mld6.c revision 237995
1/*-
2 * Copyright (c) 2009 Bruce Simpson.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 * 3. The name of the author may not be used to endorse or promote
13 *    products derived from this software without specific prior written
14 *    permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 *	$KAME: mld6.c,v 1.27 2001/04/04 05:17:30 itojun Exp $
29 */
30
31/*-
32 * Copyright (c) 1988 Stephen Deering.
33 * Copyright (c) 1992, 1993
34 *	The Regents of the University of California.  All rights reserved.
35 *
36 * This code is derived from software contributed to Berkeley by
37 * Stephen Deering of Stanford University.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 *    notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 *    notice, this list of conditions and the following disclaimer in the
46 *    documentation and/or other materials provided with the distribution.
47 * 4. Neither the name of the University nor the names of its contributors
48 *    may be used to endorse or promote products derived from this software
49 *    without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 *	@(#)igmp.c	8.1 (Berkeley) 7/19/93
64 */
65
66#include <sys/cdefs.h>
67__FBSDID("$FreeBSD: stable/9/sys/netinet6/mld6.c 237995 2012-07-02 11:46:47Z bms $");
68
69#include "opt_inet.h"
70#include "opt_inet6.h"
71
72#include <sys/param.h>
73#include <sys/systm.h>
74#include <sys/mbuf.h>
75#include <sys/socket.h>
76#include <sys/protosw.h>
77#include <sys/sysctl.h>
78#include <sys/kernel.h>
79#include <sys/callout.h>
80#include <sys/malloc.h>
81#include <sys/module.h>
82#include <sys/ktr.h>
83
84#include <net/if.h>
85#include <net/route.h>
86#include <net/vnet.h>
87
88#include <netinet/in.h>
89#include <netinet/in_var.h>
90#include <netinet6/in6_var.h>
91#include <netinet/ip6.h>
92#include <netinet6/ip6_var.h>
93#include <netinet6/scope6_var.h>
94#include <netinet/icmp6.h>
95#include <netinet6/mld6.h>
96#include <netinet6/mld6_var.h>
97
98#include <security/mac/mac_framework.h>
99
100#ifndef KTR_MLD
101#define KTR_MLD KTR_INET6
102#endif
103
104static struct mld_ifinfo *
105		mli_alloc_locked(struct ifnet *);
106static void	mli_delete_locked(const struct ifnet *);
107static void	mld_dispatch_packet(struct mbuf *);
108static void	mld_dispatch_queue(struct ifqueue *, int);
109static void	mld_final_leave(struct in6_multi *, struct mld_ifinfo *);
110static void	mld_fasttimo_vnet(void);
111static int	mld_handle_state_change(struct in6_multi *,
112		    struct mld_ifinfo *);
113static int	mld_initial_join(struct in6_multi *, struct mld_ifinfo *,
114		    const int);
115#ifdef KTR
116static char *	mld_rec_type_to_str(const int);
117#endif
118static void	mld_set_version(struct mld_ifinfo *, const int);
119static void	mld_slowtimo_vnet(void);
120static int	mld_v1_input_query(struct ifnet *, const struct ip6_hdr *,
121		    /*const*/ struct mld_hdr *);
122static int	mld_v1_input_report(struct ifnet *, const struct ip6_hdr *,
123		    /*const*/ struct mld_hdr *);
124static void	mld_v1_process_group_timer(struct mld_ifinfo *,
125		    struct in6_multi *);
126static void	mld_v1_process_querier_timers(struct mld_ifinfo *);
127static int	mld_v1_transmit_report(struct in6_multi *, const int);
128static void	mld_v1_update_group(struct in6_multi *, const int);
129static void	mld_v2_cancel_link_timers(struct mld_ifinfo *);
130static void	mld_v2_dispatch_general_query(struct mld_ifinfo *);
131static struct mbuf *
132		mld_v2_encap_report(struct ifnet *, struct mbuf *);
133static int	mld_v2_enqueue_filter_change(struct ifqueue *,
134		    struct in6_multi *);
135static int	mld_v2_enqueue_group_record(struct ifqueue *,
136		    struct in6_multi *, const int, const int, const int,
137		    const int);
138static int	mld_v2_input_query(struct ifnet *, const struct ip6_hdr *,
139		    struct mbuf *, const int, const int);
140static int	mld_v2_merge_state_changes(struct in6_multi *,
141		    struct ifqueue *);
142static void	mld_v2_process_group_timers(struct mld_ifinfo *,
143		    struct ifqueue *, struct ifqueue *,
144		    struct in6_multi *, const int);
145static int	mld_v2_process_group_query(struct in6_multi *,
146		    struct mld_ifinfo *mli, int, struct mbuf *, const int);
147static int	sysctl_mld_gsr(SYSCTL_HANDLER_ARGS);
148static int	sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS);
149
150/*
151 * Normative references: RFC 2710, RFC 3590, RFC 3810.
152 *
153 * Locking:
154 *  * The MLD subsystem lock ends up being system-wide for the moment,
155 *    but could be per-VIMAGE later on.
156 *  * The permitted lock order is: IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK.
157 *    Any may be taken independently; if any are held at the same
158 *    time, the above lock order must be followed.
159 *  * IN6_MULTI_LOCK covers in_multi.
160 *  * MLD_LOCK covers per-link state and any global variables in this file.
161 *  * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of
162 *    per-link state iterators.
163 *
164 *  XXX LOR PREVENTION
165 *  A special case for IPv6 is the in6_setscope() routine. ip6_output()
166 *  will not accept an ifp; it wants an embedded scope ID, unlike
167 *  ip_output(), which happily takes the ifp given to it. The embedded
168 *  scope ID is only used by MLD to select the outgoing interface.
169 *
170 *  During interface attach and detach, MLD will take MLD_LOCK *after*
171 *  the IF_AFDATA_LOCK.
172 *  As in6_setscope() takes IF_AFDATA_LOCK then SCOPE_LOCK, we can't call
173 *  it with MLD_LOCK held without triggering an LOR. A netisr with indirect
174 *  dispatch could work around this, but we'd rather not do that, as it
175 *  can introduce other races.
176 *
177 *  As such, we exploit the fact that the scope ID is just the interface
178 *  index, and embed it in the IPv6 destination address accordingly.
179 *  This is potentially NOT VALID for MLDv1 reports, as they
180 *  are always sent to the multicast group itself; as MLDv2
181 *  reports are always sent to ff02::16, this is not an issue
182 *  when MLDv2 is in use.
183 *
184 *  This does not however eliminate the LOR when ip6_output() itself
185 *  calls in6_setscope() internally whilst MLD_LOCK is held. This will
186 *  trigger a LOR warning in WITNESS when the ifnet is detached.
187 *
188 *  The right answer is probably to make IF_AFDATA_LOCK an rwlock, given
189 *  how it's used across the network stack. Here we're simply exploiting
190 *  the fact that MLD runs at a similar layer in the stack to scope6.c.
191 *
192 * VIMAGE:
193 *  * Each in6_multi corresponds to an ifp, and each ifp corresponds
194 *    to a vnet in ifp->if_vnet.
195 */
196static struct mtx		 mld_mtx;
197MALLOC_DEFINE(M_MLD, "mld", "mld state");
198
199#define	MLD_EMBEDSCOPE(pin6, zoneid)					\
200	if (IN6_IS_SCOPE_LINKLOCAL(pin6) ||				\
201	    IN6_IS_ADDR_MC_INTFACELOCAL(pin6))				\
202		(pin6)->s6_addr16[1] = htons((zoneid) & 0xFFFF)		\
203
204/*
205 * VIMAGE-wide globals.
206 */
207static VNET_DEFINE(struct timeval, mld_gsrdelay) = {10, 0};
208static VNET_DEFINE(LIST_HEAD(, mld_ifinfo), mli_head);
209static VNET_DEFINE(int, interface_timers_running6);
210static VNET_DEFINE(int, state_change_timers_running6);
211static VNET_DEFINE(int, current_state_timers_running6);
212
213#define	V_mld_gsrdelay			VNET(mld_gsrdelay)
214#define	V_mli_head			VNET(mli_head)
215#define	V_interface_timers_running6	VNET(interface_timers_running6)
216#define	V_state_change_timers_running6	VNET(state_change_timers_running6)
217#define	V_current_state_timers_running6	VNET(current_state_timers_running6)
218
219SYSCTL_DECL(_net_inet6);	/* Note: Not in any common header. */
220
221SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW, 0,
222    "IPv6 Multicast Listener Discovery");
223
224/*
225 * Virtualized sysctls.
226 */
227SYSCTL_VNET_PROC(_net_inet6_mld, OID_AUTO, gsrdelay,
228    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
229    &VNET_NAME(mld_gsrdelay.tv_sec), 0, sysctl_mld_gsr, "I",
230    "Rate limit for MLDv2 Group-and-Source queries in seconds");
231
232/*
233 * Non-virtualized sysctls.
234 */
235SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo, CTLFLAG_RD | CTLFLAG_MPSAFE,
236    sysctl_mld_ifinfo, "Per-interface MLDv2 state");
237
238static int	mld_v1enable = 1;
239SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RW,
240    &mld_v1enable, 0, "Enable fallback to MLDv1");
241TUNABLE_INT("net.inet6.mld.v1enable", &mld_v1enable);
242
243static int	mld_use_allow = 1;
244SYSCTL_INT(_net_inet6_mld, OID_AUTO, use_allow, CTLFLAG_RW,
245    &mld_use_allow, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves");
246TUNABLE_INT("net.inet6.mld.use_allow", &mld_use_allow);
247
248/*
249 * Packed Router Alert option structure declaration.
250 */
251struct mld_raopt {
252	struct ip6_hbh		hbh;
253	struct ip6_opt		pad;
254	struct ip6_opt_router	ra;
255} __packed;
256
257/*
258 * Router Alert hop-by-hop option header.
259 */
260static struct mld_raopt mld_ra = {
261	.hbh = { 0, 0 },
262	.pad = { .ip6o_type = IP6OPT_PADN, 0 },
263	.ra = {
264	    .ip6or_type = IP6OPT_ROUTER_ALERT,
265	    .ip6or_len = IP6OPT_RTALERT_LEN - 2,
266	    .ip6or_value[0] = ((IP6OPT_RTALERT_MLD >> 8) & 0xFF),
267	    .ip6or_value[1] = (IP6OPT_RTALERT_MLD & 0xFF)
268	}
269};
270static struct ip6_pktopts mld_po;
271
272static __inline void
273mld_save_context(struct mbuf *m, struct ifnet *ifp)
274{
275
276#ifdef VIMAGE
277	m->m_pkthdr.header = ifp->if_vnet;
278#endif /* VIMAGE */
279	m->m_pkthdr.flowid = ifp->if_index;
280}
281
282static __inline void
283mld_scrub_context(struct mbuf *m)
284{
285
286	m->m_pkthdr.header = NULL;
287	m->m_pkthdr.flowid = 0;
288}
289
290/*
291 * Restore context from a queued output chain.
292 * Return saved ifindex.
293 *
294 * VIMAGE: The assertion is there to make sure that we
295 * actually called CURVNET_SET() with what's in the mbuf chain.
296 */
297static __inline uint32_t
298mld_restore_context(struct mbuf *m)
299{
300
301#if defined(VIMAGE) && defined(INVARIANTS)
302	KASSERT(curvnet == m->m_pkthdr.header,
303	    ("%s: called when curvnet was not restored", __func__));
304#endif
305	return (m->m_pkthdr.flowid);
306}
307
308/*
309 * Retrieve or set threshold between group-source queries in seconds.
310 *
311 * VIMAGE: Assume curvnet set by caller.
312 * SMPng: NOTE: Serialized by MLD lock.
313 */
314static int
315sysctl_mld_gsr(SYSCTL_HANDLER_ARGS)
316{
317	int error;
318	int i;
319
320	error = sysctl_wire_old_buffer(req, sizeof(int));
321	if (error)
322		return (error);
323
324	MLD_LOCK();
325
326	i = V_mld_gsrdelay.tv_sec;
327
328	error = sysctl_handle_int(oidp, &i, 0, req);
329	if (error || !req->newptr)
330		goto out_locked;
331
332	if (i < -1 || i >= 60) {
333		error = EINVAL;
334		goto out_locked;
335	}
336
337	CTR2(KTR_MLD, "change mld_gsrdelay from %d to %d",
338	     V_mld_gsrdelay.tv_sec, i);
339	V_mld_gsrdelay.tv_sec = i;
340
341out_locked:
342	MLD_UNLOCK();
343	return (error);
344}
345
346/*
347 * Expose struct mld_ifinfo to userland, keyed by ifindex.
348 * For use by ifmcstat(8).
349 *
350 * SMPng: NOTE: Does an unlocked ifindex space read.
351 * VIMAGE: Assume curvnet set by caller. The node handler itself
352 * is not directly virtualized.
353 */
354static int
355sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS)
356{
357	int			*name;
358	int			 error;
359	u_int			 namelen;
360	struct ifnet		*ifp;
361	struct mld_ifinfo	*mli;
362
363	name = (int *)arg1;
364	namelen = arg2;
365
366	if (req->newptr != NULL)
367		return (EPERM);
368
369	if (namelen != 1)
370		return (EINVAL);
371
372	error = sysctl_wire_old_buffer(req, sizeof(struct mld_ifinfo));
373	if (error)
374		return (error);
375
376	IN6_MULTI_LOCK();
377	MLD_LOCK();
378
379	if (name[0] <= 0 || name[0] > V_if_index) {
380		error = ENOENT;
381		goto out_locked;
382	}
383
384	error = ENOENT;
385
386	ifp = ifnet_byindex(name[0]);
387	if (ifp == NULL)
388		goto out_locked;
389
390	LIST_FOREACH(mli, &V_mli_head, mli_link) {
391		if (ifp == mli->mli_ifp) {
392			error = SYSCTL_OUT(req, mli,
393			    sizeof(struct mld_ifinfo));
394			break;
395		}
396	}
397
398out_locked:
399	MLD_UNLOCK();
400	IN6_MULTI_UNLOCK();
401	return (error);
402}
403
404/*
405 * Dispatch an entire queue of pending packet chains.
406 * VIMAGE: Assumes the vnet pointer has been set.
407 */
408static void
409mld_dispatch_queue(struct ifqueue *ifq, int limit)
410{
411	struct mbuf *m;
412
413	for (;;) {
414		_IF_DEQUEUE(ifq, m);
415		if (m == NULL)
416			break;
417		CTR3(KTR_MLD, "%s: dispatch %p from %p", __func__, ifq, m);
418		mld_dispatch_packet(m);
419		if (--limit == 0)
420			break;
421	}
422}
423
424/*
425 * Filter outgoing MLD report state by group.
426 *
427 * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1)
428 * and node-local addresses. However, kernel and socket consumers
429 * always embed the KAME scope ID in the address provided, so strip it
430 * when performing comparison.
431 * Note: This is not the same as the *multicast* scope.
432 *
433 * Return zero if the given group is one for which MLD reports
434 * should be suppressed, or non-zero if reports should be issued.
435 */
436static __inline int
437mld_is_addr_reported(const struct in6_addr *addr)
438{
439
440	KASSERT(IN6_IS_ADDR_MULTICAST(addr), ("%s: not multicast", __func__));
441
442	if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL)
443		return (0);
444
445	if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) {
446		struct in6_addr tmp = *addr;
447		in6_clearscope(&tmp);
448		if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes))
449			return (0);
450	}
451
452	return (1);
453}
454
455/*
456 * Attach MLD when PF_INET6 is attached to an interface.
457 *
458 * SMPng: Normally called with IF_AFDATA_LOCK held.
459 */
460struct mld_ifinfo *
461mld_domifattach(struct ifnet *ifp)
462{
463	struct mld_ifinfo *mli;
464
465	CTR3(KTR_MLD, "%s: called for ifp %p(%s)",
466	    __func__, ifp, ifp->if_xname);
467
468	MLD_LOCK();
469
470	mli = mli_alloc_locked(ifp);
471	if (!(ifp->if_flags & IFF_MULTICAST))
472		mli->mli_flags |= MLIF_SILENT;
473	if (mld_use_allow)
474		mli->mli_flags |= MLIF_USEALLOW;
475
476	MLD_UNLOCK();
477
478	return (mli);
479}
480
481/*
482 * VIMAGE: assume curvnet set by caller.
483 */
484static struct mld_ifinfo *
485mli_alloc_locked(/*const*/ struct ifnet *ifp)
486{
487	struct mld_ifinfo *mli;
488
489	MLD_LOCK_ASSERT();
490
491	mli = malloc(sizeof(struct mld_ifinfo), M_MLD, M_NOWAIT|M_ZERO);
492	if (mli == NULL)
493		goto out;
494
495	mli->mli_ifp = ifp;
496	mli->mli_version = MLD_VERSION_2;
497	mli->mli_flags = 0;
498	mli->mli_rv = MLD_RV_INIT;
499	mli->mli_qi = MLD_QI_INIT;
500	mli->mli_qri = MLD_QRI_INIT;
501	mli->mli_uri = MLD_URI_INIT;
502
503	SLIST_INIT(&mli->mli_relinmhead);
504
505	/*
506	 * Responses to general queries are subject to bounds.
507	 */
508	IFQ_SET_MAXLEN(&mli->mli_gq, MLD_MAX_RESPONSE_PACKETS);
509
510	LIST_INSERT_HEAD(&V_mli_head, mli, mli_link);
511
512	CTR2(KTR_MLD, "allocate mld_ifinfo for ifp %p(%s)",
513	     ifp, ifp->if_xname);
514
515out:
516	return (mli);
517}
518
519/*
520 * Hook for ifdetach.
521 *
522 * NOTE: Some finalization tasks need to run before the protocol domain
523 * is detached, but also before the link layer does its cleanup.
524 * Run before link-layer cleanup; cleanup groups, but do not free MLD state.
525 *
526 * SMPng: Caller must hold IN6_MULTI_LOCK().
527 * Must take IF_ADDR_LOCK() to cover if_multiaddrs iterator.
528 * XXX This routine is also bitten by unlocked ifma_protospec access.
529 */
530void
531mld_ifdetach(struct ifnet *ifp)
532{
533	struct mld_ifinfo	*mli;
534	struct ifmultiaddr	*ifma;
535	struct in6_multi	*inm, *tinm;
536
537	CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp,
538	    ifp->if_xname);
539
540	IN6_MULTI_LOCK_ASSERT();
541	MLD_LOCK();
542
543	mli = MLD_IFINFO(ifp);
544	if (mli->mli_version == MLD_VERSION_2) {
545		IF_ADDR_RLOCK(ifp);
546		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
547			if (ifma->ifma_addr->sa_family != AF_INET6 ||
548			    ifma->ifma_protospec == NULL)
549				continue;
550			inm = (struct in6_multi *)ifma->ifma_protospec;
551			if (inm->in6m_state == MLD_LEAVING_MEMBER) {
552				SLIST_INSERT_HEAD(&mli->mli_relinmhead,
553				    inm, in6m_nrele);
554			}
555			in6m_clear_recorded(inm);
556		}
557		IF_ADDR_RUNLOCK(ifp);
558		SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele,
559		    tinm) {
560			SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele);
561			in6m_release_locked(inm);
562		}
563	}
564
565	MLD_UNLOCK();
566}
567
568/*
569 * Hook for domifdetach.
570 * Runs after link-layer cleanup; free MLD state.
571 *
572 * SMPng: Normally called with IF_AFDATA_LOCK held.
573 */
574void
575mld_domifdetach(struct ifnet *ifp)
576{
577
578	CTR3(KTR_MLD, "%s: called for ifp %p(%s)",
579	    __func__, ifp, ifp->if_xname);
580
581	MLD_LOCK();
582	mli_delete_locked(ifp);
583	MLD_UNLOCK();
584}
585
586static void
587mli_delete_locked(const struct ifnet *ifp)
588{
589	struct mld_ifinfo *mli, *tmli;
590
591	CTR3(KTR_MLD, "%s: freeing mld_ifinfo for ifp %p(%s)",
592	    __func__, ifp, ifp->if_xname);
593
594	MLD_LOCK_ASSERT();
595
596	LIST_FOREACH_SAFE(mli, &V_mli_head, mli_link, tmli) {
597		if (mli->mli_ifp == ifp) {
598			/*
599			 * Free deferred General Query responses.
600			 */
601			_IF_DRAIN(&mli->mli_gq);
602
603			LIST_REMOVE(mli, mli_link);
604
605			KASSERT(SLIST_EMPTY(&mli->mli_relinmhead),
606			    ("%s: there are dangling in_multi references",
607			    __func__));
608
609			free(mli, M_MLD);
610			return;
611		}
612	}
613#ifdef INVARIANTS
614	panic("%s: mld_ifinfo not found for ifp %p\n", __func__,  ifp);
615#endif
616}
617
618/*
619 * Process a received MLDv1 general or address-specific query.
620 * Assumes that the query header has been pulled up to sizeof(mld_hdr).
621 *
622 * NOTE: Can't be fully const correct as we temporarily embed scope ID in
623 * mld_addr. This is OK as we own the mbuf chain.
624 */
625static int
626mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6,
627    /*const*/ struct mld_hdr *mld)
628{
629	struct ifmultiaddr	*ifma;
630	struct mld_ifinfo	*mli;
631	struct in6_multi	*inm;
632	int			 is_general_query;
633	uint16_t		 timer;
634#ifdef KTR
635	char			 ip6tbuf[INET6_ADDRSTRLEN];
636#endif
637
638	is_general_query = 0;
639
640	if (!mld_v1enable) {
641		CTR3(KTR_MLD, "ignore v1 query %s on ifp %p(%s)",
642		    ip6_sprintf(ip6tbuf, &mld->mld_addr),
643		    ifp, ifp->if_xname);
644		return (0);
645	}
646
647	/*
648	 * RFC3810 Section 6.2: MLD queries must originate from
649	 * a router's link-local address.
650	 */
651	if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
652		CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)",
653		    ip6_sprintf(ip6tbuf, &ip6->ip6_src),
654		    ifp, ifp->if_xname);
655		return (0);
656	}
657
658	/*
659	 * Do address field validation upfront before we accept
660	 * the query.
661	 */
662	if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) {
663		/*
664		 * MLDv1 General Query.
665		 * If this was not sent to the all-nodes group, ignore it.
666		 */
667		struct in6_addr		 dst;
668
669		dst = ip6->ip6_dst;
670		in6_clearscope(&dst);
671		if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes))
672			return (EINVAL);
673		is_general_query = 1;
674	} else {
675		/*
676		 * Embed scope ID of receiving interface in MLD query for
677		 * lookup whilst we don't hold other locks.
678		 */
679		in6_setscope(&mld->mld_addr, ifp, NULL);
680	}
681
682	IN6_MULTI_LOCK();
683	MLD_LOCK();
684
685	/*
686	 * Switch to MLDv1 host compatibility mode.
687	 */
688	mli = MLD_IFINFO(ifp);
689	KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp));
690	mld_set_version(mli, MLD_VERSION_1);
691
692	timer = (ntohs(mld->mld_maxdelay) * PR_FASTHZ) / MLD_TIMER_SCALE;
693	if (timer == 0)
694		timer = 1;
695
696	IF_ADDR_RLOCK(ifp);
697	if (is_general_query) {
698		/*
699		 * For each reporting group joined on this
700		 * interface, kick the report timer.
701		 */
702		CTR2(KTR_MLD, "process v1 general query on ifp %p(%s)",
703		    ifp, ifp->if_xname);
704		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
705			if (ifma->ifma_addr->sa_family != AF_INET6 ||
706			    ifma->ifma_protospec == NULL)
707				continue;
708			inm = (struct in6_multi *)ifma->ifma_protospec;
709			mld_v1_update_group(inm, timer);
710		}
711	} else {
712		/*
713		 * MLDv1 Group-Specific Query.
714		 * If this is a group-specific MLDv1 query, we need only
715		 * look up the single group to process it.
716		 */
717		inm = in6m_lookup_locked(ifp, &mld->mld_addr);
718		if (inm != NULL) {
719			CTR3(KTR_MLD, "process v1 query %s on ifp %p(%s)",
720			    ip6_sprintf(ip6tbuf, &mld->mld_addr),
721			    ifp, ifp->if_xname);
722			mld_v1_update_group(inm, timer);
723		}
724		/* XXX Clear embedded scope ID as userland won't expect it. */
725		in6_clearscope(&mld->mld_addr);
726	}
727
728	IF_ADDR_RUNLOCK(ifp);
729	MLD_UNLOCK();
730	IN6_MULTI_UNLOCK();
731
732	return (0);
733}
734
735/*
736 * Update the report timer on a group in response to an MLDv1 query.
737 *
738 * If we are becoming the reporting member for this group, start the timer.
739 * If we already are the reporting member for this group, and timer is
740 * below the threshold, reset it.
741 *
742 * We may be updating the group for the first time since we switched
743 * to MLDv2. If we are, then we must clear any recorded source lists,
744 * and transition to REPORTING state; the group timer is overloaded
745 * for group and group-source query responses.
746 *
747 * Unlike MLDv2, the delay per group should be jittered
748 * to avoid bursts of MLDv1 reports.
749 */
750static void
751mld_v1_update_group(struct in6_multi *inm, const int timer)
752{
753#ifdef KTR
754	char			 ip6tbuf[INET6_ADDRSTRLEN];
755#endif
756
757	CTR4(KTR_MLD, "%s: %s/%s timer=%d", __func__,
758	    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
759	    inm->in6m_ifp->if_xname, timer);
760
761	IN6_MULTI_LOCK_ASSERT();
762
763	switch (inm->in6m_state) {
764	case MLD_NOT_MEMBER:
765	case MLD_SILENT_MEMBER:
766		break;
767	case MLD_REPORTING_MEMBER:
768		if (inm->in6m_timer != 0 &&
769		    inm->in6m_timer <= timer) {
770			CTR1(KTR_MLD, "%s: REPORTING and timer running, "
771			    "skipping.", __func__);
772			break;
773		}
774		/* FALLTHROUGH */
775	case MLD_SG_QUERY_PENDING_MEMBER:
776	case MLD_G_QUERY_PENDING_MEMBER:
777	case MLD_IDLE_MEMBER:
778	case MLD_LAZY_MEMBER:
779	case MLD_AWAKENING_MEMBER:
780		CTR1(KTR_MLD, "%s: ->REPORTING", __func__);
781		inm->in6m_state = MLD_REPORTING_MEMBER;
782		inm->in6m_timer = MLD_RANDOM_DELAY(timer);
783		V_current_state_timers_running6 = 1;
784		break;
785	case MLD_SLEEPING_MEMBER:
786		CTR1(KTR_MLD, "%s: ->AWAKENING", __func__);
787		inm->in6m_state = MLD_AWAKENING_MEMBER;
788		break;
789	case MLD_LEAVING_MEMBER:
790		break;
791	}
792}
793
794/*
795 * Process a received MLDv2 general, group-specific or
796 * group-and-source-specific query.
797 *
798 * Assumes that the query header has been pulled up to sizeof(mldv2_query).
799 *
800 * Return 0 if successful, otherwise an appropriate error code is returned.
801 */
802static int
803mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6,
804    struct mbuf *m, const int off, const int icmp6len)
805{
806	struct mld_ifinfo	*mli;
807	struct mldv2_query	*mld;
808	struct in6_multi	*inm;
809	uint32_t		 maxdelay, nsrc, qqi;
810	int			 is_general_query;
811	uint16_t		 timer;
812	uint8_t			 qrv;
813#ifdef KTR
814	char			 ip6tbuf[INET6_ADDRSTRLEN];
815#endif
816
817	is_general_query = 0;
818
819	/*
820	 * RFC3810 Section 6.2: MLD queries must originate from
821	 * a router's link-local address.
822	 */
823	if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
824		CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)",
825		    ip6_sprintf(ip6tbuf, &ip6->ip6_src),
826		    ifp, ifp->if_xname);
827		return (0);
828	}
829
830	CTR2(KTR_MLD, "input v2 query on ifp %p(%s)", ifp, ifp->if_xname);
831
832	mld = (struct mldv2_query *)(mtod(m, uint8_t *) + off);
833
834	maxdelay = ntohs(mld->mld_maxdelay);	/* in 1/10ths of a second */
835	if (maxdelay >= 32768) {
836		maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) <<
837			   (MLD_MRC_EXP(maxdelay) + 3);
838	}
839	timer = (maxdelay * PR_FASTHZ) / MLD_TIMER_SCALE;
840	if (timer == 0)
841		timer = 1;
842
843	qrv = MLD_QRV(mld->mld_misc);
844	if (qrv < 2) {
845		CTR3(KTR_MLD, "%s: clamping qrv %d to %d", __func__,
846		    qrv, MLD_RV_INIT);
847		qrv = MLD_RV_INIT;
848	}
849
850	qqi = mld->mld_qqi;
851	if (qqi >= 128) {
852		qqi = MLD_QQIC_MANT(mld->mld_qqi) <<
853		     (MLD_QQIC_EXP(mld->mld_qqi) + 3);
854	}
855
856	nsrc = ntohs(mld->mld_numsrc);
857	if (nsrc > MLD_MAX_GS_SOURCES)
858		return (EMSGSIZE);
859	if (icmp6len < sizeof(struct mldv2_query) +
860	    (nsrc * sizeof(struct in6_addr)))
861		return (EMSGSIZE);
862
863	/*
864	 * Do further input validation upfront to avoid resetting timers
865	 * should we need to discard this query.
866	 */
867	if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) {
868		/*
869		 * A general query with a source list has undefined
870		 * behaviour; discard it.
871		 */
872		if (nsrc > 0)
873			return (EINVAL);
874		is_general_query = 1;
875	} else {
876		/*
877		 * Embed scope ID of receiving interface in MLD query for
878		 * lookup whilst we don't hold other locks (due to KAME
879		 * locking lameness). We own this mbuf chain just now.
880		 */
881		in6_setscope(&mld->mld_addr, ifp, NULL);
882	}
883
884	IN6_MULTI_LOCK();
885	MLD_LOCK();
886
887	mli = MLD_IFINFO(ifp);
888	KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp));
889
890	/*
891	 * Discard the v2 query if we're in Compatibility Mode.
892	 * The RFC is pretty clear that hosts need to stay in MLDv1 mode
893	 * until the Old Version Querier Present timer expires.
894	 */
895	if (mli->mli_version != MLD_VERSION_2)
896		goto out_locked;
897
898	mld_set_version(mli, MLD_VERSION_2);
899	mli->mli_rv = qrv;
900	mli->mli_qi = qqi;
901	mli->mli_qri = maxdelay;
902
903	CTR4(KTR_MLD, "%s: qrv %d qi %d maxdelay %d", __func__, qrv, qqi,
904	    maxdelay);
905
906	if (is_general_query) {
907		/*
908		 * MLDv2 General Query.
909		 *
910		 * Schedule a current-state report on this ifp for
911		 * all groups, possibly containing source lists.
912		 *
913		 * If there is a pending General Query response
914		 * scheduled earlier than the selected delay, do
915		 * not schedule any other reports.
916		 * Otherwise, reset the interface timer.
917		 */
918		CTR2(KTR_MLD, "process v2 general query on ifp %p(%s)",
919		    ifp, ifp->if_xname);
920		if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) {
921			mli->mli_v2_timer = MLD_RANDOM_DELAY(timer);
922			V_interface_timers_running6 = 1;
923		}
924	} else {
925		/*
926		 * MLDv2 Group-specific or Group-and-source-specific Query.
927		 *
928		 * Group-source-specific queries are throttled on
929		 * a per-group basis to defeat denial-of-service attempts.
930		 * Queries for groups we are not a member of on this
931		 * link are simply ignored.
932		 */
933		IF_ADDR_RLOCK(ifp);
934		inm = in6m_lookup_locked(ifp, &mld->mld_addr);
935		if (inm == NULL) {
936			IF_ADDR_RUNLOCK(ifp);
937			goto out_locked;
938		}
939		if (nsrc > 0) {
940			if (!ratecheck(&inm->in6m_lastgsrtv,
941			    &V_mld_gsrdelay)) {
942				CTR1(KTR_MLD, "%s: GS query throttled.",
943				    __func__);
944				IF_ADDR_RUNLOCK(ifp);
945				goto out_locked;
946			}
947		}
948		CTR2(KTR_MLD, "process v2 group query on ifp %p(%s)",
949		     ifp, ifp->if_xname);
950		/*
951		 * If there is a pending General Query response
952		 * scheduled sooner than the selected delay, no
953		 * further report need be scheduled.
954		 * Otherwise, prepare to respond to the
955		 * group-specific or group-and-source query.
956		 */
957		if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer)
958			mld_v2_process_group_query(inm, mli, timer, m, off);
959
960		/* XXX Clear embedded scope ID as userland won't expect it. */
961		in6_clearscope(&mld->mld_addr);
962		IF_ADDR_RUNLOCK(ifp);
963	}
964
965out_locked:
966	MLD_UNLOCK();
967	IN6_MULTI_UNLOCK();
968
969	return (0);
970}
971
972/*
973 * Process a recieved MLDv2 group-specific or group-and-source-specific
974 * query.
975 * Return <0 if any error occured. Currently this is ignored.
976 */
977static int
978mld_v2_process_group_query(struct in6_multi *inm, struct mld_ifinfo *mli,
979    int timer, struct mbuf *m0, const int off)
980{
981	struct mldv2_query	*mld;
982	int			 retval;
983	uint16_t		 nsrc;
984
985	IN6_MULTI_LOCK_ASSERT();
986	MLD_LOCK_ASSERT();
987
988	retval = 0;
989	mld = (struct mldv2_query *)(mtod(m0, uint8_t *) + off);
990
991	switch (inm->in6m_state) {
992	case MLD_NOT_MEMBER:
993	case MLD_SILENT_MEMBER:
994	case MLD_SLEEPING_MEMBER:
995	case MLD_LAZY_MEMBER:
996	case MLD_AWAKENING_MEMBER:
997	case MLD_IDLE_MEMBER:
998	case MLD_LEAVING_MEMBER:
999		return (retval);
1000		break;
1001	case MLD_REPORTING_MEMBER:
1002	case MLD_G_QUERY_PENDING_MEMBER:
1003	case MLD_SG_QUERY_PENDING_MEMBER:
1004		break;
1005	}
1006
1007	nsrc = ntohs(mld->mld_numsrc);
1008
1009	/*
1010	 * Deal with group-specific queries upfront.
1011	 * If any group query is already pending, purge any recorded
1012	 * source-list state if it exists, and schedule a query response
1013	 * for this group-specific query.
1014	 */
1015	if (nsrc == 0) {
1016		if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER ||
1017		    inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) {
1018			in6m_clear_recorded(inm);
1019			timer = min(inm->in6m_timer, timer);
1020		}
1021		inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER;
1022		inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1023		V_current_state_timers_running6 = 1;
1024		return (retval);
1025	}
1026
1027	/*
1028	 * Deal with the case where a group-and-source-specific query has
1029	 * been received but a group-specific query is already pending.
1030	 */
1031	if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) {
1032		timer = min(inm->in6m_timer, timer);
1033		inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1034		V_current_state_timers_running6 = 1;
1035		return (retval);
1036	}
1037
1038	/*
1039	 * Finally, deal with the case where a group-and-source-specific
1040	 * query has been received, where a response to a previous g-s-r
1041	 * query exists, or none exists.
1042	 * In this case, we need to parse the source-list which the Querier
1043	 * has provided us with and check if we have any source list filter
1044	 * entries at T1 for these sources. If we do not, there is no need
1045	 * schedule a report and the query may be dropped.
1046	 * If we do, we must record them and schedule a current-state
1047	 * report for those sources.
1048	 */
1049	if (inm->in6m_nsrc > 0) {
1050		struct mbuf		*m;
1051		uint8_t			*sp;
1052		int			 i, nrecorded;
1053		int			 soff;
1054
1055		m = m0;
1056		soff = off + sizeof(struct mldv2_query);
1057		nrecorded = 0;
1058		for (i = 0; i < nsrc; i++) {
1059			sp = mtod(m, uint8_t *) + soff;
1060			retval = in6m_record_source(inm,
1061			    (const struct in6_addr *)sp);
1062			if (retval < 0)
1063				break;
1064			nrecorded += retval;
1065			soff += sizeof(struct in6_addr);
1066			if (soff >= m->m_len) {
1067				soff = soff - m->m_len;
1068				m = m->m_next;
1069				if (m == NULL)
1070					break;
1071			}
1072		}
1073		if (nrecorded > 0) {
1074			CTR1(KTR_MLD,
1075			    "%s: schedule response to SG query", __func__);
1076			inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER;
1077			inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1078			V_current_state_timers_running6 = 1;
1079		}
1080	}
1081
1082	return (retval);
1083}
1084
1085/*
1086 * Process a received MLDv1 host membership report.
1087 * Assumes mld points to mld_hdr in pulled up mbuf chain.
1088 *
1089 * NOTE: Can't be fully const correct as we temporarily embed scope ID in
1090 * mld_addr. This is OK as we own the mbuf chain.
1091 */
1092static int
1093mld_v1_input_report(struct ifnet *ifp, const struct ip6_hdr *ip6,
1094    /*const*/ struct mld_hdr *mld)
1095{
1096	struct in6_addr		 src, dst;
1097	struct in6_ifaddr	*ia;
1098	struct in6_multi	*inm;
1099#ifdef KTR
1100	char			 ip6tbuf[INET6_ADDRSTRLEN];
1101#endif
1102
1103	if (!mld_v1enable) {
1104		CTR3(KTR_MLD, "ignore v1 report %s on ifp %p(%s)",
1105		    ip6_sprintf(ip6tbuf, &mld->mld_addr),
1106		    ifp, ifp->if_xname);
1107		return (0);
1108	}
1109
1110	if (ifp->if_flags & IFF_LOOPBACK)
1111		return (0);
1112
1113	/*
1114	 * MLDv1 reports must originate from a host's link-local address,
1115	 * or the unspecified address (when booting).
1116	 */
1117	src = ip6->ip6_src;
1118	in6_clearscope(&src);
1119	if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) {
1120		CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)",
1121		    ip6_sprintf(ip6tbuf, &ip6->ip6_src),
1122		    ifp, ifp->if_xname);
1123		return (EINVAL);
1124	}
1125
1126	/*
1127	 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast
1128	 * group, and must be directed to the group itself.
1129	 */
1130	dst = ip6->ip6_dst;
1131	in6_clearscope(&dst);
1132	if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) ||
1133	    !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) {
1134		CTR3(KTR_MLD, "ignore v1 query dst %s on ifp %p(%s)",
1135		    ip6_sprintf(ip6tbuf, &ip6->ip6_dst),
1136		    ifp, ifp->if_xname);
1137		return (EINVAL);
1138	}
1139
1140	/*
1141	 * Make sure we don't hear our own membership report, as fast
1142	 * leave requires knowing that we are the only member of a
1143	 * group. Assume we used the link-local address if available,
1144	 * otherwise look for ::.
1145	 *
1146	 * XXX Note that scope ID comparison is needed for the address
1147	 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be
1148	 * performed for the on-wire address.
1149	 */
1150	ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
1151	if ((ia && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia))) ||
1152	    (ia == NULL && IN6_IS_ADDR_UNSPECIFIED(&src))) {
1153		if (ia != NULL)
1154			ifa_free(&ia->ia_ifa);
1155		return (0);
1156	}
1157	if (ia != NULL)
1158		ifa_free(&ia->ia_ifa);
1159
1160	CTR3(KTR_MLD, "process v1 report %s on ifp %p(%s)",
1161	    ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, ifp->if_xname);
1162
1163	/*
1164	 * Embed scope ID of receiving interface in MLD query for lookup
1165	 * whilst we don't hold other locks (due to KAME locking lameness).
1166	 */
1167	if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr))
1168		in6_setscope(&mld->mld_addr, ifp, NULL);
1169
1170	IN6_MULTI_LOCK();
1171	MLD_LOCK();
1172	IF_ADDR_RLOCK(ifp);
1173
1174	/*
1175	 * MLDv1 report suppression.
1176	 * If we are a member of this group, and our membership should be
1177	 * reported, and our group timer is pending or about to be reset,
1178	 * stop our group timer by transitioning to the 'lazy' state.
1179	 */
1180	inm = in6m_lookup_locked(ifp, &mld->mld_addr);
1181	if (inm != NULL) {
1182		struct mld_ifinfo *mli;
1183
1184		mli = inm->in6m_mli;
1185		KASSERT(mli != NULL,
1186		    ("%s: no mli for ifp %p", __func__, ifp));
1187
1188		/*
1189		 * If we are in MLDv2 host mode, do not allow the
1190		 * other host's MLDv1 report to suppress our reports.
1191		 */
1192		if (mli->mli_version == MLD_VERSION_2)
1193			goto out_locked;
1194
1195		inm->in6m_timer = 0;
1196
1197		switch (inm->in6m_state) {
1198		case MLD_NOT_MEMBER:
1199		case MLD_SILENT_MEMBER:
1200		case MLD_SLEEPING_MEMBER:
1201			break;
1202		case MLD_REPORTING_MEMBER:
1203		case MLD_IDLE_MEMBER:
1204		case MLD_AWAKENING_MEMBER:
1205			CTR3(KTR_MLD,
1206			    "report suppressed for %s on ifp %p(%s)",
1207			    ip6_sprintf(ip6tbuf, &mld->mld_addr),
1208			    ifp, ifp->if_xname);
1209		case MLD_LAZY_MEMBER:
1210			inm->in6m_state = MLD_LAZY_MEMBER;
1211			break;
1212		case MLD_G_QUERY_PENDING_MEMBER:
1213		case MLD_SG_QUERY_PENDING_MEMBER:
1214		case MLD_LEAVING_MEMBER:
1215			break;
1216		}
1217	}
1218
1219out_locked:
1220	IF_ADDR_RUNLOCK(ifp);
1221	MLD_UNLOCK();
1222	IN6_MULTI_UNLOCK();
1223
1224	/* XXX Clear embedded scope ID as userland won't expect it. */
1225	in6_clearscope(&mld->mld_addr);
1226
1227	return (0);
1228}
1229
1230/*
1231 * MLD input path.
1232 *
1233 * Assume query messages which fit in a single ICMPv6 message header
1234 * have been pulled up.
1235 * Assume that userland will want to see the message, even if it
1236 * otherwise fails kernel input validation; do not free it.
1237 * Pullup may however free the mbuf chain m if it fails.
1238 *
1239 * Return IPPROTO_DONE if we freed m. Otherwise, return 0.
1240 */
1241int
1242mld_input(struct mbuf *m, int off, int icmp6len)
1243{
1244	struct ifnet	*ifp;
1245	struct ip6_hdr	*ip6;
1246	struct mld_hdr	*mld;
1247	int		 mldlen;
1248
1249	CTR3(KTR_MLD, "%s: called w/mbuf (%p,%d)", __func__, m, off);
1250
1251	ifp = m->m_pkthdr.rcvif;
1252
1253	ip6 = mtod(m, struct ip6_hdr *);
1254
1255	/* Pullup to appropriate size. */
1256	mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off);
1257	if (mld->mld_type == MLD_LISTENER_QUERY &&
1258	    icmp6len >= sizeof(struct mldv2_query)) {
1259		mldlen = sizeof(struct mldv2_query);
1260	} else {
1261		mldlen = sizeof(struct mld_hdr);
1262	}
1263	IP6_EXTHDR_GET(mld, struct mld_hdr *, m, off, mldlen);
1264	if (mld == NULL) {
1265		ICMP6STAT_INC(icp6s_badlen);
1266		return (IPPROTO_DONE);
1267	}
1268
1269	/*
1270	 * Userland needs to see all of this traffic for implementing
1271	 * the endpoint discovery portion of multicast routing.
1272	 */
1273	switch (mld->mld_type) {
1274	case MLD_LISTENER_QUERY:
1275		icmp6_ifstat_inc(ifp, ifs6_in_mldquery);
1276		if (icmp6len == sizeof(struct mld_hdr)) {
1277			if (mld_v1_input_query(ifp, ip6, mld) != 0)
1278				return (0);
1279		} else if (icmp6len >= sizeof(struct mldv2_query)) {
1280			if (mld_v2_input_query(ifp, ip6, m, off,
1281			    icmp6len) != 0)
1282				return (0);
1283		}
1284		break;
1285	case MLD_LISTENER_REPORT:
1286		icmp6_ifstat_inc(ifp, ifs6_in_mldreport);
1287		if (mld_v1_input_report(ifp, ip6, mld) != 0)
1288			return (0);
1289		break;
1290	case MLDV2_LISTENER_REPORT:
1291		icmp6_ifstat_inc(ifp, ifs6_in_mldreport);
1292		break;
1293	case MLD_LISTENER_DONE:
1294		icmp6_ifstat_inc(ifp, ifs6_in_mlddone);
1295		break;
1296	default:
1297		break;
1298	}
1299
1300	return (0);
1301}
1302
1303/*
1304 * Fast timeout handler (global).
1305 * VIMAGE: Timeout handlers are expected to service all vimages.
1306 */
1307void
1308mld_fasttimo(void)
1309{
1310	VNET_ITERATOR_DECL(vnet_iter);
1311
1312	VNET_LIST_RLOCK_NOSLEEP();
1313	VNET_FOREACH(vnet_iter) {
1314		CURVNET_SET(vnet_iter);
1315		mld_fasttimo_vnet();
1316		CURVNET_RESTORE();
1317	}
1318	VNET_LIST_RUNLOCK_NOSLEEP();
1319}
1320
1321/*
1322 * Fast timeout handler (per-vnet).
1323 *
1324 * VIMAGE: Assume caller has set up our curvnet.
1325 */
1326static void
1327mld_fasttimo_vnet(void)
1328{
1329	struct ifqueue		 scq;	/* State-change packets */
1330	struct ifqueue		 qrq;	/* Query response packets */
1331	struct ifnet		*ifp;
1332	struct mld_ifinfo	*mli;
1333	struct ifmultiaddr	*ifma;
1334	struct in6_multi	*inm, *tinm;
1335	int			 uri_fasthz;
1336
1337	uri_fasthz = 0;
1338
1339	/*
1340	 * Quick check to see if any work needs to be done, in order to
1341	 * minimize the overhead of fasttimo processing.
1342	 * SMPng: XXX Unlocked reads.
1343	 */
1344	if (!V_current_state_timers_running6 &&
1345	    !V_interface_timers_running6 &&
1346	    !V_state_change_timers_running6)
1347		return;
1348
1349	IN6_MULTI_LOCK();
1350	MLD_LOCK();
1351
1352	/*
1353	 * MLDv2 General Query response timer processing.
1354	 */
1355	if (V_interface_timers_running6) {
1356		CTR1(KTR_MLD, "%s: interface timers running", __func__);
1357
1358		V_interface_timers_running6 = 0;
1359		LIST_FOREACH(mli, &V_mli_head, mli_link) {
1360			if (mli->mli_v2_timer == 0) {
1361				/* Do nothing. */
1362			} else if (--mli->mli_v2_timer == 0) {
1363				mld_v2_dispatch_general_query(mli);
1364			} else {
1365				V_interface_timers_running6 = 1;
1366			}
1367		}
1368	}
1369
1370	if (!V_current_state_timers_running6 &&
1371	    !V_state_change_timers_running6)
1372		goto out_locked;
1373
1374	V_current_state_timers_running6 = 0;
1375	V_state_change_timers_running6 = 0;
1376
1377	CTR1(KTR_MLD, "%s: state change timers running", __func__);
1378
1379	/*
1380	 * MLD host report and state-change timer processing.
1381	 * Note: Processing a v2 group timer may remove a node.
1382	 */
1383	LIST_FOREACH(mli, &V_mli_head, mli_link) {
1384		ifp = mli->mli_ifp;
1385
1386		if (mli->mli_version == MLD_VERSION_2) {
1387			uri_fasthz = MLD_RANDOM_DELAY(mli->mli_uri *
1388			    PR_FASTHZ);
1389
1390			memset(&qrq, 0, sizeof(struct ifqueue));
1391			IFQ_SET_MAXLEN(&qrq, MLD_MAX_G_GS_PACKETS);
1392
1393			memset(&scq, 0, sizeof(struct ifqueue));
1394			IFQ_SET_MAXLEN(&scq, MLD_MAX_STATE_CHANGE_PACKETS);
1395		}
1396
1397		IF_ADDR_RLOCK(ifp);
1398		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1399			if (ifma->ifma_addr->sa_family != AF_INET6 ||
1400			    ifma->ifma_protospec == NULL)
1401				continue;
1402			inm = (struct in6_multi *)ifma->ifma_protospec;
1403			switch (mli->mli_version) {
1404			case MLD_VERSION_1:
1405				mld_v1_process_group_timer(mli, inm);
1406				break;
1407			case MLD_VERSION_2:
1408				mld_v2_process_group_timers(mli, &qrq,
1409				    &scq, inm, uri_fasthz);
1410				break;
1411			}
1412		}
1413		IF_ADDR_RUNLOCK(ifp);
1414
1415		switch (mli->mli_version) {
1416		case MLD_VERSION_1:
1417			/*
1418			 * Transmit reports for this lifecycle.  This
1419			 * is done while not holding IF_ADDR_LOCK
1420			 * since this can call
1421			 * in6ifa_ifpforlinklocal() which locks
1422			 * IF_ADDR_LOCK internally as well as
1423			 * ip6_output() to transmit a packet.
1424			 */
1425			SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead,
1426			    in6m_nrele, tinm) {
1427				SLIST_REMOVE_HEAD(&mli->mli_relinmhead,
1428				    in6m_nrele);
1429				(void)mld_v1_transmit_report(inm,
1430				    MLD_LISTENER_REPORT);
1431			}
1432			break;
1433		case MLD_VERSION_2:
1434			mld_dispatch_queue(&qrq, 0);
1435			mld_dispatch_queue(&scq, 0);
1436
1437			/*
1438			 * Free the in_multi reference(s) for
1439			 * this lifecycle.
1440			 */
1441			SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead,
1442			    in6m_nrele, tinm) {
1443				SLIST_REMOVE_HEAD(&mli->mli_relinmhead,
1444				    in6m_nrele);
1445				in6m_release_locked(inm);
1446			}
1447			break;
1448		}
1449	}
1450
1451out_locked:
1452	MLD_UNLOCK();
1453	IN6_MULTI_UNLOCK();
1454}
1455
1456/*
1457 * Update host report group timer.
1458 * Will update the global pending timer flags.
1459 */
1460static void
1461mld_v1_process_group_timer(struct mld_ifinfo *mli, struct in6_multi *inm)
1462{
1463	int report_timer_expired;
1464
1465	IN6_MULTI_LOCK_ASSERT();
1466	MLD_LOCK_ASSERT();
1467
1468	if (inm->in6m_timer == 0) {
1469		report_timer_expired = 0;
1470	} else if (--inm->in6m_timer == 0) {
1471		report_timer_expired = 1;
1472	} else {
1473		V_current_state_timers_running6 = 1;
1474		return;
1475	}
1476
1477	switch (inm->in6m_state) {
1478	case MLD_NOT_MEMBER:
1479	case MLD_SILENT_MEMBER:
1480	case MLD_IDLE_MEMBER:
1481	case MLD_LAZY_MEMBER:
1482	case MLD_SLEEPING_MEMBER:
1483	case MLD_AWAKENING_MEMBER:
1484		break;
1485	case MLD_REPORTING_MEMBER:
1486		if (report_timer_expired) {
1487			inm->in6m_state = MLD_IDLE_MEMBER;
1488			SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm,
1489			    in6m_nrele);
1490		}
1491		break;
1492	case MLD_G_QUERY_PENDING_MEMBER:
1493	case MLD_SG_QUERY_PENDING_MEMBER:
1494	case MLD_LEAVING_MEMBER:
1495		break;
1496	}
1497}
1498
1499/*
1500 * Update a group's timers for MLDv2.
1501 * Will update the global pending timer flags.
1502 * Note: Unlocked read from mli.
1503 */
1504static void
1505mld_v2_process_group_timers(struct mld_ifinfo *mli,
1506    struct ifqueue *qrq, struct ifqueue *scq,
1507    struct in6_multi *inm, const int uri_fasthz)
1508{
1509	int query_response_timer_expired;
1510	int state_change_retransmit_timer_expired;
1511#ifdef KTR
1512	char ip6tbuf[INET6_ADDRSTRLEN];
1513#endif
1514
1515	IN6_MULTI_LOCK_ASSERT();
1516	MLD_LOCK_ASSERT();
1517
1518	query_response_timer_expired = 0;
1519	state_change_retransmit_timer_expired = 0;
1520
1521	/*
1522	 * During a transition from compatibility mode back to MLDv2,
1523	 * a group record in REPORTING state may still have its group
1524	 * timer active. This is a no-op in this function; it is easier
1525	 * to deal with it here than to complicate the slow-timeout path.
1526	 */
1527	if (inm->in6m_timer == 0) {
1528		query_response_timer_expired = 0;
1529	} else if (--inm->in6m_timer == 0) {
1530		query_response_timer_expired = 1;
1531	} else {
1532		V_current_state_timers_running6 = 1;
1533	}
1534
1535	if (inm->in6m_sctimer == 0) {
1536		state_change_retransmit_timer_expired = 0;
1537	} else if (--inm->in6m_sctimer == 0) {
1538		state_change_retransmit_timer_expired = 1;
1539	} else {
1540		V_state_change_timers_running6 = 1;
1541	}
1542
1543	/* We are in fasttimo, so be quick about it. */
1544	if (!state_change_retransmit_timer_expired &&
1545	    !query_response_timer_expired)
1546		return;
1547
1548	switch (inm->in6m_state) {
1549	case MLD_NOT_MEMBER:
1550	case MLD_SILENT_MEMBER:
1551	case MLD_SLEEPING_MEMBER:
1552	case MLD_LAZY_MEMBER:
1553	case MLD_AWAKENING_MEMBER:
1554	case MLD_IDLE_MEMBER:
1555		break;
1556	case MLD_G_QUERY_PENDING_MEMBER:
1557	case MLD_SG_QUERY_PENDING_MEMBER:
1558		/*
1559		 * Respond to a previously pending Group-Specific
1560		 * or Group-and-Source-Specific query by enqueueing
1561		 * the appropriate Current-State report for
1562		 * immediate transmission.
1563		 */
1564		if (query_response_timer_expired) {
1565			int retval;
1566
1567			retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1,
1568			    (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER),
1569			    0);
1570			CTR2(KTR_MLD, "%s: enqueue record = %d",
1571			    __func__, retval);
1572			inm->in6m_state = MLD_REPORTING_MEMBER;
1573			in6m_clear_recorded(inm);
1574		}
1575		/* FALLTHROUGH */
1576	case MLD_REPORTING_MEMBER:
1577	case MLD_LEAVING_MEMBER:
1578		if (state_change_retransmit_timer_expired) {
1579			/*
1580			 * State-change retransmission timer fired.
1581			 * If there are any further pending retransmissions,
1582			 * set the global pending state-change flag, and
1583			 * reset the timer.
1584			 */
1585			if (--inm->in6m_scrv > 0) {
1586				inm->in6m_sctimer = uri_fasthz;
1587				V_state_change_timers_running6 = 1;
1588			}
1589			/*
1590			 * Retransmit the previously computed state-change
1591			 * report. If there are no further pending
1592			 * retransmissions, the mbuf queue will be consumed.
1593			 * Update T0 state to T1 as we have now sent
1594			 * a state-change.
1595			 */
1596			(void)mld_v2_merge_state_changes(inm, scq);
1597
1598			in6m_commit(inm);
1599			CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
1600			    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
1601			    inm->in6m_ifp->if_xname);
1602
1603			/*
1604			 * If we are leaving the group for good, make sure
1605			 * we release MLD's reference to it.
1606			 * This release must be deferred using a SLIST,
1607			 * as we are called from a loop which traverses
1608			 * the in_ifmultiaddr TAILQ.
1609			 */
1610			if (inm->in6m_state == MLD_LEAVING_MEMBER &&
1611			    inm->in6m_scrv == 0) {
1612				inm->in6m_state = MLD_NOT_MEMBER;
1613				SLIST_INSERT_HEAD(&mli->mli_relinmhead,
1614				    inm, in6m_nrele);
1615			}
1616		}
1617		break;
1618	}
1619}
1620
1621/*
1622 * Switch to a different version on the given interface,
1623 * as per Section 9.12.
1624 */
1625static void
1626mld_set_version(struct mld_ifinfo *mli, const int version)
1627{
1628	int old_version_timer;
1629
1630	MLD_LOCK_ASSERT();
1631
1632	CTR4(KTR_MLD, "%s: switching to v%d on ifp %p(%s)", __func__,
1633	    version, mli->mli_ifp, mli->mli_ifp->if_xname);
1634
1635	if (version == MLD_VERSION_1) {
1636		/*
1637		 * Compute the "Older Version Querier Present" timer as per
1638		 * Section 9.12.
1639		 */
1640		old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri;
1641		old_version_timer *= PR_SLOWHZ;
1642		mli->mli_v1_timer = old_version_timer;
1643	}
1644
1645	if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) {
1646		mli->mli_version = MLD_VERSION_1;
1647		mld_v2_cancel_link_timers(mli);
1648	}
1649}
1650
1651/*
1652 * Cancel pending MLDv2 timers for the given link and all groups
1653 * joined on it; state-change, general-query, and group-query timers.
1654 */
1655static void
1656mld_v2_cancel_link_timers(struct mld_ifinfo *mli)
1657{
1658	struct ifmultiaddr	*ifma;
1659	struct ifnet		*ifp;
1660	struct in6_multi	*inm, *tinm;
1661
1662	CTR3(KTR_MLD, "%s: cancel v2 timers on ifp %p(%s)", __func__,
1663	    mli->mli_ifp, mli->mli_ifp->if_xname);
1664
1665	IN6_MULTI_LOCK_ASSERT();
1666	MLD_LOCK_ASSERT();
1667
1668	/*
1669	 * Fast-track this potentially expensive operation
1670	 * by checking all the global 'timer pending' flags.
1671	 */
1672	if (!V_interface_timers_running6 &&
1673	    !V_state_change_timers_running6 &&
1674	    !V_current_state_timers_running6)
1675		return;
1676
1677	mli->mli_v2_timer = 0;
1678
1679	ifp = mli->mli_ifp;
1680
1681	IF_ADDR_RLOCK(ifp);
1682	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1683		if (ifma->ifma_addr->sa_family != AF_INET6)
1684			continue;
1685		inm = (struct in6_multi *)ifma->ifma_protospec;
1686		switch (inm->in6m_state) {
1687		case MLD_NOT_MEMBER:
1688		case MLD_SILENT_MEMBER:
1689		case MLD_IDLE_MEMBER:
1690		case MLD_LAZY_MEMBER:
1691		case MLD_SLEEPING_MEMBER:
1692		case MLD_AWAKENING_MEMBER:
1693			break;
1694		case MLD_LEAVING_MEMBER:
1695			/*
1696			 * If we are leaving the group and switching
1697			 * version, we need to release the final
1698			 * reference held for issuing the INCLUDE {}.
1699			 */
1700			SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm,
1701			    in6m_nrele);
1702			/* FALLTHROUGH */
1703		case MLD_G_QUERY_PENDING_MEMBER:
1704		case MLD_SG_QUERY_PENDING_MEMBER:
1705			in6m_clear_recorded(inm);
1706			/* FALLTHROUGH */
1707		case MLD_REPORTING_MEMBER:
1708			inm->in6m_sctimer = 0;
1709			inm->in6m_timer = 0;
1710			inm->in6m_state = MLD_REPORTING_MEMBER;
1711			/*
1712			 * Free any pending MLDv2 state-change records.
1713			 */
1714			_IF_DRAIN(&inm->in6m_scq);
1715			break;
1716		}
1717	}
1718	IF_ADDR_RUNLOCK(ifp);
1719	SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele, tinm) {
1720		SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele);
1721		in6m_release_locked(inm);
1722	}
1723}
1724
1725/*
1726 * Global slowtimo handler.
1727 * VIMAGE: Timeout handlers are expected to service all vimages.
1728 */
1729void
1730mld_slowtimo(void)
1731{
1732	VNET_ITERATOR_DECL(vnet_iter);
1733
1734	VNET_LIST_RLOCK_NOSLEEP();
1735	VNET_FOREACH(vnet_iter) {
1736		CURVNET_SET(vnet_iter);
1737		mld_slowtimo_vnet();
1738		CURVNET_RESTORE();
1739	}
1740	VNET_LIST_RUNLOCK_NOSLEEP();
1741}
1742
1743/*
1744 * Per-vnet slowtimo handler.
1745 */
1746static void
1747mld_slowtimo_vnet(void)
1748{
1749	struct mld_ifinfo *mli;
1750
1751	MLD_LOCK();
1752
1753	LIST_FOREACH(mli, &V_mli_head, mli_link) {
1754		mld_v1_process_querier_timers(mli);
1755	}
1756
1757	MLD_UNLOCK();
1758}
1759
1760/*
1761 * Update the Older Version Querier Present timers for a link.
1762 * See Section 9.12 of RFC 3810.
1763 */
1764static void
1765mld_v1_process_querier_timers(struct mld_ifinfo *mli)
1766{
1767
1768	MLD_LOCK_ASSERT();
1769
1770	if (mli->mli_version != MLD_VERSION_2 && --mli->mli_v1_timer == 0) {
1771		/*
1772		 * MLDv1 Querier Present timer expired; revert to MLDv2.
1773		 */
1774		CTR5(KTR_MLD,
1775		    "%s: transition from v%d -> v%d on %p(%s)",
1776		    __func__, mli->mli_version, MLD_VERSION_2,
1777		    mli->mli_ifp, mli->mli_ifp->if_xname);
1778		mli->mli_version = MLD_VERSION_2;
1779	}
1780}
1781
1782/*
1783 * Transmit an MLDv1 report immediately.
1784 */
1785static int
1786mld_v1_transmit_report(struct in6_multi *in6m, const int type)
1787{
1788	struct ifnet		*ifp;
1789	struct in6_ifaddr	*ia;
1790	struct ip6_hdr		*ip6;
1791	struct mbuf		*mh, *md;
1792	struct mld_hdr		*mld;
1793
1794	IN6_MULTI_LOCK_ASSERT();
1795	MLD_LOCK_ASSERT();
1796
1797	ifp = in6m->in6m_ifp;
1798	ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
1799	/* ia may be NULL if link-local address is tentative. */
1800
1801	MGETHDR(mh, M_DONTWAIT, MT_HEADER);
1802	if (mh == NULL) {
1803		if (ia != NULL)
1804			ifa_free(&ia->ia_ifa);
1805		return (ENOMEM);
1806	}
1807	MGET(md, M_DONTWAIT, MT_DATA);
1808	if (md == NULL) {
1809		m_free(mh);
1810		if (ia != NULL)
1811			ifa_free(&ia->ia_ifa);
1812		return (ENOMEM);
1813	}
1814	mh->m_next = md;
1815
1816	/*
1817	 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so
1818	 * that ether_output() does not need to allocate another mbuf
1819	 * for the header in the most common case.
1820	 */
1821	MH_ALIGN(mh, sizeof(struct ip6_hdr));
1822	mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr);
1823	mh->m_len = sizeof(struct ip6_hdr);
1824
1825	ip6 = mtod(mh, struct ip6_hdr *);
1826	ip6->ip6_flow = 0;
1827	ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
1828	ip6->ip6_vfc |= IPV6_VERSION;
1829	ip6->ip6_nxt = IPPROTO_ICMPV6;
1830	ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any;
1831	ip6->ip6_dst = in6m->in6m_addr;
1832
1833	md->m_len = sizeof(struct mld_hdr);
1834	mld = mtod(md, struct mld_hdr *);
1835	mld->mld_type = type;
1836	mld->mld_code = 0;
1837	mld->mld_cksum = 0;
1838	mld->mld_maxdelay = 0;
1839	mld->mld_reserved = 0;
1840	mld->mld_addr = in6m->in6m_addr;
1841	in6_clearscope(&mld->mld_addr);
1842	mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6,
1843	    sizeof(struct ip6_hdr), sizeof(struct mld_hdr));
1844
1845	mld_save_context(mh, ifp);
1846	mh->m_flags |= M_MLDV1;
1847
1848	mld_dispatch_packet(mh);
1849
1850	if (ia != NULL)
1851		ifa_free(&ia->ia_ifa);
1852	return (0);
1853}
1854
1855/*
1856 * Process a state change from the upper layer for the given IPv6 group.
1857 *
1858 * Each socket holds a reference on the in_multi in its own ip_moptions.
1859 * The socket layer will have made the necessary updates to.the group
1860 * state, it is now up to MLD to issue a state change report if there
1861 * has been any change between T0 (when the last state-change was issued)
1862 * and T1 (now).
1863 *
1864 * We use the MLDv2 state machine at group level. The MLd module
1865 * however makes the decision as to which MLD protocol version to speak.
1866 * A state change *from* INCLUDE {} always means an initial join.
1867 * A state change *to* INCLUDE {} always means a final leave.
1868 *
1869 * If delay is non-zero, and the state change is an initial multicast
1870 * join, the state change report will be delayed by 'delay' ticks
1871 * in units of PR_FASTHZ if MLDv1 is active on the link; otherwise
1872 * the initial MLDv2 state change report will be delayed by whichever
1873 * is sooner, a pending state-change timer or delay itself.
1874 *
1875 * VIMAGE: curvnet should have been set by caller, as this routine
1876 * is called from the socket option handlers.
1877 */
1878int
1879mld_change_state(struct in6_multi *inm, const int delay)
1880{
1881	struct mld_ifinfo *mli;
1882	struct ifnet *ifp;
1883	int error;
1884
1885	IN6_MULTI_LOCK_ASSERT();
1886
1887	error = 0;
1888
1889	/*
1890	 * Try to detect if the upper layer just asked us to change state
1891	 * for an interface which has now gone away.
1892	 */
1893	KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__));
1894	ifp = inm->in6m_ifma->ifma_ifp;
1895	if (ifp != NULL) {
1896		/*
1897		 * Sanity check that netinet6's notion of ifp is the
1898		 * same as net's.
1899		 */
1900		KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__));
1901	}
1902
1903	MLD_LOCK();
1904
1905	mli = MLD_IFINFO(ifp);
1906	KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp));
1907
1908	/*
1909	 * If we detect a state transition to or from MCAST_UNDEFINED
1910	 * for this group, then we are starting or finishing an MLD
1911	 * life cycle for this group.
1912	 */
1913	if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) {
1914		CTR3(KTR_MLD, "%s: inm transition %d -> %d", __func__,
1915		    inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode);
1916		if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) {
1917			CTR1(KTR_MLD, "%s: initial join", __func__);
1918			error = mld_initial_join(inm, mli, delay);
1919			goto out_locked;
1920		} else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) {
1921			CTR1(KTR_MLD, "%s: final leave", __func__);
1922			mld_final_leave(inm, mli);
1923			goto out_locked;
1924		}
1925	} else {
1926		CTR1(KTR_MLD, "%s: filter set change", __func__);
1927	}
1928
1929	error = mld_handle_state_change(inm, mli);
1930
1931out_locked:
1932	MLD_UNLOCK();
1933	return (error);
1934}
1935
1936/*
1937 * Perform the initial join for an MLD group.
1938 *
1939 * When joining a group:
1940 *  If the group should have its MLD traffic suppressed, do nothing.
1941 *  MLDv1 starts sending MLDv1 host membership reports.
1942 *  MLDv2 will schedule an MLDv2 state-change report containing the
1943 *  initial state of the membership.
1944 *
1945 * If the delay argument is non-zero, then we must delay sending the
1946 * initial state change for delay ticks (in units of PR_FASTHZ).
1947 */
1948static int
1949mld_initial_join(struct in6_multi *inm, struct mld_ifinfo *mli,
1950    const int delay)
1951{
1952	struct ifnet		*ifp;
1953	struct ifqueue		*ifq;
1954	int			 error, retval, syncstates;
1955	int			 odelay;
1956#ifdef KTR
1957	char			 ip6tbuf[INET6_ADDRSTRLEN];
1958#endif
1959
1960	CTR4(KTR_MLD, "%s: initial join %s on ifp %p(%s)",
1961	    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
1962	    inm->in6m_ifp, inm->in6m_ifp->if_xname);
1963
1964	error = 0;
1965	syncstates = 1;
1966
1967	ifp = inm->in6m_ifp;
1968
1969	IN6_MULTI_LOCK_ASSERT();
1970	MLD_LOCK_ASSERT();
1971
1972	KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__));
1973
1974	/*
1975	 * Groups joined on loopback or marked as 'not reported',
1976	 * enter the MLD_SILENT_MEMBER state and
1977	 * are never reported in any protocol exchanges.
1978	 * All other groups enter the appropriate state machine
1979	 * for the version in use on this link.
1980	 * A link marked as MLIF_SILENT causes MLD to be completely
1981	 * disabled for the link.
1982	 */
1983	if ((ifp->if_flags & IFF_LOOPBACK) ||
1984	    (mli->mli_flags & MLIF_SILENT) ||
1985	    !mld_is_addr_reported(&inm->in6m_addr)) {
1986		CTR1(KTR_MLD,
1987"%s: not kicking state machine for silent group", __func__);
1988		inm->in6m_state = MLD_SILENT_MEMBER;
1989		inm->in6m_timer = 0;
1990	} else {
1991		/*
1992		 * Deal with overlapping in_multi lifecycle.
1993		 * If this group was LEAVING, then make sure
1994		 * we drop the reference we picked up to keep the
1995		 * group around for the final INCLUDE {} enqueue.
1996		 */
1997		if (mli->mli_version == MLD_VERSION_2 &&
1998		    inm->in6m_state == MLD_LEAVING_MEMBER)
1999			in6m_release_locked(inm);
2000
2001		inm->in6m_state = MLD_REPORTING_MEMBER;
2002
2003		switch (mli->mli_version) {
2004		case MLD_VERSION_1:
2005			/*
2006			 * If a delay was provided, only use it if
2007			 * it is greater than the delay normally
2008			 * used for an MLDv1 state change report,
2009			 * and delay sending the initial MLDv1 report
2010			 * by not transitioning to the IDLE state.
2011			 */
2012			odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI * PR_FASTHZ);
2013			if (delay) {
2014				inm->in6m_timer = max(delay, odelay);
2015				V_current_state_timers_running6 = 1;
2016			} else {
2017				inm->in6m_state = MLD_IDLE_MEMBER;
2018				error = mld_v1_transmit_report(inm,
2019				     MLD_LISTENER_REPORT);
2020				if (error == 0) {
2021					inm->in6m_timer = odelay;
2022					V_current_state_timers_running6 = 1;
2023				}
2024			}
2025			break;
2026
2027		case MLD_VERSION_2:
2028			/*
2029			 * Defer update of T0 to T1, until the first copy
2030			 * of the state change has been transmitted.
2031			 */
2032			syncstates = 0;
2033
2034			/*
2035			 * Immediately enqueue a State-Change Report for
2036			 * this interface, freeing any previous reports.
2037			 * Don't kick the timers if there is nothing to do,
2038			 * or if an error occurred.
2039			 */
2040			ifq = &inm->in6m_scq;
2041			_IF_DRAIN(ifq);
2042			retval = mld_v2_enqueue_group_record(ifq, inm, 1,
2043			    0, 0, (mli->mli_flags & MLIF_USEALLOW));
2044			CTR2(KTR_MLD, "%s: enqueue record = %d",
2045			    __func__, retval);
2046			if (retval <= 0) {
2047				error = retval * -1;
2048				break;
2049			}
2050
2051			/*
2052			 * Schedule transmission of pending state-change
2053			 * report up to RV times for this link. The timer
2054			 * will fire at the next mld_fasttimo (~200ms),
2055			 * giving us an opportunity to merge the reports.
2056			 *
2057			 * If a delay was provided to this function, only
2058			 * use this delay if sooner than the existing one.
2059			 */
2060			KASSERT(mli->mli_rv > 1,
2061			   ("%s: invalid robustness %d", __func__,
2062			    mli->mli_rv));
2063			inm->in6m_scrv = mli->mli_rv;
2064			if (delay) {
2065				if (inm->in6m_sctimer > 1) {
2066					inm->in6m_sctimer =
2067					    min(inm->in6m_sctimer, delay);
2068				} else
2069					inm->in6m_sctimer = delay;
2070			} else
2071				inm->in6m_sctimer = 1;
2072			V_state_change_timers_running6 = 1;
2073
2074			error = 0;
2075			break;
2076		}
2077	}
2078
2079	/*
2080	 * Only update the T0 state if state change is atomic,
2081	 * i.e. we don't need to wait for a timer to fire before we
2082	 * can consider the state change to have been communicated.
2083	 */
2084	if (syncstates) {
2085		in6m_commit(inm);
2086		CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
2087		    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2088		    inm->in6m_ifp->if_xname);
2089	}
2090
2091	return (error);
2092}
2093
2094/*
2095 * Issue an intermediate state change during the life-cycle.
2096 */
2097static int
2098mld_handle_state_change(struct in6_multi *inm, struct mld_ifinfo *mli)
2099{
2100	struct ifnet		*ifp;
2101	int			 retval;
2102#ifdef KTR
2103	char			 ip6tbuf[INET6_ADDRSTRLEN];
2104#endif
2105
2106	CTR4(KTR_MLD, "%s: state change for %s on ifp %p(%s)",
2107	    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2108	    inm->in6m_ifp, inm->in6m_ifp->if_xname);
2109
2110	ifp = inm->in6m_ifp;
2111
2112	IN6_MULTI_LOCK_ASSERT();
2113	MLD_LOCK_ASSERT();
2114
2115	KASSERT(mli && mli->mli_ifp == ifp,
2116	    ("%s: inconsistent ifp", __func__));
2117
2118	if ((ifp->if_flags & IFF_LOOPBACK) ||
2119	    (mli->mli_flags & MLIF_SILENT) ||
2120	    !mld_is_addr_reported(&inm->in6m_addr) ||
2121	    (mli->mli_version != MLD_VERSION_2)) {
2122		if (!mld_is_addr_reported(&inm->in6m_addr)) {
2123			CTR1(KTR_MLD,
2124"%s: not kicking state machine for silent group", __func__);
2125		}
2126		CTR1(KTR_MLD, "%s: nothing to do", __func__);
2127		in6m_commit(inm);
2128		CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
2129		    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2130		    inm->in6m_ifp->if_xname);
2131		return (0);
2132	}
2133
2134	_IF_DRAIN(&inm->in6m_scq);
2135
2136	retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0,
2137	    (mli->mli_flags & MLIF_USEALLOW));
2138	CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval);
2139	if (retval <= 0)
2140		return (-retval);
2141
2142	/*
2143	 * If record(s) were enqueued, start the state-change
2144	 * report timer for this group.
2145	 */
2146	inm->in6m_scrv = mli->mli_rv;
2147	inm->in6m_sctimer = 1;
2148	V_state_change_timers_running6 = 1;
2149
2150	return (0);
2151}
2152
2153/*
2154 * Perform the final leave for a multicast address.
2155 *
2156 * When leaving a group:
2157 *  MLDv1 sends a DONE message, if and only if we are the reporter.
2158 *  MLDv2 enqueues a state-change report containing a transition
2159 *  to INCLUDE {} for immediate transmission.
2160 */
2161static void
2162mld_final_leave(struct in6_multi *inm, struct mld_ifinfo *mli)
2163{
2164	int syncstates;
2165#ifdef KTR
2166	char ip6tbuf[INET6_ADDRSTRLEN];
2167#endif
2168
2169	syncstates = 1;
2170
2171	CTR4(KTR_MLD, "%s: final leave %s on ifp %p(%s)",
2172	    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2173	    inm->in6m_ifp, inm->in6m_ifp->if_xname);
2174
2175	IN6_MULTI_LOCK_ASSERT();
2176	MLD_LOCK_ASSERT();
2177
2178	switch (inm->in6m_state) {
2179	case MLD_NOT_MEMBER:
2180	case MLD_SILENT_MEMBER:
2181	case MLD_LEAVING_MEMBER:
2182		/* Already leaving or left; do nothing. */
2183		CTR1(KTR_MLD,
2184"%s: not kicking state machine for silent group", __func__);
2185		break;
2186	case MLD_REPORTING_MEMBER:
2187	case MLD_IDLE_MEMBER:
2188	case MLD_G_QUERY_PENDING_MEMBER:
2189	case MLD_SG_QUERY_PENDING_MEMBER:
2190		if (mli->mli_version == MLD_VERSION_1) {
2191#ifdef INVARIANTS
2192			if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER ||
2193			    inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER)
2194			panic("%s: MLDv2 state reached, not MLDv2 mode",
2195			     __func__);
2196#endif
2197			mld_v1_transmit_report(inm, MLD_LISTENER_DONE);
2198			inm->in6m_state = MLD_NOT_MEMBER;
2199			V_current_state_timers_running6 = 1;
2200		} else if (mli->mli_version == MLD_VERSION_2) {
2201			/*
2202			 * Stop group timer and all pending reports.
2203			 * Immediately enqueue a state-change report
2204			 * TO_IN {} to be sent on the next fast timeout,
2205			 * giving us an opportunity to merge reports.
2206			 */
2207			_IF_DRAIN(&inm->in6m_scq);
2208			inm->in6m_timer = 0;
2209			inm->in6m_scrv = mli->mli_rv;
2210			CTR4(KTR_MLD, "%s: Leaving %s/%s with %d "
2211			    "pending retransmissions.", __func__,
2212			    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2213			    inm->in6m_ifp->if_xname, inm->in6m_scrv);
2214			if (inm->in6m_scrv == 0) {
2215				inm->in6m_state = MLD_NOT_MEMBER;
2216				inm->in6m_sctimer = 0;
2217			} else {
2218				int retval;
2219
2220				in6m_acquire_locked(inm);
2221
2222				retval = mld_v2_enqueue_group_record(
2223				    &inm->in6m_scq, inm, 1, 0, 0,
2224				    (mli->mli_flags & MLIF_USEALLOW));
2225				KASSERT(retval != 0,
2226				    ("%s: enqueue record = %d", __func__,
2227				     retval));
2228
2229				inm->in6m_state = MLD_LEAVING_MEMBER;
2230				inm->in6m_sctimer = 1;
2231				V_state_change_timers_running6 = 1;
2232				syncstates = 0;
2233			}
2234			break;
2235		}
2236		break;
2237	case MLD_LAZY_MEMBER:
2238	case MLD_SLEEPING_MEMBER:
2239	case MLD_AWAKENING_MEMBER:
2240		/* Our reports are suppressed; do nothing. */
2241		break;
2242	}
2243
2244	if (syncstates) {
2245		in6m_commit(inm);
2246		CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
2247		    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2248		    inm->in6m_ifp->if_xname);
2249		inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED;
2250		CTR3(KTR_MLD, "%s: T1 now MCAST_UNDEFINED for %p/%s",
2251		    __func__, &inm->in6m_addr, inm->in6m_ifp->if_xname);
2252	}
2253}
2254
2255/*
2256 * Enqueue an MLDv2 group record to the given output queue.
2257 *
2258 * If is_state_change is zero, a current-state record is appended.
2259 * If is_state_change is non-zero, a state-change report is appended.
2260 *
2261 * If is_group_query is non-zero, an mbuf packet chain is allocated.
2262 * If is_group_query is zero, and if there is a packet with free space
2263 * at the tail of the queue, it will be appended to providing there
2264 * is enough free space.
2265 * Otherwise a new mbuf packet chain is allocated.
2266 *
2267 * If is_source_query is non-zero, each source is checked to see if
2268 * it was recorded for a Group-Source query, and will be omitted if
2269 * it is not both in-mode and recorded.
2270 *
2271 * If use_block_allow is non-zero, state change reports for initial join
2272 * and final leave, on an inclusive mode group with a source list, will be
2273 * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively.
2274 *
2275 * The function will attempt to allocate leading space in the packet
2276 * for the IPv6+ICMP headers to be prepended without fragmenting the chain.
2277 *
2278 * If successful the size of all data appended to the queue is returned,
2279 * otherwise an error code less than zero is returned, or zero if
2280 * no record(s) were appended.
2281 */
2282static int
2283mld_v2_enqueue_group_record(struct ifqueue *ifq, struct in6_multi *inm,
2284    const int is_state_change, const int is_group_query,
2285    const int is_source_query, const int use_block_allow)
2286{
2287	struct mldv2_record	 mr;
2288	struct mldv2_record	*pmr;
2289	struct ifnet		*ifp;
2290	struct ip6_msource	*ims, *nims;
2291	struct mbuf		*m0, *m, *md;
2292	int			 error, is_filter_list_change;
2293	int			 minrec0len, m0srcs, msrcs, nbytes, off;
2294	int			 record_has_sources;
2295	int			 now;
2296	int			 type;
2297	uint8_t			 mode;
2298#ifdef KTR
2299	char			 ip6tbuf[INET6_ADDRSTRLEN];
2300#endif
2301
2302	IN6_MULTI_LOCK_ASSERT();
2303
2304	error = 0;
2305	ifp = inm->in6m_ifp;
2306	is_filter_list_change = 0;
2307	m = NULL;
2308	m0 = NULL;
2309	m0srcs = 0;
2310	msrcs = 0;
2311	nbytes = 0;
2312	nims = NULL;
2313	record_has_sources = 1;
2314	pmr = NULL;
2315	type = MLD_DO_NOTHING;
2316	mode = inm->in6m_st[1].iss_fmode;
2317
2318	/*
2319	 * If we did not transition out of ASM mode during t0->t1,
2320	 * and there are no source nodes to process, we can skip
2321	 * the generation of source records.
2322	 */
2323	if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 &&
2324	    inm->in6m_nsrc == 0)
2325		record_has_sources = 0;
2326
2327	if (is_state_change) {
2328		/*
2329		 * Queue a state change record.
2330		 * If the mode did not change, and there are non-ASM
2331		 * listeners or source filters present,
2332		 * we potentially need to issue two records for the group.
2333		 * If there are ASM listeners, and there was no filter
2334		 * mode transition of any kind, do nothing.
2335		 *
2336		 * If we are transitioning to MCAST_UNDEFINED, we need
2337		 * not send any sources. A transition to/from this state is
2338		 * considered inclusive with some special treatment.
2339		 *
2340		 * If we are rewriting initial joins/leaves to use
2341		 * ALLOW/BLOCK, and the group's membership is inclusive,
2342		 * we need to send sources in all cases.
2343		 */
2344		if (mode != inm->in6m_st[0].iss_fmode) {
2345			if (mode == MCAST_EXCLUDE) {
2346				CTR1(KTR_MLD, "%s: change to EXCLUDE",
2347				    __func__);
2348				type = MLD_CHANGE_TO_EXCLUDE_MODE;
2349			} else {
2350				CTR1(KTR_MLD, "%s: change to INCLUDE",
2351				    __func__);
2352				if (use_block_allow) {
2353					/*
2354					 * XXX
2355					 * Here we're interested in state
2356					 * edges either direction between
2357					 * MCAST_UNDEFINED and MCAST_INCLUDE.
2358					 * Perhaps we should just check
2359					 * the group state, rather than
2360					 * the filter mode.
2361					 */
2362					if (mode == MCAST_UNDEFINED) {
2363						type = MLD_BLOCK_OLD_SOURCES;
2364					} else {
2365						type = MLD_ALLOW_NEW_SOURCES;
2366					}
2367				} else {
2368					type = MLD_CHANGE_TO_INCLUDE_MODE;
2369					if (mode == MCAST_UNDEFINED)
2370						record_has_sources = 0;
2371				}
2372			}
2373		} else {
2374			if (record_has_sources) {
2375				is_filter_list_change = 1;
2376			} else {
2377				type = MLD_DO_NOTHING;
2378			}
2379		}
2380	} else {
2381		/*
2382		 * Queue a current state record.
2383		 */
2384		if (mode == MCAST_EXCLUDE) {
2385			type = MLD_MODE_IS_EXCLUDE;
2386		} else if (mode == MCAST_INCLUDE) {
2387			type = MLD_MODE_IS_INCLUDE;
2388			KASSERT(inm->in6m_st[1].iss_asm == 0,
2389			    ("%s: inm %p is INCLUDE but ASM count is %d",
2390			     __func__, inm, inm->in6m_st[1].iss_asm));
2391		}
2392	}
2393
2394	/*
2395	 * Generate the filter list changes using a separate function.
2396	 */
2397	if (is_filter_list_change)
2398		return (mld_v2_enqueue_filter_change(ifq, inm));
2399
2400	if (type == MLD_DO_NOTHING) {
2401		CTR3(KTR_MLD, "%s: nothing to do for %s/%s",
2402		    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2403		    inm->in6m_ifp->if_xname);
2404		return (0);
2405	}
2406
2407	/*
2408	 * If any sources are present, we must be able to fit at least
2409	 * one in the trailing space of the tail packet's mbuf,
2410	 * ideally more.
2411	 */
2412	minrec0len = sizeof(struct mldv2_record);
2413	if (record_has_sources)
2414		minrec0len += sizeof(struct in6_addr);
2415
2416	CTR4(KTR_MLD, "%s: queueing %s for %s/%s", __func__,
2417	    mld_rec_type_to_str(type),
2418	    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2419	    inm->in6m_ifp->if_xname);
2420
2421	/*
2422	 * Check if we have a packet in the tail of the queue for this
2423	 * group into which the first group record for this group will fit.
2424	 * Otherwise allocate a new packet.
2425	 * Always allocate leading space for IP6+RA+ICMPV6+REPORT.
2426	 * Note: Group records for G/GSR query responses MUST be sent
2427	 * in their own packet.
2428	 */
2429	m0 = ifq->ifq_tail;
2430	if (!is_group_query &&
2431	    m0 != NULL &&
2432	    (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) &&
2433	    (m0->m_pkthdr.len + minrec0len) <
2434	     (ifp->if_mtu - MLD_MTUSPACE)) {
2435		m0srcs = (ifp->if_mtu - m0->m_pkthdr.len -
2436			    sizeof(struct mldv2_record)) /
2437			    sizeof(struct in6_addr);
2438		m = m0;
2439		CTR1(KTR_MLD, "%s: use existing packet", __func__);
2440	} else {
2441		if (_IF_QFULL(ifq)) {
2442			CTR1(KTR_MLD, "%s: outbound queue full", __func__);
2443			return (-ENOMEM);
2444		}
2445		m = NULL;
2446		m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2447		    sizeof(struct mldv2_record)) / sizeof(struct in6_addr);
2448		if (!is_state_change && !is_group_query)
2449			m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2450		if (m == NULL)
2451			m = m_gethdr(M_DONTWAIT, MT_DATA);
2452		if (m == NULL)
2453			return (-ENOMEM);
2454
2455		mld_save_context(m, ifp);
2456
2457		CTR1(KTR_MLD, "%s: allocated first packet", __func__);
2458	}
2459
2460	/*
2461	 * Append group record.
2462	 * If we have sources, we don't know how many yet.
2463	 */
2464	mr.mr_type = type;
2465	mr.mr_datalen = 0;
2466	mr.mr_numsrc = 0;
2467	mr.mr_addr = inm->in6m_addr;
2468	in6_clearscope(&mr.mr_addr);
2469	if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) {
2470		if (m != m0)
2471			m_freem(m);
2472		CTR1(KTR_MLD, "%s: m_append() failed.", __func__);
2473		return (-ENOMEM);
2474	}
2475	nbytes += sizeof(struct mldv2_record);
2476
2477	/*
2478	 * Append as many sources as will fit in the first packet.
2479	 * If we are appending to a new packet, the chain allocation
2480	 * may potentially use clusters; use m_getptr() in this case.
2481	 * If we are appending to an existing packet, we need to obtain
2482	 * a pointer to the group record after m_append(), in case a new
2483	 * mbuf was allocated.
2484	 *
2485	 * Only append sources which are in-mode at t1. If we are
2486	 * transitioning to MCAST_UNDEFINED state on the group, and
2487	 * use_block_allow is zero, do not include source entries.
2488	 * Otherwise, we need to include this source in the report.
2489	 *
2490	 * Only report recorded sources in our filter set when responding
2491	 * to a group-source query.
2492	 */
2493	if (record_has_sources) {
2494		if (m == m0) {
2495			md = m_last(m);
2496			pmr = (struct mldv2_record *)(mtod(md, uint8_t *) +
2497			    md->m_len - nbytes);
2498		} else {
2499			md = m_getptr(m, 0, &off);
2500			pmr = (struct mldv2_record *)(mtod(md, uint8_t *) +
2501			    off);
2502		}
2503		msrcs = 0;
2504		RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs,
2505		    nims) {
2506			CTR2(KTR_MLD, "%s: visit node %s", __func__,
2507			    ip6_sprintf(ip6tbuf, &ims->im6s_addr));
2508			now = im6s_get_mode(inm, ims, 1);
2509			CTR2(KTR_MLD, "%s: node is %d", __func__, now);
2510			if ((now != mode) ||
2511			    (now == mode &&
2512			     (!use_block_allow && mode == MCAST_UNDEFINED))) {
2513				CTR1(KTR_MLD, "%s: skip node", __func__);
2514				continue;
2515			}
2516			if (is_source_query && ims->im6s_stp == 0) {
2517				CTR1(KTR_MLD, "%s: skip unrecorded node",
2518				    __func__);
2519				continue;
2520			}
2521			CTR1(KTR_MLD, "%s: append node", __func__);
2522			if (!m_append(m, sizeof(struct in6_addr),
2523			    (void *)&ims->im6s_addr)) {
2524				if (m != m0)
2525					m_freem(m);
2526				CTR1(KTR_MLD, "%s: m_append() failed.",
2527				    __func__);
2528				return (-ENOMEM);
2529			}
2530			nbytes += sizeof(struct in6_addr);
2531			++msrcs;
2532			if (msrcs == m0srcs)
2533				break;
2534		}
2535		CTR2(KTR_MLD, "%s: msrcs is %d this packet", __func__,
2536		    msrcs);
2537		pmr->mr_numsrc = htons(msrcs);
2538		nbytes += (msrcs * sizeof(struct in6_addr));
2539	}
2540
2541	if (is_source_query && msrcs == 0) {
2542		CTR1(KTR_MLD, "%s: no recorded sources to report", __func__);
2543		if (m != m0)
2544			m_freem(m);
2545		return (0);
2546	}
2547
2548	/*
2549	 * We are good to go with first packet.
2550	 */
2551	if (m != m0) {
2552		CTR1(KTR_MLD, "%s: enqueueing first packet", __func__);
2553		m->m_pkthdr.PH_vt.vt_nrecs = 1;
2554		_IF_ENQUEUE(ifq, m);
2555	} else
2556		m->m_pkthdr.PH_vt.vt_nrecs++;
2557
2558	/*
2559	 * No further work needed if no source list in packet(s).
2560	 */
2561	if (!record_has_sources)
2562		return (nbytes);
2563
2564	/*
2565	 * Whilst sources remain to be announced, we need to allocate
2566	 * a new packet and fill out as many sources as will fit.
2567	 * Always try for a cluster first.
2568	 */
2569	while (nims != NULL) {
2570		if (_IF_QFULL(ifq)) {
2571			CTR1(KTR_MLD, "%s: outbound queue full", __func__);
2572			return (-ENOMEM);
2573		}
2574		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2575		if (m == NULL)
2576			m = m_gethdr(M_DONTWAIT, MT_DATA);
2577		if (m == NULL)
2578			return (-ENOMEM);
2579		mld_save_context(m, ifp);
2580		md = m_getptr(m, 0, &off);
2581		pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off);
2582		CTR1(KTR_MLD, "%s: allocated next packet", __func__);
2583
2584		if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) {
2585			if (m != m0)
2586				m_freem(m);
2587			CTR1(KTR_MLD, "%s: m_append() failed.", __func__);
2588			return (-ENOMEM);
2589		}
2590		m->m_pkthdr.PH_vt.vt_nrecs = 1;
2591		nbytes += sizeof(struct mldv2_record);
2592
2593		m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2594		    sizeof(struct mldv2_record)) / sizeof(struct in6_addr);
2595
2596		msrcs = 0;
2597		RB_FOREACH_FROM(ims, ip6_msource_tree, nims) {
2598			CTR2(KTR_MLD, "%s: visit node %s",
2599			    __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr));
2600			now = im6s_get_mode(inm, ims, 1);
2601			if ((now != mode) ||
2602			    (now == mode &&
2603			     (!use_block_allow && mode == MCAST_UNDEFINED))) {
2604				CTR1(KTR_MLD, "%s: skip node", __func__);
2605				continue;
2606			}
2607			if (is_source_query && ims->im6s_stp == 0) {
2608				CTR1(KTR_MLD, "%s: skip unrecorded node",
2609				    __func__);
2610				continue;
2611			}
2612			CTR1(KTR_MLD, "%s: append node", __func__);
2613			if (!m_append(m, sizeof(struct in6_addr),
2614			    (void *)&ims->im6s_addr)) {
2615				if (m != m0)
2616					m_freem(m);
2617				CTR1(KTR_MLD, "%s: m_append() failed.",
2618				    __func__);
2619				return (-ENOMEM);
2620			}
2621			++msrcs;
2622			if (msrcs == m0srcs)
2623				break;
2624		}
2625		pmr->mr_numsrc = htons(msrcs);
2626		nbytes += (msrcs * sizeof(struct in6_addr));
2627
2628		CTR1(KTR_MLD, "%s: enqueueing next packet", __func__);
2629		_IF_ENQUEUE(ifq, m);
2630	}
2631
2632	return (nbytes);
2633}
2634
2635/*
2636 * Type used to mark record pass completion.
2637 * We exploit the fact we can cast to this easily from the
2638 * current filter modes on each ip_msource node.
2639 */
2640typedef enum {
2641	REC_NONE = 0x00,	/* MCAST_UNDEFINED */
2642	REC_ALLOW = 0x01,	/* MCAST_INCLUDE */
2643	REC_BLOCK = 0x02,	/* MCAST_EXCLUDE */
2644	REC_FULL = REC_ALLOW | REC_BLOCK
2645} rectype_t;
2646
2647/*
2648 * Enqueue an MLDv2 filter list change to the given output queue.
2649 *
2650 * Source list filter state is held in an RB-tree. When the filter list
2651 * for a group is changed without changing its mode, we need to compute
2652 * the deltas between T0 and T1 for each source in the filter set,
2653 * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records.
2654 *
2655 * As we may potentially queue two record types, and the entire R-B tree
2656 * needs to be walked at once, we break this out into its own function
2657 * so we can generate a tightly packed queue of packets.
2658 *
2659 * XXX This could be written to only use one tree walk, although that makes
2660 * serializing into the mbuf chains a bit harder. For now we do two walks
2661 * which makes things easier on us, and it may or may not be harder on
2662 * the L2 cache.
2663 *
2664 * If successful the size of all data appended to the queue is returned,
2665 * otherwise an error code less than zero is returned, or zero if
2666 * no record(s) were appended.
2667 */
2668static int
2669mld_v2_enqueue_filter_change(struct ifqueue *ifq, struct in6_multi *inm)
2670{
2671	static const int MINRECLEN =
2672	    sizeof(struct mldv2_record) + sizeof(struct in6_addr);
2673	struct ifnet		*ifp;
2674	struct mldv2_record	 mr;
2675	struct mldv2_record	*pmr;
2676	struct ip6_msource	*ims, *nims;
2677	struct mbuf		*m, *m0, *md;
2678	int			 m0srcs, nbytes, npbytes, off, rsrcs, schanged;
2679	int			 nallow, nblock;
2680	uint8_t			 mode, now, then;
2681	rectype_t		 crt, drt, nrt;
2682#ifdef KTR
2683	char			 ip6tbuf[INET6_ADDRSTRLEN];
2684#endif
2685
2686	IN6_MULTI_LOCK_ASSERT();
2687
2688	if (inm->in6m_nsrc == 0 ||
2689	    (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0))
2690		return (0);
2691
2692	ifp = inm->in6m_ifp;			/* interface */
2693	mode = inm->in6m_st[1].iss_fmode;	/* filter mode at t1 */
2694	crt = REC_NONE;	/* current group record type */
2695	drt = REC_NONE;	/* mask of completed group record types */
2696	nrt = REC_NONE;	/* record type for current node */
2697	m0srcs = 0;	/* # source which will fit in current mbuf chain */
2698	npbytes = 0;	/* # of bytes appended this packet */
2699	nbytes = 0;	/* # of bytes appended to group's state-change queue */
2700	rsrcs = 0;	/* # sources encoded in current record */
2701	schanged = 0;	/* # nodes encoded in overall filter change */
2702	nallow = 0;	/* # of source entries in ALLOW_NEW */
2703	nblock = 0;	/* # of source entries in BLOCK_OLD */
2704	nims = NULL;	/* next tree node pointer */
2705
2706	/*
2707	 * For each possible filter record mode.
2708	 * The first kind of source we encounter tells us which
2709	 * is the first kind of record we start appending.
2710	 * If a node transitioned to UNDEFINED at t1, its mode is treated
2711	 * as the inverse of the group's filter mode.
2712	 */
2713	while (drt != REC_FULL) {
2714		do {
2715			m0 = ifq->ifq_tail;
2716			if (m0 != NULL &&
2717			    (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <=
2718			     MLD_V2_REPORT_MAXRECS) &&
2719			    (m0->m_pkthdr.len + MINRECLEN) <
2720			     (ifp->if_mtu - MLD_MTUSPACE)) {
2721				m = m0;
2722				m0srcs = (ifp->if_mtu - m0->m_pkthdr.len -
2723					    sizeof(struct mldv2_record)) /
2724					    sizeof(struct in6_addr);
2725				CTR1(KTR_MLD,
2726				    "%s: use previous packet", __func__);
2727			} else {
2728				m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2729				if (m == NULL)
2730					m = m_gethdr(M_DONTWAIT, MT_DATA);
2731				if (m == NULL) {
2732					CTR1(KTR_MLD,
2733					    "%s: m_get*() failed", __func__);
2734					return (-ENOMEM);
2735				}
2736				m->m_pkthdr.PH_vt.vt_nrecs = 0;
2737				mld_save_context(m, ifp);
2738				m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2739				    sizeof(struct mldv2_record)) /
2740				    sizeof(struct in6_addr);
2741				npbytes = 0;
2742				CTR1(KTR_MLD,
2743				    "%s: allocated new packet", __func__);
2744			}
2745			/*
2746			 * Append the MLD group record header to the
2747			 * current packet's data area.
2748			 * Recalculate pointer to free space for next
2749			 * group record, in case m_append() allocated
2750			 * a new mbuf or cluster.
2751			 */
2752			memset(&mr, 0, sizeof(mr));
2753			mr.mr_addr = inm->in6m_addr;
2754			in6_clearscope(&mr.mr_addr);
2755			if (!m_append(m, sizeof(mr), (void *)&mr)) {
2756				if (m != m0)
2757					m_freem(m);
2758				CTR1(KTR_MLD,
2759				    "%s: m_append() failed", __func__);
2760				return (-ENOMEM);
2761			}
2762			npbytes += sizeof(struct mldv2_record);
2763			if (m != m0) {
2764				/* new packet; offset in chain */
2765				md = m_getptr(m, npbytes -
2766				    sizeof(struct mldv2_record), &off);
2767				pmr = (struct mldv2_record *)(mtod(md,
2768				    uint8_t *) + off);
2769			} else {
2770				/* current packet; offset from last append */
2771				md = m_last(m);
2772				pmr = (struct mldv2_record *)(mtod(md,
2773				    uint8_t *) + md->m_len -
2774				    sizeof(struct mldv2_record));
2775			}
2776			/*
2777			 * Begin walking the tree for this record type
2778			 * pass, or continue from where we left off
2779			 * previously if we had to allocate a new packet.
2780			 * Only report deltas in-mode at t1.
2781			 * We need not report included sources as allowed
2782			 * if we are in inclusive mode on the group,
2783			 * however the converse is not true.
2784			 */
2785			rsrcs = 0;
2786			if (nims == NULL) {
2787				nims = RB_MIN(ip6_msource_tree,
2788				    &inm->in6m_srcs);
2789			}
2790			RB_FOREACH_FROM(ims, ip6_msource_tree, nims) {
2791				CTR2(KTR_MLD, "%s: visit node %s", __func__,
2792				    ip6_sprintf(ip6tbuf, &ims->im6s_addr));
2793				now = im6s_get_mode(inm, ims, 1);
2794				then = im6s_get_mode(inm, ims, 0);
2795				CTR3(KTR_MLD, "%s: mode: t0 %d, t1 %d",
2796				    __func__, then, now);
2797				if (now == then) {
2798					CTR1(KTR_MLD,
2799					    "%s: skip unchanged", __func__);
2800					continue;
2801				}
2802				if (mode == MCAST_EXCLUDE &&
2803				    now == MCAST_INCLUDE) {
2804					CTR1(KTR_MLD,
2805					    "%s: skip IN src on EX group",
2806					    __func__);
2807					continue;
2808				}
2809				nrt = (rectype_t)now;
2810				if (nrt == REC_NONE)
2811					nrt = (rectype_t)(~mode & REC_FULL);
2812				if (schanged++ == 0) {
2813					crt = nrt;
2814				} else if (crt != nrt)
2815					continue;
2816				if (!m_append(m, sizeof(struct in6_addr),
2817				    (void *)&ims->im6s_addr)) {
2818					if (m != m0)
2819						m_freem(m);
2820					CTR1(KTR_MLD,
2821					    "%s: m_append() failed", __func__);
2822					return (-ENOMEM);
2823				}
2824				nallow += !!(crt == REC_ALLOW);
2825				nblock += !!(crt == REC_BLOCK);
2826				if (++rsrcs == m0srcs)
2827					break;
2828			}
2829			/*
2830			 * If we did not append any tree nodes on this
2831			 * pass, back out of allocations.
2832			 */
2833			if (rsrcs == 0) {
2834				npbytes -= sizeof(struct mldv2_record);
2835				if (m != m0) {
2836					CTR1(KTR_MLD,
2837					    "%s: m_free(m)", __func__);
2838					m_freem(m);
2839				} else {
2840					CTR1(KTR_MLD,
2841					    "%s: m_adj(m, -mr)", __func__);
2842					m_adj(m, -((int)sizeof(
2843					    struct mldv2_record)));
2844				}
2845				continue;
2846			}
2847			npbytes += (rsrcs * sizeof(struct in6_addr));
2848			if (crt == REC_ALLOW)
2849				pmr->mr_type = MLD_ALLOW_NEW_SOURCES;
2850			else if (crt == REC_BLOCK)
2851				pmr->mr_type = MLD_BLOCK_OLD_SOURCES;
2852			pmr->mr_numsrc = htons(rsrcs);
2853			/*
2854			 * Count the new group record, and enqueue this
2855			 * packet if it wasn't already queued.
2856			 */
2857			m->m_pkthdr.PH_vt.vt_nrecs++;
2858			if (m != m0)
2859				_IF_ENQUEUE(ifq, m);
2860			nbytes += npbytes;
2861		} while (nims != NULL);
2862		drt |= crt;
2863		crt = (~crt & REC_FULL);
2864	}
2865
2866	CTR3(KTR_MLD, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__,
2867	    nallow, nblock);
2868
2869	return (nbytes);
2870}
2871
2872static int
2873mld_v2_merge_state_changes(struct in6_multi *inm, struct ifqueue *ifscq)
2874{
2875	struct ifqueue	*gq;
2876	struct mbuf	*m;		/* pending state-change */
2877	struct mbuf	*m0;		/* copy of pending state-change */
2878	struct mbuf	*mt;		/* last state-change in packet */
2879	int		 docopy, domerge;
2880	u_int		 recslen;
2881
2882	docopy = 0;
2883	domerge = 0;
2884	recslen = 0;
2885
2886	IN6_MULTI_LOCK_ASSERT();
2887	MLD_LOCK_ASSERT();
2888
2889	/*
2890	 * If there are further pending retransmissions, make a writable
2891	 * copy of each queued state-change message before merging.
2892	 */
2893	if (inm->in6m_scrv > 0)
2894		docopy = 1;
2895
2896	gq = &inm->in6m_scq;
2897#ifdef KTR
2898	if (gq->ifq_head == NULL) {
2899		CTR2(KTR_MLD, "%s: WARNING: queue for inm %p is empty",
2900		    __func__, inm);
2901	}
2902#endif
2903
2904	m = gq->ifq_head;
2905	while (m != NULL) {
2906		/*
2907		 * Only merge the report into the current packet if
2908		 * there is sufficient space to do so; an MLDv2 report
2909		 * packet may only contain 65,535 group records.
2910		 * Always use a simple mbuf chain concatentation to do this,
2911		 * as large state changes for single groups may have
2912		 * allocated clusters.
2913		 */
2914		domerge = 0;
2915		mt = ifscq->ifq_tail;
2916		if (mt != NULL) {
2917			recslen = m_length(m, NULL);
2918
2919			if ((mt->m_pkthdr.PH_vt.vt_nrecs +
2920			    m->m_pkthdr.PH_vt.vt_nrecs <=
2921			    MLD_V2_REPORT_MAXRECS) &&
2922			    (mt->m_pkthdr.len + recslen <=
2923			    (inm->in6m_ifp->if_mtu - MLD_MTUSPACE)))
2924				domerge = 1;
2925		}
2926
2927		if (!domerge && _IF_QFULL(gq)) {
2928			CTR2(KTR_MLD,
2929			    "%s: outbound queue full, skipping whole packet %p",
2930			    __func__, m);
2931			mt = m->m_nextpkt;
2932			if (!docopy)
2933				m_freem(m);
2934			m = mt;
2935			continue;
2936		}
2937
2938		if (!docopy) {
2939			CTR2(KTR_MLD, "%s: dequeueing %p", __func__, m);
2940			_IF_DEQUEUE(gq, m0);
2941			m = m0->m_nextpkt;
2942		} else {
2943			CTR2(KTR_MLD, "%s: copying %p", __func__, m);
2944			m0 = m_dup(m, M_NOWAIT);
2945			if (m0 == NULL)
2946				return (ENOMEM);
2947			m0->m_nextpkt = NULL;
2948			m = m->m_nextpkt;
2949		}
2950
2951		if (!domerge) {
2952			CTR3(KTR_MLD, "%s: queueing %p to ifscq %p)",
2953			    __func__, m0, ifscq);
2954			_IF_ENQUEUE(ifscq, m0);
2955		} else {
2956			struct mbuf *mtl;	/* last mbuf of packet mt */
2957
2958			CTR3(KTR_MLD, "%s: merging %p with ifscq tail %p)",
2959			    __func__, m0, mt);
2960
2961			mtl = m_last(mt);
2962			m0->m_flags &= ~M_PKTHDR;
2963			mt->m_pkthdr.len += recslen;
2964			mt->m_pkthdr.PH_vt.vt_nrecs +=
2965			    m0->m_pkthdr.PH_vt.vt_nrecs;
2966
2967			mtl->m_next = m0;
2968		}
2969	}
2970
2971	return (0);
2972}
2973
2974/*
2975 * Respond to a pending MLDv2 General Query.
2976 */
2977static void
2978mld_v2_dispatch_general_query(struct mld_ifinfo *mli)
2979{
2980	struct ifmultiaddr	*ifma;
2981	struct ifnet		*ifp;
2982	struct in6_multi	*inm;
2983	int			 retval;
2984
2985	IN6_MULTI_LOCK_ASSERT();
2986	MLD_LOCK_ASSERT();
2987
2988	KASSERT(mli->mli_version == MLD_VERSION_2,
2989	    ("%s: called when version %d", __func__, mli->mli_version));
2990
2991	ifp = mli->mli_ifp;
2992
2993	IF_ADDR_RLOCK(ifp);
2994	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2995		if (ifma->ifma_addr->sa_family != AF_INET6 ||
2996		    ifma->ifma_protospec == NULL)
2997			continue;
2998
2999		inm = (struct in6_multi *)ifma->ifma_protospec;
3000		KASSERT(ifp == inm->in6m_ifp,
3001		    ("%s: inconsistent ifp", __func__));
3002
3003		switch (inm->in6m_state) {
3004		case MLD_NOT_MEMBER:
3005		case MLD_SILENT_MEMBER:
3006			break;
3007		case MLD_REPORTING_MEMBER:
3008		case MLD_IDLE_MEMBER:
3009		case MLD_LAZY_MEMBER:
3010		case MLD_SLEEPING_MEMBER:
3011		case MLD_AWAKENING_MEMBER:
3012			inm->in6m_state = MLD_REPORTING_MEMBER;
3013			retval = mld_v2_enqueue_group_record(&mli->mli_gq,
3014			    inm, 0, 0, 0, 0);
3015			CTR2(KTR_MLD, "%s: enqueue record = %d",
3016			    __func__, retval);
3017			break;
3018		case MLD_G_QUERY_PENDING_MEMBER:
3019		case MLD_SG_QUERY_PENDING_MEMBER:
3020		case MLD_LEAVING_MEMBER:
3021			break;
3022		}
3023	}
3024	IF_ADDR_RUNLOCK(ifp);
3025
3026	mld_dispatch_queue(&mli->mli_gq, MLD_MAX_RESPONSE_BURST);
3027
3028	/*
3029	 * Slew transmission of bursts over 500ms intervals.
3030	 */
3031	if (mli->mli_gq.ifq_head != NULL) {
3032		mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY(
3033		    MLD_RESPONSE_BURST_INTERVAL);
3034		V_interface_timers_running6 = 1;
3035	}
3036}
3037
3038/*
3039 * Transmit the next pending message in the output queue.
3040 *
3041 * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis.
3042 * MRT: Nothing needs to be done, as MLD traffic is always local to
3043 * a link and uses a link-scope multicast address.
3044 */
3045static void
3046mld_dispatch_packet(struct mbuf *m)
3047{
3048	struct ip6_moptions	 im6o;
3049	struct ifnet		*ifp;
3050	struct ifnet		*oifp;
3051	struct mbuf		*m0;
3052	struct mbuf		*md;
3053	struct ip6_hdr		*ip6;
3054	struct mld_hdr		*mld;
3055	int			 error;
3056	int			 off;
3057	int			 type;
3058	uint32_t		 ifindex;
3059
3060	CTR2(KTR_MLD, "%s: transmit %p", __func__, m);
3061
3062	/*
3063	 * Set VNET image pointer from enqueued mbuf chain
3064	 * before doing anything else. Whilst we use interface
3065	 * indexes to guard against interface detach, they are
3066	 * unique to each VIMAGE and must be retrieved.
3067	 */
3068	ifindex = mld_restore_context(m);
3069
3070	/*
3071	 * Check if the ifnet still exists. This limits the scope of
3072	 * any race in the absence of a global ifp lock for low cost
3073	 * (an array lookup).
3074	 */
3075	ifp = ifnet_byindex(ifindex);
3076	if (ifp == NULL) {
3077		CTR3(KTR_MLD, "%s: dropped %p as ifindex %u went away.",
3078		    __func__, m, ifindex);
3079		m_freem(m);
3080		IP6STAT_INC(ip6s_noroute);
3081		goto out;
3082	}
3083
3084	im6o.im6o_multicast_hlim  = 1;
3085	im6o.im6o_multicast_loop = (V_ip6_mrouter != NULL);
3086	im6o.im6o_multicast_ifp = ifp;
3087
3088	if (m->m_flags & M_MLDV1) {
3089		m0 = m;
3090	} else {
3091		m0 = mld_v2_encap_report(ifp, m);
3092		if (m0 == NULL) {
3093			CTR2(KTR_MLD, "%s: dropped %p", __func__, m);
3094			IP6STAT_INC(ip6s_odropped);
3095			goto out;
3096		}
3097	}
3098
3099	mld_scrub_context(m0);
3100	m->m_flags &= ~(M_PROTOFLAGS);
3101	m0->m_pkthdr.rcvif = V_loif;
3102
3103	ip6 = mtod(m0, struct ip6_hdr *);
3104#if 0
3105	(void)in6_setscope(&ip6->ip6_dst, ifp, NULL);	/* XXX LOR */
3106#else
3107	/*
3108	 * XXX XXX Break some KPI rules to prevent an LOR which would
3109	 * occur if we called in6_setscope() at transmission.
3110	 * See comments at top of file.
3111	 */
3112	MLD_EMBEDSCOPE(&ip6->ip6_dst, ifp->if_index);
3113#endif
3114
3115	/*
3116	 * Retrieve the ICMPv6 type before handoff to ip6_output(),
3117	 * so we can bump the stats.
3118	 */
3119	md = m_getptr(m0, sizeof(struct ip6_hdr), &off);
3120	mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off);
3121	type = mld->mld_type;
3122
3123	error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, &im6o,
3124	    &oifp, NULL);
3125	if (error) {
3126		CTR3(KTR_MLD, "%s: ip6_output(%p) = %d", __func__, m0, error);
3127		goto out;
3128	}
3129	ICMP6STAT_INC(icp6s_outhist[type]);
3130	if (oifp != NULL) {
3131		icmp6_ifstat_inc(oifp, ifs6_out_msg);
3132		switch (type) {
3133		case MLD_LISTENER_REPORT:
3134		case MLDV2_LISTENER_REPORT:
3135			icmp6_ifstat_inc(oifp, ifs6_out_mldreport);
3136			break;
3137		case MLD_LISTENER_DONE:
3138			icmp6_ifstat_inc(oifp, ifs6_out_mlddone);
3139			break;
3140		}
3141	}
3142out:
3143	return;
3144}
3145
3146/*
3147 * Encapsulate an MLDv2 report.
3148 *
3149 * KAME IPv6 requires that hop-by-hop options be passed separately,
3150 * and that the IPv6 header be prepended in a separate mbuf.
3151 *
3152 * Returns a pointer to the new mbuf chain head, or NULL if the
3153 * allocation failed.
3154 */
3155static struct mbuf *
3156mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m)
3157{
3158	struct mbuf		*mh;
3159	struct mldv2_report	*mld;
3160	struct ip6_hdr		*ip6;
3161	struct in6_ifaddr	*ia;
3162	int			 mldreclen;
3163
3164	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
3165	KASSERT((m->m_flags & M_PKTHDR),
3166	    ("%s: mbuf chain %p is !M_PKTHDR", __func__, m));
3167
3168	/*
3169	 * RFC3590: OK to send as :: or tentative during DAD.
3170	 */
3171	ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
3172	if (ia == NULL)
3173		CTR1(KTR_MLD, "%s: warning: ia is NULL", __func__);
3174
3175	MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3176	if (mh == NULL) {
3177		if (ia != NULL)
3178			ifa_free(&ia->ia_ifa);
3179		m_freem(m);
3180		return (NULL);
3181	}
3182	MH_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report));
3183
3184	mldreclen = m_length(m, NULL);
3185	CTR2(KTR_MLD, "%s: mldreclen is %d", __func__, mldreclen);
3186
3187	mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report);
3188	mh->m_pkthdr.len = sizeof(struct ip6_hdr) +
3189	    sizeof(struct mldv2_report) + mldreclen;
3190
3191	ip6 = mtod(mh, struct ip6_hdr *);
3192	ip6->ip6_flow = 0;
3193	ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3194	ip6->ip6_vfc |= IPV6_VERSION;
3195	ip6->ip6_nxt = IPPROTO_ICMPV6;
3196	ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any;
3197	if (ia != NULL)
3198		ifa_free(&ia->ia_ifa);
3199	ip6->ip6_dst = in6addr_linklocal_allv2routers;
3200	/* scope ID will be set in netisr */
3201
3202	mld = (struct mldv2_report *)(ip6 + 1);
3203	mld->mld_type = MLDV2_LISTENER_REPORT;
3204	mld->mld_code = 0;
3205	mld->mld_cksum = 0;
3206	mld->mld_v2_reserved = 0;
3207	mld->mld_v2_numrecs = htons(m->m_pkthdr.PH_vt.vt_nrecs);
3208	m->m_pkthdr.PH_vt.vt_nrecs = 0;
3209
3210	mh->m_next = m;
3211	mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6,
3212	    sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen);
3213	return (mh);
3214}
3215
3216#ifdef KTR
3217static char *
3218mld_rec_type_to_str(const int type)
3219{
3220
3221	switch (type) {
3222		case MLD_CHANGE_TO_EXCLUDE_MODE:
3223			return "TO_EX";
3224			break;
3225		case MLD_CHANGE_TO_INCLUDE_MODE:
3226			return "TO_IN";
3227			break;
3228		case MLD_MODE_IS_EXCLUDE:
3229			return "MODE_EX";
3230			break;
3231		case MLD_MODE_IS_INCLUDE:
3232			return "MODE_IN";
3233			break;
3234		case MLD_ALLOW_NEW_SOURCES:
3235			return "ALLOW_NEW";
3236			break;
3237		case MLD_BLOCK_OLD_SOURCES:
3238			return "BLOCK_OLD";
3239			break;
3240		default:
3241			break;
3242	}
3243	return "unknown";
3244}
3245#endif
3246
3247static void
3248mld_init(void *unused __unused)
3249{
3250
3251	CTR1(KTR_MLD, "%s: initializing", __func__);
3252	MLD_LOCK_INIT();
3253
3254	ip6_initpktopts(&mld_po);
3255	mld_po.ip6po_hlim = 1;
3256	mld_po.ip6po_hbh = &mld_ra.hbh;
3257	mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER;
3258	mld_po.ip6po_flags = IP6PO_DONTFRAG;
3259}
3260SYSINIT(mld_init, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_init, NULL);
3261
3262static void
3263mld_uninit(void *unused __unused)
3264{
3265
3266	CTR1(KTR_MLD, "%s: tearing down", __func__);
3267	MLD_LOCK_DESTROY();
3268}
3269SYSUNINIT(mld_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_uninit, NULL);
3270
3271static void
3272vnet_mld_init(const void *unused __unused)
3273{
3274
3275	CTR1(KTR_MLD, "%s: initializing", __func__);
3276
3277	LIST_INIT(&V_mli_head);
3278}
3279VNET_SYSINIT(vnet_mld_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_init,
3280    NULL);
3281
3282static void
3283vnet_mld_uninit(const void *unused __unused)
3284{
3285
3286	CTR1(KTR_MLD, "%s: tearing down", __func__);
3287
3288	KASSERT(LIST_EMPTY(&V_mli_head),
3289	    ("%s: mli list not empty; ifnets not detached?", __func__));
3290}
3291VNET_SYSUNINIT(vnet_mld_uninit, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_uninit,
3292    NULL);
3293
3294static int
3295mld_modevent(module_t mod, int type, void *unused __unused)
3296{
3297
3298    switch (type) {
3299    case MOD_LOAD:
3300    case MOD_UNLOAD:
3301	break;
3302    default:
3303	return (EOPNOTSUPP);
3304    }
3305    return (0);
3306}
3307
3308static moduledata_t mld_mod = {
3309    "mld",
3310    mld_modevent,
3311    0
3312};
3313DECLARE_MODULE(mld, mld_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3314