ip_output.c revision 240305
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/9/sys/netinet/ip_output.c 240305 2012-09-10 11:38:02Z glebius $");
34
35#include "opt_ipfw.h"
36#include "opt_ipsec.h"
37#include "opt_route.h"
38#include "opt_mbuf_stress_test.h"
39#include "opt_mpath.h"
40#include "opt_sctp.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#include <sys/priv.h>
48#include <sys/proc.h>
49#include <sys/protosw.h>
50#include <sys/socket.h>
51#include <sys/socketvar.h>
52#include <sys/sysctl.h>
53#include <sys/ucred.h>
54
55#include <net/if.h>
56#include <net/if_llatbl.h>
57#include <net/netisr.h>
58#include <net/pfil.h>
59#include <net/route.h>
60#include <net/flowtable.h>
61#ifdef RADIX_MPATH
62#include <net/radix_mpath.h>
63#endif
64#include <net/vnet.h>
65
66#include <netinet/in.h>
67#include <netinet/in_systm.h>
68#include <netinet/ip.h>
69#include <netinet/in_pcb.h>
70#include <netinet/in_var.h>
71#include <netinet/ip_var.h>
72#include <netinet/ip_options.h>
73#ifdef SCTP
74#include <netinet/sctp.h>
75#include <netinet/sctp_crc32.h>
76#endif
77
78#ifdef IPSEC
79#include <netinet/ip_ipsec.h>
80#include <netipsec/ipsec.h>
81#endif /* IPSEC*/
82
83#include <machine/in_cksum.h>
84
85#include <security/mac/mac_framework.h>
86
87VNET_DEFINE(u_short, ip_id);
88
89#ifdef MBUF_STRESS_TEST
90static int mbuf_frag_size = 0;
91SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
92	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
93#endif
94
95static void	ip_mloopback
96	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
97
98
99extern int in_mcast_loop;
100extern	struct protosw inetsw[];
101
102/*
103 * IP output.  The packet in mbuf chain m contains a skeletal IP
104 * header (with len, off, ttl, proto, tos, src, dst).
105 * ip_len and ip_off are in host format.
106 * The mbuf chain containing the packet will be freed.
107 * The mbuf opt, if present, will not be freed.
108 * If route ro is present and has ro_rt initialized, route lookup would be
109 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
110 * then result of route lookup is stored in ro->ro_rt.
111 *
112 * In the IP forwarding case, the packet will arrive with options already
113 * inserted, so must have a NULL opt pointer.
114 */
115int
116ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
117    struct ip_moptions *imo, struct inpcb *inp)
118{
119	struct ip *ip;
120	struct ifnet *ifp = NULL;	/* keep compiler happy */
121	struct mbuf *m0;
122	int hlen = sizeof (struct ip);
123	int mtu;
124	int n;	/* scratchpad */
125	int error = 0;
126	struct sockaddr_in *dst;
127	struct in_ifaddr *ia;
128	int isbroadcast, sw_csum;
129	struct route iproute;
130	struct rtentry *rte;	/* cache for ro->ro_rt */
131	struct in_addr odst;
132#ifdef IPFIREWALL_FORWARD
133	struct m_tag *fwd_tag = NULL;
134#endif
135#ifdef IPSEC
136	int no_route_but_check_spd = 0;
137#endif
138	M_ASSERTPKTHDR(m);
139
140	if (inp != NULL) {
141		INP_LOCK_ASSERT(inp);
142		M_SETFIB(m, inp->inp_inc.inc_fibnum);
143		if (inp->inp_flags & (INP_HW_FLOWID|INP_SW_FLOWID)) {
144			m->m_pkthdr.flowid = inp->inp_flowid;
145			m->m_flags |= M_FLOWID;
146		}
147	}
148
149	if (ro == NULL) {
150		ro = &iproute;
151		bzero(ro, sizeof (*ro));
152	}
153
154#ifdef FLOWTABLE
155	if (ro->ro_rt == NULL) {
156		struct flentry *fle;
157
158		/*
159		 * The flow table returns route entries valid for up to 30
160		 * seconds; we rely on the remainder of ip_output() taking no
161		 * longer than that long for the stability of ro_rt. The
162		 * flow ID assignment must have happened before this point.
163		 */
164		fle = flowtable_lookup_mbuf(V_ip_ft, m, AF_INET);
165		if (fle != NULL)
166			flow_to_route(fle, ro);
167	}
168#endif
169
170	if (opt) {
171		int len = 0;
172		m = ip_insertoptions(m, opt, &len);
173		if (len != 0)
174			hlen = len; /* ip->ip_hl is updated above */
175	}
176	ip = mtod(m, struct ip *);
177
178	/*
179	 * Fill in IP header.  If we are not allowing fragmentation,
180	 * then the ip_id field is meaningless, but we don't set it
181	 * to zero.  Doing so causes various problems when devices along
182	 * the path (routers, load balancers, firewalls, etc.) illegally
183	 * disable DF on our packet.  Note that a 16-bit counter
184	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
185	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
186	 * for Counting NATted Hosts", Proc. IMW'02, available at
187	 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>.
188	 */
189	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
190		ip->ip_v = IPVERSION;
191		ip->ip_hl = hlen >> 2;
192		ip->ip_id = ip_newid();
193		IPSTAT_INC(ips_localout);
194	} else {
195		/* Header already set, fetch hlen from there */
196		hlen = ip->ip_hl << 2;
197	}
198
199	dst = (struct sockaddr_in *)&ro->ro_dst;
200again:
201	ia = NULL;
202	/*
203	 * If there is a cached route,
204	 * check that it is to the same destination
205	 * and is still up.  If not, free it and try again.
206	 * The address family should also be checked in case of sharing the
207	 * cache with IPv6.
208	 */
209	rte = ro->ro_rt;
210	if (rte && ((rte->rt_flags & RTF_UP) == 0 ||
211		    rte->rt_ifp == NULL ||
212		    !RT_LINK_IS_UP(rte->rt_ifp) ||
213			  dst->sin_family != AF_INET ||
214			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
215		RO_RTFREE(ro);
216		ro->ro_lle = NULL;
217		rte = NULL;
218	}
219#ifdef IPFIREWALL_FORWARD
220	if (rte == NULL && fwd_tag == NULL) {
221#else
222	if (rte == NULL) {
223#endif
224		bzero(dst, sizeof(*dst));
225		dst->sin_family = AF_INET;
226		dst->sin_len = sizeof(*dst);
227		dst->sin_addr = ip->ip_dst;
228	}
229	/*
230	 * If routing to interface only, short circuit routing lookup.
231	 * The use of an all-ones broadcast address implies this; an
232	 * interface is specified by the broadcast address of an interface,
233	 * or the destination address of a ptp interface.
234	 */
235	if (flags & IP_SENDONES) {
236		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst)))) == NULL &&
237		    (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) {
238			IPSTAT_INC(ips_noroute);
239			error = ENETUNREACH;
240			goto bad;
241		}
242		ip->ip_dst.s_addr = INADDR_BROADCAST;
243		dst->sin_addr = ip->ip_dst;
244		ifp = ia->ia_ifp;
245		ip->ip_ttl = 1;
246		isbroadcast = 1;
247	} else if (flags & IP_ROUTETOIF) {
248		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
249		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0))) == NULL) {
250			IPSTAT_INC(ips_noroute);
251			error = ENETUNREACH;
252			goto bad;
253		}
254		ifp = ia->ia_ifp;
255		ip->ip_ttl = 1;
256		isbroadcast = in_broadcast(dst->sin_addr, ifp);
257	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
258	    imo != NULL && imo->imo_multicast_ifp != NULL) {
259		/*
260		 * Bypass the normal routing lookup for multicast
261		 * packets if the interface is specified.
262		 */
263		ifp = imo->imo_multicast_ifp;
264		IFP_TO_IA(ifp, ia);
265		isbroadcast = 0;	/* fool gcc */
266	} else {
267		/*
268		 * We want to do any cloning requested by the link layer,
269		 * as this is probably required in all cases for correct
270		 * operation (as it is for ARP).
271		 */
272		if (rte == NULL) {
273#ifdef RADIX_MPATH
274			rtalloc_mpath_fib(ro,
275			    ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr),
276			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
277#else
278			in_rtalloc_ign(ro, 0,
279			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
280#endif
281			rte = ro->ro_rt;
282		}
283		if (rte == NULL ||
284		    rte->rt_ifp == NULL ||
285		    !RT_LINK_IS_UP(rte->rt_ifp)) {
286#ifdef IPSEC
287			/*
288			 * There is no route for this packet, but it is
289			 * possible that a matching SPD entry exists.
290			 */
291			no_route_but_check_spd = 1;
292			mtu = 0; /* Silence GCC warning. */
293			goto sendit;
294#endif
295			IPSTAT_INC(ips_noroute);
296			error = EHOSTUNREACH;
297			goto bad;
298		}
299		ia = ifatoia(rte->rt_ifa);
300		ifa_ref(&ia->ia_ifa);
301		ifp = rte->rt_ifp;
302		rte->rt_rmx.rmx_pksent++;
303		if (rte->rt_flags & RTF_GATEWAY)
304			dst = (struct sockaddr_in *)rte->rt_gateway;
305		if (rte->rt_flags & RTF_HOST)
306			isbroadcast = (rte->rt_flags & RTF_BROADCAST);
307		else
308			isbroadcast = in_broadcast(dst->sin_addr, ifp);
309	}
310	/*
311	 * Calculate MTU.  If we have a route that is up, use that,
312	 * otherwise use the interface's MTU.
313	 */
314	if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) {
315		/*
316		 * This case can happen if the user changed the MTU
317		 * of an interface after enabling IP on it.  Because
318		 * most netifs don't keep track of routes pointing to
319		 * them, there is no way for one to update all its
320		 * routes when the MTU is changed.
321		 */
322		if (rte->rt_rmx.rmx_mtu > ifp->if_mtu)
323			rte->rt_rmx.rmx_mtu = ifp->if_mtu;
324		mtu = rte->rt_rmx.rmx_mtu;
325	} else {
326		mtu = ifp->if_mtu;
327	}
328	/* Catch a possible divide by zero later. */
329	KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p",
330	    __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp));
331	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
332		m->m_flags |= M_MCAST;
333		/*
334		 * IP destination address is multicast.  Make sure "dst"
335		 * still points to the address in "ro".  (It may have been
336		 * changed to point to a gateway address, above.)
337		 */
338		dst = (struct sockaddr_in *)&ro->ro_dst;
339		/*
340		 * See if the caller provided any multicast options
341		 */
342		if (imo != NULL) {
343			ip->ip_ttl = imo->imo_multicast_ttl;
344			if (imo->imo_multicast_vif != -1)
345				ip->ip_src.s_addr =
346				    ip_mcast_src ?
347				    ip_mcast_src(imo->imo_multicast_vif) :
348				    INADDR_ANY;
349		} else
350			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
351		/*
352		 * Confirm that the outgoing interface supports multicast.
353		 */
354		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
355			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
356				IPSTAT_INC(ips_noroute);
357				error = ENETUNREACH;
358				goto bad;
359			}
360		}
361		/*
362		 * If source address not specified yet, use address
363		 * of outgoing interface.
364		 */
365		if (ip->ip_src.s_addr == INADDR_ANY) {
366			/* Interface may have no addresses. */
367			if (ia != NULL)
368				ip->ip_src = IA_SIN(ia)->sin_addr;
369		}
370
371		if ((imo == NULL && in_mcast_loop) ||
372		    (imo && imo->imo_multicast_loop)) {
373			/*
374			 * Loop back multicast datagram if not expressly
375			 * forbidden to do so, even if we are not a member
376			 * of the group; ip_input() will filter it later,
377			 * thus deferring a hash lookup and mutex acquisition
378			 * at the expense of a cheap copy using m_copym().
379			 */
380			ip_mloopback(ifp, m, dst, hlen);
381		} else {
382			/*
383			 * If we are acting as a multicast router, perform
384			 * multicast forwarding as if the packet had just
385			 * arrived on the interface to which we are about
386			 * to send.  The multicast forwarding function
387			 * recursively calls this function, using the
388			 * IP_FORWARDING flag to prevent infinite recursion.
389			 *
390			 * Multicasts that are looped back by ip_mloopback(),
391			 * above, will be forwarded by the ip_input() routine,
392			 * if necessary.
393			 */
394			if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
395				/*
396				 * If rsvp daemon is not running, do not
397				 * set ip_moptions. This ensures that the packet
398				 * is multicast and not just sent down one link
399				 * as prescribed by rsvpd.
400				 */
401				if (!V_rsvp_on)
402					imo = NULL;
403				if (ip_mforward &&
404				    ip_mforward(ip, ifp, m, imo) != 0) {
405					m_freem(m);
406					goto done;
407				}
408			}
409		}
410
411		/*
412		 * Multicasts with a time-to-live of zero may be looped-
413		 * back, above, but must not be transmitted on a network.
414		 * Also, multicasts addressed to the loopback interface
415		 * are not sent -- the above call to ip_mloopback() will
416		 * loop back a copy. ip_input() will drop the copy if
417		 * this host does not belong to the destination group on
418		 * the loopback interface.
419		 */
420		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
421			m_freem(m);
422			goto done;
423		}
424
425		goto sendit;
426	}
427
428	/*
429	 * If the source address is not specified yet, use the address
430	 * of the outoing interface.
431	 */
432	if (ip->ip_src.s_addr == INADDR_ANY) {
433		/* Interface may have no addresses. */
434		if (ia != NULL) {
435			ip->ip_src = IA_SIN(ia)->sin_addr;
436		}
437	}
438
439	/*
440	 * Verify that we have any chance at all of being able to queue the
441	 * packet or packet fragments, unless ALTQ is enabled on the given
442	 * interface in which case packetdrop should be done by queueing.
443	 */
444	n = ip->ip_len / mtu + 1; /* how many fragments ? */
445	if (
446#ifdef ALTQ
447	    (!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
448#endif /* ALTQ */
449	    (ifp->if_snd.ifq_len + n) >= ifp->if_snd.ifq_maxlen ) {
450		error = ENOBUFS;
451		IPSTAT_INC(ips_odropped);
452		ifp->if_snd.ifq_drops += n;
453		goto bad;
454	}
455
456	/*
457	 * Look for broadcast address and
458	 * verify user is allowed to send
459	 * such a packet.
460	 */
461	if (isbroadcast) {
462		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
463			error = EADDRNOTAVAIL;
464			goto bad;
465		}
466		if ((flags & IP_ALLOWBROADCAST) == 0) {
467			error = EACCES;
468			goto bad;
469		}
470		/* don't allow broadcast messages to be fragmented */
471		if (ip->ip_len > mtu) {
472			error = EMSGSIZE;
473			goto bad;
474		}
475		m->m_flags |= M_BCAST;
476	} else {
477		m->m_flags &= ~M_BCAST;
478	}
479
480sendit:
481#ifdef IPSEC
482	switch(ip_ipsec_output(&m, inp, &flags, &error)) {
483	case 1:
484		goto bad;
485	case -1:
486		goto done;
487	case 0:
488	default:
489		break;	/* Continue with packet processing. */
490	}
491	/*
492	 * Check if there was a route for this packet; return error if not.
493	 */
494	if (no_route_but_check_spd) {
495		IPSTAT_INC(ips_noroute);
496		error = EHOSTUNREACH;
497		goto bad;
498	}
499	/* Update variables that are affected by ipsec4_output(). */
500	ip = mtod(m, struct ip *);
501	hlen = ip->ip_hl << 2;
502#endif /* IPSEC */
503
504	/* Jump over all PFIL processing if hooks are not active. */
505	if (!PFIL_HOOKED(&V_inet_pfil_hook))
506		goto passout;
507
508	/* Run through list of hooks for output packets. */
509	odst.s_addr = ip->ip_dst.s_addr;
510	error = pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
511	if (error != 0 || m == NULL)
512		goto done;
513
514	ip = mtod(m, struct ip *);
515
516	/* See if destination IP address was changed by packet filter. */
517	if (odst.s_addr != ip->ip_dst.s_addr) {
518		m->m_flags |= M_SKIP_FIREWALL;
519		/* If destination is now ourself drop to ip_input(). */
520		if (in_localip(ip->ip_dst)) {
521			m->m_flags |= M_FASTFWD_OURS;
522			if (m->m_pkthdr.rcvif == NULL)
523				m->m_pkthdr.rcvif = V_loif;
524			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
525				m->m_pkthdr.csum_flags |=
526				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
527				m->m_pkthdr.csum_data = 0xffff;
528			}
529			m->m_pkthdr.csum_flags |=
530			    CSUM_IP_CHECKED | CSUM_IP_VALID;
531#ifdef SCTP
532			if (m->m_pkthdr.csum_flags & CSUM_SCTP)
533				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
534#endif
535			error = netisr_queue(NETISR_IP, m);
536			goto done;
537		} else {
538			if (ia != NULL)
539				ifa_free(&ia->ia_ifa);
540			goto again;	/* Redo the routing table lookup. */
541		}
542	}
543
544#ifdef IPFIREWALL_FORWARD
545	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
546	if (m->m_flags & M_FASTFWD_OURS) {
547		if (m->m_pkthdr.rcvif == NULL)
548			m->m_pkthdr.rcvif = V_loif;
549		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
550			m->m_pkthdr.csum_flags |=
551			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
552			m->m_pkthdr.csum_data = 0xffff;
553		}
554#ifdef SCTP
555		if (m->m_pkthdr.csum_flags & CSUM_SCTP)
556			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
557#endif
558		m->m_pkthdr.csum_flags |=
559			    CSUM_IP_CHECKED | CSUM_IP_VALID;
560
561		error = netisr_queue(NETISR_IP, m);
562		goto done;
563	}
564	/* Or forward to some other address? */
565	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
566	if (fwd_tag) {
567		dst = (struct sockaddr_in *)&ro->ro_dst;
568		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
569		m->m_flags |= M_SKIP_FIREWALL;
570		m_tag_delete(m, fwd_tag);
571		if (ia != NULL)
572			ifa_free(&ia->ia_ifa);
573		goto again;
574	}
575#endif /* IPFIREWALL_FORWARD */
576
577passout:
578	/* 127/8 must not appear on wire - RFC1122. */
579	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
580	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
581		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
582			IPSTAT_INC(ips_badaddr);
583			error = EADDRNOTAVAIL;
584			goto bad;
585		}
586	}
587
588	m->m_pkthdr.csum_flags |= CSUM_IP;
589	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
590	if (sw_csum & CSUM_DELAY_DATA) {
591		in_delayed_cksum(m);
592		sw_csum &= ~CSUM_DELAY_DATA;
593	}
594#ifdef SCTP
595	if (sw_csum & CSUM_SCTP) {
596		sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
597		sw_csum &= ~CSUM_SCTP;
598	}
599#endif
600	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
601
602	/*
603	 * If small enough for interface, or the interface will take
604	 * care of the fragmentation for us, we can just send directly.
605	 */
606	if (ip->ip_len <= mtu ||
607	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 ||
608	    ((ip->ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) {
609		ip->ip_len = htons(ip->ip_len);
610		ip->ip_off = htons(ip->ip_off);
611		ip->ip_sum = 0;
612		if (sw_csum & CSUM_DELAY_IP)
613			ip->ip_sum = in_cksum(m, hlen);
614
615		/*
616		 * Record statistics for this interface address.
617		 * With CSUM_TSO the byte/packet count will be slightly
618		 * incorrect because we count the IP+TCP headers only
619		 * once instead of for every generated packet.
620		 */
621		if (!(flags & IP_FORWARDING) && ia) {
622			if (m->m_pkthdr.csum_flags & CSUM_TSO)
623				ia->ia_ifa.if_opackets +=
624				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz;
625			else
626				ia->ia_ifa.if_opackets++;
627			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
628		}
629#ifdef MBUF_STRESS_TEST
630		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
631			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
632#endif
633		/*
634		 * Reset layer specific mbuf flags
635		 * to avoid confusing lower layers.
636		 */
637		m->m_flags &= ~(M_PROTOFLAGS);
638		error = (*ifp->if_output)(ifp, m,
639		    		(struct sockaddr *)dst, ro);
640		goto done;
641	}
642
643	/* Balk when DF bit is set or the interface didn't support TSO. */
644	if ((ip->ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
645		error = EMSGSIZE;
646		IPSTAT_INC(ips_cantfrag);
647		goto bad;
648	}
649
650	/*
651	 * Too large for interface; fragment if possible. If successful,
652	 * on return, m will point to a list of packets to be sent.
653	 */
654	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist, sw_csum);
655	if (error)
656		goto bad;
657	for (; m; m = m0) {
658		m0 = m->m_nextpkt;
659		m->m_nextpkt = 0;
660		if (error == 0) {
661			/* Record statistics for this interface address. */
662			if (ia != NULL) {
663				ia->ia_ifa.if_opackets++;
664				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
665			}
666			/*
667			 * Reset layer specific mbuf flags
668			 * to avoid confusing upper layers.
669			 */
670			m->m_flags &= ~(M_PROTOFLAGS);
671
672			error = (*ifp->if_output)(ifp, m,
673			    (struct sockaddr *)dst, ro);
674		} else
675			m_freem(m);
676	}
677
678	if (error == 0)
679		IPSTAT_INC(ips_fragmented);
680
681done:
682	if (ro == &iproute)
683		RO_RTFREE(ro);
684	if (ia != NULL)
685		ifa_free(&ia->ia_ifa);
686	return (error);
687bad:
688	m_freem(m);
689	goto done;
690}
691
692/*
693 * Create a chain of fragments which fit the given mtu. m_frag points to the
694 * mbuf to be fragmented; on return it points to the chain with the fragments.
695 * Return 0 if no error. If error, m_frag may contain a partially built
696 * chain of fragments that should be freed by the caller.
697 *
698 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
699 * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
700 */
701int
702ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
703    u_long if_hwassist_flags, int sw_csum)
704{
705	int error = 0;
706	int hlen = ip->ip_hl << 2;
707	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
708	int off;
709	struct mbuf *m0 = *m_frag;	/* the original packet		*/
710	int firstlen;
711	struct mbuf **mnext;
712	int nfrags;
713
714	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
715		IPSTAT_INC(ips_cantfrag);
716		return EMSGSIZE;
717	}
718
719	/*
720	 * Must be able to put at least 8 bytes per fragment.
721	 */
722	if (len < 8)
723		return EMSGSIZE;
724
725	/*
726	 * If the interface will not calculate checksums on
727	 * fragmented packets, then do it here.
728	 */
729	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
730	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
731		in_delayed_cksum(m0);
732		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
733	}
734#ifdef SCTP
735	if (m0->m_pkthdr.csum_flags & CSUM_SCTP &&
736	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
737		sctp_delayed_cksum(m0, hlen);
738		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
739	}
740#endif
741	if (len > PAGE_SIZE) {
742		/*
743		 * Fragment large datagrams such that each segment
744		 * contains a multiple of PAGE_SIZE amount of data,
745		 * plus headers. This enables a receiver to perform
746		 * page-flipping zero-copy optimizations.
747		 *
748		 * XXX When does this help given that sender and receiver
749		 * could have different page sizes, and also mtu could
750		 * be less than the receiver's page size ?
751		 */
752		int newlen;
753		struct mbuf *m;
754
755		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
756			off += m->m_len;
757
758		/*
759		 * firstlen (off - hlen) must be aligned on an
760		 * 8-byte boundary
761		 */
762		if (off < hlen)
763			goto smart_frag_failure;
764		off = ((off - hlen) & ~7) + hlen;
765		newlen = (~PAGE_MASK) & mtu;
766		if ((newlen + sizeof (struct ip)) > mtu) {
767			/* we failed, go back the default */
768smart_frag_failure:
769			newlen = len;
770			off = hlen + len;
771		}
772		len = newlen;
773
774	} else {
775		off = hlen + len;
776	}
777
778	firstlen = off - hlen;
779	mnext = &m0->m_nextpkt;		/* pointer to next packet */
780
781	/*
782	 * Loop through length of segment after first fragment,
783	 * make new header and copy data of each part and link onto chain.
784	 * Here, m0 is the original packet, m is the fragment being created.
785	 * The fragments are linked off the m_nextpkt of the original
786	 * packet, which after processing serves as the first fragment.
787	 */
788	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
789		struct ip *mhip;	/* ip header on the fragment */
790		struct mbuf *m;
791		int mhlen = sizeof (struct ip);
792
793		MGETHDR(m, M_DONTWAIT, MT_DATA);
794		if (m == NULL) {
795			error = ENOBUFS;
796			IPSTAT_INC(ips_odropped);
797			goto done;
798		}
799		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
800		/*
801		 * In the first mbuf, leave room for the link header, then
802		 * copy the original IP header including options. The payload
803		 * goes into an additional mbuf chain returned by m_copym().
804		 */
805		m->m_data += max_linkhdr;
806		mhip = mtod(m, struct ip *);
807		*mhip = *ip;
808		if (hlen > sizeof (struct ip)) {
809			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
810			mhip->ip_v = IPVERSION;
811			mhip->ip_hl = mhlen >> 2;
812		}
813		m->m_len = mhlen;
814		/* XXX do we need to add ip->ip_off below ? */
815		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
816		if (off + len >= ip->ip_len) {	/* last fragment */
817			len = ip->ip_len - off;
818			m->m_flags |= M_LASTFRAG;
819		} else
820			mhip->ip_off |= IP_MF;
821		mhip->ip_len = htons((u_short)(len + mhlen));
822		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
823		if (m->m_next == NULL) {	/* copy failed */
824			m_free(m);
825			error = ENOBUFS;	/* ??? */
826			IPSTAT_INC(ips_odropped);
827			goto done;
828		}
829		m->m_pkthdr.len = mhlen + len;
830		m->m_pkthdr.rcvif = NULL;
831#ifdef MAC
832		mac_netinet_fragment(m0, m);
833#endif
834		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
835		mhip->ip_off = htons(mhip->ip_off);
836		mhip->ip_sum = 0;
837		if (sw_csum & CSUM_DELAY_IP)
838			mhip->ip_sum = in_cksum(m, mhlen);
839		*mnext = m;
840		mnext = &m->m_nextpkt;
841	}
842	IPSTAT_ADD(ips_ofragments, nfrags);
843
844	/* set first marker for fragment chain */
845	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
846	m0->m_pkthdr.csum_data = nfrags;
847
848	/*
849	 * Update first fragment by trimming what's been copied out
850	 * and updating header.
851	 */
852	m_adj(m0, hlen + firstlen - ip->ip_len);
853	m0->m_pkthdr.len = hlen + firstlen;
854	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
855	ip->ip_off |= IP_MF;
856	ip->ip_off = htons(ip->ip_off);
857	ip->ip_sum = 0;
858	if (sw_csum & CSUM_DELAY_IP)
859		ip->ip_sum = in_cksum(m0, hlen);
860
861done:
862	*m_frag = m0;
863	return error;
864}
865
866void
867in_delayed_cksum(struct mbuf *m)
868{
869	struct ip *ip;
870	u_short csum, offset;
871
872	ip = mtod(m, struct ip *);
873	offset = ip->ip_hl << 2 ;
874	csum = in_cksum_skip(m, ip->ip_len, offset);
875	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
876		csum = 0xffff;
877	offset += m->m_pkthdr.csum_data;	/* checksum offset */
878
879	if (offset + sizeof(u_short) > m->m_len) {
880		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
881		    m->m_len, offset, ip->ip_p);
882		/*
883		 * XXX
884		 * this shouldn't happen, but if it does, the
885		 * correct behavior may be to insert the checksum
886		 * in the appropriate next mbuf in the chain.
887		 */
888		return;
889	}
890	*(u_short *)(m->m_data + offset) = csum;
891}
892
893/*
894 * IP socket option processing.
895 */
896int
897ip_ctloutput(struct socket *so, struct sockopt *sopt)
898{
899	struct	inpcb *inp = sotoinpcb(so);
900	int	error, optval;
901
902	error = optval = 0;
903	if (sopt->sopt_level != IPPROTO_IP) {
904		error = EINVAL;
905
906		if (sopt->sopt_level == SOL_SOCKET &&
907		    sopt->sopt_dir == SOPT_SET) {
908			switch (sopt->sopt_name) {
909			case SO_REUSEADDR:
910				INP_WLOCK(inp);
911				if (IN_MULTICAST(ntohl(inp->inp_laddr.s_addr))) {
912					if ((so->so_options &
913					    (SO_REUSEADDR | SO_REUSEPORT)) != 0)
914						inp->inp_flags2 |= INP_REUSEPORT;
915					else
916						inp->inp_flags2 &= ~INP_REUSEPORT;
917				}
918				INP_WUNLOCK(inp);
919				error = 0;
920				break;
921			case SO_REUSEPORT:
922				INP_WLOCK(inp);
923				if ((so->so_options & SO_REUSEPORT) != 0)
924					inp->inp_flags2 |= INP_REUSEPORT;
925				else
926					inp->inp_flags2 &= ~INP_REUSEPORT;
927				INP_WUNLOCK(inp);
928				error = 0;
929				break;
930			case SO_SETFIB:
931				INP_WLOCK(inp);
932				inp->inp_inc.inc_fibnum = so->so_fibnum;
933				INP_WUNLOCK(inp);
934				error = 0;
935				break;
936			default:
937				break;
938			}
939		}
940		return (error);
941	}
942
943	switch (sopt->sopt_dir) {
944	case SOPT_SET:
945		switch (sopt->sopt_name) {
946		case IP_OPTIONS:
947#ifdef notyet
948		case IP_RETOPTS:
949#endif
950		{
951			struct mbuf *m;
952			if (sopt->sopt_valsize > MLEN) {
953				error = EMSGSIZE;
954				break;
955			}
956			MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
957			if (m == NULL) {
958				error = ENOBUFS;
959				break;
960			}
961			m->m_len = sopt->sopt_valsize;
962			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
963					    m->m_len);
964			if (error) {
965				m_free(m);
966				break;
967			}
968			INP_WLOCK(inp);
969			error = ip_pcbopts(inp, sopt->sopt_name, m);
970			INP_WUNLOCK(inp);
971			return (error);
972		}
973
974		case IP_BINDANY:
975			if (sopt->sopt_td != NULL) {
976				error = priv_check(sopt->sopt_td,
977				    PRIV_NETINET_BINDANY);
978				if (error)
979					break;
980			}
981			/* FALLTHROUGH */
982		case IP_TOS:
983		case IP_TTL:
984		case IP_MINTTL:
985		case IP_RECVOPTS:
986		case IP_RECVRETOPTS:
987		case IP_RECVDSTADDR:
988		case IP_RECVTTL:
989		case IP_RECVIF:
990		case IP_FAITH:
991		case IP_ONESBCAST:
992		case IP_DONTFRAG:
993		case IP_RECVTOS:
994			error = sooptcopyin(sopt, &optval, sizeof optval,
995					    sizeof optval);
996			if (error)
997				break;
998
999			switch (sopt->sopt_name) {
1000			case IP_TOS:
1001				inp->inp_ip_tos = optval;
1002				break;
1003
1004			case IP_TTL:
1005				inp->inp_ip_ttl = optval;
1006				break;
1007
1008			case IP_MINTTL:
1009				if (optval >= 0 && optval <= MAXTTL)
1010					inp->inp_ip_minttl = optval;
1011				else
1012					error = EINVAL;
1013				break;
1014
1015#define	OPTSET(bit) do {						\
1016	INP_WLOCK(inp);							\
1017	if (optval)							\
1018		inp->inp_flags |= bit;					\
1019	else								\
1020		inp->inp_flags &= ~bit;					\
1021	INP_WUNLOCK(inp);						\
1022} while (0)
1023
1024			case IP_RECVOPTS:
1025				OPTSET(INP_RECVOPTS);
1026				break;
1027
1028			case IP_RECVRETOPTS:
1029				OPTSET(INP_RECVRETOPTS);
1030				break;
1031
1032			case IP_RECVDSTADDR:
1033				OPTSET(INP_RECVDSTADDR);
1034				break;
1035
1036			case IP_RECVTTL:
1037				OPTSET(INP_RECVTTL);
1038				break;
1039
1040			case IP_RECVIF:
1041				OPTSET(INP_RECVIF);
1042				break;
1043
1044			case IP_FAITH:
1045				OPTSET(INP_FAITH);
1046				break;
1047
1048			case IP_ONESBCAST:
1049				OPTSET(INP_ONESBCAST);
1050				break;
1051			case IP_DONTFRAG:
1052				OPTSET(INP_DONTFRAG);
1053				break;
1054			case IP_BINDANY:
1055				OPTSET(INP_BINDANY);
1056				break;
1057			case IP_RECVTOS:
1058				OPTSET(INP_RECVTOS);
1059				break;
1060			}
1061			break;
1062#undef OPTSET
1063
1064		/*
1065		 * Multicast socket options are processed by the in_mcast
1066		 * module.
1067		 */
1068		case IP_MULTICAST_IF:
1069		case IP_MULTICAST_VIF:
1070		case IP_MULTICAST_TTL:
1071		case IP_MULTICAST_LOOP:
1072		case IP_ADD_MEMBERSHIP:
1073		case IP_DROP_MEMBERSHIP:
1074		case IP_ADD_SOURCE_MEMBERSHIP:
1075		case IP_DROP_SOURCE_MEMBERSHIP:
1076		case IP_BLOCK_SOURCE:
1077		case IP_UNBLOCK_SOURCE:
1078		case IP_MSFILTER:
1079		case MCAST_JOIN_GROUP:
1080		case MCAST_LEAVE_GROUP:
1081		case MCAST_JOIN_SOURCE_GROUP:
1082		case MCAST_LEAVE_SOURCE_GROUP:
1083		case MCAST_BLOCK_SOURCE:
1084		case MCAST_UNBLOCK_SOURCE:
1085			error = inp_setmoptions(inp, sopt);
1086			break;
1087
1088		case IP_PORTRANGE:
1089			error = sooptcopyin(sopt, &optval, sizeof optval,
1090					    sizeof optval);
1091			if (error)
1092				break;
1093
1094			INP_WLOCK(inp);
1095			switch (optval) {
1096			case IP_PORTRANGE_DEFAULT:
1097				inp->inp_flags &= ~(INP_LOWPORT);
1098				inp->inp_flags &= ~(INP_HIGHPORT);
1099				break;
1100
1101			case IP_PORTRANGE_HIGH:
1102				inp->inp_flags &= ~(INP_LOWPORT);
1103				inp->inp_flags |= INP_HIGHPORT;
1104				break;
1105
1106			case IP_PORTRANGE_LOW:
1107				inp->inp_flags &= ~(INP_HIGHPORT);
1108				inp->inp_flags |= INP_LOWPORT;
1109				break;
1110
1111			default:
1112				error = EINVAL;
1113				break;
1114			}
1115			INP_WUNLOCK(inp);
1116			break;
1117
1118#ifdef IPSEC
1119		case IP_IPSEC_POLICY:
1120		{
1121			caddr_t req;
1122			struct mbuf *m;
1123
1124			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1125				break;
1126			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1127				break;
1128			req = mtod(m, caddr_t);
1129			error = ipsec_set_policy(inp, sopt->sopt_name, req,
1130			    m->m_len, (sopt->sopt_td != NULL) ?
1131			    sopt->sopt_td->td_ucred : NULL);
1132			m_freem(m);
1133			break;
1134		}
1135#endif /* IPSEC */
1136
1137		default:
1138			error = ENOPROTOOPT;
1139			break;
1140		}
1141		break;
1142
1143	case SOPT_GET:
1144		switch (sopt->sopt_name) {
1145		case IP_OPTIONS:
1146		case IP_RETOPTS:
1147			if (inp->inp_options)
1148				error = sooptcopyout(sopt,
1149						     mtod(inp->inp_options,
1150							  char *),
1151						     inp->inp_options->m_len);
1152			else
1153				sopt->sopt_valsize = 0;
1154			break;
1155
1156		case IP_TOS:
1157		case IP_TTL:
1158		case IP_MINTTL:
1159		case IP_RECVOPTS:
1160		case IP_RECVRETOPTS:
1161		case IP_RECVDSTADDR:
1162		case IP_RECVTTL:
1163		case IP_RECVIF:
1164		case IP_PORTRANGE:
1165		case IP_FAITH:
1166		case IP_ONESBCAST:
1167		case IP_DONTFRAG:
1168		case IP_BINDANY:
1169		case IP_RECVTOS:
1170			switch (sopt->sopt_name) {
1171
1172			case IP_TOS:
1173				optval = inp->inp_ip_tos;
1174				break;
1175
1176			case IP_TTL:
1177				optval = inp->inp_ip_ttl;
1178				break;
1179
1180			case IP_MINTTL:
1181				optval = inp->inp_ip_minttl;
1182				break;
1183
1184#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1185
1186			case IP_RECVOPTS:
1187				optval = OPTBIT(INP_RECVOPTS);
1188				break;
1189
1190			case IP_RECVRETOPTS:
1191				optval = OPTBIT(INP_RECVRETOPTS);
1192				break;
1193
1194			case IP_RECVDSTADDR:
1195				optval = OPTBIT(INP_RECVDSTADDR);
1196				break;
1197
1198			case IP_RECVTTL:
1199				optval = OPTBIT(INP_RECVTTL);
1200				break;
1201
1202			case IP_RECVIF:
1203				optval = OPTBIT(INP_RECVIF);
1204				break;
1205
1206			case IP_PORTRANGE:
1207				if (inp->inp_flags & INP_HIGHPORT)
1208					optval = IP_PORTRANGE_HIGH;
1209				else if (inp->inp_flags & INP_LOWPORT)
1210					optval = IP_PORTRANGE_LOW;
1211				else
1212					optval = 0;
1213				break;
1214
1215			case IP_FAITH:
1216				optval = OPTBIT(INP_FAITH);
1217				break;
1218
1219			case IP_ONESBCAST:
1220				optval = OPTBIT(INP_ONESBCAST);
1221				break;
1222			case IP_DONTFRAG:
1223				optval = OPTBIT(INP_DONTFRAG);
1224				break;
1225			case IP_BINDANY:
1226				optval = OPTBIT(INP_BINDANY);
1227				break;
1228			case IP_RECVTOS:
1229				optval = OPTBIT(INP_RECVTOS);
1230				break;
1231			}
1232			error = sooptcopyout(sopt, &optval, sizeof optval);
1233			break;
1234
1235		/*
1236		 * Multicast socket options are processed by the in_mcast
1237		 * module.
1238		 */
1239		case IP_MULTICAST_IF:
1240		case IP_MULTICAST_VIF:
1241		case IP_MULTICAST_TTL:
1242		case IP_MULTICAST_LOOP:
1243		case IP_MSFILTER:
1244			error = inp_getmoptions(inp, sopt);
1245			break;
1246
1247#ifdef IPSEC
1248		case IP_IPSEC_POLICY:
1249		{
1250			struct mbuf *m = NULL;
1251			caddr_t req = NULL;
1252			size_t len = 0;
1253
1254			if (m != 0) {
1255				req = mtod(m, caddr_t);
1256				len = m->m_len;
1257			}
1258			error = ipsec_get_policy(sotoinpcb(so), req, len, &m);
1259			if (error == 0)
1260				error = soopt_mcopyout(sopt, m); /* XXX */
1261			if (error == 0)
1262				m_freem(m);
1263			break;
1264		}
1265#endif /* IPSEC */
1266
1267		default:
1268			error = ENOPROTOOPT;
1269			break;
1270		}
1271		break;
1272	}
1273	return (error);
1274}
1275
1276/*
1277 * Routine called from ip_output() to loop back a copy of an IP multicast
1278 * packet to the input queue of a specified interface.  Note that this
1279 * calls the output routine of the loopback "driver", but with an interface
1280 * pointer that might NOT be a loopback interface -- evil, but easier than
1281 * replicating that code here.
1282 */
1283static void
1284ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
1285    int hlen)
1286{
1287	register struct ip *ip;
1288	struct mbuf *copym;
1289
1290	/*
1291	 * Make a deep copy of the packet because we're going to
1292	 * modify the pack in order to generate checksums.
1293	 */
1294	copym = m_dup(m, M_DONTWAIT);
1295	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1296		copym = m_pullup(copym, hlen);
1297	if (copym != NULL) {
1298		/* If needed, compute the checksum and mark it as valid. */
1299		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1300			in_delayed_cksum(copym);
1301			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1302			copym->m_pkthdr.csum_flags |=
1303			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1304			copym->m_pkthdr.csum_data = 0xffff;
1305		}
1306		/*
1307		 * We don't bother to fragment if the IP length is greater
1308		 * than the interface's MTU.  Can this possibly matter?
1309		 */
1310		ip = mtod(copym, struct ip *);
1311		ip->ip_len = htons(ip->ip_len);
1312		ip->ip_off = htons(ip->ip_off);
1313		ip->ip_sum = 0;
1314		ip->ip_sum = in_cksum(copym, hlen);
1315#if 1 /* XXX */
1316		if (dst->sin_family != AF_INET) {
1317			printf("ip_mloopback: bad address family %d\n",
1318						dst->sin_family);
1319			dst->sin_family = AF_INET;
1320		}
1321#endif
1322		if_simloop(ifp, copym, dst->sin_family, 0);
1323	}
1324}
1325