ip_output.c revision 227428
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/9/sys/netinet/ip_output.c 227428 2011-11-10 20:28:30Z trociny $");
34
35#include "opt_ipfw.h"
36#include "opt_ipsec.h"
37#include "opt_route.h"
38#include "opt_mbuf_stress_test.h"
39#include "opt_mpath.h"
40#include "opt_sctp.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#include <sys/priv.h>
48#include <sys/proc.h>
49#include <sys/protosw.h>
50#include <sys/socket.h>
51#include <sys/socketvar.h>
52#include <sys/sysctl.h>
53#include <sys/ucred.h>
54
55#include <net/if.h>
56#include <net/if_llatbl.h>
57#include <net/netisr.h>
58#include <net/pfil.h>
59#include <net/route.h>
60#include <net/flowtable.h>
61#ifdef RADIX_MPATH
62#include <net/radix_mpath.h>
63#endif
64#include <net/vnet.h>
65
66#include <netinet/in.h>
67#include <netinet/in_systm.h>
68#include <netinet/ip.h>
69#include <netinet/in_pcb.h>
70#include <netinet/in_var.h>
71#include <netinet/ip_var.h>
72#include <netinet/ip_options.h>
73#ifdef SCTP
74#include <netinet/sctp.h>
75#include <netinet/sctp_crc32.h>
76#endif
77
78#ifdef IPSEC
79#include <netinet/ip_ipsec.h>
80#include <netipsec/ipsec.h>
81#endif /* IPSEC*/
82
83#include <machine/in_cksum.h>
84
85#include <security/mac/mac_framework.h>
86
87VNET_DEFINE(u_short, ip_id);
88
89#ifdef MBUF_STRESS_TEST
90static int mbuf_frag_size = 0;
91SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
92	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
93#endif
94
95static void	ip_mloopback
96	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
97
98
99extern int in_mcast_loop;
100extern	struct protosw inetsw[];
101
102/*
103 * IP output.  The packet in mbuf chain m contains a skeletal IP
104 * header (with len, off, ttl, proto, tos, src, dst).
105 * ip_len and ip_off are in host format.
106 * The mbuf chain containing the packet will be freed.
107 * The mbuf opt, if present, will not be freed.
108 * In the IP forwarding case, the packet will arrive with options already
109 * inserted, so must have a NULL opt pointer.
110 */
111int
112ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
113    struct ip_moptions *imo, struct inpcb *inp)
114{
115	struct ip *ip;
116	struct ifnet *ifp = NULL;	/* keep compiler happy */
117	struct mbuf *m0;
118	int hlen = sizeof (struct ip);
119	int mtu;
120	int n;	/* scratchpad */
121	int error = 0;
122	int nortfree = 0;
123	struct sockaddr_in *dst;
124	struct in_ifaddr *ia = NULL;
125	int isbroadcast, sw_csum;
126	struct route iproute;
127	struct rtentry *rte;	/* cache for ro->ro_rt */
128	struct in_addr odst;
129#ifdef IPFIREWALL_FORWARD
130	struct m_tag *fwd_tag = NULL;
131#endif
132#ifdef IPSEC
133	int no_route_but_check_spd = 0;
134#endif
135	M_ASSERTPKTHDR(m);
136
137	if (inp != NULL) {
138		INP_LOCK_ASSERT(inp);
139		M_SETFIB(m, inp->inp_inc.inc_fibnum);
140		if (inp->inp_flags & (INP_HW_FLOWID|INP_SW_FLOWID)) {
141			m->m_pkthdr.flowid = inp->inp_flowid;
142			m->m_flags |= M_FLOWID;
143		}
144	}
145
146	if (ro == NULL) {
147		ro = &iproute;
148		bzero(ro, sizeof (*ro));
149
150#ifdef FLOWTABLE
151		{
152			struct flentry *fle;
153
154			/*
155			 * The flow table returns route entries valid for up to 30
156			 * seconds; we rely on the remainder of ip_output() taking no
157			 * longer than that long for the stability of ro_rt.  The
158			 * flow ID assignment must have happened before this point.
159			 */
160			if ((fle = flowtable_lookup_mbuf(V_ip_ft, m, AF_INET)) != NULL) {
161				flow_to_route(fle, ro);
162				nortfree = 1;
163			}
164		}
165#endif
166	}
167
168	if (opt) {
169		int len = 0;
170		m = ip_insertoptions(m, opt, &len);
171		if (len != 0)
172			hlen = len; /* ip->ip_hl is updated above */
173	}
174	ip = mtod(m, struct ip *);
175
176	/*
177	 * Fill in IP header.  If we are not allowing fragmentation,
178	 * then the ip_id field is meaningless, but we don't set it
179	 * to zero.  Doing so causes various problems when devices along
180	 * the path (routers, load balancers, firewalls, etc.) illegally
181	 * disable DF on our packet.  Note that a 16-bit counter
182	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
183	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
184	 * for Counting NATted Hosts", Proc. IMW'02, available at
185	 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>.
186	 */
187	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
188		ip->ip_v = IPVERSION;
189		ip->ip_hl = hlen >> 2;
190		ip->ip_id = ip_newid();
191		IPSTAT_INC(ips_localout);
192	} else {
193		/* Header already set, fetch hlen from there */
194		hlen = ip->ip_hl << 2;
195	}
196
197	dst = (struct sockaddr_in *)&ro->ro_dst;
198again:
199	/*
200	 * If there is a cached route,
201	 * check that it is to the same destination
202	 * and is still up.  If not, free it and try again.
203	 * The address family should also be checked in case of sharing the
204	 * cache with IPv6.
205	 */
206	rte = ro->ro_rt;
207	if (rte && ((rte->rt_flags & RTF_UP) == 0 ||
208		    rte->rt_ifp == NULL ||
209		    !RT_LINK_IS_UP(rte->rt_ifp) ||
210			  dst->sin_family != AF_INET ||
211			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
212		if (!nortfree)
213			RTFREE(rte);
214		rte = ro->ro_rt = (struct rtentry *)NULL;
215		ro->ro_lle = (struct llentry *)NULL;
216	}
217#ifdef IPFIREWALL_FORWARD
218	if (rte == NULL && fwd_tag == NULL) {
219#else
220	if (rte == NULL) {
221#endif
222		bzero(dst, sizeof(*dst));
223		dst->sin_family = AF_INET;
224		dst->sin_len = sizeof(*dst);
225		dst->sin_addr = ip->ip_dst;
226	}
227	/*
228	 * If routing to interface only, short circuit routing lookup.
229	 * The use of an all-ones broadcast address implies this; an
230	 * interface is specified by the broadcast address of an interface,
231	 * or the destination address of a ptp interface.
232	 */
233	if (flags & IP_SENDONES) {
234		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst)))) == NULL &&
235		    (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) {
236			IPSTAT_INC(ips_noroute);
237			error = ENETUNREACH;
238			goto bad;
239		}
240		ip->ip_dst.s_addr = INADDR_BROADCAST;
241		dst->sin_addr = ip->ip_dst;
242		ifp = ia->ia_ifp;
243		ip->ip_ttl = 1;
244		isbroadcast = 1;
245	} else if (flags & IP_ROUTETOIF) {
246		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
247		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0))) == NULL) {
248			IPSTAT_INC(ips_noroute);
249			error = ENETUNREACH;
250			goto bad;
251		}
252		ifp = ia->ia_ifp;
253		ip->ip_ttl = 1;
254		isbroadcast = in_broadcast(dst->sin_addr, ifp);
255	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
256	    imo != NULL && imo->imo_multicast_ifp != NULL) {
257		/*
258		 * Bypass the normal routing lookup for multicast
259		 * packets if the interface is specified.
260		 */
261		ifp = imo->imo_multicast_ifp;
262		IFP_TO_IA(ifp, ia);
263		isbroadcast = 0;	/* fool gcc */
264	} else {
265		/*
266		 * We want to do any cloning requested by the link layer,
267		 * as this is probably required in all cases for correct
268		 * operation (as it is for ARP).
269		 */
270		if (rte == NULL) {
271#ifdef RADIX_MPATH
272			rtalloc_mpath_fib(ro,
273			    ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr),
274			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
275#else
276			in_rtalloc_ign(ro, 0,
277			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
278#endif
279			rte = ro->ro_rt;
280		}
281		if (rte == NULL ||
282		    rte->rt_ifp == NULL ||
283		    !RT_LINK_IS_UP(rte->rt_ifp)) {
284#ifdef IPSEC
285			/*
286			 * There is no route for this packet, but it is
287			 * possible that a matching SPD entry exists.
288			 */
289			no_route_but_check_spd = 1;
290			mtu = 0; /* Silence GCC warning. */
291			goto sendit;
292#endif
293			IPSTAT_INC(ips_noroute);
294			error = EHOSTUNREACH;
295			goto bad;
296		}
297		ia = ifatoia(rte->rt_ifa);
298		ifa_ref(&ia->ia_ifa);
299		ifp = rte->rt_ifp;
300		rte->rt_rmx.rmx_pksent++;
301		if (rte->rt_flags & RTF_GATEWAY)
302			dst = (struct sockaddr_in *)rte->rt_gateway;
303		if (rte->rt_flags & RTF_HOST)
304			isbroadcast = (rte->rt_flags & RTF_BROADCAST);
305		else
306			isbroadcast = in_broadcast(dst->sin_addr, ifp);
307	}
308	/*
309	 * Calculate MTU.  If we have a route that is up, use that,
310	 * otherwise use the interface's MTU.
311	 */
312	if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) {
313		/*
314		 * This case can happen if the user changed the MTU
315		 * of an interface after enabling IP on it.  Because
316		 * most netifs don't keep track of routes pointing to
317		 * them, there is no way for one to update all its
318		 * routes when the MTU is changed.
319		 */
320		if (rte->rt_rmx.rmx_mtu > ifp->if_mtu)
321			rte->rt_rmx.rmx_mtu = ifp->if_mtu;
322		mtu = rte->rt_rmx.rmx_mtu;
323	} else {
324		mtu = ifp->if_mtu;
325	}
326	/* Catch a possible divide by zero later. */
327	KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p",
328	    __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp));
329	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
330		m->m_flags |= M_MCAST;
331		/*
332		 * IP destination address is multicast.  Make sure "dst"
333		 * still points to the address in "ro".  (It may have been
334		 * changed to point to a gateway address, above.)
335		 */
336		dst = (struct sockaddr_in *)&ro->ro_dst;
337		/*
338		 * See if the caller provided any multicast options
339		 */
340		if (imo != NULL) {
341			ip->ip_ttl = imo->imo_multicast_ttl;
342			if (imo->imo_multicast_vif != -1)
343				ip->ip_src.s_addr =
344				    ip_mcast_src ?
345				    ip_mcast_src(imo->imo_multicast_vif) :
346				    INADDR_ANY;
347		} else
348			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
349		/*
350		 * Confirm that the outgoing interface supports multicast.
351		 */
352		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
353			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
354				IPSTAT_INC(ips_noroute);
355				error = ENETUNREACH;
356				goto bad;
357			}
358		}
359		/*
360		 * If source address not specified yet, use address
361		 * of outgoing interface.
362		 */
363		if (ip->ip_src.s_addr == INADDR_ANY) {
364			/* Interface may have no addresses. */
365			if (ia != NULL)
366				ip->ip_src = IA_SIN(ia)->sin_addr;
367		}
368
369		if ((imo == NULL && in_mcast_loop) ||
370		    (imo && imo->imo_multicast_loop)) {
371			/*
372			 * Loop back multicast datagram if not expressly
373			 * forbidden to do so, even if we are not a member
374			 * of the group; ip_input() will filter it later,
375			 * thus deferring a hash lookup and mutex acquisition
376			 * at the expense of a cheap copy using m_copym().
377			 */
378			ip_mloopback(ifp, m, dst, hlen);
379		} else {
380			/*
381			 * If we are acting as a multicast router, perform
382			 * multicast forwarding as if the packet had just
383			 * arrived on the interface to which we are about
384			 * to send.  The multicast forwarding function
385			 * recursively calls this function, using the
386			 * IP_FORWARDING flag to prevent infinite recursion.
387			 *
388			 * Multicasts that are looped back by ip_mloopback(),
389			 * above, will be forwarded by the ip_input() routine,
390			 * if necessary.
391			 */
392			if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
393				/*
394				 * If rsvp daemon is not running, do not
395				 * set ip_moptions. This ensures that the packet
396				 * is multicast and not just sent down one link
397				 * as prescribed by rsvpd.
398				 */
399				if (!V_rsvp_on)
400					imo = NULL;
401				if (ip_mforward &&
402				    ip_mforward(ip, ifp, m, imo) != 0) {
403					m_freem(m);
404					goto done;
405				}
406			}
407		}
408
409		/*
410		 * Multicasts with a time-to-live of zero may be looped-
411		 * back, above, but must not be transmitted on a network.
412		 * Also, multicasts addressed to the loopback interface
413		 * are not sent -- the above call to ip_mloopback() will
414		 * loop back a copy. ip_input() will drop the copy if
415		 * this host does not belong to the destination group on
416		 * the loopback interface.
417		 */
418		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
419			m_freem(m);
420			goto done;
421		}
422
423		goto sendit;
424	}
425
426	/*
427	 * If the source address is not specified yet, use the address
428	 * of the outoing interface.
429	 */
430	if (ip->ip_src.s_addr == INADDR_ANY) {
431		/* Interface may have no addresses. */
432		if (ia != NULL) {
433			ip->ip_src = IA_SIN(ia)->sin_addr;
434		}
435	}
436
437	/*
438	 * Verify that we have any chance at all of being able to queue the
439	 * packet or packet fragments, unless ALTQ is enabled on the given
440	 * interface in which case packetdrop should be done by queueing.
441	 */
442	n = ip->ip_len / mtu + 1; /* how many fragments ? */
443	if (
444#ifdef ALTQ
445	    (!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
446#endif /* ALTQ */
447	    (ifp->if_snd.ifq_len + n) >= ifp->if_snd.ifq_maxlen ) {
448		error = ENOBUFS;
449		IPSTAT_INC(ips_odropped);
450		ifp->if_snd.ifq_drops += n;
451		goto bad;
452	}
453
454	/*
455	 * Look for broadcast address and
456	 * verify user is allowed to send
457	 * such a packet.
458	 */
459	if (isbroadcast) {
460		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
461			error = EADDRNOTAVAIL;
462			goto bad;
463		}
464		if ((flags & IP_ALLOWBROADCAST) == 0) {
465			error = EACCES;
466			goto bad;
467		}
468		/* don't allow broadcast messages to be fragmented */
469		if (ip->ip_len > mtu) {
470			error = EMSGSIZE;
471			goto bad;
472		}
473		m->m_flags |= M_BCAST;
474	} else {
475		m->m_flags &= ~M_BCAST;
476	}
477
478sendit:
479#ifdef IPSEC
480	switch(ip_ipsec_output(&m, inp, &flags, &error)) {
481	case 1:
482		goto bad;
483	case -1:
484		goto done;
485	case 0:
486	default:
487		break;	/* Continue with packet processing. */
488	}
489	/*
490	 * Check if there was a route for this packet; return error if not.
491	 */
492	if (no_route_but_check_spd) {
493		IPSTAT_INC(ips_noroute);
494		error = EHOSTUNREACH;
495		goto bad;
496	}
497	/* Update variables that are affected by ipsec4_output(). */
498	ip = mtod(m, struct ip *);
499	hlen = ip->ip_hl << 2;
500#endif /* IPSEC */
501
502	/* Jump over all PFIL processing if hooks are not active. */
503	if (!PFIL_HOOKED(&V_inet_pfil_hook))
504		goto passout;
505
506	/* Run through list of hooks for output packets. */
507	odst.s_addr = ip->ip_dst.s_addr;
508	error = pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
509	if (error != 0 || m == NULL)
510		goto done;
511
512	ip = mtod(m, struct ip *);
513
514	/* See if destination IP address was changed by packet filter. */
515	if (odst.s_addr != ip->ip_dst.s_addr) {
516		m->m_flags |= M_SKIP_FIREWALL;
517		/* If destination is now ourself drop to ip_input(). */
518		if (in_localip(ip->ip_dst)) {
519			m->m_flags |= M_FASTFWD_OURS;
520			if (m->m_pkthdr.rcvif == NULL)
521				m->m_pkthdr.rcvif = V_loif;
522			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
523				m->m_pkthdr.csum_flags |=
524				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
525				m->m_pkthdr.csum_data = 0xffff;
526			}
527			m->m_pkthdr.csum_flags |=
528			    CSUM_IP_CHECKED | CSUM_IP_VALID;
529#ifdef SCTP
530			if (m->m_pkthdr.csum_flags & CSUM_SCTP)
531				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
532#endif
533			error = netisr_queue(NETISR_IP, m);
534			goto done;
535		} else
536			goto again;	/* Redo the routing table lookup. */
537	}
538
539#ifdef IPFIREWALL_FORWARD
540	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
541	if (m->m_flags & M_FASTFWD_OURS) {
542		if (m->m_pkthdr.rcvif == NULL)
543			m->m_pkthdr.rcvif = V_loif;
544		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
545			m->m_pkthdr.csum_flags |=
546			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
547			m->m_pkthdr.csum_data = 0xffff;
548		}
549#ifdef SCTP
550		if (m->m_pkthdr.csum_flags & CSUM_SCTP)
551			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
552#endif
553		m->m_pkthdr.csum_flags |=
554			    CSUM_IP_CHECKED | CSUM_IP_VALID;
555
556		error = netisr_queue(NETISR_IP, m);
557		goto done;
558	}
559	/* Or forward to some other address? */
560	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
561	if (fwd_tag) {
562		dst = (struct sockaddr_in *)&ro->ro_dst;
563		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
564		m->m_flags |= M_SKIP_FIREWALL;
565		m_tag_delete(m, fwd_tag);
566		goto again;
567	}
568#endif /* IPFIREWALL_FORWARD */
569
570passout:
571	/* 127/8 must not appear on wire - RFC1122. */
572	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
573	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
574		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
575			IPSTAT_INC(ips_badaddr);
576			error = EADDRNOTAVAIL;
577			goto bad;
578		}
579	}
580
581	m->m_pkthdr.csum_flags |= CSUM_IP;
582	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
583	if (sw_csum & CSUM_DELAY_DATA) {
584		in_delayed_cksum(m);
585		sw_csum &= ~CSUM_DELAY_DATA;
586	}
587#ifdef SCTP
588	if (sw_csum & CSUM_SCTP) {
589		sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
590		sw_csum &= ~CSUM_SCTP;
591	}
592#endif
593	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
594
595	/*
596	 * If small enough for interface, or the interface will take
597	 * care of the fragmentation for us, we can just send directly.
598	 */
599	if (ip->ip_len <= mtu ||
600	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 ||
601	    ((ip->ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) {
602		ip->ip_len = htons(ip->ip_len);
603		ip->ip_off = htons(ip->ip_off);
604		ip->ip_sum = 0;
605		if (sw_csum & CSUM_DELAY_IP)
606			ip->ip_sum = in_cksum(m, hlen);
607
608		/*
609		 * Record statistics for this interface address.
610		 * With CSUM_TSO the byte/packet count will be slightly
611		 * incorrect because we count the IP+TCP headers only
612		 * once instead of for every generated packet.
613		 */
614		if (!(flags & IP_FORWARDING) && ia) {
615			if (m->m_pkthdr.csum_flags & CSUM_TSO)
616				ia->ia_ifa.if_opackets +=
617				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz;
618			else
619				ia->ia_ifa.if_opackets++;
620			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
621		}
622#ifdef MBUF_STRESS_TEST
623		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
624			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
625#endif
626		/*
627		 * Reset layer specific mbuf flags
628		 * to avoid confusing lower layers.
629		 */
630		m->m_flags &= ~(M_PROTOFLAGS);
631		error = (*ifp->if_output)(ifp, m,
632		    		(struct sockaddr *)dst, ro);
633		goto done;
634	}
635
636	/* Balk when DF bit is set or the interface didn't support TSO. */
637	if ((ip->ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
638		error = EMSGSIZE;
639		IPSTAT_INC(ips_cantfrag);
640		goto bad;
641	}
642
643	/*
644	 * Too large for interface; fragment if possible. If successful,
645	 * on return, m will point to a list of packets to be sent.
646	 */
647	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist, sw_csum);
648	if (error)
649		goto bad;
650	for (; m; m = m0) {
651		m0 = m->m_nextpkt;
652		m->m_nextpkt = 0;
653		if (error == 0) {
654			/* Record statistics for this interface address. */
655			if (ia != NULL) {
656				ia->ia_ifa.if_opackets++;
657				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
658			}
659			/*
660			 * Reset layer specific mbuf flags
661			 * to avoid confusing upper layers.
662			 */
663			m->m_flags &= ~(M_PROTOFLAGS);
664
665			error = (*ifp->if_output)(ifp, m,
666			    (struct sockaddr *)dst, ro);
667		} else
668			m_freem(m);
669	}
670
671	if (error == 0)
672		IPSTAT_INC(ips_fragmented);
673
674done:
675	if (ro == &iproute && ro->ro_rt && !nortfree) {
676		RTFREE(ro->ro_rt);
677	}
678	if (ia != NULL)
679		ifa_free(&ia->ia_ifa);
680	return (error);
681bad:
682	m_freem(m);
683	goto done;
684}
685
686/*
687 * Create a chain of fragments which fit the given mtu. m_frag points to the
688 * mbuf to be fragmented; on return it points to the chain with the fragments.
689 * Return 0 if no error. If error, m_frag may contain a partially built
690 * chain of fragments that should be freed by the caller.
691 *
692 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
693 * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
694 */
695int
696ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
697    u_long if_hwassist_flags, int sw_csum)
698{
699	int error = 0;
700	int hlen = ip->ip_hl << 2;
701	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
702	int off;
703	struct mbuf *m0 = *m_frag;	/* the original packet		*/
704	int firstlen;
705	struct mbuf **mnext;
706	int nfrags;
707
708	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
709		IPSTAT_INC(ips_cantfrag);
710		return EMSGSIZE;
711	}
712
713	/*
714	 * Must be able to put at least 8 bytes per fragment.
715	 */
716	if (len < 8)
717		return EMSGSIZE;
718
719	/*
720	 * If the interface will not calculate checksums on
721	 * fragmented packets, then do it here.
722	 */
723	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
724	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
725		in_delayed_cksum(m0);
726		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
727	}
728#ifdef SCTP
729	if (m0->m_pkthdr.csum_flags & CSUM_SCTP &&
730	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
731		sctp_delayed_cksum(m0, hlen);
732		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
733	}
734#endif
735	if (len > PAGE_SIZE) {
736		/*
737		 * Fragment large datagrams such that each segment
738		 * contains a multiple of PAGE_SIZE amount of data,
739		 * plus headers. This enables a receiver to perform
740		 * page-flipping zero-copy optimizations.
741		 *
742		 * XXX When does this help given that sender and receiver
743		 * could have different page sizes, and also mtu could
744		 * be less than the receiver's page size ?
745		 */
746		int newlen;
747		struct mbuf *m;
748
749		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
750			off += m->m_len;
751
752		/*
753		 * firstlen (off - hlen) must be aligned on an
754		 * 8-byte boundary
755		 */
756		if (off < hlen)
757			goto smart_frag_failure;
758		off = ((off - hlen) & ~7) + hlen;
759		newlen = (~PAGE_MASK) & mtu;
760		if ((newlen + sizeof (struct ip)) > mtu) {
761			/* we failed, go back the default */
762smart_frag_failure:
763			newlen = len;
764			off = hlen + len;
765		}
766		len = newlen;
767
768	} else {
769		off = hlen + len;
770	}
771
772	firstlen = off - hlen;
773	mnext = &m0->m_nextpkt;		/* pointer to next packet */
774
775	/*
776	 * Loop through length of segment after first fragment,
777	 * make new header and copy data of each part and link onto chain.
778	 * Here, m0 is the original packet, m is the fragment being created.
779	 * The fragments are linked off the m_nextpkt of the original
780	 * packet, which after processing serves as the first fragment.
781	 */
782	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
783		struct ip *mhip;	/* ip header on the fragment */
784		struct mbuf *m;
785		int mhlen = sizeof (struct ip);
786
787		MGETHDR(m, M_DONTWAIT, MT_DATA);
788		if (m == NULL) {
789			error = ENOBUFS;
790			IPSTAT_INC(ips_odropped);
791			goto done;
792		}
793		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
794		/*
795		 * In the first mbuf, leave room for the link header, then
796		 * copy the original IP header including options. The payload
797		 * goes into an additional mbuf chain returned by m_copym().
798		 */
799		m->m_data += max_linkhdr;
800		mhip = mtod(m, struct ip *);
801		*mhip = *ip;
802		if (hlen > sizeof (struct ip)) {
803			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
804			mhip->ip_v = IPVERSION;
805			mhip->ip_hl = mhlen >> 2;
806		}
807		m->m_len = mhlen;
808		/* XXX do we need to add ip->ip_off below ? */
809		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
810		if (off + len >= ip->ip_len) {	/* last fragment */
811			len = ip->ip_len - off;
812			m->m_flags |= M_LASTFRAG;
813		} else
814			mhip->ip_off |= IP_MF;
815		mhip->ip_len = htons((u_short)(len + mhlen));
816		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
817		if (m->m_next == NULL) {	/* copy failed */
818			m_free(m);
819			error = ENOBUFS;	/* ??? */
820			IPSTAT_INC(ips_odropped);
821			goto done;
822		}
823		m->m_pkthdr.len = mhlen + len;
824		m->m_pkthdr.rcvif = NULL;
825#ifdef MAC
826		mac_netinet_fragment(m0, m);
827#endif
828		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
829		mhip->ip_off = htons(mhip->ip_off);
830		mhip->ip_sum = 0;
831		if (sw_csum & CSUM_DELAY_IP)
832			mhip->ip_sum = in_cksum(m, mhlen);
833		*mnext = m;
834		mnext = &m->m_nextpkt;
835	}
836	IPSTAT_ADD(ips_ofragments, nfrags);
837
838	/* set first marker for fragment chain */
839	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
840	m0->m_pkthdr.csum_data = nfrags;
841
842	/*
843	 * Update first fragment by trimming what's been copied out
844	 * and updating header.
845	 */
846	m_adj(m0, hlen + firstlen - ip->ip_len);
847	m0->m_pkthdr.len = hlen + firstlen;
848	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
849	ip->ip_off |= IP_MF;
850	ip->ip_off = htons(ip->ip_off);
851	ip->ip_sum = 0;
852	if (sw_csum & CSUM_DELAY_IP)
853		ip->ip_sum = in_cksum(m0, hlen);
854
855done:
856	*m_frag = m0;
857	return error;
858}
859
860void
861in_delayed_cksum(struct mbuf *m)
862{
863	struct ip *ip;
864	u_short csum, offset;
865
866	ip = mtod(m, struct ip *);
867	offset = ip->ip_hl << 2 ;
868	csum = in_cksum_skip(m, ip->ip_len, offset);
869	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
870		csum = 0xffff;
871	offset += m->m_pkthdr.csum_data;	/* checksum offset */
872
873	if (offset + sizeof(u_short) > m->m_len) {
874		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
875		    m->m_len, offset, ip->ip_p);
876		/*
877		 * XXX
878		 * this shouldn't happen, but if it does, the
879		 * correct behavior may be to insert the checksum
880		 * in the appropriate next mbuf in the chain.
881		 */
882		return;
883	}
884	*(u_short *)(m->m_data + offset) = csum;
885}
886
887/*
888 * IP socket option processing.
889 */
890int
891ip_ctloutput(struct socket *so, struct sockopt *sopt)
892{
893	struct	inpcb *inp = sotoinpcb(so);
894	int	error, optval;
895
896	error = optval = 0;
897	if (sopt->sopt_level != IPPROTO_IP) {
898		error = EINVAL;
899
900		if (sopt->sopt_level == SOL_SOCKET &&
901		    sopt->sopt_dir == SOPT_SET) {
902			switch (sopt->sopt_name) {
903			case SO_REUSEADDR:
904				INP_WLOCK(inp);
905				if (IN_MULTICAST(ntohl(inp->inp_laddr.s_addr))) {
906					if ((so->so_options &
907					    (SO_REUSEADDR | SO_REUSEPORT)) != 0)
908						inp->inp_flags2 |= INP_REUSEPORT;
909					else
910						inp->inp_flags2 &= ~INP_REUSEPORT;
911				}
912				INP_WUNLOCK(inp);
913				error = 0;
914				break;
915			case SO_REUSEPORT:
916				INP_WLOCK(inp);
917				if ((so->so_options & SO_REUSEPORT) != 0)
918					inp->inp_flags2 |= INP_REUSEPORT;
919				else
920					inp->inp_flags2 &= ~INP_REUSEPORT;
921				INP_WUNLOCK(inp);
922				error = 0;
923				break;
924			case SO_SETFIB:
925				INP_WLOCK(inp);
926				inp->inp_inc.inc_fibnum = so->so_fibnum;
927				INP_WUNLOCK(inp);
928				error = 0;
929				break;
930			default:
931				break;
932			}
933		}
934		return (error);
935	}
936
937	switch (sopt->sopt_dir) {
938	case SOPT_SET:
939		switch (sopt->sopt_name) {
940		case IP_OPTIONS:
941#ifdef notyet
942		case IP_RETOPTS:
943#endif
944		{
945			struct mbuf *m;
946			if (sopt->sopt_valsize > MLEN) {
947				error = EMSGSIZE;
948				break;
949			}
950			MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
951			if (m == NULL) {
952				error = ENOBUFS;
953				break;
954			}
955			m->m_len = sopt->sopt_valsize;
956			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
957					    m->m_len);
958			if (error) {
959				m_free(m);
960				break;
961			}
962			INP_WLOCK(inp);
963			error = ip_pcbopts(inp, sopt->sopt_name, m);
964			INP_WUNLOCK(inp);
965			return (error);
966		}
967
968		case IP_BINDANY:
969			if (sopt->sopt_td != NULL) {
970				error = priv_check(sopt->sopt_td,
971				    PRIV_NETINET_BINDANY);
972				if (error)
973					break;
974			}
975			/* FALLTHROUGH */
976		case IP_TOS:
977		case IP_TTL:
978		case IP_MINTTL:
979		case IP_RECVOPTS:
980		case IP_RECVRETOPTS:
981		case IP_RECVDSTADDR:
982		case IP_RECVTTL:
983		case IP_RECVIF:
984		case IP_FAITH:
985		case IP_ONESBCAST:
986		case IP_DONTFRAG:
987			error = sooptcopyin(sopt, &optval, sizeof optval,
988					    sizeof optval);
989			if (error)
990				break;
991
992			switch (sopt->sopt_name) {
993			case IP_TOS:
994				inp->inp_ip_tos = optval;
995				break;
996
997			case IP_TTL:
998				inp->inp_ip_ttl = optval;
999				break;
1000
1001			case IP_MINTTL:
1002				if (optval >= 0 && optval <= MAXTTL)
1003					inp->inp_ip_minttl = optval;
1004				else
1005					error = EINVAL;
1006				break;
1007
1008#define	OPTSET(bit) do {						\
1009	INP_WLOCK(inp);							\
1010	if (optval)							\
1011		inp->inp_flags |= bit;					\
1012	else								\
1013		inp->inp_flags &= ~bit;					\
1014	INP_WUNLOCK(inp);						\
1015} while (0)
1016
1017			case IP_RECVOPTS:
1018				OPTSET(INP_RECVOPTS);
1019				break;
1020
1021			case IP_RECVRETOPTS:
1022				OPTSET(INP_RECVRETOPTS);
1023				break;
1024
1025			case IP_RECVDSTADDR:
1026				OPTSET(INP_RECVDSTADDR);
1027				break;
1028
1029			case IP_RECVTTL:
1030				OPTSET(INP_RECVTTL);
1031				break;
1032
1033			case IP_RECVIF:
1034				OPTSET(INP_RECVIF);
1035				break;
1036
1037			case IP_FAITH:
1038				OPTSET(INP_FAITH);
1039				break;
1040
1041			case IP_ONESBCAST:
1042				OPTSET(INP_ONESBCAST);
1043				break;
1044			case IP_DONTFRAG:
1045				OPTSET(INP_DONTFRAG);
1046				break;
1047			case IP_BINDANY:
1048				OPTSET(INP_BINDANY);
1049				break;
1050			}
1051			break;
1052#undef OPTSET
1053
1054		/*
1055		 * Multicast socket options are processed by the in_mcast
1056		 * module.
1057		 */
1058		case IP_MULTICAST_IF:
1059		case IP_MULTICAST_VIF:
1060		case IP_MULTICAST_TTL:
1061		case IP_MULTICAST_LOOP:
1062		case IP_ADD_MEMBERSHIP:
1063		case IP_DROP_MEMBERSHIP:
1064		case IP_ADD_SOURCE_MEMBERSHIP:
1065		case IP_DROP_SOURCE_MEMBERSHIP:
1066		case IP_BLOCK_SOURCE:
1067		case IP_UNBLOCK_SOURCE:
1068		case IP_MSFILTER:
1069		case MCAST_JOIN_GROUP:
1070		case MCAST_LEAVE_GROUP:
1071		case MCAST_JOIN_SOURCE_GROUP:
1072		case MCAST_LEAVE_SOURCE_GROUP:
1073		case MCAST_BLOCK_SOURCE:
1074		case MCAST_UNBLOCK_SOURCE:
1075			error = inp_setmoptions(inp, sopt);
1076			break;
1077
1078		case IP_PORTRANGE:
1079			error = sooptcopyin(sopt, &optval, sizeof optval,
1080					    sizeof optval);
1081			if (error)
1082				break;
1083
1084			INP_WLOCK(inp);
1085			switch (optval) {
1086			case IP_PORTRANGE_DEFAULT:
1087				inp->inp_flags &= ~(INP_LOWPORT);
1088				inp->inp_flags &= ~(INP_HIGHPORT);
1089				break;
1090
1091			case IP_PORTRANGE_HIGH:
1092				inp->inp_flags &= ~(INP_LOWPORT);
1093				inp->inp_flags |= INP_HIGHPORT;
1094				break;
1095
1096			case IP_PORTRANGE_LOW:
1097				inp->inp_flags &= ~(INP_HIGHPORT);
1098				inp->inp_flags |= INP_LOWPORT;
1099				break;
1100
1101			default:
1102				error = EINVAL;
1103				break;
1104			}
1105			INP_WUNLOCK(inp);
1106			break;
1107
1108#ifdef IPSEC
1109		case IP_IPSEC_POLICY:
1110		{
1111			caddr_t req;
1112			struct mbuf *m;
1113
1114			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1115				break;
1116			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1117				break;
1118			req = mtod(m, caddr_t);
1119			error = ipsec_set_policy(inp, sopt->sopt_name, req,
1120			    m->m_len, (sopt->sopt_td != NULL) ?
1121			    sopt->sopt_td->td_ucred : NULL);
1122			m_freem(m);
1123			break;
1124		}
1125#endif /* IPSEC */
1126
1127		default:
1128			error = ENOPROTOOPT;
1129			break;
1130		}
1131		break;
1132
1133	case SOPT_GET:
1134		switch (sopt->sopt_name) {
1135		case IP_OPTIONS:
1136		case IP_RETOPTS:
1137			if (inp->inp_options)
1138				error = sooptcopyout(sopt,
1139						     mtod(inp->inp_options,
1140							  char *),
1141						     inp->inp_options->m_len);
1142			else
1143				sopt->sopt_valsize = 0;
1144			break;
1145
1146		case IP_TOS:
1147		case IP_TTL:
1148		case IP_MINTTL:
1149		case IP_RECVOPTS:
1150		case IP_RECVRETOPTS:
1151		case IP_RECVDSTADDR:
1152		case IP_RECVTTL:
1153		case IP_RECVIF:
1154		case IP_PORTRANGE:
1155		case IP_FAITH:
1156		case IP_ONESBCAST:
1157		case IP_DONTFRAG:
1158		case IP_BINDANY:
1159			switch (sopt->sopt_name) {
1160
1161			case IP_TOS:
1162				optval = inp->inp_ip_tos;
1163				break;
1164
1165			case IP_TTL:
1166				optval = inp->inp_ip_ttl;
1167				break;
1168
1169			case IP_MINTTL:
1170				optval = inp->inp_ip_minttl;
1171				break;
1172
1173#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1174
1175			case IP_RECVOPTS:
1176				optval = OPTBIT(INP_RECVOPTS);
1177				break;
1178
1179			case IP_RECVRETOPTS:
1180				optval = OPTBIT(INP_RECVRETOPTS);
1181				break;
1182
1183			case IP_RECVDSTADDR:
1184				optval = OPTBIT(INP_RECVDSTADDR);
1185				break;
1186
1187			case IP_RECVTTL:
1188				optval = OPTBIT(INP_RECVTTL);
1189				break;
1190
1191			case IP_RECVIF:
1192				optval = OPTBIT(INP_RECVIF);
1193				break;
1194
1195			case IP_PORTRANGE:
1196				if (inp->inp_flags & INP_HIGHPORT)
1197					optval = IP_PORTRANGE_HIGH;
1198				else if (inp->inp_flags & INP_LOWPORT)
1199					optval = IP_PORTRANGE_LOW;
1200				else
1201					optval = 0;
1202				break;
1203
1204			case IP_FAITH:
1205				optval = OPTBIT(INP_FAITH);
1206				break;
1207
1208			case IP_ONESBCAST:
1209				optval = OPTBIT(INP_ONESBCAST);
1210				break;
1211			case IP_DONTFRAG:
1212				optval = OPTBIT(INP_DONTFRAG);
1213				break;
1214			case IP_BINDANY:
1215				optval = OPTBIT(INP_BINDANY);
1216				break;
1217			}
1218			error = sooptcopyout(sopt, &optval, sizeof optval);
1219			break;
1220
1221		/*
1222		 * Multicast socket options are processed by the in_mcast
1223		 * module.
1224		 */
1225		case IP_MULTICAST_IF:
1226		case IP_MULTICAST_VIF:
1227		case IP_MULTICAST_TTL:
1228		case IP_MULTICAST_LOOP:
1229		case IP_MSFILTER:
1230			error = inp_getmoptions(inp, sopt);
1231			break;
1232
1233#ifdef IPSEC
1234		case IP_IPSEC_POLICY:
1235		{
1236			struct mbuf *m = NULL;
1237			caddr_t req = NULL;
1238			size_t len = 0;
1239
1240			if (m != 0) {
1241				req = mtod(m, caddr_t);
1242				len = m->m_len;
1243			}
1244			error = ipsec_get_policy(sotoinpcb(so), req, len, &m);
1245			if (error == 0)
1246				error = soopt_mcopyout(sopt, m); /* XXX */
1247			if (error == 0)
1248				m_freem(m);
1249			break;
1250		}
1251#endif /* IPSEC */
1252
1253		default:
1254			error = ENOPROTOOPT;
1255			break;
1256		}
1257		break;
1258	}
1259	return (error);
1260}
1261
1262/*
1263 * Routine called from ip_output() to loop back a copy of an IP multicast
1264 * packet to the input queue of a specified interface.  Note that this
1265 * calls the output routine of the loopback "driver", but with an interface
1266 * pointer that might NOT be a loopback interface -- evil, but easier than
1267 * replicating that code here.
1268 */
1269static void
1270ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
1271    int hlen)
1272{
1273	register struct ip *ip;
1274	struct mbuf *copym;
1275
1276	/*
1277	 * Make a deep copy of the packet because we're going to
1278	 * modify the pack in order to generate checksums.
1279	 */
1280	copym = m_dup(m, M_DONTWAIT);
1281	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1282		copym = m_pullup(copym, hlen);
1283	if (copym != NULL) {
1284		/* If needed, compute the checksum and mark it as valid. */
1285		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1286			in_delayed_cksum(copym);
1287			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1288			copym->m_pkthdr.csum_flags |=
1289			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1290			copym->m_pkthdr.csum_data = 0xffff;
1291		}
1292		/*
1293		 * We don't bother to fragment if the IP length is greater
1294		 * than the interface's MTU.  Can this possibly matter?
1295		 */
1296		ip = mtod(copym, struct ip *);
1297		ip->ip_len = htons(ip->ip_len);
1298		ip->ip_off = htons(ip->ip_off);
1299		ip->ip_sum = 0;
1300		ip->ip_sum = in_cksum(copym, hlen);
1301#if 1 /* XXX */
1302		if (dst->sin_family != AF_INET) {
1303			printf("ip_mloopback: bad address family %d\n",
1304						dst->sin_family);
1305			dst->sin_family = AF_INET;
1306		}
1307#endif
1308		if_simloop(ifp, copym, dst->sin_family, 0);
1309	}
1310}
1311