573			 * addresses.  Although we may have to restart the
574			 * loop (see below), it must be after purging the
575			 * address.  Otherwise, we'd see an infinite loop of
576			 * regeneration.
577			 */
578			if (ip6_use_tempaddr &&
579			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
580				if (regen_tmpaddr(ia6) == 0)
581					regen = 1;
582			}
583
584			in6_purgeaddr(&ia6->ia_ifa);
585
586			if (regen)
587				goto addrloop; /* XXX: see below */
588		} else if (IFA6_IS_DEPRECATED(ia6)) {
589			int oldflags = ia6->ia6_flags;
590
591			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
592
593			/*
594			 * If a temporary address has just become deprecated,
595			 * regenerate a new one if possible.
596			 */
597			if (ip6_use_tempaddr &&
598			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
599			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
600
601				if (regen_tmpaddr(ia6) == 0) {
602					/*
603					 * A new temporary address is
604					 * generated.
605					 * XXX: this means the address chain
606					 * has changed while we are still in
607					 * the loop.  Although the change
608					 * would not cause disaster (because
609					 * it's not a deletion, but an
610					 * addition,) we'd rather restart the
611					 * loop just for safety.  Or does this
612					 * significantly reduce performance??
613					 */
614					goto addrloop;
615				}
616			}
617		} else {
618			/*
619			 * A new RA might have made a deprecated address
620			 * preferred.
621			 */
622			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
623		}
624	}
625
626	/* expire prefix list */
627	pr = nd_prefix.lh_first;
628	while (pr) {
629		/*
630		 * check prefix lifetime.
631		 * since pltime is just for autoconf, pltime processing for
632		 * prefix is not necessary.
633		 */
634		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
635		    time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
636			struct nd_prefix *t;
637			t = pr->ndpr_next;
638
639			/*
640			 * address expiration and prefix expiration are
641			 * separate.  NEVER perform in6_purgeaddr here.
642			 */
643
644			prelist_remove(pr);
645			pr = t;
646		} else
647			pr = pr->ndpr_next;
648	}
649	splx(s);
650}
651
652static int
653regen_tmpaddr(ia6)
654	struct in6_ifaddr *ia6; /* deprecated/invalidated temporary address */
655{
656	struct ifaddr *ifa;
657	struct ifnet *ifp;
658	struct in6_ifaddr *public_ifa6 = NULL;
659
660	ifp = ia6->ia_ifa.ifa_ifp;
661	for (ifa = ifp->if_addrlist.tqh_first; ifa;
662	     ifa = ifa->ifa_list.tqe_next) {
663		struct in6_ifaddr *it6;
664
665		if (ifa->ifa_addr->sa_family != AF_INET6)
666			continue;
667
668		it6 = (struct in6_ifaddr *)ifa;
669
670		/* ignore no autoconf addresses. */
671		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
672			continue;
673
674		/* ignore autoconf addresses with different prefixes. */
675		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
676			continue;
677
678		/*
679		 * Now we are looking at an autoconf address with the same
680		 * prefix as ours.  If the address is temporary and is still
681		 * preferred, do not create another one.  It would be rare, but
682		 * could happen, for example, when we resume a laptop PC after
683		 * a long period.
684		 */
685		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
686		    !IFA6_IS_DEPRECATED(it6)) {
687			public_ifa6 = NULL;
688			break;
689		}
690
691		/*
692		 * This is a public autoconf address that has the same prefix
693		 * as ours.  If it is preferred, keep it.  We can't break the
694		 * loop here, because there may be a still-preferred temporary
695		 * address with the prefix.
696		 */
697		if (!IFA6_IS_DEPRECATED(it6))
698		    public_ifa6 = it6;
699	}
700
701	if (public_ifa6 != NULL) {
702		int e;
703
704		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
705			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
706			    " tmp addr,errno=%d\n", e);
707			return (-1);
708		}
709		return (0);
710	}
711
712	return (-1);
713}
714
715/*
716 * Nuke neighbor cache/prefix/default router management table, right before
717 * ifp goes away.
718 */
719void
720nd6_purge(ifp)
721	struct ifnet *ifp;
722{
723	struct llinfo_nd6 *ln, *nln;
724	struct nd_defrouter *dr, *ndr;
725	struct nd_prefix *pr, *npr;
726
727	/*
728	 * Nuke default router list entries toward ifp.
729	 * We defer removal of default router list entries that is installed
730	 * in the routing table, in order to keep additional side effects as
731	 * small as possible.
732	 */
733	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
734		ndr = TAILQ_NEXT(dr, dr_entry);
735		if (dr->installed)
736			continue;
737
738		if (dr->ifp == ifp)
739			defrtrlist_del(dr);
740	}
741
742	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
743		ndr = TAILQ_NEXT(dr, dr_entry);
744		if (!dr->installed)
745			continue;
746
747		if (dr->ifp == ifp)
748			defrtrlist_del(dr);
749	}
750
751	/* Nuke prefix list entries toward ifp */
752	for (pr = nd_prefix.lh_first; pr; pr = npr) {
753		npr = pr->ndpr_next;
754		if (pr->ndpr_ifp == ifp) {
755			/*
756			 * Because if_detach() does *not* release prefixes
757			 * while purging addresses the reference count will
758			 * still be above zero. We therefore reset it to
759			 * make sure that the prefix really gets purged.
760			 */
761			pr->ndpr_refcnt = 0;
762
763			/*
764			 * Previously, pr->ndpr_addr is removed as well,
765			 * but I strongly believe we don't have to do it.
766			 * nd6_purge() is only called from in6_ifdetach(),
767			 * which removes all the associated interface addresses
768			 * by itself.
769			 * (jinmei@kame.net 20010129)
770			 */
771			prelist_remove(pr);
772		}
773	}
774
775	/* cancel default outgoing interface setting */
776	if (nd6_defifindex == ifp->if_index)
777		nd6_setdefaultiface(0);
778
779	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
780		/* refresh default router list */
781		defrouter_select();
782	}
783
784	/*
785	 * Nuke neighbor cache entries for the ifp.
786	 * Note that rt->rt_ifp may not be the same as ifp,
787	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
788	 * nd6_rtrequest(), and ip6_input().
789	 */
790	ln = llinfo_nd6.ln_next;
791	while (ln && ln != &llinfo_nd6) {
792		struct rtentry *rt;
793		struct sockaddr_dl *sdl;
794
795		nln = ln->ln_next;
796		rt = ln->ln_rt;
797		if (rt && rt->rt_gateway &&
798		    rt->rt_gateway->sa_family == AF_LINK) {
799			sdl = (struct sockaddr_dl *)rt->rt_gateway;
800			if (sdl->sdl_index == ifp->if_index)
801				nln = nd6_free(rt, 0);
802		}
803		ln = nln;
804	}
805}
806
807struct rtentry *
808nd6_lookup(addr6, create, ifp)
809	struct in6_addr *addr6;
810	int create;
811	struct ifnet *ifp;
812{
813	struct rtentry *rt;
814	struct sockaddr_in6 sin6;
815
816	bzero(&sin6, sizeof(sin6));
817	sin6.sin6_len = sizeof(struct sockaddr_in6);
818	sin6.sin6_family = AF_INET6;
819	sin6.sin6_addr = *addr6;
820	rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL);
821	if (rt) {
822		if ((rt->rt_flags & RTF_LLINFO) == 0 && create) {
823			/*
824			 * This is the case for the default route.
825			 * If we want to create a neighbor cache for the
826			 * address, we should free the route for the
827			 * destination and allocate an interface route.
828			 */
829			RTFREE_LOCKED(rt);
830			rt = NULL;
831		}
832	}
833	if (rt == NULL) {
834		if (create && ifp) {
835			int e;
836
837			/*
838			 * If no route is available and create is set,
839			 * we allocate a host route for the destination
840			 * and treat it like an interface route.
841			 * This hack is necessary for a neighbor which can't
842			 * be covered by our own prefix.
843			 */
844			struct ifaddr *ifa =
845			    ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
846			if (ifa == NULL)
847				return (NULL);
848
849			/*
850			 * Create a new route.  RTF_LLINFO is necessary
851			 * to create a Neighbor Cache entry for the
852			 * destination in nd6_rtrequest which will be
853			 * called in rtrequest via ifa->ifa_rtrequest.
854			 */
855			if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
856			    ifa->ifa_addr, (struct sockaddr *)&all1_sa,
857			    (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
858			    ~RTF_CLONING, &rt)) != 0) {
859				log(LOG_ERR,
860				    "nd6_lookup: failed to add route for a "
861				    "neighbor(%s), errno=%d\n",
862				    ip6_sprintf(addr6), e);
863			}
864			if (rt == NULL)
865				return (NULL);
866			RT_LOCK(rt);
867			if (rt->rt_llinfo) {
868				struct llinfo_nd6 *ln =
869				    (struct llinfo_nd6 *)rt->rt_llinfo;
870				ln->ln_state = ND6_LLINFO_NOSTATE;
871			}
872		} else
873			return (NULL);
874	}
875	RT_LOCK_ASSERT(rt);
876	RT_REMREF(rt);
877	/*
878	 * Validation for the entry.
879	 * Note that the check for rt_llinfo is necessary because a cloned
880	 * route from a parent route that has the L flag (e.g. the default
881	 * route to a p2p interface) may have the flag, too, while the
882	 * destination is not actually a neighbor.
883	 * XXX: we can't use rt->rt_ifp to check for the interface, since
884	 *      it might be the loopback interface if the entry is for our
885	 *      own address on a non-loopback interface. Instead, we should
886	 *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
887	 *	interface.
888	 * Note also that ifa_ifp and ifp may differ when we connect two
889	 * interfaces to a same link, install a link prefix to an interface,
890	 * and try to install a neighbor cache on an interface that does not
891	 * have a route to the prefix.
892	 */
893	if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
894	    rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
895	    (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
896		if (create) {
897			nd6log((LOG_DEBUG,
898			    "nd6_lookup: failed to lookup %s (if = %s)\n",
899			    ip6_sprintf(addr6),
900			    ifp ? if_name(ifp) : "unspec"));
901		}
902		RT_UNLOCK(rt);
903		return (NULL);
904	}
905	RT_UNLOCK(rt);		/* XXX not ready to return rt locked */
906	return (rt);
907}
908
909/*
910 * Test whether a given IPv6 address is a neighbor or not, ignoring
911 * the actual neighbor cache.  The neighbor cache is ignored in order
912 * to not reenter the routing code from within itself.
913 */
914static int
915nd6_is_new_addr_neighbor(addr, ifp)
916	struct sockaddr_in6 *addr;
917	struct ifnet *ifp;
918{
919	struct nd_prefix *pr;
920	struct ifaddr *dstaddr;
921
922	/*
923	 * A link-local address is always a neighbor.
924	 * XXX: a link does not necessarily specify a single interface.
925	 */
926	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
927		struct sockaddr_in6 sin6_copy;
928		u_int32_t zone;
929
930		/*
931		 * We need sin6_copy since sa6_recoverscope() may modify the
932		 * content (XXX).
933		 */
934		sin6_copy = *addr;
935		if (sa6_recoverscope(&sin6_copy))
936			return (0); /* XXX: should be impossible */
937		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
938			return (0);
939		if (sin6_copy.sin6_scope_id == zone)
940			return (1);
941		else
942			return (0);
943	}
944
945	/*
946	 * If the address matches one of our addresses,
947	 * it should be a neighbor.
948	 * If the address matches one of our on-link prefixes, it should be a
949	 * neighbor.
950	 */
951	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
952		if (pr->ndpr_ifp != ifp)
953			continue;
954
955		if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
956			continue;
957
958		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
959		    &addr->sin6_addr, &pr->ndpr_mask))
960			return (1);
961	}
962
963	/*
964	 * If the address is assigned on the node of the other side of
965	 * a p2p interface, the address should be a neighbor.
966	 */
967	dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr);
968	if ((dstaddr != NULL) && (dstaddr->ifa_ifp == ifp))
969		return (1);
970
971	/*
972	 * If the default router list is empty, all addresses are regarded
973	 * as on-link, and thus, as a neighbor.
974	 * XXX: we restrict the condition to hosts, because routers usually do
975	 * not have the "default router list".
976	 */
977	if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
978	    nd6_defifindex == ifp->if_index) {
979		return (1);
980	}
981
982	return (0);
983}
984
985
986/*
987 * Detect if a given IPv6 address identifies a neighbor on a given link.
988 * XXX: should take care of the destination of a p2p link?
989 */
990int
991nd6_is_addr_neighbor(addr, ifp)
992	struct sockaddr_in6 *addr;
993	struct ifnet *ifp;
994{
995
996	if (nd6_is_new_addr_neighbor(addr, ifp))
997		return (1);
998
999	/*
1000	 * Even if the address matches none of our addresses, it might be
1001	 * in the neighbor cache.
1002	 */
1003	if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
1004		return (1);
1005
1006	return (0);
1007}
1008
1009/*
1010 * Free an nd6 llinfo entry.
1011 * Since the function would cause significant changes in the kernel, DO NOT
1012 * make it global, unless you have a strong reason for the change, and are sure
1013 * that the change is safe.
1014 */
1015static struct llinfo_nd6 *
1016nd6_free(rt, gc)
1017	struct rtentry *rt;
1018	int gc;
1019{
1020	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
1021	struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
1022	struct nd_defrouter *dr;
1023
1024	/*
1025	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1026	 * even though it is not harmful, it was not really necessary.
1027	 */
1028
1029	/* cancel timer */
1030	nd6_llinfo_settimer(ln, -1);
1031
1032	if (!ip6_forwarding) {
1033		int s;
1034		s = splnet();
1035		dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1036		    rt->rt_ifp);
1037
1038		if (dr != NULL && dr->expire &&
1039		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1040			/*
1041			 * If the reason for the deletion is just garbage
1042			 * collection, and the neighbor is an active default
1043			 * router, do not delete it.  Instead, reset the GC
1044			 * timer using the router's lifetime.
1045			 * Simply deleting the entry would affect default
1046			 * router selection, which is not necessarily a good
1047			 * thing, especially when we're using router preference
1048			 * values.
1049			 * XXX: the check for ln_state would be redundant,
1050			 *      but we intentionally keep it just in case.
1051			 */
1052			if (dr->expire > time_second)
1053				nd6_llinfo_settimer(ln,
1054				    (dr->expire - time_second) * hz);
1055			else
1056				nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1057			splx(s);
1058			return (ln->ln_next);
1059		}
1060
1061		if (ln->ln_router || dr) {
1062			/*
1063			 * rt6_flush must be called whether or not the neighbor
1064			 * is in the Default Router List.
1065			 * See a corresponding comment in nd6_na_input().
1066			 */
1067			rt6_flush(&in6, rt->rt_ifp);
1068		}
1069
1070		if (dr) {
1071			/*
1072			 * Unreachablity of a router might affect the default
1073			 * router selection and on-link detection of advertised
1074			 * prefixes.
1075			 */
1076
1077			/*
1078			 * Temporarily fake the state to choose a new default
1079			 * router and to perform on-link determination of
1080			 * prefixes correctly.
1081			 * Below the state will be set correctly,
1082			 * or the entry itself will be deleted.
1083			 */
1084			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1085
1086			/*
1087			 * Since defrouter_select() does not affect the
1088			 * on-link determination and MIP6 needs the check
1089			 * before the default router selection, we perform
1090			 * the check now.
1091			 */
1092			pfxlist_onlink_check();
1093
1094			/*
1095			 * refresh default router list
1096			 */
1097			defrouter_select();
1098		}
1099		splx(s);
1100	}
1101
1102	/*
1103	 * Before deleting the entry, remember the next entry as the
1104	 * return value.  We need this because pfxlist_onlink_check() above
1105	 * might have freed other entries (particularly the old next entry) as
1106	 * a side effect (XXX).
1107	 */
1108	next = ln->ln_next;
1109
1110	/*
1111	 * Detach the route from the routing tree and the list of neighbor
1112	 * caches, and disable the route entry not to be used in already
1113	 * cached routes.
1114	 */
1115	rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
1116	    rt_mask(rt), 0, (struct rtentry **)0);
1117
1118	return (next);
1119}
1120
1121/*
1122 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1123 *
1124 * XXX cost-effective methods?
1125 */
1126void
1127nd6_nud_hint(rt, dst6, force)
1128	struct rtentry *rt;
1129	struct in6_addr *dst6;
1130	int force;
1131{
1132	struct llinfo_nd6 *ln;
1133
1134	/*
1135	 * If the caller specified "rt", use that.  Otherwise, resolve the
1136	 * routing table by supplied "dst6".
1137	 */
1138	if (rt == NULL) {
1139		if (dst6 == NULL)
1140			return;
1141		if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
1142			return;
1143	}
1144
1145	if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1146	    (rt->rt_flags & RTF_LLINFO) == 0 ||
1147	    rt->rt_llinfo == NULL || rt->rt_gateway == NULL ||
1148	    rt->rt_gateway->sa_family != AF_LINK) {
1149		/* This is not a host route. */
1150		return;
1151	}
1152
1153	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1154	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1155		return;
1156
1157	/*
1158	 * if we get upper-layer reachability confirmation many times,
1159	 * it is possible we have false information.
1160	 */
1161	if (!force) {
1162		ln->ln_byhint++;
1163		if (ln->ln_byhint > nd6_maxnudhint)
1164			return;
1165	}
1166
1167	ln->ln_state = ND6_LLINFO_REACHABLE;
1168	if (!ND6_LLINFO_PERMANENT(ln)) {
1169		nd6_llinfo_settimer(ln,
1170		    (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1171	}
1172}
1173
1174void
1175nd6_rtrequest(req, rt, info)
1176	int	req;
1177	struct rtentry *rt;
1178	struct rt_addrinfo *info; /* xxx unused */
1179{
1180	struct sockaddr *gate = rt->rt_gateway;
1181	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1182	static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1183	struct ifnet *ifp = rt->rt_ifp;
1184	struct ifaddr *ifa;
1185
1186	RT_LOCK_ASSERT(rt);
1187
1188	if ((rt->rt_flags & RTF_GATEWAY) != 0)
1189		return;
1190
1191	if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1192		/*
1193		 * This is probably an interface direct route for a link
1194		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1195		 * We do not need special treatment below for such a route.
1196		 * Moreover, the RTF_LLINFO flag which would be set below
1197		 * would annoy the ndp(8) command.
1198		 */
1199		return;
1200	}
1201
1202	if (req == RTM_RESOLVE &&
1203	    (nd6_need_cache(ifp) == 0 || /* stf case */
1204	     !nd6_is_new_addr_neighbor((struct sockaddr_in6 *)rt_key(rt),
1205	     ifp))) {
1206		/*
1207		 * FreeBSD and BSD/OS often make a cloned host route based
1208		 * on a less-specific route (e.g. the default route).
1209		 * If the less specific route does not have a "gateway"
1210		 * (this is the case when the route just goes to a p2p or an
1211		 * stf interface), we'll mistakenly make a neighbor cache for
1212		 * the host route, and will see strange neighbor solicitation
1213		 * for the corresponding destination.  In order to avoid the
1214		 * confusion, we check if the destination of the route is
1215		 * a neighbor in terms of neighbor discovery, and stop the
1216		 * process if not.  Additionally, we remove the LLINFO flag
1217		 * so that ndp(8) will not try to get the neighbor information
1218		 * of the destination.
1219		 */
1220		rt->rt_flags &= ~RTF_LLINFO;
1221		return;
1222	}
1223
1224	switch (req) {
1225	case RTM_ADD:
1226		/*
1227		 * There is no backward compatibility :)
1228		 *
1229		 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1230		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1231		 *	   rt->rt_flags |= RTF_CLONING;
1232		 */
1233		if ((rt->rt_flags & RTF_CLONING) ||
1234		    ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
1235			/*
1236			 * Case 1: This route should come from a route to
1237			 * interface (RTF_CLONING case) or the route should be
1238			 * treated as on-link but is currently not
1239			 * (RTF_LLINFO && ln == NULL case).
1240			 */
1241			rt_setgate(rt, rt_key(rt),
1242				   (struct sockaddr *)&null_sdl);
1243			gate = rt->rt_gateway;
1244			SDL(gate)->sdl_type = ifp->if_type;
1245			SDL(gate)->sdl_index = ifp->if_index;
1246			if (ln)
1247				nd6_llinfo_settimer(ln, 0);
1248			if ((rt->rt_flags & RTF_CLONING) != 0)
1249				break;
1250		}
1251		/*
1252		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1253		 * We don't do that here since llinfo is not ready yet.
1254		 *
1255		 * There are also couple of other things to be discussed:
1256		 * - unsolicited NA code needs improvement beforehand
1257		 * - RFC2461 says we MAY send multicast unsolicited NA
1258		 *   (7.2.6 paragraph 4), however, it also says that we
1259		 *   SHOULD provide a mechanism to prevent multicast NA storm.
1260		 *   we don't have anything like it right now.
1261		 *   note that the mechanism needs a mutual agreement
1262		 *   between proxies, which means that we need to implement
1263		 *   a new protocol, or a new kludge.
1264		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1265		 *   we need to check ip6forwarding before sending it.
1266		 *   (or should we allow proxy ND configuration only for
1267		 *   routers?  there's no mention about proxy ND from hosts)
1268		 */
1269		/* FALLTHROUGH */
1270	case RTM_RESOLVE:
1271		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1272			/*
1273			 * Address resolution isn't necessary for a point to
1274			 * point link, so we can skip this test for a p2p link.
1275			 */
1276			if (gate->sa_family != AF_LINK ||
1277			    gate->sa_len < sizeof(null_sdl)) {
1278				log(LOG_DEBUG,
1279				    "nd6_rtrequest: bad gateway value: %s\n",
1280				    if_name(ifp));
1281				break;
1282			}
1283			SDL(gate)->sdl_type = ifp->if_type;
1284			SDL(gate)->sdl_index = ifp->if_index;
1285		}
1286		if (ln != NULL)
1287			break;	/* This happens on a route change */
1288		/*
1289		 * Case 2: This route may come from cloning, or a manual route
1290		 * add with a LL address.
1291		 */
1292		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1293		rt->rt_llinfo = (caddr_t)ln;
1294		if (ln == NULL) {
1295			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1296			break;
1297		}
1298		nd6_inuse++;
1299		nd6_allocated++;
1300		bzero(ln, sizeof(*ln));
1301		ln->ln_rt = rt;
1302		callout_init(&ln->ln_timer_ch, 0);
1303
1304		/* this is required for "ndp" command. - shin */
1305		if (req == RTM_ADD) {
1306		        /*
1307			 * gate should have some valid AF_LINK entry,
1308			 * and ln->ln_expire should have some lifetime
1309			 * which is specified by ndp command.
1310			 */
1311			ln->ln_state = ND6_LLINFO_REACHABLE;
1312			ln->ln_byhint = 0;
1313		} else {
1314		        /*
1315			 * When req == RTM_RESOLVE, rt is created and
1316			 * initialized in rtrequest(), so rt_expire is 0.
1317			 */
1318			ln->ln_state = ND6_LLINFO_NOSTATE;
1319			nd6_llinfo_settimer(ln, 0);
1320		}
1321		rt->rt_flags |= RTF_LLINFO;
1322		ln->ln_next = llinfo_nd6.ln_next;
1323		llinfo_nd6.ln_next = ln;
1324		ln->ln_prev = &llinfo_nd6;
1325		ln->ln_next->ln_prev = ln;
1326
1327		/*
1328		 * check if rt_key(rt) is one of my address assigned
1329		 * to the interface.
1330		 */
1331		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1332		    &SIN6(rt_key(rt))->sin6_addr);
1333		if (ifa) {
1334			caddr_t macp = nd6_ifptomac(ifp);
1335			nd6_llinfo_settimer(ln, -1);
1336			ln->ln_state = ND6_LLINFO_REACHABLE;
1337			ln->ln_byhint = 0;
1338			if (macp) {
1339				bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1340				SDL(gate)->sdl_alen = ifp->if_addrlen;
1341			}
1342			if (nd6_useloopback) {
1343				rt->rt_ifp = &loif[0];	/* XXX */
1344				/*
1345				 * Make sure rt_ifa be equal to the ifaddr
1346				 * corresponding to the address.
1347				 * We need this because when we refer
1348				 * rt_ifa->ia6_flags in ip6_input, we assume
1349				 * that the rt_ifa points to the address instead
1350				 * of the loopback address.
1351				 */
1352				if (ifa != rt->rt_ifa) {
1353					IFAFREE(rt->rt_ifa);
1354					IFAREF(ifa);
1355					rt->rt_ifa = ifa;
1356				}
1357			}
1358		} else if (rt->rt_flags & RTF_ANNOUNCE) {
1359			nd6_llinfo_settimer(ln, -1);
1360			ln->ln_state = ND6_LLINFO_REACHABLE;
1361			ln->ln_byhint = 0;
1362
1363			/* join solicited node multicast for proxy ND */
1364			if (ifp->if_flags & IFF_MULTICAST) {
1365				struct in6_addr llsol;
1366				int error;
1367
1368				llsol = SIN6(rt_key(rt))->sin6_addr;
1369				llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1370				llsol.s6_addr32[1] = 0;
1371				llsol.s6_addr32[2] = htonl(1);
1372				llsol.s6_addr8[12] = 0xff;
1373				if (in6_setscope(&llsol, ifp, NULL))
1374					break;
1375				if (in6_addmulti(&llsol, ifp,
1376				    &error, 0) == NULL) {
1377					nd6log((LOG_ERR, "%s: failed to join "
1378					    "%s (errno=%d)\n", if_name(ifp),
1379					    ip6_sprintf(&llsol), error));
1380				}
1381			}
1382		}
1383		break;
1384
1385	case RTM_DELETE:
1386		if (ln == NULL)
1387			break;
1388		/* leave from solicited node multicast for proxy ND */
1389		if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1390		    (ifp->if_flags & IFF_MULTICAST) != 0) {
1391			struct in6_addr llsol;
1392			struct in6_multi *in6m;
1393
1394			llsol = SIN6(rt_key(rt))->sin6_addr;
1395			llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1396			llsol.s6_addr32[1] = 0;
1397			llsol.s6_addr32[2] = htonl(1);
1398			llsol.s6_addr8[12] = 0xff;
1399			if (in6_setscope(&llsol, ifp, NULL) == 0) {
1400				IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1401				if (in6m)
1402					in6_delmulti(in6m);
1403			} else
1404				; /* XXX: should not happen. bark here? */
1405		}
1406		nd6_inuse--;
1407		ln->ln_next->ln_prev = ln->ln_prev;
1408		ln->ln_prev->ln_next = ln->ln_next;
1409		ln->ln_prev = NULL;
1410		nd6_llinfo_settimer(ln, -1);
1411		rt->rt_llinfo = 0;
1412		rt->rt_flags &= ~RTF_LLINFO;
1413		clear_llinfo_pqueue(ln);
1414		Free((caddr_t)ln);
1415	}
1416}
1417
1418int
1419nd6_ioctl(cmd, data, ifp)
1420	u_long cmd;
1421	caddr_t	data;
1422	struct ifnet *ifp;
1423{
1424	struct in6_drlist *drl = (struct in6_drlist *)data;
1425	struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1426	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1427	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1428	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1429	struct nd_defrouter *dr;
1430	struct nd_prefix *pr;
1431	struct rtentry *rt;
1432	int i = 0, error = 0;
1433	int s;
1434
1435	switch (cmd) {
1436	case SIOCGDRLST_IN6:
1437		/*
1438		 * obsolete API, use sysctl under net.inet6.icmp6
1439		 */
1440		bzero(drl, sizeof(*drl));
1441		s = splnet();
1442		dr = TAILQ_FIRST(&nd_defrouter);
1443		while (dr && i < DRLSTSIZ) {
1444			drl->defrouter[i].rtaddr = dr->rtaddr;
1445			in6_clearscope(&drl->defrouter[i].rtaddr);
1446
1447			drl->defrouter[i].flags = dr->flags;
1448			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1449			drl->defrouter[i].expire = dr->expire;
1450			drl->defrouter[i].if_index = dr->ifp->if_index;
1451			i++;
1452			dr = TAILQ_NEXT(dr, dr_entry);
1453		}
1454		splx(s);
1455		break;
1456	case SIOCGPRLST_IN6:
1457		/*
1458		 * obsolete API, use sysctl under net.inet6.icmp6
1459		 *
1460		 * XXX the structure in6_prlist was changed in backward-
1461		 * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
1462		 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1463		 */
1464		/*
1465		 * XXX meaning of fields, especialy "raflags", is very
1466		 * differnet between RA prefix list and RR/static prefix list.
1467		 * how about separating ioctls into two?
1468		 */
1469		bzero(oprl, sizeof(*oprl));
1470		s = splnet();
1471		pr = nd_prefix.lh_first;
1472		while (pr && i < PRLSTSIZ) {
1473			struct nd_pfxrouter *pfr;
1474			int j;
1475
1476			oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1477			oprl->prefix[i].raflags = pr->ndpr_raf;
1478			oprl->prefix[i].prefixlen = pr->ndpr_plen;
1479			oprl->prefix[i].vltime = pr->ndpr_vltime;
1480			oprl->prefix[i].pltime = pr->ndpr_pltime;
1481			oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1482			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1483				oprl->prefix[i].expire = 0;
1484			else {
1485				time_t maxexpire;
1486
1487				/* XXX: we assume time_t is signed. */
1488				maxexpire = (-1) &
1489				    ~((time_t)1 <<
1490				    ((sizeof(maxexpire) * 8) - 1));
1491				if (pr->ndpr_vltime <
1492				    maxexpire - pr->ndpr_lastupdate) {
1493					oprl->prefix[i].expire =
1494					    pr->ndpr_lastupdate +
1495					    pr->ndpr_vltime;
1496				} else
1497					oprl->prefix[i].expire = maxexpire;
1498			}
1499
1500			pfr = pr->ndpr_advrtrs.lh_first;
1501			j = 0;
1502			while (pfr) {
1503				if (j < DRLSTSIZ) {
1504#define RTRADDR oprl->prefix[i].advrtr[j]
1505					RTRADDR = pfr->router->rtaddr;
1506					in6_clearscope(&RTRADDR);
1507#undef RTRADDR
1508				}
1509				j++;
1510				pfr = pfr->pfr_next;
1511			}
1512			oprl->prefix[i].advrtrs = j;
1513			oprl->prefix[i].origin = PR_ORIG_RA;
1514
1515			i++;
1516			pr = pr->ndpr_next;
1517		}
1518		splx(s);
1519
1520		break;
1521	case OSIOCGIFINFO_IN6:
1522#define ND	ndi->ndi
1523		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1524		bzero(&ND, sizeof(ND));
1525		ND.linkmtu = IN6_LINKMTU(ifp);
1526		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1527		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1528		ND.reachable = ND_IFINFO(ifp)->reachable;
1529		ND.retrans = ND_IFINFO(ifp)->retrans;
1530		ND.flags = ND_IFINFO(ifp)->flags;
1531		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1532		ND.chlim = ND_IFINFO(ifp)->chlim;
1533		break;
1534	case SIOCGIFINFO_IN6:
1535		ND = *ND_IFINFO(ifp);
1536		break;
1537	case SIOCSIFINFO_IN6:
1538		/*
1539		 * used to change host variables from userland.
1540		 * intented for a use on router to reflect RA configurations.
1541		 */
1542		/* 0 means 'unspecified' */
1543		if (ND.linkmtu != 0) {
1544			if (ND.linkmtu < IPV6_MMTU ||
1545			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1546				error = EINVAL;
1547				break;
1548			}
1549			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1550		}
1551
1552		if (ND.basereachable != 0) {
1553			int obasereachable = ND_IFINFO(ifp)->basereachable;
1554
1555			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1556			if (ND.basereachable != obasereachable)
1557				ND_IFINFO(ifp)->reachable =
1558				    ND_COMPUTE_RTIME(ND.basereachable);
1559		}
1560		if (ND.retrans != 0)
1561			ND_IFINFO(ifp)->retrans = ND.retrans;
1562		if (ND.chlim != 0)
1563			ND_IFINFO(ifp)->chlim = ND.chlim;
1564		/* FALLTHROUGH */
1565	case SIOCSIFINFO_FLAGS:
1566		ND_IFINFO(ifp)->flags = ND.flags;
1567		break;
1568#undef ND
1569	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1570		/* sync kernel routing table with the default router list */
1571		defrouter_reset();
1572		defrouter_select();
1573		break;
1574	case SIOCSPFXFLUSH_IN6:
1575	{
1576		/* flush all the prefix advertised by routers */
1577		struct nd_prefix *pr, *next;
1578
1579		s = splnet();
1580		for (pr = nd_prefix.lh_first; pr; pr = next) {
1581			struct in6_ifaddr *ia, *ia_next;
1582
1583			next = pr->ndpr_next;
1584
1585			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1586				continue; /* XXX */
1587
1588			/* do we really have to remove addresses as well? */
1589			for (ia = in6_ifaddr; ia; ia = ia_next) {
1590				/* ia might be removed.  keep the next ptr. */
1591				ia_next = ia->ia_next;
1592
1593				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1594					continue;
1595
1596				if (ia->ia6_ndpr == pr)
1597					in6_purgeaddr(&ia->ia_ifa);
1598			}
1599			prelist_remove(pr);
1600		}
1601		splx(s);
1602		break;
1603	}
1604	case SIOCSRTRFLUSH_IN6:
1605	{
1606		/* flush all the default routers */
1607		struct nd_defrouter *dr, *next;
1608
1609		s = splnet();
1610		defrouter_reset();
1611		for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = next) {
1612			next = TAILQ_NEXT(dr, dr_entry);
1613			defrtrlist_del(dr);
1614		}
1615		defrouter_select();
1616		splx(s);
1617		break;
1618	}
1619	case SIOCGNBRINFO_IN6:
1620	{
1621		struct llinfo_nd6 *ln;
1622		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1623
1624		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1625			return (error);
1626
1627		s = splnet();
1628		if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1629			error = EINVAL;
1630			splx(s);
1631			break;
1632		}
1633		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1634		nbi->state = ln->ln_state;
1635		nbi->asked = ln->ln_asked;
1636		nbi->isrouter = ln->ln_router;
1637		nbi->expire = ln->ln_expire;
1638		splx(s);
1639
1640		break;
1641	}
1642	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1643		ndif->ifindex = nd6_defifindex;
1644		break;
1645	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1646		return (nd6_setdefaultiface(ndif->ifindex));
1647	}
1648	return (error);
1649}
1650
1651/*
1652 * Create neighbor cache entry and cache link-layer address,
1653 * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1654 */
1655struct rtentry *
1656nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
1657	struct ifnet *ifp;
1658	struct in6_addr *from;
1659	char *lladdr;
1660	int lladdrlen;
1661	int type;	/* ICMP6 type */
1662	int code;	/* type dependent information */
1663{
1664	struct rtentry *rt = NULL;
1665	struct llinfo_nd6 *ln = NULL;
1666	int is_newentry;
1667	struct sockaddr_dl *sdl = NULL;
1668	int do_update;
1669	int olladdr;
1670	int llchange;
1671	int newstate = 0;
1672
1673	if (ifp == NULL)
1674		panic("ifp == NULL in nd6_cache_lladdr");
1675	if (from == NULL)
1676		panic("from == NULL in nd6_cache_lladdr");
1677
1678	/* nothing must be updated for unspecified address */
1679	if (IN6_IS_ADDR_UNSPECIFIED(from))
1680		return NULL;
1681
1682	/*
1683	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1684	 * the caller.
1685	 *
1686	 * XXX If the link does not have link-layer adderss, what should
1687	 * we do? (ifp->if_addrlen == 0)
1688	 * Spec says nothing in sections for RA, RS and NA.  There's small
1689	 * description on it in NS section (RFC 2461 7.2.3).
1690	 */
1691
1692	rt = nd6_lookup(from, 0, ifp);
1693	if (rt == NULL) {
1694		rt = nd6_lookup(from, 1, ifp);
1695		is_newentry = 1;
1696	} else {
1697		/* do nothing if static ndp is set */
1698		if (rt->rt_flags & RTF_STATIC)
1699			return NULL;
1700		is_newentry = 0;
1701	}
1702
1703	if (rt == NULL)
1704		return NULL;
1705	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1706fail:
1707		(void)nd6_free(rt, 0);
1708		return NULL;
1709	}
1710	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1711	if (ln == NULL)
1712		goto fail;
1713	if (rt->rt_gateway == NULL)
1714		goto fail;
1715	if (rt->rt_gateway->sa_family != AF_LINK)
1716		goto fail;
1717	sdl = SDL(rt->rt_gateway);
1718
1719	olladdr = (sdl->sdl_alen) ? 1 : 0;
1720	if (olladdr && lladdr) {
1721		if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1722			llchange = 1;
1723		else
1724			llchange = 0;
1725	} else
1726		llchange = 0;
1727
1728	/*
1729	 * newentry olladdr  lladdr  llchange	(*=record)
1730	 *	0	n	n	--	(1)
1731	 *	0	y	n	--	(2)
1732	 *	0	n	y	--	(3) * STALE
1733	 *	0	y	y	n	(4) *
1734	 *	0	y	y	y	(5) * STALE
1735	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1736	 *	1	--	y	--	(7) * STALE
1737	 */
1738
1739	if (lladdr) {		/* (3-5) and (7) */
1740		/*
1741		 * Record source link-layer address
1742		 * XXX is it dependent to ifp->if_type?
1743		 */
1744		sdl->sdl_alen = ifp->if_addrlen;
1745		bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1746	}
1747
1748	if (!is_newentry) {
1749		if ((!olladdr && lladdr != NULL) ||	/* (3) */
1750		    (olladdr && lladdr != NULL && llchange)) {	/* (5) */
1751			do_update = 1;
1752			newstate = ND6_LLINFO_STALE;
1753		} else					/* (1-2,4) */
1754			do_update = 0;
1755	} else {
1756		do_update = 1;
1757		if (lladdr == NULL)			/* (6) */
1758			newstate = ND6_LLINFO_NOSTATE;
1759		else					/* (7) */
1760			newstate = ND6_LLINFO_STALE;
1761	}
1762
1763	if (do_update) {
1764		/*
1765		 * Update the state of the neighbor cache.
1766		 */
1767		ln->ln_state = newstate;
1768
1769		if (ln->ln_state == ND6_LLINFO_STALE) {
1770			/*
1771			 * XXX: since nd6_output() below will cause
1772			 * state tansition to DELAY and reset the timer,
1773			 * we must set the timer now, although it is actually
1774			 * meaningless.
1775			 */
1776			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1777
1778			if (ln->ln_hold) {
1779				struct mbuf *m_hold, *m_hold_next;
1780				for (m_hold = ln->ln_hold; m_hold;
1781				     m_hold = m_hold_next) {
1782					struct mbuf *mpkt = NULL;
1783
1784					m_hold_next = m_hold->m_nextpkt;
1785					mpkt = m_copym(m_hold, 0, M_COPYALL, M_DONTWAIT);
1786					if (mpkt == NULL) {
1787						m_freem(m_hold);
1788						break;
1789					}
1790					mpkt->m_nextpkt = NULL;
1791
1792					/*
1793					 * we assume ifp is not a p2p here, so
1794					 * just set the 2nd argument as the
1795					 * 1st one.
1796					 */
1797					nd6_output(ifp, ifp, mpkt,
1798					     (struct sockaddr_in6 *)rt_key(rt),
1799					     rt);
1800				}
1801				ln->ln_hold = NULL;
1802			}
1803		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1804			/* probe right away */
1805			nd6_llinfo_settimer((void *)ln, 0);
1806		}
1807	}
1808
1809	/*
1810	 * ICMP6 type dependent behavior.
1811	 *
1812	 * NS: clear IsRouter if new entry
1813	 * RS: clear IsRouter
1814	 * RA: set IsRouter if there's lladdr
1815	 * redir: clear IsRouter if new entry
1816	 *
1817	 * RA case, (1):
1818	 * The spec says that we must set IsRouter in the following cases:
1819	 * - If lladdr exist, set IsRouter.  This means (1-5).
1820	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1821	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1822	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1823	 * neighbor cache, this is similar to (6).
1824	 * This case is rare but we figured that we MUST NOT set IsRouter.
1825	 *
1826	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1827	 *							D R
1828	 *	0	n	n	--	(1)	c   ?     s
1829	 *	0	y	n	--	(2)	c   s     s
1830	 *	0	n	y	--	(3)	c   s     s
1831	 *	0	y	y	n	(4)	c   s     s
1832	 *	0	y	y	y	(5)	c   s     s
1833	 *	1	--	n	--	(6) c	c 	c s
1834	 *	1	--	y	--	(7) c	c   s	c s
1835	 *
1836	 *					(c=clear s=set)
1837	 */
1838	switch (type & 0xff) {
1839	case ND_NEIGHBOR_SOLICIT:
1840		/*
1841		 * New entry must have is_router flag cleared.
1842		 */
1843		if (is_newentry)	/* (6-7) */
1844			ln->ln_router = 0;
1845		break;
1846	case ND_REDIRECT:
1847		/*
1848		 * If the icmp is a redirect to a better router, always set the
1849		 * is_router flag.  Otherwise, if the entry is newly created,
1850		 * clear the flag.  [RFC 2461, sec 8.3]
1851		 */
1852		if (code == ND_REDIRECT_ROUTER)
1853			ln->ln_router = 1;
1854		else if (is_newentry) /* (6-7) */
1855			ln->ln_router = 0;
1856		break;
1857	case ND_ROUTER_SOLICIT:
1858		/*
1859		 * is_router flag must always be cleared.
1860		 */
1861		ln->ln_router = 0;
1862		break;
1863	case ND_ROUTER_ADVERT:
1864		/*
1865		 * Mark an entry with lladdr as a router.
1866		 */
1867		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
1868		    (is_newentry && lladdr)) {			/* (7) */
1869			ln->ln_router = 1;
1870		}
1871		break;
1872	}
1873
1874	/*
1875	 * When the link-layer address of a router changes, select the
1876	 * best router again.  In particular, when the neighbor entry is newly
1877	 * created, it might affect the selection policy.
1878	 * Question: can we restrict the first condition to the "is_newentry"
1879	 * case?
1880	 * XXX: when we hear an RA from a new router with the link-layer
1881	 * address option, defrouter_select() is called twice, since
1882	 * defrtrlist_update called the function as well.  However, I believe
1883	 * we can compromise the overhead, since it only happens the first
1884	 * time.
1885	 * XXX: although defrouter_select() should not have a bad effect
1886	 * for those are not autoconfigured hosts, we explicitly avoid such
1887	 * cases for safety.
1888	 */
1889	if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1890		defrouter_select();
1891
1892	return rt;
1893}
1894
1895static void
1896nd6_slowtimo(ignored_arg)
1897    void *ignored_arg;
1898{
1899	struct nd_ifinfo *nd6if;
1900	struct ifnet *ifp;
1901
1902	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1903	    nd6_slowtimo, NULL);
1904	IFNET_RLOCK();
1905	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
1906		nd6if = ND_IFINFO(ifp);
1907		if (nd6if->basereachable && /* already initialized */
1908		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1909			/*
1910			 * Since reachable time rarely changes by router
1911			 * advertisements, we SHOULD insure that a new random
1912			 * value gets recomputed at least once every few hours.
1913			 * (RFC 2461, 6.3.4)
1914			 */
1915			nd6if->recalctm = nd6_recalc_reachtm_interval;
1916			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1917		}
1918	}
1919	IFNET_RUNLOCK();
1920}
1921
1922#define senderr(e) { error = (e); goto bad;}
1923int
1924nd6_output(ifp, origifp, m0, dst, rt0)
1925	struct ifnet *ifp;
1926	struct ifnet *origifp;
1927	struct mbuf *m0;
1928	struct sockaddr_in6 *dst;
1929	struct rtentry *rt0;
1930{
1931	struct mbuf *m = m0;
1932	struct rtentry *rt = rt0;
1933	struct sockaddr_in6 *gw6 = NULL;
1934	struct llinfo_nd6 *ln = NULL;
1935	int error = 0;
1936
1937	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1938		goto sendpkt;
1939
1940	if (nd6_need_cache(ifp) == 0)
1941		goto sendpkt;
1942
1943	/*
1944	 * next hop determination.  This routine is derived from ether_output.
1945	 */
1946again:
1947	if (rt) {
1948		if ((rt->rt_flags & RTF_UP) == 0) {
1949			rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL);
1950			if (rt != NULL) {
1951				RT_REMREF(rt);
1952				RT_UNLOCK(rt);
1953				if (rt->rt_ifp != ifp)
1954					/*
1955					 * XXX maybe we should update ifp too,
1956					 * but the original code didn't and I
1957					 * don't know what is correct here.
1958					 */
1959					goto again;
1960			} else
1961				senderr(EHOSTUNREACH);
1962		}
1963
1964		if (rt->rt_flags & RTF_GATEWAY) {
1965			gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1966
1967			/*
1968			 * We skip link-layer address resolution and NUD
1969			 * if the gateway is not a neighbor from ND point
1970			 * of view, regardless of the value of nd_ifinfo.flags.
1971			 * The second condition is a bit tricky; we skip
1972			 * if the gateway is our own address, which is
1973			 * sometimes used to install a route to a p2p link.
1974			 */
1975			if (!nd6_is_addr_neighbor(gw6, ifp) ||
1976			    in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1977				/*
1978				 * We allow this kind of tricky route only
1979				 * when the outgoing interface is p2p.
1980				 * XXX: we may need a more generic rule here.
1981				 */
1982				if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1983					senderr(EHOSTUNREACH);
1984
1985				goto sendpkt;
1986			}
1987
1988			if (rt->rt_gwroute == 0)
1989				goto lookup;
1990			if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
1991				RT_LOCK(rt);
1992				rtfree(rt); rt = rt0;
1993			lookup:
1994				rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1, 0UL);
1995				if ((rt = rt->rt_gwroute) == 0)
1996					senderr(EHOSTUNREACH);
1997				RT_UNLOCK(rt);
1998			}
1999		}
2000	}
2001
2002	/*
2003	 * Address resolution or Neighbor Unreachability Detection
2004	 * for the next hop.
2005	 * At this point, the destination of the packet must be a unicast
2006	 * or an anycast address(i.e. not a multicast).
2007	 */
2008
2009	/* Look up the neighbor cache for the nexthop */
2010	if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
2011		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2012	else {
2013		/*
2014		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2015		 * the condition below is not very efficient.  But we believe
2016		 * it is tolerable, because this should be a rare case.
2017		 */
2018		if (nd6_is_addr_neighbor(dst, ifp) &&
2019		    (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
2020			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2021	}
2022	if (ln == NULL || rt == NULL) {
2023		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2024		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2025			log(LOG_DEBUG,
2026			    "nd6_output: can't allocate llinfo for %s "
2027			    "(ln=%p, rt=%p)\n",
2028			    ip6_sprintf(&dst->sin6_addr), ln, rt);
2029			senderr(EIO);	/* XXX: good error? */
2030		}
2031
2032		goto sendpkt;	/* send anyway */
2033	}
2034
2035	/* We don't have to do link-layer address resolution on a p2p link. */
2036	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2037	    ln->ln_state < ND6_LLINFO_REACHABLE) {
2038		ln->ln_state = ND6_LLINFO_STALE;
2039		nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
2040	}
2041
2042	/*
2043	 * The first time we send a packet to a neighbor whose entry is
2044	 * STALE, we have to change the state to DELAY and a sets a timer to
2045	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2046	 * neighbor unreachability detection on expiration.
2047	 * (RFC 2461 7.3.3)
2048	 */
2049	if (ln->ln_state == ND6_LLINFO_STALE) {
2050		ln->ln_asked = 0;
2051		ln->ln_state = ND6_LLINFO_DELAY;
2052		nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
2053	}
2054
2055	/*
2056	 * If the neighbor cache entry has a state other than INCOMPLETE
2057	 * (i.e. its link-layer address is already resolved), just
2058	 * send the packet.
2059	 */
2060	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2061		goto sendpkt;
2062
2063	/*
2064	 * There is a neighbor cache entry, but no ethernet address
2065	 * response yet.  Append this latest packet to the end of the
2066	 * packet queue in the mbuf, unless the number of the packet
2067	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
2068	 * the oldest packet in the queue will be removed.
2069	 */
2070	if (ln->ln_state == ND6_LLINFO_NOSTATE)
2071		ln->ln_state = ND6_LLINFO_INCOMPLETE;
2072	if (ln->ln_hold) {
2073		struct mbuf *m_hold;
2074		int i;
2075
2076		i = 0;
2077		for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2078			i++;
2079			if (m_hold->m_nextpkt == NULL) {
2080				m_hold->m_nextpkt = m;
2081				break;
2082			}
2083		}
2084		while (i >= nd6_maxqueuelen) {
2085			m_hold = ln->ln_hold;
2086			ln->ln_hold = ln->ln_hold->m_nextpkt;
2087			m_freem(m_hold);
2088			i--;
2089		}
2090	} else {
2091		ln->ln_hold = m;
2092	}
2093
2094	/*
2095	 * If there has been no NS for the neighbor after entering the
2096	 * INCOMPLETE state, send the first solicitation.
2097	 */
2098	if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2099		ln->ln_asked++;
2100		nd6_llinfo_settimer(ln,
2101		    (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2102		nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2103	}
2104	return (0);
2105
2106  sendpkt:
2107	/* discard the packet if IPv6 operation is disabled on the interface */
2108	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2109		error = ENETDOWN; /* better error? */
2110		goto bad;
2111	}
2112
2113#ifdef IPSEC
2114	/* clean ipsec history once it goes out of the node */
2115	ipsec_delaux(m);
2116#endif
2117
2118#ifdef MAC
2119	mac_create_mbuf_linklayer(ifp, m);
2120#endif
2121	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
2122		return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
2123		    rt));
2124	}
2125	return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
2126
2127  bad:
2128	if (m)
2129		m_freem(m);
2130	return (error);
2131}
2132#undef senderr
2133
2134int
2135nd6_need_cache(ifp)
2136	struct ifnet *ifp;
2137{
2138	/*
2139	 * XXX: we currently do not make neighbor cache on any interface
2140	 * other than ARCnet, Ethernet, FDDI and GIF.
2141	 *
2142	 * RFC2893 says:
2143	 * - unidirectional tunnels needs no ND
2144	 */
2145	switch (ifp->if_type) {
2146	case IFT_ARCNET:
2147	case IFT_ETHER:
2148	case IFT_FDDI:
2149	case IFT_IEEE1394:
2150#ifdef IFT_L2VLAN
2151	case IFT_L2VLAN:
2152#endif
2153#ifdef IFT_IEEE80211
2154	case IFT_IEEE80211:
2155#endif
2156#ifdef IFT_CARP
2157	case IFT_CARP:
2158#endif
2159	case IFT_GIF:		/* XXX need more cases? */
2160	case IFT_PPP:
2161	case IFT_TUNNEL:
2162	case IFT_BRIDGE:
2163		return (1);
2164	default:
2165		return (0);
2166	}
2167}
2168
2169int
2170nd6_storelladdr(ifp, rt0, m, dst, desten)
2171	struct ifnet *ifp;
2172	struct rtentry *rt0;
2173	struct mbuf *m;
2174	struct sockaddr *dst;
2175	u_char *desten;
2176{
2177	struct sockaddr_dl *sdl;
2178	struct rtentry *rt;
2179	int error;
2180
2181	if (m->m_flags & M_MCAST) {
2182		int i;
2183
2184		switch (ifp->if_type) {
2185		case IFT_ETHER:
2186		case IFT_FDDI:
2187#ifdef IFT_L2VLAN
2188		case IFT_L2VLAN:
2189#endif
2190#ifdef IFT_IEEE80211
2191		case IFT_IEEE80211:
2192#endif
2193		case IFT_BRIDGE:
2194		case IFT_ISO88025:
2195			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2196						 desten);
2197			return (0);
2198		case IFT_IEEE1394:
2199			/*
2200			 * netbsd can use if_broadcastaddr, but we don't do so
2201			 * to reduce # of ifdef.
2202			 */
2203			for (i = 0; i < ifp->if_addrlen; i++)
2204				desten[i] = ~0;
2205			return (0);
2206		case IFT_ARCNET:
2207			*desten = 0;
2208			return (0);
2209		default:
2210			m_freem(m);
2211			return (EAFNOSUPPORT);
2212		}
2213	}
2214
2215	if (rt0 == NULL) {
2216		/* this could happen, if we could not allocate memory */
2217		m_freem(m);
2218		return (ENOMEM);
2219	}
2220
2221	error = rt_check(&rt, &rt0, dst);
2222	if (error) {
2223		m_freem(m);
2224		return (error);
2225	}
2226	RT_UNLOCK(rt);
2227
2228	if (rt->rt_gateway->sa_family != AF_LINK) {
2229		printf("nd6_storelladdr: something odd happens\n");
2230		m_freem(m);
2231		return (EINVAL);
2232	}
2233	sdl = SDL(rt->rt_gateway);
2234	if (sdl->sdl_alen == 0) {
2235		/* this should be impossible, but we bark here for debugging */
2236		printf("nd6_storelladdr: sdl_alen == 0\n");
2237		m_freem(m);
2238		return (EINVAL);
2239	}
2240
2241	bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2242	return (0);
2243}
2244
2245static void
2246clear_llinfo_pqueue(ln)
2247	struct llinfo_nd6 *ln;
2248{
2249	struct mbuf *m_hold, *m_hold_next;
2250
2251	for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2252		m_hold_next = m_hold->m_nextpkt;
2253		m_hold->m_nextpkt = NULL;
2254		m_freem(m_hold);
2255	}
2256
2257	ln->ln_hold = NULL;
2258	return;
2259}
2260
2261static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2262static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2263#ifdef SYSCTL_DECL
2264SYSCTL_DECL(_net_inet6_icmp6);
2265#endif
2266SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2267	CTLFLAG_RD, nd6_sysctl_drlist, "");
2268SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2269	CTLFLAG_RD, nd6_sysctl_prlist, "");
2270SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2271	CTLFLAG_RW, &nd6_maxqueuelen, 1, "");
2272
2273static int
2274nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2275{
2276	int error;
2277	char buf[1024];
2278	struct in6_defrouter *d, *de;
2279	struct nd_defrouter *dr;
2280
2281	if (req->newptr)
2282		return EPERM;
2283	error = 0;
2284
2285	for (dr = TAILQ_FIRST(&nd_defrouter); dr;
2286	     dr = TAILQ_NEXT(dr, dr_entry)) {
2287		d = (struct in6_defrouter *)buf;
2288		de = (struct in6_defrouter *)(buf + sizeof(buf));
2289
2290		if (d + 1 <= de) {
2291			bzero(d, sizeof(*d));
2292			d->rtaddr.sin6_family = AF_INET6;
2293			d->rtaddr.sin6_len = sizeof(d->rtaddr);
2294			d->rtaddr.sin6_addr = dr->rtaddr;
2295			sa6_recoverscope(&d->rtaddr);
2296			d->flags = dr->flags;
2297			d->rtlifetime = dr->rtlifetime;
2298			d->expire = dr->expire;
2299			d->if_index = dr->ifp->if_index;
2300		} else
2301			panic("buffer too short");
2302
2303		error = SYSCTL_OUT(req, buf, sizeof(*d));
2304		if (error)
2305			break;
2306	}
2307
2308	return (error);
2309}
2310
2311static int
2312nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2313{
2314	int error;
2315	char buf[1024];
2316	struct in6_prefix *p, *pe;
2317	struct nd_prefix *pr;
2318
2319	if (req->newptr)
2320		return EPERM;
2321	error = 0;
2322
2323	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2324		u_short advrtrs;
2325		size_t advance;
2326		struct sockaddr_in6 *sin6, *s6;
2327		struct nd_pfxrouter *pfr;
2328
2329		p = (struct in6_prefix *)buf;
2330		pe = (struct in6_prefix *)(buf + sizeof(buf));
2331
2332		if (p + 1 <= pe) {
2333			bzero(p, sizeof(*p));
2334			sin6 = (struct sockaddr_in6 *)(p + 1);
2335
2336			p->prefix = pr->ndpr_prefix;
2337			if (sa6_recoverscope(&p->prefix)) {
2338				log(LOG_ERR,
2339				    "scope error in prefix list (%s)\n",
2340				    ip6_sprintf(&p->prefix.sin6_addr));
2341				/* XXX: press on... */
2342			}
2343			p->raflags = pr->ndpr_raf;
2344			p->prefixlen = pr->ndpr_plen;
2345			p->vltime = pr->ndpr_vltime;
2346			p->pltime = pr->ndpr_pltime;
2347			p->if_index = pr->ndpr_ifp->if_index;
2348			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2349				p->expire = 0;
2350			else {
2351				time_t maxexpire;
2352
2353				/* XXX: we assume time_t is signed. */
2354				maxexpire = (-1) &
2355				    ~((time_t)1 <<
2356				    ((sizeof(maxexpire) * 8) - 1));
2357				if (pr->ndpr_vltime <
2358				    maxexpire - pr->ndpr_lastupdate) {
2359				    p->expire = pr->ndpr_lastupdate +
2360				        pr->ndpr_vltime;
2361				} else
2362					p->expire = maxexpire;
2363			}
2364			p->refcnt = pr->ndpr_refcnt;
2365			p->flags = pr->ndpr_stateflags;
2366			p->origin = PR_ORIG_RA;
2367			advrtrs = 0;
2368			for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2369			     pfr = pfr->pfr_next) {
2370				if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2371					advrtrs++;
2372					continue;
2373				}
2374				s6 = &sin6[advrtrs];
2375				bzero(s6, sizeof(*s6));
2376				s6->sin6_family = AF_INET6;
2377				s6->sin6_len = sizeof(*sin6);
2378				s6->sin6_addr = pfr->router->rtaddr;
2379				if (sa6_recoverscope(s6)) {
2380					log(LOG_ERR,
2381					    "scope error in "
2382					    "prefix list (%s)\n",
2383					    ip6_sprintf(&pfr->router->rtaddr));
2384				}
2385				advrtrs++;
2386			}
2387			p->advrtrs = advrtrs;
2388		} else
2389			panic("buffer too short");
2390
2391		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2392		error = SYSCTL_OUT(req, buf, advance);
2393		if (error)
2394			break;
2395	}
2396
2397	return (error);
2398}
2399