tcp_subr.c revision 285980
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: releng/9.3/sys/netinet/tcp_subr.c 285980 2015-07-28 19:59:22Z delphij $");
34
35#include "opt_compat.h"
36#include "opt_inet.h"
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39#include "opt_tcpdebug.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/callout.h>
44#include <sys/hhook.h>
45#include <sys/kernel.h>
46#include <sys/khelp.h>
47#include <sys/sysctl.h>
48#include <sys/jail.h>
49#include <sys/malloc.h>
50#include <sys/mbuf.h>
51#ifdef INET6
52#include <sys/domain.h>
53#endif
54#include <sys/priv.h>
55#include <sys/proc.h>
56#include <sys/socket.h>
57#include <sys/socketvar.h>
58#include <sys/protosw.h>
59#include <sys/random.h>
60
61#include <vm/uma.h>
62
63#include <net/route.h>
64#include <net/if.h>
65#include <net/vnet.h>
66
67#include <netinet/cc.h>
68#include <netinet/in.h>
69#include <netinet/in_pcb.h>
70#include <netinet/in_systm.h>
71#include <netinet/in_var.h>
72#include <netinet/ip.h>
73#include <netinet/ip_icmp.h>
74#include <netinet/ip_var.h>
75#ifdef INET6
76#include <netinet/ip6.h>
77#include <netinet6/in6_pcb.h>
78#include <netinet6/ip6_var.h>
79#include <netinet6/scope6_var.h>
80#include <netinet6/nd6.h>
81#endif
82
83#include <netinet/tcp_fsm.h>
84#include <netinet/tcp_seq.h>
85#include <netinet/tcp_timer.h>
86#include <netinet/tcp_var.h>
87#include <netinet/tcp_syncache.h>
88#ifdef INET6
89#include <netinet6/tcp6_var.h>
90#endif
91#include <netinet/tcpip.h>
92#ifdef TCPDEBUG
93#include <netinet/tcp_debug.h>
94#endif
95#ifdef INET6
96#include <netinet6/ip6protosw.h>
97#endif
98#ifdef TCP_OFFLOAD
99#include <netinet/tcp_offload.h>
100#endif
101
102#ifdef IPSEC
103#include <netipsec/ipsec.h>
104#include <netipsec/xform.h>
105#ifdef INET6
106#include <netipsec/ipsec6.h>
107#endif
108#include <netipsec/key.h>
109#include <sys/syslog.h>
110#endif /*IPSEC*/
111
112#include <machine/in_cksum.h>
113#include <sys/md5.h>
114
115#include <security/mac/mac_framework.h>
116
117VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
118#ifdef INET6
119VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
120#endif
121
122static int
123sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
124{
125	int error, new;
126
127	new = V_tcp_mssdflt;
128	error = sysctl_handle_int(oidp, &new, 0, req);
129	if (error == 0 && req->newptr) {
130		if (new < TCP_MINMSS)
131			error = EINVAL;
132		else
133			V_tcp_mssdflt = new;
134	}
135	return (error);
136}
137
138SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
139    CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
140    &sysctl_net_inet_tcp_mss_check, "I",
141    "Default TCP Maximum Segment Size");
142
143#ifdef INET6
144static int
145sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
146{
147	int error, new;
148
149	new = V_tcp_v6mssdflt;
150	error = sysctl_handle_int(oidp, &new, 0, req);
151	if (error == 0 && req->newptr) {
152		if (new < TCP_MINMSS)
153			error = EINVAL;
154		else
155			V_tcp_v6mssdflt = new;
156	}
157	return (error);
158}
159
160SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
161    CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
162    &sysctl_net_inet_tcp_mss_v6_check, "I",
163   "Default TCP Maximum Segment Size for IPv6");
164#endif /* INET6 */
165
166/*
167 * Minimum MSS we accept and use. This prevents DoS attacks where
168 * we are forced to a ridiculous low MSS like 20 and send hundreds
169 * of packets instead of one. The effect scales with the available
170 * bandwidth and quickly saturates the CPU and network interface
171 * with packet generation and sending. Set to zero to disable MINMSS
172 * checking. This setting prevents us from sending too small packets.
173 */
174VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
175SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
176     &VNET_NAME(tcp_minmss), 0,
177    "Minimum TCP Maximum Segment Size");
178
179VNET_DEFINE(int, tcp_do_rfc1323) = 1;
180SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
181    &VNET_NAME(tcp_do_rfc1323), 0,
182    "Enable rfc1323 (high performance TCP) extensions");
183
184static int	tcp_log_debug = 0;
185SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
186    &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
187
188static int	tcp_tcbhashsize = 0;
189SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
190    &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
191
192static int	do_tcpdrain = 1;
193SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
194    "Enable tcp_drain routine for extra help when low on mbufs");
195
196SYSCTL_VNET_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
197    &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
198
199static VNET_DEFINE(int, icmp_may_rst) = 1;
200#define	V_icmp_may_rst			VNET(icmp_may_rst)
201SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW,
202    &VNET_NAME(icmp_may_rst), 0,
203    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
204
205static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
206#define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
207SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
208    &VNET_NAME(tcp_isn_reseed_interval), 0,
209    "Seconds between reseeding of ISN secret");
210
211static int	tcp_soreceive_stream = 0;
212SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
213    &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
214
215#ifdef TCP_SIGNATURE
216static int	tcp_sig_checksigs = 1;
217SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW,
218    &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic");
219#endif
220
221VNET_DEFINE(uma_zone_t, sack_hole_zone);
222#define	V_sack_hole_zone		VNET(sack_hole_zone)
223
224VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
225
226static struct inpcb *tcp_notify(struct inpcb *, int);
227static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
228static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
229		    void *ip4hdr, const void *ip6hdr);
230
231/*
232 * Target size of TCP PCB hash tables. Must be a power of two.
233 *
234 * Note that this can be overridden by the kernel environment
235 * variable net.inet.tcp.tcbhashsize
236 */
237#ifndef TCBHASHSIZE
238#define TCBHASHSIZE	512
239#endif
240
241/*
242 * XXX
243 * Callouts should be moved into struct tcp directly.  They are currently
244 * separate because the tcpcb structure is exported to userland for sysctl
245 * parsing purposes, which do not know about callouts.
246 */
247struct tcpcb_mem {
248	struct	tcpcb		tcb;
249	struct	tcp_timer	tt;
250	struct	cc_var		ccv;
251	struct	osd		osd;
252};
253
254static VNET_DEFINE(uma_zone_t, tcpcb_zone);
255#define	V_tcpcb_zone			VNET(tcpcb_zone)
256
257MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
258static struct mtx isn_mtx;
259
260#define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
261#define	ISN_LOCK()	mtx_lock(&isn_mtx)
262#define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
263
264/*
265 * TCP initialization.
266 */
267static void
268tcp_zone_change(void *tag)
269{
270
271	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
272	uma_zone_set_max(V_tcpcb_zone, maxsockets);
273	tcp_tw_zone_change();
274}
275
276static int
277tcp_inpcb_init(void *mem, int size, int flags)
278{
279	struct inpcb *inp = mem;
280
281	INP_LOCK_INIT(inp, "inp", "tcpinp");
282	return (0);
283}
284
285void
286tcp_init(void)
287{
288	int hashsize;
289
290	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
291	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
292		printf("%s: WARNING: unable to register helper hook\n", __func__);
293	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
294	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
295		printf("%s: WARNING: unable to register helper hook\n", __func__);
296
297	hashsize = TCBHASHSIZE;
298	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
299	if (!powerof2(hashsize)) {
300		printf("WARNING: TCB hash size not a power of 2\n");
301		hashsize = 512; /* safe default */
302	}
303	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
304	    "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE,
305	    IPI_HASHFIELDS_4TUPLE);
306
307	/*
308	 * These have to be type stable for the benefit of the timers.
309	 */
310	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
311	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
312	uma_zone_set_max(V_tcpcb_zone, maxsockets);
313
314	tcp_tw_init();
315	syncache_init();
316	tcp_hc_init();
317
318	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
319	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
320	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
321
322	/* Skip initialization of globals for non-default instances. */
323	if (!IS_DEFAULT_VNET(curvnet))
324		return;
325
326	tcp_reass_global_init();
327
328	/* XXX virtualize those bellow? */
329	tcp_delacktime = TCPTV_DELACK;
330	tcp_keepinit = TCPTV_KEEP_INIT;
331	tcp_keepidle = TCPTV_KEEP_IDLE;
332	tcp_keepintvl = TCPTV_KEEPINTVL;
333	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
334	tcp_msl = TCPTV_MSL;
335	tcp_rexmit_min = TCPTV_MIN;
336	if (tcp_rexmit_min < 1)
337		tcp_rexmit_min = 1;
338	tcp_rexmit_slop = TCPTV_CPU_VAR;
339	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
340	tcp_tcbhashsize = hashsize;
341
342	TUNABLE_INT_FETCH("net.inet.tcp.soreceive_stream", &tcp_soreceive_stream);
343	if (tcp_soreceive_stream) {
344#ifdef INET
345		tcp_usrreqs.pru_soreceive = soreceive_stream;
346#endif
347#ifdef INET6
348		tcp6_usrreqs.pru_soreceive = soreceive_stream;
349#endif /* INET6 */
350	}
351
352#ifdef INET6
353#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
354#else /* INET6 */
355#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
356#endif /* INET6 */
357	if (max_protohdr < TCP_MINPROTOHDR)
358		max_protohdr = TCP_MINPROTOHDR;
359	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
360		panic("tcp_init");
361#undef TCP_MINPROTOHDR
362
363	ISN_LOCK_INIT();
364	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
365		SHUTDOWN_PRI_DEFAULT);
366	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
367		EVENTHANDLER_PRI_ANY);
368}
369
370#ifdef VIMAGE
371void
372tcp_destroy(void)
373{
374
375	tcp_hc_destroy();
376	syncache_destroy();
377	tcp_tw_destroy();
378	in_pcbinfo_destroy(&V_tcbinfo);
379	uma_zdestroy(V_sack_hole_zone);
380	uma_zdestroy(V_tcpcb_zone);
381}
382#endif
383
384void
385tcp_fini(void *xtp)
386{
387
388}
389
390/*
391 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
392 * tcp_template used to store this data in mbufs, but we now recopy it out
393 * of the tcpcb each time to conserve mbufs.
394 */
395void
396tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
397{
398	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
399
400	INP_WLOCK_ASSERT(inp);
401
402#ifdef INET6
403	if ((inp->inp_vflag & INP_IPV6) != 0) {
404		struct ip6_hdr *ip6;
405
406		ip6 = (struct ip6_hdr *)ip_ptr;
407		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
408			(inp->inp_flow & IPV6_FLOWINFO_MASK);
409		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
410			(IPV6_VERSION & IPV6_VERSION_MASK);
411		ip6->ip6_nxt = IPPROTO_TCP;
412		ip6->ip6_plen = htons(sizeof(struct tcphdr));
413		ip6->ip6_src = inp->in6p_laddr;
414		ip6->ip6_dst = inp->in6p_faddr;
415	}
416#endif /* INET6 */
417#if defined(INET6) && defined(INET)
418	else
419#endif
420#ifdef INET
421	{
422		struct ip *ip;
423
424		ip = (struct ip *)ip_ptr;
425		ip->ip_v = IPVERSION;
426		ip->ip_hl = 5;
427		ip->ip_tos = inp->inp_ip_tos;
428		ip->ip_len = 0;
429		ip->ip_id = 0;
430		ip->ip_off = 0;
431		ip->ip_ttl = inp->inp_ip_ttl;
432		ip->ip_sum = 0;
433		ip->ip_p = IPPROTO_TCP;
434		ip->ip_src = inp->inp_laddr;
435		ip->ip_dst = inp->inp_faddr;
436	}
437#endif /* INET */
438	th->th_sport = inp->inp_lport;
439	th->th_dport = inp->inp_fport;
440	th->th_seq = 0;
441	th->th_ack = 0;
442	th->th_x2 = 0;
443	th->th_off = 5;
444	th->th_flags = 0;
445	th->th_win = 0;
446	th->th_urp = 0;
447	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
448}
449
450/*
451 * Create template to be used to send tcp packets on a connection.
452 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
453 * use for this function is in keepalives, which use tcp_respond.
454 */
455struct tcptemp *
456tcpip_maketemplate(struct inpcb *inp)
457{
458	struct tcptemp *t;
459
460	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
461	if (t == NULL)
462		return (NULL);
463	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
464	return (t);
465}
466
467/*
468 * Send a single message to the TCP at address specified by
469 * the given TCP/IP header.  If m == NULL, then we make a copy
470 * of the tcpiphdr at ti and send directly to the addressed host.
471 * This is used to force keep alive messages out using the TCP
472 * template for a connection.  If flags are given then we send
473 * a message back to the TCP which originated the * segment ti,
474 * and discard the mbuf containing it and any other attached mbufs.
475 *
476 * In any case the ack and sequence number of the transmitted
477 * segment are as specified by the parameters.
478 *
479 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
480 */
481void
482tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
483    tcp_seq ack, tcp_seq seq, int flags)
484{
485	int tlen;
486	int win = 0;
487	struct ip *ip;
488	struct tcphdr *nth;
489#ifdef INET6
490	struct ip6_hdr *ip6;
491	int isipv6;
492#endif /* INET6 */
493	int ipflags = 0;
494	struct inpcb *inp;
495
496	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
497
498#ifdef INET6
499	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
500	ip6 = ipgen;
501#endif /* INET6 */
502	ip = ipgen;
503
504	if (tp != NULL) {
505		inp = tp->t_inpcb;
506		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
507		INP_WLOCK_ASSERT(inp);
508	} else
509		inp = NULL;
510
511	if (tp != NULL) {
512		if (!(flags & TH_RST)) {
513			win = sbspace(&inp->inp_socket->so_rcv);
514			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
515				win = (long)TCP_MAXWIN << tp->rcv_scale;
516		}
517	}
518	if (m == NULL) {
519		m = m_gethdr(M_DONTWAIT, MT_DATA);
520		if (m == NULL)
521			return;
522		tlen = 0;
523		m->m_data += max_linkhdr;
524#ifdef INET6
525		if (isipv6) {
526			bcopy((caddr_t)ip6, mtod(m, caddr_t),
527			      sizeof(struct ip6_hdr));
528			ip6 = mtod(m, struct ip6_hdr *);
529			nth = (struct tcphdr *)(ip6 + 1);
530		} else
531#endif /* INET6 */
532	      {
533		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
534		ip = mtod(m, struct ip *);
535		nth = (struct tcphdr *)(ip + 1);
536	      }
537		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
538		flags = TH_ACK;
539	} else {
540		/*
541		 *  reuse the mbuf.
542		 * XXX MRT We inherrit the FIB, which is lucky.
543		 */
544		m_freem(m->m_next);
545		m->m_next = NULL;
546		m->m_data = (caddr_t)ipgen;
547		m_addr_changed(m);
548		/* m_len is set later */
549		tlen = 0;
550#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
551#ifdef INET6
552		if (isipv6) {
553			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
554			nth = (struct tcphdr *)(ip6 + 1);
555		} else
556#endif /* INET6 */
557	      {
558		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
559		nth = (struct tcphdr *)(ip + 1);
560	      }
561		if (th != nth) {
562			/*
563			 * this is usually a case when an extension header
564			 * exists between the IPv6 header and the
565			 * TCP header.
566			 */
567			nth->th_sport = th->th_sport;
568			nth->th_dport = th->th_dport;
569		}
570		xchg(nth->th_dport, nth->th_sport, uint16_t);
571#undef xchg
572	}
573#ifdef INET6
574	if (isipv6) {
575		ip6->ip6_flow = 0;
576		ip6->ip6_vfc = IPV6_VERSION;
577		ip6->ip6_nxt = IPPROTO_TCP;
578		ip6->ip6_plen = 0;		/* Set in ip6_output(). */
579		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
580	}
581#endif
582#if defined(INET) && defined(INET6)
583	else
584#endif
585#ifdef INET
586	{
587		tlen += sizeof (struct tcpiphdr);
588		ip->ip_len = tlen;
589		ip->ip_ttl = V_ip_defttl;
590		if (V_path_mtu_discovery)
591			ip->ip_off |= IP_DF;
592	}
593#endif
594	m->m_len = tlen;
595	m->m_pkthdr.len = tlen;
596	m->m_pkthdr.rcvif = NULL;
597#ifdef MAC
598	if (inp != NULL) {
599		/*
600		 * Packet is associated with a socket, so allow the
601		 * label of the response to reflect the socket label.
602		 */
603		INP_WLOCK_ASSERT(inp);
604		mac_inpcb_create_mbuf(inp, m);
605	} else {
606		/*
607		 * Packet is not associated with a socket, so possibly
608		 * update the label in place.
609		 */
610		mac_netinet_tcp_reply(m);
611	}
612#endif
613	nth->th_seq = htonl(seq);
614	nth->th_ack = htonl(ack);
615	nth->th_x2 = 0;
616	nth->th_off = sizeof (struct tcphdr) >> 2;
617	nth->th_flags = flags;
618	if (tp != NULL)
619		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
620	else
621		nth->th_win = htons((u_short)win);
622	nth->th_urp = 0;
623
624	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
625#ifdef INET6
626	if (isipv6) {
627		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
628		nth->th_sum = in6_cksum_pseudo(ip6,
629		    tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0);
630		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
631		    NULL, NULL);
632	}
633#endif /* INET6 */
634#if defined(INET6) && defined(INET)
635	else
636#endif
637#ifdef INET
638	{
639		m->m_pkthdr.csum_flags = CSUM_TCP;
640		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
641		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
642	}
643#endif /* INET */
644#ifdef TCPDEBUG
645	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
646		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
647#endif
648#ifdef INET6
649	if (isipv6)
650		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
651#endif /* INET6 */
652#if defined(INET) && defined(INET6)
653	else
654#endif
655#ifdef INET
656		(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
657#endif
658}
659
660/*
661 * Create a new TCP control block, making an
662 * empty reassembly queue and hooking it to the argument
663 * protocol control block.  The `inp' parameter must have
664 * come from the zone allocator set up in tcp_init().
665 */
666struct tcpcb *
667tcp_newtcpcb(struct inpcb *inp)
668{
669	struct tcpcb_mem *tm;
670	struct tcpcb *tp;
671#ifdef INET6
672	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
673#endif /* INET6 */
674
675	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
676	if (tm == NULL)
677		return (NULL);
678	tp = &tm->tcb;
679
680	/* Initialise cc_var struct for this tcpcb. */
681	tp->ccv = &tm->ccv;
682	tp->ccv->type = IPPROTO_TCP;
683	tp->ccv->ccvc.tcp = tp;
684
685	/*
686	 * Use the current system default CC algorithm.
687	 */
688	CC_LIST_RLOCK();
689	KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!"));
690	CC_ALGO(tp) = CC_DEFAULT();
691	CC_LIST_RUNLOCK();
692
693	if (CC_ALGO(tp)->cb_init != NULL)
694		if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) {
695			uma_zfree(V_tcpcb_zone, tm);
696			return (NULL);
697		}
698
699	tp->osd = &tm->osd;
700	if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) {
701		uma_zfree(V_tcpcb_zone, tm);
702		return (NULL);
703	}
704
705#ifdef VIMAGE
706	tp->t_vnet = inp->inp_vnet;
707#endif
708	tp->t_timers = &tm->tt;
709	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
710	tp->t_maxseg = tp->t_maxopd =
711#ifdef INET6
712		isipv6 ? V_tcp_v6mssdflt :
713#endif /* INET6 */
714		V_tcp_mssdflt;
715
716	/* Set up our timeouts. */
717	callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE);
718	callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE);
719	callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE);
720	callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE);
721	callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE);
722
723	if (V_tcp_do_rfc1323)
724		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
725	if (V_tcp_do_sack)
726		tp->t_flags |= TF_SACK_PERMIT;
727	TAILQ_INIT(&tp->snd_holes);
728	tp->t_inpcb = inp;	/* XXX */
729	/*
730	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
731	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
732	 * reasonable initial retransmit time.
733	 */
734	tp->t_srtt = TCPTV_SRTTBASE;
735	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
736	tp->t_rttmin = tcp_rexmit_min;
737	tp->t_rxtcur = TCPTV_RTOBASE;
738	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
739	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
740	tp->t_rcvtime = ticks;
741	/*
742	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
743	 * because the socket may be bound to an IPv6 wildcard address,
744	 * which may match an IPv4-mapped IPv6 address.
745	 */
746	inp->inp_ip_ttl = V_ip_defttl;
747	inp->inp_ppcb = tp;
748	return (tp);		/* XXX */
749}
750
751/*
752 * Switch the congestion control algorithm back to NewReno for any active
753 * control blocks using an algorithm which is about to go away.
754 * This ensures the CC framework can allow the unload to proceed without leaving
755 * any dangling pointers which would trigger a panic.
756 * Returning non-zero would inform the CC framework that something went wrong
757 * and it would be unsafe to allow the unload to proceed. However, there is no
758 * way for this to occur with this implementation so we always return zero.
759 */
760int
761tcp_ccalgounload(struct cc_algo *unload_algo)
762{
763	struct cc_algo *tmpalgo;
764	struct inpcb *inp;
765	struct tcpcb *tp;
766	VNET_ITERATOR_DECL(vnet_iter);
767
768	/*
769	 * Check all active control blocks across all network stacks and change
770	 * any that are using "unload_algo" back to NewReno. If "unload_algo"
771	 * requires cleanup code to be run, call it.
772	 */
773	VNET_LIST_RLOCK();
774	VNET_FOREACH(vnet_iter) {
775		CURVNET_SET(vnet_iter);
776		INP_INFO_RLOCK(&V_tcbinfo);
777		/*
778		 * New connections already part way through being initialised
779		 * with the CC algo we're removing will not race with this code
780		 * because the INP_INFO_WLOCK is held during initialisation. We
781		 * therefore don't enter the loop below until the connection
782		 * list has stabilised.
783		 */
784		LIST_FOREACH(inp, &V_tcb, inp_list) {
785			INP_WLOCK(inp);
786			/* Important to skip tcptw structs. */
787			if (!(inp->inp_flags & INP_TIMEWAIT) &&
788			    (tp = intotcpcb(inp)) != NULL) {
789				/*
790				 * By holding INP_WLOCK here, we are assured
791				 * that the connection is not currently
792				 * executing inside the CC module's functions
793				 * i.e. it is safe to make the switch back to
794				 * NewReno.
795				 */
796				if (CC_ALGO(tp) == unload_algo) {
797					tmpalgo = CC_ALGO(tp);
798					/* NewReno does not require any init. */
799					CC_ALGO(tp) = &newreno_cc_algo;
800					if (tmpalgo->cb_destroy != NULL)
801						tmpalgo->cb_destroy(tp->ccv);
802				}
803			}
804			INP_WUNLOCK(inp);
805		}
806		INP_INFO_RUNLOCK(&V_tcbinfo);
807		CURVNET_RESTORE();
808	}
809	VNET_LIST_RUNLOCK();
810
811	return (0);
812}
813
814/*
815 * Drop a TCP connection, reporting
816 * the specified error.  If connection is synchronized,
817 * then send a RST to peer.
818 */
819struct tcpcb *
820tcp_drop(struct tcpcb *tp, int errno)
821{
822	struct socket *so = tp->t_inpcb->inp_socket;
823
824	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
825	INP_WLOCK_ASSERT(tp->t_inpcb);
826
827	if (TCPS_HAVERCVDSYN(tp->t_state)) {
828		tp->t_state = TCPS_CLOSED;
829		(void) tcp_output(tp);
830		TCPSTAT_INC(tcps_drops);
831	} else
832		TCPSTAT_INC(tcps_conndrops);
833	if (errno == ETIMEDOUT && tp->t_softerror)
834		errno = tp->t_softerror;
835	so->so_error = errno;
836	return (tcp_close(tp));
837}
838
839void
840tcp_discardcb(struct tcpcb *tp)
841{
842	struct inpcb *inp = tp->t_inpcb;
843	struct socket *so = inp->inp_socket;
844#ifdef INET6
845	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
846#endif /* INET6 */
847
848	INP_WLOCK_ASSERT(inp);
849
850	/*
851	 * Make sure that all of our timers are stopped before we delete the
852	 * PCB.
853	 *
854	 * XXXRW: Really, we would like to use callout_drain() here in order
855	 * to avoid races experienced in tcp_timer.c where a timer is already
856	 * executing at this point.  However, we can't, both because we're
857	 * running in a context where we can't sleep, and also because we
858	 * hold locks required by the timers.  What we instead need to do is
859	 * test to see if callout_drain() is required, and if so, defer some
860	 * portion of the remainder of tcp_discardcb() to an asynchronous
861	 * context that can callout_drain() and then continue.  Some care
862	 * will be required to ensure that no further processing takes place
863	 * on the tcpcb, even though it hasn't been freed (a flag?).
864	 */
865	callout_stop(&tp->t_timers->tt_rexmt);
866	callout_stop(&tp->t_timers->tt_persist);
867	callout_stop(&tp->t_timers->tt_keep);
868	callout_stop(&tp->t_timers->tt_2msl);
869	callout_stop(&tp->t_timers->tt_delack);
870
871	/*
872	 * If we got enough samples through the srtt filter,
873	 * save the rtt and rttvar in the routing entry.
874	 * 'Enough' is arbitrarily defined as 4 rtt samples.
875	 * 4 samples is enough for the srtt filter to converge
876	 * to within enough % of the correct value; fewer samples
877	 * and we could save a bogus rtt. The danger is not high
878	 * as tcp quickly recovers from everything.
879	 * XXX: Works very well but needs some more statistics!
880	 */
881	if (tp->t_rttupdated >= 4) {
882		struct hc_metrics_lite metrics;
883		u_long ssthresh;
884
885		bzero(&metrics, sizeof(metrics));
886		/*
887		 * Update the ssthresh always when the conditions below
888		 * are satisfied. This gives us better new start value
889		 * for the congestion avoidance for new connections.
890		 * ssthresh is only set if packet loss occured on a session.
891		 *
892		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
893		 * being torn down.  Ideally this code would not use 'so'.
894		 */
895		ssthresh = tp->snd_ssthresh;
896		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
897			/*
898			 * convert the limit from user data bytes to
899			 * packets then to packet data bytes.
900			 */
901			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
902			if (ssthresh < 2)
903				ssthresh = 2;
904			ssthresh *= (u_long)(tp->t_maxseg +
905#ifdef INET6
906				      (isipv6 ? sizeof (struct ip6_hdr) +
907					       sizeof (struct tcphdr) :
908#endif
909				       sizeof (struct tcpiphdr)
910#ifdef INET6
911				       )
912#endif
913				      );
914		} else
915			ssthresh = 0;
916		metrics.rmx_ssthresh = ssthresh;
917
918		metrics.rmx_rtt = tp->t_srtt;
919		metrics.rmx_rttvar = tp->t_rttvar;
920		metrics.rmx_cwnd = tp->snd_cwnd;
921		metrics.rmx_sendpipe = 0;
922		metrics.rmx_recvpipe = 0;
923
924		tcp_hc_update(&inp->inp_inc, &metrics);
925	}
926
927	/* free the reassembly queue, if any */
928	tcp_reass_flush(tp);
929
930#ifdef TCP_OFFLOAD
931	/* Disconnect offload device, if any. */
932	if (tp->t_flags & TF_TOE)
933		tcp_offload_detach(tp);
934#endif
935
936	tcp_free_sackholes(tp);
937
938	/* Allow the CC algorithm to clean up after itself. */
939	if (CC_ALGO(tp)->cb_destroy != NULL)
940		CC_ALGO(tp)->cb_destroy(tp->ccv);
941
942	khelp_destroy_osd(tp->osd);
943
944	CC_ALGO(tp) = NULL;
945	inp->inp_ppcb = NULL;
946	tp->t_inpcb = NULL;
947	uma_zfree(V_tcpcb_zone, tp);
948}
949
950/*
951 * Attempt to close a TCP control block, marking it as dropped, and freeing
952 * the socket if we hold the only reference.
953 */
954struct tcpcb *
955tcp_close(struct tcpcb *tp)
956{
957	struct inpcb *inp = tp->t_inpcb;
958	struct socket *so;
959
960	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
961	INP_WLOCK_ASSERT(inp);
962
963#ifdef TCP_OFFLOAD
964	if (tp->t_state == TCPS_LISTEN)
965		tcp_offload_listen_stop(tp);
966#endif
967	in_pcbdrop(inp);
968	TCPSTAT_INC(tcps_closed);
969	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
970	so = inp->inp_socket;
971	soisdisconnected(so);
972	if (inp->inp_flags & INP_SOCKREF) {
973		KASSERT(so->so_state & SS_PROTOREF,
974		    ("tcp_close: !SS_PROTOREF"));
975		inp->inp_flags &= ~INP_SOCKREF;
976		INP_WUNLOCK(inp);
977		ACCEPT_LOCK();
978		SOCK_LOCK(so);
979		so->so_state &= ~SS_PROTOREF;
980		sofree(so);
981		return (NULL);
982	}
983	return (tp);
984}
985
986void
987tcp_drain(void)
988{
989	VNET_ITERATOR_DECL(vnet_iter);
990
991	if (!do_tcpdrain)
992		return;
993
994	VNET_LIST_RLOCK_NOSLEEP();
995	VNET_FOREACH(vnet_iter) {
996		CURVNET_SET(vnet_iter);
997		struct inpcb *inpb;
998		struct tcpcb *tcpb;
999
1000	/*
1001	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1002	 * if there is one...
1003	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1004	 *      reassembly queue should be flushed, but in a situation
1005	 *	where we're really low on mbufs, this is potentially
1006	 *	usefull.
1007	 */
1008		INP_INFO_RLOCK(&V_tcbinfo);
1009		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
1010			if (inpb->inp_flags & INP_TIMEWAIT)
1011				continue;
1012			INP_WLOCK(inpb);
1013			if ((tcpb = intotcpcb(inpb)) != NULL) {
1014				tcp_reass_flush(tcpb);
1015				tcp_clean_sackreport(tcpb);
1016			}
1017			INP_WUNLOCK(inpb);
1018		}
1019		INP_INFO_RUNLOCK(&V_tcbinfo);
1020		CURVNET_RESTORE();
1021	}
1022	VNET_LIST_RUNLOCK_NOSLEEP();
1023}
1024
1025/*
1026 * Notify a tcp user of an asynchronous error;
1027 * store error as soft error, but wake up user
1028 * (for now, won't do anything until can select for soft error).
1029 *
1030 * Do not wake up user since there currently is no mechanism for
1031 * reporting soft errors (yet - a kqueue filter may be added).
1032 */
1033static struct inpcb *
1034tcp_notify(struct inpcb *inp, int error)
1035{
1036	struct tcpcb *tp;
1037
1038	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1039	INP_WLOCK_ASSERT(inp);
1040
1041	if ((inp->inp_flags & INP_TIMEWAIT) ||
1042	    (inp->inp_flags & INP_DROPPED))
1043		return (inp);
1044
1045	tp = intotcpcb(inp);
1046	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
1047
1048	/*
1049	 * Ignore some errors if we are hooked up.
1050	 * If connection hasn't completed, has retransmitted several times,
1051	 * and receives a second error, give up now.  This is better
1052	 * than waiting a long time to establish a connection that
1053	 * can never complete.
1054	 */
1055	if (tp->t_state == TCPS_ESTABLISHED &&
1056	    (error == EHOSTUNREACH || error == ENETUNREACH ||
1057	     error == EHOSTDOWN)) {
1058		return (inp);
1059	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1060	    tp->t_softerror) {
1061		tp = tcp_drop(tp, error);
1062		if (tp != NULL)
1063			return (inp);
1064		else
1065			return (NULL);
1066	} else {
1067		tp->t_softerror = error;
1068		return (inp);
1069	}
1070#if 0
1071	wakeup( &so->so_timeo);
1072	sorwakeup(so);
1073	sowwakeup(so);
1074#endif
1075}
1076
1077static int
1078tcp_pcblist(SYSCTL_HANDLER_ARGS)
1079{
1080	int error, i, m, n, pcb_count;
1081	struct inpcb *inp, **inp_list;
1082	inp_gen_t gencnt;
1083	struct xinpgen xig;
1084
1085	/*
1086	 * The process of preparing the TCB list is too time-consuming and
1087	 * resource-intensive to repeat twice on every request.
1088	 */
1089	if (req->oldptr == NULL) {
1090		n = V_tcbinfo.ipi_count + syncache_pcbcount();
1091		n += imax(n / 8, 10);
1092		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
1093		return (0);
1094	}
1095
1096	if (req->newptr != NULL)
1097		return (EPERM);
1098
1099	/*
1100	 * OK, now we're committed to doing something.
1101	 */
1102	INP_INFO_RLOCK(&V_tcbinfo);
1103	gencnt = V_tcbinfo.ipi_gencnt;
1104	n = V_tcbinfo.ipi_count;
1105	INP_INFO_RUNLOCK(&V_tcbinfo);
1106
1107	m = syncache_pcbcount();
1108
1109	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1110		+ (n + m) * sizeof(struct xtcpcb));
1111	if (error != 0)
1112		return (error);
1113
1114	xig.xig_len = sizeof xig;
1115	xig.xig_count = n + m;
1116	xig.xig_gen = gencnt;
1117	xig.xig_sogen = so_gencnt;
1118	error = SYSCTL_OUT(req, &xig, sizeof xig);
1119	if (error)
1120		return (error);
1121
1122	error = syncache_pcblist(req, m, &pcb_count);
1123	if (error)
1124		return (error);
1125
1126	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1127	if (inp_list == NULL)
1128		return (ENOMEM);
1129
1130	INP_INFO_RLOCK(&V_tcbinfo);
1131	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1132	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1133		INP_WLOCK(inp);
1134		if (inp->inp_gencnt <= gencnt) {
1135			/*
1136			 * XXX: This use of cr_cansee(), introduced with
1137			 * TCP state changes, is not quite right, but for
1138			 * now, better than nothing.
1139			 */
1140			if (inp->inp_flags & INP_TIMEWAIT) {
1141				if (intotw(inp) != NULL)
1142					error = cr_cansee(req->td->td_ucred,
1143					    intotw(inp)->tw_cred);
1144				else
1145					error = EINVAL;	/* Skip this inp. */
1146			} else
1147				error = cr_canseeinpcb(req->td->td_ucred, inp);
1148			if (error == 0) {
1149				in_pcbref(inp);
1150				inp_list[i++] = inp;
1151			}
1152		}
1153		INP_WUNLOCK(inp);
1154	}
1155	INP_INFO_RUNLOCK(&V_tcbinfo);
1156	n = i;
1157
1158	error = 0;
1159	for (i = 0; i < n; i++) {
1160		inp = inp_list[i];
1161		INP_RLOCK(inp);
1162		if (inp->inp_gencnt <= gencnt) {
1163			struct xtcpcb xt;
1164			void *inp_ppcb;
1165
1166			bzero(&xt, sizeof(xt));
1167			xt.xt_len = sizeof xt;
1168			/* XXX should avoid extra copy */
1169			bcopy(inp, &xt.xt_inp, sizeof *inp);
1170			inp_ppcb = inp->inp_ppcb;
1171			if (inp_ppcb == NULL)
1172				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1173			else if (inp->inp_flags & INP_TIMEWAIT) {
1174				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1175				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1176			} else {
1177				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1178				if (xt.xt_tp.t_timers)
1179					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1180			}
1181			if (inp->inp_socket != NULL)
1182				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1183			else {
1184				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1185				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1186			}
1187			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1188			INP_RUNLOCK(inp);
1189			error = SYSCTL_OUT(req, &xt, sizeof xt);
1190		} else
1191			INP_RUNLOCK(inp);
1192	}
1193	INP_INFO_WLOCK(&V_tcbinfo);
1194	for (i = 0; i < n; i++) {
1195		inp = inp_list[i];
1196		INP_RLOCK(inp);
1197		if (!in_pcbrele_rlocked(inp))
1198			INP_RUNLOCK(inp);
1199	}
1200	INP_INFO_WUNLOCK(&V_tcbinfo);
1201
1202	if (!error) {
1203		/*
1204		 * Give the user an updated idea of our state.
1205		 * If the generation differs from what we told
1206		 * her before, she knows that something happened
1207		 * while we were processing this request, and it
1208		 * might be necessary to retry.
1209		 */
1210		INP_INFO_RLOCK(&V_tcbinfo);
1211		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1212		xig.xig_sogen = so_gencnt;
1213		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1214		INP_INFO_RUNLOCK(&V_tcbinfo);
1215		error = SYSCTL_OUT(req, &xig, sizeof xig);
1216	}
1217	free(inp_list, M_TEMP);
1218	return (error);
1219}
1220
1221SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
1222    CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
1223    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1224
1225#ifdef INET
1226static int
1227tcp_getcred(SYSCTL_HANDLER_ARGS)
1228{
1229	struct xucred xuc;
1230	struct sockaddr_in addrs[2];
1231	struct inpcb *inp;
1232	int error;
1233
1234	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1235	if (error)
1236		return (error);
1237	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1238	if (error)
1239		return (error);
1240	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1241	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
1242	if (inp != NULL) {
1243		if (inp->inp_socket == NULL)
1244			error = ENOENT;
1245		if (error == 0)
1246			error = cr_canseeinpcb(req->td->td_ucred, inp);
1247		if (error == 0)
1248			cru2x(inp->inp_cred, &xuc);
1249		INP_RUNLOCK(inp);
1250	} else
1251		error = ENOENT;
1252	if (error == 0)
1253		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1254	return (error);
1255}
1256
1257SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1258    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1259    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1260#endif /* INET */
1261
1262#ifdef INET6
1263static int
1264tcp6_getcred(SYSCTL_HANDLER_ARGS)
1265{
1266	struct xucred xuc;
1267	struct sockaddr_in6 addrs[2];
1268	struct inpcb *inp;
1269	int error;
1270#ifdef INET
1271	int mapped = 0;
1272#endif
1273
1274	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1275	if (error)
1276		return (error);
1277	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1278	if (error)
1279		return (error);
1280	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1281	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1282		return (error);
1283	}
1284	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1285#ifdef INET
1286		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1287			mapped = 1;
1288		else
1289#endif
1290			return (EINVAL);
1291	}
1292
1293#ifdef INET
1294	if (mapped == 1)
1295		inp = in_pcblookup(&V_tcbinfo,
1296			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1297			addrs[1].sin6_port,
1298			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1299			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
1300	else
1301#endif
1302		inp = in6_pcblookup(&V_tcbinfo,
1303			&addrs[1].sin6_addr, addrs[1].sin6_port,
1304			&addrs[0].sin6_addr, addrs[0].sin6_port,
1305			INPLOOKUP_RLOCKPCB, NULL);
1306	if (inp != NULL) {
1307		if (inp->inp_socket == NULL)
1308			error = ENOENT;
1309		if (error == 0)
1310			error = cr_canseeinpcb(req->td->td_ucred, inp);
1311		if (error == 0)
1312			cru2x(inp->inp_cred, &xuc);
1313		INP_RUNLOCK(inp);
1314	} else
1315		error = ENOENT;
1316	if (error == 0)
1317		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1318	return (error);
1319}
1320
1321SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1322    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1323    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1324#endif /* INET6 */
1325
1326
1327#ifdef INET
1328void
1329tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1330{
1331	struct ip *ip = vip;
1332	struct tcphdr *th;
1333	struct in_addr faddr;
1334	struct inpcb *inp;
1335	struct tcpcb *tp;
1336	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1337	struct icmp *icp;
1338	struct in_conninfo inc;
1339	tcp_seq icmp_tcp_seq;
1340	int mtu;
1341
1342	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1343	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1344		return;
1345
1346	if (cmd == PRC_MSGSIZE)
1347		notify = tcp_mtudisc_notify;
1348	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1349		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1350		notify = tcp_drop_syn_sent;
1351	/*
1352	 * Redirects don't need to be handled up here.
1353	 */
1354	else if (PRC_IS_REDIRECT(cmd))
1355		return;
1356	/*
1357	 * Source quench is depreciated.
1358	 */
1359	else if (cmd == PRC_QUENCH)
1360		return;
1361	/*
1362	 * Hostdead is ugly because it goes linearly through all PCBs.
1363	 * XXX: We never get this from ICMP, otherwise it makes an
1364	 * excellent DoS attack on machines with many connections.
1365	 */
1366	else if (cmd == PRC_HOSTDEAD)
1367		ip = NULL;
1368	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1369		return;
1370	if (ip != NULL) {
1371		icp = (struct icmp *)((caddr_t)ip
1372				      - offsetof(struct icmp, icmp_ip));
1373		th = (struct tcphdr *)((caddr_t)ip
1374				       + (ip->ip_hl << 2));
1375		INP_INFO_WLOCK(&V_tcbinfo);
1376		inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport,
1377		    ip->ip_src, th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
1378		if (inp != NULL)  {
1379			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1380			    !(inp->inp_flags & INP_DROPPED) &&
1381			    !(inp->inp_socket == NULL)) {
1382				icmp_tcp_seq = htonl(th->th_seq);
1383				tp = intotcpcb(inp);
1384				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1385				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1386					if (cmd == PRC_MSGSIZE) {
1387					    /*
1388					     * MTU discovery:
1389					     * If we got a needfrag set the MTU
1390					     * in the route to the suggested new
1391					     * value (if given) and then notify.
1392					     */
1393					    bzero(&inc, sizeof(inc));
1394					    inc.inc_faddr = faddr;
1395					    inc.inc_fibnum =
1396						inp->inp_inc.inc_fibnum;
1397
1398					    mtu = ntohs(icp->icmp_nextmtu);
1399					    /*
1400					     * If no alternative MTU was
1401					     * proposed, try the next smaller
1402					     * one.  ip->ip_len has already
1403					     * been swapped in icmp_input().
1404					     */
1405					    if (!mtu)
1406						mtu = ip_next_mtu(ip->ip_len,
1407						 1);
1408					    if (mtu < V_tcp_minmss
1409						 + sizeof(struct tcpiphdr))
1410						mtu = V_tcp_minmss
1411						 + sizeof(struct tcpiphdr);
1412					    /*
1413					     * Only cache the MTU if it
1414					     * is smaller than the interface
1415					     * or route MTU.  tcp_mtudisc()
1416					     * will do right thing by itself.
1417					     */
1418					    if (mtu <= tcp_maxmtu(&inc, NULL))
1419						tcp_hc_updatemtu(&inc, mtu);
1420					    tcp_mtudisc(inp, mtu);
1421					} else
1422						inp = (*notify)(inp,
1423						    inetctlerrmap[cmd]);
1424				}
1425			}
1426			if (inp != NULL)
1427				INP_WUNLOCK(inp);
1428		} else {
1429			bzero(&inc, sizeof(inc));
1430			inc.inc_fport = th->th_dport;
1431			inc.inc_lport = th->th_sport;
1432			inc.inc_faddr = faddr;
1433			inc.inc_laddr = ip->ip_src;
1434			syncache_unreach(&inc, th);
1435		}
1436		INP_INFO_WUNLOCK(&V_tcbinfo);
1437	} else
1438		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1439}
1440#endif /* INET */
1441
1442#ifdef INET6
1443void
1444tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1445{
1446	struct tcphdr th;
1447	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1448	struct ip6_hdr *ip6;
1449	struct mbuf *m;
1450	struct ip6ctlparam *ip6cp = NULL;
1451	const struct sockaddr_in6 *sa6_src = NULL;
1452	int off;
1453	struct tcp_portonly {
1454		u_int16_t th_sport;
1455		u_int16_t th_dport;
1456	} *thp;
1457
1458	if (sa->sa_family != AF_INET6 ||
1459	    sa->sa_len != sizeof(struct sockaddr_in6))
1460		return;
1461
1462	if (cmd == PRC_MSGSIZE)
1463		notify = tcp_mtudisc_notify;
1464	else if (!PRC_IS_REDIRECT(cmd) &&
1465		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1466		return;
1467	/* Source quench is depreciated. */
1468	else if (cmd == PRC_QUENCH)
1469		return;
1470
1471	/* if the parameter is from icmp6, decode it. */
1472	if (d != NULL) {
1473		ip6cp = (struct ip6ctlparam *)d;
1474		m = ip6cp->ip6c_m;
1475		ip6 = ip6cp->ip6c_ip6;
1476		off = ip6cp->ip6c_off;
1477		sa6_src = ip6cp->ip6c_src;
1478	} else {
1479		m = NULL;
1480		ip6 = NULL;
1481		off = 0;	/* fool gcc */
1482		sa6_src = &sa6_any;
1483	}
1484
1485	if (ip6 != NULL) {
1486		struct in_conninfo inc;
1487		/*
1488		 * XXX: We assume that when IPV6 is non NULL,
1489		 * M and OFF are valid.
1490		 */
1491
1492		/* check if we can safely examine src and dst ports */
1493		if (m->m_pkthdr.len < off + sizeof(*thp))
1494			return;
1495
1496		bzero(&th, sizeof(th));
1497		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1498
1499		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
1500		    (struct sockaddr *)ip6cp->ip6c_src,
1501		    th.th_sport, cmd, NULL, notify);
1502
1503		bzero(&inc, sizeof(inc));
1504		inc.inc_fport = th.th_dport;
1505		inc.inc_lport = th.th_sport;
1506		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1507		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1508		inc.inc_flags |= INC_ISIPV6;
1509		INP_INFO_WLOCK(&V_tcbinfo);
1510		syncache_unreach(&inc, &th);
1511		INP_INFO_WUNLOCK(&V_tcbinfo);
1512	} else
1513		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1514			      0, cmd, NULL, notify);
1515}
1516#endif /* INET6 */
1517
1518
1519/*
1520 * Following is where TCP initial sequence number generation occurs.
1521 *
1522 * There are two places where we must use initial sequence numbers:
1523 * 1.  In SYN-ACK packets.
1524 * 2.  In SYN packets.
1525 *
1526 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1527 * tcp_syncache.c for details.
1528 *
1529 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1530 * depends on this property.  In addition, these ISNs should be
1531 * unguessable so as to prevent connection hijacking.  To satisfy
1532 * the requirements of this situation, the algorithm outlined in
1533 * RFC 1948 is used, with only small modifications.
1534 *
1535 * Implementation details:
1536 *
1537 * Time is based off the system timer, and is corrected so that it
1538 * increases by one megabyte per second.  This allows for proper
1539 * recycling on high speed LANs while still leaving over an hour
1540 * before rollover.
1541 *
1542 * As reading the *exact* system time is too expensive to be done
1543 * whenever setting up a TCP connection, we increment the time
1544 * offset in two ways.  First, a small random positive increment
1545 * is added to isn_offset for each connection that is set up.
1546 * Second, the function tcp_isn_tick fires once per clock tick
1547 * and increments isn_offset as necessary so that sequence numbers
1548 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1549 * random positive increments serve only to ensure that the same
1550 * exact sequence number is never sent out twice (as could otherwise
1551 * happen when a port is recycled in less than the system tick
1552 * interval.)
1553 *
1554 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1555 * between seeding of isn_secret.  This is normally set to zero,
1556 * as reseeding should not be necessary.
1557 *
1558 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1559 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1560 * general, this means holding an exclusive (write) lock.
1561 */
1562
1563#define ISN_BYTES_PER_SECOND 1048576
1564#define ISN_STATIC_INCREMENT 4096
1565#define ISN_RANDOM_INCREMENT (4096 - 1)
1566
1567static VNET_DEFINE(u_char, isn_secret[32]);
1568static VNET_DEFINE(int, isn_last);
1569static VNET_DEFINE(int, isn_last_reseed);
1570static VNET_DEFINE(u_int32_t, isn_offset);
1571static VNET_DEFINE(u_int32_t, isn_offset_old);
1572
1573#define	V_isn_secret			VNET(isn_secret)
1574#define	V_isn_last			VNET(isn_last)
1575#define	V_isn_last_reseed		VNET(isn_last_reseed)
1576#define	V_isn_offset			VNET(isn_offset)
1577#define	V_isn_offset_old		VNET(isn_offset_old)
1578
1579tcp_seq
1580tcp_new_isn(struct tcpcb *tp)
1581{
1582	MD5_CTX isn_ctx;
1583	u_int32_t md5_buffer[4];
1584	tcp_seq new_isn;
1585	u_int32_t projected_offset;
1586
1587	INP_WLOCK_ASSERT(tp->t_inpcb);
1588
1589	ISN_LOCK();
1590	/* Seed if this is the first use, reseed if requested. */
1591	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
1592	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
1593		< (u_int)ticks))) {
1594		read_random(&V_isn_secret, sizeof(V_isn_secret));
1595		V_isn_last_reseed = ticks;
1596	}
1597
1598	/* Compute the md5 hash and return the ISN. */
1599	MD5Init(&isn_ctx);
1600	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1601	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1602#ifdef INET6
1603	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1604		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1605			  sizeof(struct in6_addr));
1606		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1607			  sizeof(struct in6_addr));
1608	} else
1609#endif
1610	{
1611		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1612			  sizeof(struct in_addr));
1613		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1614			  sizeof(struct in_addr));
1615	}
1616	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
1617	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1618	new_isn = (tcp_seq) md5_buffer[0];
1619	V_isn_offset += ISN_STATIC_INCREMENT +
1620		(arc4random() & ISN_RANDOM_INCREMENT);
1621	if (ticks != V_isn_last) {
1622		projected_offset = V_isn_offset_old +
1623		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
1624		if (SEQ_GT(projected_offset, V_isn_offset))
1625			V_isn_offset = projected_offset;
1626		V_isn_offset_old = V_isn_offset;
1627		V_isn_last = ticks;
1628	}
1629	new_isn += V_isn_offset;
1630	ISN_UNLOCK();
1631	return (new_isn);
1632}
1633
1634/*
1635 * When a specific ICMP unreachable message is received and the
1636 * connection state is SYN-SENT, drop the connection.  This behavior
1637 * is controlled by the icmp_may_rst sysctl.
1638 */
1639struct inpcb *
1640tcp_drop_syn_sent(struct inpcb *inp, int errno)
1641{
1642	struct tcpcb *tp;
1643
1644	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1645	INP_WLOCK_ASSERT(inp);
1646
1647	if ((inp->inp_flags & INP_TIMEWAIT) ||
1648	    (inp->inp_flags & INP_DROPPED))
1649		return (inp);
1650
1651	tp = intotcpcb(inp);
1652	if (tp->t_state != TCPS_SYN_SENT)
1653		return (inp);
1654
1655	tp = tcp_drop(tp, errno);
1656	if (tp != NULL)
1657		return (inp);
1658	else
1659		return (NULL);
1660}
1661
1662/*
1663 * When `need fragmentation' ICMP is received, update our idea of the MSS
1664 * based on the new value. Also nudge TCP to send something, since we
1665 * know the packet we just sent was dropped.
1666 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1667 */
1668static struct inpcb *
1669tcp_mtudisc_notify(struct inpcb *inp, int error)
1670{
1671
1672	return (tcp_mtudisc(inp, -1));
1673}
1674
1675struct inpcb *
1676tcp_mtudisc(struct inpcb *inp, int mtuoffer)
1677{
1678	struct tcpcb *tp;
1679	struct socket *so;
1680
1681	INP_WLOCK_ASSERT(inp);
1682	if ((inp->inp_flags & INP_TIMEWAIT) ||
1683	    (inp->inp_flags & INP_DROPPED))
1684		return (inp);
1685
1686	tp = intotcpcb(inp);
1687	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1688
1689	tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
1690
1691	so = inp->inp_socket;
1692	SOCKBUF_LOCK(&so->so_snd);
1693	/* If the mss is larger than the socket buffer, decrease the mss. */
1694	if (so->so_snd.sb_hiwat < tp->t_maxseg)
1695		tp->t_maxseg = so->so_snd.sb_hiwat;
1696	SOCKBUF_UNLOCK(&so->so_snd);
1697
1698	TCPSTAT_INC(tcps_mturesent);
1699	tp->t_rtttime = 0;
1700	tp->snd_nxt = tp->snd_una;
1701	tcp_free_sackholes(tp);
1702	tp->snd_recover = tp->snd_max;
1703	if (tp->t_flags & TF_SACK_PERMIT)
1704		EXIT_FASTRECOVERY(tp->t_flags);
1705	tcp_output(tp);
1706	return (inp);
1707}
1708
1709#ifdef INET
1710/*
1711 * Look-up the routing entry to the peer of this inpcb.  If no route
1712 * is found and it cannot be allocated, then return 0.  This routine
1713 * is called by TCP routines that access the rmx structure and by
1714 * tcp_mss_update to get the peer/interface MTU.
1715 */
1716u_long
1717tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap)
1718{
1719	struct route sro;
1720	struct sockaddr_in *dst;
1721	struct ifnet *ifp;
1722	u_long maxmtu = 0;
1723
1724	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1725
1726	bzero(&sro, sizeof(sro));
1727	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1728	        dst = (struct sockaddr_in *)&sro.ro_dst;
1729		dst->sin_family = AF_INET;
1730		dst->sin_len = sizeof(*dst);
1731		dst->sin_addr = inc->inc_faddr;
1732		in_rtalloc_ign(&sro, 0, inc->inc_fibnum);
1733	}
1734	if (sro.ro_rt != NULL) {
1735		ifp = sro.ro_rt->rt_ifp;
1736		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1737			maxmtu = ifp->if_mtu;
1738		else
1739			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1740
1741		/* Report additional interface capabilities. */
1742		if (cap != NULL) {
1743			if (ifp->if_capenable & IFCAP_TSO4 &&
1744			    ifp->if_hwassist & CSUM_TSO) {
1745				cap->ifcap |= CSUM_TSO;
1746				cap->tsomax = ifp->if_hw_tsomax;
1747			}
1748		}
1749		RTFREE(sro.ro_rt);
1750	}
1751	return (maxmtu);
1752}
1753#endif /* INET */
1754
1755#ifdef INET6
1756u_long
1757tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap)
1758{
1759	struct route_in6 sro6;
1760	struct ifnet *ifp;
1761	u_long maxmtu = 0;
1762
1763	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1764
1765	bzero(&sro6, sizeof(sro6));
1766	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1767		sro6.ro_dst.sin6_family = AF_INET6;
1768		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1769		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1770		in6_rtalloc_ign(&sro6, 0, inc->inc_fibnum);
1771	}
1772	if (sro6.ro_rt != NULL) {
1773		ifp = sro6.ro_rt->rt_ifp;
1774		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1775			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1776		else
1777			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1778				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1779
1780		/* Report additional interface capabilities. */
1781		if (cap != NULL) {
1782			if (ifp->if_capenable & IFCAP_TSO6 &&
1783			    ifp->if_hwassist & CSUM_TSO) {
1784				cap->ifcap |= CSUM_TSO;
1785				cap->tsomax = ifp->if_hw_tsomax;
1786			}
1787		}
1788		RTFREE(sro6.ro_rt);
1789	}
1790
1791	return (maxmtu);
1792}
1793#endif /* INET6 */
1794
1795#ifdef IPSEC
1796/* compute ESP/AH header size for TCP, including outer IP header. */
1797size_t
1798ipsec_hdrsiz_tcp(struct tcpcb *tp)
1799{
1800	struct inpcb *inp;
1801	struct mbuf *m;
1802	size_t hdrsiz;
1803	struct ip *ip;
1804#ifdef INET6
1805	struct ip6_hdr *ip6;
1806#endif
1807	struct tcphdr *th;
1808
1809	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1810		return (0);
1811	MGETHDR(m, M_DONTWAIT, MT_DATA);
1812	if (!m)
1813		return (0);
1814
1815#ifdef INET6
1816	if ((inp->inp_vflag & INP_IPV6) != 0) {
1817		ip6 = mtod(m, struct ip6_hdr *);
1818		th = (struct tcphdr *)(ip6 + 1);
1819		m->m_pkthdr.len = m->m_len =
1820			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1821		tcpip_fillheaders(inp, ip6, th);
1822		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1823	} else
1824#endif /* INET6 */
1825	{
1826		ip = mtod(m, struct ip *);
1827		th = (struct tcphdr *)(ip + 1);
1828		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1829		tcpip_fillheaders(inp, ip, th);
1830		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1831	}
1832
1833	m_free(m);
1834	return (hdrsiz);
1835}
1836#endif /* IPSEC */
1837
1838#ifdef TCP_SIGNATURE
1839/*
1840 * Callback function invoked by m_apply() to digest TCP segment data
1841 * contained within an mbuf chain.
1842 */
1843static int
1844tcp_signature_apply(void *fstate, void *data, u_int len)
1845{
1846
1847	MD5Update(fstate, (u_char *)data, len);
1848	return (0);
1849}
1850
1851/*
1852 * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
1853 *
1854 * Parameters:
1855 * m		pointer to head of mbuf chain
1856 * _unused
1857 * len		length of TCP segment data, excluding options
1858 * optlen	length of TCP segment options
1859 * buf		pointer to storage for computed MD5 digest
1860 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
1861 *
1862 * We do this over ip, tcphdr, segment data, and the key in the SADB.
1863 * When called from tcp_input(), we can be sure that th_sum has been
1864 * zeroed out and verified already.
1865 *
1866 * Return 0 if successful, otherwise return -1.
1867 *
1868 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
1869 * search with the destination IP address, and a 'magic SPI' to be
1870 * determined by the application. This is hardcoded elsewhere to 1179
1871 * right now. Another branch of this code exists which uses the SPD to
1872 * specify per-application flows but it is unstable.
1873 */
1874int
1875tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
1876    u_char *buf, u_int direction)
1877{
1878	union sockaddr_union dst;
1879#ifdef INET
1880	struct ippseudo ippseudo;
1881#endif
1882	MD5_CTX ctx;
1883	int doff;
1884	struct ip *ip;
1885#ifdef INET
1886	struct ipovly *ipovly;
1887#endif
1888	struct secasvar *sav;
1889	struct tcphdr *th;
1890#ifdef INET6
1891	struct ip6_hdr *ip6;
1892	struct in6_addr in6;
1893	char ip6buf[INET6_ADDRSTRLEN];
1894	uint32_t plen;
1895	uint16_t nhdr;
1896#endif
1897	u_short savecsum;
1898
1899	KASSERT(m != NULL, ("NULL mbuf chain"));
1900	KASSERT(buf != NULL, ("NULL signature pointer"));
1901
1902	/* Extract the destination from the IP header in the mbuf. */
1903	bzero(&dst, sizeof(union sockaddr_union));
1904	ip = mtod(m, struct ip *);
1905#ifdef INET6
1906	ip6 = NULL;	/* Make the compiler happy. */
1907#endif
1908	switch (ip->ip_v) {
1909#ifdef INET
1910	case IPVERSION:
1911		dst.sa.sa_len = sizeof(struct sockaddr_in);
1912		dst.sa.sa_family = AF_INET;
1913		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
1914		    ip->ip_src : ip->ip_dst;
1915		break;
1916#endif
1917#ifdef INET6
1918	case (IPV6_VERSION >> 4):
1919		ip6 = mtod(m, struct ip6_hdr *);
1920		dst.sa.sa_len = sizeof(struct sockaddr_in6);
1921		dst.sa.sa_family = AF_INET6;
1922		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
1923		    ip6->ip6_src : ip6->ip6_dst;
1924		break;
1925#endif
1926	default:
1927		return (EINVAL);
1928		/* NOTREACHED */
1929		break;
1930	}
1931
1932	/* Look up an SADB entry which matches the address of the peer. */
1933	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
1934	if (sav == NULL) {
1935		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
1936		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
1937#ifdef INET6
1938			(ip->ip_v == (IPV6_VERSION >> 4)) ?
1939			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
1940#endif
1941			"(unsupported)"));
1942		return (EINVAL);
1943	}
1944
1945	MD5Init(&ctx);
1946	/*
1947	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
1948	 *
1949	 * XXX The ippseudo header MUST be digested in network byte order,
1950	 * or else we'll fail the regression test. Assume all fields we've
1951	 * been doing arithmetic on have been in host byte order.
1952	 * XXX One cannot depend on ipovly->ih_len here. When called from
1953	 * tcp_output(), the underlying ip_len member has not yet been set.
1954	 */
1955	switch (ip->ip_v) {
1956#ifdef INET
1957	case IPVERSION:
1958		ipovly = (struct ipovly *)ip;
1959		ippseudo.ippseudo_src = ipovly->ih_src;
1960		ippseudo.ippseudo_dst = ipovly->ih_dst;
1961		ippseudo.ippseudo_pad = 0;
1962		ippseudo.ippseudo_p = IPPROTO_TCP;
1963		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
1964		    optlen);
1965		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
1966
1967		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
1968		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
1969		break;
1970#endif
1971#ifdef INET6
1972	/*
1973	 * RFC 2385, 2.0  Proposal
1974	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
1975	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
1976	 * extended next header value (to form 32 bits), and 32-bit segment
1977	 * length.
1978	 * Note: Upper-Layer Packet Length comes before Next Header.
1979	 */
1980	case (IPV6_VERSION >> 4):
1981		in6 = ip6->ip6_src;
1982		in6_clearscope(&in6);
1983		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
1984		in6 = ip6->ip6_dst;
1985		in6_clearscope(&in6);
1986		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
1987		plen = htonl(len + sizeof(struct tcphdr) + optlen);
1988		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
1989		nhdr = 0;
1990		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1991		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1992		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1993		nhdr = IPPROTO_TCP;
1994		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
1995
1996		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
1997		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
1998		break;
1999#endif
2000	default:
2001		return (EINVAL);
2002		/* NOTREACHED */
2003		break;
2004	}
2005
2006
2007	/*
2008	 * Step 2: Update MD5 hash with TCP header, excluding options.
2009	 * The TCP checksum must be set to zero.
2010	 */
2011	savecsum = th->th_sum;
2012	th->th_sum = 0;
2013	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2014	th->th_sum = savecsum;
2015
2016	/*
2017	 * Step 3: Update MD5 hash with TCP segment data.
2018	 *         Use m_apply() to avoid an early m_pullup().
2019	 */
2020	if (len > 0)
2021		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2022
2023	/*
2024	 * Step 4: Update MD5 hash with shared secret.
2025	 */
2026	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2027	MD5Final(buf, &ctx);
2028
2029	key_sa_recordxfer(sav, m);
2030	KEY_FREESAV(&sav);
2031	return (0);
2032}
2033
2034/*
2035 * Verify the TCP-MD5 hash of a TCP segment. (RFC2385)
2036 *
2037 * Parameters:
2038 * m		pointer to head of mbuf chain
2039 * len		length of TCP segment data, excluding options
2040 * optlen	length of TCP segment options
2041 * buf		pointer to storage for computed MD5 digest
2042 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2043 *
2044 * Return 1 if successful, otherwise return 0.
2045 */
2046int
2047tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen,
2048    struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
2049{
2050	char tmpdigest[TCP_SIGLEN];
2051
2052	if (tcp_sig_checksigs == 0)
2053		return (1);
2054	if ((tcpbflag & TF_SIGNATURE) == 0) {
2055		if ((to->to_flags & TOF_SIGNATURE) != 0) {
2056
2057			/*
2058			 * If this socket is not expecting signature but
2059			 * the segment contains signature just fail.
2060			 */
2061			TCPSTAT_INC(tcps_sig_err_sigopt);
2062			TCPSTAT_INC(tcps_sig_rcvbadsig);
2063			return (0);
2064		}
2065
2066		/* Signature is not expected, and not present in segment. */
2067		return (1);
2068	}
2069
2070	/*
2071	 * If this socket is expecting signature but the segment does not
2072	 * contain any just fail.
2073	 */
2074	if ((to->to_flags & TOF_SIGNATURE) == 0) {
2075		TCPSTAT_INC(tcps_sig_err_nosigopt);
2076		TCPSTAT_INC(tcps_sig_rcvbadsig);
2077		return (0);
2078	}
2079	if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0],
2080	    IPSEC_DIR_INBOUND) == -1) {
2081		TCPSTAT_INC(tcps_sig_err_buildsig);
2082		TCPSTAT_INC(tcps_sig_rcvbadsig);
2083		return (0);
2084	}
2085
2086	if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) {
2087		TCPSTAT_INC(tcps_sig_rcvbadsig);
2088		return (0);
2089	}
2090	TCPSTAT_INC(tcps_sig_rcvgoodsig);
2091	return (1);
2092}
2093#endif /* TCP_SIGNATURE */
2094
2095static int
2096sysctl_drop(SYSCTL_HANDLER_ARGS)
2097{
2098	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2099	struct sockaddr_storage addrs[2];
2100	struct inpcb *inp;
2101	struct tcpcb *tp;
2102	struct tcptw *tw;
2103	struct sockaddr_in *fin, *lin;
2104#ifdef INET6
2105	struct sockaddr_in6 *fin6, *lin6;
2106#endif
2107	int error;
2108
2109	inp = NULL;
2110	fin = lin = NULL;
2111#ifdef INET6
2112	fin6 = lin6 = NULL;
2113#endif
2114	error = 0;
2115
2116	if (req->oldptr != NULL || req->oldlen != 0)
2117		return (EINVAL);
2118	if (req->newptr == NULL)
2119		return (EPERM);
2120	if (req->newlen < sizeof(addrs))
2121		return (ENOMEM);
2122	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2123	if (error)
2124		return (error);
2125
2126	switch (addrs[0].ss_family) {
2127#ifdef INET6
2128	case AF_INET6:
2129		fin6 = (struct sockaddr_in6 *)&addrs[0];
2130		lin6 = (struct sockaddr_in6 *)&addrs[1];
2131		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2132		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2133			return (EINVAL);
2134		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2135			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2136				return (EINVAL);
2137			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2138			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2139			fin = (struct sockaddr_in *)&addrs[0];
2140			lin = (struct sockaddr_in *)&addrs[1];
2141			break;
2142		}
2143		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2144		if (error)
2145			return (error);
2146		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2147		if (error)
2148			return (error);
2149		break;
2150#endif
2151#ifdef INET
2152	case AF_INET:
2153		fin = (struct sockaddr_in *)&addrs[0];
2154		lin = (struct sockaddr_in *)&addrs[1];
2155		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2156		    lin->sin_len != sizeof(struct sockaddr_in))
2157			return (EINVAL);
2158		break;
2159#endif
2160	default:
2161		return (EINVAL);
2162	}
2163	INP_INFO_WLOCK(&V_tcbinfo);
2164	switch (addrs[0].ss_family) {
2165#ifdef INET6
2166	case AF_INET6:
2167		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
2168		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
2169		    INPLOOKUP_WLOCKPCB, NULL);
2170		break;
2171#endif
2172#ifdef INET
2173	case AF_INET:
2174		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
2175		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
2176		break;
2177#endif
2178	}
2179	if (inp != NULL) {
2180		if (inp->inp_flags & INP_TIMEWAIT) {
2181			/*
2182			 * XXXRW: There currently exists a state where an
2183			 * inpcb is present, but its timewait state has been
2184			 * discarded.  For now, don't allow dropping of this
2185			 * type of inpcb.
2186			 */
2187			tw = intotw(inp);
2188			if (tw != NULL)
2189				tcp_twclose(tw, 0);
2190			else
2191				INP_WUNLOCK(inp);
2192		} else if (!(inp->inp_flags & INP_DROPPED) &&
2193			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2194			tp = intotcpcb(inp);
2195			tp = tcp_drop(tp, ECONNABORTED);
2196			if (tp != NULL)
2197				INP_WUNLOCK(inp);
2198		} else
2199			INP_WUNLOCK(inp);
2200	} else
2201		error = ESRCH;
2202	INP_INFO_WUNLOCK(&V_tcbinfo);
2203	return (error);
2204}
2205
2206SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2207    CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2208    0, sysctl_drop, "", "Drop TCP connection");
2209
2210/*
2211 * Generate a standardized TCP log line for use throughout the
2212 * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2213 * allow use in the interrupt context.
2214 *
2215 * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2216 * NB: The function may return NULL if memory allocation failed.
2217 *
2218 * Due to header inclusion and ordering limitations the struct ip
2219 * and ip6_hdr pointers have to be passed as void pointers.
2220 */
2221char *
2222tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2223    const void *ip6hdr)
2224{
2225
2226	/* Is logging enabled? */
2227	if (tcp_log_in_vain == 0)
2228		return (NULL);
2229
2230	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2231}
2232
2233char *
2234tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2235    const void *ip6hdr)
2236{
2237
2238	/* Is logging enabled? */
2239	if (tcp_log_debug == 0)
2240		return (NULL);
2241
2242	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2243}
2244
2245static char *
2246tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2247    const void *ip6hdr)
2248{
2249	char *s, *sp;
2250	size_t size;
2251	struct ip *ip;
2252#ifdef INET6
2253	const struct ip6_hdr *ip6;
2254
2255	ip6 = (const struct ip6_hdr *)ip6hdr;
2256#endif /* INET6 */
2257	ip = (struct ip *)ip4hdr;
2258
2259	/*
2260	 * The log line looks like this:
2261	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2262	 */
2263	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2264	    sizeof(PRINT_TH_FLAGS) + 1 +
2265#ifdef INET6
2266	    2 * INET6_ADDRSTRLEN;
2267#else
2268	    2 * INET_ADDRSTRLEN;
2269#endif /* INET6 */
2270
2271	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2272	if (s == NULL)
2273		return (NULL);
2274
2275	strcat(s, "TCP: [");
2276	sp = s + strlen(s);
2277
2278	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2279		inet_ntoa_r(inc->inc_faddr, sp);
2280		sp = s + strlen(s);
2281		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2282		sp = s + strlen(s);
2283		inet_ntoa_r(inc->inc_laddr, sp);
2284		sp = s + strlen(s);
2285		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2286#ifdef INET6
2287	} else if (inc) {
2288		ip6_sprintf(sp, &inc->inc6_faddr);
2289		sp = s + strlen(s);
2290		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2291		sp = s + strlen(s);
2292		ip6_sprintf(sp, &inc->inc6_laddr);
2293		sp = s + strlen(s);
2294		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2295	} else if (ip6 && th) {
2296		ip6_sprintf(sp, &ip6->ip6_src);
2297		sp = s + strlen(s);
2298		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2299		sp = s + strlen(s);
2300		ip6_sprintf(sp, &ip6->ip6_dst);
2301		sp = s + strlen(s);
2302		sprintf(sp, "]:%i", ntohs(th->th_dport));
2303#endif /* INET6 */
2304#ifdef INET
2305	} else if (ip && th) {
2306		inet_ntoa_r(ip->ip_src, sp);
2307		sp = s + strlen(s);
2308		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2309		sp = s + strlen(s);
2310		inet_ntoa_r(ip->ip_dst, sp);
2311		sp = s + strlen(s);
2312		sprintf(sp, "]:%i", ntohs(th->th_dport));
2313#endif /* INET */
2314	} else {
2315		free(s, M_TCPLOG);
2316		return (NULL);
2317	}
2318	sp = s + strlen(s);
2319	if (th)
2320		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2321	if (*(s + size - 1) != '\0')
2322		panic("%s: string too long", __func__);
2323	return (s);
2324}
2325