ip_output.c revision 9386
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
34 * $Id: ip_output.c,v 1.21 1995/07/01 19:09:40 joerg Exp $
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/malloc.h>
40#include <sys/mbuf.h>
41#include <sys/errno.h>
42#include <sys/protosw.h>
43#include <sys/socket.h>
44#include <sys/socketvar.h>
45#include <sys/queue.h>
46
47#include <net/if.h>
48#include <net/route.h>
49
50#include <netinet/in.h>
51#include <netinet/in_systm.h>
52#include <netinet/ip.h>
53#include <netinet/in_pcb.h>
54#include <netinet/in_var.h>
55#include <netinet/ip_var.h>
56
57#include <netinet/ip_fw.h>
58
59#ifdef vax
60#include <machine/mtpr.h>
61#endif
62
63u_short ip_id;
64
65static struct mbuf *ip_insertoptions __P((struct mbuf *, struct mbuf *, int *));
66static void ip_mloopback
67	__P((struct ifnet *, struct mbuf *, struct sockaddr_in *));
68
69/*
70 * IP output.  The packet in mbuf chain m contains a skeletal IP
71 * header (with len, off, ttl, proto, tos, src, dst).
72 * The mbuf chain containing the packet will be freed.
73 * The mbuf opt, if present, will not be freed.
74 */
75int
76ip_output(m0, opt, ro, flags, imo)
77	struct mbuf *m0;
78	struct mbuf *opt;
79	struct route *ro;
80	int flags;
81	struct ip_moptions *imo;
82{
83	register struct ip *ip, *mhip;
84	register struct ifnet *ifp;
85	register struct mbuf *m = m0;
86	register int hlen = sizeof (struct ip);
87	int len, off, error = 0;
88	struct route iproute;
89	struct sockaddr_in *dst;
90	struct in_ifaddr *ia;
91
92#ifdef	DIAGNOSTIC
93	if ((m->m_flags & M_PKTHDR) == 0)
94		panic("ip_output no HDR");
95#endif
96	if (opt) {
97		m = ip_insertoptions(m, opt, &len);
98		hlen = len;
99	}
100	ip = mtod(m, struct ip *);
101	/*
102	 * Fill in IP header.
103	 */
104	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
105		ip->ip_v = IPVERSION;
106		ip->ip_off &= IP_DF;
107		ip->ip_id = htons(ip_id++);
108		ip->ip_hl = hlen >> 2;
109		ipstat.ips_localout++;
110	} else {
111		hlen = ip->ip_hl << 2;
112	}
113	/*
114	 * Route packet.
115	 */
116	if (ro == 0) {
117		ro = &iproute;
118		bzero((caddr_t)ro, sizeof (*ro));
119	}
120	dst = (struct sockaddr_in *)&ro->ro_dst;
121	/*
122	 * If there is a cached route,
123	 * check that it is to the same destination
124	 * and is still up.  If not, free it and try again.
125	 */
126	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
127	   dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
128		RTFREE(ro->ro_rt);
129		ro->ro_rt = (struct rtentry *)0;
130	}
131	if (ro->ro_rt == 0) {
132		dst->sin_family = AF_INET;
133		dst->sin_len = sizeof(*dst);
134		dst->sin_addr = ip->ip_dst;
135	}
136	/*
137	 * If routing to interface only,
138	 * short circuit routing lookup.
139	 */
140#define ifatoia(ifa)	((struct in_ifaddr *)(ifa))
141#define sintosa(sin)	((struct sockaddr *)(sin))
142	if (flags & IP_ROUTETOIF) {
143		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == 0 &&
144		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == 0) {
145			ipstat.ips_noroute++;
146			error = ENETUNREACH;
147			goto bad;
148		}
149		ifp = ia->ia_ifp;
150		ip->ip_ttl = 1;
151	} else {
152		/*
153		 * If this is the case, we probably don't want to allocate
154		 * a protocol-cloned route since we didn't get one from the
155		 * ULP.  This lets TCP do its thing, while not burdening
156		 * forwarding or ICMP with the overhead of cloning a route.
157		 * Of course, we still want to do any cloning requested by
158		 * the link layer, as this is probably required in all cases
159		 * for correct operation (as it is for ARP).
160		 */
161		if (ro->ro_rt == 0)
162			rtalloc_ign(ro, RTF_PRCLONING);
163		if (ro->ro_rt == 0) {
164			ipstat.ips_noroute++;
165			error = EHOSTUNREACH;
166			goto bad;
167		}
168		ia = ifatoia(ro->ro_rt->rt_ifa);
169		ifp = ro->ro_rt->rt_ifp;
170		ro->ro_rt->rt_use++;
171		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
172			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
173	}
174	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
175		struct in_multi *inm;
176
177		m->m_flags |= M_MCAST;
178		/*
179		 * IP destination address is multicast.  Make sure "dst"
180		 * still points to the address in "ro".  (It may have been
181		 * changed to point to a gateway address, above.)
182		 */
183		dst = (struct sockaddr_in *)&ro->ro_dst;
184		/*
185		 * See if the caller provided any multicast options
186		 */
187		if (imo != NULL) {
188			ip->ip_ttl = imo->imo_multicast_ttl;
189			if (imo->imo_multicast_ifp != NULL)
190				ifp = imo->imo_multicast_ifp;
191			if (imo->imo_multicast_vif != -1)
192				ip->ip_src.s_addr =
193				    ip_mcast_src(imo->imo_multicast_vif);
194		} else
195			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
196		/*
197		 * Confirm that the outgoing interface supports multicast.
198		 */
199		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
200			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
201				ipstat.ips_noroute++;
202				error = ENETUNREACH;
203				goto bad;
204			}
205		}
206		/*
207		 * If source address not specified yet, use address
208		 * of outgoing interface.
209		 */
210		if (ip->ip_src.s_addr == INADDR_ANY) {
211			register struct in_ifaddr *ia;
212
213			for (ia = in_ifaddr; ia; ia = ia->ia_next)
214				if (ia->ia_ifp == ifp) {
215					ip->ip_src = IA_SIN(ia)->sin_addr;
216					break;
217				}
218		}
219
220		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
221		if (inm != NULL &&
222		   (imo == NULL || imo->imo_multicast_loop)) {
223			/*
224			 * If we belong to the destination multicast group
225			 * on the outgoing interface, and the caller did not
226			 * forbid loopback, loop back a copy.
227			 */
228			ip_mloopback(ifp, m, dst);
229		}
230		else {
231			/*
232			 * If we are acting as a multicast router, perform
233			 * multicast forwarding as if the packet had just
234			 * arrived on the interface to which we are about
235			 * to send.  The multicast forwarding function
236			 * recursively calls this function, using the
237			 * IP_FORWARDING flag to prevent infinite recursion.
238			 *
239			 * Multicasts that are looped back by ip_mloopback(),
240			 * above, will be forwarded by the ip_input() routine,
241			 * if necessary.
242			 */
243			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
244				/*
245				 * Check if rsvp daemon is running. If not, don't
246				 * set ip_moptions. This ensures that the packet
247				 * is multicast and not just sent down one link
248				 * as prescribed by rsvpd.
249				 */
250				if (ip_rsvpd == NULL)
251				  imo = NULL;
252				if (ip_mforward(ip, ifp, m, imo) != 0) {
253					m_freem(m);
254					goto done;
255				}
256			}
257		}
258
259		/*
260		 * Multicasts with a time-to-live of zero may be looped-
261		 * back, above, but must not be transmitted on a network.
262		 * Also, multicasts addressed to the loopback interface
263		 * are not sent -- the above call to ip_mloopback() will
264		 * loop back a copy if this host actually belongs to the
265		 * destination group on the loopback interface.
266		 */
267		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
268			m_freem(m);
269			goto done;
270		}
271
272		goto sendit;
273	}
274#ifndef notdef
275	/*
276	 * If source address not specified yet, use address
277	 * of outgoing interface.
278	 */
279	if (ip->ip_src.s_addr == INADDR_ANY)
280		ip->ip_src = IA_SIN(ia)->sin_addr;
281#endif
282	/*
283	 * Verify that we have any chance at all of being able to queue
284	 *      the packet or packet fragments
285	 */
286	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
287		ifp->if_snd.ifq_maxlen) {
288			error = ENOBUFS;
289			goto bad;
290	}
291
292	/*
293	 * Look for broadcast address and
294	 * and verify user is allowed to send
295	 * such a packet.
296	 */
297	if (in_broadcast(dst->sin_addr, ifp)) {
298		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
299			error = EADDRNOTAVAIL;
300			goto bad;
301		}
302		if ((flags & IP_ALLOWBROADCAST) == 0) {
303			error = EACCES;
304			goto bad;
305		}
306		/* don't allow broadcast messages to be fragmented */
307		if ((u_short)ip->ip_len > ifp->if_mtu) {
308			error = EMSGSIZE;
309			goto bad;
310		}
311		m->m_flags |= M_BCAST;
312	} else
313		m->m_flags &= ~M_BCAST;
314
315sendit:
316	/*
317	 * If small enough for interface, can just send directly.
318	 */
319	if ((u_short)ip->ip_len <= ifp->if_mtu) {
320		ip->ip_len = htons((u_short)ip->ip_len);
321		ip->ip_off = htons((u_short)ip->ip_off);
322		ip->ip_sum = 0;
323		ip->ip_sum = in_cksum(m, hlen);
324		error = (*ifp->if_output)(ifp, m,
325				(struct sockaddr *)dst, ro->ro_rt);
326		goto done;
327	}
328	/*
329	 * Too large for interface; fragment if possible.
330	 * Must be able to put at least 8 bytes per fragment.
331	 */
332	if (ip->ip_off & IP_DF) {
333		error = EMSGSIZE;
334		ipstat.ips_cantfrag++;
335		goto bad;
336	}
337	len = (ifp->if_mtu - hlen) &~ 7;
338	if (len < 8) {
339		error = EMSGSIZE;
340		goto bad;
341	}
342
343    {
344	int mhlen, firstlen = len;
345	struct mbuf **mnext = &m->m_nextpkt;
346
347	/*
348	 * Loop through length of segment after first fragment,
349	 * make new header and copy data of each part and link onto chain.
350	 */
351	m0 = m;
352	mhlen = sizeof (struct ip);
353	for (off = hlen + len; off < (u_short)ip->ip_len; off += len) {
354		MGETHDR(m, M_DONTWAIT, MT_HEADER);
355		if (m == 0) {
356			error = ENOBUFS;
357			ipstat.ips_odropped++;
358			goto sendorfree;
359		}
360		m->m_data += max_linkhdr;
361		mhip = mtod(m, struct ip *);
362		*mhip = *ip;
363		if (hlen > sizeof (struct ip)) {
364			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
365			mhip->ip_hl = mhlen >> 2;
366		}
367		m->m_len = mhlen;
368		mhip->ip_off = ((off - hlen) >> 3) + (ip->ip_off & ~IP_MF);
369		if (ip->ip_off & IP_MF)
370			mhip->ip_off |= IP_MF;
371		if (off + len >= (u_short)ip->ip_len)
372			len = (u_short)ip->ip_len - off;
373		else
374			mhip->ip_off |= IP_MF;
375		mhip->ip_len = htons((u_short)(len + mhlen));
376		m->m_next = m_copy(m0, off, len);
377		if (m->m_next == 0) {
378			(void) m_free(m);
379			error = ENOBUFS;	/* ??? */
380			ipstat.ips_odropped++;
381			goto sendorfree;
382		}
383		m->m_pkthdr.len = mhlen + len;
384		m->m_pkthdr.rcvif = (struct ifnet *)0;
385		mhip->ip_off = htons((u_short)mhip->ip_off);
386		mhip->ip_sum = 0;
387		mhip->ip_sum = in_cksum(m, mhlen);
388		*mnext = m;
389		mnext = &m->m_nextpkt;
390		ipstat.ips_ofragments++;
391	}
392	/*
393	 * Update first fragment by trimming what's been copied out
394	 * and updating header, then send each fragment (in order).
395	 */
396	m = m0;
397	m_adj(m, hlen + firstlen - (u_short)ip->ip_len);
398	m->m_pkthdr.len = hlen + firstlen;
399	ip->ip_len = htons((u_short)m->m_pkthdr.len);
400	ip->ip_off = htons((u_short)(ip->ip_off | IP_MF));
401	ip->ip_sum = 0;
402	ip->ip_sum = in_cksum(m, hlen);
403sendorfree:
404	for (m = m0; m; m = m0) {
405		m0 = m->m_nextpkt;
406		m->m_nextpkt = 0;
407		if (error == 0)
408			error = (*ifp->if_output)(ifp, m,
409			    (struct sockaddr *)dst, ro->ro_rt);
410		else
411			m_freem(m);
412	}
413
414	if (error == 0)
415		ipstat.ips_fragmented++;
416    }
417done:
418	if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt)
419		RTFREE(ro->ro_rt);
420	/*
421	 * Count outgoing packet,here we count both our packets and
422	 * those we forward.
423	 * Here we want to convert ip_len to host byte order when counting
424	 * so we set 3rd arg to 1.
425	 * This is locally generated packet so it has not
426	 * incoming interface.
427	 */
428	if (ip_acct_cnt_ptr!=NULL)
429		(*ip_acct_cnt_ptr)(ip,NULL,ip_acct_chain,1);
430
431	return (error);
432bad:
433	m_freem(m0);
434	goto done;
435}
436
437/*
438 * Insert IP options into preformed packet.
439 * Adjust IP destination as required for IP source routing,
440 * as indicated by a non-zero in_addr at the start of the options.
441 */
442static struct mbuf *
443ip_insertoptions(m, opt, phlen)
444	register struct mbuf *m;
445	struct mbuf *opt;
446	int *phlen;
447{
448	register struct ipoption *p = mtod(opt, struct ipoption *);
449	struct mbuf *n;
450	register struct ip *ip = mtod(m, struct ip *);
451	unsigned optlen;
452
453	optlen = opt->m_len - sizeof(p->ipopt_dst);
454	if (optlen + (u_short)ip->ip_len > IP_MAXPACKET)
455		return (m);		/* XXX should fail */
456	if (p->ipopt_dst.s_addr)
457		ip->ip_dst = p->ipopt_dst;
458	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
459		MGETHDR(n, M_DONTWAIT, MT_HEADER);
460		if (n == 0)
461			return (m);
462		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
463		m->m_len -= sizeof(struct ip);
464		m->m_data += sizeof(struct ip);
465		n->m_next = m;
466		m = n;
467		m->m_len = optlen + sizeof(struct ip);
468		m->m_data += max_linkhdr;
469		(void)memcpy(mtod(m, void *), ip, sizeof(struct ip));
470	} else {
471		m->m_data -= optlen;
472		m->m_len += optlen;
473		m->m_pkthdr.len += optlen;
474		ovbcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
475	}
476	ip = mtod(m, struct ip *);
477	(void)memcpy(ip + 1, p->ipopt_list, (unsigned)optlen);
478	*phlen = sizeof(struct ip) + optlen;
479	ip->ip_len += optlen;
480	return (m);
481}
482
483/*
484 * Copy options from ip to jp,
485 * omitting those not copied during fragmentation.
486 */
487int
488ip_optcopy(ip, jp)
489	struct ip *ip, *jp;
490{
491	register u_char *cp, *dp;
492	int opt, optlen, cnt;
493
494	cp = (u_char *)(ip + 1);
495	dp = (u_char *)(jp + 1);
496	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
497	for (; cnt > 0; cnt -= optlen, cp += optlen) {
498		opt = cp[0];
499		if (opt == IPOPT_EOL)
500			break;
501		if (opt == IPOPT_NOP) {
502			/* Preserve for IP mcast tunnel's LSRR alignment. */
503			*dp++ = IPOPT_NOP;
504			optlen = 1;
505			continue;
506		} else
507			optlen = cp[IPOPT_OLEN];
508		/* bogus lengths should have been caught by ip_dooptions */
509		if (optlen > cnt)
510			optlen = cnt;
511		if (IPOPT_COPIED(opt)) {
512			(void)memcpy(dp, cp, (unsigned)optlen);
513			dp += optlen;
514		}
515	}
516	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
517		*dp++ = IPOPT_EOL;
518	return (optlen);
519}
520
521/*
522 * IP socket option processing.
523 */
524int
525ip_ctloutput(op, so, level, optname, mp)
526	int op;
527	struct socket *so;
528	int level, optname;
529	struct mbuf **mp;
530{
531	register struct inpcb *inp = sotoinpcb(so);
532	register struct mbuf *m = *mp;
533	register int optval = 0;
534	int error = 0;
535
536	if (level != IPPROTO_IP) {
537		error = EINVAL;
538		if (op == PRCO_SETOPT && *mp)
539			(void) m_free(*mp);
540	} else switch (op) {
541
542	case PRCO_SETOPT:
543		switch (optname) {
544		case IP_OPTIONS:
545#ifdef notyet
546		case IP_RETOPTS:
547			return (ip_pcbopts(optname, &inp->inp_options, m));
548#else
549			return (ip_pcbopts(&inp->inp_options, m));
550#endif
551
552		case IP_TOS:
553		case IP_TTL:
554		case IP_RECVOPTS:
555		case IP_RECVRETOPTS:
556		case IP_RECVDSTADDR:
557			if (m == 0 || m->m_len != sizeof(int))
558				error = EINVAL;
559			else {
560				optval = *mtod(m, int *);
561				switch (optname) {
562
563				case IP_TOS:
564					inp->inp_ip.ip_tos = optval;
565					break;
566
567				case IP_TTL:
568					inp->inp_ip.ip_ttl = optval;
569					break;
570#define	OPTSET(bit) \
571	if (optval) \
572		inp->inp_flags |= bit; \
573	else \
574		inp->inp_flags &= ~bit;
575
576				case IP_RECVOPTS:
577					OPTSET(INP_RECVOPTS);
578					break;
579
580				case IP_RECVRETOPTS:
581					OPTSET(INP_RECVRETOPTS);
582					break;
583
584				case IP_RECVDSTADDR:
585					OPTSET(INP_RECVDSTADDR);
586					break;
587				}
588			}
589			break;
590#undef OPTSET
591
592		case IP_MULTICAST_IF:
593		case IP_MULTICAST_VIF:
594		case IP_MULTICAST_TTL:
595		case IP_MULTICAST_LOOP:
596		case IP_ADD_MEMBERSHIP:
597		case IP_DROP_MEMBERSHIP:
598			error = ip_setmoptions(optname, &inp->inp_moptions, m);
599			break;
600
601		default:
602			error = ENOPROTOOPT;
603			break;
604		}
605		if (m)
606			(void)m_free(m);
607		break;
608
609	case PRCO_GETOPT:
610		switch (optname) {
611		case IP_OPTIONS:
612		case IP_RETOPTS:
613			*mp = m = m_get(M_WAIT, MT_SOOPTS);
614			if (inp->inp_options) {
615				m->m_len = inp->inp_options->m_len;
616				(void)memcpy(mtod(m, void *),
617				    mtod(inp->inp_options, void *), (unsigned)m->m_len);
618			} else
619				m->m_len = 0;
620			break;
621
622		case IP_TOS:
623		case IP_TTL:
624		case IP_RECVOPTS:
625		case IP_RECVRETOPTS:
626		case IP_RECVDSTADDR:
627			*mp = m = m_get(M_WAIT, MT_SOOPTS);
628			m->m_len = sizeof(int);
629			switch (optname) {
630
631			case IP_TOS:
632				optval = inp->inp_ip.ip_tos;
633				break;
634
635			case IP_TTL:
636				optval = inp->inp_ip.ip_ttl;
637				break;
638
639#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
640
641			case IP_RECVOPTS:
642				optval = OPTBIT(INP_RECVOPTS);
643				break;
644
645			case IP_RECVRETOPTS:
646				optval = OPTBIT(INP_RECVRETOPTS);
647				break;
648
649			case IP_RECVDSTADDR:
650				optval = OPTBIT(INP_RECVDSTADDR);
651				break;
652			}
653			*mtod(m, int *) = optval;
654			break;
655
656		case IP_MULTICAST_IF:
657		case IP_MULTICAST_VIF:
658		case IP_MULTICAST_TTL:
659		case IP_MULTICAST_LOOP:
660		case IP_ADD_MEMBERSHIP:
661		case IP_DROP_MEMBERSHIP:
662			error = ip_getmoptions(optname, inp->inp_moptions, mp);
663			break;
664
665		default:
666			error = ENOPROTOOPT;
667			break;
668		}
669		break;
670	}
671	return (error);
672}
673
674/*
675 * Set up IP options in pcb for insertion in output packets.
676 * Store in mbuf with pointer in pcbopt, adding pseudo-option
677 * with destination address if source routed.
678 */
679int
680#ifdef notyet
681ip_pcbopts(optname, pcbopt, m)
682	int optname;
683#else
684ip_pcbopts(pcbopt, m)
685#endif
686	struct mbuf **pcbopt;
687	register struct mbuf *m;
688{
689	register cnt, optlen;
690	register u_char *cp;
691	u_char opt;
692
693	/* turn off any old options */
694	if (*pcbopt)
695		(void)m_free(*pcbopt);
696	*pcbopt = 0;
697	if (m == (struct mbuf *)0 || m->m_len == 0) {
698		/*
699		 * Only turning off any previous options.
700		 */
701		if (m)
702			(void)m_free(m);
703		return (0);
704	}
705
706#ifndef	vax
707	if (m->m_len % sizeof(long))
708		goto bad;
709#endif
710	/*
711	 * IP first-hop destination address will be stored before
712	 * actual options; move other options back
713	 * and clear it when none present.
714	 */
715	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
716		goto bad;
717	cnt = m->m_len;
718	m->m_len += sizeof(struct in_addr);
719	cp = mtod(m, u_char *) + sizeof(struct in_addr);
720	ovbcopy(mtod(m, caddr_t), (caddr_t)cp, (unsigned)cnt);
721	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
722
723	for (; cnt > 0; cnt -= optlen, cp += optlen) {
724		opt = cp[IPOPT_OPTVAL];
725		if (opt == IPOPT_EOL)
726			break;
727		if (opt == IPOPT_NOP)
728			optlen = 1;
729		else {
730			optlen = cp[IPOPT_OLEN];
731			if (optlen <= IPOPT_OLEN || optlen > cnt)
732				goto bad;
733		}
734		switch (opt) {
735
736		default:
737			break;
738
739		case IPOPT_LSRR:
740		case IPOPT_SSRR:
741			/*
742			 * user process specifies route as:
743			 *	->A->B->C->D
744			 * D must be our final destination (but we can't
745			 * check that since we may not have connected yet).
746			 * A is first hop destination, which doesn't appear in
747			 * actual IP option, but is stored before the options.
748			 */
749			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
750				goto bad;
751			m->m_len -= sizeof(struct in_addr);
752			cnt -= sizeof(struct in_addr);
753			optlen -= sizeof(struct in_addr);
754			cp[IPOPT_OLEN] = optlen;
755			/*
756			 * Move first hop before start of options.
757			 */
758			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
759			    sizeof(struct in_addr));
760			/*
761			 * Then copy rest of options back
762			 * to close up the deleted entry.
763			 */
764			ovbcopy((caddr_t)(&cp[IPOPT_OFFSET+1] +
765			    sizeof(struct in_addr)),
766			    (caddr_t)&cp[IPOPT_OFFSET+1],
767			    (unsigned)cnt + sizeof(struct in_addr));
768			break;
769		}
770	}
771	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
772		goto bad;
773	*pcbopt = m;
774	return (0);
775
776bad:
777	(void)m_free(m);
778	return (EINVAL);
779}
780
781/*
782 * Set the IP multicast options in response to user setsockopt().
783 */
784int
785ip_setmoptions(optname, imop, m)
786	int optname;
787	struct ip_moptions **imop;
788	struct mbuf *m;
789{
790	register int error = 0;
791	u_char loop;
792	register int i;
793	struct in_addr addr;
794	register struct ip_mreq *mreq;
795	register struct ifnet *ifp;
796	register struct ip_moptions *imo = *imop;
797	struct route ro;
798	register struct sockaddr_in *dst;
799	int s;
800
801	if (imo == NULL) {
802		/*
803		 * No multicast option buffer attached to the pcb;
804		 * allocate one and initialize to default values.
805		 */
806		imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS,
807		    M_WAITOK);
808
809		if (imo == NULL)
810			return (ENOBUFS);
811		*imop = imo;
812		imo->imo_multicast_ifp = NULL;
813		imo->imo_multicast_vif = -1;
814		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
815		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
816		imo->imo_num_memberships = 0;
817	}
818
819	switch (optname) {
820	/* store an index number for the vif you wanna use in the send */
821	case IP_MULTICAST_VIF:
822		if (!legal_vif_num) {
823			error = EOPNOTSUPP;
824			break;
825		}
826		if (m == NULL || m->m_len != sizeof(int)) {
827			error = EINVAL;
828			break;
829		}
830		i = *(mtod(m, int *));
831		if (!legal_vif_num(i) && (i != -1)) {
832			error = EINVAL;
833			break;
834		}
835		imo->imo_multicast_vif = i;
836		break;
837
838	case IP_MULTICAST_IF:
839		/*
840		 * Select the interface for outgoing multicast packets.
841		 */
842		if (m == NULL || m->m_len != sizeof(struct in_addr)) {
843			error = EINVAL;
844			break;
845		}
846		addr = *(mtod(m, struct in_addr *));
847		/*
848		 * INADDR_ANY is used to remove a previous selection.
849		 * When no interface is selected, a default one is
850		 * chosen every time a multicast packet is sent.
851		 */
852		if (addr.s_addr == INADDR_ANY) {
853			imo->imo_multicast_ifp = NULL;
854			break;
855		}
856		/*
857		 * The selected interface is identified by its local
858		 * IP address.  Find the interface and confirm that
859		 * it supports multicasting.
860		 */
861		s = splimp();
862		INADDR_TO_IFP(addr, ifp);
863		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
864			error = EADDRNOTAVAIL;
865			break;
866		}
867		imo->imo_multicast_ifp = ifp;
868		splx(s);
869		break;
870
871	case IP_MULTICAST_TTL:
872		/*
873		 * Set the IP time-to-live for outgoing multicast packets.
874		 */
875		if (m == NULL || m->m_len != 1) {
876			error = EINVAL;
877			break;
878		}
879		imo->imo_multicast_ttl = *(mtod(m, u_char *));
880		break;
881
882	case IP_MULTICAST_LOOP:
883		/*
884		 * Set the loopback flag for outgoing multicast packets.
885		 * Must be zero or one.
886		 */
887		if (m == NULL || m->m_len != 1 ||
888		   (loop = *(mtod(m, u_char *))) > 1) {
889			error = EINVAL;
890			break;
891		}
892		imo->imo_multicast_loop = loop;
893		break;
894
895	case IP_ADD_MEMBERSHIP:
896		/*
897		 * Add a multicast group membership.
898		 * Group must be a valid IP multicast address.
899		 */
900		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
901			error = EINVAL;
902			break;
903		}
904		mreq = mtod(m, struct ip_mreq *);
905		if (!IN_MULTICAST(ntohl(mreq->imr_multiaddr.s_addr))) {
906			error = EINVAL;
907			break;
908		}
909		s = splimp();
910		/*
911		 * If no interface address was provided, use the interface of
912		 * the route to the given multicast address.
913		 */
914		if (mreq->imr_interface.s_addr == INADDR_ANY) {
915			bzero((caddr_t)&ro, sizeof(ro));
916			dst = (struct sockaddr_in *)&ro.ro_dst;
917			dst->sin_len = sizeof(*dst);
918			dst->sin_family = AF_INET;
919			dst->sin_addr = mreq->imr_multiaddr;
920			rtalloc(&ro);
921			if (ro.ro_rt == NULL) {
922				error = EADDRNOTAVAIL;
923				splx(s);
924				break;
925			}
926			ifp = ro.ro_rt->rt_ifp;
927			rtfree(ro.ro_rt);
928		}
929		else {
930			INADDR_TO_IFP(mreq->imr_interface, ifp);
931		}
932
933		/*
934		 * See if we found an interface, and confirm that it
935		 * supports multicast.
936		 */
937		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
938			error = EADDRNOTAVAIL;
939			splx(s);
940			break;
941		}
942		/*
943		 * See if the membership already exists or if all the
944		 * membership slots are full.
945		 */
946		for (i = 0; i < imo->imo_num_memberships; ++i) {
947			if (imo->imo_membership[i]->inm_ifp == ifp &&
948			    imo->imo_membership[i]->inm_addr.s_addr
949						== mreq->imr_multiaddr.s_addr)
950				break;
951		}
952		if (i < imo->imo_num_memberships) {
953			error = EADDRINUSE;
954			splx(s);
955			break;
956		}
957		if (i == IP_MAX_MEMBERSHIPS) {
958			error = ETOOMANYREFS;
959			splx(s);
960			break;
961		}
962		/*
963		 * Everything looks good; add a new record to the multicast
964		 * address list for the given interface.
965		 */
966		if ((imo->imo_membership[i] =
967		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
968			error = ENOBUFS;
969			splx(s);
970			break;
971		}
972		++imo->imo_num_memberships;
973		splx(s);
974		break;
975
976	case IP_DROP_MEMBERSHIP:
977		/*
978		 * Drop a multicast group membership.
979		 * Group must be a valid IP multicast address.
980		 */
981		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
982			error = EINVAL;
983			break;
984		}
985		mreq = mtod(m, struct ip_mreq *);
986		if (!IN_MULTICAST(ntohl(mreq->imr_multiaddr.s_addr))) {
987			error = EINVAL;
988			break;
989		}
990
991		s = splimp();
992		/*
993		 * If an interface address was specified, get a pointer
994		 * to its ifnet structure.
995		 */
996		if (mreq->imr_interface.s_addr == INADDR_ANY)
997			ifp = NULL;
998		else {
999			INADDR_TO_IFP(mreq->imr_interface, ifp);
1000			if (ifp == NULL) {
1001				error = EADDRNOTAVAIL;
1002				splx(s);
1003				break;
1004			}
1005		}
1006		/*
1007		 * Find the membership in the membership array.
1008		 */
1009		for (i = 0; i < imo->imo_num_memberships; ++i) {
1010			if ((ifp == NULL ||
1011			     imo->imo_membership[i]->inm_ifp == ifp) &&
1012			     imo->imo_membership[i]->inm_addr.s_addr ==
1013			     mreq->imr_multiaddr.s_addr)
1014				break;
1015		}
1016		if (i == imo->imo_num_memberships) {
1017			error = EADDRNOTAVAIL;
1018			splx(s);
1019			break;
1020		}
1021		/*
1022		 * Give up the multicast address record to which the
1023		 * membership points.
1024		 */
1025		in_delmulti(imo->imo_membership[i]);
1026		/*
1027		 * Remove the gap in the membership array.
1028		 */
1029		for (++i; i < imo->imo_num_memberships; ++i)
1030			imo->imo_membership[i-1] = imo->imo_membership[i];
1031		--imo->imo_num_memberships;
1032		splx(s);
1033		break;
1034
1035	default:
1036		error = EOPNOTSUPP;
1037		break;
1038	}
1039
1040	/*
1041	 * If all options have default values, no need to keep the mbuf.
1042	 */
1043	if (imo->imo_multicast_ifp == NULL &&
1044	    imo->imo_multicast_vif == -1 &&
1045	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1046	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1047	    imo->imo_num_memberships == 0) {
1048		free(*imop, M_IPMOPTS);
1049		*imop = NULL;
1050	}
1051
1052	return (error);
1053}
1054
1055/*
1056 * Return the IP multicast options in response to user getsockopt().
1057 */
1058int
1059ip_getmoptions(optname, imo, mp)
1060	int optname;
1061	register struct ip_moptions *imo;
1062	register struct mbuf **mp;
1063{
1064	u_char *ttl;
1065	u_char *loop;
1066	struct in_addr *addr;
1067	struct in_ifaddr *ia;
1068
1069	*mp = m_get(M_WAIT, MT_SOOPTS);
1070
1071	switch (optname) {
1072
1073	case IP_MULTICAST_VIF:
1074		if (imo != NULL)
1075			*(mtod(*mp, int *)) = imo->imo_multicast_vif;
1076		else
1077			*(mtod(*mp, int *)) = -1;
1078		(*mp)->m_len = sizeof(int);
1079		return(0);
1080
1081	case IP_MULTICAST_IF:
1082		addr = mtod(*mp, struct in_addr *);
1083		(*mp)->m_len = sizeof(struct in_addr);
1084		if (imo == NULL || imo->imo_multicast_ifp == NULL)
1085			addr->s_addr = INADDR_ANY;
1086		else {
1087			IFP_TO_IA(imo->imo_multicast_ifp, ia);
1088			addr->s_addr = (ia == NULL) ? INADDR_ANY
1089					: IA_SIN(ia)->sin_addr.s_addr;
1090		}
1091		return (0);
1092
1093	case IP_MULTICAST_TTL:
1094		ttl = mtod(*mp, u_char *);
1095		(*mp)->m_len = 1;
1096		*ttl = (imo == NULL) ? IP_DEFAULT_MULTICAST_TTL
1097				     : imo->imo_multicast_ttl;
1098		return (0);
1099
1100	case IP_MULTICAST_LOOP:
1101		loop = mtod(*mp, u_char *);
1102		(*mp)->m_len = 1;
1103		*loop = (imo == NULL) ? IP_DEFAULT_MULTICAST_LOOP
1104				      : imo->imo_multicast_loop;
1105		return (0);
1106
1107	default:
1108		return (EOPNOTSUPP);
1109	}
1110}
1111
1112/*
1113 * Discard the IP multicast options.
1114 */
1115void
1116ip_freemoptions(imo)
1117	register struct ip_moptions *imo;
1118{
1119	register int i;
1120
1121	if (imo != NULL) {
1122		for (i = 0; i < imo->imo_num_memberships; ++i)
1123			in_delmulti(imo->imo_membership[i]);
1124		free(imo, M_IPMOPTS);
1125	}
1126}
1127
1128/*
1129 * Routine called from ip_output() to loop back a copy of an IP multicast
1130 * packet to the input queue of a specified interface.  Note that this
1131 * calls the output routine of the loopback "driver", but with an interface
1132 * pointer that might NOT be a loopback interface -- evil, but easier than
1133 * replicating that code here.
1134 */
1135static void
1136ip_mloopback(ifp, m, dst)
1137	struct ifnet *ifp;
1138	register struct mbuf *m;
1139	register struct sockaddr_in *dst;
1140{
1141	register struct ip *ip;
1142	struct mbuf *copym;
1143
1144	copym = m_copy(m, 0, M_COPYALL);
1145	if (copym != NULL) {
1146		/*
1147		 * We don't bother to fragment if the IP length is greater
1148		 * than the interface's MTU.  Can this possibly matter?
1149		 */
1150		ip = mtod(copym, struct ip *);
1151		ip->ip_len = htons((u_short)ip->ip_len);
1152		ip->ip_off = htons((u_short)ip->ip_off);
1153		ip->ip_sum = 0;
1154		ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1155		(void) looutput(ifp, copym, (struct sockaddr *)dst, NULL);
1156	}
1157}
1158