mld6.c revision 206454
1132332Smarcel/*-
2132360Smarcel * Copyright (c) 2009 Bruce Simpson.
3132332Smarcel *
4132332Smarcel * Redistribution and use in source and binary forms, with or without
5132332Smarcel * modification, are permitted provided that the following conditions
6132332Smarcel * are met:
7132332Smarcel * 1. Redistributions of source code must retain the above copyright
8132332Smarcel *    notice, this list of conditions and the following disclaimer.
9132332Smarcel * 2. Redistributions in binary form must reproduce the above copyright
10132332Smarcel *    notice, this list of conditions and the following disclaimer in the
11132332Smarcel *    documentation and/or other materials provided with the distribution.
12132332Smarcel * 3. The name of the author may not be used to endorse or promote
13132332Smarcel *    products derived from this software without specific prior written
14132332Smarcel *    permission.
15132332Smarcel *
16132332Smarcel * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17132332Smarcel * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18132332Smarcel * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19132332Smarcel * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20132332Smarcel * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21132332Smarcel * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22132332Smarcel * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23132332Smarcel * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24132332Smarcel * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25132332Smarcel * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26132332Smarcel * SUCH DAMAGE.
27132332Smarcel *
28132332Smarcel *	$KAME: mld6.c,v 1.27 2001/04/04 05:17:30 itojun Exp $
29132332Smarcel */
30132332Smarcel
31132332Smarcel/*-
32132332Smarcel * Copyright (c) 1988 Stephen Deering.
33132332Smarcel * Copyright (c) 1992, 1993
34132332Smarcel *	The Regents of the University of California.  All rights reserved.
35132332Smarcel *
36132332Smarcel * This code is derived from software contributed to Berkeley by
37132332Smarcel * Stephen Deering of Stanford University.
38132332Smarcel *
39132332Smarcel * Redistribution and use in source and binary forms, with or without
40132332Smarcel * modification, are permitted provided that the following conditions
41132332Smarcel * are met:
42132332Smarcel * 1. Redistributions of source code must retain the above copyright
43132332Smarcel *    notice, this list of conditions and the following disclaimer.
44132332Smarcel * 2. Redistributions in binary form must reproduce the above copyright
45132332Smarcel *    notice, this list of conditions and the following disclaimer in the
46132332Smarcel *    documentation and/or other materials provided with the distribution.
47132332Smarcel * 4. Neither the name of the University nor the names of its contributors
48132332Smarcel *    may be used to endorse or promote products derived from this software
49132332Smarcel *    without specific prior written permission.
50132332Smarcel *
51132332Smarcel * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52132332Smarcel * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53132332Smarcel * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54132332Smarcel * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55132332Smarcel * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56132332Smarcel * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57132332Smarcel * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58132332Smarcel * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59132332Smarcel * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60144922Sdavidxu * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61132332Smarcel * SUCH DAMAGE.
62132332Smarcel *
63132332Smarcel *	@(#)igmp.c	8.1 (Berkeley) 7/19/93
64132332Smarcel */
65132332Smarcel
66132332Smarcel#include <sys/cdefs.h>
67132332Smarcel__FBSDID("$FreeBSD: head/sys/netinet6/mld6.c 206454 2010-04-10 12:24:21Z bms $");
68132332Smarcel
69132332Smarcel#include "opt_inet.h"
70132332Smarcel#include "opt_inet6.h"
71132332Smarcel
72132332Smarcel#include <sys/param.h>
73132332Smarcel#include <sys/systm.h>
74132332Smarcel#include <sys/mbuf.h>
75132332Smarcel#include <sys/socket.h>
76132360Smarcel#include <sys/protosw.h>
77132360Smarcel#include <sys/sysctl.h>
78132360Smarcel#include <sys/kernel.h>
79132360Smarcel#include <sys/callout.h>
80132360Smarcel#include <sys/malloc.h>
81132360Smarcel#include <sys/module.h>
82132360Smarcel#include <sys/ktr.h>
83132360Smarcel
84132360Smarcel#include <net/if.h>
85132360Smarcel#include <net/route.h>
86132360Smarcel#include <net/vnet.h>
87132360Smarcel
88132360Smarcel#include <netinet/in.h>
89132360Smarcel#include <netinet/in_var.h>
90132332Smarcel#include <netinet6/in6_var.h>
91132332Smarcel#include <netinet/ip6.h>
92132332Smarcel#include <netinet6/ip6_var.h>
93132332Smarcel#include <netinet6/scope6_var.h>
94132332Smarcel#include <netinet/icmp6.h>
95132332Smarcel#include <netinet6/mld6.h>
96132332Smarcel#include <netinet6/mld6_var.h>
97132332Smarcel
98132332Smarcel#include <security/mac/mac_framework.h>
99132332Smarcel
100132332Smarcel#ifndef KTR_MLD
101132332Smarcel#define KTR_MLD KTR_INET6
102132332Smarcel#endif
103132332Smarcel
104132360Smarcelstatic struct mld_ifinfo *
105132360Smarcel		mli_alloc_locked(struct ifnet *);
106132360Smarcelstatic void	mli_delete_locked(const struct ifnet *);
107132360Smarcelstatic void	mld_dispatch_packet(struct mbuf *);
108132360Smarcelstatic void	mld_dispatch_queue(struct ifqueue *, int);
109132360Smarcelstatic void	mld_final_leave(struct in6_multi *, struct mld_ifinfo *);
110132332Smarcelstatic void	mld_fasttimo_vnet(void);
111132360Smarcelstatic int	mld_handle_state_change(struct in6_multi *,
112132332Smarcel		    struct mld_ifinfo *);
113132332Smarcelstatic int	mld_initial_join(struct in6_multi *, struct mld_ifinfo *,
114132360Smarcel		    const int);
115132332Smarcel#ifdef KTR
116132332Smarcelstatic char *	mld_rec_type_to_str(const int);
117132332Smarcel#endif
118132332Smarcelstatic void	mld_set_version(struct mld_ifinfo *, const int);
119132332Smarcelstatic void	mld_slowtimo_vnet(void);
120132332Smarcelstatic int	mld_v1_input_query(struct ifnet *, const struct ip6_hdr *,
121132332Smarcel		    /*const*/ struct mld_hdr *);
122132332Smarcelstatic int	mld_v1_input_report(struct ifnet *, const struct ip6_hdr *,
123132332Smarcel		    /*const*/ struct mld_hdr *);
124132332Smarcelstatic void	mld_v1_process_group_timer(struct in6_multi *, const int);
125132332Smarcelstatic void	mld_v1_process_querier_timers(struct mld_ifinfo *);
126132332Smarcelstatic int	mld_v1_transmit_report(struct in6_multi *, const int);
127132332Smarcelstatic void	mld_v1_update_group(struct in6_multi *, const int);
128132332Smarcelstatic void	mld_v2_cancel_link_timers(struct mld_ifinfo *);
129132332Smarcelstatic void	mld_v2_dispatch_general_query(struct mld_ifinfo *);
130132332Smarcelstatic struct mbuf *
131132332Smarcel		mld_v2_encap_report(struct ifnet *, struct mbuf *);
132132332Smarcelstatic int	mld_v2_enqueue_filter_change(struct ifqueue *,
133132332Smarcel		    struct in6_multi *);
134132332Smarcelstatic int	mld_v2_enqueue_group_record(struct ifqueue *,
135132332Smarcel		    struct in6_multi *, const int, const int, const int,
136132332Smarcel		    const int);
137132332Smarcelstatic int	mld_v2_input_query(struct ifnet *, const struct ip6_hdr *,
138132332Smarcel		    struct mbuf *, const int, const int);
139132332Smarcelstatic int	mld_v2_merge_state_changes(struct in6_multi *,
140132332Smarcel		    struct ifqueue *);
141132332Smarcelstatic void	mld_v2_process_group_timers(struct mld_ifinfo *,
142132332Smarcel		    struct ifqueue *, struct ifqueue *,
143132332Smarcel		    struct in6_multi *, const int);
144132332Smarcelstatic int	mld_v2_process_group_query(struct in6_multi *,
145132332Smarcel		    struct mld_ifinfo *mli, int, struct mbuf *, const int);
146132332Smarcelstatic int	sysctl_mld_gsr(SYSCTL_HANDLER_ARGS);
147132332Smarcelstatic int	sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS);
148132332Smarcel
149132332Smarcel/*
150132332Smarcel * Normative references: RFC 2710, RFC 3590, RFC 3810.
151132332Smarcel *
152132332Smarcel * Locking:
153132332Smarcel *  * The MLD subsystem lock ends up being system-wide for the moment,
154132332Smarcel *    but could be per-VIMAGE later on.
155132332Smarcel *  * The permitted lock order is: IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK.
156132332Smarcel *    Any may be taken independently; if any are held at the same
157132332Smarcel *    time, the above lock order must be followed.
158132332Smarcel *  * IN6_MULTI_LOCK covers in_multi.
159132332Smarcel *  * MLD_LOCK covers per-link state and any global variables in this file.
160132332Smarcel *  * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of
161132332Smarcel *    per-link state iterators.
162132332Smarcel *
163132332Smarcel *  XXX LOR PREVENTION
164132332Smarcel *  A special case for IPv6 is the in6_setscope() routine. ip6_output()
165132332Smarcel *  will not accept an ifp; it wants an embedded scope ID, unlike
166132332Smarcel *  ip_output(), which happily takes the ifp given to it. The embedded
167132332Smarcel *  scope ID is only used by MLD to select the outgoing interface.
168132332Smarcel *
169132332Smarcel *  During interface attach and detach, MLD will take MLD_LOCK *after*
170132332Smarcel *  the IF_AFDATA_LOCK.
171132332Smarcel *  As in6_setscope() takes IF_AFDATA_LOCK then SCOPE_LOCK, we can't call
172132332Smarcel *  it with MLD_LOCK held without triggering an LOR. A netisr with indirect
173132332Smarcel *  dispatch could work around this, but we'd rather not do that, as it
174132332Smarcel *  can introduce other races.
175132360Smarcel *
176132332Smarcel *  As such, we exploit the fact that the scope ID is just the interface
177132332Smarcel *  index, and embed it in the IPv6 destination address accordingly.
178132332Smarcel *  This is potentially NOT VALID for MLDv1 reports, as they
179132332Smarcel *  are always sent to the multicast group itself; as MLDv2
180144663Sdavidxu *  reports are always sent to ff02::16, this is not an issue
181132332Smarcel *  when MLDv2 is in use.
182132332Smarcel *
183132332Smarcel *  This does not however eliminate the LOR when ip6_output() itself
184132332Smarcel *  calls in6_setscope() internally whilst MLD_LOCK is held. This will
185132332Smarcel *  trigger a LOR warning in WITNESS when the ifnet is detached.
186132332Smarcel *
187132332Smarcel *  The right answer is probably to make IF_AFDATA_LOCK an rwlock, given
188132332Smarcel *  how it's used across the network stack. Here we're simply exploiting
189132332Smarcel *  the fact that MLD runs at a similar layer in the stack to scope6.c.
190132332Smarcel *
191132332Smarcel * VIMAGE:
192132332Smarcel *  * Each in6_multi corresponds to an ifp, and each ifp corresponds
193132332Smarcel *    to a vnet in ifp->if_vnet.
194132332Smarcel */
195132332Smarcelstatic struct mtx		 mld_mtx;
196132332SmarcelMALLOC_DEFINE(M_MLD, "mld", "mld state");
197132332Smarcel
198132332Smarcel#define	MLD_EMBEDSCOPE(pin6, zoneid)					\
199132332Smarcel	if (IN6_IS_SCOPE_LINKLOCAL(pin6) ||				\
200132332Smarcel	    IN6_IS_ADDR_MC_INTFACELOCAL(pin6))				\
201132332Smarcel		(pin6)->s6_addr16[1] = htons((zoneid) & 0xFFFF)		\
202132332Smarcel
203132332Smarcel/*
204132332Smarcel * VIMAGE-wide globals.
205132332Smarcel */
206132332Smarcelstatic VNET_DEFINE(struct timeval, mld_gsrdelay) = {10, 0};
207132332Smarcelstatic VNET_DEFINE(LIST_HEAD(, mld_ifinfo), mli_head);
208132332Smarcelstatic VNET_DEFINE(int, interface_timers_running6);
209132332Smarcelstatic VNET_DEFINE(int, state_change_timers_running6);
210132332Smarcelstatic VNET_DEFINE(int, current_state_timers_running6);
211132332Smarcel
212132332Smarcel#define	V_mld_gsrdelay			VNET(mld_gsrdelay)
213132332Smarcel#define	V_mli_head			VNET(mli_head)
214132332Smarcel#define	V_interface_timers_running6	VNET(interface_timers_running6)
215132332Smarcel#define	V_state_change_timers_running6	VNET(state_change_timers_running6)
216132332Smarcel#define	V_current_state_timers_running6	VNET(current_state_timers_running6)
217132332Smarcel
218132332SmarcelSYSCTL_DECL(_net_inet6);	/* Note: Not in any common header. */
219132332Smarcel
220132332SmarcelSYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW, 0,
221132332Smarcel    "IPv6 Multicast Listener Discovery");
222132332Smarcel
223132332Smarcel/*
224132332Smarcel * Virtualized sysctls.
225132332Smarcel */
226132332SmarcelSYSCTL_VNET_PROC(_net_inet6_mld, OID_AUTO, gsrdelay,
227132332Smarcel    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
228132332Smarcel    &VNET_NAME(mld_gsrdelay.tv_sec), 0, sysctl_mld_gsr, "I",
229132332Smarcel    "Rate limit for MLDv2 Group-and-Source queries in seconds");
230146818Sdfr
231146818Sdfr/*
232146818Sdfr * Non-virtualized sysctls.
233132332Smarcel */
234132332SmarcelSYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo, CTLFLAG_RD | CTLFLAG_MPSAFE,
235132332Smarcel    sysctl_mld_ifinfo, "Per-interface MLDv2 state");
236146818Sdfr
237146818Sdfrstatic int	mld_v1enable = 1;
238146818SdfrSYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RW,
239132332Smarcel    &mld_v1enable, 0, "Enable fallback to MLDv1");
240132332SmarcelTUNABLE_INT("net.inet6.mld.v1enable", &mld_v1enable);
241132332Smarcel
242180982Smarcelstatic int	mld_use_allow = 1;
243180982SmarcelSYSCTL_INT(_net_inet6_mld, OID_AUTO, use_allow, CTLFLAG_RW,
244132332Smarcel    &mld_use_allow, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves");
245132332SmarcelTUNABLE_INT("net.inet6.mld.use_allow", &mld_use_allow);
246132332Smarcel
247132332Smarcel/*
248132332Smarcel * Packed Router Alert option structure declaration.
249132332Smarcel */
250struct mld_raopt {
251	struct ip6_hbh		hbh;
252	struct ip6_opt		pad;
253	struct ip6_opt_router	ra;
254} __packed;
255
256/*
257 * Router Alert hop-by-hop option header.
258 */
259static struct mld_raopt mld_ra = {
260	.hbh = { 0, 0 },
261	.pad = { .ip6o_type = IP6OPT_PADN, 0 },
262	.ra = {
263	    .ip6or_type = IP6OPT_ROUTER_ALERT,
264	    .ip6or_len = IP6OPT_RTALERT_LEN - 2,
265	    .ip6or_value[0] = ((IP6OPT_RTALERT_MLD >> 8) & 0xFF),
266	    .ip6or_value[1] = (IP6OPT_RTALERT_MLD & 0xFF)
267	}
268};
269static struct ip6_pktopts mld_po;
270
271static __inline void
272mld_save_context(struct mbuf *m, struct ifnet *ifp)
273{
274
275#ifdef VIMAGE
276	m->m_pkthdr.header = ifp->if_vnet;
277#endif /* VIMAGE */
278	m->m_pkthdr.flowid = ifp->if_index;
279}
280
281static __inline void
282mld_scrub_context(struct mbuf *m)
283{
284
285	m->m_pkthdr.header = NULL;
286	m->m_pkthdr.flowid = 0;
287}
288
289/*
290 * Restore context from a queued output chain.
291 * Return saved ifindex.
292 *
293 * VIMAGE: The assertion is there to make sure that we
294 * actually called CURVNET_SET() with what's in the mbuf chain.
295 */
296static __inline uint32_t
297mld_restore_context(struct mbuf *m)
298{
299
300#if defined(VIMAGE) && defined(INVARIANTS)
301	KASSERT(curvnet == m->m_pkthdr.header,
302	    ("%s: called when curvnet was not restored", __func__));
303#endif
304	return (m->m_pkthdr.flowid);
305}
306
307/*
308 * Retrieve or set threshold between group-source queries in seconds.
309 *
310 * VIMAGE: Assume curvnet set by caller.
311 * SMPng: NOTE: Serialized by MLD lock.
312 */
313static int
314sysctl_mld_gsr(SYSCTL_HANDLER_ARGS)
315{
316	int error;
317	int i;
318
319	error = sysctl_wire_old_buffer(req, sizeof(int));
320	if (error)
321		return (error);
322
323	MLD_LOCK();
324
325	i = V_mld_gsrdelay.tv_sec;
326
327	error = sysctl_handle_int(oidp, &i, 0, req);
328	if (error || !req->newptr)
329		goto out_locked;
330
331	if (i < -1 || i >= 60) {
332		error = EINVAL;
333		goto out_locked;
334	}
335
336	CTR2(KTR_MLD, "change mld_gsrdelay from %d to %d",
337	     V_mld_gsrdelay.tv_sec, i);
338	V_mld_gsrdelay.tv_sec = i;
339
340out_locked:
341	MLD_UNLOCK();
342	return (error);
343}
344
345/*
346 * Expose struct mld_ifinfo to userland, keyed by ifindex.
347 * For use by ifmcstat(8).
348 *
349 * SMPng: NOTE: Does an unlocked ifindex space read.
350 * VIMAGE: Assume curvnet set by caller. The node handler itself
351 * is not directly virtualized.
352 */
353static int
354sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS)
355{
356	int			*name;
357	int			 error;
358	u_int			 namelen;
359	struct ifnet		*ifp;
360	struct mld_ifinfo	*mli;
361
362	name = (int *)arg1;
363	namelen = arg2;
364
365	if (req->newptr != NULL)
366		return (EPERM);
367
368	if (namelen != 1)
369		return (EINVAL);
370
371	error = sysctl_wire_old_buffer(req, sizeof(struct mld_ifinfo));
372	if (error)
373		return (error);
374
375	IN6_MULTI_LOCK();
376	MLD_LOCK();
377
378	if (name[0] <= 0 || name[0] > V_if_index) {
379		error = ENOENT;
380		goto out_locked;
381	}
382
383	error = ENOENT;
384
385	ifp = ifnet_byindex(name[0]);
386	if (ifp == NULL)
387		goto out_locked;
388
389	LIST_FOREACH(mli, &V_mli_head, mli_link) {
390		if (ifp == mli->mli_ifp) {
391			error = SYSCTL_OUT(req, mli,
392			    sizeof(struct mld_ifinfo));
393			break;
394		}
395	}
396
397out_locked:
398	MLD_UNLOCK();
399	IN6_MULTI_UNLOCK();
400	return (error);
401}
402
403/*
404 * Dispatch an entire queue of pending packet chains.
405 * VIMAGE: Assumes the vnet pointer has been set.
406 */
407static void
408mld_dispatch_queue(struct ifqueue *ifq, int limit)
409{
410	struct mbuf *m;
411
412	for (;;) {
413		_IF_DEQUEUE(ifq, m);
414		if (m == NULL)
415			break;
416		CTR3(KTR_MLD, "%s: dispatch %p from %p", __func__, ifq, m);
417		mld_dispatch_packet(m);
418		if (--limit == 0)
419			break;
420	}
421}
422
423/*
424 * Filter outgoing MLD report state by group.
425 *
426 * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1)
427 * and node-local addresses. However, kernel and socket consumers
428 * always embed the KAME scope ID in the address provided, so strip it
429 * when performing comparison.
430 * Note: This is not the same as the *multicast* scope.
431 *
432 * Return zero if the given group is one for which MLD reports
433 * should be suppressed, or non-zero if reports should be issued.
434 */
435static __inline int
436mld_is_addr_reported(const struct in6_addr *addr)
437{
438
439	KASSERT(IN6_IS_ADDR_MULTICAST(addr), ("%s: not multicast", __func__));
440
441	if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL)
442		return (0);
443
444	if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) {
445		struct in6_addr tmp = *addr;
446		in6_clearscope(&tmp);
447		if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes))
448			return (0);
449	}
450
451	return (1);
452}
453
454/*
455 * Attach MLD when PF_INET6 is attached to an interface.
456 *
457 * SMPng: Normally called with IF_AFDATA_LOCK held.
458 */
459struct mld_ifinfo *
460mld_domifattach(struct ifnet *ifp)
461{
462	struct mld_ifinfo *mli;
463
464	CTR3(KTR_MLD, "%s: called for ifp %p(%s)",
465	    __func__, ifp, ifp->if_xname);
466
467	MLD_LOCK();
468
469	mli = mli_alloc_locked(ifp);
470	if (!(ifp->if_flags & IFF_MULTICAST))
471		mli->mli_flags |= MLIF_SILENT;
472	if (mld_use_allow)
473		mli->mli_flags |= MLIF_USEALLOW;
474
475	MLD_UNLOCK();
476
477	return (mli);
478}
479
480/*
481 * VIMAGE: assume curvnet set by caller.
482 */
483static struct mld_ifinfo *
484mli_alloc_locked(/*const*/ struct ifnet *ifp)
485{
486	struct mld_ifinfo *mli;
487
488	MLD_LOCK_ASSERT();
489
490	mli = malloc(sizeof(struct mld_ifinfo), M_MLD, M_NOWAIT|M_ZERO);
491	if (mli == NULL)
492		goto out;
493
494	mli->mli_ifp = ifp;
495	mli->mli_version = MLD_VERSION_2;
496	mli->mli_flags = 0;
497	mli->mli_rv = MLD_RV_INIT;
498	mli->mli_qi = MLD_QI_INIT;
499	mli->mli_qri = MLD_QRI_INIT;
500	mli->mli_uri = MLD_URI_INIT;
501
502	SLIST_INIT(&mli->mli_relinmhead);
503
504	/*
505	 * Responses to general queries are subject to bounds.
506	 */
507	IFQ_SET_MAXLEN(&mli->mli_gq, MLD_MAX_RESPONSE_PACKETS);
508
509	LIST_INSERT_HEAD(&V_mli_head, mli, mli_link);
510
511	CTR2(KTR_MLD, "allocate mld_ifinfo for ifp %p(%s)",
512	     ifp, ifp->if_xname);
513
514out:
515	return (mli);
516}
517
518/*
519 * Hook for ifdetach.
520 *
521 * NOTE: Some finalization tasks need to run before the protocol domain
522 * is detached, but also before the link layer does its cleanup.
523 * Run before link-layer cleanup; cleanup groups, but do not free MLD state.
524 *
525 * SMPng: Caller must hold IN6_MULTI_LOCK().
526 * Must take IF_ADDR_LOCK() to cover if_multiaddrs iterator.
527 * XXX This routine is also bitten by unlocked ifma_protospec access.
528 */
529void
530mld_ifdetach(struct ifnet *ifp)
531{
532	struct mld_ifinfo	*mli;
533	struct ifmultiaddr	*ifma;
534	struct in6_multi	*inm, *tinm;
535
536	CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp,
537	    ifp->if_xname);
538
539	IN6_MULTI_LOCK_ASSERT();
540	MLD_LOCK();
541
542	mli = MLD_IFINFO(ifp);
543	if (mli->mli_version == MLD_VERSION_2) {
544		IF_ADDR_LOCK(ifp);
545		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
546			if (ifma->ifma_addr->sa_family != AF_INET6 ||
547			    ifma->ifma_protospec == NULL)
548				continue;
549			inm = (struct in6_multi *)ifma->ifma_protospec;
550			if (inm->in6m_state == MLD_LEAVING_MEMBER) {
551				SLIST_INSERT_HEAD(&mli->mli_relinmhead,
552				    inm, in6m_nrele);
553			}
554			in6m_clear_recorded(inm);
555		}
556		IF_ADDR_UNLOCK(ifp);
557		SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele,
558		    tinm) {
559			SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele);
560			in6m_release_locked(inm);
561		}
562	}
563
564	MLD_UNLOCK();
565}
566
567/*
568 * Hook for domifdetach.
569 * Runs after link-layer cleanup; free MLD state.
570 *
571 * SMPng: Normally called with IF_AFDATA_LOCK held.
572 */
573void
574mld_domifdetach(struct ifnet *ifp)
575{
576
577	CTR3(KTR_MLD, "%s: called for ifp %p(%s)",
578	    __func__, ifp, ifp->if_xname);
579
580	MLD_LOCK();
581	mli_delete_locked(ifp);
582	MLD_UNLOCK();
583}
584
585static void
586mli_delete_locked(const struct ifnet *ifp)
587{
588	struct mld_ifinfo *mli, *tmli;
589
590	CTR3(KTR_MLD, "%s: freeing mld_ifinfo for ifp %p(%s)",
591	    __func__, ifp, ifp->if_xname);
592
593	MLD_LOCK_ASSERT();
594
595	LIST_FOREACH_SAFE(mli, &V_mli_head, mli_link, tmli) {
596		if (mli->mli_ifp == ifp) {
597			/*
598			 * Free deferred General Query responses.
599			 */
600			_IF_DRAIN(&mli->mli_gq);
601
602			LIST_REMOVE(mli, mli_link);
603
604			KASSERT(SLIST_EMPTY(&mli->mli_relinmhead),
605			    ("%s: there are dangling in_multi references",
606			    __func__));
607
608			free(mli, M_MLD);
609			return;
610		}
611	}
612#ifdef INVARIANTS
613	panic("%s: mld_ifinfo not found for ifp %p\n", __func__,  ifp);
614#endif
615}
616
617/*
618 * Process a received MLDv1 general or address-specific query.
619 * Assumes that the query header has been pulled up to sizeof(mld_hdr).
620 *
621 * NOTE: Can't be fully const correct as we temporarily embed scope ID in
622 * mld_addr. This is OK as we own the mbuf chain.
623 */
624static int
625mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6,
626    /*const*/ struct mld_hdr *mld)
627{
628	struct ifmultiaddr	*ifma;
629	struct mld_ifinfo	*mli;
630	struct in6_multi	*inm;
631	int			 is_general_query;
632	uint16_t		 timer;
633#ifdef KTR
634	char			 ip6tbuf[INET6_ADDRSTRLEN];
635#endif
636
637	is_general_query = 0;
638
639	if (!mld_v1enable) {
640		CTR3(KTR_MLD, "ignore v1 query %s on ifp %p(%s)",
641		    ip6_sprintf(ip6tbuf, &mld->mld_addr),
642		    ifp, ifp->if_xname);
643		return (0);
644	}
645
646	/*
647	 * RFC3810 Section 6.2: MLD queries must originate from
648	 * a router's link-local address.
649	 */
650	if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
651		CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)",
652		    ip6_sprintf(ip6tbuf, &ip6->ip6_src),
653		    ifp, ifp->if_xname);
654		return (0);
655	}
656
657	/*
658	 * Do address field validation upfront before we accept
659	 * the query.
660	 */
661	if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) {
662		/*
663		 * MLDv1 General Query.
664		 * If this was not sent to the all-nodes group, ignore it.
665		 */
666		struct in6_addr		 dst;
667
668		dst = ip6->ip6_dst;
669		in6_clearscope(&dst);
670		if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes))
671			return (EINVAL);
672		is_general_query = 1;
673	} else {
674		/*
675		 * Embed scope ID of receiving interface in MLD query for
676		 * lookup whilst we don't hold other locks.
677		 */
678		in6_setscope(&mld->mld_addr, ifp, NULL);
679	}
680
681	IN6_MULTI_LOCK();
682	MLD_LOCK();
683	IF_ADDR_LOCK(ifp);
684
685	/*
686	 * Switch to MLDv1 host compatibility mode.
687	 */
688	mli = MLD_IFINFO(ifp);
689	KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp));
690	mld_set_version(mli, MLD_VERSION_1);
691
692	timer = (ntohs(mld->mld_maxdelay) * PR_FASTHZ) / MLD_TIMER_SCALE;
693	if (timer == 0)
694		timer = 1;
695
696	if (is_general_query) {
697		/*
698		 * For each reporting group joined on this
699		 * interface, kick the report timer.
700		 */
701		CTR2(KTR_MLD, "process v1 general query on ifp %p(%s)",
702		    ifp, ifp->if_xname);
703		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
704			if (ifma->ifma_addr->sa_family != AF_INET6 ||
705			    ifma->ifma_protospec == NULL)
706				continue;
707			inm = (struct in6_multi *)ifma->ifma_protospec;
708			mld_v1_update_group(inm, timer);
709		}
710	} else {
711		/*
712		 * MLDv1 Group-Specific Query.
713		 * If this is a group-specific MLDv1 query, we need only
714		 * look up the single group to process it.
715		 */
716		inm = in6m_lookup_locked(ifp, &mld->mld_addr);
717		if (inm != NULL) {
718			CTR3(KTR_MLD, "process v1 query %s on ifp %p(%s)",
719			    ip6_sprintf(ip6tbuf, &mld->mld_addr),
720			    ifp, ifp->if_xname);
721			mld_v1_update_group(inm, timer);
722		}
723		/* XXX Clear embedded scope ID as userland won't expect it. */
724		in6_clearscope(&mld->mld_addr);
725	}
726
727	IF_ADDR_UNLOCK(ifp);
728	MLD_UNLOCK();
729	IN6_MULTI_UNLOCK();
730
731	return (0);
732}
733
734/*
735 * Update the report timer on a group in response to an MLDv1 query.
736 *
737 * If we are becoming the reporting member for this group, start the timer.
738 * If we already are the reporting member for this group, and timer is
739 * below the threshold, reset it.
740 *
741 * We may be updating the group for the first time since we switched
742 * to MLDv2. If we are, then we must clear any recorded source lists,
743 * and transition to REPORTING state; the group timer is overloaded
744 * for group and group-source query responses.
745 *
746 * Unlike MLDv2, the delay per group should be jittered
747 * to avoid bursts of MLDv1 reports.
748 */
749static void
750mld_v1_update_group(struct in6_multi *inm, const int timer)
751{
752#ifdef KTR
753	char			 ip6tbuf[INET6_ADDRSTRLEN];
754#endif
755
756	CTR4(KTR_MLD, "%s: %s/%s timer=%d", __func__,
757	    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
758	    inm->in6m_ifp->if_xname, timer);
759
760	IN6_MULTI_LOCK_ASSERT();
761
762	switch (inm->in6m_state) {
763	case MLD_NOT_MEMBER:
764	case MLD_SILENT_MEMBER:
765		break;
766	case MLD_REPORTING_MEMBER:
767		if (inm->in6m_timer != 0 &&
768		    inm->in6m_timer <= timer) {
769			CTR1(KTR_MLD, "%s: REPORTING and timer running, "
770			    "skipping.", __func__);
771			break;
772		}
773		/* FALLTHROUGH */
774	case MLD_SG_QUERY_PENDING_MEMBER:
775	case MLD_G_QUERY_PENDING_MEMBER:
776	case MLD_IDLE_MEMBER:
777	case MLD_LAZY_MEMBER:
778	case MLD_AWAKENING_MEMBER:
779		CTR1(KTR_MLD, "%s: ->REPORTING", __func__);
780		inm->in6m_state = MLD_REPORTING_MEMBER;
781		inm->in6m_timer = MLD_RANDOM_DELAY(timer);
782		V_current_state_timers_running6 = 1;
783		break;
784	case MLD_SLEEPING_MEMBER:
785		CTR1(KTR_MLD, "%s: ->AWAKENING", __func__);
786		inm->in6m_state = MLD_AWAKENING_MEMBER;
787		break;
788	case MLD_LEAVING_MEMBER:
789		break;
790	}
791}
792
793/*
794 * Process a received MLDv2 general, group-specific or
795 * group-and-source-specific query.
796 *
797 * Assumes that the query header has been pulled up to sizeof(mldv2_query).
798 *
799 * Return 0 if successful, otherwise an appropriate error code is returned.
800 */
801static int
802mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6,
803    struct mbuf *m, const int off, const int icmp6len)
804{
805	struct mld_ifinfo	*mli;
806	struct mldv2_query	*mld;
807	struct in6_multi	*inm;
808	uint32_t		 maxdelay, nsrc, qqi;
809	int			 is_general_query;
810	uint16_t		 timer;
811	uint8_t			 qrv;
812#ifdef KTR
813	char			 ip6tbuf[INET6_ADDRSTRLEN];
814#endif
815
816	is_general_query = 0;
817
818	/*
819	 * RFC3810 Section 6.2: MLD queries must originate from
820	 * a router's link-local address.
821	 */
822	if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
823		CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)",
824		    ip6_sprintf(ip6tbuf, &ip6->ip6_src),
825		    ifp, ifp->if_xname);
826		return (0);
827	}
828
829	CTR2(KTR_MLD, "input v2 query on ifp %p(%s)", ifp, ifp->if_xname);
830
831	mld = (struct mldv2_query *)(mtod(m, uint8_t *) + off);
832
833	maxdelay = ntohs(mld->mld_maxdelay);	/* in 1/10ths of a second */
834	if (maxdelay >= 32678) {
835		maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) <<
836			   (MLD_MRC_EXP(maxdelay) + 3);
837	}
838	timer = (maxdelay * PR_FASTHZ) / MLD_TIMER_SCALE;
839	if (timer == 0)
840		timer = 1;
841
842	qrv = MLD_QRV(mld->mld_misc);
843	if (qrv < 2) {
844		CTR3(KTR_MLD, "%s: clamping qrv %d to %d", __func__,
845		    qrv, MLD_RV_INIT);
846		qrv = MLD_RV_INIT;
847	}
848
849	qqi = mld->mld_qqi;
850	if (qqi >= 128) {
851		qqi = MLD_QQIC_MANT(mld->mld_qqi) <<
852		     (MLD_QQIC_EXP(mld->mld_qqi) + 3);
853	}
854
855	nsrc = ntohs(mld->mld_numsrc);
856	if (nsrc > MLD_MAX_GS_SOURCES)
857		return (EMSGSIZE);
858	if (icmp6len < sizeof(struct mldv2_query) +
859	    (nsrc * sizeof(struct in6_addr)))
860		return (EMSGSIZE);
861
862	/*
863	 * Do further input validation upfront to avoid resetting timers
864	 * should we need to discard this query.
865	 */
866	if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) {
867		/*
868		 * General Queries SHOULD be directed to ff02::1.
869		 * A general query with a source list has undefined
870		 * behaviour; discard it.
871		 */
872		struct in6_addr		 dst;
873
874		dst = ip6->ip6_dst;
875		in6_clearscope(&dst);
876		if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes) ||
877		    nsrc > 0)
878			return (EINVAL);
879		is_general_query = 1;
880	} else {
881		/*
882		 * Embed scope ID of receiving interface in MLD query for
883		 * lookup whilst we don't hold other locks (due to KAME
884		 * locking lameness). We own this mbuf chain just now.
885		 */
886		in6_setscope(&mld->mld_addr, ifp, NULL);
887	}
888
889	IN6_MULTI_LOCK();
890	MLD_LOCK();
891	IF_ADDR_LOCK(ifp);
892
893	mli = MLD_IFINFO(ifp);
894	KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp));
895
896	/*
897	 * Discard the v2 query if we're in Compatibility Mode.
898	 * The RFC is pretty clear that hosts need to stay in MLDv1 mode
899	 * until the Old Version Querier Present timer expires.
900	 */
901	if (mli->mli_version != MLD_VERSION_2)
902		goto out_locked;
903
904	mld_set_version(mli, MLD_VERSION_2);
905	mli->mli_rv = qrv;
906	mli->mli_qi = qqi;
907	mli->mli_qri = maxdelay;
908
909	CTR4(KTR_MLD, "%s: qrv %d qi %d maxdelay %d", __func__, qrv, qqi,
910	    maxdelay);
911
912	if (is_general_query) {
913		/*
914		 * MLDv2 General Query.
915		 *
916		 * Schedule a current-state report on this ifp for
917		 * all groups, possibly containing source lists.
918		 *
919		 * If there is a pending General Query response
920		 * scheduled earlier than the selected delay, do
921		 * not schedule any other reports.
922		 * Otherwise, reset the interface timer.
923		 */
924		CTR2(KTR_MLD, "process v2 general query on ifp %p(%s)",
925		    ifp, ifp->if_xname);
926		if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) {
927			mli->mli_v2_timer = MLD_RANDOM_DELAY(timer);
928			V_interface_timers_running6 = 1;
929		}
930	} else {
931		/*
932		 * MLDv2 Group-specific or Group-and-source-specific Query.
933		 *
934		 * Group-source-specific queries are throttled on
935		 * a per-group basis to defeat denial-of-service attempts.
936		 * Queries for groups we are not a member of on this
937		 * link are simply ignored.
938		 */
939		inm = in6m_lookup_locked(ifp, &mld->mld_addr);
940		if (inm == NULL)
941			goto out_locked;
942		if (nsrc > 0) {
943			if (!ratecheck(&inm->in6m_lastgsrtv,
944			    &V_mld_gsrdelay)) {
945				CTR1(KTR_MLD, "%s: GS query throttled.",
946				    __func__);
947				goto out_locked;
948			}
949		}
950		CTR2(KTR_MLD, "process v2 group query on ifp %p(%s)",
951		     ifp, ifp->if_xname);
952		/*
953		 * If there is a pending General Query response
954		 * scheduled sooner than the selected delay, no
955		 * further report need be scheduled.
956		 * Otherwise, prepare to respond to the
957		 * group-specific or group-and-source query.
958		 */
959		if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer)
960			mld_v2_process_group_query(inm, mli, timer, m, off);
961
962		/* XXX Clear embedded scope ID as userland won't expect it. */
963		in6_clearscope(&mld->mld_addr);
964	}
965
966out_locked:
967	IF_ADDR_UNLOCK(ifp);
968	MLD_UNLOCK();
969	IN6_MULTI_UNLOCK();
970
971	return (0);
972}
973
974/*
975 * Process a recieved MLDv2 group-specific or group-and-source-specific
976 * query.
977 * Return <0 if any error occured. Currently this is ignored.
978 */
979static int
980mld_v2_process_group_query(struct in6_multi *inm, struct mld_ifinfo *mli,
981    int timer, struct mbuf *m0, const int off)
982{
983	struct mldv2_query	*mld;
984	int			 retval;
985	uint16_t		 nsrc;
986
987	IN6_MULTI_LOCK_ASSERT();
988	MLD_LOCK_ASSERT();
989
990	retval = 0;
991	mld = (struct mldv2_query *)(mtod(m0, uint8_t *) + off);
992
993	switch (inm->in6m_state) {
994	case MLD_NOT_MEMBER:
995	case MLD_SILENT_MEMBER:
996	case MLD_SLEEPING_MEMBER:
997	case MLD_LAZY_MEMBER:
998	case MLD_AWAKENING_MEMBER:
999	case MLD_IDLE_MEMBER:
1000	case MLD_LEAVING_MEMBER:
1001		return (retval);
1002		break;
1003	case MLD_REPORTING_MEMBER:
1004	case MLD_G_QUERY_PENDING_MEMBER:
1005	case MLD_SG_QUERY_PENDING_MEMBER:
1006		break;
1007	}
1008
1009	nsrc = ntohs(mld->mld_numsrc);
1010
1011	/*
1012	 * Deal with group-specific queries upfront.
1013	 * If any group query is already pending, purge any recorded
1014	 * source-list state if it exists, and schedule a query response
1015	 * for this group-specific query.
1016	 */
1017	if (nsrc == 0) {
1018		if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER ||
1019		    inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) {
1020			in6m_clear_recorded(inm);
1021			timer = min(inm->in6m_timer, timer);
1022		}
1023		inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER;
1024		inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1025		V_current_state_timers_running6 = 1;
1026		return (retval);
1027	}
1028
1029	/*
1030	 * Deal with the case where a group-and-source-specific query has
1031	 * been received but a group-specific query is already pending.
1032	 */
1033	if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) {
1034		timer = min(inm->in6m_timer, timer);
1035		inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1036		V_current_state_timers_running6 = 1;
1037		return (retval);
1038	}
1039
1040	/*
1041	 * Finally, deal with the case where a group-and-source-specific
1042	 * query has been received, where a response to a previous g-s-r
1043	 * query exists, or none exists.
1044	 * In this case, we need to parse the source-list which the Querier
1045	 * has provided us with and check if we have any source list filter
1046	 * entries at T1 for these sources. If we do not, there is no need
1047	 * schedule a report and the query may be dropped.
1048	 * If we do, we must record them and schedule a current-state
1049	 * report for those sources.
1050	 */
1051	if (inm->in6m_nsrc > 0) {
1052		struct mbuf		*m;
1053		uint8_t			*sp;
1054		int			 i, nrecorded;
1055		int			 soff;
1056
1057		m = m0;
1058		soff = off + sizeof(struct mldv2_query);
1059		nrecorded = 0;
1060		for (i = 0; i < nsrc; i++) {
1061			sp = mtod(m, uint8_t *) + soff;
1062			retval = in6m_record_source(inm,
1063			    (const struct in6_addr *)sp);
1064			if (retval < 0)
1065				break;
1066			nrecorded += retval;
1067			soff += sizeof(struct in6_addr);
1068			if (soff >= m->m_len) {
1069				soff = soff - m->m_len;
1070				m = m->m_next;
1071				if (m == NULL)
1072					break;
1073			}
1074		}
1075		if (nrecorded > 0) {
1076			CTR1(KTR_MLD,
1077			    "%s: schedule response to SG query", __func__);
1078			inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER;
1079			inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1080			V_current_state_timers_running6 = 1;
1081		}
1082	}
1083
1084	return (retval);
1085}
1086
1087/*
1088 * Process a received MLDv1 host membership report.
1089 * Assumes mld points to mld_hdr in pulled up mbuf chain.
1090 *
1091 * NOTE: Can't be fully const correct as we temporarily embed scope ID in
1092 * mld_addr. This is OK as we own the mbuf chain.
1093 */
1094static int
1095mld_v1_input_report(struct ifnet *ifp, const struct ip6_hdr *ip6,
1096    /*const*/ struct mld_hdr *mld)
1097{
1098	struct in6_addr		 src, dst;
1099	struct in6_ifaddr	*ia;
1100	struct in6_multi	*inm;
1101#ifdef KTR
1102	char			 ip6tbuf[INET6_ADDRSTRLEN];
1103#endif
1104
1105	if (!mld_v1enable) {
1106		CTR3(KTR_MLD, "ignore v1 report %s on ifp %p(%s)",
1107		    ip6_sprintf(ip6tbuf, &mld->mld_addr),
1108		    ifp, ifp->if_xname);
1109		return (0);
1110	}
1111
1112	if (ifp->if_flags & IFF_LOOPBACK)
1113		return (0);
1114
1115	/*
1116	 * MLDv1 reports must originate from a host's link-local address,
1117	 * or the unspecified address (when booting).
1118	 */
1119	src = ip6->ip6_src;
1120	in6_clearscope(&src);
1121	if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) {
1122		CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)",
1123		    ip6_sprintf(ip6tbuf, &ip6->ip6_src),
1124		    ifp, ifp->if_xname);
1125		return (EINVAL);
1126	}
1127
1128	/*
1129	 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast
1130	 * group, and must be directed to the group itself.
1131	 */
1132	dst = ip6->ip6_dst;
1133	in6_clearscope(&dst);
1134	if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) ||
1135	    !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) {
1136		CTR3(KTR_MLD, "ignore v1 query dst %s on ifp %p(%s)",
1137		    ip6_sprintf(ip6tbuf, &ip6->ip6_dst),
1138		    ifp, ifp->if_xname);
1139		return (EINVAL);
1140	}
1141
1142	/*
1143	 * Make sure we don't hear our own membership report, as fast
1144	 * leave requires knowing that we are the only member of a
1145	 * group. Assume we used the link-local address if available,
1146	 * otherwise look for ::.
1147	 *
1148	 * XXX Note that scope ID comparison is needed for the address
1149	 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be
1150	 * performed for the on-wire address.
1151	 */
1152	ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
1153	if ((ia && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia))) ||
1154	    (ia == NULL && IN6_IS_ADDR_UNSPECIFIED(&src))) {
1155		if (ia != NULL)
1156			ifa_free(&ia->ia_ifa);
1157		return (0);
1158	}
1159	if (ia != NULL)
1160		ifa_free(&ia->ia_ifa);
1161
1162	CTR3(KTR_MLD, "process v1 report %s on ifp %p(%s)",
1163	    ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, ifp->if_xname);
1164
1165	/*
1166	 * Embed scope ID of receiving interface in MLD query for lookup
1167	 * whilst we don't hold other locks (due to KAME locking lameness).
1168	 */
1169	if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr))
1170		in6_setscope(&mld->mld_addr, ifp, NULL);
1171
1172	IN6_MULTI_LOCK();
1173	MLD_LOCK();
1174	IF_ADDR_LOCK(ifp);
1175
1176	/*
1177	 * MLDv1 report suppression.
1178	 * If we are a member of this group, and our membership should be
1179	 * reported, and our group timer is pending or about to be reset,
1180	 * stop our group timer by transitioning to the 'lazy' state.
1181	 */
1182	inm = in6m_lookup_locked(ifp, &mld->mld_addr);
1183	if (inm != NULL) {
1184		struct mld_ifinfo *mli;
1185
1186		mli = inm->in6m_mli;
1187		KASSERT(mli != NULL,
1188		    ("%s: no mli for ifp %p", __func__, ifp));
1189
1190		/*
1191		 * If we are in MLDv2 host mode, do not allow the
1192		 * other host's MLDv1 report to suppress our reports.
1193		 */
1194		if (mli->mli_version == MLD_VERSION_2)
1195			goto out_locked;
1196
1197		inm->in6m_timer = 0;
1198
1199		switch (inm->in6m_state) {
1200		case MLD_NOT_MEMBER:
1201		case MLD_SILENT_MEMBER:
1202		case MLD_SLEEPING_MEMBER:
1203			break;
1204		case MLD_REPORTING_MEMBER:
1205		case MLD_IDLE_MEMBER:
1206		case MLD_AWAKENING_MEMBER:
1207			CTR3(KTR_MLD,
1208			    "report suppressed for %s on ifp %p(%s)",
1209			    ip6_sprintf(ip6tbuf, &mld->mld_addr),
1210			    ifp, ifp->if_xname);
1211		case MLD_LAZY_MEMBER:
1212			inm->in6m_state = MLD_LAZY_MEMBER;
1213			break;
1214		case MLD_G_QUERY_PENDING_MEMBER:
1215		case MLD_SG_QUERY_PENDING_MEMBER:
1216		case MLD_LEAVING_MEMBER:
1217			break;
1218		}
1219	}
1220
1221out_locked:
1222	MLD_UNLOCK();
1223	IF_ADDR_UNLOCK(ifp);
1224	IN6_MULTI_UNLOCK();
1225
1226	/* XXX Clear embedded scope ID as userland won't expect it. */
1227	in6_clearscope(&mld->mld_addr);
1228
1229	return (0);
1230}
1231
1232/*
1233 * MLD input path.
1234 *
1235 * Assume query messages which fit in a single ICMPv6 message header
1236 * have been pulled up.
1237 * Assume that userland will want to see the message, even if it
1238 * otherwise fails kernel input validation; do not free it.
1239 * Pullup may however free the mbuf chain m if it fails.
1240 *
1241 * Return IPPROTO_DONE if we freed m. Otherwise, return 0.
1242 */
1243int
1244mld_input(struct mbuf *m, int off, int icmp6len)
1245{
1246	struct ifnet	*ifp;
1247	struct ip6_hdr	*ip6;
1248	struct mld_hdr	*mld;
1249	int		 mldlen;
1250
1251	CTR3(KTR_MLD, "%s: called w/mbuf (%p,%d)", __func__, m, off);
1252
1253	ifp = m->m_pkthdr.rcvif;
1254
1255	ip6 = mtod(m, struct ip6_hdr *);
1256
1257	/* Pullup to appropriate size. */
1258	mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off);
1259	if (mld->mld_type == MLD_LISTENER_QUERY &&
1260	    icmp6len >= sizeof(struct mldv2_query)) {
1261		mldlen = sizeof(struct mldv2_query);
1262	} else {
1263		mldlen = sizeof(struct mld_hdr);
1264	}
1265	IP6_EXTHDR_GET(mld, struct mld_hdr *, m, off, mldlen);
1266	if (mld == NULL) {
1267		ICMP6STAT_INC(icp6s_badlen);
1268		return (IPPROTO_DONE);
1269	}
1270
1271	/*
1272	 * Userland needs to see all of this traffic for implementing
1273	 * the endpoint discovery portion of multicast routing.
1274	 */
1275	switch (mld->mld_type) {
1276	case MLD_LISTENER_QUERY:
1277		icmp6_ifstat_inc(ifp, ifs6_in_mldquery);
1278		if (icmp6len == sizeof(struct mld_hdr)) {
1279			if (mld_v1_input_query(ifp, ip6, mld) != 0)
1280				return (0);
1281		} else if (icmp6len >= sizeof(struct mldv2_query)) {
1282			if (mld_v2_input_query(ifp, ip6, m, off,
1283			    icmp6len) != 0)
1284				return (0);
1285		}
1286		break;
1287	case MLD_LISTENER_REPORT:
1288		icmp6_ifstat_inc(ifp, ifs6_in_mldreport);
1289		if (mld_v1_input_report(ifp, ip6, mld) != 0)
1290			return (0);
1291		break;
1292	case MLDV2_LISTENER_REPORT:
1293		icmp6_ifstat_inc(ifp, ifs6_in_mldreport);
1294		break;
1295	case MLD_LISTENER_DONE:
1296		icmp6_ifstat_inc(ifp, ifs6_in_mlddone);
1297		break;
1298	default:
1299		break;
1300	}
1301
1302	return (0);
1303}
1304
1305/*
1306 * Fast timeout handler (global).
1307 * VIMAGE: Timeout handlers are expected to service all vimages.
1308 */
1309void
1310mld_fasttimo(void)
1311{
1312	VNET_ITERATOR_DECL(vnet_iter);
1313
1314	VNET_LIST_RLOCK_NOSLEEP();
1315	VNET_FOREACH(vnet_iter) {
1316		CURVNET_SET(vnet_iter);
1317		mld_fasttimo_vnet();
1318		CURVNET_RESTORE();
1319	}
1320	VNET_LIST_RUNLOCK_NOSLEEP();
1321}
1322
1323/*
1324 * Fast timeout handler (per-vnet).
1325 *
1326 * VIMAGE: Assume caller has set up our curvnet.
1327 */
1328static void
1329mld_fasttimo_vnet(void)
1330{
1331	struct ifqueue		 scq;	/* State-change packets */
1332	struct ifqueue		 qrq;	/* Query response packets */
1333	struct ifnet		*ifp;
1334	struct mld_ifinfo	*mli;
1335	struct ifmultiaddr	*ifma, *tifma;
1336	struct in6_multi	*inm;
1337	int			 uri_fasthz;
1338
1339	uri_fasthz = 0;
1340
1341	/*
1342	 * Quick check to see if any work needs to be done, in order to
1343	 * minimize the overhead of fasttimo processing.
1344	 * SMPng: XXX Unlocked reads.
1345	 */
1346	if (!V_current_state_timers_running6 &&
1347	    !V_interface_timers_running6 &&
1348	    !V_state_change_timers_running6)
1349		return;
1350
1351	IN6_MULTI_LOCK();
1352	MLD_LOCK();
1353
1354	/*
1355	 * MLDv2 General Query response timer processing.
1356	 */
1357	if (V_interface_timers_running6) {
1358		CTR1(KTR_MLD, "%s: interface timers running", __func__);
1359
1360		V_interface_timers_running6 = 0;
1361		LIST_FOREACH(mli, &V_mli_head, mli_link) {
1362			if (mli->mli_v2_timer == 0) {
1363				/* Do nothing. */
1364			} else if (--mli->mli_v2_timer == 0) {
1365				mld_v2_dispatch_general_query(mli);
1366			} else {
1367				V_interface_timers_running6 = 1;
1368			}
1369		}
1370	}
1371
1372	if (!V_current_state_timers_running6 &&
1373	    !V_state_change_timers_running6)
1374		goto out_locked;
1375
1376	V_current_state_timers_running6 = 0;
1377	V_state_change_timers_running6 = 0;
1378
1379	CTR1(KTR_MLD, "%s: state change timers running", __func__);
1380
1381	/*
1382	 * MLD host report and state-change timer processing.
1383	 * Note: Processing a v2 group timer may remove a node.
1384	 */
1385	LIST_FOREACH(mli, &V_mli_head, mli_link) {
1386		ifp = mli->mli_ifp;
1387
1388		if (mli->mli_version == MLD_VERSION_2) {
1389			uri_fasthz = MLD_RANDOM_DELAY(mli->mli_uri *
1390			    PR_FASTHZ);
1391
1392			memset(&qrq, 0, sizeof(struct ifqueue));
1393			IFQ_SET_MAXLEN(&qrq, MLD_MAX_G_GS_PACKETS);
1394
1395			memset(&scq, 0, sizeof(struct ifqueue));
1396			IFQ_SET_MAXLEN(&scq, MLD_MAX_STATE_CHANGE_PACKETS);
1397		}
1398
1399		IF_ADDR_LOCK(ifp);
1400		TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link,
1401		    tifma) {
1402			if (ifma->ifma_addr->sa_family != AF_INET6 ||
1403			    ifma->ifma_protospec == NULL)
1404				continue;
1405			inm = (struct in6_multi *)ifma->ifma_protospec;
1406			switch (mli->mli_version) {
1407			case MLD_VERSION_1:
1408				/*
1409				 * XXX Drop IF_ADDR lock temporarily to
1410				 * avoid recursion caused by a potential
1411				 * call by in6ifa_ifpforlinklocal().
1412				 * rwlock candidate?
1413				 */
1414				IF_ADDR_UNLOCK(ifp);
1415				mld_v1_process_group_timer(inm,
1416				    mli->mli_version);
1417				IF_ADDR_LOCK(ifp);
1418				break;
1419			case MLD_VERSION_2:
1420				mld_v2_process_group_timers(mli, &qrq,
1421				    &scq, inm, uri_fasthz);
1422				break;
1423			}
1424		}
1425		IF_ADDR_UNLOCK(ifp);
1426
1427		if (mli->mli_version == MLD_VERSION_2) {
1428			struct in6_multi		*tinm;
1429
1430			mld_dispatch_queue(&qrq, 0);
1431			mld_dispatch_queue(&scq, 0);
1432
1433			/*
1434			 * Free the in_multi reference(s) for
1435			 * this lifecycle.
1436			 */
1437			SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead,
1438			    in6m_nrele, tinm) {
1439				SLIST_REMOVE_HEAD(&mli->mli_relinmhead,
1440				    in6m_nrele);
1441				in6m_release_locked(inm);
1442			}
1443		}
1444	}
1445
1446out_locked:
1447	MLD_UNLOCK();
1448	IN6_MULTI_UNLOCK();
1449}
1450
1451/*
1452 * Update host report group timer.
1453 * Will update the global pending timer flags.
1454 */
1455static void
1456mld_v1_process_group_timer(struct in6_multi *inm, const int version)
1457{
1458	int report_timer_expired;
1459
1460	IN6_MULTI_LOCK_ASSERT();
1461	MLD_LOCK_ASSERT();
1462
1463	if (inm->in6m_timer == 0) {
1464		report_timer_expired = 0;
1465	} else if (--inm->in6m_timer == 0) {
1466		report_timer_expired = 1;
1467	} else {
1468		V_current_state_timers_running6 = 1;
1469		return;
1470	}
1471
1472	switch (inm->in6m_state) {
1473	case MLD_NOT_MEMBER:
1474	case MLD_SILENT_MEMBER:
1475	case MLD_IDLE_MEMBER:
1476	case MLD_LAZY_MEMBER:
1477	case MLD_SLEEPING_MEMBER:
1478	case MLD_AWAKENING_MEMBER:
1479		break;
1480	case MLD_REPORTING_MEMBER:
1481		if (report_timer_expired) {
1482			inm->in6m_state = MLD_IDLE_MEMBER;
1483			(void)mld_v1_transmit_report(inm,
1484			     MLD_LISTENER_REPORT);
1485		}
1486		break;
1487	case MLD_G_QUERY_PENDING_MEMBER:
1488	case MLD_SG_QUERY_PENDING_MEMBER:
1489	case MLD_LEAVING_MEMBER:
1490		break;
1491	}
1492}
1493
1494/*
1495 * Update a group's timers for MLDv2.
1496 * Will update the global pending timer flags.
1497 * Note: Unlocked read from mli.
1498 */
1499static void
1500mld_v2_process_group_timers(struct mld_ifinfo *mli,
1501    struct ifqueue *qrq, struct ifqueue *scq,
1502    struct in6_multi *inm, const int uri_fasthz)
1503{
1504	int query_response_timer_expired;
1505	int state_change_retransmit_timer_expired;
1506#ifdef KTR
1507	char ip6tbuf[INET6_ADDRSTRLEN];
1508#endif
1509
1510	IN6_MULTI_LOCK_ASSERT();
1511	MLD_LOCK_ASSERT();
1512
1513	query_response_timer_expired = 0;
1514	state_change_retransmit_timer_expired = 0;
1515
1516	/*
1517	 * During a transition from compatibility mode back to MLDv2,
1518	 * a group record in REPORTING state may still have its group
1519	 * timer active. This is a no-op in this function; it is easier
1520	 * to deal with it here than to complicate the slow-timeout path.
1521	 */
1522	if (inm->in6m_timer == 0) {
1523		query_response_timer_expired = 0;
1524	} else if (--inm->in6m_timer == 0) {
1525		query_response_timer_expired = 1;
1526	} else {
1527		V_current_state_timers_running6 = 1;
1528	}
1529
1530	if (inm->in6m_sctimer == 0) {
1531		state_change_retransmit_timer_expired = 0;
1532	} else if (--inm->in6m_sctimer == 0) {
1533		state_change_retransmit_timer_expired = 1;
1534	} else {
1535		V_state_change_timers_running6 = 1;
1536	}
1537
1538	/* We are in fasttimo, so be quick about it. */
1539	if (!state_change_retransmit_timer_expired &&
1540	    !query_response_timer_expired)
1541		return;
1542
1543	switch (inm->in6m_state) {
1544	case MLD_NOT_MEMBER:
1545	case MLD_SILENT_MEMBER:
1546	case MLD_SLEEPING_MEMBER:
1547	case MLD_LAZY_MEMBER:
1548	case MLD_AWAKENING_MEMBER:
1549	case MLD_IDLE_MEMBER:
1550		break;
1551	case MLD_G_QUERY_PENDING_MEMBER:
1552	case MLD_SG_QUERY_PENDING_MEMBER:
1553		/*
1554		 * Respond to a previously pending Group-Specific
1555		 * or Group-and-Source-Specific query by enqueueing
1556		 * the appropriate Current-State report for
1557		 * immediate transmission.
1558		 */
1559		if (query_response_timer_expired) {
1560			int retval;
1561
1562			retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1,
1563			    (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER),
1564			    0);
1565			CTR2(KTR_MLD, "%s: enqueue record = %d",
1566			    __func__, retval);
1567			inm->in6m_state = MLD_REPORTING_MEMBER;
1568			in6m_clear_recorded(inm);
1569		}
1570		/* FALLTHROUGH */
1571	case MLD_REPORTING_MEMBER:
1572	case MLD_LEAVING_MEMBER:
1573		if (state_change_retransmit_timer_expired) {
1574			/*
1575			 * State-change retransmission timer fired.
1576			 * If there are any further pending retransmissions,
1577			 * set the global pending state-change flag, and
1578			 * reset the timer.
1579			 */
1580			if (--inm->in6m_scrv > 0) {
1581				inm->in6m_sctimer = uri_fasthz;
1582				V_state_change_timers_running6 = 1;
1583			}
1584			/*
1585			 * Retransmit the previously computed state-change
1586			 * report. If there are no further pending
1587			 * retransmissions, the mbuf queue will be consumed.
1588			 * Update T0 state to T1 as we have now sent
1589			 * a state-change.
1590			 */
1591			(void)mld_v2_merge_state_changes(inm, scq);
1592
1593			in6m_commit(inm);
1594			CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
1595			    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
1596			    inm->in6m_ifp->if_xname);
1597
1598			/*
1599			 * If we are leaving the group for good, make sure
1600			 * we release MLD's reference to it.
1601			 * This release must be deferred using a SLIST,
1602			 * as we are called from a loop which traverses
1603			 * the in_ifmultiaddr TAILQ.
1604			 */
1605			if (inm->in6m_state == MLD_LEAVING_MEMBER &&
1606			    inm->in6m_scrv == 0) {
1607				inm->in6m_state = MLD_NOT_MEMBER;
1608				SLIST_INSERT_HEAD(&mli->mli_relinmhead,
1609				    inm, in6m_nrele);
1610			}
1611		}
1612		break;
1613	}
1614}
1615
1616/*
1617 * Switch to a different version on the given interface,
1618 * as per Section 9.12.
1619 */
1620static void
1621mld_set_version(struct mld_ifinfo *mli, const int version)
1622{
1623	int old_version_timer;
1624
1625	MLD_LOCK_ASSERT();
1626
1627	CTR4(KTR_MLD, "%s: switching to v%d on ifp %p(%s)", __func__,
1628	    version, mli->mli_ifp, mli->mli_ifp->if_xname);
1629
1630	if (version == MLD_VERSION_1) {
1631		/*
1632		 * Compute the "Older Version Querier Present" timer as per
1633		 * Section 9.12.
1634		 */
1635		old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri;
1636		old_version_timer *= PR_SLOWHZ;
1637		mli->mli_v1_timer = old_version_timer;
1638	}
1639
1640	if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) {
1641		mli->mli_version = MLD_VERSION_1;
1642		mld_v2_cancel_link_timers(mli);
1643	}
1644}
1645
1646/*
1647 * Cancel pending MLDv2 timers for the given link and all groups
1648 * joined on it; state-change, general-query, and group-query timers.
1649 */
1650static void
1651mld_v2_cancel_link_timers(struct mld_ifinfo *mli)
1652{
1653	struct ifmultiaddr	*ifma;
1654	struct ifnet		*ifp;
1655	struct in6_multi		*inm;
1656
1657	CTR3(KTR_MLD, "%s: cancel v2 timers on ifp %p(%s)", __func__,
1658	    mli->mli_ifp, mli->mli_ifp->if_xname);
1659
1660	IN6_MULTI_LOCK_ASSERT();
1661	MLD_LOCK_ASSERT();
1662
1663	/*
1664	 * Fast-track this potentially expensive operation
1665	 * by checking all the global 'timer pending' flags.
1666	 */
1667	if (!V_interface_timers_running6 &&
1668	    !V_state_change_timers_running6 &&
1669	    !V_current_state_timers_running6)
1670		return;
1671
1672	mli->mli_v2_timer = 0;
1673
1674	ifp = mli->mli_ifp;
1675
1676	IF_ADDR_LOCK(ifp);
1677	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1678		if (ifma->ifma_addr->sa_family != AF_INET6)
1679			continue;
1680		inm = (struct in6_multi *)ifma->ifma_protospec;
1681		switch (inm->in6m_state) {
1682		case MLD_NOT_MEMBER:
1683		case MLD_SILENT_MEMBER:
1684		case MLD_IDLE_MEMBER:
1685		case MLD_LAZY_MEMBER:
1686		case MLD_SLEEPING_MEMBER:
1687		case MLD_AWAKENING_MEMBER:
1688			break;
1689		case MLD_LEAVING_MEMBER:
1690			/*
1691			 * If we are leaving the group and switching
1692			 * version, we need to release the final
1693			 * reference held for issuing the INCLUDE {}.
1694			 *
1695			 * SMPNG: Must drop and re-acquire IF_ADDR_LOCK
1696			 * around in6m_release_locked(), as it is not
1697			 * a recursive mutex.
1698			 */
1699			IF_ADDR_UNLOCK(ifp);
1700			in6m_release_locked(inm);
1701			IF_ADDR_LOCK(ifp);
1702			/* FALLTHROUGH */
1703		case MLD_G_QUERY_PENDING_MEMBER:
1704		case MLD_SG_QUERY_PENDING_MEMBER:
1705			in6m_clear_recorded(inm);
1706			/* FALLTHROUGH */
1707		case MLD_REPORTING_MEMBER:
1708			inm->in6m_sctimer = 0;
1709			inm->in6m_timer = 0;
1710			inm->in6m_state = MLD_REPORTING_MEMBER;
1711			/*
1712			 * Free any pending MLDv2 state-change records.
1713			 */
1714			_IF_DRAIN(&inm->in6m_scq);
1715			break;
1716		}
1717	}
1718	IF_ADDR_UNLOCK(ifp);
1719}
1720
1721/*
1722 * Global slowtimo handler.
1723 * VIMAGE: Timeout handlers are expected to service all vimages.
1724 */
1725void
1726mld_slowtimo(void)
1727{
1728	VNET_ITERATOR_DECL(vnet_iter);
1729
1730	VNET_LIST_RLOCK_NOSLEEP();
1731	VNET_FOREACH(vnet_iter) {
1732		CURVNET_SET(vnet_iter);
1733		mld_slowtimo_vnet();
1734		CURVNET_RESTORE();
1735	}
1736	VNET_LIST_RUNLOCK_NOSLEEP();
1737}
1738
1739/*
1740 * Per-vnet slowtimo handler.
1741 */
1742static void
1743mld_slowtimo_vnet(void)
1744{
1745	struct mld_ifinfo *mli;
1746
1747	MLD_LOCK();
1748
1749	LIST_FOREACH(mli, &V_mli_head, mli_link) {
1750		mld_v1_process_querier_timers(mli);
1751	}
1752
1753	MLD_UNLOCK();
1754}
1755
1756/*
1757 * Update the Older Version Querier Present timers for a link.
1758 * See Section 9.12 of RFC 3810.
1759 */
1760static void
1761mld_v1_process_querier_timers(struct mld_ifinfo *mli)
1762{
1763
1764	MLD_LOCK_ASSERT();
1765
1766	if (mli->mli_version != MLD_VERSION_2 && --mli->mli_v1_timer == 0) {
1767		/*
1768		 * MLDv1 Querier Present timer expired; revert to MLDv2.
1769		 */
1770		CTR5(KTR_MLD,
1771		    "%s: transition from v%d -> v%d on %p(%s)",
1772		    __func__, mli->mli_version, MLD_VERSION_2,
1773		    mli->mli_ifp, mli->mli_ifp->if_xname);
1774		mli->mli_version = MLD_VERSION_2;
1775	}
1776}
1777
1778/*
1779 * Transmit an MLDv1 report immediately.
1780 */
1781static int
1782mld_v1_transmit_report(struct in6_multi *in6m, const int type)
1783{
1784	struct ifnet		*ifp;
1785	struct in6_ifaddr	*ia;
1786	struct ip6_hdr		*ip6;
1787	struct mbuf		*mh, *md;
1788	struct mld_hdr		*mld;
1789
1790	IN6_MULTI_LOCK_ASSERT();
1791	MLD_LOCK_ASSERT();
1792
1793	ifp = in6m->in6m_ifp;
1794	ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
1795	/* ia may be NULL if link-local address is tentative. */
1796
1797	MGETHDR(mh, M_DONTWAIT, MT_HEADER);
1798	if (mh == NULL) {
1799		if (ia != NULL)
1800			ifa_free(&ia->ia_ifa);
1801		return (ENOMEM);
1802	}
1803	MGET(md, M_DONTWAIT, MT_DATA);
1804	if (md == NULL) {
1805		m_free(mh);
1806		if (ia != NULL)
1807			ifa_free(&ia->ia_ifa);
1808		return (ENOMEM);
1809	}
1810	mh->m_next = md;
1811
1812	/*
1813	 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so
1814	 * that ether_output() does not need to allocate another mbuf
1815	 * for the header in the most common case.
1816	 */
1817	MH_ALIGN(mh, sizeof(struct ip6_hdr));
1818	mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr);
1819	mh->m_len = sizeof(struct ip6_hdr);
1820
1821	ip6 = mtod(mh, struct ip6_hdr *);
1822	ip6->ip6_flow = 0;
1823	ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
1824	ip6->ip6_vfc |= IPV6_VERSION;
1825	ip6->ip6_nxt = IPPROTO_ICMPV6;
1826	ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any;
1827	ip6->ip6_dst = in6m->in6m_addr;
1828
1829	md->m_len = sizeof(struct mld_hdr);
1830	mld = mtod(md, struct mld_hdr *);
1831	mld->mld_type = type;
1832	mld->mld_code = 0;
1833	mld->mld_cksum = 0;
1834	mld->mld_maxdelay = 0;
1835	mld->mld_reserved = 0;
1836	mld->mld_addr = in6m->in6m_addr;
1837	in6_clearscope(&mld->mld_addr);
1838	mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6,
1839	    sizeof(struct ip6_hdr), sizeof(struct mld_hdr));
1840
1841	mld_save_context(mh, ifp);
1842	mh->m_flags |= M_MLDV1;
1843
1844	mld_dispatch_packet(mh);
1845
1846	if (ia != NULL)
1847		ifa_free(&ia->ia_ifa);
1848	return (0);
1849}
1850
1851/*
1852 * Process a state change from the upper layer for the given IPv6 group.
1853 *
1854 * Each socket holds a reference on the in_multi in its own ip_moptions.
1855 * The socket layer will have made the necessary updates to.the group
1856 * state, it is now up to MLD to issue a state change report if there
1857 * has been any change between T0 (when the last state-change was issued)
1858 * and T1 (now).
1859 *
1860 * We use the MLDv2 state machine at group level. The MLd module
1861 * however makes the decision as to which MLD protocol version to speak.
1862 * A state change *from* INCLUDE {} always means an initial join.
1863 * A state change *to* INCLUDE {} always means a final leave.
1864 *
1865 * If delay is non-zero, and the state change is an initial multicast
1866 * join, the state change report will be delayed by 'delay' ticks
1867 * in units of PR_FASTHZ if MLDv1 is active on the link; otherwise
1868 * the initial MLDv2 state change report will be delayed by whichever
1869 * is sooner, a pending state-change timer or delay itself.
1870 *
1871 * VIMAGE: curvnet should have been set by caller, as this routine
1872 * is called from the socket option handlers.
1873 */
1874int
1875mld_change_state(struct in6_multi *inm, const int delay)
1876{
1877	struct mld_ifinfo *mli;
1878	struct ifnet *ifp;
1879	int error;
1880
1881	IN6_MULTI_LOCK_ASSERT();
1882
1883	error = 0;
1884
1885	/*
1886	 * Try to detect if the upper layer just asked us to change state
1887	 * for an interface which has now gone away.
1888	 */
1889	KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__));
1890	ifp = inm->in6m_ifma->ifma_ifp;
1891	if (ifp != NULL) {
1892		/*
1893		 * Sanity check that netinet6's notion of ifp is the
1894		 * same as net's.
1895		 */
1896		KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__));
1897	}
1898
1899	MLD_LOCK();
1900
1901	mli = MLD_IFINFO(ifp);
1902	KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp));
1903
1904	/*
1905	 * If we detect a state transition to or from MCAST_UNDEFINED
1906	 * for this group, then we are starting or finishing an MLD
1907	 * life cycle for this group.
1908	 */
1909	if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) {
1910		CTR3(KTR_MLD, "%s: inm transition %d -> %d", __func__,
1911		    inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode);
1912		if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) {
1913			CTR1(KTR_MLD, "%s: initial join", __func__);
1914			error = mld_initial_join(inm, mli, delay);
1915			goto out_locked;
1916		} else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) {
1917			CTR1(KTR_MLD, "%s: final leave", __func__);
1918			mld_final_leave(inm, mli);
1919			goto out_locked;
1920		}
1921	} else {
1922		CTR1(KTR_MLD, "%s: filter set change", __func__);
1923	}
1924
1925	error = mld_handle_state_change(inm, mli);
1926
1927out_locked:
1928	MLD_UNLOCK();
1929	return (error);
1930}
1931
1932/*
1933 * Perform the initial join for an MLD group.
1934 *
1935 * When joining a group:
1936 *  If the group should have its MLD traffic suppressed, do nothing.
1937 *  MLDv1 starts sending MLDv1 host membership reports.
1938 *  MLDv2 will schedule an MLDv2 state-change report containing the
1939 *  initial state of the membership.
1940 *
1941 * If the delay argument is non-zero, then we must delay sending the
1942 * initial state change for delay ticks (in units of PR_FASTHZ).
1943 */
1944static int
1945mld_initial_join(struct in6_multi *inm, struct mld_ifinfo *mli,
1946    const int delay)
1947{
1948	struct ifnet		*ifp;
1949	struct ifqueue		*ifq;
1950	int			 error, retval, syncstates;
1951	int			 odelay;
1952#ifdef KTR
1953	char			 ip6tbuf[INET6_ADDRSTRLEN];
1954#endif
1955
1956	CTR4(KTR_MLD, "%s: initial join %s on ifp %p(%s)",
1957	    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
1958	    inm->in6m_ifp, inm->in6m_ifp->if_xname);
1959
1960	error = 0;
1961	syncstates = 1;
1962
1963	ifp = inm->in6m_ifp;
1964
1965	IN6_MULTI_LOCK_ASSERT();
1966	MLD_LOCK_ASSERT();
1967
1968	KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__));
1969
1970	/*
1971	 * Groups joined on loopback or marked as 'not reported',
1972	 * enter the MLD_SILENT_MEMBER state and
1973	 * are never reported in any protocol exchanges.
1974	 * All other groups enter the appropriate state machine
1975	 * for the version in use on this link.
1976	 * A link marked as MLIF_SILENT causes MLD to be completely
1977	 * disabled for the link.
1978	 */
1979	if ((ifp->if_flags & IFF_LOOPBACK) ||
1980	    (mli->mli_flags & MLIF_SILENT) ||
1981	    !mld_is_addr_reported(&inm->in6m_addr)) {
1982		CTR1(KTR_MLD,
1983"%s: not kicking state machine for silent group", __func__);
1984		inm->in6m_state = MLD_SILENT_MEMBER;
1985		inm->in6m_timer = 0;
1986	} else {
1987		/*
1988		 * Deal with overlapping in_multi lifecycle.
1989		 * If this group was LEAVING, then make sure
1990		 * we drop the reference we picked up to keep the
1991		 * group around for the final INCLUDE {} enqueue.
1992		 */
1993		if (mli->mli_version == MLD_VERSION_2 &&
1994		    inm->in6m_state == MLD_LEAVING_MEMBER)
1995			in6m_release_locked(inm);
1996
1997		inm->in6m_state = MLD_REPORTING_MEMBER;
1998
1999		switch (mli->mli_version) {
2000		case MLD_VERSION_1:
2001			/*
2002			 * If a delay was provided, only use it if
2003			 * it is greater than the delay normally
2004			 * used for an MLDv1 state change report,
2005			 * and delay sending the initial MLDv1 report
2006			 * by not transitioning to the IDLE state.
2007			 */
2008			odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI * PR_FASTHZ);
2009			if (delay) {
2010				inm->in6m_timer = max(delay, odelay);
2011				V_current_state_timers_running6 = 1;
2012			} else {
2013				inm->in6m_state = MLD_IDLE_MEMBER;
2014				error = mld_v1_transmit_report(inm,
2015				     MLD_LISTENER_REPORT);
2016				if (error == 0) {
2017					inm->in6m_timer = odelay;
2018					V_current_state_timers_running6 = 1;
2019				}
2020			}
2021			break;
2022
2023		case MLD_VERSION_2:
2024			/*
2025			 * Defer update of T0 to T1, until the first copy
2026			 * of the state change has been transmitted.
2027			 */
2028			syncstates = 0;
2029
2030			/*
2031			 * Immediately enqueue a State-Change Report for
2032			 * this interface, freeing any previous reports.
2033			 * Don't kick the timers if there is nothing to do,
2034			 * or if an error occurred.
2035			 */
2036			ifq = &inm->in6m_scq;
2037			_IF_DRAIN(ifq);
2038			retval = mld_v2_enqueue_group_record(ifq, inm, 1,
2039			    0, 0, (mli->mli_flags & MLIF_USEALLOW));
2040			CTR2(KTR_MLD, "%s: enqueue record = %d",
2041			    __func__, retval);
2042			if (retval <= 0) {
2043				error = retval * -1;
2044				break;
2045			}
2046
2047			/*
2048			 * Schedule transmission of pending state-change
2049			 * report up to RV times for this link. The timer
2050			 * will fire at the next mld_fasttimo (~200ms),
2051			 * giving us an opportunity to merge the reports.
2052			 *
2053			 * If a delay was provided to this function, only
2054			 * use this delay if sooner than the existing one.
2055			 */
2056			KASSERT(mli->mli_rv > 1,
2057			   ("%s: invalid robustness %d", __func__,
2058			    mli->mli_rv));
2059			inm->in6m_scrv = mli->mli_rv;
2060			if (delay) {
2061				if (inm->in6m_sctimer > 1) {
2062					inm->in6m_sctimer =
2063					    min(inm->in6m_sctimer, delay);
2064				} else
2065					inm->in6m_sctimer = delay;
2066			} else
2067				inm->in6m_sctimer = 1;
2068			V_state_change_timers_running6 = 1;
2069
2070			error = 0;
2071			break;
2072		}
2073	}
2074
2075	/*
2076	 * Only update the T0 state if state change is atomic,
2077	 * i.e. we don't need to wait for a timer to fire before we
2078	 * can consider the state change to have been communicated.
2079	 */
2080	if (syncstates) {
2081		in6m_commit(inm);
2082		CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
2083		    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2084		    inm->in6m_ifp->if_xname);
2085	}
2086
2087	return (error);
2088}
2089
2090/*
2091 * Issue an intermediate state change during the life-cycle.
2092 */
2093static int
2094mld_handle_state_change(struct in6_multi *inm, struct mld_ifinfo *mli)
2095{
2096	struct ifnet		*ifp;
2097	int			 retval;
2098#ifdef KTR
2099	char			 ip6tbuf[INET6_ADDRSTRLEN];
2100#endif
2101
2102	CTR4(KTR_MLD, "%s: state change for %s on ifp %p(%s)",
2103	    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2104	    inm->in6m_ifp, inm->in6m_ifp->if_xname);
2105
2106	ifp = inm->in6m_ifp;
2107
2108	IN6_MULTI_LOCK_ASSERT();
2109	MLD_LOCK_ASSERT();
2110
2111	KASSERT(mli && mli->mli_ifp == ifp,
2112	    ("%s: inconsistent ifp", __func__));
2113
2114	if ((ifp->if_flags & IFF_LOOPBACK) ||
2115	    (mli->mli_flags & MLIF_SILENT) ||
2116	    !mld_is_addr_reported(&inm->in6m_addr) ||
2117	    (mli->mli_version != MLD_VERSION_2)) {
2118		if (!mld_is_addr_reported(&inm->in6m_addr)) {
2119			CTR1(KTR_MLD,
2120"%s: not kicking state machine for silent group", __func__);
2121		}
2122		CTR1(KTR_MLD, "%s: nothing to do", __func__);
2123		in6m_commit(inm);
2124		CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
2125		    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2126		    inm->in6m_ifp->if_xname);
2127		return (0);
2128	}
2129
2130	_IF_DRAIN(&inm->in6m_scq);
2131
2132	retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0,
2133	    (mli->mli_flags & MLIF_USEALLOW));
2134	CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval);
2135	if (retval <= 0)
2136		return (-retval);
2137
2138	/*
2139	 * If record(s) were enqueued, start the state-change
2140	 * report timer for this group.
2141	 */
2142	inm->in6m_scrv = mli->mli_rv;
2143	inm->in6m_sctimer = 1;
2144	V_state_change_timers_running6 = 1;
2145
2146	return (0);
2147}
2148
2149/*
2150 * Perform the final leave for a multicast address.
2151 *
2152 * When leaving a group:
2153 *  MLDv1 sends a DONE message, if and only if we are the reporter.
2154 *  MLDv2 enqueues a state-change report containing a transition
2155 *  to INCLUDE {} for immediate transmission.
2156 */
2157static void
2158mld_final_leave(struct in6_multi *inm, struct mld_ifinfo *mli)
2159{
2160	int syncstates;
2161#ifdef KTR
2162	char ip6tbuf[INET6_ADDRSTRLEN];
2163#endif
2164
2165	syncstates = 1;
2166
2167	CTR4(KTR_MLD, "%s: final leave %s on ifp %p(%s)",
2168	    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2169	    inm->in6m_ifp, inm->in6m_ifp->if_xname);
2170
2171	IN6_MULTI_LOCK_ASSERT();
2172	MLD_LOCK_ASSERT();
2173
2174	switch (inm->in6m_state) {
2175	case MLD_NOT_MEMBER:
2176	case MLD_SILENT_MEMBER:
2177	case MLD_LEAVING_MEMBER:
2178		/* Already leaving or left; do nothing. */
2179		CTR1(KTR_MLD,
2180"%s: not kicking state machine for silent group", __func__);
2181		break;
2182	case MLD_REPORTING_MEMBER:
2183	case MLD_IDLE_MEMBER:
2184	case MLD_G_QUERY_PENDING_MEMBER:
2185	case MLD_SG_QUERY_PENDING_MEMBER:
2186		if (mli->mli_version == MLD_VERSION_1) {
2187#ifdef INVARIANTS
2188			if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER ||
2189			    inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER)
2190			panic("%s: MLDv2 state reached, not MLDv2 mode",
2191			     __func__);
2192#endif
2193			mld_v1_transmit_report(inm, MLD_LISTENER_DONE);
2194			inm->in6m_state = MLD_NOT_MEMBER;
2195		} else if (mli->mli_version == MLD_VERSION_2) {
2196			/*
2197			 * Stop group timer and all pending reports.
2198			 * Immediately enqueue a state-change report
2199			 * TO_IN {} to be sent on the next fast timeout,
2200			 * giving us an opportunity to merge reports.
2201			 */
2202			_IF_DRAIN(&inm->in6m_scq);
2203			inm->in6m_timer = 0;
2204			inm->in6m_scrv = mli->mli_rv;
2205			CTR4(KTR_MLD, "%s: Leaving %s/%s with %d "
2206			    "pending retransmissions.", __func__,
2207			    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2208			    inm->in6m_ifp->if_xname, inm->in6m_scrv);
2209			if (inm->in6m_scrv == 0) {
2210				inm->in6m_state = MLD_NOT_MEMBER;
2211				inm->in6m_sctimer = 0;
2212			} else {
2213				int retval;
2214
2215				in6m_acquire_locked(inm);
2216
2217				retval = mld_v2_enqueue_group_record(
2218				    &inm->in6m_scq, inm, 1, 0, 0,
2219				    (mli->mli_flags & MLIF_USEALLOW));
2220				KASSERT(retval != 0,
2221				    ("%s: enqueue record = %d", __func__,
2222				     retval));
2223
2224				inm->in6m_state = MLD_LEAVING_MEMBER;
2225				inm->in6m_sctimer = 1;
2226				V_state_change_timers_running6 = 1;
2227				syncstates = 0;
2228			}
2229			break;
2230		}
2231		break;
2232	case MLD_LAZY_MEMBER:
2233	case MLD_SLEEPING_MEMBER:
2234	case MLD_AWAKENING_MEMBER:
2235		/* Our reports are suppressed; do nothing. */
2236		break;
2237	}
2238
2239	if (syncstates) {
2240		in6m_commit(inm);
2241		CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
2242		    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2243		    inm->in6m_ifp->if_xname);
2244		inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED;
2245		CTR3(KTR_MLD, "%s: T1 now MCAST_UNDEFINED for %p/%s",
2246		    __func__, &inm->in6m_addr, inm->in6m_ifp->if_xname);
2247	}
2248}
2249
2250/*
2251 * Enqueue an MLDv2 group record to the given output queue.
2252 *
2253 * If is_state_change is zero, a current-state record is appended.
2254 * If is_state_change is non-zero, a state-change report is appended.
2255 *
2256 * If is_group_query is non-zero, an mbuf packet chain is allocated.
2257 * If is_group_query is zero, and if there is a packet with free space
2258 * at the tail of the queue, it will be appended to providing there
2259 * is enough free space.
2260 * Otherwise a new mbuf packet chain is allocated.
2261 *
2262 * If is_source_query is non-zero, each source is checked to see if
2263 * it was recorded for a Group-Source query, and will be omitted if
2264 * it is not both in-mode and recorded.
2265 *
2266 * If use_block_allow is non-zero, state change reports for initial join
2267 * and final leave, on an inclusive mode group with a source list, will be
2268 * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively.
2269 *
2270 * The function will attempt to allocate leading space in the packet
2271 * for the IPv6+ICMP headers to be prepended without fragmenting the chain.
2272 *
2273 * If successful the size of all data appended to the queue is returned,
2274 * otherwise an error code less than zero is returned, or zero if
2275 * no record(s) were appended.
2276 */
2277static int
2278mld_v2_enqueue_group_record(struct ifqueue *ifq, struct in6_multi *inm,
2279    const int is_state_change, const int is_group_query,
2280    const int is_source_query, const int use_block_allow)
2281{
2282	struct mldv2_record	 mr;
2283	struct mldv2_record	*pmr;
2284	struct ifnet		*ifp;
2285	struct ip6_msource	*ims, *nims;
2286	struct mbuf		*m0, *m, *md;
2287	int			 error, is_filter_list_change;
2288	int			 minrec0len, m0srcs, msrcs, nbytes, off;
2289	int			 record_has_sources;
2290	int			 now;
2291	int			 type;
2292	uint8_t			 mode;
2293#ifdef KTR
2294	char			 ip6tbuf[INET6_ADDRSTRLEN];
2295#endif
2296
2297	IN6_MULTI_LOCK_ASSERT();
2298
2299	error = 0;
2300	ifp = inm->in6m_ifp;
2301	is_filter_list_change = 0;
2302	m = NULL;
2303	m0 = NULL;
2304	m0srcs = 0;
2305	msrcs = 0;
2306	nbytes = 0;
2307	nims = NULL;
2308	record_has_sources = 1;
2309	pmr = NULL;
2310	type = MLD_DO_NOTHING;
2311	mode = inm->in6m_st[1].iss_fmode;
2312
2313	/*
2314	 * If we did not transition out of ASM mode during t0->t1,
2315	 * and there are no source nodes to process, we can skip
2316	 * the generation of source records.
2317	 */
2318	if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 &&
2319	    inm->in6m_nsrc == 0)
2320		record_has_sources = 0;
2321
2322	if (is_state_change) {
2323		/*
2324		 * Queue a state change record.
2325		 * If the mode did not change, and there are non-ASM
2326		 * listeners or source filters present,
2327		 * we potentially need to issue two records for the group.
2328		 * If there are ASM listeners, and there was no filter
2329		 * mode transition of any kind, do nothing.
2330		 *
2331		 * If we are transitioning to MCAST_UNDEFINED, we need
2332		 * not send any sources. A transition to/from this state is
2333		 * considered inclusive with some special treatment.
2334		 *
2335		 * If we are rewriting initial joins/leaves to use
2336		 * ALLOW/BLOCK, and the group's membership is inclusive,
2337		 * we need to send sources in all cases.
2338		 */
2339		if (mode != inm->in6m_st[0].iss_fmode) {
2340			if (mode == MCAST_EXCLUDE) {
2341				CTR1(KTR_MLD, "%s: change to EXCLUDE",
2342				    __func__);
2343				type = MLD_CHANGE_TO_EXCLUDE_MODE;
2344			} else {
2345				CTR1(KTR_MLD, "%s: change to INCLUDE",
2346				    __func__);
2347				if (use_block_allow) {
2348					/*
2349					 * XXX
2350					 * Here we're interested in state
2351					 * edges either direction between
2352					 * MCAST_UNDEFINED and MCAST_INCLUDE.
2353					 * Perhaps we should just check
2354					 * the group state, rather than
2355					 * the filter mode.
2356					 */
2357					if (mode == MCAST_UNDEFINED) {
2358						type = MLD_BLOCK_OLD_SOURCES;
2359					} else {
2360						type = MLD_ALLOW_NEW_SOURCES;
2361					}
2362				} else {
2363					type = MLD_CHANGE_TO_INCLUDE_MODE;
2364					if (mode == MCAST_UNDEFINED)
2365						record_has_sources = 0;
2366				}
2367			}
2368		} else {
2369			if (record_has_sources) {
2370				is_filter_list_change = 1;
2371			} else {
2372				type = MLD_DO_NOTHING;
2373			}
2374		}
2375	} else {
2376		/*
2377		 * Queue a current state record.
2378		 */
2379		if (mode == MCAST_EXCLUDE) {
2380			type = MLD_MODE_IS_EXCLUDE;
2381		} else if (mode == MCAST_INCLUDE) {
2382			type = MLD_MODE_IS_INCLUDE;
2383			KASSERT(inm->in6m_st[1].iss_asm == 0,
2384			    ("%s: inm %p is INCLUDE but ASM count is %d",
2385			     __func__, inm, inm->in6m_st[1].iss_asm));
2386		}
2387	}
2388
2389	/*
2390	 * Generate the filter list changes using a separate function.
2391	 */
2392	if (is_filter_list_change)
2393		return (mld_v2_enqueue_filter_change(ifq, inm));
2394
2395	if (type == MLD_DO_NOTHING) {
2396		CTR3(KTR_MLD, "%s: nothing to do for %s/%s",
2397		    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2398		    inm->in6m_ifp->if_xname);
2399		return (0);
2400	}
2401
2402	/*
2403	 * If any sources are present, we must be able to fit at least
2404	 * one in the trailing space of the tail packet's mbuf,
2405	 * ideally more.
2406	 */
2407	minrec0len = sizeof(struct mldv2_record);
2408	if (record_has_sources)
2409		minrec0len += sizeof(struct in6_addr);
2410
2411	CTR4(KTR_MLD, "%s: queueing %s for %s/%s", __func__,
2412	    mld_rec_type_to_str(type),
2413	    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2414	    inm->in6m_ifp->if_xname);
2415
2416	/*
2417	 * Check if we have a packet in the tail of the queue for this
2418	 * group into which the first group record for this group will fit.
2419	 * Otherwise allocate a new packet.
2420	 * Always allocate leading space for IP6+RA+ICMPV6+REPORT.
2421	 * Note: Group records for G/GSR query responses MUST be sent
2422	 * in their own packet.
2423	 */
2424	m0 = ifq->ifq_tail;
2425	if (!is_group_query &&
2426	    m0 != NULL &&
2427	    (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) &&
2428	    (m0->m_pkthdr.len + minrec0len) <
2429	     (ifp->if_mtu - MLD_MTUSPACE)) {
2430		m0srcs = (ifp->if_mtu - m0->m_pkthdr.len -
2431			    sizeof(struct mldv2_record)) /
2432			    sizeof(struct in6_addr);
2433		m = m0;
2434		CTR1(KTR_MLD, "%s: use existing packet", __func__);
2435	} else {
2436		if (_IF_QFULL(ifq)) {
2437			CTR1(KTR_MLD, "%s: outbound queue full", __func__);
2438			return (-ENOMEM);
2439		}
2440		m = NULL;
2441		m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2442		    sizeof(struct mldv2_record)) / sizeof(struct in6_addr);
2443		if (!is_state_change && !is_group_query)
2444			m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2445		if (m == NULL)
2446			m = m_gethdr(M_DONTWAIT, MT_DATA);
2447		if (m == NULL)
2448			return (-ENOMEM);
2449
2450		mld_save_context(m, ifp);
2451
2452		CTR1(KTR_MLD, "%s: allocated first packet", __func__);
2453	}
2454
2455	/*
2456	 * Append group record.
2457	 * If we have sources, we don't know how many yet.
2458	 */
2459	mr.mr_type = type;
2460	mr.mr_datalen = 0;
2461	mr.mr_numsrc = 0;
2462	mr.mr_addr = inm->in6m_addr;
2463	in6_clearscope(&mr.mr_addr);
2464	if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) {
2465		if (m != m0)
2466			m_freem(m);
2467		CTR1(KTR_MLD, "%s: m_append() failed.", __func__);
2468		return (-ENOMEM);
2469	}
2470	nbytes += sizeof(struct mldv2_record);
2471
2472	/*
2473	 * Append as many sources as will fit in the first packet.
2474	 * If we are appending to a new packet, the chain allocation
2475	 * may potentially use clusters; use m_getptr() in this case.
2476	 * If we are appending to an existing packet, we need to obtain
2477	 * a pointer to the group record after m_append(), in case a new
2478	 * mbuf was allocated.
2479	 *
2480	 * Only append sources which are in-mode at t1. If we are
2481	 * transitioning to MCAST_UNDEFINED state on the group, and
2482	 * use_block_allow is zero, do not include source entries.
2483	 * Otherwise, we need to include this source in the report.
2484	 *
2485	 * Only report recorded sources in our filter set when responding
2486	 * to a group-source query.
2487	 */
2488	if (record_has_sources) {
2489		if (m == m0) {
2490			md = m_last(m);
2491			pmr = (struct mldv2_record *)(mtod(md, uint8_t *) +
2492			    md->m_len - nbytes);
2493		} else {
2494			md = m_getptr(m, 0, &off);
2495			pmr = (struct mldv2_record *)(mtod(md, uint8_t *) +
2496			    off);
2497		}
2498		msrcs = 0;
2499		RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs,
2500		    nims) {
2501			CTR2(KTR_MLD, "%s: visit node %s", __func__,
2502			    ip6_sprintf(ip6tbuf, &ims->im6s_addr));
2503			now = im6s_get_mode(inm, ims, 1);
2504			CTR2(KTR_MLD, "%s: node is %d", __func__, now);
2505			if ((now != mode) ||
2506			    (now == mode &&
2507			     (!use_block_allow && mode == MCAST_UNDEFINED))) {
2508				CTR1(KTR_MLD, "%s: skip node", __func__);
2509				continue;
2510			}
2511			if (is_source_query && ims->im6s_stp == 0) {
2512				CTR1(KTR_MLD, "%s: skip unrecorded node",
2513				    __func__);
2514				continue;
2515			}
2516			CTR1(KTR_MLD, "%s: append node", __func__);
2517			if (!m_append(m, sizeof(struct in6_addr),
2518			    (void *)&ims->im6s_addr)) {
2519				if (m != m0)
2520					m_freem(m);
2521				CTR1(KTR_MLD, "%s: m_append() failed.",
2522				    __func__);
2523				return (-ENOMEM);
2524			}
2525			nbytes += sizeof(struct in6_addr);
2526			++msrcs;
2527			if (msrcs == m0srcs)
2528				break;
2529		}
2530		CTR2(KTR_MLD, "%s: msrcs is %d this packet", __func__,
2531		    msrcs);
2532		pmr->mr_numsrc = htons(msrcs);
2533		nbytes += (msrcs * sizeof(struct in6_addr));
2534	}
2535
2536	if (is_source_query && msrcs == 0) {
2537		CTR1(KTR_MLD, "%s: no recorded sources to report", __func__);
2538		if (m != m0)
2539			m_freem(m);
2540		return (0);
2541	}
2542
2543	/*
2544	 * We are good to go with first packet.
2545	 */
2546	if (m != m0) {
2547		CTR1(KTR_MLD, "%s: enqueueing first packet", __func__);
2548		m->m_pkthdr.PH_vt.vt_nrecs = 1;
2549		_IF_ENQUEUE(ifq, m);
2550	} else
2551		m->m_pkthdr.PH_vt.vt_nrecs++;
2552
2553	/*
2554	 * No further work needed if no source list in packet(s).
2555	 */
2556	if (!record_has_sources)
2557		return (nbytes);
2558
2559	/*
2560	 * Whilst sources remain to be announced, we need to allocate
2561	 * a new packet and fill out as many sources as will fit.
2562	 * Always try for a cluster first.
2563	 */
2564	while (nims != NULL) {
2565		if (_IF_QFULL(ifq)) {
2566			CTR1(KTR_MLD, "%s: outbound queue full", __func__);
2567			return (-ENOMEM);
2568		}
2569		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2570		if (m == NULL)
2571			m = m_gethdr(M_DONTWAIT, MT_DATA);
2572		if (m == NULL)
2573			return (-ENOMEM);
2574		mld_save_context(m, ifp);
2575		md = m_getptr(m, 0, &off);
2576		pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off);
2577		CTR1(KTR_MLD, "%s: allocated next packet", __func__);
2578
2579		if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) {
2580			if (m != m0)
2581				m_freem(m);
2582			CTR1(KTR_MLD, "%s: m_append() failed.", __func__);
2583			return (-ENOMEM);
2584		}
2585		m->m_pkthdr.PH_vt.vt_nrecs = 1;
2586		nbytes += sizeof(struct mldv2_record);
2587
2588		m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2589		    sizeof(struct mldv2_record)) / sizeof(struct in6_addr);
2590
2591		msrcs = 0;
2592		RB_FOREACH_FROM(ims, ip6_msource_tree, nims) {
2593			CTR2(KTR_MLD, "%s: visit node %s",
2594			    __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr));
2595			now = im6s_get_mode(inm, ims, 1);
2596			if ((now != mode) ||
2597			    (now == mode &&
2598			     (!use_block_allow && mode == MCAST_UNDEFINED))) {
2599				CTR1(KTR_MLD, "%s: skip node", __func__);
2600				continue;
2601			}
2602			if (is_source_query && ims->im6s_stp == 0) {
2603				CTR1(KTR_MLD, "%s: skip unrecorded node",
2604				    __func__);
2605				continue;
2606			}
2607			CTR1(KTR_MLD, "%s: append node", __func__);
2608			if (!m_append(m, sizeof(struct in6_addr),
2609			    (void *)&ims->im6s_addr)) {
2610				if (m != m0)
2611					m_freem(m);
2612				CTR1(KTR_MLD, "%s: m_append() failed.",
2613				    __func__);
2614				return (-ENOMEM);
2615			}
2616			++msrcs;
2617			if (msrcs == m0srcs)
2618				break;
2619		}
2620		pmr->mr_numsrc = htons(msrcs);
2621		nbytes += (msrcs * sizeof(struct in6_addr));
2622
2623		CTR1(KTR_MLD, "%s: enqueueing next packet", __func__);
2624		_IF_ENQUEUE(ifq, m);
2625	}
2626
2627	return (nbytes);
2628}
2629
2630/*
2631 * Type used to mark record pass completion.
2632 * We exploit the fact we can cast to this easily from the
2633 * current filter modes on each ip_msource node.
2634 */
2635typedef enum {
2636	REC_NONE = 0x00,	/* MCAST_UNDEFINED */
2637	REC_ALLOW = 0x01,	/* MCAST_INCLUDE */
2638	REC_BLOCK = 0x02,	/* MCAST_EXCLUDE */
2639	REC_FULL = REC_ALLOW | REC_BLOCK
2640} rectype_t;
2641
2642/*
2643 * Enqueue an MLDv2 filter list change to the given output queue.
2644 *
2645 * Source list filter state is held in an RB-tree. When the filter list
2646 * for a group is changed without changing its mode, we need to compute
2647 * the deltas between T0 and T1 for each source in the filter set,
2648 * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records.
2649 *
2650 * As we may potentially queue two record types, and the entire R-B tree
2651 * needs to be walked at once, we break this out into its own function
2652 * so we can generate a tightly packed queue of packets.
2653 *
2654 * XXX This could be written to only use one tree walk, although that makes
2655 * serializing into the mbuf chains a bit harder. For now we do two walks
2656 * which makes things easier on us, and it may or may not be harder on
2657 * the L2 cache.
2658 *
2659 * If successful the size of all data appended to the queue is returned,
2660 * otherwise an error code less than zero is returned, or zero if
2661 * no record(s) were appended.
2662 */
2663static int
2664mld_v2_enqueue_filter_change(struct ifqueue *ifq, struct in6_multi *inm)
2665{
2666	static const int MINRECLEN =
2667	    sizeof(struct mldv2_record) + sizeof(struct in6_addr);
2668	struct ifnet		*ifp;
2669	struct mldv2_record	 mr;
2670	struct mldv2_record	*pmr;
2671	struct ip6_msource	*ims, *nims;
2672	struct mbuf		*m, *m0, *md;
2673	int			 m0srcs, nbytes, npbytes, off, rsrcs, schanged;
2674	int			 nallow, nblock;
2675	uint8_t			 mode, now, then;
2676	rectype_t		 crt, drt, nrt;
2677#ifdef KTR
2678	char			 ip6tbuf[INET6_ADDRSTRLEN];
2679#endif
2680
2681	IN6_MULTI_LOCK_ASSERT();
2682
2683	if (inm->in6m_nsrc == 0 ||
2684	    (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0))
2685		return (0);
2686
2687	ifp = inm->in6m_ifp;			/* interface */
2688	mode = inm->in6m_st[1].iss_fmode;	/* filter mode at t1 */
2689	crt = REC_NONE;	/* current group record type */
2690	drt = REC_NONE;	/* mask of completed group record types */
2691	nrt = REC_NONE;	/* record type for current node */
2692	m0srcs = 0;	/* # source which will fit in current mbuf chain */
2693	npbytes = 0;	/* # of bytes appended this packet */
2694	nbytes = 0;	/* # of bytes appended to group's state-change queue */
2695	rsrcs = 0;	/* # sources encoded in current record */
2696	schanged = 0;	/* # nodes encoded in overall filter change */
2697	nallow = 0;	/* # of source entries in ALLOW_NEW */
2698	nblock = 0;	/* # of source entries in BLOCK_OLD */
2699	nims = NULL;	/* next tree node pointer */
2700
2701	/*
2702	 * For each possible filter record mode.
2703	 * The first kind of source we encounter tells us which
2704	 * is the first kind of record we start appending.
2705	 * If a node transitioned to UNDEFINED at t1, its mode is treated
2706	 * as the inverse of the group's filter mode.
2707	 */
2708	while (drt != REC_FULL) {
2709		do {
2710			m0 = ifq->ifq_tail;
2711			if (m0 != NULL &&
2712			    (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <=
2713			     MLD_V2_REPORT_MAXRECS) &&
2714			    (m0->m_pkthdr.len + MINRECLEN) <
2715			     (ifp->if_mtu - MLD_MTUSPACE)) {
2716				m = m0;
2717				m0srcs = (ifp->if_mtu - m0->m_pkthdr.len -
2718					    sizeof(struct mldv2_record)) /
2719					    sizeof(struct in6_addr);
2720				CTR1(KTR_MLD,
2721				    "%s: use previous packet", __func__);
2722			} else {
2723				m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2724				if (m == NULL)
2725					m = m_gethdr(M_DONTWAIT, MT_DATA);
2726				if (m == NULL) {
2727					CTR1(KTR_MLD,
2728					    "%s: m_get*() failed", __func__);
2729					return (-ENOMEM);
2730				}
2731				m->m_pkthdr.PH_vt.vt_nrecs = 0;
2732				mld_save_context(m, ifp);
2733				m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2734				    sizeof(struct mldv2_record)) /
2735				    sizeof(struct in6_addr);
2736				npbytes = 0;
2737				CTR1(KTR_MLD,
2738				    "%s: allocated new packet", __func__);
2739			}
2740			/*
2741			 * Append the MLD group record header to the
2742			 * current packet's data area.
2743			 * Recalculate pointer to free space for next
2744			 * group record, in case m_append() allocated
2745			 * a new mbuf or cluster.
2746			 */
2747			memset(&mr, 0, sizeof(mr));
2748			mr.mr_addr = inm->in6m_addr;
2749			in6_clearscope(&mr.mr_addr);
2750			if (!m_append(m, sizeof(mr), (void *)&mr)) {
2751				if (m != m0)
2752					m_freem(m);
2753				CTR1(KTR_MLD,
2754				    "%s: m_append() failed", __func__);
2755				return (-ENOMEM);
2756			}
2757			npbytes += sizeof(struct mldv2_record);
2758			if (m != m0) {
2759				/* new packet; offset in chain */
2760				md = m_getptr(m, npbytes -
2761				    sizeof(struct mldv2_record), &off);
2762				pmr = (struct mldv2_record *)(mtod(md,
2763				    uint8_t *) + off);
2764			} else {
2765				/* current packet; offset from last append */
2766				md = m_last(m);
2767				pmr = (struct mldv2_record *)(mtod(md,
2768				    uint8_t *) + md->m_len -
2769				    sizeof(struct mldv2_record));
2770			}
2771			/*
2772			 * Begin walking the tree for this record type
2773			 * pass, or continue from where we left off
2774			 * previously if we had to allocate a new packet.
2775			 * Only report deltas in-mode at t1.
2776			 * We need not report included sources as allowed
2777			 * if we are in inclusive mode on the group,
2778			 * however the converse is not true.
2779			 */
2780			rsrcs = 0;
2781			if (nims == NULL) {
2782				nims = RB_MIN(ip6_msource_tree,
2783				    &inm->in6m_srcs);
2784			}
2785			RB_FOREACH_FROM(ims, ip6_msource_tree, nims) {
2786				CTR2(KTR_MLD, "%s: visit node %s", __func__,
2787				    ip6_sprintf(ip6tbuf, &ims->im6s_addr));
2788				now = im6s_get_mode(inm, ims, 1);
2789				then = im6s_get_mode(inm, ims, 0);
2790				CTR3(KTR_MLD, "%s: mode: t0 %d, t1 %d",
2791				    __func__, then, now);
2792				if (now == then) {
2793					CTR1(KTR_MLD,
2794					    "%s: skip unchanged", __func__);
2795					continue;
2796				}
2797				if (mode == MCAST_EXCLUDE &&
2798				    now == MCAST_INCLUDE) {
2799					CTR1(KTR_MLD,
2800					    "%s: skip IN src on EX group",
2801					    __func__);
2802					continue;
2803				}
2804				nrt = (rectype_t)now;
2805				if (nrt == REC_NONE)
2806					nrt = (rectype_t)(~mode & REC_FULL);
2807				if (schanged++ == 0) {
2808					crt = nrt;
2809				} else if (crt != nrt)
2810					continue;
2811				if (!m_append(m, sizeof(struct in6_addr),
2812				    (void *)&ims->im6s_addr)) {
2813					if (m != m0)
2814						m_freem(m);
2815					CTR1(KTR_MLD,
2816					    "%s: m_append() failed", __func__);
2817					return (-ENOMEM);
2818				}
2819				nallow += !!(crt == REC_ALLOW);
2820				nblock += !!(crt == REC_BLOCK);
2821				if (++rsrcs == m0srcs)
2822					break;
2823			}
2824			/*
2825			 * If we did not append any tree nodes on this
2826			 * pass, back out of allocations.
2827			 */
2828			if (rsrcs == 0) {
2829				npbytes -= sizeof(struct mldv2_record);
2830				if (m != m0) {
2831					CTR1(KTR_MLD,
2832					    "%s: m_free(m)", __func__);
2833					m_freem(m);
2834				} else {
2835					CTR1(KTR_MLD,
2836					    "%s: m_adj(m, -mr)", __func__);
2837					m_adj(m, -((int)sizeof(
2838					    struct mldv2_record)));
2839				}
2840				continue;
2841			}
2842			npbytes += (rsrcs * sizeof(struct in6_addr));
2843			if (crt == REC_ALLOW)
2844				pmr->mr_type = MLD_ALLOW_NEW_SOURCES;
2845			else if (crt == REC_BLOCK)
2846				pmr->mr_type = MLD_BLOCK_OLD_SOURCES;
2847			pmr->mr_numsrc = htons(rsrcs);
2848			/*
2849			 * Count the new group record, and enqueue this
2850			 * packet if it wasn't already queued.
2851			 */
2852			m->m_pkthdr.PH_vt.vt_nrecs++;
2853			if (m != m0)
2854				_IF_ENQUEUE(ifq, m);
2855			nbytes += npbytes;
2856		} while (nims != NULL);
2857		drt |= crt;
2858		crt = (~crt & REC_FULL);
2859	}
2860
2861	CTR3(KTR_MLD, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__,
2862	    nallow, nblock);
2863
2864	return (nbytes);
2865}
2866
2867static int
2868mld_v2_merge_state_changes(struct in6_multi *inm, struct ifqueue *ifscq)
2869{
2870	struct ifqueue	*gq;
2871	struct mbuf	*m;		/* pending state-change */
2872	struct mbuf	*m0;		/* copy of pending state-change */
2873	struct mbuf	*mt;		/* last state-change in packet */
2874	int		 docopy, domerge;
2875	u_int		 recslen;
2876
2877	docopy = 0;
2878	domerge = 0;
2879	recslen = 0;
2880
2881	IN6_MULTI_LOCK_ASSERT();
2882	MLD_LOCK_ASSERT();
2883
2884	/*
2885	 * If there are further pending retransmissions, make a writable
2886	 * copy of each queued state-change message before merging.
2887	 */
2888	if (inm->in6m_scrv > 0)
2889		docopy = 1;
2890
2891	gq = &inm->in6m_scq;
2892#ifdef KTR
2893	if (gq->ifq_head == NULL) {
2894		CTR2(KTR_MLD, "%s: WARNING: queue for inm %p is empty",
2895		    __func__, inm);
2896	}
2897#endif
2898
2899	m = gq->ifq_head;
2900	while (m != NULL) {
2901		/*
2902		 * Only merge the report into the current packet if
2903		 * there is sufficient space to do so; an MLDv2 report
2904		 * packet may only contain 65,535 group records.
2905		 * Always use a simple mbuf chain concatentation to do this,
2906		 * as large state changes for single groups may have
2907		 * allocated clusters.
2908		 */
2909		domerge = 0;
2910		mt = ifscq->ifq_tail;
2911		if (mt != NULL) {
2912			recslen = m_length(m, NULL);
2913
2914			if ((mt->m_pkthdr.PH_vt.vt_nrecs +
2915			    m->m_pkthdr.PH_vt.vt_nrecs <=
2916			    MLD_V2_REPORT_MAXRECS) &&
2917			    (mt->m_pkthdr.len + recslen <=
2918			    (inm->in6m_ifp->if_mtu - MLD_MTUSPACE)))
2919				domerge = 1;
2920		}
2921
2922		if (!domerge && _IF_QFULL(gq)) {
2923			CTR2(KTR_MLD,
2924			    "%s: outbound queue full, skipping whole packet %p",
2925			    __func__, m);
2926			mt = m->m_nextpkt;
2927			if (!docopy)
2928				m_freem(m);
2929			m = mt;
2930			continue;
2931		}
2932
2933		if (!docopy) {
2934			CTR2(KTR_MLD, "%s: dequeueing %p", __func__, m);
2935			_IF_DEQUEUE(gq, m0);
2936			m = m0->m_nextpkt;
2937		} else {
2938			CTR2(KTR_MLD, "%s: copying %p", __func__, m);
2939			m0 = m_dup(m, M_NOWAIT);
2940			if (m0 == NULL)
2941				return (ENOMEM);
2942			m0->m_nextpkt = NULL;
2943			m = m->m_nextpkt;
2944		}
2945
2946		if (!domerge) {
2947			CTR3(KTR_MLD, "%s: queueing %p to ifscq %p)",
2948			    __func__, m0, ifscq);
2949			_IF_ENQUEUE(ifscq, m0);
2950		} else {
2951			struct mbuf *mtl;	/* last mbuf of packet mt */
2952
2953			CTR3(KTR_MLD, "%s: merging %p with ifscq tail %p)",
2954			    __func__, m0, mt);
2955
2956			mtl = m_last(mt);
2957			m0->m_flags &= ~M_PKTHDR;
2958			mt->m_pkthdr.len += recslen;
2959			mt->m_pkthdr.PH_vt.vt_nrecs +=
2960			    m0->m_pkthdr.PH_vt.vt_nrecs;
2961
2962			mtl->m_next = m0;
2963		}
2964	}
2965
2966	return (0);
2967}
2968
2969/*
2970 * Respond to a pending MLDv2 General Query.
2971 */
2972static void
2973mld_v2_dispatch_general_query(struct mld_ifinfo *mli)
2974{
2975	struct ifmultiaddr	*ifma, *tifma;
2976	struct ifnet		*ifp;
2977	struct in6_multi	*inm;
2978	int			 retval;
2979
2980	IN6_MULTI_LOCK_ASSERT();
2981	MLD_LOCK_ASSERT();
2982
2983	KASSERT(mli->mli_version == MLD_VERSION_2,
2984	    ("%s: called when version %d", __func__, mli->mli_version));
2985
2986	ifp = mli->mli_ifp;
2987
2988	IF_ADDR_LOCK(ifp);
2989	TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, tifma) {
2990		if (ifma->ifma_addr->sa_family != AF_INET6 ||
2991		    ifma->ifma_protospec == NULL)
2992			continue;
2993
2994		inm = (struct in6_multi *)ifma->ifma_protospec;
2995		KASSERT(ifp == inm->in6m_ifp,
2996		    ("%s: inconsistent ifp", __func__));
2997
2998		switch (inm->in6m_state) {
2999		case MLD_NOT_MEMBER:
3000		case MLD_SILENT_MEMBER:
3001			break;
3002		case MLD_REPORTING_MEMBER:
3003		case MLD_IDLE_MEMBER:
3004		case MLD_LAZY_MEMBER:
3005		case MLD_SLEEPING_MEMBER:
3006		case MLD_AWAKENING_MEMBER:
3007			inm->in6m_state = MLD_REPORTING_MEMBER;
3008			retval = mld_v2_enqueue_group_record(&mli->mli_gq,
3009			    inm, 0, 0, 0, 0);
3010			CTR2(KTR_MLD, "%s: enqueue record = %d",
3011			    __func__, retval);
3012			break;
3013		case MLD_G_QUERY_PENDING_MEMBER:
3014		case MLD_SG_QUERY_PENDING_MEMBER:
3015		case MLD_LEAVING_MEMBER:
3016			break;
3017		}
3018	}
3019	IF_ADDR_UNLOCK(ifp);
3020
3021	mld_dispatch_queue(&mli->mli_gq, MLD_MAX_RESPONSE_BURST);
3022
3023	/*
3024	 * Slew transmission of bursts over 500ms intervals.
3025	 */
3026	if (mli->mli_gq.ifq_head != NULL) {
3027		mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY(
3028		    MLD_RESPONSE_BURST_INTERVAL);
3029		V_interface_timers_running6 = 1;
3030	}
3031}
3032
3033/*
3034 * Transmit the next pending message in the output queue.
3035 *
3036 * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis.
3037 * MRT: Nothing needs to be done, as MLD traffic is always local to
3038 * a link and uses a link-scope multicast address.
3039 */
3040static void
3041mld_dispatch_packet(struct mbuf *m)
3042{
3043	struct ip6_moptions	 im6o;
3044	struct ifnet		*ifp;
3045	struct ifnet		*oifp;
3046	struct mbuf		*m0;
3047	struct mbuf		*md;
3048	struct ip6_hdr		*ip6;
3049	struct mld_hdr		*mld;
3050	int			 error;
3051	int			 off;
3052	int			 type;
3053	uint32_t		 ifindex;
3054
3055	CTR2(KTR_MLD, "%s: transmit %p", __func__, m);
3056
3057	/*
3058	 * Set VNET image pointer from enqueued mbuf chain
3059	 * before doing anything else. Whilst we use interface
3060	 * indexes to guard against interface detach, they are
3061	 * unique to each VIMAGE and must be retrieved.
3062	 */
3063	ifindex = mld_restore_context(m);
3064
3065	/*
3066	 * Check if the ifnet still exists. This limits the scope of
3067	 * any race in the absence of a global ifp lock for low cost
3068	 * (an array lookup).
3069	 */
3070	ifp = ifnet_byindex(ifindex);
3071	if (ifp == NULL) {
3072		CTR3(KTR_MLD, "%s: dropped %p as ifindex %u went away.",
3073		    __func__, m, ifindex);
3074		m_freem(m);
3075		IP6STAT_INC(ip6s_noroute);
3076		goto out;
3077	}
3078
3079	im6o.im6o_multicast_hlim  = 1;
3080	im6o.im6o_multicast_loop = (V_ip6_mrouter != NULL);
3081	im6o.im6o_multicast_ifp = ifp;
3082
3083	if (m->m_flags & M_MLDV1) {
3084		m0 = m;
3085	} else {
3086		m0 = mld_v2_encap_report(ifp, m);
3087		if (m0 == NULL) {
3088			CTR2(KTR_MLD, "%s: dropped %p", __func__, m);
3089			m_freem(m);
3090			IP6STAT_INC(ip6s_odropped);
3091			goto out;
3092		}
3093	}
3094
3095	mld_scrub_context(m0);
3096	m->m_flags &= ~(M_PROTOFLAGS);
3097	m0->m_pkthdr.rcvif = V_loif;
3098
3099	ip6 = mtod(m0, struct ip6_hdr *);
3100#if 0
3101	(void)in6_setscope(&ip6->ip6_dst, ifp, NULL);	/* XXX LOR */
3102#else
3103	/*
3104	 * XXX XXX Break some KPI rules to prevent an LOR which would
3105	 * occur if we called in6_setscope() at transmission.
3106	 * See comments at top of file.
3107	 */
3108	MLD_EMBEDSCOPE(&ip6->ip6_dst, ifp->if_index);
3109#endif
3110
3111	/*
3112	 * Retrieve the ICMPv6 type before handoff to ip6_output(),
3113	 * so we can bump the stats.
3114	 */
3115	md = m_getptr(m0, sizeof(struct ip6_hdr), &off);
3116	mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off);
3117	type = mld->mld_type;
3118
3119	error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, &im6o,
3120	    &oifp, NULL);
3121	if (error) {
3122		CTR3(KTR_MLD, "%s: ip6_output(%p) = %d", __func__, m0, error);
3123		goto out;
3124	}
3125	ICMP6STAT_INC(icp6s_outhist[type]);
3126	if (oifp != NULL) {
3127		icmp6_ifstat_inc(oifp, ifs6_out_msg);
3128		switch (type) {
3129		case MLD_LISTENER_REPORT:
3130		case MLDV2_LISTENER_REPORT:
3131			icmp6_ifstat_inc(oifp, ifs6_out_mldreport);
3132			break;
3133		case MLD_LISTENER_DONE:
3134			icmp6_ifstat_inc(oifp, ifs6_out_mlddone);
3135			break;
3136		}
3137	}
3138out:
3139	return;
3140}
3141
3142/*
3143 * Encapsulate an MLDv2 report.
3144 *
3145 * KAME IPv6 requires that hop-by-hop options be passed separately,
3146 * and that the IPv6 header be prepended in a separate mbuf.
3147 *
3148 * Returns a pointer to the new mbuf chain head, or NULL if the
3149 * allocation failed.
3150 */
3151static struct mbuf *
3152mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m)
3153{
3154	struct mbuf		*mh;
3155	struct mldv2_report	*mld;
3156	struct ip6_hdr		*ip6;
3157	struct in6_ifaddr	*ia;
3158	int			 mldreclen;
3159
3160	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
3161	KASSERT((m->m_flags & M_PKTHDR),
3162	    ("%s: mbuf chain %p is !M_PKTHDR", __func__, m));
3163
3164	/*
3165	 * RFC3590: OK to send as :: or tentative during DAD.
3166	 */
3167	ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
3168	if (ia == NULL)
3169		CTR1(KTR_MLD, "%s: warning: ia is NULL", __func__);
3170
3171	MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3172	if (mh == NULL) {
3173		if (ia != NULL)
3174			ifa_free(&ia->ia_ifa);
3175		m_freem(m);
3176		return (NULL);
3177	}
3178	MH_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report));
3179
3180	mldreclen = m_length(m, NULL);
3181	CTR2(KTR_MLD, "%s: mldreclen is %d", __func__, mldreclen);
3182
3183	mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report);
3184	mh->m_pkthdr.len = sizeof(struct ip6_hdr) +
3185	    sizeof(struct mldv2_report) + mldreclen;
3186
3187	ip6 = mtod(mh, struct ip6_hdr *);
3188	ip6->ip6_flow = 0;
3189	ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3190	ip6->ip6_vfc |= IPV6_VERSION;
3191	ip6->ip6_nxt = IPPROTO_ICMPV6;
3192	ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any;
3193	if (ia != NULL)
3194		ifa_free(&ia->ia_ifa);
3195	ip6->ip6_dst = in6addr_linklocal_allv2routers;
3196	/* scope ID will be set in netisr */
3197
3198	mld = (struct mldv2_report *)(ip6 + 1);
3199	mld->mld_type = MLDV2_LISTENER_REPORT;
3200	mld->mld_code = 0;
3201	mld->mld_cksum = 0;
3202	mld->mld_v2_reserved = 0;
3203	mld->mld_v2_numrecs = htons(m->m_pkthdr.PH_vt.vt_nrecs);
3204	m->m_pkthdr.PH_vt.vt_nrecs = 0;
3205
3206	mh->m_next = m;
3207	mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6,
3208	    sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen);
3209	return (mh);
3210}
3211
3212#ifdef KTR
3213static char *
3214mld_rec_type_to_str(const int type)
3215{
3216
3217	switch (type) {
3218		case MLD_CHANGE_TO_EXCLUDE_MODE:
3219			return "TO_EX";
3220			break;
3221		case MLD_CHANGE_TO_INCLUDE_MODE:
3222			return "TO_IN";
3223			break;
3224		case MLD_MODE_IS_EXCLUDE:
3225			return "MODE_EX";
3226			break;
3227		case MLD_MODE_IS_INCLUDE:
3228			return "MODE_IN";
3229			break;
3230		case MLD_ALLOW_NEW_SOURCES:
3231			return "ALLOW_NEW";
3232			break;
3233		case MLD_BLOCK_OLD_SOURCES:
3234			return "BLOCK_OLD";
3235			break;
3236		default:
3237			break;
3238	}
3239	return "unknown";
3240}
3241#endif
3242
3243static void
3244mld_init(void *unused __unused)
3245{
3246
3247	CTR1(KTR_MLD, "%s: initializing", __func__);
3248	MLD_LOCK_INIT();
3249
3250	ip6_initpktopts(&mld_po);
3251	mld_po.ip6po_hlim = 1;
3252	mld_po.ip6po_hbh = &mld_ra.hbh;
3253	mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER;
3254	mld_po.ip6po_flags = IP6PO_DONTFRAG;
3255}
3256SYSINIT(mld_init, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_init, NULL);
3257
3258static void
3259mld_uninit(void *unused __unused)
3260{
3261
3262	CTR1(KTR_MLD, "%s: tearing down", __func__);
3263	MLD_LOCK_DESTROY();
3264}
3265SYSUNINIT(mld_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_uninit, NULL);
3266
3267static void
3268vnet_mld_init(const void *unused __unused)
3269{
3270
3271	CTR1(KTR_MLD, "%s: initializing", __func__);
3272
3273	LIST_INIT(&V_mli_head);
3274}
3275VNET_SYSINIT(vnet_mld_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_init,
3276    NULL);
3277
3278static void
3279vnet_mld_uninit(const void *unused __unused)
3280{
3281
3282	CTR1(KTR_MLD, "%s: tearing down", __func__);
3283
3284	KASSERT(LIST_EMPTY(&V_mli_head),
3285	    ("%s: mli list not empty; ifnets not detached?", __func__));
3286}
3287VNET_SYSUNINIT(vnet_mld_uninit, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_uninit,
3288    NULL);
3289
3290static int
3291mld_modevent(module_t mod, int type, void *unused __unused)
3292{
3293
3294    switch (type) {
3295    case MOD_LOAD:
3296    case MOD_UNLOAD:
3297	break;
3298    default:
3299	return (EOPNOTSUPP);
3300    }
3301    return (0);
3302}
3303
3304static moduledata_t mld_mod = {
3305    "mld",
3306    mld_modevent,
3307    0
3308};
3309DECLARE_MODULE(mld, mld_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3310