ip_output.c revision 266192
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/9/sys/netinet/ip_output.c 266192 2014-05-15 20:27:57Z tuexen $");
34
35#include "opt_ipfw.h"
36#include "opt_ipsec.h"
37#include "opt_route.h"
38#include "opt_mbuf_stress_test.h"
39#include "opt_mpath.h"
40#include "opt_sctp.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#include <sys/priv.h>
48#include <sys/proc.h>
49#include <sys/protosw.h>
50#include <sys/socket.h>
51#include <sys/socketvar.h>
52#include <sys/sysctl.h>
53#include <sys/ucred.h>
54
55#include <net/if.h>
56#include <net/if_llatbl.h>
57#include <net/netisr.h>
58#include <net/pfil.h>
59#include <net/route.h>
60#include <net/flowtable.h>
61#ifdef RADIX_MPATH
62#include <net/radix_mpath.h>
63#endif
64#include <net/vnet.h>
65
66#include <netinet/in.h>
67#include <netinet/in_systm.h>
68#include <netinet/ip.h>
69#include <netinet/in_pcb.h>
70#include <netinet/in_var.h>
71#include <netinet/ip_var.h>
72#include <netinet/ip_options.h>
73#ifdef SCTP
74#include <netinet/sctp.h>
75#include <netinet/sctp_crc32.h>
76#endif
77
78#ifdef IPSEC
79#include <netinet/ip_ipsec.h>
80#include <netipsec/ipsec.h>
81#endif /* IPSEC*/
82
83#include <machine/in_cksum.h>
84
85#include <security/mac/mac_framework.h>
86
87VNET_DEFINE(u_short, ip_id);
88
89#ifdef MBUF_STRESS_TEST
90static int mbuf_frag_size = 0;
91SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
92	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
93#endif
94
95static void	ip_mloopback
96	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
97
98
99extern int in_mcast_loop;
100extern	struct protosw inetsw[];
101
102/*
103 * IP output.  The packet in mbuf chain m contains a skeletal IP
104 * header (with len, off, ttl, proto, tos, src, dst).
105 * ip_len and ip_off are in host format.
106 * The mbuf chain containing the packet will be freed.
107 * The mbuf opt, if present, will not be freed.
108 * If route ro is present and has ro_rt initialized, route lookup would be
109 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
110 * then result of route lookup is stored in ro->ro_rt.
111 *
112 * In the IP forwarding case, the packet will arrive with options already
113 * inserted, so must have a NULL opt pointer.
114 */
115int
116ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
117    struct ip_moptions *imo, struct inpcb *inp)
118{
119	struct ip *ip;
120	struct ifnet *ifp = NULL;	/* keep compiler happy */
121	struct mbuf *m0;
122	int hlen = sizeof (struct ip);
123	int mtu;
124	int n;	/* scratchpad */
125	int error = 0;
126	struct sockaddr_in *dst;
127	struct in_ifaddr *ia;
128	int isbroadcast, sw_csum;
129	struct route iproute;
130	struct rtentry *rte;	/* cache for ro->ro_rt */
131	struct in_addr odst;
132	struct m_tag *fwd_tag = NULL;
133#ifdef IPSEC
134	int no_route_but_check_spd = 0;
135#endif
136	M_ASSERTPKTHDR(m);
137
138	if (inp != NULL) {
139		INP_LOCK_ASSERT(inp);
140		M_SETFIB(m, inp->inp_inc.inc_fibnum);
141		if (inp->inp_flags & (INP_HW_FLOWID|INP_SW_FLOWID)) {
142			m->m_pkthdr.flowid = inp->inp_flowid;
143			m->m_flags |= M_FLOWID;
144		}
145	}
146
147	if (ro == NULL) {
148		ro = &iproute;
149		bzero(ro, sizeof (*ro));
150	}
151
152#ifdef FLOWTABLE
153	if (ro->ro_rt == NULL) {
154		struct flentry *fle;
155
156		/*
157		 * The flow table returns route entries valid for up to 30
158		 * seconds; we rely on the remainder of ip_output() taking no
159		 * longer than that long for the stability of ro_rt. The
160		 * flow ID assignment must have happened before this point.
161		 */
162		fle = flowtable_lookup_mbuf(V_ip_ft, m, AF_INET);
163		if (fle != NULL)
164			flow_to_route(fle, ro);
165	}
166#endif
167
168	if (opt) {
169		int len = 0;
170		m = ip_insertoptions(m, opt, &len);
171		if (len != 0)
172			hlen = len; /* ip->ip_hl is updated above */
173	}
174	ip = mtod(m, struct ip *);
175
176	/*
177	 * Fill in IP header.  If we are not allowing fragmentation,
178	 * then the ip_id field is meaningless, but we don't set it
179	 * to zero.  Doing so causes various problems when devices along
180	 * the path (routers, load balancers, firewalls, etc.) illegally
181	 * disable DF on our packet.  Note that a 16-bit counter
182	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
183	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
184	 * for Counting NATted Hosts", Proc. IMW'02, available at
185	 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>.
186	 */
187	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
188		ip->ip_v = IPVERSION;
189		ip->ip_hl = hlen >> 2;
190		ip->ip_id = ip_newid();
191		IPSTAT_INC(ips_localout);
192	} else {
193		/* Header already set, fetch hlen from there */
194		hlen = ip->ip_hl << 2;
195	}
196
197again:
198	dst = (struct sockaddr_in *)&ro->ro_dst;
199	ia = NULL;
200	/*
201	 * If there is a cached route,
202	 * check that it is to the same destination
203	 * and is still up.  If not, free it and try again.
204	 * The address family should also be checked in case of sharing the
205	 * cache with IPv6.
206	 */
207	rte = ro->ro_rt;
208	if (rte && ((rte->rt_flags & RTF_UP) == 0 ||
209		    rte->rt_ifp == NULL ||
210		    !RT_LINK_IS_UP(rte->rt_ifp) ||
211			  dst->sin_family != AF_INET ||
212			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
213		RO_RTFREE(ro);
214		ro->ro_lle = NULL;
215		rte = NULL;
216	}
217	if (rte == NULL && fwd_tag == NULL) {
218		bzero(dst, sizeof(*dst));
219		dst->sin_family = AF_INET;
220		dst->sin_len = sizeof(*dst);
221		dst->sin_addr = ip->ip_dst;
222	}
223	/*
224	 * If routing to interface only, short circuit routing lookup.
225	 * The use of an all-ones broadcast address implies this; an
226	 * interface is specified by the broadcast address of an interface,
227	 * or the destination address of a ptp interface.
228	 */
229	if (flags & IP_SENDONES) {
230		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst)))) == NULL &&
231		    (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) {
232			IPSTAT_INC(ips_noroute);
233			error = ENETUNREACH;
234			goto bad;
235		}
236		ip->ip_dst.s_addr = INADDR_BROADCAST;
237		dst->sin_addr = ip->ip_dst;
238		ifp = ia->ia_ifp;
239		ip->ip_ttl = 1;
240		isbroadcast = 1;
241	} else if (flags & IP_ROUTETOIF) {
242		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
243		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0))) == NULL) {
244			IPSTAT_INC(ips_noroute);
245			error = ENETUNREACH;
246			goto bad;
247		}
248		ifp = ia->ia_ifp;
249		ip->ip_ttl = 1;
250		isbroadcast = in_broadcast(dst->sin_addr, ifp);
251	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
252	    imo != NULL && imo->imo_multicast_ifp != NULL) {
253		/*
254		 * Bypass the normal routing lookup for multicast
255		 * packets if the interface is specified.
256		 */
257		ifp = imo->imo_multicast_ifp;
258		IFP_TO_IA(ifp, ia);
259		isbroadcast = 0;	/* fool gcc */
260	} else {
261		/*
262		 * We want to do any cloning requested by the link layer,
263		 * as this is probably required in all cases for correct
264		 * operation (as it is for ARP).
265		 */
266		if (rte == NULL) {
267#ifdef RADIX_MPATH
268			rtalloc_mpath_fib(ro,
269			    ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr),
270			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
271#else
272			in_rtalloc_ign(ro, 0,
273			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
274#endif
275			rte = ro->ro_rt;
276		}
277		if (rte == NULL ||
278		    rte->rt_ifp == NULL ||
279		    !RT_LINK_IS_UP(rte->rt_ifp)) {
280#ifdef IPSEC
281			/*
282			 * There is no route for this packet, but it is
283			 * possible that a matching SPD entry exists.
284			 */
285			no_route_but_check_spd = 1;
286			mtu = 0; /* Silence GCC warning. */
287			goto sendit;
288#endif
289			IPSTAT_INC(ips_noroute);
290			error = EHOSTUNREACH;
291			goto bad;
292		}
293		ia = ifatoia(rte->rt_ifa);
294		ifa_ref(&ia->ia_ifa);
295		ifp = rte->rt_ifp;
296		rte->rt_rmx.rmx_pksent++;
297		if (rte->rt_flags & RTF_GATEWAY)
298			dst = (struct sockaddr_in *)rte->rt_gateway;
299		if (rte->rt_flags & RTF_HOST)
300			isbroadcast = (rte->rt_flags & RTF_BROADCAST);
301		else
302			isbroadcast = in_broadcast(dst->sin_addr, ifp);
303	}
304	/*
305	 * Calculate MTU.  If we have a route that is up, use that,
306	 * otherwise use the interface's MTU.
307	 */
308	if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) {
309		/*
310		 * This case can happen if the user changed the MTU
311		 * of an interface after enabling IP on it.  Because
312		 * most netifs don't keep track of routes pointing to
313		 * them, there is no way for one to update all its
314		 * routes when the MTU is changed.
315		 */
316		if (rte->rt_rmx.rmx_mtu > ifp->if_mtu)
317			rte->rt_rmx.rmx_mtu = ifp->if_mtu;
318		mtu = rte->rt_rmx.rmx_mtu;
319	} else {
320		mtu = ifp->if_mtu;
321	}
322	/* Catch a possible divide by zero later. */
323	KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p",
324	    __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp));
325	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
326		m->m_flags |= M_MCAST;
327		/*
328		 * IP destination address is multicast.  Make sure "dst"
329		 * still points to the address in "ro".  (It may have been
330		 * changed to point to a gateway address, above.)
331		 */
332		dst = (struct sockaddr_in *)&ro->ro_dst;
333		/*
334		 * See if the caller provided any multicast options
335		 */
336		if (imo != NULL) {
337			ip->ip_ttl = imo->imo_multicast_ttl;
338			if (imo->imo_multicast_vif != -1)
339				ip->ip_src.s_addr =
340				    ip_mcast_src ?
341				    ip_mcast_src(imo->imo_multicast_vif) :
342				    INADDR_ANY;
343		} else
344			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
345		/*
346		 * Confirm that the outgoing interface supports multicast.
347		 */
348		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
349			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
350				IPSTAT_INC(ips_noroute);
351				error = ENETUNREACH;
352				goto bad;
353			}
354		}
355		/*
356		 * If source address not specified yet, use address
357		 * of outgoing interface.
358		 */
359		if (ip->ip_src.s_addr == INADDR_ANY) {
360			/* Interface may have no addresses. */
361			if (ia != NULL)
362				ip->ip_src = IA_SIN(ia)->sin_addr;
363		}
364
365		if ((imo == NULL && in_mcast_loop) ||
366		    (imo && imo->imo_multicast_loop)) {
367			/*
368			 * Loop back multicast datagram if not expressly
369			 * forbidden to do so, even if we are not a member
370			 * of the group; ip_input() will filter it later,
371			 * thus deferring a hash lookup and mutex acquisition
372			 * at the expense of a cheap copy using m_copym().
373			 */
374			ip_mloopback(ifp, m, dst, hlen);
375		} else {
376			/*
377			 * If we are acting as a multicast router, perform
378			 * multicast forwarding as if the packet had just
379			 * arrived on the interface to which we are about
380			 * to send.  The multicast forwarding function
381			 * recursively calls this function, using the
382			 * IP_FORWARDING flag to prevent infinite recursion.
383			 *
384			 * Multicasts that are looped back by ip_mloopback(),
385			 * above, will be forwarded by the ip_input() routine,
386			 * if necessary.
387			 */
388			if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
389				/*
390				 * If rsvp daemon is not running, do not
391				 * set ip_moptions. This ensures that the packet
392				 * is multicast and not just sent down one link
393				 * as prescribed by rsvpd.
394				 */
395				if (!V_rsvp_on)
396					imo = NULL;
397				if (ip_mforward &&
398				    ip_mforward(ip, ifp, m, imo) != 0) {
399					m_freem(m);
400					goto done;
401				}
402			}
403		}
404
405		/*
406		 * Multicasts with a time-to-live of zero may be looped-
407		 * back, above, but must not be transmitted on a network.
408		 * Also, multicasts addressed to the loopback interface
409		 * are not sent -- the above call to ip_mloopback() will
410		 * loop back a copy. ip_input() will drop the copy if
411		 * this host does not belong to the destination group on
412		 * the loopback interface.
413		 */
414		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
415			m_freem(m);
416			goto done;
417		}
418
419		goto sendit;
420	}
421
422	/*
423	 * If the source address is not specified yet, use the address
424	 * of the outoing interface.
425	 */
426	if (ip->ip_src.s_addr == INADDR_ANY) {
427		/* Interface may have no addresses. */
428		if (ia != NULL) {
429			ip->ip_src = IA_SIN(ia)->sin_addr;
430		}
431	}
432
433	/*
434	 * Verify that we have any chance at all of being able to queue the
435	 * packet or packet fragments, unless ALTQ is enabled on the given
436	 * interface in which case packetdrop should be done by queueing.
437	 */
438	n = ip->ip_len / mtu + 1; /* how many fragments ? */
439	if (
440#ifdef ALTQ
441	    (!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
442#endif /* ALTQ */
443	    (ifp->if_snd.ifq_len + n) >= ifp->if_snd.ifq_maxlen ) {
444		error = ENOBUFS;
445		IPSTAT_INC(ips_odropped);
446		ifp->if_snd.ifq_drops += n;
447		goto bad;
448	}
449
450	/*
451	 * Look for broadcast address and
452	 * verify user is allowed to send
453	 * such a packet.
454	 */
455	if (isbroadcast) {
456		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
457			error = EADDRNOTAVAIL;
458			goto bad;
459		}
460		if ((flags & IP_ALLOWBROADCAST) == 0) {
461			error = EACCES;
462			goto bad;
463		}
464		/* don't allow broadcast messages to be fragmented */
465		if (ip->ip_len > mtu) {
466			error = EMSGSIZE;
467			goto bad;
468		}
469		m->m_flags |= M_BCAST;
470	} else {
471		m->m_flags &= ~M_BCAST;
472	}
473
474sendit:
475#ifdef IPSEC
476	switch(ip_ipsec_output(&m, inp, &flags, &error)) {
477	case 1:
478		goto bad;
479	case -1:
480		goto done;
481	case 0:
482	default:
483		break;	/* Continue with packet processing. */
484	}
485	/*
486	 * Check if there was a route for this packet; return error if not.
487	 */
488	if (no_route_but_check_spd) {
489		IPSTAT_INC(ips_noroute);
490		error = EHOSTUNREACH;
491		goto bad;
492	}
493	/* Update variables that are affected by ipsec4_output(). */
494	ip = mtod(m, struct ip *);
495	hlen = ip->ip_hl << 2;
496#endif /* IPSEC */
497
498	/* Jump over all PFIL processing if hooks are not active. */
499	if (!PFIL_HOOKED(&V_inet_pfil_hook))
500		goto passout;
501
502	/* Run through list of hooks for output packets. */
503	odst.s_addr = ip->ip_dst.s_addr;
504	error = pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
505	if (error != 0 || m == NULL)
506		goto done;
507
508	ip = mtod(m, struct ip *);
509
510	/* See if destination IP address was changed by packet filter. */
511	if (odst.s_addr != ip->ip_dst.s_addr) {
512		m->m_flags |= M_SKIP_FIREWALL;
513		/* If destination is now ourself drop to ip_input(). */
514		if (in_localip(ip->ip_dst)) {
515			m->m_flags |= M_FASTFWD_OURS;
516			if (m->m_pkthdr.rcvif == NULL)
517				m->m_pkthdr.rcvif = V_loif;
518			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
519				m->m_pkthdr.csum_flags |=
520				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
521				m->m_pkthdr.csum_data = 0xffff;
522			}
523			m->m_pkthdr.csum_flags |=
524			    CSUM_IP_CHECKED | CSUM_IP_VALID;
525#ifdef SCTP
526			if (m->m_pkthdr.csum_flags & CSUM_SCTP)
527				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
528#endif
529			error = netisr_queue(NETISR_IP, m);
530			goto done;
531		} else {
532			if (ia != NULL)
533				ifa_free(&ia->ia_ifa);
534			goto again;	/* Redo the routing table lookup. */
535		}
536	}
537
538	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
539	if (m->m_flags & M_FASTFWD_OURS) {
540		if (m->m_pkthdr.rcvif == NULL)
541			m->m_pkthdr.rcvif = V_loif;
542		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
543			m->m_pkthdr.csum_flags |=
544			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
545			m->m_pkthdr.csum_data = 0xffff;
546		}
547#ifdef SCTP
548		if (m->m_pkthdr.csum_flags & CSUM_SCTP)
549			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
550#endif
551		m->m_pkthdr.csum_flags |=
552			    CSUM_IP_CHECKED | CSUM_IP_VALID;
553
554		error = netisr_queue(NETISR_IP, m);
555		goto done;
556	}
557	/* Or forward to some other address? */
558	if ((m->m_flags & M_IP_NEXTHOP) &&
559	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
560		dst = (struct sockaddr_in *)&ro->ro_dst;
561		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
562		m->m_flags |= M_SKIP_FIREWALL;
563		m->m_flags &= ~M_IP_NEXTHOP;
564		m_tag_delete(m, fwd_tag);
565		if (ia != NULL)
566			ifa_free(&ia->ia_ifa);
567		goto again;
568	}
569
570passout:
571	/* 127/8 must not appear on wire - RFC1122. */
572	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
573	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
574		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
575			IPSTAT_INC(ips_badaddr);
576			error = EADDRNOTAVAIL;
577			goto bad;
578		}
579	}
580
581	m->m_pkthdr.csum_flags |= CSUM_IP;
582	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
583	if (sw_csum & CSUM_DELAY_DATA) {
584		in_delayed_cksum(m);
585		sw_csum &= ~CSUM_DELAY_DATA;
586	}
587#ifdef SCTP
588	if (sw_csum & CSUM_SCTP) {
589		sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
590		sw_csum &= ~CSUM_SCTP;
591	}
592#endif
593	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
594
595	/*
596	 * If small enough for interface, or the interface will take
597	 * care of the fragmentation for us, we can just send directly.
598	 */
599	if (ip->ip_len <= mtu ||
600	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 ||
601	    ((ip->ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) {
602		ip->ip_len = htons(ip->ip_len);
603		ip->ip_off = htons(ip->ip_off);
604		ip->ip_sum = 0;
605		if (sw_csum & CSUM_DELAY_IP)
606			ip->ip_sum = in_cksum(m, hlen);
607
608		/*
609		 * Record statistics for this interface address.
610		 * With CSUM_TSO the byte/packet count will be slightly
611		 * incorrect because we count the IP+TCP headers only
612		 * once instead of for every generated packet.
613		 */
614		if (!(flags & IP_FORWARDING) && ia) {
615			if (m->m_pkthdr.csum_flags & CSUM_TSO)
616				ia->ia_ifa.if_opackets +=
617				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz;
618			else
619				ia->ia_ifa.if_opackets++;
620			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
621		}
622#ifdef MBUF_STRESS_TEST
623		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
624			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
625#endif
626		/*
627		 * Reset layer specific mbuf flags
628		 * to avoid confusing lower layers.
629		 */
630		m->m_flags &= ~(M_PROTOFLAGS);
631		error = (*ifp->if_output)(ifp, m,
632		    		(struct sockaddr *)dst, ro);
633		goto done;
634	}
635
636	/* Balk when DF bit is set or the interface didn't support TSO. */
637	if ((ip->ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
638		error = EMSGSIZE;
639		IPSTAT_INC(ips_cantfrag);
640		goto bad;
641	}
642
643	/*
644	 * Too large for interface; fragment if possible. If successful,
645	 * on return, m will point to a list of packets to be sent.
646	 */
647	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist, sw_csum);
648	if (error)
649		goto bad;
650	for (; m; m = m0) {
651		m0 = m->m_nextpkt;
652		m->m_nextpkt = 0;
653		if (error == 0) {
654			/* Record statistics for this interface address. */
655			if (ia != NULL) {
656				ia->ia_ifa.if_opackets++;
657				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
658			}
659			/*
660			 * Reset layer specific mbuf flags
661			 * to avoid confusing upper layers.
662			 */
663			m->m_flags &= ~(M_PROTOFLAGS);
664
665			error = (*ifp->if_output)(ifp, m,
666			    (struct sockaddr *)dst, ro);
667		} else
668			m_freem(m);
669	}
670
671	if (error == 0)
672		IPSTAT_INC(ips_fragmented);
673
674done:
675	if (ro == &iproute)
676		RO_RTFREE(ro);
677	if (ia != NULL)
678		ifa_free(&ia->ia_ifa);
679	return (error);
680bad:
681	m_freem(m);
682	goto done;
683}
684
685/*
686 * Create a chain of fragments which fit the given mtu. m_frag points to the
687 * mbuf to be fragmented; on return it points to the chain with the fragments.
688 * Return 0 if no error. If error, m_frag may contain a partially built
689 * chain of fragments that should be freed by the caller.
690 *
691 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
692 * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
693 */
694int
695ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
696    u_long if_hwassist_flags, int sw_csum)
697{
698	int error = 0;
699	int hlen = ip->ip_hl << 2;
700	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
701	int off;
702	struct mbuf *m0 = *m_frag;	/* the original packet		*/
703	int firstlen;
704	struct mbuf **mnext;
705	int nfrags;
706
707	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
708		IPSTAT_INC(ips_cantfrag);
709		return EMSGSIZE;
710	}
711
712	/*
713	 * Must be able to put at least 8 bytes per fragment.
714	 */
715	if (len < 8)
716		return EMSGSIZE;
717
718	/*
719	 * If the interface will not calculate checksums on
720	 * fragmented packets, then do it here.
721	 */
722	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
723		in_delayed_cksum(m0);
724		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
725	}
726#ifdef SCTP
727	if (m0->m_pkthdr.csum_flags & CSUM_SCTP) {
728		sctp_delayed_cksum(m0, hlen);
729		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
730	}
731#endif
732	if (len > PAGE_SIZE) {
733		/*
734		 * Fragment large datagrams such that each segment
735		 * contains a multiple of PAGE_SIZE amount of data,
736		 * plus headers. This enables a receiver to perform
737		 * page-flipping zero-copy optimizations.
738		 *
739		 * XXX When does this help given that sender and receiver
740		 * could have different page sizes, and also mtu could
741		 * be less than the receiver's page size ?
742		 */
743		int newlen;
744		struct mbuf *m;
745
746		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
747			off += m->m_len;
748
749		/*
750		 * firstlen (off - hlen) must be aligned on an
751		 * 8-byte boundary
752		 */
753		if (off < hlen)
754			goto smart_frag_failure;
755		off = ((off - hlen) & ~7) + hlen;
756		newlen = (~PAGE_MASK) & mtu;
757		if ((newlen + sizeof (struct ip)) > mtu) {
758			/* we failed, go back the default */
759smart_frag_failure:
760			newlen = len;
761			off = hlen + len;
762		}
763		len = newlen;
764
765	} else {
766		off = hlen + len;
767	}
768
769	firstlen = off - hlen;
770	mnext = &m0->m_nextpkt;		/* pointer to next packet */
771
772	/*
773	 * Loop through length of segment after first fragment,
774	 * make new header and copy data of each part and link onto chain.
775	 * Here, m0 is the original packet, m is the fragment being created.
776	 * The fragments are linked off the m_nextpkt of the original
777	 * packet, which after processing serves as the first fragment.
778	 */
779	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
780		struct ip *mhip;	/* ip header on the fragment */
781		struct mbuf *m;
782		int mhlen = sizeof (struct ip);
783
784		MGETHDR(m, M_DONTWAIT, MT_DATA);
785		if (m == NULL) {
786			error = ENOBUFS;
787			IPSTAT_INC(ips_odropped);
788			goto done;
789		}
790		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
791		/*
792		 * In the first mbuf, leave room for the link header, then
793		 * copy the original IP header including options. The payload
794		 * goes into an additional mbuf chain returned by m_copym().
795		 */
796		m->m_data += max_linkhdr;
797		mhip = mtod(m, struct ip *);
798		*mhip = *ip;
799		if (hlen > sizeof (struct ip)) {
800			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
801			mhip->ip_v = IPVERSION;
802			mhip->ip_hl = mhlen >> 2;
803		}
804		m->m_len = mhlen;
805		/* XXX do we need to add ip->ip_off below ? */
806		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
807		if (off + len >= ip->ip_len) {	/* last fragment */
808			len = ip->ip_len - off;
809			m->m_flags |= M_LASTFRAG;
810		} else
811			mhip->ip_off |= IP_MF;
812		mhip->ip_len = htons((u_short)(len + mhlen));
813		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
814		if (m->m_next == NULL) {	/* copy failed */
815			m_free(m);
816			error = ENOBUFS;	/* ??? */
817			IPSTAT_INC(ips_odropped);
818			goto done;
819		}
820		m->m_pkthdr.len = mhlen + len;
821		m->m_pkthdr.rcvif = NULL;
822#ifdef MAC
823		mac_netinet_fragment(m0, m);
824#endif
825		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
826		mhip->ip_off = htons(mhip->ip_off);
827		mhip->ip_sum = 0;
828		if (sw_csum & CSUM_DELAY_IP)
829			mhip->ip_sum = in_cksum(m, mhlen);
830		*mnext = m;
831		mnext = &m->m_nextpkt;
832	}
833	IPSTAT_ADD(ips_ofragments, nfrags);
834
835	/* set first marker for fragment chain */
836	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
837	m0->m_pkthdr.csum_data = nfrags;
838
839	/*
840	 * Update first fragment by trimming what's been copied out
841	 * and updating header.
842	 */
843	m_adj(m0, hlen + firstlen - ip->ip_len);
844	m0->m_pkthdr.len = hlen + firstlen;
845	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
846	ip->ip_off |= IP_MF;
847	ip->ip_off = htons(ip->ip_off);
848	ip->ip_sum = 0;
849	if (sw_csum & CSUM_DELAY_IP)
850		ip->ip_sum = in_cksum(m0, hlen);
851
852done:
853	*m_frag = m0;
854	return error;
855}
856
857void
858in_delayed_cksum(struct mbuf *m)
859{
860	struct ip *ip;
861	u_short csum, offset;
862
863	ip = mtod(m, struct ip *);
864	offset = ip->ip_hl << 2 ;
865	csum = in_cksum_skip(m, ip->ip_len, offset);
866	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
867		csum = 0xffff;
868	offset += m->m_pkthdr.csum_data;	/* checksum offset */
869
870	/* find the mbuf in the chain where the checksum starts*/
871	while ((m != NULL) && (offset >= m->m_len)) {
872		offset -= m->m_len;
873		m = m->m_next;
874	}
875	KASSERT(m != NULL, ("in_delayed_cksum: checksum outside mbuf chain."));
876	KASSERT(offset + sizeof(u_short) <= m->m_len, ("in_delayed_cksum: checksum split between mbufs."));
877	*(u_short *)(m->m_data + offset) = csum;
878}
879
880/*
881 * IP socket option processing.
882 */
883int
884ip_ctloutput(struct socket *so, struct sockopt *sopt)
885{
886	struct	inpcb *inp = sotoinpcb(so);
887	int	error, optval;
888
889	error = optval = 0;
890	if (sopt->sopt_level != IPPROTO_IP) {
891		error = EINVAL;
892
893		if (sopt->sopt_level == SOL_SOCKET &&
894		    sopt->sopt_dir == SOPT_SET) {
895			switch (sopt->sopt_name) {
896			case SO_REUSEADDR:
897				INP_WLOCK(inp);
898				if ((so->so_options & SO_REUSEADDR) != 0)
899					inp->inp_flags2 |= INP_REUSEADDR;
900				else
901					inp->inp_flags2 &= ~INP_REUSEADDR;
902				INP_WUNLOCK(inp);
903				error = 0;
904				break;
905			case SO_REUSEPORT:
906				INP_WLOCK(inp);
907				if ((so->so_options & SO_REUSEPORT) != 0)
908					inp->inp_flags2 |= INP_REUSEPORT;
909				else
910					inp->inp_flags2 &= ~INP_REUSEPORT;
911				INP_WUNLOCK(inp);
912				error = 0;
913				break;
914			case SO_SETFIB:
915				INP_WLOCK(inp);
916				inp->inp_inc.inc_fibnum = so->so_fibnum;
917				INP_WUNLOCK(inp);
918				error = 0;
919				break;
920			default:
921				break;
922			}
923		}
924		return (error);
925	}
926
927	switch (sopt->sopt_dir) {
928	case SOPT_SET:
929		switch (sopt->sopt_name) {
930		case IP_OPTIONS:
931#ifdef notyet
932		case IP_RETOPTS:
933#endif
934		{
935			struct mbuf *m;
936			if (sopt->sopt_valsize > MLEN) {
937				error = EMSGSIZE;
938				break;
939			}
940			MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
941			if (m == NULL) {
942				error = ENOBUFS;
943				break;
944			}
945			m->m_len = sopt->sopt_valsize;
946			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
947					    m->m_len);
948			if (error) {
949				m_free(m);
950				break;
951			}
952			INP_WLOCK(inp);
953			error = ip_pcbopts(inp, sopt->sopt_name, m);
954			INP_WUNLOCK(inp);
955			return (error);
956		}
957
958		case IP_BINDANY:
959			if (sopt->sopt_td != NULL) {
960				error = priv_check(sopt->sopt_td,
961				    PRIV_NETINET_BINDANY);
962				if (error)
963					break;
964			}
965			/* FALLTHROUGH */
966		case IP_TOS:
967		case IP_TTL:
968		case IP_MINTTL:
969		case IP_RECVOPTS:
970		case IP_RECVRETOPTS:
971		case IP_RECVDSTADDR:
972		case IP_RECVTTL:
973		case IP_RECVIF:
974		case IP_FAITH:
975		case IP_ONESBCAST:
976		case IP_DONTFRAG:
977		case IP_RECVTOS:
978			error = sooptcopyin(sopt, &optval, sizeof optval,
979					    sizeof optval);
980			if (error)
981				break;
982
983			switch (sopt->sopt_name) {
984			case IP_TOS:
985				inp->inp_ip_tos = optval;
986				break;
987
988			case IP_TTL:
989				inp->inp_ip_ttl = optval;
990				break;
991
992			case IP_MINTTL:
993				if (optval >= 0 && optval <= MAXTTL)
994					inp->inp_ip_minttl = optval;
995				else
996					error = EINVAL;
997				break;
998
999#define	OPTSET(bit) do {						\
1000	INP_WLOCK(inp);							\
1001	if (optval)							\
1002		inp->inp_flags |= bit;					\
1003	else								\
1004		inp->inp_flags &= ~bit;					\
1005	INP_WUNLOCK(inp);						\
1006} while (0)
1007
1008			case IP_RECVOPTS:
1009				OPTSET(INP_RECVOPTS);
1010				break;
1011
1012			case IP_RECVRETOPTS:
1013				OPTSET(INP_RECVRETOPTS);
1014				break;
1015
1016			case IP_RECVDSTADDR:
1017				OPTSET(INP_RECVDSTADDR);
1018				break;
1019
1020			case IP_RECVTTL:
1021				OPTSET(INP_RECVTTL);
1022				break;
1023
1024			case IP_RECVIF:
1025				OPTSET(INP_RECVIF);
1026				break;
1027
1028			case IP_FAITH:
1029				OPTSET(INP_FAITH);
1030				break;
1031
1032			case IP_ONESBCAST:
1033				OPTSET(INP_ONESBCAST);
1034				break;
1035			case IP_DONTFRAG:
1036				OPTSET(INP_DONTFRAG);
1037				break;
1038			case IP_BINDANY:
1039				OPTSET(INP_BINDANY);
1040				break;
1041			case IP_RECVTOS:
1042				OPTSET(INP_RECVTOS);
1043				break;
1044			}
1045			break;
1046#undef OPTSET
1047
1048		/*
1049		 * Multicast socket options are processed by the in_mcast
1050		 * module.
1051		 */
1052		case IP_MULTICAST_IF:
1053		case IP_MULTICAST_VIF:
1054		case IP_MULTICAST_TTL:
1055		case IP_MULTICAST_LOOP:
1056		case IP_ADD_MEMBERSHIP:
1057		case IP_DROP_MEMBERSHIP:
1058		case IP_ADD_SOURCE_MEMBERSHIP:
1059		case IP_DROP_SOURCE_MEMBERSHIP:
1060		case IP_BLOCK_SOURCE:
1061		case IP_UNBLOCK_SOURCE:
1062		case IP_MSFILTER:
1063		case MCAST_JOIN_GROUP:
1064		case MCAST_LEAVE_GROUP:
1065		case MCAST_JOIN_SOURCE_GROUP:
1066		case MCAST_LEAVE_SOURCE_GROUP:
1067		case MCAST_BLOCK_SOURCE:
1068		case MCAST_UNBLOCK_SOURCE:
1069			error = inp_setmoptions(inp, sopt);
1070			break;
1071
1072		case IP_PORTRANGE:
1073			error = sooptcopyin(sopt, &optval, sizeof optval,
1074					    sizeof optval);
1075			if (error)
1076				break;
1077
1078			INP_WLOCK(inp);
1079			switch (optval) {
1080			case IP_PORTRANGE_DEFAULT:
1081				inp->inp_flags &= ~(INP_LOWPORT);
1082				inp->inp_flags &= ~(INP_HIGHPORT);
1083				break;
1084
1085			case IP_PORTRANGE_HIGH:
1086				inp->inp_flags &= ~(INP_LOWPORT);
1087				inp->inp_flags |= INP_HIGHPORT;
1088				break;
1089
1090			case IP_PORTRANGE_LOW:
1091				inp->inp_flags &= ~(INP_HIGHPORT);
1092				inp->inp_flags |= INP_LOWPORT;
1093				break;
1094
1095			default:
1096				error = EINVAL;
1097				break;
1098			}
1099			INP_WUNLOCK(inp);
1100			break;
1101
1102#ifdef IPSEC
1103		case IP_IPSEC_POLICY:
1104		{
1105			caddr_t req;
1106			struct mbuf *m;
1107
1108			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1109				break;
1110			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1111				break;
1112			req = mtod(m, caddr_t);
1113			error = ipsec_set_policy(inp, sopt->sopt_name, req,
1114			    m->m_len, (sopt->sopt_td != NULL) ?
1115			    sopt->sopt_td->td_ucred : NULL);
1116			m_freem(m);
1117			break;
1118		}
1119#endif /* IPSEC */
1120
1121		default:
1122			error = ENOPROTOOPT;
1123			break;
1124		}
1125		break;
1126
1127	case SOPT_GET:
1128		switch (sopt->sopt_name) {
1129		case IP_OPTIONS:
1130		case IP_RETOPTS:
1131			if (inp->inp_options)
1132				error = sooptcopyout(sopt,
1133						     mtod(inp->inp_options,
1134							  char *),
1135						     inp->inp_options->m_len);
1136			else
1137				sopt->sopt_valsize = 0;
1138			break;
1139
1140		case IP_TOS:
1141		case IP_TTL:
1142		case IP_MINTTL:
1143		case IP_RECVOPTS:
1144		case IP_RECVRETOPTS:
1145		case IP_RECVDSTADDR:
1146		case IP_RECVTTL:
1147		case IP_RECVIF:
1148		case IP_PORTRANGE:
1149		case IP_FAITH:
1150		case IP_ONESBCAST:
1151		case IP_DONTFRAG:
1152		case IP_BINDANY:
1153		case IP_RECVTOS:
1154			switch (sopt->sopt_name) {
1155
1156			case IP_TOS:
1157				optval = inp->inp_ip_tos;
1158				break;
1159
1160			case IP_TTL:
1161				optval = inp->inp_ip_ttl;
1162				break;
1163
1164			case IP_MINTTL:
1165				optval = inp->inp_ip_minttl;
1166				break;
1167
1168#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1169
1170			case IP_RECVOPTS:
1171				optval = OPTBIT(INP_RECVOPTS);
1172				break;
1173
1174			case IP_RECVRETOPTS:
1175				optval = OPTBIT(INP_RECVRETOPTS);
1176				break;
1177
1178			case IP_RECVDSTADDR:
1179				optval = OPTBIT(INP_RECVDSTADDR);
1180				break;
1181
1182			case IP_RECVTTL:
1183				optval = OPTBIT(INP_RECVTTL);
1184				break;
1185
1186			case IP_RECVIF:
1187				optval = OPTBIT(INP_RECVIF);
1188				break;
1189
1190			case IP_PORTRANGE:
1191				if (inp->inp_flags & INP_HIGHPORT)
1192					optval = IP_PORTRANGE_HIGH;
1193				else if (inp->inp_flags & INP_LOWPORT)
1194					optval = IP_PORTRANGE_LOW;
1195				else
1196					optval = 0;
1197				break;
1198
1199			case IP_FAITH:
1200				optval = OPTBIT(INP_FAITH);
1201				break;
1202
1203			case IP_ONESBCAST:
1204				optval = OPTBIT(INP_ONESBCAST);
1205				break;
1206			case IP_DONTFRAG:
1207				optval = OPTBIT(INP_DONTFRAG);
1208				break;
1209			case IP_BINDANY:
1210				optval = OPTBIT(INP_BINDANY);
1211				break;
1212			case IP_RECVTOS:
1213				optval = OPTBIT(INP_RECVTOS);
1214				break;
1215			}
1216			error = sooptcopyout(sopt, &optval, sizeof optval);
1217			break;
1218
1219		/*
1220		 * Multicast socket options are processed by the in_mcast
1221		 * module.
1222		 */
1223		case IP_MULTICAST_IF:
1224		case IP_MULTICAST_VIF:
1225		case IP_MULTICAST_TTL:
1226		case IP_MULTICAST_LOOP:
1227		case IP_MSFILTER:
1228			error = inp_getmoptions(inp, sopt);
1229			break;
1230
1231#ifdef IPSEC
1232		case IP_IPSEC_POLICY:
1233		{
1234			struct mbuf *m = NULL;
1235			caddr_t req = NULL;
1236			size_t len = 0;
1237
1238			if (m != 0) {
1239				req = mtod(m, caddr_t);
1240				len = m->m_len;
1241			}
1242			error = ipsec_get_policy(sotoinpcb(so), req, len, &m);
1243			if (error == 0)
1244				error = soopt_mcopyout(sopt, m); /* XXX */
1245			if (error == 0)
1246				m_freem(m);
1247			break;
1248		}
1249#endif /* IPSEC */
1250
1251		default:
1252			error = ENOPROTOOPT;
1253			break;
1254		}
1255		break;
1256	}
1257	return (error);
1258}
1259
1260/*
1261 * Routine called from ip_output() to loop back a copy of an IP multicast
1262 * packet to the input queue of a specified interface.  Note that this
1263 * calls the output routine of the loopback "driver", but with an interface
1264 * pointer that might NOT be a loopback interface -- evil, but easier than
1265 * replicating that code here.
1266 */
1267static void
1268ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
1269    int hlen)
1270{
1271	register struct ip *ip;
1272	struct mbuf *copym;
1273
1274	/*
1275	 * Make a deep copy of the packet because we're going to
1276	 * modify the pack in order to generate checksums.
1277	 */
1278	copym = m_dup(m, M_DONTWAIT);
1279	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1280		copym = m_pullup(copym, hlen);
1281	if (copym != NULL) {
1282		/* If needed, compute the checksum and mark it as valid. */
1283		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1284			in_delayed_cksum(copym);
1285			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1286			copym->m_pkthdr.csum_flags |=
1287			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1288			copym->m_pkthdr.csum_data = 0xffff;
1289		}
1290		/*
1291		 * We don't bother to fragment if the IP length is greater
1292		 * than the interface's MTU.  Can this possibly matter?
1293		 */
1294		ip = mtod(copym, struct ip *);
1295		ip->ip_len = htons(ip->ip_len);
1296		ip->ip_off = htons(ip->ip_off);
1297		ip->ip_sum = 0;
1298		ip->ip_sum = in_cksum(copym, hlen);
1299#if 1 /* XXX */
1300		if (dst->sin_family != AF_INET) {
1301			printf("ip_mloopback: bad address family %d\n",
1302						dst->sin_family);
1303			dst->sin_family = AF_INET;
1304		}
1305#endif
1306		if_simloop(ifp, copym, dst->sin_family, 0);
1307	}
1308}
1309