mld6.c revision 233200
1/*-
2 * Copyright (c) 2009 Bruce Simpson.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 * 3. The name of the author may not be used to endorse or promote
13 *    products derived from this software without specific prior written
14 *    permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 *	$KAME: mld6.c,v 1.27 2001/04/04 05:17:30 itojun Exp $
29 */
30
31/*-
32 * Copyright (c) 1988 Stephen Deering.
33 * Copyright (c) 1992, 1993
34 *	The Regents of the University of California.  All rights reserved.
35 *
36 * This code is derived from software contributed to Berkeley by
37 * Stephen Deering of Stanford University.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 *    notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 *    notice, this list of conditions and the following disclaimer in the
46 *    documentation and/or other materials provided with the distribution.
47 * 4. Neither the name of the University nor the names of its contributors
48 *    may be used to endorse or promote products derived from this software
49 *    without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 *	@(#)igmp.c	8.1 (Berkeley) 7/19/93
64 */
65
66#include <sys/cdefs.h>
67__FBSDID("$FreeBSD: stable/9/sys/netinet6/mld6.c 233200 2012-03-19 20:49:16Z jhb $");
68
69#include "opt_inet.h"
70#include "opt_inet6.h"
71
72#include <sys/param.h>
73#include <sys/systm.h>
74#include <sys/mbuf.h>
75#include <sys/socket.h>
76#include <sys/protosw.h>
77#include <sys/sysctl.h>
78#include <sys/kernel.h>
79#include <sys/callout.h>
80#include <sys/malloc.h>
81#include <sys/module.h>
82#include <sys/ktr.h>
83
84#include <net/if.h>
85#include <net/route.h>
86#include <net/vnet.h>
87
88#include <netinet/in.h>
89#include <netinet/in_var.h>
90#include <netinet6/in6_var.h>
91#include <netinet/ip6.h>
92#include <netinet6/ip6_var.h>
93#include <netinet6/scope6_var.h>
94#include <netinet/icmp6.h>
95#include <netinet6/mld6.h>
96#include <netinet6/mld6_var.h>
97
98#include <security/mac/mac_framework.h>
99
100#ifndef KTR_MLD
101#define KTR_MLD KTR_INET6
102#endif
103
104static struct mld_ifinfo *
105		mli_alloc_locked(struct ifnet *);
106static void	mli_delete_locked(const struct ifnet *);
107static void	mld_dispatch_packet(struct mbuf *);
108static void	mld_dispatch_queue(struct ifqueue *, int);
109static void	mld_final_leave(struct in6_multi *, struct mld_ifinfo *);
110static void	mld_fasttimo_vnet(void);
111static int	mld_handle_state_change(struct in6_multi *,
112		    struct mld_ifinfo *);
113static int	mld_initial_join(struct in6_multi *, struct mld_ifinfo *,
114		    const int);
115#ifdef KTR
116static char *	mld_rec_type_to_str(const int);
117#endif
118static void	mld_set_version(struct mld_ifinfo *, const int);
119static void	mld_slowtimo_vnet(void);
120static int	mld_v1_input_query(struct ifnet *, const struct ip6_hdr *,
121		    /*const*/ struct mld_hdr *);
122static int	mld_v1_input_report(struct ifnet *, const struct ip6_hdr *,
123		    /*const*/ struct mld_hdr *);
124static void	mld_v1_process_group_timer(struct mld_ifinfo *,
125		    struct in6_multi *);
126static void	mld_v1_process_querier_timers(struct mld_ifinfo *);
127static int	mld_v1_transmit_report(struct in6_multi *, const int);
128static void	mld_v1_update_group(struct in6_multi *, const int);
129static void	mld_v2_cancel_link_timers(struct mld_ifinfo *);
130static void	mld_v2_dispatch_general_query(struct mld_ifinfo *);
131static struct mbuf *
132		mld_v2_encap_report(struct ifnet *, struct mbuf *);
133static int	mld_v2_enqueue_filter_change(struct ifqueue *,
134		    struct in6_multi *);
135static int	mld_v2_enqueue_group_record(struct ifqueue *,
136		    struct in6_multi *, const int, const int, const int,
137		    const int);
138static int	mld_v2_input_query(struct ifnet *, const struct ip6_hdr *,
139		    struct mbuf *, const int, const int);
140static int	mld_v2_merge_state_changes(struct in6_multi *,
141		    struct ifqueue *);
142static void	mld_v2_process_group_timers(struct mld_ifinfo *,
143		    struct ifqueue *, struct ifqueue *,
144		    struct in6_multi *, const int);
145static int	mld_v2_process_group_query(struct in6_multi *,
146		    struct mld_ifinfo *mli, int, struct mbuf *, const int);
147static int	sysctl_mld_gsr(SYSCTL_HANDLER_ARGS);
148static int	sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS);
149
150/*
151 * Normative references: RFC 2710, RFC 3590, RFC 3810.
152 *
153 * Locking:
154 *  * The MLD subsystem lock ends up being system-wide for the moment,
155 *    but could be per-VIMAGE later on.
156 *  * The permitted lock order is: IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK.
157 *    Any may be taken independently; if any are held at the same
158 *    time, the above lock order must be followed.
159 *  * IN6_MULTI_LOCK covers in_multi.
160 *  * MLD_LOCK covers per-link state and any global variables in this file.
161 *  * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of
162 *    per-link state iterators.
163 *
164 *  XXX LOR PREVENTION
165 *  A special case for IPv6 is the in6_setscope() routine. ip6_output()
166 *  will not accept an ifp; it wants an embedded scope ID, unlike
167 *  ip_output(), which happily takes the ifp given to it. The embedded
168 *  scope ID is only used by MLD to select the outgoing interface.
169 *
170 *  During interface attach and detach, MLD will take MLD_LOCK *after*
171 *  the IF_AFDATA_LOCK.
172 *  As in6_setscope() takes IF_AFDATA_LOCK then SCOPE_LOCK, we can't call
173 *  it with MLD_LOCK held without triggering an LOR. A netisr with indirect
174 *  dispatch could work around this, but we'd rather not do that, as it
175 *  can introduce other races.
176 *
177 *  As such, we exploit the fact that the scope ID is just the interface
178 *  index, and embed it in the IPv6 destination address accordingly.
179 *  This is potentially NOT VALID for MLDv1 reports, as they
180 *  are always sent to the multicast group itself; as MLDv2
181 *  reports are always sent to ff02::16, this is not an issue
182 *  when MLDv2 is in use.
183 *
184 *  This does not however eliminate the LOR when ip6_output() itself
185 *  calls in6_setscope() internally whilst MLD_LOCK is held. This will
186 *  trigger a LOR warning in WITNESS when the ifnet is detached.
187 *
188 *  The right answer is probably to make IF_AFDATA_LOCK an rwlock, given
189 *  how it's used across the network stack. Here we're simply exploiting
190 *  the fact that MLD runs at a similar layer in the stack to scope6.c.
191 *
192 * VIMAGE:
193 *  * Each in6_multi corresponds to an ifp, and each ifp corresponds
194 *    to a vnet in ifp->if_vnet.
195 */
196static struct mtx		 mld_mtx;
197MALLOC_DEFINE(M_MLD, "mld", "mld state");
198
199#define	MLD_EMBEDSCOPE(pin6, zoneid)					\
200	if (IN6_IS_SCOPE_LINKLOCAL(pin6) ||				\
201	    IN6_IS_ADDR_MC_INTFACELOCAL(pin6))				\
202		(pin6)->s6_addr16[1] = htons((zoneid) & 0xFFFF)		\
203
204/*
205 * VIMAGE-wide globals.
206 */
207static VNET_DEFINE(struct timeval, mld_gsrdelay) = {10, 0};
208static VNET_DEFINE(LIST_HEAD(, mld_ifinfo), mli_head);
209static VNET_DEFINE(int, interface_timers_running6);
210static VNET_DEFINE(int, state_change_timers_running6);
211static VNET_DEFINE(int, current_state_timers_running6);
212
213#define	V_mld_gsrdelay			VNET(mld_gsrdelay)
214#define	V_mli_head			VNET(mli_head)
215#define	V_interface_timers_running6	VNET(interface_timers_running6)
216#define	V_state_change_timers_running6	VNET(state_change_timers_running6)
217#define	V_current_state_timers_running6	VNET(current_state_timers_running6)
218
219SYSCTL_DECL(_net_inet6);	/* Note: Not in any common header. */
220
221SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW, 0,
222    "IPv6 Multicast Listener Discovery");
223
224/*
225 * Virtualized sysctls.
226 */
227SYSCTL_VNET_PROC(_net_inet6_mld, OID_AUTO, gsrdelay,
228    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
229    &VNET_NAME(mld_gsrdelay.tv_sec), 0, sysctl_mld_gsr, "I",
230    "Rate limit for MLDv2 Group-and-Source queries in seconds");
231
232/*
233 * Non-virtualized sysctls.
234 */
235SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo, CTLFLAG_RD | CTLFLAG_MPSAFE,
236    sysctl_mld_ifinfo, "Per-interface MLDv2 state");
237
238static int	mld_v1enable = 1;
239SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RW,
240    &mld_v1enable, 0, "Enable fallback to MLDv1");
241TUNABLE_INT("net.inet6.mld.v1enable", &mld_v1enable);
242
243static int	mld_use_allow = 1;
244SYSCTL_INT(_net_inet6_mld, OID_AUTO, use_allow, CTLFLAG_RW,
245    &mld_use_allow, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves");
246TUNABLE_INT("net.inet6.mld.use_allow", &mld_use_allow);
247
248/*
249 * Packed Router Alert option structure declaration.
250 */
251struct mld_raopt {
252	struct ip6_hbh		hbh;
253	struct ip6_opt		pad;
254	struct ip6_opt_router	ra;
255} __packed;
256
257/*
258 * Router Alert hop-by-hop option header.
259 */
260static struct mld_raopt mld_ra = {
261	.hbh = { 0, 0 },
262	.pad = { .ip6o_type = IP6OPT_PADN, 0 },
263	.ra = {
264	    .ip6or_type = IP6OPT_ROUTER_ALERT,
265	    .ip6or_len = IP6OPT_RTALERT_LEN - 2,
266	    .ip6or_value[0] = ((IP6OPT_RTALERT_MLD >> 8) & 0xFF),
267	    .ip6or_value[1] = (IP6OPT_RTALERT_MLD & 0xFF)
268	}
269};
270static struct ip6_pktopts mld_po;
271
272static __inline void
273mld_save_context(struct mbuf *m, struct ifnet *ifp)
274{
275
276#ifdef VIMAGE
277	m->m_pkthdr.header = ifp->if_vnet;
278#endif /* VIMAGE */
279	m->m_pkthdr.flowid = ifp->if_index;
280}
281
282static __inline void
283mld_scrub_context(struct mbuf *m)
284{
285
286	m->m_pkthdr.header = NULL;
287	m->m_pkthdr.flowid = 0;
288}
289
290/*
291 * Restore context from a queued output chain.
292 * Return saved ifindex.
293 *
294 * VIMAGE: The assertion is there to make sure that we
295 * actually called CURVNET_SET() with what's in the mbuf chain.
296 */
297static __inline uint32_t
298mld_restore_context(struct mbuf *m)
299{
300
301#if defined(VIMAGE) && defined(INVARIANTS)
302	KASSERT(curvnet == m->m_pkthdr.header,
303	    ("%s: called when curvnet was not restored", __func__));
304#endif
305	return (m->m_pkthdr.flowid);
306}
307
308/*
309 * Retrieve or set threshold between group-source queries in seconds.
310 *
311 * VIMAGE: Assume curvnet set by caller.
312 * SMPng: NOTE: Serialized by MLD lock.
313 */
314static int
315sysctl_mld_gsr(SYSCTL_HANDLER_ARGS)
316{
317	int error;
318	int i;
319
320	error = sysctl_wire_old_buffer(req, sizeof(int));
321	if (error)
322		return (error);
323
324	MLD_LOCK();
325
326	i = V_mld_gsrdelay.tv_sec;
327
328	error = sysctl_handle_int(oidp, &i, 0, req);
329	if (error || !req->newptr)
330		goto out_locked;
331
332	if (i < -1 || i >= 60) {
333		error = EINVAL;
334		goto out_locked;
335	}
336
337	CTR2(KTR_MLD, "change mld_gsrdelay from %d to %d",
338	     V_mld_gsrdelay.tv_sec, i);
339	V_mld_gsrdelay.tv_sec = i;
340
341out_locked:
342	MLD_UNLOCK();
343	return (error);
344}
345
346/*
347 * Expose struct mld_ifinfo to userland, keyed by ifindex.
348 * For use by ifmcstat(8).
349 *
350 * SMPng: NOTE: Does an unlocked ifindex space read.
351 * VIMAGE: Assume curvnet set by caller. The node handler itself
352 * is not directly virtualized.
353 */
354static int
355sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS)
356{
357	int			*name;
358	int			 error;
359	u_int			 namelen;
360	struct ifnet		*ifp;
361	struct mld_ifinfo	*mli;
362
363	name = (int *)arg1;
364	namelen = arg2;
365
366	if (req->newptr != NULL)
367		return (EPERM);
368
369	if (namelen != 1)
370		return (EINVAL);
371
372	error = sysctl_wire_old_buffer(req, sizeof(struct mld_ifinfo));
373	if (error)
374		return (error);
375
376	IN6_MULTI_LOCK();
377	MLD_LOCK();
378
379	if (name[0] <= 0 || name[0] > V_if_index) {
380		error = ENOENT;
381		goto out_locked;
382	}
383
384	error = ENOENT;
385
386	ifp = ifnet_byindex(name[0]);
387	if (ifp == NULL)
388		goto out_locked;
389
390	LIST_FOREACH(mli, &V_mli_head, mli_link) {
391		if (ifp == mli->mli_ifp) {
392			error = SYSCTL_OUT(req, mli,
393			    sizeof(struct mld_ifinfo));
394			break;
395		}
396	}
397
398out_locked:
399	MLD_UNLOCK();
400	IN6_MULTI_UNLOCK();
401	return (error);
402}
403
404/*
405 * Dispatch an entire queue of pending packet chains.
406 * VIMAGE: Assumes the vnet pointer has been set.
407 */
408static void
409mld_dispatch_queue(struct ifqueue *ifq, int limit)
410{
411	struct mbuf *m;
412
413	for (;;) {
414		_IF_DEQUEUE(ifq, m);
415		if (m == NULL)
416			break;
417		CTR3(KTR_MLD, "%s: dispatch %p from %p", __func__, ifq, m);
418		mld_dispatch_packet(m);
419		if (--limit == 0)
420			break;
421	}
422}
423
424/*
425 * Filter outgoing MLD report state by group.
426 *
427 * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1)
428 * and node-local addresses. However, kernel and socket consumers
429 * always embed the KAME scope ID in the address provided, so strip it
430 * when performing comparison.
431 * Note: This is not the same as the *multicast* scope.
432 *
433 * Return zero if the given group is one for which MLD reports
434 * should be suppressed, or non-zero if reports should be issued.
435 */
436static __inline int
437mld_is_addr_reported(const struct in6_addr *addr)
438{
439
440	KASSERT(IN6_IS_ADDR_MULTICAST(addr), ("%s: not multicast", __func__));
441
442	if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL)
443		return (0);
444
445	if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) {
446		struct in6_addr tmp = *addr;
447		in6_clearscope(&tmp);
448		if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes))
449			return (0);
450	}
451
452	return (1);
453}
454
455/*
456 * Attach MLD when PF_INET6 is attached to an interface.
457 *
458 * SMPng: Normally called with IF_AFDATA_LOCK held.
459 */
460struct mld_ifinfo *
461mld_domifattach(struct ifnet *ifp)
462{
463	struct mld_ifinfo *mli;
464
465	CTR3(KTR_MLD, "%s: called for ifp %p(%s)",
466	    __func__, ifp, ifp->if_xname);
467
468	MLD_LOCK();
469
470	mli = mli_alloc_locked(ifp);
471	if (!(ifp->if_flags & IFF_MULTICAST))
472		mli->mli_flags |= MLIF_SILENT;
473	if (mld_use_allow)
474		mli->mli_flags |= MLIF_USEALLOW;
475
476	MLD_UNLOCK();
477
478	return (mli);
479}
480
481/*
482 * VIMAGE: assume curvnet set by caller.
483 */
484static struct mld_ifinfo *
485mli_alloc_locked(/*const*/ struct ifnet *ifp)
486{
487	struct mld_ifinfo *mli;
488
489	MLD_LOCK_ASSERT();
490
491	mli = malloc(sizeof(struct mld_ifinfo), M_MLD, M_NOWAIT|M_ZERO);
492	if (mli == NULL)
493		goto out;
494
495	mli->mli_ifp = ifp;
496	mli->mli_version = MLD_VERSION_2;
497	mli->mli_flags = 0;
498	mli->mli_rv = MLD_RV_INIT;
499	mli->mli_qi = MLD_QI_INIT;
500	mli->mli_qri = MLD_QRI_INIT;
501	mli->mli_uri = MLD_URI_INIT;
502
503	SLIST_INIT(&mli->mli_relinmhead);
504
505	/*
506	 * Responses to general queries are subject to bounds.
507	 */
508	IFQ_SET_MAXLEN(&mli->mli_gq, MLD_MAX_RESPONSE_PACKETS);
509
510	LIST_INSERT_HEAD(&V_mli_head, mli, mli_link);
511
512	CTR2(KTR_MLD, "allocate mld_ifinfo for ifp %p(%s)",
513	     ifp, ifp->if_xname);
514
515out:
516	return (mli);
517}
518
519/*
520 * Hook for ifdetach.
521 *
522 * NOTE: Some finalization tasks need to run before the protocol domain
523 * is detached, but also before the link layer does its cleanup.
524 * Run before link-layer cleanup; cleanup groups, but do not free MLD state.
525 *
526 * SMPng: Caller must hold IN6_MULTI_LOCK().
527 * Must take IF_ADDR_LOCK() to cover if_multiaddrs iterator.
528 * XXX This routine is also bitten by unlocked ifma_protospec access.
529 */
530void
531mld_ifdetach(struct ifnet *ifp)
532{
533	struct mld_ifinfo	*mli;
534	struct ifmultiaddr	*ifma;
535	struct in6_multi	*inm, *tinm;
536
537	CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp,
538	    ifp->if_xname);
539
540	IN6_MULTI_LOCK_ASSERT();
541	MLD_LOCK();
542
543	mli = MLD_IFINFO(ifp);
544	if (mli->mli_version == MLD_VERSION_2) {
545		IF_ADDR_RLOCK(ifp);
546		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
547			if (ifma->ifma_addr->sa_family != AF_INET6 ||
548			    ifma->ifma_protospec == NULL)
549				continue;
550			inm = (struct in6_multi *)ifma->ifma_protospec;
551			if (inm->in6m_state == MLD_LEAVING_MEMBER) {
552				SLIST_INSERT_HEAD(&mli->mli_relinmhead,
553				    inm, in6m_nrele);
554			}
555			in6m_clear_recorded(inm);
556		}
557		IF_ADDR_RUNLOCK(ifp);
558		SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele,
559		    tinm) {
560			SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele);
561			in6m_release_locked(inm);
562		}
563	}
564
565	MLD_UNLOCK();
566}
567
568/*
569 * Hook for domifdetach.
570 * Runs after link-layer cleanup; free MLD state.
571 *
572 * SMPng: Normally called with IF_AFDATA_LOCK held.
573 */
574void
575mld_domifdetach(struct ifnet *ifp)
576{
577
578	CTR3(KTR_MLD, "%s: called for ifp %p(%s)",
579	    __func__, ifp, ifp->if_xname);
580
581	MLD_LOCK();
582	mli_delete_locked(ifp);
583	MLD_UNLOCK();
584}
585
586static void
587mli_delete_locked(const struct ifnet *ifp)
588{
589	struct mld_ifinfo *mli, *tmli;
590
591	CTR3(KTR_MLD, "%s: freeing mld_ifinfo for ifp %p(%s)",
592	    __func__, ifp, ifp->if_xname);
593
594	MLD_LOCK_ASSERT();
595
596	LIST_FOREACH_SAFE(mli, &V_mli_head, mli_link, tmli) {
597		if (mli->mli_ifp == ifp) {
598			/*
599			 * Free deferred General Query responses.
600			 */
601			_IF_DRAIN(&mli->mli_gq);
602
603			LIST_REMOVE(mli, mli_link);
604
605			KASSERT(SLIST_EMPTY(&mli->mli_relinmhead),
606			    ("%s: there are dangling in_multi references",
607			    __func__));
608
609			free(mli, M_MLD);
610			return;
611		}
612	}
613#ifdef INVARIANTS
614	panic("%s: mld_ifinfo not found for ifp %p\n", __func__,  ifp);
615#endif
616}
617
618/*
619 * Process a received MLDv1 general or address-specific query.
620 * Assumes that the query header has been pulled up to sizeof(mld_hdr).
621 *
622 * NOTE: Can't be fully const correct as we temporarily embed scope ID in
623 * mld_addr. This is OK as we own the mbuf chain.
624 */
625static int
626mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6,
627    /*const*/ struct mld_hdr *mld)
628{
629	struct ifmultiaddr	*ifma;
630	struct mld_ifinfo	*mli;
631	struct in6_multi	*inm;
632	int			 is_general_query;
633	uint16_t		 timer;
634#ifdef KTR
635	char			 ip6tbuf[INET6_ADDRSTRLEN];
636#endif
637
638	is_general_query = 0;
639
640	if (!mld_v1enable) {
641		CTR3(KTR_MLD, "ignore v1 query %s on ifp %p(%s)",
642		    ip6_sprintf(ip6tbuf, &mld->mld_addr),
643		    ifp, ifp->if_xname);
644		return (0);
645	}
646
647	/*
648	 * RFC3810 Section 6.2: MLD queries must originate from
649	 * a router's link-local address.
650	 */
651	if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
652		CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)",
653		    ip6_sprintf(ip6tbuf, &ip6->ip6_src),
654		    ifp, ifp->if_xname);
655		return (0);
656	}
657
658	/*
659	 * Do address field validation upfront before we accept
660	 * the query.
661	 */
662	if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) {
663		/*
664		 * MLDv1 General Query.
665		 * If this was not sent to the all-nodes group, ignore it.
666		 */
667		struct in6_addr		 dst;
668
669		dst = ip6->ip6_dst;
670		in6_clearscope(&dst);
671		if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes))
672			return (EINVAL);
673		is_general_query = 1;
674	} else {
675		/*
676		 * Embed scope ID of receiving interface in MLD query for
677		 * lookup whilst we don't hold other locks.
678		 */
679		in6_setscope(&mld->mld_addr, ifp, NULL);
680	}
681
682	IN6_MULTI_LOCK();
683	MLD_LOCK();
684
685	/*
686	 * Switch to MLDv1 host compatibility mode.
687	 */
688	mli = MLD_IFINFO(ifp);
689	KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp));
690	mld_set_version(mli, MLD_VERSION_1);
691
692	timer = (ntohs(mld->mld_maxdelay) * PR_FASTHZ) / MLD_TIMER_SCALE;
693	if (timer == 0)
694		timer = 1;
695
696	IF_ADDR_RLOCK(ifp);
697	if (is_general_query) {
698		/*
699		 * For each reporting group joined on this
700		 * interface, kick the report timer.
701		 */
702		CTR2(KTR_MLD, "process v1 general query on ifp %p(%s)",
703		    ifp, ifp->if_xname);
704		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
705			if (ifma->ifma_addr->sa_family != AF_INET6 ||
706			    ifma->ifma_protospec == NULL)
707				continue;
708			inm = (struct in6_multi *)ifma->ifma_protospec;
709			mld_v1_update_group(inm, timer);
710		}
711	} else {
712		/*
713		 * MLDv1 Group-Specific Query.
714		 * If this is a group-specific MLDv1 query, we need only
715		 * look up the single group to process it.
716		 */
717		inm = in6m_lookup_locked(ifp, &mld->mld_addr);
718		if (inm != NULL) {
719			CTR3(KTR_MLD, "process v1 query %s on ifp %p(%s)",
720			    ip6_sprintf(ip6tbuf, &mld->mld_addr),
721			    ifp, ifp->if_xname);
722			mld_v1_update_group(inm, timer);
723		}
724		/* XXX Clear embedded scope ID as userland won't expect it. */
725		in6_clearscope(&mld->mld_addr);
726	}
727
728	IF_ADDR_RUNLOCK(ifp);
729	MLD_UNLOCK();
730	IN6_MULTI_UNLOCK();
731
732	return (0);
733}
734
735/*
736 * Update the report timer on a group in response to an MLDv1 query.
737 *
738 * If we are becoming the reporting member for this group, start the timer.
739 * If we already are the reporting member for this group, and timer is
740 * below the threshold, reset it.
741 *
742 * We may be updating the group for the first time since we switched
743 * to MLDv2. If we are, then we must clear any recorded source lists,
744 * and transition to REPORTING state; the group timer is overloaded
745 * for group and group-source query responses.
746 *
747 * Unlike MLDv2, the delay per group should be jittered
748 * to avoid bursts of MLDv1 reports.
749 */
750static void
751mld_v1_update_group(struct in6_multi *inm, const int timer)
752{
753#ifdef KTR
754	char			 ip6tbuf[INET6_ADDRSTRLEN];
755#endif
756
757	CTR4(KTR_MLD, "%s: %s/%s timer=%d", __func__,
758	    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
759	    inm->in6m_ifp->if_xname, timer);
760
761	IN6_MULTI_LOCK_ASSERT();
762
763	switch (inm->in6m_state) {
764	case MLD_NOT_MEMBER:
765	case MLD_SILENT_MEMBER:
766		break;
767	case MLD_REPORTING_MEMBER:
768		if (inm->in6m_timer != 0 &&
769		    inm->in6m_timer <= timer) {
770			CTR1(KTR_MLD, "%s: REPORTING and timer running, "
771			    "skipping.", __func__);
772			break;
773		}
774		/* FALLTHROUGH */
775	case MLD_SG_QUERY_PENDING_MEMBER:
776	case MLD_G_QUERY_PENDING_MEMBER:
777	case MLD_IDLE_MEMBER:
778	case MLD_LAZY_MEMBER:
779	case MLD_AWAKENING_MEMBER:
780		CTR1(KTR_MLD, "%s: ->REPORTING", __func__);
781		inm->in6m_state = MLD_REPORTING_MEMBER;
782		inm->in6m_timer = MLD_RANDOM_DELAY(timer);
783		V_current_state_timers_running6 = 1;
784		break;
785	case MLD_SLEEPING_MEMBER:
786		CTR1(KTR_MLD, "%s: ->AWAKENING", __func__);
787		inm->in6m_state = MLD_AWAKENING_MEMBER;
788		break;
789	case MLD_LEAVING_MEMBER:
790		break;
791	}
792}
793
794/*
795 * Process a received MLDv2 general, group-specific or
796 * group-and-source-specific query.
797 *
798 * Assumes that the query header has been pulled up to sizeof(mldv2_query).
799 *
800 * Return 0 if successful, otherwise an appropriate error code is returned.
801 */
802static int
803mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6,
804    struct mbuf *m, const int off, const int icmp6len)
805{
806	struct mld_ifinfo	*mli;
807	struct mldv2_query	*mld;
808	struct in6_multi	*inm;
809	uint32_t		 maxdelay, nsrc, qqi;
810	int			 is_general_query;
811	uint16_t		 timer;
812	uint8_t			 qrv;
813#ifdef KTR
814	char			 ip6tbuf[INET6_ADDRSTRLEN];
815#endif
816
817	is_general_query = 0;
818
819	/*
820	 * RFC3810 Section 6.2: MLD queries must originate from
821	 * a router's link-local address.
822	 */
823	if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
824		CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)",
825		    ip6_sprintf(ip6tbuf, &ip6->ip6_src),
826		    ifp, ifp->if_xname);
827		return (0);
828	}
829
830	CTR2(KTR_MLD, "input v2 query on ifp %p(%s)", ifp, ifp->if_xname);
831
832	mld = (struct mldv2_query *)(mtod(m, uint8_t *) + off);
833
834	maxdelay = ntohs(mld->mld_maxdelay);	/* in 1/10ths of a second */
835	if (maxdelay >= 32678) {
836		maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) <<
837			   (MLD_MRC_EXP(maxdelay) + 3);
838	}
839	timer = (maxdelay * PR_FASTHZ) / MLD_TIMER_SCALE;
840	if (timer == 0)
841		timer = 1;
842
843	qrv = MLD_QRV(mld->mld_misc);
844	if (qrv < 2) {
845		CTR3(KTR_MLD, "%s: clamping qrv %d to %d", __func__,
846		    qrv, MLD_RV_INIT);
847		qrv = MLD_RV_INIT;
848	}
849
850	qqi = mld->mld_qqi;
851	if (qqi >= 128) {
852		qqi = MLD_QQIC_MANT(mld->mld_qqi) <<
853		     (MLD_QQIC_EXP(mld->mld_qqi) + 3);
854	}
855
856	nsrc = ntohs(mld->mld_numsrc);
857	if (nsrc > MLD_MAX_GS_SOURCES)
858		return (EMSGSIZE);
859	if (icmp6len < sizeof(struct mldv2_query) +
860	    (nsrc * sizeof(struct in6_addr)))
861		return (EMSGSIZE);
862
863	/*
864	 * Do further input validation upfront to avoid resetting timers
865	 * should we need to discard this query.
866	 */
867	if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) {
868		/*
869		 * General Queries SHOULD be directed to ff02::1.
870		 * A general query with a source list has undefined
871		 * behaviour; discard it.
872		 */
873		struct in6_addr		 dst;
874
875		dst = ip6->ip6_dst;
876		in6_clearscope(&dst);
877		if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes) ||
878		    nsrc > 0)
879			return (EINVAL);
880		is_general_query = 1;
881	} else {
882		/*
883		 * Embed scope ID of receiving interface in MLD query for
884		 * lookup whilst we don't hold other locks (due to KAME
885		 * locking lameness). We own this mbuf chain just now.
886		 */
887		in6_setscope(&mld->mld_addr, ifp, NULL);
888	}
889
890	IN6_MULTI_LOCK();
891	MLD_LOCK();
892
893	mli = MLD_IFINFO(ifp);
894	KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp));
895
896	/*
897	 * Discard the v2 query if we're in Compatibility Mode.
898	 * The RFC is pretty clear that hosts need to stay in MLDv1 mode
899	 * until the Old Version Querier Present timer expires.
900	 */
901	if (mli->mli_version != MLD_VERSION_2)
902		goto out_locked;
903
904	mld_set_version(mli, MLD_VERSION_2);
905	mli->mli_rv = qrv;
906	mli->mli_qi = qqi;
907	mli->mli_qri = maxdelay;
908
909	CTR4(KTR_MLD, "%s: qrv %d qi %d maxdelay %d", __func__, qrv, qqi,
910	    maxdelay);
911
912	if (is_general_query) {
913		/*
914		 * MLDv2 General Query.
915		 *
916		 * Schedule a current-state report on this ifp for
917		 * all groups, possibly containing source lists.
918		 *
919		 * If there is a pending General Query response
920		 * scheduled earlier than the selected delay, do
921		 * not schedule any other reports.
922		 * Otherwise, reset the interface timer.
923		 */
924		CTR2(KTR_MLD, "process v2 general query on ifp %p(%s)",
925		    ifp, ifp->if_xname);
926		if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) {
927			mli->mli_v2_timer = MLD_RANDOM_DELAY(timer);
928			V_interface_timers_running6 = 1;
929		}
930	} else {
931		/*
932		 * MLDv2 Group-specific or Group-and-source-specific Query.
933		 *
934		 * Group-source-specific queries are throttled on
935		 * a per-group basis to defeat denial-of-service attempts.
936		 * Queries for groups we are not a member of on this
937		 * link are simply ignored.
938		 */
939		IF_ADDR_RLOCK(ifp);
940		inm = in6m_lookup_locked(ifp, &mld->mld_addr);
941		if (inm == NULL) {
942			IF_ADDR_RUNLOCK(ifp);
943			goto out_locked;
944		}
945		if (nsrc > 0) {
946			if (!ratecheck(&inm->in6m_lastgsrtv,
947			    &V_mld_gsrdelay)) {
948				CTR1(KTR_MLD, "%s: GS query throttled.",
949				    __func__);
950				IF_ADDR_RUNLOCK(ifp);
951				goto out_locked;
952			}
953		}
954		CTR2(KTR_MLD, "process v2 group query on ifp %p(%s)",
955		     ifp, ifp->if_xname);
956		/*
957		 * If there is a pending General Query response
958		 * scheduled sooner than the selected delay, no
959		 * further report need be scheduled.
960		 * Otherwise, prepare to respond to the
961		 * group-specific or group-and-source query.
962		 */
963		if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer)
964			mld_v2_process_group_query(inm, mli, timer, m, off);
965
966		/* XXX Clear embedded scope ID as userland won't expect it. */
967		in6_clearscope(&mld->mld_addr);
968		IF_ADDR_RUNLOCK(ifp);
969	}
970
971out_locked:
972	MLD_UNLOCK();
973	IN6_MULTI_UNLOCK();
974
975	return (0);
976}
977
978/*
979 * Process a recieved MLDv2 group-specific or group-and-source-specific
980 * query.
981 * Return <0 if any error occured. Currently this is ignored.
982 */
983static int
984mld_v2_process_group_query(struct in6_multi *inm, struct mld_ifinfo *mli,
985    int timer, struct mbuf *m0, const int off)
986{
987	struct mldv2_query	*mld;
988	int			 retval;
989	uint16_t		 nsrc;
990
991	IN6_MULTI_LOCK_ASSERT();
992	MLD_LOCK_ASSERT();
993
994	retval = 0;
995	mld = (struct mldv2_query *)(mtod(m0, uint8_t *) + off);
996
997	switch (inm->in6m_state) {
998	case MLD_NOT_MEMBER:
999	case MLD_SILENT_MEMBER:
1000	case MLD_SLEEPING_MEMBER:
1001	case MLD_LAZY_MEMBER:
1002	case MLD_AWAKENING_MEMBER:
1003	case MLD_IDLE_MEMBER:
1004	case MLD_LEAVING_MEMBER:
1005		return (retval);
1006		break;
1007	case MLD_REPORTING_MEMBER:
1008	case MLD_G_QUERY_PENDING_MEMBER:
1009	case MLD_SG_QUERY_PENDING_MEMBER:
1010		break;
1011	}
1012
1013	nsrc = ntohs(mld->mld_numsrc);
1014
1015	/*
1016	 * Deal with group-specific queries upfront.
1017	 * If any group query is already pending, purge any recorded
1018	 * source-list state if it exists, and schedule a query response
1019	 * for this group-specific query.
1020	 */
1021	if (nsrc == 0) {
1022		if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER ||
1023		    inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) {
1024			in6m_clear_recorded(inm);
1025			timer = min(inm->in6m_timer, timer);
1026		}
1027		inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER;
1028		inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1029		V_current_state_timers_running6 = 1;
1030		return (retval);
1031	}
1032
1033	/*
1034	 * Deal with the case where a group-and-source-specific query has
1035	 * been received but a group-specific query is already pending.
1036	 */
1037	if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) {
1038		timer = min(inm->in6m_timer, timer);
1039		inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1040		V_current_state_timers_running6 = 1;
1041		return (retval);
1042	}
1043
1044	/*
1045	 * Finally, deal with the case where a group-and-source-specific
1046	 * query has been received, where a response to a previous g-s-r
1047	 * query exists, or none exists.
1048	 * In this case, we need to parse the source-list which the Querier
1049	 * has provided us with and check if we have any source list filter
1050	 * entries at T1 for these sources. If we do not, there is no need
1051	 * schedule a report and the query may be dropped.
1052	 * If we do, we must record them and schedule a current-state
1053	 * report for those sources.
1054	 */
1055	if (inm->in6m_nsrc > 0) {
1056		struct mbuf		*m;
1057		uint8_t			*sp;
1058		int			 i, nrecorded;
1059		int			 soff;
1060
1061		m = m0;
1062		soff = off + sizeof(struct mldv2_query);
1063		nrecorded = 0;
1064		for (i = 0; i < nsrc; i++) {
1065			sp = mtod(m, uint8_t *) + soff;
1066			retval = in6m_record_source(inm,
1067			    (const struct in6_addr *)sp);
1068			if (retval < 0)
1069				break;
1070			nrecorded += retval;
1071			soff += sizeof(struct in6_addr);
1072			if (soff >= m->m_len) {
1073				soff = soff - m->m_len;
1074				m = m->m_next;
1075				if (m == NULL)
1076					break;
1077			}
1078		}
1079		if (nrecorded > 0) {
1080			CTR1(KTR_MLD,
1081			    "%s: schedule response to SG query", __func__);
1082			inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER;
1083			inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1084			V_current_state_timers_running6 = 1;
1085		}
1086	}
1087
1088	return (retval);
1089}
1090
1091/*
1092 * Process a received MLDv1 host membership report.
1093 * Assumes mld points to mld_hdr in pulled up mbuf chain.
1094 *
1095 * NOTE: Can't be fully const correct as we temporarily embed scope ID in
1096 * mld_addr. This is OK as we own the mbuf chain.
1097 */
1098static int
1099mld_v1_input_report(struct ifnet *ifp, const struct ip6_hdr *ip6,
1100    /*const*/ struct mld_hdr *mld)
1101{
1102	struct in6_addr		 src, dst;
1103	struct in6_ifaddr	*ia;
1104	struct in6_multi	*inm;
1105#ifdef KTR
1106	char			 ip6tbuf[INET6_ADDRSTRLEN];
1107#endif
1108
1109	if (!mld_v1enable) {
1110		CTR3(KTR_MLD, "ignore v1 report %s on ifp %p(%s)",
1111		    ip6_sprintf(ip6tbuf, &mld->mld_addr),
1112		    ifp, ifp->if_xname);
1113		return (0);
1114	}
1115
1116	if (ifp->if_flags & IFF_LOOPBACK)
1117		return (0);
1118
1119	/*
1120	 * MLDv1 reports must originate from a host's link-local address,
1121	 * or the unspecified address (when booting).
1122	 */
1123	src = ip6->ip6_src;
1124	in6_clearscope(&src);
1125	if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) {
1126		CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)",
1127		    ip6_sprintf(ip6tbuf, &ip6->ip6_src),
1128		    ifp, ifp->if_xname);
1129		return (EINVAL);
1130	}
1131
1132	/*
1133	 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast
1134	 * group, and must be directed to the group itself.
1135	 */
1136	dst = ip6->ip6_dst;
1137	in6_clearscope(&dst);
1138	if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) ||
1139	    !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) {
1140		CTR3(KTR_MLD, "ignore v1 query dst %s on ifp %p(%s)",
1141		    ip6_sprintf(ip6tbuf, &ip6->ip6_dst),
1142		    ifp, ifp->if_xname);
1143		return (EINVAL);
1144	}
1145
1146	/*
1147	 * Make sure we don't hear our own membership report, as fast
1148	 * leave requires knowing that we are the only member of a
1149	 * group. Assume we used the link-local address if available,
1150	 * otherwise look for ::.
1151	 *
1152	 * XXX Note that scope ID comparison is needed for the address
1153	 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be
1154	 * performed for the on-wire address.
1155	 */
1156	ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
1157	if ((ia && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia))) ||
1158	    (ia == NULL && IN6_IS_ADDR_UNSPECIFIED(&src))) {
1159		if (ia != NULL)
1160			ifa_free(&ia->ia_ifa);
1161		return (0);
1162	}
1163	if (ia != NULL)
1164		ifa_free(&ia->ia_ifa);
1165
1166	CTR3(KTR_MLD, "process v1 report %s on ifp %p(%s)",
1167	    ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, ifp->if_xname);
1168
1169	/*
1170	 * Embed scope ID of receiving interface in MLD query for lookup
1171	 * whilst we don't hold other locks (due to KAME locking lameness).
1172	 */
1173	if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr))
1174		in6_setscope(&mld->mld_addr, ifp, NULL);
1175
1176	IN6_MULTI_LOCK();
1177	MLD_LOCK();
1178	IF_ADDR_RLOCK(ifp);
1179
1180	/*
1181	 * MLDv1 report suppression.
1182	 * If we are a member of this group, and our membership should be
1183	 * reported, and our group timer is pending or about to be reset,
1184	 * stop our group timer by transitioning to the 'lazy' state.
1185	 */
1186	inm = in6m_lookup_locked(ifp, &mld->mld_addr);
1187	if (inm != NULL) {
1188		struct mld_ifinfo *mli;
1189
1190		mli = inm->in6m_mli;
1191		KASSERT(mli != NULL,
1192		    ("%s: no mli for ifp %p", __func__, ifp));
1193
1194		/*
1195		 * If we are in MLDv2 host mode, do not allow the
1196		 * other host's MLDv1 report to suppress our reports.
1197		 */
1198		if (mli->mli_version == MLD_VERSION_2)
1199			goto out_locked;
1200
1201		inm->in6m_timer = 0;
1202
1203		switch (inm->in6m_state) {
1204		case MLD_NOT_MEMBER:
1205		case MLD_SILENT_MEMBER:
1206		case MLD_SLEEPING_MEMBER:
1207			break;
1208		case MLD_REPORTING_MEMBER:
1209		case MLD_IDLE_MEMBER:
1210		case MLD_AWAKENING_MEMBER:
1211			CTR3(KTR_MLD,
1212			    "report suppressed for %s on ifp %p(%s)",
1213			    ip6_sprintf(ip6tbuf, &mld->mld_addr),
1214			    ifp, ifp->if_xname);
1215		case MLD_LAZY_MEMBER:
1216			inm->in6m_state = MLD_LAZY_MEMBER;
1217			break;
1218		case MLD_G_QUERY_PENDING_MEMBER:
1219		case MLD_SG_QUERY_PENDING_MEMBER:
1220		case MLD_LEAVING_MEMBER:
1221			break;
1222		}
1223	}
1224
1225out_locked:
1226	IF_ADDR_RUNLOCK(ifp);
1227	MLD_UNLOCK();
1228	IN6_MULTI_UNLOCK();
1229
1230	/* XXX Clear embedded scope ID as userland won't expect it. */
1231	in6_clearscope(&mld->mld_addr);
1232
1233	return (0);
1234}
1235
1236/*
1237 * MLD input path.
1238 *
1239 * Assume query messages which fit in a single ICMPv6 message header
1240 * have been pulled up.
1241 * Assume that userland will want to see the message, even if it
1242 * otherwise fails kernel input validation; do not free it.
1243 * Pullup may however free the mbuf chain m if it fails.
1244 *
1245 * Return IPPROTO_DONE if we freed m. Otherwise, return 0.
1246 */
1247int
1248mld_input(struct mbuf *m, int off, int icmp6len)
1249{
1250	struct ifnet	*ifp;
1251	struct ip6_hdr	*ip6;
1252	struct mld_hdr	*mld;
1253	int		 mldlen;
1254
1255	CTR3(KTR_MLD, "%s: called w/mbuf (%p,%d)", __func__, m, off);
1256
1257	ifp = m->m_pkthdr.rcvif;
1258
1259	ip6 = mtod(m, struct ip6_hdr *);
1260
1261	/* Pullup to appropriate size. */
1262	mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off);
1263	if (mld->mld_type == MLD_LISTENER_QUERY &&
1264	    icmp6len >= sizeof(struct mldv2_query)) {
1265		mldlen = sizeof(struct mldv2_query);
1266	} else {
1267		mldlen = sizeof(struct mld_hdr);
1268	}
1269	IP6_EXTHDR_GET(mld, struct mld_hdr *, m, off, mldlen);
1270	if (mld == NULL) {
1271		ICMP6STAT_INC(icp6s_badlen);
1272		return (IPPROTO_DONE);
1273	}
1274
1275	/*
1276	 * Userland needs to see all of this traffic for implementing
1277	 * the endpoint discovery portion of multicast routing.
1278	 */
1279	switch (mld->mld_type) {
1280	case MLD_LISTENER_QUERY:
1281		icmp6_ifstat_inc(ifp, ifs6_in_mldquery);
1282		if (icmp6len == sizeof(struct mld_hdr)) {
1283			if (mld_v1_input_query(ifp, ip6, mld) != 0)
1284				return (0);
1285		} else if (icmp6len >= sizeof(struct mldv2_query)) {
1286			if (mld_v2_input_query(ifp, ip6, m, off,
1287			    icmp6len) != 0)
1288				return (0);
1289		}
1290		break;
1291	case MLD_LISTENER_REPORT:
1292		icmp6_ifstat_inc(ifp, ifs6_in_mldreport);
1293		if (mld_v1_input_report(ifp, ip6, mld) != 0)
1294			return (0);
1295		break;
1296	case MLDV2_LISTENER_REPORT:
1297		icmp6_ifstat_inc(ifp, ifs6_in_mldreport);
1298		break;
1299	case MLD_LISTENER_DONE:
1300		icmp6_ifstat_inc(ifp, ifs6_in_mlddone);
1301		break;
1302	default:
1303		break;
1304	}
1305
1306	return (0);
1307}
1308
1309/*
1310 * Fast timeout handler (global).
1311 * VIMAGE: Timeout handlers are expected to service all vimages.
1312 */
1313void
1314mld_fasttimo(void)
1315{
1316	VNET_ITERATOR_DECL(vnet_iter);
1317
1318	VNET_LIST_RLOCK_NOSLEEP();
1319	VNET_FOREACH(vnet_iter) {
1320		CURVNET_SET(vnet_iter);
1321		mld_fasttimo_vnet();
1322		CURVNET_RESTORE();
1323	}
1324	VNET_LIST_RUNLOCK_NOSLEEP();
1325}
1326
1327/*
1328 * Fast timeout handler (per-vnet).
1329 *
1330 * VIMAGE: Assume caller has set up our curvnet.
1331 */
1332static void
1333mld_fasttimo_vnet(void)
1334{
1335	struct ifqueue		 scq;	/* State-change packets */
1336	struct ifqueue		 qrq;	/* Query response packets */
1337	struct ifnet		*ifp;
1338	struct mld_ifinfo	*mli;
1339	struct ifmultiaddr	*ifma;
1340	struct in6_multi	*inm, *tinm;
1341	int			 uri_fasthz;
1342
1343	uri_fasthz = 0;
1344
1345	/*
1346	 * Quick check to see if any work needs to be done, in order to
1347	 * minimize the overhead of fasttimo processing.
1348	 * SMPng: XXX Unlocked reads.
1349	 */
1350	if (!V_current_state_timers_running6 &&
1351	    !V_interface_timers_running6 &&
1352	    !V_state_change_timers_running6)
1353		return;
1354
1355	IN6_MULTI_LOCK();
1356	MLD_LOCK();
1357
1358	/*
1359	 * MLDv2 General Query response timer processing.
1360	 */
1361	if (V_interface_timers_running6) {
1362		CTR1(KTR_MLD, "%s: interface timers running", __func__);
1363
1364		V_interface_timers_running6 = 0;
1365		LIST_FOREACH(mli, &V_mli_head, mli_link) {
1366			if (mli->mli_v2_timer == 0) {
1367				/* Do nothing. */
1368			} else if (--mli->mli_v2_timer == 0) {
1369				mld_v2_dispatch_general_query(mli);
1370			} else {
1371				V_interface_timers_running6 = 1;
1372			}
1373		}
1374	}
1375
1376	if (!V_current_state_timers_running6 &&
1377	    !V_state_change_timers_running6)
1378		goto out_locked;
1379
1380	V_current_state_timers_running6 = 0;
1381	V_state_change_timers_running6 = 0;
1382
1383	CTR1(KTR_MLD, "%s: state change timers running", __func__);
1384
1385	/*
1386	 * MLD host report and state-change timer processing.
1387	 * Note: Processing a v2 group timer may remove a node.
1388	 */
1389	LIST_FOREACH(mli, &V_mli_head, mli_link) {
1390		ifp = mli->mli_ifp;
1391
1392		if (mli->mli_version == MLD_VERSION_2) {
1393			uri_fasthz = MLD_RANDOM_DELAY(mli->mli_uri *
1394			    PR_FASTHZ);
1395
1396			memset(&qrq, 0, sizeof(struct ifqueue));
1397			IFQ_SET_MAXLEN(&qrq, MLD_MAX_G_GS_PACKETS);
1398
1399			memset(&scq, 0, sizeof(struct ifqueue));
1400			IFQ_SET_MAXLEN(&scq, MLD_MAX_STATE_CHANGE_PACKETS);
1401		}
1402
1403		IF_ADDR_RLOCK(ifp);
1404		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1405			if (ifma->ifma_addr->sa_family != AF_INET6 ||
1406			    ifma->ifma_protospec == NULL)
1407				continue;
1408			inm = (struct in6_multi *)ifma->ifma_protospec;
1409			switch (mli->mli_version) {
1410			case MLD_VERSION_1:
1411				mld_v1_process_group_timer(mli, inm);
1412				break;
1413			case MLD_VERSION_2:
1414				mld_v2_process_group_timers(mli, &qrq,
1415				    &scq, inm, uri_fasthz);
1416				break;
1417			}
1418		}
1419		IF_ADDR_RUNLOCK(ifp);
1420
1421		switch (mli->mli_version) {
1422		case MLD_VERSION_1:
1423			/*
1424			 * Transmit reports for this lifecycle.  This
1425			 * is done while not holding IF_ADDR_LOCK
1426			 * since this can call
1427			 * in6ifa_ifpforlinklocal() which locks
1428			 * IF_ADDR_LOCK internally as well as
1429			 * ip6_output() to transmit a packet.
1430			 */
1431			SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead,
1432			    in6m_nrele, tinm) {
1433				SLIST_REMOVE_HEAD(&mli->mli_relinmhead,
1434				    in6m_nrele);
1435				(void)mld_v1_transmit_report(inm,
1436				    MLD_LISTENER_REPORT);
1437			}
1438			break;
1439		case MLD_VERSION_2:
1440			mld_dispatch_queue(&qrq, 0);
1441			mld_dispatch_queue(&scq, 0);
1442
1443			/*
1444			 * Free the in_multi reference(s) for
1445			 * this lifecycle.
1446			 */
1447			SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead,
1448			    in6m_nrele, tinm) {
1449				SLIST_REMOVE_HEAD(&mli->mli_relinmhead,
1450				    in6m_nrele);
1451				in6m_release_locked(inm);
1452			}
1453			break;
1454		}
1455	}
1456
1457out_locked:
1458	MLD_UNLOCK();
1459	IN6_MULTI_UNLOCK();
1460}
1461
1462/*
1463 * Update host report group timer.
1464 * Will update the global pending timer flags.
1465 */
1466static void
1467mld_v1_process_group_timer(struct mld_ifinfo *mli, struct in6_multi *inm)
1468{
1469	int report_timer_expired;
1470
1471	IN6_MULTI_LOCK_ASSERT();
1472	MLD_LOCK_ASSERT();
1473
1474	if (inm->in6m_timer == 0) {
1475		report_timer_expired = 0;
1476	} else if (--inm->in6m_timer == 0) {
1477		report_timer_expired = 1;
1478	} else {
1479		V_current_state_timers_running6 = 1;
1480		return;
1481	}
1482
1483	switch (inm->in6m_state) {
1484	case MLD_NOT_MEMBER:
1485	case MLD_SILENT_MEMBER:
1486	case MLD_IDLE_MEMBER:
1487	case MLD_LAZY_MEMBER:
1488	case MLD_SLEEPING_MEMBER:
1489	case MLD_AWAKENING_MEMBER:
1490		break;
1491	case MLD_REPORTING_MEMBER:
1492		if (report_timer_expired) {
1493			inm->in6m_state = MLD_IDLE_MEMBER;
1494			SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm,
1495			    in6m_nrele);
1496		}
1497		break;
1498	case MLD_G_QUERY_PENDING_MEMBER:
1499	case MLD_SG_QUERY_PENDING_MEMBER:
1500	case MLD_LEAVING_MEMBER:
1501		break;
1502	}
1503}
1504
1505/*
1506 * Update a group's timers for MLDv2.
1507 * Will update the global pending timer flags.
1508 * Note: Unlocked read from mli.
1509 */
1510static void
1511mld_v2_process_group_timers(struct mld_ifinfo *mli,
1512    struct ifqueue *qrq, struct ifqueue *scq,
1513    struct in6_multi *inm, const int uri_fasthz)
1514{
1515	int query_response_timer_expired;
1516	int state_change_retransmit_timer_expired;
1517#ifdef KTR
1518	char ip6tbuf[INET6_ADDRSTRLEN];
1519#endif
1520
1521	IN6_MULTI_LOCK_ASSERT();
1522	MLD_LOCK_ASSERT();
1523
1524	query_response_timer_expired = 0;
1525	state_change_retransmit_timer_expired = 0;
1526
1527	/*
1528	 * During a transition from compatibility mode back to MLDv2,
1529	 * a group record in REPORTING state may still have its group
1530	 * timer active. This is a no-op in this function; it is easier
1531	 * to deal with it here than to complicate the slow-timeout path.
1532	 */
1533	if (inm->in6m_timer == 0) {
1534		query_response_timer_expired = 0;
1535	} else if (--inm->in6m_timer == 0) {
1536		query_response_timer_expired = 1;
1537	} else {
1538		V_current_state_timers_running6 = 1;
1539	}
1540
1541	if (inm->in6m_sctimer == 0) {
1542		state_change_retransmit_timer_expired = 0;
1543	} else if (--inm->in6m_sctimer == 0) {
1544		state_change_retransmit_timer_expired = 1;
1545	} else {
1546		V_state_change_timers_running6 = 1;
1547	}
1548
1549	/* We are in fasttimo, so be quick about it. */
1550	if (!state_change_retransmit_timer_expired &&
1551	    !query_response_timer_expired)
1552		return;
1553
1554	switch (inm->in6m_state) {
1555	case MLD_NOT_MEMBER:
1556	case MLD_SILENT_MEMBER:
1557	case MLD_SLEEPING_MEMBER:
1558	case MLD_LAZY_MEMBER:
1559	case MLD_AWAKENING_MEMBER:
1560	case MLD_IDLE_MEMBER:
1561		break;
1562	case MLD_G_QUERY_PENDING_MEMBER:
1563	case MLD_SG_QUERY_PENDING_MEMBER:
1564		/*
1565		 * Respond to a previously pending Group-Specific
1566		 * or Group-and-Source-Specific query by enqueueing
1567		 * the appropriate Current-State report for
1568		 * immediate transmission.
1569		 */
1570		if (query_response_timer_expired) {
1571			int retval;
1572
1573			retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1,
1574			    (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER),
1575			    0);
1576			CTR2(KTR_MLD, "%s: enqueue record = %d",
1577			    __func__, retval);
1578			inm->in6m_state = MLD_REPORTING_MEMBER;
1579			in6m_clear_recorded(inm);
1580		}
1581		/* FALLTHROUGH */
1582	case MLD_REPORTING_MEMBER:
1583	case MLD_LEAVING_MEMBER:
1584		if (state_change_retransmit_timer_expired) {
1585			/*
1586			 * State-change retransmission timer fired.
1587			 * If there are any further pending retransmissions,
1588			 * set the global pending state-change flag, and
1589			 * reset the timer.
1590			 */
1591			if (--inm->in6m_scrv > 0) {
1592				inm->in6m_sctimer = uri_fasthz;
1593				V_state_change_timers_running6 = 1;
1594			}
1595			/*
1596			 * Retransmit the previously computed state-change
1597			 * report. If there are no further pending
1598			 * retransmissions, the mbuf queue will be consumed.
1599			 * Update T0 state to T1 as we have now sent
1600			 * a state-change.
1601			 */
1602			(void)mld_v2_merge_state_changes(inm, scq);
1603
1604			in6m_commit(inm);
1605			CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
1606			    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
1607			    inm->in6m_ifp->if_xname);
1608
1609			/*
1610			 * If we are leaving the group for good, make sure
1611			 * we release MLD's reference to it.
1612			 * This release must be deferred using a SLIST,
1613			 * as we are called from a loop which traverses
1614			 * the in_ifmultiaddr TAILQ.
1615			 */
1616			if (inm->in6m_state == MLD_LEAVING_MEMBER &&
1617			    inm->in6m_scrv == 0) {
1618				inm->in6m_state = MLD_NOT_MEMBER;
1619				SLIST_INSERT_HEAD(&mli->mli_relinmhead,
1620				    inm, in6m_nrele);
1621			}
1622		}
1623		break;
1624	}
1625}
1626
1627/*
1628 * Switch to a different version on the given interface,
1629 * as per Section 9.12.
1630 */
1631static void
1632mld_set_version(struct mld_ifinfo *mli, const int version)
1633{
1634	int old_version_timer;
1635
1636	MLD_LOCK_ASSERT();
1637
1638	CTR4(KTR_MLD, "%s: switching to v%d on ifp %p(%s)", __func__,
1639	    version, mli->mli_ifp, mli->mli_ifp->if_xname);
1640
1641	if (version == MLD_VERSION_1) {
1642		/*
1643		 * Compute the "Older Version Querier Present" timer as per
1644		 * Section 9.12.
1645		 */
1646		old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri;
1647		old_version_timer *= PR_SLOWHZ;
1648		mli->mli_v1_timer = old_version_timer;
1649	}
1650
1651	if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) {
1652		mli->mli_version = MLD_VERSION_1;
1653		mld_v2_cancel_link_timers(mli);
1654	}
1655}
1656
1657/*
1658 * Cancel pending MLDv2 timers for the given link and all groups
1659 * joined on it; state-change, general-query, and group-query timers.
1660 */
1661static void
1662mld_v2_cancel_link_timers(struct mld_ifinfo *mli)
1663{
1664	struct ifmultiaddr	*ifma;
1665	struct ifnet		*ifp;
1666	struct in6_multi	*inm, *tinm;
1667
1668	CTR3(KTR_MLD, "%s: cancel v2 timers on ifp %p(%s)", __func__,
1669	    mli->mli_ifp, mli->mli_ifp->if_xname);
1670
1671	IN6_MULTI_LOCK_ASSERT();
1672	MLD_LOCK_ASSERT();
1673
1674	/*
1675	 * Fast-track this potentially expensive operation
1676	 * by checking all the global 'timer pending' flags.
1677	 */
1678	if (!V_interface_timers_running6 &&
1679	    !V_state_change_timers_running6 &&
1680	    !V_current_state_timers_running6)
1681		return;
1682
1683	mli->mli_v2_timer = 0;
1684
1685	ifp = mli->mli_ifp;
1686
1687	IF_ADDR_RLOCK(ifp);
1688	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1689		if (ifma->ifma_addr->sa_family != AF_INET6)
1690			continue;
1691		inm = (struct in6_multi *)ifma->ifma_protospec;
1692		switch (inm->in6m_state) {
1693		case MLD_NOT_MEMBER:
1694		case MLD_SILENT_MEMBER:
1695		case MLD_IDLE_MEMBER:
1696		case MLD_LAZY_MEMBER:
1697		case MLD_SLEEPING_MEMBER:
1698		case MLD_AWAKENING_MEMBER:
1699			break;
1700		case MLD_LEAVING_MEMBER:
1701			/*
1702			 * If we are leaving the group and switching
1703			 * version, we need to release the final
1704			 * reference held for issuing the INCLUDE {}.
1705			 */
1706			SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm,
1707			    in6m_nrele);
1708			/* FALLTHROUGH */
1709		case MLD_G_QUERY_PENDING_MEMBER:
1710		case MLD_SG_QUERY_PENDING_MEMBER:
1711			in6m_clear_recorded(inm);
1712			/* FALLTHROUGH */
1713		case MLD_REPORTING_MEMBER:
1714			inm->in6m_sctimer = 0;
1715			inm->in6m_timer = 0;
1716			inm->in6m_state = MLD_REPORTING_MEMBER;
1717			/*
1718			 * Free any pending MLDv2 state-change records.
1719			 */
1720			_IF_DRAIN(&inm->in6m_scq);
1721			break;
1722		}
1723	}
1724	IF_ADDR_RUNLOCK(ifp);
1725	SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele, tinm) {
1726		SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele);
1727		in6m_release_locked(inm);
1728	}
1729}
1730
1731/*
1732 * Global slowtimo handler.
1733 * VIMAGE: Timeout handlers are expected to service all vimages.
1734 */
1735void
1736mld_slowtimo(void)
1737{
1738	VNET_ITERATOR_DECL(vnet_iter);
1739
1740	VNET_LIST_RLOCK_NOSLEEP();
1741	VNET_FOREACH(vnet_iter) {
1742		CURVNET_SET(vnet_iter);
1743		mld_slowtimo_vnet();
1744		CURVNET_RESTORE();
1745	}
1746	VNET_LIST_RUNLOCK_NOSLEEP();
1747}
1748
1749/*
1750 * Per-vnet slowtimo handler.
1751 */
1752static void
1753mld_slowtimo_vnet(void)
1754{
1755	struct mld_ifinfo *mli;
1756
1757	MLD_LOCK();
1758
1759	LIST_FOREACH(mli, &V_mli_head, mli_link) {
1760		mld_v1_process_querier_timers(mli);
1761	}
1762
1763	MLD_UNLOCK();
1764}
1765
1766/*
1767 * Update the Older Version Querier Present timers for a link.
1768 * See Section 9.12 of RFC 3810.
1769 */
1770static void
1771mld_v1_process_querier_timers(struct mld_ifinfo *mli)
1772{
1773
1774	MLD_LOCK_ASSERT();
1775
1776	if (mli->mli_version != MLD_VERSION_2 && --mli->mli_v1_timer == 0) {
1777		/*
1778		 * MLDv1 Querier Present timer expired; revert to MLDv2.
1779		 */
1780		CTR5(KTR_MLD,
1781		    "%s: transition from v%d -> v%d on %p(%s)",
1782		    __func__, mli->mli_version, MLD_VERSION_2,
1783		    mli->mli_ifp, mli->mli_ifp->if_xname);
1784		mli->mli_version = MLD_VERSION_2;
1785	}
1786}
1787
1788/*
1789 * Transmit an MLDv1 report immediately.
1790 */
1791static int
1792mld_v1_transmit_report(struct in6_multi *in6m, const int type)
1793{
1794	struct ifnet		*ifp;
1795	struct in6_ifaddr	*ia;
1796	struct ip6_hdr		*ip6;
1797	struct mbuf		*mh, *md;
1798	struct mld_hdr		*mld;
1799
1800	IN6_MULTI_LOCK_ASSERT();
1801	MLD_LOCK_ASSERT();
1802
1803	ifp = in6m->in6m_ifp;
1804	ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
1805	/* ia may be NULL if link-local address is tentative. */
1806
1807	MGETHDR(mh, M_DONTWAIT, MT_HEADER);
1808	if (mh == NULL) {
1809		if (ia != NULL)
1810			ifa_free(&ia->ia_ifa);
1811		return (ENOMEM);
1812	}
1813	MGET(md, M_DONTWAIT, MT_DATA);
1814	if (md == NULL) {
1815		m_free(mh);
1816		if (ia != NULL)
1817			ifa_free(&ia->ia_ifa);
1818		return (ENOMEM);
1819	}
1820	mh->m_next = md;
1821
1822	/*
1823	 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so
1824	 * that ether_output() does not need to allocate another mbuf
1825	 * for the header in the most common case.
1826	 */
1827	MH_ALIGN(mh, sizeof(struct ip6_hdr));
1828	mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr);
1829	mh->m_len = sizeof(struct ip6_hdr);
1830
1831	ip6 = mtod(mh, struct ip6_hdr *);
1832	ip6->ip6_flow = 0;
1833	ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
1834	ip6->ip6_vfc |= IPV6_VERSION;
1835	ip6->ip6_nxt = IPPROTO_ICMPV6;
1836	ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any;
1837	ip6->ip6_dst = in6m->in6m_addr;
1838
1839	md->m_len = sizeof(struct mld_hdr);
1840	mld = mtod(md, struct mld_hdr *);
1841	mld->mld_type = type;
1842	mld->mld_code = 0;
1843	mld->mld_cksum = 0;
1844	mld->mld_maxdelay = 0;
1845	mld->mld_reserved = 0;
1846	mld->mld_addr = in6m->in6m_addr;
1847	in6_clearscope(&mld->mld_addr);
1848	mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6,
1849	    sizeof(struct ip6_hdr), sizeof(struct mld_hdr));
1850
1851	mld_save_context(mh, ifp);
1852	mh->m_flags |= M_MLDV1;
1853
1854	mld_dispatch_packet(mh);
1855
1856	if (ia != NULL)
1857		ifa_free(&ia->ia_ifa);
1858	return (0);
1859}
1860
1861/*
1862 * Process a state change from the upper layer for the given IPv6 group.
1863 *
1864 * Each socket holds a reference on the in_multi in its own ip_moptions.
1865 * The socket layer will have made the necessary updates to.the group
1866 * state, it is now up to MLD to issue a state change report if there
1867 * has been any change between T0 (when the last state-change was issued)
1868 * and T1 (now).
1869 *
1870 * We use the MLDv2 state machine at group level. The MLd module
1871 * however makes the decision as to which MLD protocol version to speak.
1872 * A state change *from* INCLUDE {} always means an initial join.
1873 * A state change *to* INCLUDE {} always means a final leave.
1874 *
1875 * If delay is non-zero, and the state change is an initial multicast
1876 * join, the state change report will be delayed by 'delay' ticks
1877 * in units of PR_FASTHZ if MLDv1 is active on the link; otherwise
1878 * the initial MLDv2 state change report will be delayed by whichever
1879 * is sooner, a pending state-change timer or delay itself.
1880 *
1881 * VIMAGE: curvnet should have been set by caller, as this routine
1882 * is called from the socket option handlers.
1883 */
1884int
1885mld_change_state(struct in6_multi *inm, const int delay)
1886{
1887	struct mld_ifinfo *mli;
1888	struct ifnet *ifp;
1889	int error;
1890
1891	IN6_MULTI_LOCK_ASSERT();
1892
1893	error = 0;
1894
1895	/*
1896	 * Try to detect if the upper layer just asked us to change state
1897	 * for an interface which has now gone away.
1898	 */
1899	KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__));
1900	ifp = inm->in6m_ifma->ifma_ifp;
1901	if (ifp != NULL) {
1902		/*
1903		 * Sanity check that netinet6's notion of ifp is the
1904		 * same as net's.
1905		 */
1906		KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__));
1907	}
1908
1909	MLD_LOCK();
1910
1911	mli = MLD_IFINFO(ifp);
1912	KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp));
1913
1914	/*
1915	 * If we detect a state transition to or from MCAST_UNDEFINED
1916	 * for this group, then we are starting or finishing an MLD
1917	 * life cycle for this group.
1918	 */
1919	if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) {
1920		CTR3(KTR_MLD, "%s: inm transition %d -> %d", __func__,
1921		    inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode);
1922		if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) {
1923			CTR1(KTR_MLD, "%s: initial join", __func__);
1924			error = mld_initial_join(inm, mli, delay);
1925			goto out_locked;
1926		} else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) {
1927			CTR1(KTR_MLD, "%s: final leave", __func__);
1928			mld_final_leave(inm, mli);
1929			goto out_locked;
1930		}
1931	} else {
1932		CTR1(KTR_MLD, "%s: filter set change", __func__);
1933	}
1934
1935	error = mld_handle_state_change(inm, mli);
1936
1937out_locked:
1938	MLD_UNLOCK();
1939	return (error);
1940}
1941
1942/*
1943 * Perform the initial join for an MLD group.
1944 *
1945 * When joining a group:
1946 *  If the group should have its MLD traffic suppressed, do nothing.
1947 *  MLDv1 starts sending MLDv1 host membership reports.
1948 *  MLDv2 will schedule an MLDv2 state-change report containing the
1949 *  initial state of the membership.
1950 *
1951 * If the delay argument is non-zero, then we must delay sending the
1952 * initial state change for delay ticks (in units of PR_FASTHZ).
1953 */
1954static int
1955mld_initial_join(struct in6_multi *inm, struct mld_ifinfo *mli,
1956    const int delay)
1957{
1958	struct ifnet		*ifp;
1959	struct ifqueue		*ifq;
1960	int			 error, retval, syncstates;
1961	int			 odelay;
1962#ifdef KTR
1963	char			 ip6tbuf[INET6_ADDRSTRLEN];
1964#endif
1965
1966	CTR4(KTR_MLD, "%s: initial join %s on ifp %p(%s)",
1967	    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
1968	    inm->in6m_ifp, inm->in6m_ifp->if_xname);
1969
1970	error = 0;
1971	syncstates = 1;
1972
1973	ifp = inm->in6m_ifp;
1974
1975	IN6_MULTI_LOCK_ASSERT();
1976	MLD_LOCK_ASSERT();
1977
1978	KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__));
1979
1980	/*
1981	 * Groups joined on loopback or marked as 'not reported',
1982	 * enter the MLD_SILENT_MEMBER state and
1983	 * are never reported in any protocol exchanges.
1984	 * All other groups enter the appropriate state machine
1985	 * for the version in use on this link.
1986	 * A link marked as MLIF_SILENT causes MLD to be completely
1987	 * disabled for the link.
1988	 */
1989	if ((ifp->if_flags & IFF_LOOPBACK) ||
1990	    (mli->mli_flags & MLIF_SILENT) ||
1991	    !mld_is_addr_reported(&inm->in6m_addr)) {
1992		CTR1(KTR_MLD,
1993"%s: not kicking state machine for silent group", __func__);
1994		inm->in6m_state = MLD_SILENT_MEMBER;
1995		inm->in6m_timer = 0;
1996	} else {
1997		/*
1998		 * Deal with overlapping in_multi lifecycle.
1999		 * If this group was LEAVING, then make sure
2000		 * we drop the reference we picked up to keep the
2001		 * group around for the final INCLUDE {} enqueue.
2002		 */
2003		if (mli->mli_version == MLD_VERSION_2 &&
2004		    inm->in6m_state == MLD_LEAVING_MEMBER)
2005			in6m_release_locked(inm);
2006
2007		inm->in6m_state = MLD_REPORTING_MEMBER;
2008
2009		switch (mli->mli_version) {
2010		case MLD_VERSION_1:
2011			/*
2012			 * If a delay was provided, only use it if
2013			 * it is greater than the delay normally
2014			 * used for an MLDv1 state change report,
2015			 * and delay sending the initial MLDv1 report
2016			 * by not transitioning to the IDLE state.
2017			 */
2018			odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI * PR_FASTHZ);
2019			if (delay) {
2020				inm->in6m_timer = max(delay, odelay);
2021				V_current_state_timers_running6 = 1;
2022			} else {
2023				inm->in6m_state = MLD_IDLE_MEMBER;
2024				error = mld_v1_transmit_report(inm,
2025				     MLD_LISTENER_REPORT);
2026				if (error == 0) {
2027					inm->in6m_timer = odelay;
2028					V_current_state_timers_running6 = 1;
2029				}
2030			}
2031			break;
2032
2033		case MLD_VERSION_2:
2034			/*
2035			 * Defer update of T0 to T1, until the first copy
2036			 * of the state change has been transmitted.
2037			 */
2038			syncstates = 0;
2039
2040			/*
2041			 * Immediately enqueue a State-Change Report for
2042			 * this interface, freeing any previous reports.
2043			 * Don't kick the timers if there is nothing to do,
2044			 * or if an error occurred.
2045			 */
2046			ifq = &inm->in6m_scq;
2047			_IF_DRAIN(ifq);
2048			retval = mld_v2_enqueue_group_record(ifq, inm, 1,
2049			    0, 0, (mli->mli_flags & MLIF_USEALLOW));
2050			CTR2(KTR_MLD, "%s: enqueue record = %d",
2051			    __func__, retval);
2052			if (retval <= 0) {
2053				error = retval * -1;
2054				break;
2055			}
2056
2057			/*
2058			 * Schedule transmission of pending state-change
2059			 * report up to RV times for this link. The timer
2060			 * will fire at the next mld_fasttimo (~200ms),
2061			 * giving us an opportunity to merge the reports.
2062			 *
2063			 * If a delay was provided to this function, only
2064			 * use this delay if sooner than the existing one.
2065			 */
2066			KASSERT(mli->mli_rv > 1,
2067			   ("%s: invalid robustness %d", __func__,
2068			    mli->mli_rv));
2069			inm->in6m_scrv = mli->mli_rv;
2070			if (delay) {
2071				if (inm->in6m_sctimer > 1) {
2072					inm->in6m_sctimer =
2073					    min(inm->in6m_sctimer, delay);
2074				} else
2075					inm->in6m_sctimer = delay;
2076			} else
2077				inm->in6m_sctimer = 1;
2078			V_state_change_timers_running6 = 1;
2079
2080			error = 0;
2081			break;
2082		}
2083	}
2084
2085	/*
2086	 * Only update the T0 state if state change is atomic,
2087	 * i.e. we don't need to wait for a timer to fire before we
2088	 * can consider the state change to have been communicated.
2089	 */
2090	if (syncstates) {
2091		in6m_commit(inm);
2092		CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
2093		    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2094		    inm->in6m_ifp->if_xname);
2095	}
2096
2097	return (error);
2098}
2099
2100/*
2101 * Issue an intermediate state change during the life-cycle.
2102 */
2103static int
2104mld_handle_state_change(struct in6_multi *inm, struct mld_ifinfo *mli)
2105{
2106	struct ifnet		*ifp;
2107	int			 retval;
2108#ifdef KTR
2109	char			 ip6tbuf[INET6_ADDRSTRLEN];
2110#endif
2111
2112	CTR4(KTR_MLD, "%s: state change for %s on ifp %p(%s)",
2113	    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2114	    inm->in6m_ifp, inm->in6m_ifp->if_xname);
2115
2116	ifp = inm->in6m_ifp;
2117
2118	IN6_MULTI_LOCK_ASSERT();
2119	MLD_LOCK_ASSERT();
2120
2121	KASSERT(mli && mli->mli_ifp == ifp,
2122	    ("%s: inconsistent ifp", __func__));
2123
2124	if ((ifp->if_flags & IFF_LOOPBACK) ||
2125	    (mli->mli_flags & MLIF_SILENT) ||
2126	    !mld_is_addr_reported(&inm->in6m_addr) ||
2127	    (mli->mli_version != MLD_VERSION_2)) {
2128		if (!mld_is_addr_reported(&inm->in6m_addr)) {
2129			CTR1(KTR_MLD,
2130"%s: not kicking state machine for silent group", __func__);
2131		}
2132		CTR1(KTR_MLD, "%s: nothing to do", __func__);
2133		in6m_commit(inm);
2134		CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
2135		    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2136		    inm->in6m_ifp->if_xname);
2137		return (0);
2138	}
2139
2140	_IF_DRAIN(&inm->in6m_scq);
2141
2142	retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0,
2143	    (mli->mli_flags & MLIF_USEALLOW));
2144	CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval);
2145	if (retval <= 0)
2146		return (-retval);
2147
2148	/*
2149	 * If record(s) were enqueued, start the state-change
2150	 * report timer for this group.
2151	 */
2152	inm->in6m_scrv = mli->mli_rv;
2153	inm->in6m_sctimer = 1;
2154	V_state_change_timers_running6 = 1;
2155
2156	return (0);
2157}
2158
2159/*
2160 * Perform the final leave for a multicast address.
2161 *
2162 * When leaving a group:
2163 *  MLDv1 sends a DONE message, if and only if we are the reporter.
2164 *  MLDv2 enqueues a state-change report containing a transition
2165 *  to INCLUDE {} for immediate transmission.
2166 */
2167static void
2168mld_final_leave(struct in6_multi *inm, struct mld_ifinfo *mli)
2169{
2170	int syncstates;
2171#ifdef KTR
2172	char ip6tbuf[INET6_ADDRSTRLEN];
2173#endif
2174
2175	syncstates = 1;
2176
2177	CTR4(KTR_MLD, "%s: final leave %s on ifp %p(%s)",
2178	    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2179	    inm->in6m_ifp, inm->in6m_ifp->if_xname);
2180
2181	IN6_MULTI_LOCK_ASSERT();
2182	MLD_LOCK_ASSERT();
2183
2184	switch (inm->in6m_state) {
2185	case MLD_NOT_MEMBER:
2186	case MLD_SILENT_MEMBER:
2187	case MLD_LEAVING_MEMBER:
2188		/* Already leaving or left; do nothing. */
2189		CTR1(KTR_MLD,
2190"%s: not kicking state machine for silent group", __func__);
2191		break;
2192	case MLD_REPORTING_MEMBER:
2193	case MLD_IDLE_MEMBER:
2194	case MLD_G_QUERY_PENDING_MEMBER:
2195	case MLD_SG_QUERY_PENDING_MEMBER:
2196		if (mli->mli_version == MLD_VERSION_1) {
2197#ifdef INVARIANTS
2198			if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER ||
2199			    inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER)
2200			panic("%s: MLDv2 state reached, not MLDv2 mode",
2201			     __func__);
2202#endif
2203			mld_v1_transmit_report(inm, MLD_LISTENER_DONE);
2204			inm->in6m_state = MLD_NOT_MEMBER;
2205		} else if (mli->mli_version == MLD_VERSION_2) {
2206			/*
2207			 * Stop group timer and all pending reports.
2208			 * Immediately enqueue a state-change report
2209			 * TO_IN {} to be sent on the next fast timeout,
2210			 * giving us an opportunity to merge reports.
2211			 */
2212			_IF_DRAIN(&inm->in6m_scq);
2213			inm->in6m_timer = 0;
2214			inm->in6m_scrv = mli->mli_rv;
2215			CTR4(KTR_MLD, "%s: Leaving %s/%s with %d "
2216			    "pending retransmissions.", __func__,
2217			    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2218			    inm->in6m_ifp->if_xname, inm->in6m_scrv);
2219			if (inm->in6m_scrv == 0) {
2220				inm->in6m_state = MLD_NOT_MEMBER;
2221				inm->in6m_sctimer = 0;
2222			} else {
2223				int retval;
2224
2225				in6m_acquire_locked(inm);
2226
2227				retval = mld_v2_enqueue_group_record(
2228				    &inm->in6m_scq, inm, 1, 0, 0,
2229				    (mli->mli_flags & MLIF_USEALLOW));
2230				KASSERT(retval != 0,
2231				    ("%s: enqueue record = %d", __func__,
2232				     retval));
2233
2234				inm->in6m_state = MLD_LEAVING_MEMBER;
2235				inm->in6m_sctimer = 1;
2236				V_state_change_timers_running6 = 1;
2237				syncstates = 0;
2238			}
2239			break;
2240		}
2241		break;
2242	case MLD_LAZY_MEMBER:
2243	case MLD_SLEEPING_MEMBER:
2244	case MLD_AWAKENING_MEMBER:
2245		/* Our reports are suppressed; do nothing. */
2246		break;
2247	}
2248
2249	if (syncstates) {
2250		in6m_commit(inm);
2251		CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
2252		    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2253		    inm->in6m_ifp->if_xname);
2254		inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED;
2255		CTR3(KTR_MLD, "%s: T1 now MCAST_UNDEFINED for %p/%s",
2256		    __func__, &inm->in6m_addr, inm->in6m_ifp->if_xname);
2257	}
2258}
2259
2260/*
2261 * Enqueue an MLDv2 group record to the given output queue.
2262 *
2263 * If is_state_change is zero, a current-state record is appended.
2264 * If is_state_change is non-zero, a state-change report is appended.
2265 *
2266 * If is_group_query is non-zero, an mbuf packet chain is allocated.
2267 * If is_group_query is zero, and if there is a packet with free space
2268 * at the tail of the queue, it will be appended to providing there
2269 * is enough free space.
2270 * Otherwise a new mbuf packet chain is allocated.
2271 *
2272 * If is_source_query is non-zero, each source is checked to see if
2273 * it was recorded for a Group-Source query, and will be omitted if
2274 * it is not both in-mode and recorded.
2275 *
2276 * If use_block_allow is non-zero, state change reports for initial join
2277 * and final leave, on an inclusive mode group with a source list, will be
2278 * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively.
2279 *
2280 * The function will attempt to allocate leading space in the packet
2281 * for the IPv6+ICMP headers to be prepended without fragmenting the chain.
2282 *
2283 * If successful the size of all data appended to the queue is returned,
2284 * otherwise an error code less than zero is returned, or zero if
2285 * no record(s) were appended.
2286 */
2287static int
2288mld_v2_enqueue_group_record(struct ifqueue *ifq, struct in6_multi *inm,
2289    const int is_state_change, const int is_group_query,
2290    const int is_source_query, const int use_block_allow)
2291{
2292	struct mldv2_record	 mr;
2293	struct mldv2_record	*pmr;
2294	struct ifnet		*ifp;
2295	struct ip6_msource	*ims, *nims;
2296	struct mbuf		*m0, *m, *md;
2297	int			 error, is_filter_list_change;
2298	int			 minrec0len, m0srcs, msrcs, nbytes, off;
2299	int			 record_has_sources;
2300	int			 now;
2301	int			 type;
2302	uint8_t			 mode;
2303#ifdef KTR
2304	char			 ip6tbuf[INET6_ADDRSTRLEN];
2305#endif
2306
2307	IN6_MULTI_LOCK_ASSERT();
2308
2309	error = 0;
2310	ifp = inm->in6m_ifp;
2311	is_filter_list_change = 0;
2312	m = NULL;
2313	m0 = NULL;
2314	m0srcs = 0;
2315	msrcs = 0;
2316	nbytes = 0;
2317	nims = NULL;
2318	record_has_sources = 1;
2319	pmr = NULL;
2320	type = MLD_DO_NOTHING;
2321	mode = inm->in6m_st[1].iss_fmode;
2322
2323	/*
2324	 * If we did not transition out of ASM mode during t0->t1,
2325	 * and there are no source nodes to process, we can skip
2326	 * the generation of source records.
2327	 */
2328	if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 &&
2329	    inm->in6m_nsrc == 0)
2330		record_has_sources = 0;
2331
2332	if (is_state_change) {
2333		/*
2334		 * Queue a state change record.
2335		 * If the mode did not change, and there are non-ASM
2336		 * listeners or source filters present,
2337		 * we potentially need to issue two records for the group.
2338		 * If there are ASM listeners, and there was no filter
2339		 * mode transition of any kind, do nothing.
2340		 *
2341		 * If we are transitioning to MCAST_UNDEFINED, we need
2342		 * not send any sources. A transition to/from this state is
2343		 * considered inclusive with some special treatment.
2344		 *
2345		 * If we are rewriting initial joins/leaves to use
2346		 * ALLOW/BLOCK, and the group's membership is inclusive,
2347		 * we need to send sources in all cases.
2348		 */
2349		if (mode != inm->in6m_st[0].iss_fmode) {
2350			if (mode == MCAST_EXCLUDE) {
2351				CTR1(KTR_MLD, "%s: change to EXCLUDE",
2352				    __func__);
2353				type = MLD_CHANGE_TO_EXCLUDE_MODE;
2354			} else {
2355				CTR1(KTR_MLD, "%s: change to INCLUDE",
2356				    __func__);
2357				if (use_block_allow) {
2358					/*
2359					 * XXX
2360					 * Here we're interested in state
2361					 * edges either direction between
2362					 * MCAST_UNDEFINED and MCAST_INCLUDE.
2363					 * Perhaps we should just check
2364					 * the group state, rather than
2365					 * the filter mode.
2366					 */
2367					if (mode == MCAST_UNDEFINED) {
2368						type = MLD_BLOCK_OLD_SOURCES;
2369					} else {
2370						type = MLD_ALLOW_NEW_SOURCES;
2371					}
2372				} else {
2373					type = MLD_CHANGE_TO_INCLUDE_MODE;
2374					if (mode == MCAST_UNDEFINED)
2375						record_has_sources = 0;
2376				}
2377			}
2378		} else {
2379			if (record_has_sources) {
2380				is_filter_list_change = 1;
2381			} else {
2382				type = MLD_DO_NOTHING;
2383			}
2384		}
2385	} else {
2386		/*
2387		 * Queue a current state record.
2388		 */
2389		if (mode == MCAST_EXCLUDE) {
2390			type = MLD_MODE_IS_EXCLUDE;
2391		} else if (mode == MCAST_INCLUDE) {
2392			type = MLD_MODE_IS_INCLUDE;
2393			KASSERT(inm->in6m_st[1].iss_asm == 0,
2394			    ("%s: inm %p is INCLUDE but ASM count is %d",
2395			     __func__, inm, inm->in6m_st[1].iss_asm));
2396		}
2397	}
2398
2399	/*
2400	 * Generate the filter list changes using a separate function.
2401	 */
2402	if (is_filter_list_change)
2403		return (mld_v2_enqueue_filter_change(ifq, inm));
2404
2405	if (type == MLD_DO_NOTHING) {
2406		CTR3(KTR_MLD, "%s: nothing to do for %s/%s",
2407		    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2408		    inm->in6m_ifp->if_xname);
2409		return (0);
2410	}
2411
2412	/*
2413	 * If any sources are present, we must be able to fit at least
2414	 * one in the trailing space of the tail packet's mbuf,
2415	 * ideally more.
2416	 */
2417	minrec0len = sizeof(struct mldv2_record);
2418	if (record_has_sources)
2419		minrec0len += sizeof(struct in6_addr);
2420
2421	CTR4(KTR_MLD, "%s: queueing %s for %s/%s", __func__,
2422	    mld_rec_type_to_str(type),
2423	    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2424	    inm->in6m_ifp->if_xname);
2425
2426	/*
2427	 * Check if we have a packet in the tail of the queue for this
2428	 * group into which the first group record for this group will fit.
2429	 * Otherwise allocate a new packet.
2430	 * Always allocate leading space for IP6+RA+ICMPV6+REPORT.
2431	 * Note: Group records for G/GSR query responses MUST be sent
2432	 * in their own packet.
2433	 */
2434	m0 = ifq->ifq_tail;
2435	if (!is_group_query &&
2436	    m0 != NULL &&
2437	    (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) &&
2438	    (m0->m_pkthdr.len + minrec0len) <
2439	     (ifp->if_mtu - MLD_MTUSPACE)) {
2440		m0srcs = (ifp->if_mtu - m0->m_pkthdr.len -
2441			    sizeof(struct mldv2_record)) /
2442			    sizeof(struct in6_addr);
2443		m = m0;
2444		CTR1(KTR_MLD, "%s: use existing packet", __func__);
2445	} else {
2446		if (_IF_QFULL(ifq)) {
2447			CTR1(KTR_MLD, "%s: outbound queue full", __func__);
2448			return (-ENOMEM);
2449		}
2450		m = NULL;
2451		m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2452		    sizeof(struct mldv2_record)) / sizeof(struct in6_addr);
2453		if (!is_state_change && !is_group_query)
2454			m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2455		if (m == NULL)
2456			m = m_gethdr(M_DONTWAIT, MT_DATA);
2457		if (m == NULL)
2458			return (-ENOMEM);
2459
2460		mld_save_context(m, ifp);
2461
2462		CTR1(KTR_MLD, "%s: allocated first packet", __func__);
2463	}
2464
2465	/*
2466	 * Append group record.
2467	 * If we have sources, we don't know how many yet.
2468	 */
2469	mr.mr_type = type;
2470	mr.mr_datalen = 0;
2471	mr.mr_numsrc = 0;
2472	mr.mr_addr = inm->in6m_addr;
2473	in6_clearscope(&mr.mr_addr);
2474	if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) {
2475		if (m != m0)
2476			m_freem(m);
2477		CTR1(KTR_MLD, "%s: m_append() failed.", __func__);
2478		return (-ENOMEM);
2479	}
2480	nbytes += sizeof(struct mldv2_record);
2481
2482	/*
2483	 * Append as many sources as will fit in the first packet.
2484	 * If we are appending to a new packet, the chain allocation
2485	 * may potentially use clusters; use m_getptr() in this case.
2486	 * If we are appending to an existing packet, we need to obtain
2487	 * a pointer to the group record after m_append(), in case a new
2488	 * mbuf was allocated.
2489	 *
2490	 * Only append sources which are in-mode at t1. If we are
2491	 * transitioning to MCAST_UNDEFINED state on the group, and
2492	 * use_block_allow is zero, do not include source entries.
2493	 * Otherwise, we need to include this source in the report.
2494	 *
2495	 * Only report recorded sources in our filter set when responding
2496	 * to a group-source query.
2497	 */
2498	if (record_has_sources) {
2499		if (m == m0) {
2500			md = m_last(m);
2501			pmr = (struct mldv2_record *)(mtod(md, uint8_t *) +
2502			    md->m_len - nbytes);
2503		} else {
2504			md = m_getptr(m, 0, &off);
2505			pmr = (struct mldv2_record *)(mtod(md, uint8_t *) +
2506			    off);
2507		}
2508		msrcs = 0;
2509		RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs,
2510		    nims) {
2511			CTR2(KTR_MLD, "%s: visit node %s", __func__,
2512			    ip6_sprintf(ip6tbuf, &ims->im6s_addr));
2513			now = im6s_get_mode(inm, ims, 1);
2514			CTR2(KTR_MLD, "%s: node is %d", __func__, now);
2515			if ((now != mode) ||
2516			    (now == mode &&
2517			     (!use_block_allow && mode == MCAST_UNDEFINED))) {
2518				CTR1(KTR_MLD, "%s: skip node", __func__);
2519				continue;
2520			}
2521			if (is_source_query && ims->im6s_stp == 0) {
2522				CTR1(KTR_MLD, "%s: skip unrecorded node",
2523				    __func__);
2524				continue;
2525			}
2526			CTR1(KTR_MLD, "%s: append node", __func__);
2527			if (!m_append(m, sizeof(struct in6_addr),
2528			    (void *)&ims->im6s_addr)) {
2529				if (m != m0)
2530					m_freem(m);
2531				CTR1(KTR_MLD, "%s: m_append() failed.",
2532				    __func__);
2533				return (-ENOMEM);
2534			}
2535			nbytes += sizeof(struct in6_addr);
2536			++msrcs;
2537			if (msrcs == m0srcs)
2538				break;
2539		}
2540		CTR2(KTR_MLD, "%s: msrcs is %d this packet", __func__,
2541		    msrcs);
2542		pmr->mr_numsrc = htons(msrcs);
2543		nbytes += (msrcs * sizeof(struct in6_addr));
2544	}
2545
2546	if (is_source_query && msrcs == 0) {
2547		CTR1(KTR_MLD, "%s: no recorded sources to report", __func__);
2548		if (m != m0)
2549			m_freem(m);
2550		return (0);
2551	}
2552
2553	/*
2554	 * We are good to go with first packet.
2555	 */
2556	if (m != m0) {
2557		CTR1(KTR_MLD, "%s: enqueueing first packet", __func__);
2558		m->m_pkthdr.PH_vt.vt_nrecs = 1;
2559		_IF_ENQUEUE(ifq, m);
2560	} else
2561		m->m_pkthdr.PH_vt.vt_nrecs++;
2562
2563	/*
2564	 * No further work needed if no source list in packet(s).
2565	 */
2566	if (!record_has_sources)
2567		return (nbytes);
2568
2569	/*
2570	 * Whilst sources remain to be announced, we need to allocate
2571	 * a new packet and fill out as many sources as will fit.
2572	 * Always try for a cluster first.
2573	 */
2574	while (nims != NULL) {
2575		if (_IF_QFULL(ifq)) {
2576			CTR1(KTR_MLD, "%s: outbound queue full", __func__);
2577			return (-ENOMEM);
2578		}
2579		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2580		if (m == NULL)
2581			m = m_gethdr(M_DONTWAIT, MT_DATA);
2582		if (m == NULL)
2583			return (-ENOMEM);
2584		mld_save_context(m, ifp);
2585		md = m_getptr(m, 0, &off);
2586		pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off);
2587		CTR1(KTR_MLD, "%s: allocated next packet", __func__);
2588
2589		if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) {
2590			if (m != m0)
2591				m_freem(m);
2592			CTR1(KTR_MLD, "%s: m_append() failed.", __func__);
2593			return (-ENOMEM);
2594		}
2595		m->m_pkthdr.PH_vt.vt_nrecs = 1;
2596		nbytes += sizeof(struct mldv2_record);
2597
2598		m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2599		    sizeof(struct mldv2_record)) / sizeof(struct in6_addr);
2600
2601		msrcs = 0;
2602		RB_FOREACH_FROM(ims, ip6_msource_tree, nims) {
2603			CTR2(KTR_MLD, "%s: visit node %s",
2604			    __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr));
2605			now = im6s_get_mode(inm, ims, 1);
2606			if ((now != mode) ||
2607			    (now == mode &&
2608			     (!use_block_allow && mode == MCAST_UNDEFINED))) {
2609				CTR1(KTR_MLD, "%s: skip node", __func__);
2610				continue;
2611			}
2612			if (is_source_query && ims->im6s_stp == 0) {
2613				CTR1(KTR_MLD, "%s: skip unrecorded node",
2614				    __func__);
2615				continue;
2616			}
2617			CTR1(KTR_MLD, "%s: append node", __func__);
2618			if (!m_append(m, sizeof(struct in6_addr),
2619			    (void *)&ims->im6s_addr)) {
2620				if (m != m0)
2621					m_freem(m);
2622				CTR1(KTR_MLD, "%s: m_append() failed.",
2623				    __func__);
2624				return (-ENOMEM);
2625			}
2626			++msrcs;
2627			if (msrcs == m0srcs)
2628				break;
2629		}
2630		pmr->mr_numsrc = htons(msrcs);
2631		nbytes += (msrcs * sizeof(struct in6_addr));
2632
2633		CTR1(KTR_MLD, "%s: enqueueing next packet", __func__);
2634		_IF_ENQUEUE(ifq, m);
2635	}
2636
2637	return (nbytes);
2638}
2639
2640/*
2641 * Type used to mark record pass completion.
2642 * We exploit the fact we can cast to this easily from the
2643 * current filter modes on each ip_msource node.
2644 */
2645typedef enum {
2646	REC_NONE = 0x00,	/* MCAST_UNDEFINED */
2647	REC_ALLOW = 0x01,	/* MCAST_INCLUDE */
2648	REC_BLOCK = 0x02,	/* MCAST_EXCLUDE */
2649	REC_FULL = REC_ALLOW | REC_BLOCK
2650} rectype_t;
2651
2652/*
2653 * Enqueue an MLDv2 filter list change to the given output queue.
2654 *
2655 * Source list filter state is held in an RB-tree. When the filter list
2656 * for a group is changed without changing its mode, we need to compute
2657 * the deltas between T0 and T1 for each source in the filter set,
2658 * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records.
2659 *
2660 * As we may potentially queue two record types, and the entire R-B tree
2661 * needs to be walked at once, we break this out into its own function
2662 * so we can generate a tightly packed queue of packets.
2663 *
2664 * XXX This could be written to only use one tree walk, although that makes
2665 * serializing into the mbuf chains a bit harder. For now we do two walks
2666 * which makes things easier on us, and it may or may not be harder on
2667 * the L2 cache.
2668 *
2669 * If successful the size of all data appended to the queue is returned,
2670 * otherwise an error code less than zero is returned, or zero if
2671 * no record(s) were appended.
2672 */
2673static int
2674mld_v2_enqueue_filter_change(struct ifqueue *ifq, struct in6_multi *inm)
2675{
2676	static const int MINRECLEN =
2677	    sizeof(struct mldv2_record) + sizeof(struct in6_addr);
2678	struct ifnet		*ifp;
2679	struct mldv2_record	 mr;
2680	struct mldv2_record	*pmr;
2681	struct ip6_msource	*ims, *nims;
2682	struct mbuf		*m, *m0, *md;
2683	int			 m0srcs, nbytes, npbytes, off, rsrcs, schanged;
2684	int			 nallow, nblock;
2685	uint8_t			 mode, now, then;
2686	rectype_t		 crt, drt, nrt;
2687#ifdef KTR
2688	char			 ip6tbuf[INET6_ADDRSTRLEN];
2689#endif
2690
2691	IN6_MULTI_LOCK_ASSERT();
2692
2693	if (inm->in6m_nsrc == 0 ||
2694	    (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0))
2695		return (0);
2696
2697	ifp = inm->in6m_ifp;			/* interface */
2698	mode = inm->in6m_st[1].iss_fmode;	/* filter mode at t1 */
2699	crt = REC_NONE;	/* current group record type */
2700	drt = REC_NONE;	/* mask of completed group record types */
2701	nrt = REC_NONE;	/* record type for current node */
2702	m0srcs = 0;	/* # source which will fit in current mbuf chain */
2703	npbytes = 0;	/* # of bytes appended this packet */
2704	nbytes = 0;	/* # of bytes appended to group's state-change queue */
2705	rsrcs = 0;	/* # sources encoded in current record */
2706	schanged = 0;	/* # nodes encoded in overall filter change */
2707	nallow = 0;	/* # of source entries in ALLOW_NEW */
2708	nblock = 0;	/* # of source entries in BLOCK_OLD */
2709	nims = NULL;	/* next tree node pointer */
2710
2711	/*
2712	 * For each possible filter record mode.
2713	 * The first kind of source we encounter tells us which
2714	 * is the first kind of record we start appending.
2715	 * If a node transitioned to UNDEFINED at t1, its mode is treated
2716	 * as the inverse of the group's filter mode.
2717	 */
2718	while (drt != REC_FULL) {
2719		do {
2720			m0 = ifq->ifq_tail;
2721			if (m0 != NULL &&
2722			    (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <=
2723			     MLD_V2_REPORT_MAXRECS) &&
2724			    (m0->m_pkthdr.len + MINRECLEN) <
2725			     (ifp->if_mtu - MLD_MTUSPACE)) {
2726				m = m0;
2727				m0srcs = (ifp->if_mtu - m0->m_pkthdr.len -
2728					    sizeof(struct mldv2_record)) /
2729					    sizeof(struct in6_addr);
2730				CTR1(KTR_MLD,
2731				    "%s: use previous packet", __func__);
2732			} else {
2733				m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2734				if (m == NULL)
2735					m = m_gethdr(M_DONTWAIT, MT_DATA);
2736				if (m == NULL) {
2737					CTR1(KTR_MLD,
2738					    "%s: m_get*() failed", __func__);
2739					return (-ENOMEM);
2740				}
2741				m->m_pkthdr.PH_vt.vt_nrecs = 0;
2742				mld_save_context(m, ifp);
2743				m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2744				    sizeof(struct mldv2_record)) /
2745				    sizeof(struct in6_addr);
2746				npbytes = 0;
2747				CTR1(KTR_MLD,
2748				    "%s: allocated new packet", __func__);
2749			}
2750			/*
2751			 * Append the MLD group record header to the
2752			 * current packet's data area.
2753			 * Recalculate pointer to free space for next
2754			 * group record, in case m_append() allocated
2755			 * a new mbuf or cluster.
2756			 */
2757			memset(&mr, 0, sizeof(mr));
2758			mr.mr_addr = inm->in6m_addr;
2759			in6_clearscope(&mr.mr_addr);
2760			if (!m_append(m, sizeof(mr), (void *)&mr)) {
2761				if (m != m0)
2762					m_freem(m);
2763				CTR1(KTR_MLD,
2764				    "%s: m_append() failed", __func__);
2765				return (-ENOMEM);
2766			}
2767			npbytes += sizeof(struct mldv2_record);
2768			if (m != m0) {
2769				/* new packet; offset in chain */
2770				md = m_getptr(m, npbytes -
2771				    sizeof(struct mldv2_record), &off);
2772				pmr = (struct mldv2_record *)(mtod(md,
2773				    uint8_t *) + off);
2774			} else {
2775				/* current packet; offset from last append */
2776				md = m_last(m);
2777				pmr = (struct mldv2_record *)(mtod(md,
2778				    uint8_t *) + md->m_len -
2779				    sizeof(struct mldv2_record));
2780			}
2781			/*
2782			 * Begin walking the tree for this record type
2783			 * pass, or continue from where we left off
2784			 * previously if we had to allocate a new packet.
2785			 * Only report deltas in-mode at t1.
2786			 * We need not report included sources as allowed
2787			 * if we are in inclusive mode on the group,
2788			 * however the converse is not true.
2789			 */
2790			rsrcs = 0;
2791			if (nims == NULL) {
2792				nims = RB_MIN(ip6_msource_tree,
2793				    &inm->in6m_srcs);
2794			}
2795			RB_FOREACH_FROM(ims, ip6_msource_tree, nims) {
2796				CTR2(KTR_MLD, "%s: visit node %s", __func__,
2797				    ip6_sprintf(ip6tbuf, &ims->im6s_addr));
2798				now = im6s_get_mode(inm, ims, 1);
2799				then = im6s_get_mode(inm, ims, 0);
2800				CTR3(KTR_MLD, "%s: mode: t0 %d, t1 %d",
2801				    __func__, then, now);
2802				if (now == then) {
2803					CTR1(KTR_MLD,
2804					    "%s: skip unchanged", __func__);
2805					continue;
2806				}
2807				if (mode == MCAST_EXCLUDE &&
2808				    now == MCAST_INCLUDE) {
2809					CTR1(KTR_MLD,
2810					    "%s: skip IN src on EX group",
2811					    __func__);
2812					continue;
2813				}
2814				nrt = (rectype_t)now;
2815				if (nrt == REC_NONE)
2816					nrt = (rectype_t)(~mode & REC_FULL);
2817				if (schanged++ == 0) {
2818					crt = nrt;
2819				} else if (crt != nrt)
2820					continue;
2821				if (!m_append(m, sizeof(struct in6_addr),
2822				    (void *)&ims->im6s_addr)) {
2823					if (m != m0)
2824						m_freem(m);
2825					CTR1(KTR_MLD,
2826					    "%s: m_append() failed", __func__);
2827					return (-ENOMEM);
2828				}
2829				nallow += !!(crt == REC_ALLOW);
2830				nblock += !!(crt == REC_BLOCK);
2831				if (++rsrcs == m0srcs)
2832					break;
2833			}
2834			/*
2835			 * If we did not append any tree nodes on this
2836			 * pass, back out of allocations.
2837			 */
2838			if (rsrcs == 0) {
2839				npbytes -= sizeof(struct mldv2_record);
2840				if (m != m0) {
2841					CTR1(KTR_MLD,
2842					    "%s: m_free(m)", __func__);
2843					m_freem(m);
2844				} else {
2845					CTR1(KTR_MLD,
2846					    "%s: m_adj(m, -mr)", __func__);
2847					m_adj(m, -((int)sizeof(
2848					    struct mldv2_record)));
2849				}
2850				continue;
2851			}
2852			npbytes += (rsrcs * sizeof(struct in6_addr));
2853			if (crt == REC_ALLOW)
2854				pmr->mr_type = MLD_ALLOW_NEW_SOURCES;
2855			else if (crt == REC_BLOCK)
2856				pmr->mr_type = MLD_BLOCK_OLD_SOURCES;
2857			pmr->mr_numsrc = htons(rsrcs);
2858			/*
2859			 * Count the new group record, and enqueue this
2860			 * packet if it wasn't already queued.
2861			 */
2862			m->m_pkthdr.PH_vt.vt_nrecs++;
2863			if (m != m0)
2864				_IF_ENQUEUE(ifq, m);
2865			nbytes += npbytes;
2866		} while (nims != NULL);
2867		drt |= crt;
2868		crt = (~crt & REC_FULL);
2869	}
2870
2871	CTR3(KTR_MLD, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__,
2872	    nallow, nblock);
2873
2874	return (nbytes);
2875}
2876
2877static int
2878mld_v2_merge_state_changes(struct in6_multi *inm, struct ifqueue *ifscq)
2879{
2880	struct ifqueue	*gq;
2881	struct mbuf	*m;		/* pending state-change */
2882	struct mbuf	*m0;		/* copy of pending state-change */
2883	struct mbuf	*mt;		/* last state-change in packet */
2884	int		 docopy, domerge;
2885	u_int		 recslen;
2886
2887	docopy = 0;
2888	domerge = 0;
2889	recslen = 0;
2890
2891	IN6_MULTI_LOCK_ASSERT();
2892	MLD_LOCK_ASSERT();
2893
2894	/*
2895	 * If there are further pending retransmissions, make a writable
2896	 * copy of each queued state-change message before merging.
2897	 */
2898	if (inm->in6m_scrv > 0)
2899		docopy = 1;
2900
2901	gq = &inm->in6m_scq;
2902#ifdef KTR
2903	if (gq->ifq_head == NULL) {
2904		CTR2(KTR_MLD, "%s: WARNING: queue for inm %p is empty",
2905		    __func__, inm);
2906	}
2907#endif
2908
2909	m = gq->ifq_head;
2910	while (m != NULL) {
2911		/*
2912		 * Only merge the report into the current packet if
2913		 * there is sufficient space to do so; an MLDv2 report
2914		 * packet may only contain 65,535 group records.
2915		 * Always use a simple mbuf chain concatentation to do this,
2916		 * as large state changes for single groups may have
2917		 * allocated clusters.
2918		 */
2919		domerge = 0;
2920		mt = ifscq->ifq_tail;
2921		if (mt != NULL) {
2922			recslen = m_length(m, NULL);
2923
2924			if ((mt->m_pkthdr.PH_vt.vt_nrecs +
2925			    m->m_pkthdr.PH_vt.vt_nrecs <=
2926			    MLD_V2_REPORT_MAXRECS) &&
2927			    (mt->m_pkthdr.len + recslen <=
2928			    (inm->in6m_ifp->if_mtu - MLD_MTUSPACE)))
2929				domerge = 1;
2930		}
2931
2932		if (!domerge && _IF_QFULL(gq)) {
2933			CTR2(KTR_MLD,
2934			    "%s: outbound queue full, skipping whole packet %p",
2935			    __func__, m);
2936			mt = m->m_nextpkt;
2937			if (!docopy)
2938				m_freem(m);
2939			m = mt;
2940			continue;
2941		}
2942
2943		if (!docopy) {
2944			CTR2(KTR_MLD, "%s: dequeueing %p", __func__, m);
2945			_IF_DEQUEUE(gq, m0);
2946			m = m0->m_nextpkt;
2947		} else {
2948			CTR2(KTR_MLD, "%s: copying %p", __func__, m);
2949			m0 = m_dup(m, M_NOWAIT);
2950			if (m0 == NULL)
2951				return (ENOMEM);
2952			m0->m_nextpkt = NULL;
2953			m = m->m_nextpkt;
2954		}
2955
2956		if (!domerge) {
2957			CTR3(KTR_MLD, "%s: queueing %p to ifscq %p)",
2958			    __func__, m0, ifscq);
2959			_IF_ENQUEUE(ifscq, m0);
2960		} else {
2961			struct mbuf *mtl;	/* last mbuf of packet mt */
2962
2963			CTR3(KTR_MLD, "%s: merging %p with ifscq tail %p)",
2964			    __func__, m0, mt);
2965
2966			mtl = m_last(mt);
2967			m0->m_flags &= ~M_PKTHDR;
2968			mt->m_pkthdr.len += recslen;
2969			mt->m_pkthdr.PH_vt.vt_nrecs +=
2970			    m0->m_pkthdr.PH_vt.vt_nrecs;
2971
2972			mtl->m_next = m0;
2973		}
2974	}
2975
2976	return (0);
2977}
2978
2979/*
2980 * Respond to a pending MLDv2 General Query.
2981 */
2982static void
2983mld_v2_dispatch_general_query(struct mld_ifinfo *mli)
2984{
2985	struct ifmultiaddr	*ifma;
2986	struct ifnet		*ifp;
2987	struct in6_multi	*inm;
2988	int			 retval;
2989
2990	IN6_MULTI_LOCK_ASSERT();
2991	MLD_LOCK_ASSERT();
2992
2993	KASSERT(mli->mli_version == MLD_VERSION_2,
2994	    ("%s: called when version %d", __func__, mli->mli_version));
2995
2996	ifp = mli->mli_ifp;
2997
2998	IF_ADDR_RLOCK(ifp);
2999	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3000		if (ifma->ifma_addr->sa_family != AF_INET6 ||
3001		    ifma->ifma_protospec == NULL)
3002			continue;
3003
3004		inm = (struct in6_multi *)ifma->ifma_protospec;
3005		KASSERT(ifp == inm->in6m_ifp,
3006		    ("%s: inconsistent ifp", __func__));
3007
3008		switch (inm->in6m_state) {
3009		case MLD_NOT_MEMBER:
3010		case MLD_SILENT_MEMBER:
3011			break;
3012		case MLD_REPORTING_MEMBER:
3013		case MLD_IDLE_MEMBER:
3014		case MLD_LAZY_MEMBER:
3015		case MLD_SLEEPING_MEMBER:
3016		case MLD_AWAKENING_MEMBER:
3017			inm->in6m_state = MLD_REPORTING_MEMBER;
3018			retval = mld_v2_enqueue_group_record(&mli->mli_gq,
3019			    inm, 0, 0, 0, 0);
3020			CTR2(KTR_MLD, "%s: enqueue record = %d",
3021			    __func__, retval);
3022			break;
3023		case MLD_G_QUERY_PENDING_MEMBER:
3024		case MLD_SG_QUERY_PENDING_MEMBER:
3025		case MLD_LEAVING_MEMBER:
3026			break;
3027		}
3028	}
3029	IF_ADDR_RUNLOCK(ifp);
3030
3031	mld_dispatch_queue(&mli->mli_gq, MLD_MAX_RESPONSE_BURST);
3032
3033	/*
3034	 * Slew transmission of bursts over 500ms intervals.
3035	 */
3036	if (mli->mli_gq.ifq_head != NULL) {
3037		mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY(
3038		    MLD_RESPONSE_BURST_INTERVAL);
3039		V_interface_timers_running6 = 1;
3040	}
3041}
3042
3043/*
3044 * Transmit the next pending message in the output queue.
3045 *
3046 * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis.
3047 * MRT: Nothing needs to be done, as MLD traffic is always local to
3048 * a link and uses a link-scope multicast address.
3049 */
3050static void
3051mld_dispatch_packet(struct mbuf *m)
3052{
3053	struct ip6_moptions	 im6o;
3054	struct ifnet		*ifp;
3055	struct ifnet		*oifp;
3056	struct mbuf		*m0;
3057	struct mbuf		*md;
3058	struct ip6_hdr		*ip6;
3059	struct mld_hdr		*mld;
3060	int			 error;
3061	int			 off;
3062	int			 type;
3063	uint32_t		 ifindex;
3064
3065	CTR2(KTR_MLD, "%s: transmit %p", __func__, m);
3066
3067	/*
3068	 * Set VNET image pointer from enqueued mbuf chain
3069	 * before doing anything else. Whilst we use interface
3070	 * indexes to guard against interface detach, they are
3071	 * unique to each VIMAGE and must be retrieved.
3072	 */
3073	ifindex = mld_restore_context(m);
3074
3075	/*
3076	 * Check if the ifnet still exists. This limits the scope of
3077	 * any race in the absence of a global ifp lock for low cost
3078	 * (an array lookup).
3079	 */
3080	ifp = ifnet_byindex(ifindex);
3081	if (ifp == NULL) {
3082		CTR3(KTR_MLD, "%s: dropped %p as ifindex %u went away.",
3083		    __func__, m, ifindex);
3084		m_freem(m);
3085		IP6STAT_INC(ip6s_noroute);
3086		goto out;
3087	}
3088
3089	im6o.im6o_multicast_hlim  = 1;
3090	im6o.im6o_multicast_loop = (V_ip6_mrouter != NULL);
3091	im6o.im6o_multicast_ifp = ifp;
3092
3093	if (m->m_flags & M_MLDV1) {
3094		m0 = m;
3095	} else {
3096		m0 = mld_v2_encap_report(ifp, m);
3097		if (m0 == NULL) {
3098			CTR2(KTR_MLD, "%s: dropped %p", __func__, m);
3099			m_freem(m);
3100			IP6STAT_INC(ip6s_odropped);
3101			goto out;
3102		}
3103	}
3104
3105	mld_scrub_context(m0);
3106	m->m_flags &= ~(M_PROTOFLAGS);
3107	m0->m_pkthdr.rcvif = V_loif;
3108
3109	ip6 = mtod(m0, struct ip6_hdr *);
3110#if 0
3111	(void)in6_setscope(&ip6->ip6_dst, ifp, NULL);	/* XXX LOR */
3112#else
3113	/*
3114	 * XXX XXX Break some KPI rules to prevent an LOR which would
3115	 * occur if we called in6_setscope() at transmission.
3116	 * See comments at top of file.
3117	 */
3118	MLD_EMBEDSCOPE(&ip6->ip6_dst, ifp->if_index);
3119#endif
3120
3121	/*
3122	 * Retrieve the ICMPv6 type before handoff to ip6_output(),
3123	 * so we can bump the stats.
3124	 */
3125	md = m_getptr(m0, sizeof(struct ip6_hdr), &off);
3126	mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off);
3127	type = mld->mld_type;
3128
3129	error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, &im6o,
3130	    &oifp, NULL);
3131	if (error) {
3132		CTR3(KTR_MLD, "%s: ip6_output(%p) = %d", __func__, m0, error);
3133		goto out;
3134	}
3135	ICMP6STAT_INC(icp6s_outhist[type]);
3136	if (oifp != NULL) {
3137		icmp6_ifstat_inc(oifp, ifs6_out_msg);
3138		switch (type) {
3139		case MLD_LISTENER_REPORT:
3140		case MLDV2_LISTENER_REPORT:
3141			icmp6_ifstat_inc(oifp, ifs6_out_mldreport);
3142			break;
3143		case MLD_LISTENER_DONE:
3144			icmp6_ifstat_inc(oifp, ifs6_out_mlddone);
3145			break;
3146		}
3147	}
3148out:
3149	return;
3150}
3151
3152/*
3153 * Encapsulate an MLDv2 report.
3154 *
3155 * KAME IPv6 requires that hop-by-hop options be passed separately,
3156 * and that the IPv6 header be prepended in a separate mbuf.
3157 *
3158 * Returns a pointer to the new mbuf chain head, or NULL if the
3159 * allocation failed.
3160 */
3161static struct mbuf *
3162mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m)
3163{
3164	struct mbuf		*mh;
3165	struct mldv2_report	*mld;
3166	struct ip6_hdr		*ip6;
3167	struct in6_ifaddr	*ia;
3168	int			 mldreclen;
3169
3170	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
3171	KASSERT((m->m_flags & M_PKTHDR),
3172	    ("%s: mbuf chain %p is !M_PKTHDR", __func__, m));
3173
3174	/*
3175	 * RFC3590: OK to send as :: or tentative during DAD.
3176	 */
3177	ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
3178	if (ia == NULL)
3179		CTR1(KTR_MLD, "%s: warning: ia is NULL", __func__);
3180
3181	MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3182	if (mh == NULL) {
3183		if (ia != NULL)
3184			ifa_free(&ia->ia_ifa);
3185		m_freem(m);
3186		return (NULL);
3187	}
3188	MH_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report));
3189
3190	mldreclen = m_length(m, NULL);
3191	CTR2(KTR_MLD, "%s: mldreclen is %d", __func__, mldreclen);
3192
3193	mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report);
3194	mh->m_pkthdr.len = sizeof(struct ip6_hdr) +
3195	    sizeof(struct mldv2_report) + mldreclen;
3196
3197	ip6 = mtod(mh, struct ip6_hdr *);
3198	ip6->ip6_flow = 0;
3199	ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3200	ip6->ip6_vfc |= IPV6_VERSION;
3201	ip6->ip6_nxt = IPPROTO_ICMPV6;
3202	ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any;
3203	if (ia != NULL)
3204		ifa_free(&ia->ia_ifa);
3205	ip6->ip6_dst = in6addr_linklocal_allv2routers;
3206	/* scope ID will be set in netisr */
3207
3208	mld = (struct mldv2_report *)(ip6 + 1);
3209	mld->mld_type = MLDV2_LISTENER_REPORT;
3210	mld->mld_code = 0;
3211	mld->mld_cksum = 0;
3212	mld->mld_v2_reserved = 0;
3213	mld->mld_v2_numrecs = htons(m->m_pkthdr.PH_vt.vt_nrecs);
3214	m->m_pkthdr.PH_vt.vt_nrecs = 0;
3215
3216	mh->m_next = m;
3217	mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6,
3218	    sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen);
3219	return (mh);
3220}
3221
3222#ifdef KTR
3223static char *
3224mld_rec_type_to_str(const int type)
3225{
3226
3227	switch (type) {
3228		case MLD_CHANGE_TO_EXCLUDE_MODE:
3229			return "TO_EX";
3230			break;
3231		case MLD_CHANGE_TO_INCLUDE_MODE:
3232			return "TO_IN";
3233			break;
3234		case MLD_MODE_IS_EXCLUDE:
3235			return "MODE_EX";
3236			break;
3237		case MLD_MODE_IS_INCLUDE:
3238			return "MODE_IN";
3239			break;
3240		case MLD_ALLOW_NEW_SOURCES:
3241			return "ALLOW_NEW";
3242			break;
3243		case MLD_BLOCK_OLD_SOURCES:
3244			return "BLOCK_OLD";
3245			break;
3246		default:
3247			break;
3248	}
3249	return "unknown";
3250}
3251#endif
3252
3253static void
3254mld_init(void *unused __unused)
3255{
3256
3257	CTR1(KTR_MLD, "%s: initializing", __func__);
3258	MLD_LOCK_INIT();
3259
3260	ip6_initpktopts(&mld_po);
3261	mld_po.ip6po_hlim = 1;
3262	mld_po.ip6po_hbh = &mld_ra.hbh;
3263	mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER;
3264	mld_po.ip6po_flags = IP6PO_DONTFRAG;
3265}
3266SYSINIT(mld_init, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_init, NULL);
3267
3268static void
3269mld_uninit(void *unused __unused)
3270{
3271
3272	CTR1(KTR_MLD, "%s: tearing down", __func__);
3273	MLD_LOCK_DESTROY();
3274}
3275SYSUNINIT(mld_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_uninit, NULL);
3276
3277static void
3278vnet_mld_init(const void *unused __unused)
3279{
3280
3281	CTR1(KTR_MLD, "%s: initializing", __func__);
3282
3283	LIST_INIT(&V_mli_head);
3284}
3285VNET_SYSINIT(vnet_mld_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_init,
3286    NULL);
3287
3288static void
3289vnet_mld_uninit(const void *unused __unused)
3290{
3291
3292	CTR1(KTR_MLD, "%s: tearing down", __func__);
3293
3294	KASSERT(LIST_EMPTY(&V_mli_head),
3295	    ("%s: mli list not empty; ifnets not detached?", __func__));
3296}
3297VNET_SYSUNINIT(vnet_mld_uninit, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_uninit,
3298    NULL);
3299
3300static int
3301mld_modevent(module_t mod, int type, void *unused __unused)
3302{
3303
3304    switch (type) {
3305    case MOD_LOAD:
3306    case MOD_UNLOAD:
3307	break;
3308    default:
3309	return (EOPNOTSUPP);
3310    }
3311    return (0);
3312}
3313
3314static moduledata_t mld_mod = {
3315    "mld",
3316    mld_modevent,
3317    0
3318};
3319DECLARE_MODULE(mld, mld_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3320